1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/IR/Argument.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/InitializePasses.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Allocator.h" 99 #include "llvm/Support/ArrayRecycler.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/DebugCounter.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/PointerLikeTypeTraits.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Scalar/GVNExpression.h" 109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 110 #include "llvm/Transforms/Utils/Local.h" 111 #include "llvm/Transforms/Utils/PredicateInfo.h" 112 #include "llvm/Transforms/Utils/VNCoercion.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstdint> 116 #include <iterator> 117 #include <map> 118 #include <memory> 119 #include <set> 120 #include <string> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace llvm::GVNExpression; 127 using namespace llvm::VNCoercion; 128 using namespace llvm::PatternMatch; 129 130 #define DEBUG_TYPE "newgvn" 131 132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 136 STATISTIC(NumGVNMaxIterations, 137 "Maximum Number of iterations it took to converge GVN"); 138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 140 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 141 "Number of avoided sorted leader changes"); 142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 144 STATISTIC(NumGVNPHIOfOpsEliminations, 145 "Number of things eliminated using PHI of ops"); 146 DEBUG_COUNTER(VNCounter, "newgvn-vn", 147 "Controls which instructions are value numbered"); 148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 149 "Controls which instructions we create phi of ops for"); 150 // Currently store defining access refinement is too slow due to basicaa being 151 // egregiously slow. This flag lets us keep it working while we work on this 152 // issue. 153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 154 cl::init(false), cl::Hidden); 155 156 /// Currently, the generation "phi of ops" can result in correctness issues. 157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 158 cl::Hidden); 159 160 //===----------------------------------------------------------------------===// 161 // GVN Pass 162 //===----------------------------------------------------------------------===// 163 164 // Anchor methods. 165 namespace llvm { 166 namespace GVNExpression { 167 168 Expression::~Expression() = default; 169 BasicExpression::~BasicExpression() = default; 170 CallExpression::~CallExpression() = default; 171 LoadExpression::~LoadExpression() = default; 172 StoreExpression::~StoreExpression() = default; 173 AggregateValueExpression::~AggregateValueExpression() = default; 174 PHIExpression::~PHIExpression() = default; 175 176 } // end namespace GVNExpression 177 } // end namespace llvm 178 179 namespace { 180 181 // Tarjan's SCC finding algorithm with Nuutila's improvements 182 // SCCIterator is actually fairly complex for the simple thing we want. 183 // It also wants to hand us SCC's that are unrelated to the phi node we ask 184 // about, and have us process them there or risk redoing work. 185 // Graph traits over a filter iterator also doesn't work that well here. 186 // This SCC finder is specialized to walk use-def chains, and only follows 187 // instructions, 188 // not generic values (arguments, etc). 189 struct TarjanSCC { 190 TarjanSCC() : Components(1) {} 191 192 void Start(const Instruction *Start) { 193 if (Root.lookup(Start) == 0) 194 FindSCC(Start); 195 } 196 197 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 198 unsigned ComponentID = ValueToComponent.lookup(V); 199 200 assert(ComponentID > 0 && 201 "Asking for a component for a value we never processed"); 202 return Components[ComponentID]; 203 } 204 205 private: 206 void FindSCC(const Instruction *I) { 207 Root[I] = ++DFSNum; 208 // Store the DFS Number we had before it possibly gets incremented. 209 unsigned int OurDFS = DFSNum; 210 for (const auto &Op : I->operands()) { 211 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 212 if (Root.lookup(Op) == 0) 213 FindSCC(InstOp); 214 if (!InComponent.count(Op)) 215 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 216 } 217 } 218 // See if we really were the root of a component, by seeing if we still have 219 // our DFSNumber. If we do, we are the root of the component, and we have 220 // completed a component. If we do not, we are not the root of a component, 221 // and belong on the component stack. 222 if (Root.lookup(I) == OurDFS) { 223 unsigned ComponentID = Components.size(); 224 Components.resize(Components.size() + 1); 225 auto &Component = Components.back(); 226 Component.insert(I); 227 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 228 InComponent.insert(I); 229 ValueToComponent[I] = ComponentID; 230 // Pop a component off the stack and label it. 231 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 232 auto *Member = Stack.back(); 233 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 234 Component.insert(Member); 235 InComponent.insert(Member); 236 ValueToComponent[Member] = ComponentID; 237 Stack.pop_back(); 238 } 239 } else { 240 // Part of a component, push to stack 241 Stack.push_back(I); 242 } 243 } 244 245 unsigned int DFSNum = 1; 246 SmallPtrSet<const Value *, 8> InComponent; 247 DenseMap<const Value *, unsigned int> Root; 248 SmallVector<const Value *, 8> Stack; 249 250 // Store the components as vector of ptr sets, because we need the topo order 251 // of SCC's, but not individual member order 252 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 253 254 DenseMap<const Value *, unsigned> ValueToComponent; 255 }; 256 257 // Congruence classes represent the set of expressions/instructions 258 // that are all the same *during some scope in the function*. 259 // That is, because of the way we perform equality propagation, and 260 // because of memory value numbering, it is not correct to assume 261 // you can willy-nilly replace any member with any other at any 262 // point in the function. 263 // 264 // For any Value in the Member set, it is valid to replace any dominated member 265 // with that Value. 266 // 267 // Every congruence class has a leader, and the leader is used to symbolize 268 // instructions in a canonical way (IE every operand of an instruction that is a 269 // member of the same congruence class will always be replaced with leader 270 // during symbolization). To simplify symbolization, we keep the leader as a 271 // constant if class can be proved to be a constant value. Otherwise, the 272 // leader is the member of the value set with the smallest DFS number. Each 273 // congruence class also has a defining expression, though the expression may be 274 // null. If it exists, it can be used for forward propagation and reassociation 275 // of values. 276 277 // For memory, we also track a representative MemoryAccess, and a set of memory 278 // members for MemoryPhis (which have no real instructions). Note that for 279 // memory, it seems tempting to try to split the memory members into a 280 // MemoryCongruenceClass or something. Unfortunately, this does not work 281 // easily. The value numbering of a given memory expression depends on the 282 // leader of the memory congruence class, and the leader of memory congruence 283 // class depends on the value numbering of a given memory expression. This 284 // leads to wasted propagation, and in some cases, missed optimization. For 285 // example: If we had value numbered two stores together before, but now do not, 286 // we move them to a new value congruence class. This in turn will move at one 287 // of the memorydefs to a new memory congruence class. Which in turn, affects 288 // the value numbering of the stores we just value numbered (because the memory 289 // congruence class is part of the value number). So while theoretically 290 // possible to split them up, it turns out to be *incredibly* complicated to get 291 // it to work right, because of the interdependency. While structurally 292 // slightly messier, it is algorithmically much simpler and faster to do what we 293 // do here, and track them both at once in the same class. 294 // Note: The default iterators for this class iterate over values 295 class CongruenceClass { 296 public: 297 using MemberType = Value; 298 using MemberSet = SmallPtrSet<MemberType *, 4>; 299 using MemoryMemberType = MemoryPhi; 300 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 301 302 explicit CongruenceClass(unsigned ID) : ID(ID) {} 303 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 304 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 305 306 unsigned getID() const { return ID; } 307 308 // True if this class has no members left. This is mainly used for assertion 309 // purposes, and for skipping empty classes. 310 bool isDead() const { 311 // If it's both dead from a value perspective, and dead from a memory 312 // perspective, it's really dead. 313 return empty() && memory_empty(); 314 } 315 316 // Leader functions 317 Value *getLeader() const { return RepLeader; } 318 void setLeader(Value *Leader) { RepLeader = Leader; } 319 const std::pair<Value *, unsigned int> &getNextLeader() const { 320 return NextLeader; 321 } 322 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 323 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 324 if (LeaderPair.second < NextLeader.second) 325 NextLeader = LeaderPair; 326 } 327 328 Value *getStoredValue() const { return RepStoredValue; } 329 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 330 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 331 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 332 333 // Forward propagation info 334 const Expression *getDefiningExpr() const { return DefiningExpr; } 335 336 // Value member set 337 bool empty() const { return Members.empty(); } 338 unsigned size() const { return Members.size(); } 339 MemberSet::const_iterator begin() const { return Members.begin(); } 340 MemberSet::const_iterator end() const { return Members.end(); } 341 void insert(MemberType *M) { Members.insert(M); } 342 void erase(MemberType *M) { Members.erase(M); } 343 void swap(MemberSet &Other) { Members.swap(Other); } 344 345 // Memory member set 346 bool memory_empty() const { return MemoryMembers.empty(); } 347 unsigned memory_size() const { return MemoryMembers.size(); } 348 MemoryMemberSet::const_iterator memory_begin() const { 349 return MemoryMembers.begin(); 350 } 351 MemoryMemberSet::const_iterator memory_end() const { 352 return MemoryMembers.end(); 353 } 354 iterator_range<MemoryMemberSet::const_iterator> memory() const { 355 return make_range(memory_begin(), memory_end()); 356 } 357 358 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 359 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 360 361 // Store count 362 unsigned getStoreCount() const { return StoreCount; } 363 void incStoreCount() { ++StoreCount; } 364 void decStoreCount() { 365 assert(StoreCount != 0 && "Store count went negative"); 366 --StoreCount; 367 } 368 369 // True if this class has no memory members. 370 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 371 372 // Return true if two congruence classes are equivalent to each other. This 373 // means that every field but the ID number and the dead field are equivalent. 374 bool isEquivalentTo(const CongruenceClass *Other) const { 375 if (!Other) 376 return false; 377 if (this == Other) 378 return true; 379 380 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 381 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 382 Other->RepMemoryAccess)) 383 return false; 384 if (DefiningExpr != Other->DefiningExpr) 385 if (!DefiningExpr || !Other->DefiningExpr || 386 *DefiningExpr != *Other->DefiningExpr) 387 return false; 388 389 if (Members.size() != Other->Members.size()) 390 return false; 391 392 return llvm::set_is_subset(Members, Other->Members); 393 } 394 395 private: 396 unsigned ID; 397 398 // Representative leader. 399 Value *RepLeader = nullptr; 400 401 // The most dominating leader after our current leader, because the member set 402 // is not sorted and is expensive to keep sorted all the time. 403 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 404 405 // If this is represented by a store, the value of the store. 406 Value *RepStoredValue = nullptr; 407 408 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 409 // access. 410 const MemoryAccess *RepMemoryAccess = nullptr; 411 412 // Defining Expression. 413 const Expression *DefiningExpr = nullptr; 414 415 // Actual members of this class. 416 MemberSet Members; 417 418 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 419 // MemoryUses have real instructions representing them, so we only need to 420 // track MemoryPhis here. 421 MemoryMemberSet MemoryMembers; 422 423 // Number of stores in this congruence class. 424 // This is used so we can detect store equivalence changes properly. 425 int StoreCount = 0; 426 }; 427 428 } // end anonymous namespace 429 430 namespace llvm { 431 432 struct ExactEqualsExpression { 433 const Expression &E; 434 435 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 436 437 hash_code getComputedHash() const { return E.getComputedHash(); } 438 439 bool operator==(const Expression &Other) const { 440 return E.exactlyEquals(Other); 441 } 442 }; 443 444 template <> struct DenseMapInfo<const Expression *> { 445 static const Expression *getEmptyKey() { 446 auto Val = static_cast<uintptr_t>(-1); 447 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 448 return reinterpret_cast<const Expression *>(Val); 449 } 450 451 static const Expression *getTombstoneKey() { 452 auto Val = static_cast<uintptr_t>(~1U); 453 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 454 return reinterpret_cast<const Expression *>(Val); 455 } 456 457 static unsigned getHashValue(const Expression *E) { 458 return E->getComputedHash(); 459 } 460 461 static unsigned getHashValue(const ExactEqualsExpression &E) { 462 return E.getComputedHash(); 463 } 464 465 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 466 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 467 return false; 468 return LHS == *RHS; 469 } 470 471 static bool isEqual(const Expression *LHS, const Expression *RHS) { 472 if (LHS == RHS) 473 return true; 474 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 475 LHS == getEmptyKey() || RHS == getEmptyKey()) 476 return false; 477 // Compare hashes before equality. This is *not* what the hashtable does, 478 // since it is computing it modulo the number of buckets, whereas we are 479 // using the full hash keyspace. Since the hashes are precomputed, this 480 // check is *much* faster than equality. 481 if (LHS->getComputedHash() != RHS->getComputedHash()) 482 return false; 483 return *LHS == *RHS; 484 } 485 }; 486 487 } // end namespace llvm 488 489 namespace { 490 491 class NewGVN { 492 Function &F; 493 DominatorTree *DT = nullptr; 494 const TargetLibraryInfo *TLI = nullptr; 495 AliasAnalysis *AA = nullptr; 496 MemorySSA *MSSA = nullptr; 497 MemorySSAWalker *MSSAWalker = nullptr; 498 AssumptionCache *AC = nullptr; 499 const DataLayout &DL; 500 std::unique_ptr<PredicateInfo> PredInfo; 501 502 // These are the only two things the create* functions should have 503 // side-effects on due to allocating memory. 504 mutable BumpPtrAllocator ExpressionAllocator; 505 mutable ArrayRecycler<Value *> ArgRecycler; 506 mutable TarjanSCC SCCFinder; 507 const SimplifyQuery SQ; 508 509 // Number of function arguments, used by ranking 510 unsigned int NumFuncArgs = 0; 511 512 // RPOOrdering of basic blocks 513 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 514 515 // Congruence class info. 516 517 // This class is called INITIAL in the paper. It is the class everything 518 // startsout in, and represents any value. Being an optimistic analysis, 519 // anything in the TOP class has the value TOP, which is indeterminate and 520 // equivalent to everything. 521 CongruenceClass *TOPClass = nullptr; 522 std::vector<CongruenceClass *> CongruenceClasses; 523 unsigned NextCongruenceNum = 0; 524 525 // Value Mappings. 526 DenseMap<Value *, CongruenceClass *> ValueToClass; 527 DenseMap<Value *, const Expression *> ValueToExpression; 528 529 // Value PHI handling, used to make equivalence between phi(op, op) and 530 // op(phi, phi). 531 // These mappings just store various data that would normally be part of the 532 // IR. 533 SmallPtrSet<const Instruction *, 8> PHINodeUses; 534 535 DenseMap<const Value *, bool> OpSafeForPHIOfOps; 536 537 // Map a temporary instruction we created to a parent block. 538 DenseMap<const Value *, BasicBlock *> TempToBlock; 539 540 // Map between the already in-program instructions and the temporary phis we 541 // created that they are known equivalent to. 542 DenseMap<const Value *, PHINode *> RealToTemp; 543 544 // In order to know when we should re-process instructions that have 545 // phi-of-ops, we track the set of expressions that they needed as 546 // leaders. When we discover new leaders for those expressions, we process the 547 // associated phi-of-op instructions again in case they have changed. The 548 // other way they may change is if they had leaders, and those leaders 549 // disappear. However, at the point they have leaders, there are uses of the 550 // relevant operands in the created phi node, and so they will get reprocessed 551 // through the normal user marking we perform. 552 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 553 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 554 ExpressionToPhiOfOps; 555 556 // Map from temporary operation to MemoryAccess. 557 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 558 559 // Set of all temporary instructions we created. 560 // Note: This will include instructions that were just created during value 561 // numbering. The way to test if something is using them is to check 562 // RealToTemp. 563 DenseSet<Instruction *> AllTempInstructions; 564 565 // This is the set of instructions to revisit on a reachability change. At 566 // the end of the main iteration loop it will contain at least all the phi of 567 // ops instructions that will be changed to phis, as well as regular phis. 568 // During the iteration loop, it may contain other things, such as phi of ops 569 // instructions that used edge reachability to reach a result, and so need to 570 // be revisited when the edge changes, independent of whether the phi they 571 // depended on changes. 572 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 573 574 // Mapping from predicate info we used to the instructions we used it with. 575 // In order to correctly ensure propagation, we must keep track of what 576 // comparisons we used, so that when the values of the comparisons change, we 577 // propagate the information to the places we used the comparison. 578 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 579 PredicateToUsers; 580 581 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 582 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 583 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 584 MemoryToUsers; 585 586 // A table storing which memorydefs/phis represent a memory state provably 587 // equivalent to another memory state. 588 // We could use the congruence class machinery, but the MemoryAccess's are 589 // abstract memory states, so they can only ever be equivalent to each other, 590 // and not to constants, etc. 591 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 592 593 // We could, if we wanted, build MemoryPhiExpressions and 594 // MemoryVariableExpressions, etc, and value number them the same way we value 595 // number phi expressions. For the moment, this seems like overkill. They 596 // can only exist in one of three states: they can be TOP (equal to 597 // everything), Equivalent to something else, or unique. Because we do not 598 // create expressions for them, we need to simulate leader change not just 599 // when they change class, but when they change state. Note: We can do the 600 // same thing for phis, and avoid having phi expressions if we wanted, We 601 // should eventually unify in one direction or the other, so this is a little 602 // bit of an experiment in which turns out easier to maintain. 603 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 604 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 605 606 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 607 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 608 609 // Expression to class mapping. 610 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 611 ExpressionClassMap ExpressionToClass; 612 613 // We have a single expression that represents currently DeadExpressions. 614 // For dead expressions we can prove will stay dead, we mark them with 615 // DFS number zero. However, it's possible in the case of phi nodes 616 // for us to assume/prove all arguments are dead during fixpointing. 617 // We use DeadExpression for that case. 618 DeadExpression *SingletonDeadExpression = nullptr; 619 620 // Which values have changed as a result of leader changes. 621 SmallPtrSet<Value *, 8> LeaderChanges; 622 623 // Reachability info. 624 using BlockEdge = BasicBlockEdge; 625 DenseSet<BlockEdge> ReachableEdges; 626 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 627 628 // This is a bitvector because, on larger functions, we may have 629 // thousands of touched instructions at once (entire blocks, 630 // instructions with hundreds of uses, etc). Even with optimization 631 // for when we mark whole blocks as touched, when this was a 632 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 633 // the time in GVN just managing this list. The bitvector, on the 634 // other hand, efficiently supports test/set/clear of both 635 // individual and ranges, as well as "find next element" This 636 // enables us to use it as a worklist with essentially 0 cost. 637 BitVector TouchedInstructions; 638 639 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 640 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred; 641 642 #ifndef NDEBUG 643 // Debugging for how many times each block and instruction got processed. 644 DenseMap<const Value *, unsigned> ProcessedCount; 645 #endif 646 647 // DFS info. 648 // This contains a mapping from Instructions to DFS numbers. 649 // The numbering starts at 1. An instruction with DFS number zero 650 // means that the instruction is dead. 651 DenseMap<const Value *, unsigned> InstrDFS; 652 653 // This contains the mapping DFS numbers to instructions. 654 SmallVector<Value *, 32> DFSToInstr; 655 656 // Deletion info. 657 SmallPtrSet<Instruction *, 8> InstructionsToErase; 658 659 public: 660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 662 const DataLayout &DL) 663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 666 /*CanUseUndef=*/false) {} 667 668 bool runGVN(); 669 670 private: 671 /// Helper struct return a Expression with an optional extra dependency. 672 struct ExprResult { 673 const Expression *Expr; 674 Value *ExtraDep; 675 const PredicateBase *PredDep; 676 677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 678 const PredicateBase *PredDep = nullptr) 679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 680 ExprResult(const ExprResult &) = delete; 681 ExprResult(ExprResult &&Other) 682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 683 Other.Expr = nullptr; 684 Other.ExtraDep = nullptr; 685 Other.PredDep = nullptr; 686 } 687 ExprResult &operator=(const ExprResult &Other) = delete; 688 ExprResult &operator=(ExprResult &&Other) = delete; 689 690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 691 692 operator bool() const { return Expr; } 693 694 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 696 return {Expr, ExtraDep, nullptr}; 697 } 698 static ExprResult some(const Expression *Expr, 699 const PredicateBase *PredDep) { 700 return {Expr, nullptr, PredDep}; 701 } 702 static ExprResult some(const Expression *Expr, Value *ExtraDep, 703 const PredicateBase *PredDep) { 704 return {Expr, ExtraDep, PredDep}; 705 } 706 }; 707 708 // Expression handling. 709 ExprResult createExpression(Instruction *) const; 710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 711 Instruction *) const; 712 713 // Our canonical form for phi arguments is a pair of incoming value, incoming 714 // basic block. 715 using ValPair = std::pair<Value *, BasicBlock *>; 716 717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 718 BasicBlock *, bool &HasBackEdge, 719 bool &OriginalOpsConstant) const; 720 const DeadExpression *createDeadExpression() const; 721 const VariableExpression *createVariableExpression(Value *) const; 722 const ConstantExpression *createConstantExpression(Constant *) const; 723 const Expression *createVariableOrConstant(Value *V) const; 724 const UnknownExpression *createUnknownExpression(Instruction *) const; 725 const StoreExpression *createStoreExpression(StoreInst *, 726 const MemoryAccess *) const; 727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 728 const MemoryAccess *) const; 729 const CallExpression *createCallExpression(CallInst *, 730 const MemoryAccess *) const; 731 const AggregateValueExpression * 732 createAggregateValueExpression(Instruction *) const; 733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 734 735 // Congruence class handling. 736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 738 CongruenceClasses.emplace_back(result); 739 return result; 740 } 741 742 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 743 auto *CC = createCongruenceClass(nullptr, nullptr); 744 CC->setMemoryLeader(MA); 745 return CC; 746 } 747 748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 749 auto *CC = getMemoryClass(MA); 750 if (CC->getMemoryLeader() != MA) 751 CC = createMemoryClass(MA); 752 return CC; 753 } 754 755 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 757 CClass->insert(Member); 758 ValueToClass[Member] = CClass; 759 return CClass; 760 } 761 762 void initializeCongruenceClasses(Function &F); 763 const Expression *makePossiblePHIOfOps(Instruction *, 764 SmallPtrSetImpl<Value *> &); 765 Value *findLeaderForInst(Instruction *ValueOp, 766 SmallPtrSetImpl<Value *> &Visited, 767 MemoryAccess *MemAccess, Instruction *OrigInst, 768 BasicBlock *PredBB); 769 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 770 SmallPtrSetImpl<const Value *> &); 771 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 772 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 773 774 // Value number an Instruction or MemoryPhi. 775 void valueNumberMemoryPhi(MemoryPhi *); 776 void valueNumberInstruction(Instruction *); 777 778 // Symbolic evaluation. 779 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 780 ExprResult performSymbolicEvaluation(Value *, 781 SmallPtrSetImpl<Value *> &) const; 782 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 783 Instruction *, 784 MemoryAccess *) const; 785 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 786 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 787 ExprResult performSymbolicCallEvaluation(Instruction *) const; 788 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 789 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 790 Instruction *I, 791 BasicBlock *PHIBlock) const; 792 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 793 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 794 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const; 795 796 // Congruence finding. 797 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 798 Value *lookupOperandLeader(Value *) const; 799 CongruenceClass *getClassForExpression(const Expression *E) const; 800 void performCongruenceFinding(Instruction *, const Expression *); 801 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 802 CongruenceClass *, CongruenceClass *); 803 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 804 CongruenceClass *, CongruenceClass *); 805 Value *getNextValueLeader(CongruenceClass *) const; 806 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 807 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 808 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 809 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 810 bool isMemoryAccessTOP(const MemoryAccess *) const; 811 812 // Ranking 813 unsigned int getRank(const Value *) const; 814 bool shouldSwapOperands(const Value *, const Value *) const; 815 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *, 816 const IntrinsicInst *I) const; 817 818 // Reachability handling. 819 void updateReachableEdge(BasicBlock *, BasicBlock *); 820 void processOutgoingEdges(Instruction *, BasicBlock *); 821 Value *findConditionEquivalence(Value *) const; 822 823 // Elimination. 824 struct ValueDFS; 825 void convertClassToDFSOrdered(const CongruenceClass &, 826 SmallVectorImpl<ValueDFS> &, 827 DenseMap<const Value *, unsigned int> &, 828 SmallPtrSetImpl<Instruction *> &) const; 829 void convertClassToLoadsAndStores(const CongruenceClass &, 830 SmallVectorImpl<ValueDFS> &) const; 831 832 bool eliminateInstructions(Function &); 833 void replaceInstruction(Instruction *, Value *); 834 void markInstructionForDeletion(Instruction *); 835 void deleteInstructionsInBlock(BasicBlock *); 836 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 837 const BasicBlock *) const; 838 839 // Various instruction touch utilities 840 template <typename Map, typename KeyType> 841 void touchAndErase(Map &, const KeyType &); 842 void markUsersTouched(Value *); 843 void markMemoryUsersTouched(const MemoryAccess *); 844 void markMemoryDefTouched(const MemoryAccess *); 845 void markPredicateUsersTouched(Instruction *); 846 void markValueLeaderChangeTouched(CongruenceClass *CC); 847 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 848 void markPhiOfOpsChanged(const Expression *E); 849 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 850 void addAdditionalUsers(Value *To, Value *User) const; 851 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 852 853 // Main loop of value numbering 854 void iterateTouchedInstructions(); 855 856 // Utilities. 857 void cleanupTables(); 858 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 859 void updateProcessedCount(const Value *V); 860 void verifyMemoryCongruency() const; 861 void verifyIterationSettled(Function &F); 862 void verifyStoreExpressions() const; 863 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 864 const MemoryAccess *, const MemoryAccess *) const; 865 BasicBlock *getBlockForValue(Value *V) const; 866 void deleteExpression(const Expression *E) const; 867 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 868 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 869 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 870 871 unsigned InstrToDFSNum(const Value *V) const { 872 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 873 return InstrDFS.lookup(V); 874 } 875 876 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 877 return MemoryToDFSNum(MA); 878 } 879 880 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 881 882 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 883 // This deliberately takes a value so it can be used with Use's, which will 884 // auto-convert to Value's but not to MemoryAccess's. 885 unsigned MemoryToDFSNum(const Value *MA) const { 886 assert(isa<MemoryAccess>(MA) && 887 "This should not be used with instructions"); 888 return isa<MemoryUseOrDef>(MA) 889 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 890 : InstrDFS.lookup(MA); 891 } 892 893 bool isCycleFree(const Instruction *) const; 894 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 895 896 // Debug counter info. When verifying, we have to reset the value numbering 897 // debug counter to the same state it started in to get the same results. 898 int64_t StartingVNCounter = 0; 899 }; 900 901 } // end anonymous namespace 902 903 template <typename T> 904 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 905 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 906 return false; 907 return LHS.MemoryExpression::equals(RHS); 908 } 909 910 bool LoadExpression::equals(const Expression &Other) const { 911 return equalsLoadStoreHelper(*this, Other); 912 } 913 914 bool StoreExpression::equals(const Expression &Other) const { 915 if (!equalsLoadStoreHelper(*this, Other)) 916 return false; 917 // Make sure that store vs store includes the value operand. 918 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 919 if (getStoredValue() != S->getStoredValue()) 920 return false; 921 return true; 922 } 923 924 // Determine if the edge From->To is a backedge 925 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 926 return From == To || 927 RPOOrdering.lookup(DT->getNode(From)) >= 928 RPOOrdering.lookup(DT->getNode(To)); 929 } 930 931 #ifndef NDEBUG 932 static std::string getBlockName(const BasicBlock *B) { 933 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 934 } 935 #endif 936 937 // Get a MemoryAccess for an instruction, fake or real. 938 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 939 auto *Result = MSSA->getMemoryAccess(I); 940 return Result ? Result : TempToMemory.lookup(I); 941 } 942 943 // Get a MemoryPhi for a basic block. These are all real. 944 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 945 return MSSA->getMemoryAccess(BB); 946 } 947 948 // Get the basic block from an instruction/memory value. 949 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 950 if (auto *I = dyn_cast<Instruction>(V)) { 951 auto *Parent = I->getParent(); 952 if (Parent) 953 return Parent; 954 Parent = TempToBlock.lookup(V); 955 assert(Parent && "Every fake instruction should have a block"); 956 return Parent; 957 } 958 959 auto *MP = dyn_cast<MemoryPhi>(V); 960 assert(MP && "Should have been an instruction or a MemoryPhi"); 961 return MP->getBlock(); 962 } 963 964 // Delete a definitely dead expression, so it can be reused by the expression 965 // allocator. Some of these are not in creation functions, so we have to accept 966 // const versions. 967 void NewGVN::deleteExpression(const Expression *E) const { 968 assert(isa<BasicExpression>(E)); 969 auto *BE = cast<BasicExpression>(E); 970 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 971 ExpressionAllocator.Deallocate(E); 972 } 973 974 // If V is a predicateinfo copy, get the thing it is a copy of. 975 static Value *getCopyOf(const Value *V) { 976 if (auto *II = dyn_cast<IntrinsicInst>(V)) 977 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 978 return II->getOperand(0); 979 return nullptr; 980 } 981 982 // Return true if V is really PN, even accounting for predicateinfo copies. 983 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 984 return V == PN || getCopyOf(V) == PN; 985 } 986 987 static bool isCopyOfAPHI(const Value *V) { 988 auto *CO = getCopyOf(V); 989 return CO && isa<PHINode>(CO); 990 } 991 992 // Sort PHI Operands into a canonical order. What we use here is an RPO 993 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 994 // blocks. 995 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 996 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 997 return BlockInstRange.lookup(P1.second).first < 998 BlockInstRange.lookup(P2.second).first; 999 }); 1000 } 1001 1002 // Return true if V is a value that will always be available (IE can 1003 // be placed anywhere) in the function. We don't do globals here 1004 // because they are often worse to put in place. 1005 static bool alwaysAvailable(Value *V) { 1006 return isa<Constant>(V) || isa<Argument>(V); 1007 } 1008 1009 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1010 // the original instruction we are creating a PHIExpression for (but may not be 1011 // a phi node). We require, as an invariant, that all the PHIOperands in the 1012 // same block are sorted the same way. sortPHIOps will sort them into a 1013 // canonical order. 1014 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1015 const Instruction *I, 1016 BasicBlock *PHIBlock, 1017 bool &HasBackedge, 1018 bool &OriginalOpsConstant) const { 1019 unsigned NumOps = PHIOperands.size(); 1020 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1021 1022 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1023 E->setType(PHIOperands.begin()->first->getType()); 1024 E->setOpcode(Instruction::PHI); 1025 1026 // Filter out unreachable phi operands. 1027 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1028 auto *BB = P.second; 1029 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1030 if (isCopyOfPHI(P.first, PHIOp)) 1031 return false; 1032 if (!ReachableEdges.count({BB, PHIBlock})) 1033 return false; 1034 // Things in TOPClass are equivalent to everything. 1035 if (ValueToClass.lookup(P.first) == TOPClass) 1036 return false; 1037 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1038 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1039 return lookupOperandLeader(P.first) != I; 1040 }); 1041 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1042 [&](const ValPair &P) -> Value * { 1043 return lookupOperandLeader(P.first); 1044 }); 1045 return E; 1046 } 1047 1048 // Set basic expression info (Arguments, type, opcode) for Expression 1049 // E from Instruction I in block B. 1050 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1051 bool AllConstant = true; 1052 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1053 E->setType(GEP->getSourceElementType()); 1054 else 1055 E->setType(I->getType()); 1056 E->setOpcode(I->getOpcode()); 1057 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1058 1059 // Transform the operand array into an operand leader array, and keep track of 1060 // whether all members are constant. 1061 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1062 auto Operand = lookupOperandLeader(O); 1063 AllConstant = AllConstant && isa<Constant>(Operand); 1064 return Operand; 1065 }); 1066 1067 return AllConstant; 1068 } 1069 1070 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1071 Value *Arg1, Value *Arg2, 1072 Instruction *I) const { 1073 auto *E = new (ExpressionAllocator) BasicExpression(2); 1074 // TODO: we need to remove context instruction after Value Tracking 1075 // can run without context instruction 1076 const SimplifyQuery Q = SQ.getWithInstruction(I); 1077 1078 E->setType(T); 1079 E->setOpcode(Opcode); 1080 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1081 if (Instruction::isCommutative(Opcode)) { 1082 // Ensure that commutative instructions that only differ by a permutation 1083 // of their operands get the same value number by sorting the operand value 1084 // numbers. Since all commutative instructions have two operands it is more 1085 // efficient to sort by hand rather than using, say, std::sort. 1086 if (shouldSwapOperands(Arg1, Arg2)) 1087 std::swap(Arg1, Arg2); 1088 } 1089 E->op_push_back(lookupOperandLeader(Arg1)); 1090 E->op_push_back(lookupOperandLeader(Arg2)); 1091 1092 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q); 1093 if (auto Simplified = checkExprResults(E, I, V)) { 1094 addAdditionalUsers(Simplified, I); 1095 return Simplified.Expr; 1096 } 1097 return E; 1098 } 1099 1100 // Take a Value returned by simplification of Expression E/Instruction 1101 // I, and see if it resulted in a simpler expression. If so, return 1102 // that expression. 1103 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1104 Value *V) const { 1105 if (!V) 1106 return ExprResult::none(); 1107 1108 if (auto *C = dyn_cast<Constant>(V)) { 1109 if (I) 1110 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1111 << " constant " << *C << "\n"); 1112 NumGVNOpsSimplified++; 1113 assert(isa<BasicExpression>(E) && 1114 "We should always have had a basic expression here"); 1115 deleteExpression(E); 1116 return ExprResult::some(createConstantExpression(C)); 1117 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1118 if (I) 1119 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1120 << " variable " << *V << "\n"); 1121 deleteExpression(E); 1122 return ExprResult::some(createVariableExpression(V)); 1123 } 1124 1125 CongruenceClass *CC = ValueToClass.lookup(V); 1126 if (CC) { 1127 if (CC->getLeader() && CC->getLeader() != I) { 1128 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1129 } 1130 if (CC->getDefiningExpr()) { 1131 if (I) 1132 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1133 << " expression " << *CC->getDefiningExpr() << "\n"); 1134 NumGVNOpsSimplified++; 1135 deleteExpression(E); 1136 return ExprResult::some(CC->getDefiningExpr(), V); 1137 } 1138 } 1139 1140 return ExprResult::none(); 1141 } 1142 1143 // Create a value expression from the instruction I, replacing operands with 1144 // their leaders. 1145 1146 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1147 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1148 // TODO: we need to remove context instruction after Value Tracking 1149 // can run without context instruction 1150 const SimplifyQuery Q = SQ.getWithInstruction(I); 1151 1152 bool AllConstant = setBasicExpressionInfo(I, E); 1153 1154 if (I->isCommutative()) { 1155 // Ensure that commutative instructions that only differ by a permutation 1156 // of their operands get the same value number by sorting the operand value 1157 // numbers. Since all commutative instructions have two operands it is more 1158 // efficient to sort by hand rather than using, say, std::sort. 1159 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1160 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1161 E->swapOperands(0, 1); 1162 } 1163 // Perform simplification. 1164 if (auto *CI = dyn_cast<CmpInst>(I)) { 1165 // Sort the operand value numbers so x<y and y>x get the same value 1166 // number. 1167 CmpInst::Predicate Predicate = CI->getPredicate(); 1168 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1169 E->swapOperands(0, 1); 1170 Predicate = CmpInst::getSwappedPredicate(Predicate); 1171 } 1172 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1173 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands 1174 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1175 "Wrong types on cmp instruction"); 1176 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1177 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1178 Value *V = 1179 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q); 1180 if (auto Simplified = checkExprResults(E, I, V)) 1181 return Simplified; 1182 } else if (isa<SelectInst>(I)) { 1183 if (isa<Constant>(E->getOperand(0)) || 1184 E->getOperand(1) == E->getOperand(2)) { 1185 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1186 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1187 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1), 1188 E->getOperand(2), Q); 1189 if (auto Simplified = checkExprResults(E, I, V)) 1190 return Simplified; 1191 } 1192 } else if (I->isBinaryOp()) { 1193 Value *V = 1194 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q); 1195 if (auto Simplified = checkExprResults(E, I, V)) 1196 return Simplified; 1197 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1198 Value *V = 1199 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q); 1200 if (auto Simplified = checkExprResults(E, I, V)) 1201 return Simplified; 1202 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) { 1203 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(), 1204 ArrayRef(std::next(E->op_begin()), E->op_end()), 1205 GEPI->isInBounds(), Q); 1206 if (auto Simplified = checkExprResults(E, I, V)) 1207 return Simplified; 1208 } else if (AllConstant) { 1209 // We don't bother trying to simplify unless all of the operands 1210 // were constant. 1211 // TODO: There are a lot of Simplify*'s we could call here, if we 1212 // wanted to. The original motivating case for this code was a 1213 // zext i1 false to i8, which we don't have an interface to 1214 // simplify (IE there is no SimplifyZExt). 1215 1216 SmallVector<Constant *, 8> C; 1217 for (Value *Arg : E->operands()) 1218 C.emplace_back(cast<Constant>(Arg)); 1219 1220 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1221 if (auto Simplified = checkExprResults(E, I, V)) 1222 return Simplified; 1223 } 1224 return ExprResult::some(E); 1225 } 1226 1227 const AggregateValueExpression * 1228 NewGVN::createAggregateValueExpression(Instruction *I) const { 1229 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1230 auto *E = new (ExpressionAllocator) 1231 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1232 setBasicExpressionInfo(I, E); 1233 E->allocateIntOperands(ExpressionAllocator); 1234 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1235 return E; 1236 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1237 auto *E = new (ExpressionAllocator) 1238 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1239 setBasicExpressionInfo(EI, E); 1240 E->allocateIntOperands(ExpressionAllocator); 1241 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1242 return E; 1243 } 1244 llvm_unreachable("Unhandled type of aggregate value operation"); 1245 } 1246 1247 const DeadExpression *NewGVN::createDeadExpression() const { 1248 // DeadExpression has no arguments and all DeadExpression's are the same, 1249 // so we only need one of them. 1250 return SingletonDeadExpression; 1251 } 1252 1253 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1254 auto *E = new (ExpressionAllocator) VariableExpression(V); 1255 E->setOpcode(V->getValueID()); 1256 return E; 1257 } 1258 1259 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1260 if (auto *C = dyn_cast<Constant>(V)) 1261 return createConstantExpression(C); 1262 return createVariableExpression(V); 1263 } 1264 1265 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1266 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1267 E->setOpcode(C->getValueID()); 1268 return E; 1269 } 1270 1271 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1272 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1273 E->setOpcode(I->getOpcode()); 1274 return E; 1275 } 1276 1277 const CallExpression * 1278 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1279 // FIXME: Add operand bundles for calls. 1280 // FIXME: Allow commutative matching for intrinsics. 1281 auto *E = 1282 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1283 setBasicExpressionInfo(CI, E); 1284 return E; 1285 } 1286 1287 // Return true if some equivalent of instruction Inst dominates instruction U. 1288 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1289 const Instruction *U) const { 1290 auto *CC = ValueToClass.lookup(Inst); 1291 // This must be an instruction because we are only called from phi nodes 1292 // in the case that the value it needs to check against is an instruction. 1293 1294 // The most likely candidates for dominance are the leader and the next leader. 1295 // The leader or nextleader will dominate in all cases where there is an 1296 // equivalent that is higher up in the dom tree. 1297 // We can't *only* check them, however, because the 1298 // dominator tree could have an infinite number of non-dominating siblings 1299 // with instructions that are in the right congruence class. 1300 // A 1301 // B C D E F G 1302 // | 1303 // H 1304 // Instruction U could be in H, with equivalents in every other sibling. 1305 // Depending on the rpo order picked, the leader could be the equivalent in 1306 // any of these siblings. 1307 if (!CC) 1308 return false; 1309 if (alwaysAvailable(CC->getLeader())) 1310 return true; 1311 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1312 return true; 1313 if (CC->getNextLeader().first && 1314 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1315 return true; 1316 return llvm::any_of(*CC, [&](const Value *Member) { 1317 return Member != CC->getLeader() && 1318 DT->dominates(cast<Instruction>(Member), U); 1319 }); 1320 } 1321 1322 // See if we have a congruence class and leader for this operand, and if so, 1323 // return it. Otherwise, return the operand itself. 1324 Value *NewGVN::lookupOperandLeader(Value *V) const { 1325 CongruenceClass *CC = ValueToClass.lookup(V); 1326 if (CC) { 1327 // Everything in TOP is represented by poison, as it can be any value. 1328 // We do have to make sure we get the type right though, so we can't set the 1329 // RepLeader to poison. 1330 if (CC == TOPClass) 1331 return PoisonValue::get(V->getType()); 1332 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1333 } 1334 1335 return V; 1336 } 1337 1338 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1339 auto *CC = getMemoryClass(MA); 1340 assert(CC->getMemoryLeader() && 1341 "Every MemoryAccess should be mapped to a congruence class with a " 1342 "representative memory access"); 1343 return CC->getMemoryLeader(); 1344 } 1345 1346 // Return true if the MemoryAccess is really equivalent to everything. This is 1347 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1348 // state of all MemoryAccesses. 1349 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1350 return getMemoryClass(MA) == TOPClass; 1351 } 1352 1353 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1354 LoadInst *LI, 1355 const MemoryAccess *MA) const { 1356 auto *E = 1357 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1358 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1359 E->setType(LoadType); 1360 1361 // Give store and loads same opcode so they value number together. 1362 E->setOpcode(0); 1363 E->op_push_back(PointerOp); 1364 1365 // TODO: Value number heap versions. We may be able to discover 1366 // things alias analysis can't on it's own (IE that a store and a 1367 // load have the same value, and thus, it isn't clobbering the load). 1368 return E; 1369 } 1370 1371 const StoreExpression * 1372 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1373 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1374 auto *E = new (ExpressionAllocator) 1375 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1376 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1377 E->setType(SI->getValueOperand()->getType()); 1378 1379 // Give store and loads same opcode so they value number together. 1380 E->setOpcode(0); 1381 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1382 1383 // TODO: Value number heap versions. We may be able to discover 1384 // things alias analysis can't on it's own (IE that a store and a 1385 // load have the same value, and thus, it isn't clobbering the load). 1386 return E; 1387 } 1388 1389 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1390 // Unlike loads, we never try to eliminate stores, so we do not check if they 1391 // are simple and avoid value numbering them. 1392 auto *SI = cast<StoreInst>(I); 1393 auto *StoreAccess = getMemoryAccess(SI); 1394 // Get the expression, if any, for the RHS of the MemoryDef. 1395 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1396 if (EnableStoreRefinement) 1397 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1398 // If we bypassed the use-def chains, make sure we add a use. 1399 StoreRHS = lookupMemoryLeader(StoreRHS); 1400 if (StoreRHS != StoreAccess->getDefiningAccess()) 1401 addMemoryUsers(StoreRHS, StoreAccess); 1402 // If we are defined by ourselves, use the live on entry def. 1403 if (StoreRHS == StoreAccess) 1404 StoreRHS = MSSA->getLiveOnEntryDef(); 1405 1406 if (SI->isSimple()) { 1407 // See if we are defined by a previous store expression, it already has a 1408 // value, and it's the same value as our current store. FIXME: Right now, we 1409 // only do this for simple stores, we should expand to cover memcpys, etc. 1410 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1411 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1412 // We really want to check whether the expression we matched was a store. No 1413 // easy way to do that. However, we can check that the class we found has a 1414 // store, which, assuming the value numbering state is not corrupt, is 1415 // sufficient, because we must also be equivalent to that store's expression 1416 // for it to be in the same class as the load. 1417 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1418 return LastStore; 1419 // Also check if our value operand is defined by a load of the same memory 1420 // location, and the memory state is the same as it was then (otherwise, it 1421 // could have been overwritten later. See test32 in 1422 // transforms/DeadStoreElimination/simple.ll). 1423 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1424 if ((lookupOperandLeader(LI->getPointerOperand()) == 1425 LastStore->getOperand(0)) && 1426 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1427 StoreRHS)) 1428 return LastStore; 1429 deleteExpression(LastStore); 1430 } 1431 1432 // If the store is not equivalent to anything, value number it as a store that 1433 // produces a unique memory state (instead of using it's MemoryUse, we use 1434 // it's MemoryDef). 1435 return createStoreExpression(SI, StoreAccess); 1436 } 1437 1438 // See if we can extract the value of a loaded pointer from a load, a store, or 1439 // a memory instruction. 1440 const Expression * 1441 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1442 LoadInst *LI, Instruction *DepInst, 1443 MemoryAccess *DefiningAccess) const { 1444 assert((!LI || LI->isSimple()) && "Not a simple load"); 1445 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1446 // Can't forward from non-atomic to atomic without violating memory model. 1447 // Also don't need to coerce if they are the same type, we will just 1448 // propagate. 1449 if (LI->isAtomic() > DepSI->isAtomic() || 1450 LoadType == DepSI->getValueOperand()->getType()) 1451 return nullptr; 1452 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1453 if (Offset >= 0) { 1454 if (auto *C = dyn_cast<Constant>( 1455 lookupOperandLeader(DepSI->getValueOperand()))) { 1456 if (Constant *Res = 1457 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) { 1458 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1459 << " to constant " << *Res << "\n"); 1460 return createConstantExpression(Res); 1461 } 1462 } 1463 } 1464 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1465 // Can't forward from non-atomic to atomic without violating memory model. 1466 if (LI->isAtomic() > DepLI->isAtomic()) 1467 return nullptr; 1468 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1469 if (Offset >= 0) { 1470 // We can coerce a constant load into a load. 1471 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1472 if (auto *PossibleConstant = 1473 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) { 1474 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1475 << " to constant " << *PossibleConstant << "\n"); 1476 return createConstantExpression(PossibleConstant); 1477 } 1478 } 1479 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1480 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1481 if (Offset >= 0) { 1482 if (auto *PossibleConstant = 1483 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1484 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1485 << " to constant " << *PossibleConstant << "\n"); 1486 return createConstantExpression(PossibleConstant); 1487 } 1488 } 1489 } 1490 1491 // All of the below are only true if the loaded pointer is produced 1492 // by the dependent instruction. 1493 if (LoadPtr != lookupOperandLeader(DepInst) && 1494 !AA->isMustAlias(LoadPtr, DepInst)) 1495 return nullptr; 1496 // If this load really doesn't depend on anything, then we must be loading an 1497 // undef value. This can happen when loading for a fresh allocation with no 1498 // intervening stores, for example. Note that this is only true in the case 1499 // that the result of the allocation is pointer equal to the load ptr. 1500 if (isa<AllocaInst>(DepInst)) { 1501 return createConstantExpression(UndefValue::get(LoadType)); 1502 } 1503 // If this load occurs either right after a lifetime begin, 1504 // then the loaded value is undefined. 1505 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1506 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1507 return createConstantExpression(UndefValue::get(LoadType)); 1508 } else if (auto *InitVal = 1509 getInitialValueOfAllocation(DepInst, TLI, LoadType)) 1510 return createConstantExpression(InitVal); 1511 1512 return nullptr; 1513 } 1514 1515 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1516 auto *LI = cast<LoadInst>(I); 1517 1518 // We can eliminate in favor of non-simple loads, but we won't be able to 1519 // eliminate the loads themselves. 1520 if (!LI->isSimple()) 1521 return nullptr; 1522 1523 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1524 // Load of undef is UB. 1525 if (isa<UndefValue>(LoadAddressLeader)) 1526 return createConstantExpression(PoisonValue::get(LI->getType())); 1527 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1528 MemoryAccess *DefiningAccess = 1529 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1530 1531 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1532 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1533 Instruction *DefiningInst = MD->getMemoryInst(); 1534 // If the defining instruction is not reachable, replace with poison. 1535 if (!ReachableBlocks.count(DefiningInst->getParent())) 1536 return createConstantExpression(PoisonValue::get(LI->getType())); 1537 // This will handle stores and memory insts. We only do if it the 1538 // defining access has a different type, or it is a pointer produced by 1539 // certain memory operations that cause the memory to have a fixed value 1540 // (IE things like calloc). 1541 if (const auto *CoercionResult = 1542 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1543 DefiningInst, DefiningAccess)) 1544 return CoercionResult; 1545 } 1546 } 1547 1548 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1549 DefiningAccess); 1550 // If our MemoryLeader is not our defining access, add a use to the 1551 // MemoryLeader, so that we get reprocessed when it changes. 1552 if (LE->getMemoryLeader() != DefiningAccess) 1553 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1554 return LE; 1555 } 1556 1557 NewGVN::ExprResult 1558 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const { 1559 auto *PI = PredInfo->getPredicateInfoFor(I); 1560 if (!PI) 1561 return ExprResult::none(); 1562 1563 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1564 1565 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1566 if (!Constraint) 1567 return ExprResult::none(); 1568 1569 CmpInst::Predicate Predicate = Constraint->Predicate; 1570 Value *CmpOp0 = I->getOperand(0); 1571 Value *CmpOp1 = Constraint->OtherOp; 1572 1573 Value *FirstOp = lookupOperandLeader(CmpOp0); 1574 Value *SecondOp = lookupOperandLeader(CmpOp1); 1575 Value *AdditionallyUsedValue = CmpOp0; 1576 1577 // Sort the ops. 1578 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) { 1579 std::swap(FirstOp, SecondOp); 1580 Predicate = CmpInst::getSwappedPredicate(Predicate); 1581 AdditionallyUsedValue = CmpOp1; 1582 } 1583 1584 if (Predicate == CmpInst::ICMP_EQ) 1585 return ExprResult::some(createVariableOrConstant(FirstOp), 1586 AdditionallyUsedValue, PI); 1587 1588 // Handle the special case of floating point. 1589 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1590 !cast<ConstantFP>(FirstOp)->isZero()) 1591 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1592 AdditionallyUsedValue, PI); 1593 1594 return ExprResult::none(); 1595 } 1596 1597 // Evaluate read only and pure calls, and create an expression result. 1598 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1599 auto *CI = cast<CallInst>(I); 1600 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1601 // Intrinsics with the returned attribute are copies of arguments. 1602 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1603 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1604 if (auto Res = performSymbolicPredicateInfoEvaluation(II)) 1605 return Res; 1606 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1607 } 1608 } 1609 1610 // FIXME: Currently the calls which may access the thread id may 1611 // be considered as not accessing the memory. But this is 1612 // problematic for coroutines, since coroutines may resume in a 1613 // different thread. So we disable the optimization here for the 1614 // correctness. However, it may block many other correct 1615 // optimizations. Revert this one when we detect the memory 1616 // accessing kind more precisely. 1617 if (CI->getFunction()->isPresplitCoroutine()) 1618 return ExprResult::none(); 1619 1620 if (AA->doesNotAccessMemory(CI)) { 1621 return ExprResult::some( 1622 createCallExpression(CI, TOPClass->getMemoryLeader())); 1623 } else if (AA->onlyReadsMemory(CI)) { 1624 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1625 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1626 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1627 } else // MSSA determined that CI does not access memory. 1628 return ExprResult::some( 1629 createCallExpression(CI, TOPClass->getMemoryLeader())); 1630 } 1631 return ExprResult::none(); 1632 } 1633 1634 // Retrieve the memory class for a given MemoryAccess. 1635 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1636 auto *Result = MemoryAccessToClass.lookup(MA); 1637 assert(Result && "Should have found memory class"); 1638 return Result; 1639 } 1640 1641 // Update the MemoryAccess equivalence table to say that From is equal to To, 1642 // and return true if this is different from what already existed in the table. 1643 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1644 CongruenceClass *NewClass) { 1645 assert(NewClass && 1646 "Every MemoryAccess should be getting mapped to a non-null class"); 1647 LLVM_DEBUG(dbgs() << "Setting " << *From); 1648 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1649 LLVM_DEBUG(dbgs() << NewClass->getID() 1650 << " with current MemoryAccess leader "); 1651 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1652 1653 auto LookupResult = MemoryAccessToClass.find(From); 1654 bool Changed = false; 1655 // If it's already in the table, see if the value changed. 1656 if (LookupResult != MemoryAccessToClass.end()) { 1657 auto *OldClass = LookupResult->second; 1658 if (OldClass != NewClass) { 1659 // If this is a phi, we have to handle memory member updates. 1660 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1661 OldClass->memory_erase(MP); 1662 NewClass->memory_insert(MP); 1663 // This may have killed the class if it had no non-memory members 1664 if (OldClass->getMemoryLeader() == From) { 1665 if (OldClass->definesNoMemory()) { 1666 OldClass->setMemoryLeader(nullptr); 1667 } else { 1668 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1669 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1670 << OldClass->getID() << " to " 1671 << *OldClass->getMemoryLeader() 1672 << " due to removal of a memory member " << *From 1673 << "\n"); 1674 markMemoryLeaderChangeTouched(OldClass); 1675 } 1676 } 1677 } 1678 // It wasn't equivalent before, and now it is. 1679 LookupResult->second = NewClass; 1680 Changed = true; 1681 } 1682 } 1683 1684 return Changed; 1685 } 1686 1687 // Determine if a instruction is cycle-free. That means the values in the 1688 // instruction don't depend on any expressions that can change value as a result 1689 // of the instruction. For example, a non-cycle free instruction would be v = 1690 // phi(0, v+1). 1691 bool NewGVN::isCycleFree(const Instruction *I) const { 1692 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1693 // and see what kind of SCC it ends up in. If it is a singleton, it is 1694 // cycle-free. If it is not in a singleton, it is only cycle free if the 1695 // other members are all phi nodes (as they do not compute anything, they are 1696 // copies). 1697 auto ICS = InstCycleState.lookup(I); 1698 if (ICS == ICS_Unknown) { 1699 SCCFinder.Start(I); 1700 auto &SCC = SCCFinder.getComponentFor(I); 1701 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1702 if (SCC.size() == 1) 1703 InstCycleState.insert({I, ICS_CycleFree}); 1704 else { 1705 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1706 return isa<PHINode>(V) || isCopyOfAPHI(V); 1707 }); 1708 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1709 for (const auto *Member : SCC) 1710 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1711 InstCycleState.insert({MemberPhi, ICS}); 1712 } 1713 } 1714 if (ICS == ICS_Cycle) 1715 return false; 1716 return true; 1717 } 1718 1719 // Evaluate PHI nodes symbolically and create an expression result. 1720 const Expression * 1721 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1722 Instruction *I, 1723 BasicBlock *PHIBlock) const { 1724 // True if one of the incoming phi edges is a backedge. 1725 bool HasBackedge = false; 1726 // All constant tracks the state of whether all the *original* phi operands 1727 // This is really shorthand for "this phi cannot cycle due to forward 1728 // change in value of the phi is guaranteed not to later change the value of 1729 // the phi. IE it can't be v = phi(undef, v+1) 1730 bool OriginalOpsConstant = true; 1731 auto *E = cast<PHIExpression>(createPHIExpression( 1732 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1733 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1734 // See if all arguments are the same. 1735 // We track if any were undef because they need special handling. 1736 bool HasUndef = false, HasPoison = false; 1737 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1738 if (isa<PoisonValue>(Arg)) { 1739 HasPoison = true; 1740 return false; 1741 } 1742 if (isa<UndefValue>(Arg)) { 1743 HasUndef = true; 1744 return false; 1745 } 1746 return true; 1747 }); 1748 // If we are left with no operands, it's dead. 1749 if (Filtered.empty()) { 1750 // If it has undef or poison at this point, it means there are no-non-undef 1751 // arguments, and thus, the value of the phi node must be undef. 1752 if (HasUndef) { 1753 LLVM_DEBUG( 1754 dbgs() << "PHI Node " << *I 1755 << " has no non-undef arguments, valuing it as undef\n"); 1756 return createConstantExpression(UndefValue::get(I->getType())); 1757 } 1758 if (HasPoison) { 1759 LLVM_DEBUG( 1760 dbgs() << "PHI Node " << *I 1761 << " has no non-poison arguments, valuing it as poison\n"); 1762 return createConstantExpression(PoisonValue::get(I->getType())); 1763 } 1764 1765 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1766 deleteExpression(E); 1767 return createDeadExpression(); 1768 } 1769 Value *AllSameValue = *(Filtered.begin()); 1770 ++Filtered.begin(); 1771 // Can't use std::equal here, sadly, because filter.begin moves. 1772 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1773 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef 1774 // in the worst case). 1775 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT)) 1776 return E; 1777 1778 // In LLVM's non-standard representation of phi nodes, it's possible to have 1779 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1780 // on the original phi node), especially in weird CFG's where some arguments 1781 // are unreachable, or uninitialized along certain paths. This can cause 1782 // infinite loops during evaluation. We work around this by not trying to 1783 // really evaluate them independently, but instead using a variable 1784 // expression to say if one is equivalent to the other. 1785 // We also special case undef/poison, so that if we have an undef, we can't 1786 // use the common value unless it dominates the phi block. 1787 if (HasPoison || HasUndef) { 1788 // If we have undef and at least one other value, this is really a 1789 // multivalued phi, and we need to know if it's cycle free in order to 1790 // evaluate whether we can ignore the undef. The other parts of this are 1791 // just shortcuts. If there is no backedge, or all operands are 1792 // constants, it also must be cycle free. 1793 if (HasBackedge && !OriginalOpsConstant && 1794 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1795 return E; 1796 1797 // Only have to check for instructions 1798 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1799 if (!someEquivalentDominates(AllSameInst, I)) 1800 return E; 1801 } 1802 // Can't simplify to something that comes later in the iteration. 1803 // Otherwise, when and if it changes congruence class, we will never catch 1804 // up. We will always be a class behind it. 1805 if (isa<Instruction>(AllSameValue) && 1806 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1807 return E; 1808 NumGVNPhisAllSame++; 1809 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1810 << "\n"); 1811 deleteExpression(E); 1812 return createVariableOrConstant(AllSameValue); 1813 } 1814 return E; 1815 } 1816 1817 const Expression * 1818 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1819 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1820 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1821 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1822 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1823 // a semantically equivalent expression instead of an extract value 1824 // expression. 1825 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1826 WO->getLHS(), WO->getRHS(), I); 1827 } 1828 1829 return createAggregateValueExpression(I); 1830 } 1831 1832 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1833 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1834 1835 auto *CI = cast<CmpInst>(I); 1836 // See if our operands are equal to those of a previous predicate, and if so, 1837 // if it implies true or false. 1838 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1839 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1840 auto OurPredicate = CI->getPredicate(); 1841 if (shouldSwapOperands(Op0, Op1)) { 1842 std::swap(Op0, Op1); 1843 OurPredicate = CI->getSwappedPredicate(); 1844 } 1845 1846 // Avoid processing the same info twice. 1847 const PredicateBase *LastPredInfo = nullptr; 1848 // See if we know something about the comparison itself, like it is the target 1849 // of an assume. 1850 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1851 if (isa_and_nonnull<PredicateAssume>(CmpPI)) 1852 return ExprResult::some( 1853 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1854 1855 if (Op0 == Op1) { 1856 // This condition does not depend on predicates, no need to add users 1857 if (CI->isTrueWhenEqual()) 1858 return ExprResult::some( 1859 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1860 else if (CI->isFalseWhenEqual()) 1861 return ExprResult::some( 1862 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1863 } 1864 1865 // NOTE: Because we are comparing both operands here and below, and using 1866 // previous comparisons, we rely on fact that predicateinfo knows to mark 1867 // comparisons that use renamed operands as users of the earlier comparisons. 1868 // It is *not* enough to just mark predicateinfo renamed operands as users of 1869 // the earlier comparisons, because the *other* operand may have changed in a 1870 // previous iteration. 1871 // Example: 1872 // icmp slt %a, %b 1873 // %b.0 = ssa.copy(%b) 1874 // false branch: 1875 // icmp slt %c, %b.0 1876 1877 // %c and %a may start out equal, and thus, the code below will say the second 1878 // %icmp is false. c may become equal to something else, and in that case the 1879 // %second icmp *must* be reexamined, but would not if only the renamed 1880 // %operands are considered users of the icmp. 1881 1882 // *Currently* we only check one level of comparisons back, and only mark one 1883 // level back as touched when changes happen. If you modify this code to look 1884 // back farther through comparisons, you *must* mark the appropriate 1885 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1886 // we know something just from the operands themselves 1887 1888 // See if our operands have predicate info, so that we may be able to derive 1889 // something from a previous comparison. 1890 for (const auto &Op : CI->operands()) { 1891 auto *PI = PredInfo->getPredicateInfoFor(Op); 1892 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1893 if (PI == LastPredInfo) 1894 continue; 1895 LastPredInfo = PI; 1896 // In phi of ops cases, we may have predicate info that we are evaluating 1897 // in a different context. 1898 if (!DT->dominates(PBranch->To, getBlockForValue(I))) 1899 continue; 1900 // TODO: Along the false edge, we may know more things too, like 1901 // icmp of 1902 // same operands is false. 1903 // TODO: We only handle actual comparison conditions below, not 1904 // and/or. 1905 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1906 if (!BranchCond) 1907 continue; 1908 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1909 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1910 auto BranchPredicate = BranchCond->getPredicate(); 1911 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1912 std::swap(BranchOp0, BranchOp1); 1913 BranchPredicate = BranchCond->getSwappedPredicate(); 1914 } 1915 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1916 if (PBranch->TrueEdge) { 1917 // If we know the previous predicate is true and we are in the true 1918 // edge then we may be implied true or false. 1919 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1920 OurPredicate)) { 1921 return ExprResult::some( 1922 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1923 PI); 1924 } 1925 1926 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1927 OurPredicate)) { 1928 return ExprResult::some( 1929 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1930 PI); 1931 } 1932 } else { 1933 // Just handle the ne and eq cases, where if we have the same 1934 // operands, we may know something. 1935 if (BranchPredicate == OurPredicate) { 1936 // Same predicate, same ops,we know it was false, so this is false. 1937 return ExprResult::some( 1938 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1939 PI); 1940 } else if (BranchPredicate == 1941 CmpInst::getInversePredicate(OurPredicate)) { 1942 // Inverse predicate, we know the other was false, so this is true. 1943 return ExprResult::some( 1944 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1945 PI); 1946 } 1947 } 1948 } 1949 } 1950 } 1951 // Create expression will take care of simplifyCmpInst 1952 return createExpression(I); 1953 } 1954 1955 // Substitute and symbolize the value before value numbering. 1956 NewGVN::ExprResult 1957 NewGVN::performSymbolicEvaluation(Value *V, 1958 SmallPtrSetImpl<Value *> &Visited) const { 1959 1960 const Expression *E = nullptr; 1961 if (auto *C = dyn_cast<Constant>(V)) 1962 E = createConstantExpression(C); 1963 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1964 E = createVariableExpression(V); 1965 } else { 1966 // TODO: memory intrinsics. 1967 // TODO: Some day, we should do the forward propagation and reassociation 1968 // parts of the algorithm. 1969 auto *I = cast<Instruction>(V); 1970 switch (I->getOpcode()) { 1971 case Instruction::ExtractValue: 1972 case Instruction::InsertValue: 1973 E = performSymbolicAggrValueEvaluation(I); 1974 break; 1975 case Instruction::PHI: { 1976 SmallVector<ValPair, 3> Ops; 1977 auto *PN = cast<PHINode>(I); 1978 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1979 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1980 // Sort to ensure the invariant createPHIExpression requires is met. 1981 sortPHIOps(Ops); 1982 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1983 } break; 1984 case Instruction::Call: 1985 return performSymbolicCallEvaluation(I); 1986 break; 1987 case Instruction::Store: 1988 E = performSymbolicStoreEvaluation(I); 1989 break; 1990 case Instruction::Load: 1991 E = performSymbolicLoadEvaluation(I); 1992 break; 1993 case Instruction::BitCast: 1994 case Instruction::AddrSpaceCast: 1995 return createExpression(I); 1996 break; 1997 case Instruction::ICmp: 1998 case Instruction::FCmp: 1999 return performSymbolicCmpEvaluation(I); 2000 break; 2001 case Instruction::FNeg: 2002 case Instruction::Add: 2003 case Instruction::FAdd: 2004 case Instruction::Sub: 2005 case Instruction::FSub: 2006 case Instruction::Mul: 2007 case Instruction::FMul: 2008 case Instruction::UDiv: 2009 case Instruction::SDiv: 2010 case Instruction::FDiv: 2011 case Instruction::URem: 2012 case Instruction::SRem: 2013 case Instruction::FRem: 2014 case Instruction::Shl: 2015 case Instruction::LShr: 2016 case Instruction::AShr: 2017 case Instruction::And: 2018 case Instruction::Or: 2019 case Instruction::Xor: 2020 case Instruction::Trunc: 2021 case Instruction::ZExt: 2022 case Instruction::SExt: 2023 case Instruction::FPToUI: 2024 case Instruction::FPToSI: 2025 case Instruction::UIToFP: 2026 case Instruction::SIToFP: 2027 case Instruction::FPTrunc: 2028 case Instruction::FPExt: 2029 case Instruction::PtrToInt: 2030 case Instruction::IntToPtr: 2031 case Instruction::Select: 2032 case Instruction::ExtractElement: 2033 case Instruction::InsertElement: 2034 case Instruction::GetElementPtr: 2035 return createExpression(I); 2036 break; 2037 case Instruction::ShuffleVector: 2038 // FIXME: Add support for shufflevector to createExpression. 2039 return ExprResult::none(); 2040 default: 2041 return ExprResult::none(); 2042 } 2043 } 2044 return ExprResult::some(E); 2045 } 2046 2047 // Look up a container of values/instructions in a map, and touch all the 2048 // instructions in the container. Then erase value from the map. 2049 template <typename Map, typename KeyType> 2050 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2051 const auto Result = M.find_as(Key); 2052 if (Result != M.end()) { 2053 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2054 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2055 M.erase(Result); 2056 } 2057 } 2058 2059 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2060 assert(User && To != User); 2061 if (isa<Instruction>(To)) 2062 AdditionalUsers[To].insert(User); 2063 } 2064 2065 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2066 if (Res.ExtraDep && Res.ExtraDep != User) 2067 addAdditionalUsers(Res.ExtraDep, User); 2068 Res.ExtraDep = nullptr; 2069 2070 if (Res.PredDep) { 2071 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2072 PredicateToUsers[PBranch->Condition].insert(User); 2073 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2074 PredicateToUsers[PAssume->Condition].insert(User); 2075 } 2076 Res.PredDep = nullptr; 2077 } 2078 2079 void NewGVN::markUsersTouched(Value *V) { 2080 // Now mark the users as touched. 2081 for (auto *User : V->users()) { 2082 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2083 TouchedInstructions.set(InstrToDFSNum(User)); 2084 } 2085 touchAndErase(AdditionalUsers, V); 2086 } 2087 2088 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2089 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2090 MemoryToUsers[To].insert(U); 2091 } 2092 2093 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2094 TouchedInstructions.set(MemoryToDFSNum(MA)); 2095 } 2096 2097 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2098 if (isa<MemoryUse>(MA)) 2099 return; 2100 for (const auto *U : MA->users()) 2101 TouchedInstructions.set(MemoryToDFSNum(U)); 2102 touchAndErase(MemoryToUsers, MA); 2103 } 2104 2105 // Touch all the predicates that depend on this instruction. 2106 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2107 touchAndErase(PredicateToUsers, I); 2108 } 2109 2110 // Mark users affected by a memory leader change. 2111 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2112 for (const auto *M : CC->memory()) 2113 markMemoryDefTouched(M); 2114 } 2115 2116 // Touch the instructions that need to be updated after a congruence class has a 2117 // leader change, and mark changed values. 2118 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2119 for (auto *M : *CC) { 2120 if (auto *I = dyn_cast<Instruction>(M)) 2121 TouchedInstructions.set(InstrToDFSNum(I)); 2122 LeaderChanges.insert(M); 2123 } 2124 } 2125 2126 // Give a range of things that have instruction DFS numbers, this will return 2127 // the member of the range with the smallest dfs number. 2128 template <class T, class Range> 2129 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2130 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2131 for (const auto X : R) { 2132 auto DFSNum = InstrToDFSNum(X); 2133 if (DFSNum < MinDFS.second) 2134 MinDFS = {X, DFSNum}; 2135 } 2136 return MinDFS.first; 2137 } 2138 2139 // This function returns the MemoryAccess that should be the next leader of 2140 // congruence class CC, under the assumption that the current leader is going to 2141 // disappear. 2142 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2143 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2144 // do for regular leaders. 2145 // Make sure there will be a leader to find. 2146 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2147 if (CC->getStoreCount() > 0) { 2148 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2149 return getMemoryAccess(NL); 2150 // Find the store with the minimum DFS number. 2151 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2152 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2153 return getMemoryAccess(cast<StoreInst>(V)); 2154 } 2155 assert(CC->getStoreCount() == 0); 2156 2157 // Given our assertion, hitting this part must mean 2158 // !OldClass->memory_empty() 2159 if (CC->memory_size() == 1) 2160 return *CC->memory_begin(); 2161 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2162 } 2163 2164 // This function returns the next value leader of a congruence class, under the 2165 // assumption that the current leader is going away. This should end up being 2166 // the next most dominating member. 2167 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2168 // We don't need to sort members if there is only 1, and we don't care about 2169 // sorting the TOP class because everything either gets out of it or is 2170 // unreachable. 2171 2172 if (CC->size() == 1 || CC == TOPClass) { 2173 return *(CC->begin()); 2174 } else if (CC->getNextLeader().first) { 2175 ++NumGVNAvoidedSortedLeaderChanges; 2176 return CC->getNextLeader().first; 2177 } else { 2178 ++NumGVNSortedLeaderChanges; 2179 // NOTE: If this ends up to slow, we can maintain a dual structure for 2180 // member testing/insertion, or keep things mostly sorted, and sort only 2181 // here, or use SparseBitVector or .... 2182 return getMinDFSOfRange<Value>(*CC); 2183 } 2184 } 2185 2186 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2187 // the memory members, etc for the move. 2188 // 2189 // The invariants of this function are: 2190 // 2191 // - I must be moving to NewClass from OldClass 2192 // - The StoreCount of OldClass and NewClass is expected to have been updated 2193 // for I already if it is a store. 2194 // - The OldClass memory leader has not been updated yet if I was the leader. 2195 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2196 MemoryAccess *InstMA, 2197 CongruenceClass *OldClass, 2198 CongruenceClass *NewClass) { 2199 // If the leader is I, and we had a representative MemoryAccess, it should 2200 // be the MemoryAccess of OldClass. 2201 assert((!InstMA || !OldClass->getMemoryLeader() || 2202 OldClass->getLeader() != I || 2203 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2204 MemoryAccessToClass.lookup(InstMA)) && 2205 "Representative MemoryAccess mismatch"); 2206 // First, see what happens to the new class 2207 if (!NewClass->getMemoryLeader()) { 2208 // Should be a new class, or a store becoming a leader of a new class. 2209 assert(NewClass->size() == 1 || 2210 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2211 NewClass->setMemoryLeader(InstMA); 2212 // Mark it touched if we didn't just create a singleton 2213 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2214 << NewClass->getID() 2215 << " due to new memory instruction becoming leader\n"); 2216 markMemoryLeaderChangeTouched(NewClass); 2217 } 2218 setMemoryClass(InstMA, NewClass); 2219 // Now, fixup the old class if necessary 2220 if (OldClass->getMemoryLeader() == InstMA) { 2221 if (!OldClass->definesNoMemory()) { 2222 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2223 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2224 << OldClass->getID() << " to " 2225 << *OldClass->getMemoryLeader() 2226 << " due to removal of old leader " << *InstMA << "\n"); 2227 markMemoryLeaderChangeTouched(OldClass); 2228 } else 2229 OldClass->setMemoryLeader(nullptr); 2230 } 2231 } 2232 2233 // Move a value, currently in OldClass, to be part of NewClass 2234 // Update OldClass and NewClass for the move (including changing leaders, etc). 2235 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2236 CongruenceClass *OldClass, 2237 CongruenceClass *NewClass) { 2238 if (I == OldClass->getNextLeader().first) 2239 OldClass->resetNextLeader(); 2240 2241 OldClass->erase(I); 2242 NewClass->insert(I); 2243 2244 if (NewClass->getLeader() != I) 2245 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2246 // Handle our special casing of stores. 2247 if (auto *SI = dyn_cast<StoreInst>(I)) { 2248 OldClass->decStoreCount(); 2249 // Okay, so when do we want to make a store a leader of a class? 2250 // If we have a store defined by an earlier load, we want the earlier load 2251 // to lead the class. 2252 // If we have a store defined by something else, we want the store to lead 2253 // the class so everything else gets the "something else" as a value. 2254 // If we have a store as the single member of the class, we want the store 2255 // as the leader 2256 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2257 // If it's a store expression we are using, it means we are not equivalent 2258 // to something earlier. 2259 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2260 NewClass->setStoredValue(SE->getStoredValue()); 2261 markValueLeaderChangeTouched(NewClass); 2262 // Shift the new class leader to be the store 2263 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2264 << NewClass->getID() << " from " 2265 << *NewClass->getLeader() << " to " << *SI 2266 << " because store joined class\n"); 2267 // If we changed the leader, we have to mark it changed because we don't 2268 // know what it will do to symbolic evaluation. 2269 NewClass->setLeader(SI); 2270 } 2271 // We rely on the code below handling the MemoryAccess change. 2272 } 2273 NewClass->incStoreCount(); 2274 } 2275 // True if there is no memory instructions left in a class that had memory 2276 // instructions before. 2277 2278 // If it's not a memory use, set the MemoryAccess equivalence 2279 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2280 if (InstMA) 2281 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2282 ValueToClass[I] = NewClass; 2283 // See if we destroyed the class or need to swap leaders. 2284 if (OldClass->empty() && OldClass != TOPClass) { 2285 if (OldClass->getDefiningExpr()) { 2286 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2287 << " from table\n"); 2288 // We erase it as an exact expression to make sure we don't just erase an 2289 // equivalent one. 2290 auto Iter = ExpressionToClass.find_as( 2291 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2292 if (Iter != ExpressionToClass.end()) 2293 ExpressionToClass.erase(Iter); 2294 #ifdef EXPENSIVE_CHECKS 2295 assert( 2296 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2297 "We erased the expression we just inserted, which should not happen"); 2298 #endif 2299 } 2300 } else if (OldClass->getLeader() == I) { 2301 // When the leader changes, the value numbering of 2302 // everything may change due to symbolization changes, so we need to 2303 // reprocess. 2304 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2305 << OldClass->getID() << "\n"); 2306 ++NumGVNLeaderChanges; 2307 // Destroy the stored value if there are no more stores to represent it. 2308 // Note that this is basically clean up for the expression removal that 2309 // happens below. If we remove stores from a class, we may leave it as a 2310 // class of equivalent memory phis. 2311 if (OldClass->getStoreCount() == 0) { 2312 if (OldClass->getStoredValue()) 2313 OldClass->setStoredValue(nullptr); 2314 } 2315 OldClass->setLeader(getNextValueLeader(OldClass)); 2316 OldClass->resetNextLeader(); 2317 markValueLeaderChangeTouched(OldClass); 2318 } 2319 } 2320 2321 // For a given expression, mark the phi of ops instructions that could have 2322 // changed as a result. 2323 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2324 touchAndErase(ExpressionToPhiOfOps, E); 2325 } 2326 2327 // Perform congruence finding on a given value numbering expression. 2328 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2329 // This is guaranteed to return something, since it will at least find 2330 // TOP. 2331 2332 CongruenceClass *IClass = ValueToClass.lookup(I); 2333 assert(IClass && "Should have found a IClass"); 2334 // Dead classes should have been eliminated from the mapping. 2335 assert(!IClass->isDead() && "Found a dead class"); 2336 2337 CongruenceClass *EClass = nullptr; 2338 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2339 EClass = ValueToClass.lookup(VE->getVariableValue()); 2340 } else if (isa<DeadExpression>(E)) { 2341 EClass = TOPClass; 2342 } 2343 if (!EClass) { 2344 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2345 2346 // If it's not in the value table, create a new congruence class. 2347 if (lookupResult.second) { 2348 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2349 auto place = lookupResult.first; 2350 place->second = NewClass; 2351 2352 // Constants and variables should always be made the leader. 2353 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2354 NewClass->setLeader(CE->getConstantValue()); 2355 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2356 StoreInst *SI = SE->getStoreInst(); 2357 NewClass->setLeader(SI); 2358 NewClass->setStoredValue(SE->getStoredValue()); 2359 // The RepMemoryAccess field will be filled in properly by the 2360 // moveValueToNewCongruenceClass call. 2361 } else { 2362 NewClass->setLeader(I); 2363 } 2364 assert(!isa<VariableExpression>(E) && 2365 "VariableExpression should have been handled already"); 2366 2367 EClass = NewClass; 2368 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2369 << " using expression " << *E << " at " 2370 << NewClass->getID() << " and leader " 2371 << *(NewClass->getLeader())); 2372 if (NewClass->getStoredValue()) 2373 LLVM_DEBUG(dbgs() << " and stored value " 2374 << *(NewClass->getStoredValue())); 2375 LLVM_DEBUG(dbgs() << "\n"); 2376 } else { 2377 EClass = lookupResult.first->second; 2378 if (isa<ConstantExpression>(E)) 2379 assert((isa<Constant>(EClass->getLeader()) || 2380 (EClass->getStoredValue() && 2381 isa<Constant>(EClass->getStoredValue()))) && 2382 "Any class with a constant expression should have a " 2383 "constant leader"); 2384 2385 assert(EClass && "Somehow don't have an eclass"); 2386 2387 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2388 } 2389 } 2390 bool ClassChanged = IClass != EClass; 2391 bool LeaderChanged = LeaderChanges.erase(I); 2392 if (ClassChanged || LeaderChanged) { 2393 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2394 << *E << "\n"); 2395 if (ClassChanged) { 2396 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2397 markPhiOfOpsChanged(E); 2398 } 2399 2400 markUsersTouched(I); 2401 if (MemoryAccess *MA = getMemoryAccess(I)) 2402 markMemoryUsersTouched(MA); 2403 if (auto *CI = dyn_cast<CmpInst>(I)) 2404 markPredicateUsersTouched(CI); 2405 } 2406 // If we changed the class of the store, we want to ensure nothing finds the 2407 // old store expression. In particular, loads do not compare against stored 2408 // value, so they will find old store expressions (and associated class 2409 // mappings) if we leave them in the table. 2410 if (ClassChanged && isa<StoreInst>(I)) { 2411 auto *OldE = ValueToExpression.lookup(I); 2412 // It could just be that the old class died. We don't want to erase it if we 2413 // just moved classes. 2414 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2415 // Erase this as an exact expression to ensure we don't erase expressions 2416 // equivalent to it. 2417 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2418 if (Iter != ExpressionToClass.end()) 2419 ExpressionToClass.erase(Iter); 2420 } 2421 } 2422 ValueToExpression[I] = E; 2423 } 2424 2425 // Process the fact that Edge (from, to) is reachable, including marking 2426 // any newly reachable blocks and instructions for processing. 2427 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2428 // Check if the Edge was reachable before. 2429 if (ReachableEdges.insert({From, To}).second) { 2430 // If this block wasn't reachable before, all instructions are touched. 2431 if (ReachableBlocks.insert(To).second) { 2432 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2433 << " marked reachable\n"); 2434 const auto &InstRange = BlockInstRange.lookup(To); 2435 TouchedInstructions.set(InstRange.first, InstRange.second); 2436 } else { 2437 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2438 << " was reachable, but new edge {" 2439 << getBlockName(From) << "," << getBlockName(To) 2440 << "} to it found\n"); 2441 2442 // We've made an edge reachable to an existing block, which may 2443 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2444 // they are the only thing that depend on new edges. Anything using their 2445 // values will get propagated to if necessary. 2446 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2447 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2448 2449 // FIXME: We should just add a union op on a Bitvector and 2450 // SparseBitVector. We can do it word by word faster than we are doing it 2451 // here. 2452 for (auto InstNum : RevisitOnReachabilityChange[To]) 2453 TouchedInstructions.set(InstNum); 2454 } 2455 } 2456 } 2457 2458 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2459 // see if we know some constant value for it already. 2460 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2461 auto Result = lookupOperandLeader(Cond); 2462 return isa<Constant>(Result) ? Result : nullptr; 2463 } 2464 2465 // Process the outgoing edges of a block for reachability. 2466 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2467 // Evaluate reachability of terminator instruction. 2468 Value *Cond; 2469 BasicBlock *TrueSucc, *FalseSucc; 2470 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2471 Value *CondEvaluated = findConditionEquivalence(Cond); 2472 if (!CondEvaluated) { 2473 if (auto *I = dyn_cast<Instruction>(Cond)) { 2474 SmallPtrSet<Value *, 4> Visited; 2475 auto Res = performSymbolicEvaluation(I, Visited); 2476 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2477 CondEvaluated = CE->getConstantValue(); 2478 addAdditionalUsers(Res, I); 2479 } else { 2480 // Did not use simplification result, no need to add the extra 2481 // dependency. 2482 Res.ExtraDep = nullptr; 2483 } 2484 } else if (isa<ConstantInt>(Cond)) { 2485 CondEvaluated = Cond; 2486 } 2487 } 2488 ConstantInt *CI; 2489 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2490 if (CI->isOne()) { 2491 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2492 << " evaluated to true\n"); 2493 updateReachableEdge(B, TrueSucc); 2494 } else if (CI->isZero()) { 2495 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2496 << " evaluated to false\n"); 2497 updateReachableEdge(B, FalseSucc); 2498 } 2499 } else { 2500 updateReachableEdge(B, TrueSucc); 2501 updateReachableEdge(B, FalseSucc); 2502 } 2503 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2504 // For switches, propagate the case values into the case 2505 // destinations. 2506 2507 Value *SwitchCond = SI->getCondition(); 2508 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2509 // See if we were able to turn this switch statement into a constant. 2510 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2511 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2512 // We should be able to get case value for this. 2513 auto Case = *SI->findCaseValue(CondVal); 2514 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2515 // We proved the value is outside of the range of the case. 2516 // We can't do anything other than mark the default dest as reachable, 2517 // and go home. 2518 updateReachableEdge(B, SI->getDefaultDest()); 2519 return; 2520 } 2521 // Now get where it goes and mark it reachable. 2522 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2523 updateReachableEdge(B, TargetBlock); 2524 } else { 2525 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 2526 BasicBlock *TargetBlock = SI->getSuccessor(i); 2527 updateReachableEdge(B, TargetBlock); 2528 } 2529 } 2530 } else { 2531 // Otherwise this is either unconditional, or a type we have no 2532 // idea about. Just mark successors as reachable. 2533 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 2534 BasicBlock *TargetBlock = TI->getSuccessor(i); 2535 updateReachableEdge(B, TargetBlock); 2536 } 2537 2538 // This also may be a memory defining terminator, in which case, set it 2539 // equivalent only to itself. 2540 // 2541 auto *MA = getMemoryAccess(TI); 2542 if (MA && !isa<MemoryUse>(MA)) { 2543 auto *CC = ensureLeaderOfMemoryClass(MA); 2544 if (setMemoryClass(MA, CC)) 2545 markMemoryUsersTouched(MA); 2546 } 2547 } 2548 } 2549 2550 // Remove the PHI of Ops PHI for I 2551 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2552 InstrDFS.erase(PHITemp); 2553 // It's still a temp instruction. We keep it in the array so it gets erased. 2554 // However, it's no longer used by I, or in the block 2555 TempToBlock.erase(PHITemp); 2556 RealToTemp.erase(I); 2557 // We don't remove the users from the phi node uses. This wastes a little 2558 // time, but such is life. We could use two sets to track which were there 2559 // are the start of NewGVN, and which were added, but right nowt he cost of 2560 // tracking is more than the cost of checking for more phi of ops. 2561 } 2562 2563 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2564 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2565 Instruction *ExistingValue) { 2566 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2567 AllTempInstructions.insert(Op); 2568 TempToBlock[Op] = BB; 2569 RealToTemp[ExistingValue] = Op; 2570 // Add all users to phi node use, as they are now uses of the phi of ops phis 2571 // and may themselves be phi of ops. 2572 for (auto *U : ExistingValue->users()) 2573 if (auto *UI = dyn_cast<Instruction>(U)) 2574 PHINodeUses.insert(UI); 2575 } 2576 2577 static bool okayForPHIOfOps(const Instruction *I) { 2578 if (!EnablePhiOfOps) 2579 return false; 2580 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2581 isa<LoadInst>(I); 2582 } 2583 2584 // Return true if this operand will be safe to use for phi of ops. 2585 // 2586 // The reason some operands are unsafe is that we are not trying to recursively 2587 // translate everything back through phi nodes. We actually expect some lookups 2588 // of expressions to fail. In particular, a lookup where the expression cannot 2589 // exist in the predecessor. This is true even if the expression, as shown, can 2590 // be determined to be constant. 2591 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2592 SmallPtrSetImpl<const Value *> &Visited) { 2593 SmallVector<Value *, 4> Worklist; 2594 Worklist.push_back(V); 2595 while (!Worklist.empty()) { 2596 auto *I = Worklist.pop_back_val(); 2597 if (!isa<Instruction>(I)) 2598 continue; 2599 2600 auto OISIt = OpSafeForPHIOfOps.find(I); 2601 if (OISIt != OpSafeForPHIOfOps.end()) 2602 return OISIt->second; 2603 2604 // Keep walking until we either dominate the phi block, or hit a phi, or run 2605 // out of things to check. 2606 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) { 2607 OpSafeForPHIOfOps.insert({I, true}); 2608 continue; 2609 } 2610 // PHI in the same block. 2611 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) { 2612 OpSafeForPHIOfOps.insert({I, false}); 2613 return false; 2614 } 2615 2616 auto *OrigI = cast<Instruction>(I); 2617 // When we hit an instruction that reads memory (load, call, etc), we must 2618 // consider any store that may happen in the loop. For now, we assume the 2619 // worst: there is a store in the loop that alias with this read. 2620 // The case where the load is outside the loop is already covered by the 2621 // dominator check above. 2622 // TODO: relax this condition 2623 if (OrigI->mayReadFromMemory()) 2624 return false; 2625 2626 // Check the operands of the current instruction. 2627 for (auto *Op : OrigI->operand_values()) { 2628 if (!isa<Instruction>(Op)) 2629 continue; 2630 // Stop now if we find an unsafe operand. 2631 auto OISIt = OpSafeForPHIOfOps.find(OrigI); 2632 if (OISIt != OpSafeForPHIOfOps.end()) { 2633 if (!OISIt->second) { 2634 OpSafeForPHIOfOps.insert({I, false}); 2635 return false; 2636 } 2637 continue; 2638 } 2639 if (!Visited.insert(Op).second) 2640 continue; 2641 Worklist.push_back(cast<Instruction>(Op)); 2642 } 2643 } 2644 OpSafeForPHIOfOps.insert({V, true}); 2645 return true; 2646 } 2647 2648 // Try to find a leader for instruction TransInst, which is a phi translated 2649 // version of something in our original program. Visited is used to ensure we 2650 // don't infinite loop during translations of cycles. OrigInst is the 2651 // instruction in the original program, and PredBB is the predecessor we 2652 // translated it through. 2653 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2654 SmallPtrSetImpl<Value *> &Visited, 2655 MemoryAccess *MemAccess, Instruction *OrigInst, 2656 BasicBlock *PredBB) { 2657 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2658 // Make sure it's marked as a temporary instruction. 2659 AllTempInstructions.insert(TransInst); 2660 // and make sure anything that tries to add it's DFS number is 2661 // redirected to the instruction we are making a phi of ops 2662 // for. 2663 TempToBlock.insert({TransInst, PredBB}); 2664 InstrDFS.insert({TransInst, IDFSNum}); 2665 2666 auto Res = performSymbolicEvaluation(TransInst, Visited); 2667 const Expression *E = Res.Expr; 2668 addAdditionalUsers(Res, OrigInst); 2669 InstrDFS.erase(TransInst); 2670 AllTempInstructions.erase(TransInst); 2671 TempToBlock.erase(TransInst); 2672 if (MemAccess) 2673 TempToMemory.erase(TransInst); 2674 if (!E) 2675 return nullptr; 2676 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2677 if (!FoundVal) { 2678 ExpressionToPhiOfOps[E].insert(OrigInst); 2679 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2680 << " in block " << getBlockName(PredBB) << "\n"); 2681 return nullptr; 2682 } 2683 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2684 FoundVal = SI->getValueOperand(); 2685 return FoundVal; 2686 } 2687 2688 // When we see an instruction that is an op of phis, generate the equivalent phi 2689 // of ops form. 2690 const Expression * 2691 NewGVN::makePossiblePHIOfOps(Instruction *I, 2692 SmallPtrSetImpl<Value *> &Visited) { 2693 if (!okayForPHIOfOps(I)) 2694 return nullptr; 2695 2696 if (!Visited.insert(I).second) 2697 return nullptr; 2698 // For now, we require the instruction be cycle free because we don't 2699 // *always* create a phi of ops for instructions that could be done as phi 2700 // of ops, we only do it if we think it is useful. If we did do it all the 2701 // time, we could remove the cycle free check. 2702 if (!isCycleFree(I)) 2703 return nullptr; 2704 2705 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2706 // TODO: We don't do phi translation on memory accesses because it's 2707 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2708 // which we don't have a good way of doing ATM. 2709 auto *MemAccess = getMemoryAccess(I); 2710 // If the memory operation is defined by a memory operation this block that 2711 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2712 // can't help, as it would still be killed by that memory operation. 2713 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2714 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2715 return nullptr; 2716 2717 // Convert op of phis to phi of ops 2718 SmallPtrSet<const Value *, 10> VisitedOps; 2719 SmallVector<Value *, 4> Ops(I->operand_values()); 2720 BasicBlock *SamePHIBlock = nullptr; 2721 PHINode *OpPHI = nullptr; 2722 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2723 return nullptr; 2724 for (auto *Op : Ops) { 2725 if (!isa<PHINode>(Op)) { 2726 auto *ValuePHI = RealToTemp.lookup(Op); 2727 if (!ValuePHI) 2728 continue; 2729 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2730 Op = ValuePHI; 2731 } 2732 OpPHI = cast<PHINode>(Op); 2733 if (!SamePHIBlock) { 2734 SamePHIBlock = getBlockForValue(OpPHI); 2735 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2736 LLVM_DEBUG( 2737 dbgs() 2738 << "PHIs for operands are not all in the same block, aborting\n"); 2739 return nullptr; 2740 } 2741 // No point in doing this for one-operand phis. 2742 if (OpPHI->getNumOperands() == 1) { 2743 OpPHI = nullptr; 2744 continue; 2745 } 2746 } 2747 2748 if (!OpPHI) 2749 return nullptr; 2750 2751 SmallVector<ValPair, 4> PHIOps; 2752 SmallPtrSet<Value *, 4> Deps; 2753 auto *PHIBlock = getBlockForValue(OpPHI); 2754 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2755 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2756 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2757 Value *FoundVal = nullptr; 2758 SmallPtrSet<Value *, 4> CurrentDeps; 2759 // We could just skip unreachable edges entirely but it's tricky to do 2760 // with rewriting existing phi nodes. 2761 if (ReachableEdges.count({PredBB, PHIBlock})) { 2762 // Clone the instruction, create an expression from it that is 2763 // translated back into the predecessor, and see if we have a leader. 2764 Instruction *ValueOp = I->clone(); 2765 if (MemAccess) 2766 TempToMemory.insert({ValueOp, MemAccess}); 2767 bool SafeForPHIOfOps = true; 2768 VisitedOps.clear(); 2769 for (auto &Op : ValueOp->operands()) { 2770 auto *OrigOp = &*Op; 2771 // When these operand changes, it could change whether there is a 2772 // leader for us or not, so we have to add additional users. 2773 if (isa<PHINode>(Op)) { 2774 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2775 if (Op != OrigOp && Op != I) 2776 CurrentDeps.insert(Op); 2777 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2778 if (getBlockForValue(ValuePHI) == PHIBlock) 2779 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2780 } 2781 // If we phi-translated the op, it must be safe. 2782 SafeForPHIOfOps = 2783 SafeForPHIOfOps && 2784 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2785 } 2786 // FIXME: For those things that are not safe we could generate 2787 // expressions all the way down, and see if this comes out to a 2788 // constant. For anything where that is true, and unsafe, we should 2789 // have made a phi-of-ops (or value numbered it equivalent to something) 2790 // for the pieces already. 2791 FoundVal = !SafeForPHIOfOps ? nullptr 2792 : findLeaderForInst(ValueOp, Visited, 2793 MemAccess, I, PredBB); 2794 ValueOp->deleteValue(); 2795 if (!FoundVal) { 2796 // We failed to find a leader for the current ValueOp, but this might 2797 // change in case of the translated operands change. 2798 if (SafeForPHIOfOps) 2799 for (auto *Dep : CurrentDeps) 2800 addAdditionalUsers(Dep, I); 2801 2802 return nullptr; 2803 } 2804 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2805 } else { 2806 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2807 << getBlockName(PredBB) 2808 << " because the block is unreachable\n"); 2809 FoundVal = PoisonValue::get(I->getType()); 2810 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2811 } 2812 2813 PHIOps.push_back({FoundVal, PredBB}); 2814 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2815 << getBlockName(PredBB) << "\n"); 2816 } 2817 for (auto *Dep : Deps) 2818 addAdditionalUsers(Dep, I); 2819 sortPHIOps(PHIOps); 2820 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2821 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2822 LLVM_DEBUG( 2823 dbgs() 2824 << "Not creating real PHI of ops because it simplified to existing " 2825 "value or constant\n"); 2826 // We have leaders for all operands, but do not create a real PHI node with 2827 // those leaders as operands, so the link between the operands and the 2828 // PHI-of-ops is not materialized in the IR. If any of those leaders 2829 // changes, the PHI-of-op may change also, so we need to add the operands as 2830 // additional users. 2831 for (auto &O : PHIOps) 2832 addAdditionalUsers(O.first, I); 2833 2834 return E; 2835 } 2836 auto *ValuePHI = RealToTemp.lookup(I); 2837 bool NewPHI = false; 2838 if (!ValuePHI) { 2839 ValuePHI = 2840 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2841 addPhiOfOps(ValuePHI, PHIBlock, I); 2842 NewPHI = true; 2843 NumGVNPHIOfOpsCreated++; 2844 } 2845 if (NewPHI) { 2846 for (auto PHIOp : PHIOps) 2847 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2848 } else { 2849 TempToBlock[ValuePHI] = PHIBlock; 2850 unsigned int i = 0; 2851 for (auto PHIOp : PHIOps) { 2852 ValuePHI->setIncomingValue(i, PHIOp.first); 2853 ValuePHI->setIncomingBlock(i, PHIOp.second); 2854 ++i; 2855 } 2856 } 2857 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2858 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2859 << "\n"); 2860 2861 return E; 2862 } 2863 2864 // The algorithm initially places the values of the routine in the TOP 2865 // congruence class. The leader of TOP is the undetermined value `poison`. 2866 // When the algorithm has finished, values still in TOP are unreachable. 2867 void NewGVN::initializeCongruenceClasses(Function &F) { 2868 NextCongruenceNum = 0; 2869 2870 // Note that even though we use the live on entry def as a representative 2871 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2872 // have no real equivalent to poison for MemoryAccesses, and so we really 2873 // should be checking whether the MemoryAccess is top if we want to know if it 2874 // is equivalent to everything. Otherwise, what this really signifies is that 2875 // the access "it reaches all the way back to the beginning of the function" 2876 2877 // Initialize all other instructions to be in TOP class. 2878 TOPClass = createCongruenceClass(nullptr, nullptr); 2879 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2880 // The live on entry def gets put into it's own class 2881 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2882 createMemoryClass(MSSA->getLiveOnEntryDef()); 2883 2884 for (auto *DTN : nodes(DT)) { 2885 BasicBlock *BB = DTN->getBlock(); 2886 // All MemoryAccesses are equivalent to live on entry to start. They must 2887 // be initialized to something so that initial changes are noticed. For 2888 // the maximal answer, we initialize them all to be the same as 2889 // liveOnEntry. 2890 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2891 if (MemoryBlockDefs) 2892 for (const auto &Def : *MemoryBlockDefs) { 2893 MemoryAccessToClass[&Def] = TOPClass; 2894 auto *MD = dyn_cast<MemoryDef>(&Def); 2895 // Insert the memory phis into the member list. 2896 if (!MD) { 2897 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2898 TOPClass->memory_insert(MP); 2899 MemoryPhiState.insert({MP, MPS_TOP}); 2900 } 2901 2902 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2903 TOPClass->incStoreCount(); 2904 } 2905 2906 // FIXME: This is trying to discover which instructions are uses of phi 2907 // nodes. We should move this into one of the myriad of places that walk 2908 // all the operands already. 2909 for (auto &I : *BB) { 2910 if (isa<PHINode>(&I)) 2911 for (auto *U : I.users()) 2912 if (auto *UInst = dyn_cast<Instruction>(U)) 2913 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2914 PHINodeUses.insert(UInst); 2915 // Don't insert void terminators into the class. We don't value number 2916 // them, and they just end up sitting in TOP. 2917 if (I.isTerminator() && I.getType()->isVoidTy()) 2918 continue; 2919 TOPClass->insert(&I); 2920 ValueToClass[&I] = TOPClass; 2921 } 2922 } 2923 2924 // Initialize arguments to be in their own unique congruence classes 2925 for (auto &FA : F.args()) 2926 createSingletonCongruenceClass(&FA); 2927 } 2928 2929 void NewGVN::cleanupTables() { 2930 for (CongruenceClass *&CC : CongruenceClasses) { 2931 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has " 2932 << CC->size() << " members\n"); 2933 // Make sure we delete the congruence class (probably worth switching to 2934 // a unique_ptr at some point. 2935 delete CC; 2936 CC = nullptr; 2937 } 2938 2939 // Destroy the value expressions 2940 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2941 AllTempInstructions.end()); 2942 AllTempInstructions.clear(); 2943 2944 // We have to drop all references for everything first, so there are no uses 2945 // left as we delete them. 2946 for (auto *I : TempInst) { 2947 I->dropAllReferences(); 2948 } 2949 2950 while (!TempInst.empty()) { 2951 auto *I = TempInst.pop_back_val(); 2952 I->deleteValue(); 2953 } 2954 2955 ValueToClass.clear(); 2956 ArgRecycler.clear(ExpressionAllocator); 2957 ExpressionAllocator.Reset(); 2958 CongruenceClasses.clear(); 2959 ExpressionToClass.clear(); 2960 ValueToExpression.clear(); 2961 RealToTemp.clear(); 2962 AdditionalUsers.clear(); 2963 ExpressionToPhiOfOps.clear(); 2964 TempToBlock.clear(); 2965 TempToMemory.clear(); 2966 PHINodeUses.clear(); 2967 OpSafeForPHIOfOps.clear(); 2968 ReachableBlocks.clear(); 2969 ReachableEdges.clear(); 2970 #ifndef NDEBUG 2971 ProcessedCount.clear(); 2972 #endif 2973 InstrDFS.clear(); 2974 InstructionsToErase.clear(); 2975 DFSToInstr.clear(); 2976 BlockInstRange.clear(); 2977 TouchedInstructions.clear(); 2978 MemoryAccessToClass.clear(); 2979 PredicateToUsers.clear(); 2980 MemoryToUsers.clear(); 2981 RevisitOnReachabilityChange.clear(); 2982 IntrinsicInstPred.clear(); 2983 } 2984 2985 // Assign local DFS number mapping to instructions, and leave space for Value 2986 // PHI's. 2987 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2988 unsigned Start) { 2989 unsigned End = Start; 2990 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 2991 InstrDFS[MemPhi] = End++; 2992 DFSToInstr.emplace_back(MemPhi); 2993 } 2994 2995 // Then the real block goes next. 2996 for (auto &I : *B) { 2997 // There's no need to call isInstructionTriviallyDead more than once on 2998 // an instruction. Therefore, once we know that an instruction is dead 2999 // we change its DFS number so that it doesn't get value numbered. 3000 if (isInstructionTriviallyDead(&I, TLI)) { 3001 InstrDFS[&I] = 0; 3002 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 3003 markInstructionForDeletion(&I); 3004 continue; 3005 } 3006 if (isa<PHINode>(&I)) 3007 RevisitOnReachabilityChange[B].set(End); 3008 InstrDFS[&I] = End++; 3009 DFSToInstr.emplace_back(&I); 3010 } 3011 3012 // All of the range functions taken half-open ranges (open on the end side). 3013 // So we do not subtract one from count, because at this point it is one 3014 // greater than the last instruction. 3015 return std::make_pair(Start, End); 3016 } 3017 3018 void NewGVN::updateProcessedCount(const Value *V) { 3019 #ifndef NDEBUG 3020 if (ProcessedCount.count(V) == 0) { 3021 ProcessedCount.insert({V, 1}); 3022 } else { 3023 ++ProcessedCount[V]; 3024 assert(ProcessedCount[V] < 100 && 3025 "Seem to have processed the same Value a lot"); 3026 } 3027 #endif 3028 } 3029 3030 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3031 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3032 // If all the arguments are the same, the MemoryPhi has the same value as the 3033 // argument. Filter out unreachable blocks and self phis from our operands. 3034 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3035 // self-phi checking. 3036 const BasicBlock *PHIBlock = MP->getBlock(); 3037 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3038 return cast<MemoryAccess>(U) != MP && 3039 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3040 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3041 }); 3042 // If all that is left is nothing, our memoryphi is poison. We keep it as 3043 // InitialClass. Note: The only case this should happen is if we have at 3044 // least one self-argument. 3045 if (Filtered.begin() == Filtered.end()) { 3046 if (setMemoryClass(MP, TOPClass)) 3047 markMemoryUsersTouched(MP); 3048 return; 3049 } 3050 3051 // Transform the remaining operands into operand leaders. 3052 // FIXME: mapped_iterator should have a range version. 3053 auto LookupFunc = [&](const Use &U) { 3054 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3055 }; 3056 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3057 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3058 3059 // and now check if all the elements are equal. 3060 // Sadly, we can't use std::equals since these are random access iterators. 3061 const auto *AllSameValue = *MappedBegin; 3062 ++MappedBegin; 3063 bool AllEqual = std::all_of( 3064 MappedBegin, MappedEnd, 3065 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3066 3067 if (AllEqual) 3068 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3069 << "\n"); 3070 else 3071 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3072 // If it's equal to something, it's in that class. Otherwise, it has to be in 3073 // a class where it is the leader (other things may be equivalent to it, but 3074 // it needs to start off in its own class, which means it must have been the 3075 // leader, and it can't have stopped being the leader because it was never 3076 // removed). 3077 CongruenceClass *CC = 3078 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3079 auto OldState = MemoryPhiState.lookup(MP); 3080 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3081 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3082 MemoryPhiState[MP] = NewState; 3083 if (setMemoryClass(MP, CC) || OldState != NewState) 3084 markMemoryUsersTouched(MP); 3085 } 3086 3087 // Value number a single instruction, symbolically evaluating, performing 3088 // congruence finding, and updating mappings. 3089 void NewGVN::valueNumberInstruction(Instruction *I) { 3090 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3091 if (!I->isTerminator()) { 3092 const Expression *Symbolized = nullptr; 3093 SmallPtrSet<Value *, 2> Visited; 3094 if (DebugCounter::shouldExecute(VNCounter)) { 3095 auto Res = performSymbolicEvaluation(I, Visited); 3096 Symbolized = Res.Expr; 3097 addAdditionalUsers(Res, I); 3098 3099 // Make a phi of ops if necessary 3100 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3101 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3102 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3103 // If we created a phi of ops, use it. 3104 // If we couldn't create one, make sure we don't leave one lying around 3105 if (PHIE) { 3106 Symbolized = PHIE; 3107 } else if (auto *Op = RealToTemp.lookup(I)) { 3108 removePhiOfOps(I, Op); 3109 } 3110 } 3111 } else { 3112 // Mark the instruction as unused so we don't value number it again. 3113 InstrDFS[I] = 0; 3114 } 3115 // If we couldn't come up with a symbolic expression, use the unknown 3116 // expression 3117 if (Symbolized == nullptr) 3118 Symbolized = createUnknownExpression(I); 3119 performCongruenceFinding(I, Symbolized); 3120 } else { 3121 // Handle terminators that return values. All of them produce values we 3122 // don't currently understand. We don't place non-value producing 3123 // terminators in a class. 3124 if (!I->getType()->isVoidTy()) { 3125 auto *Symbolized = createUnknownExpression(I); 3126 performCongruenceFinding(I, Symbolized); 3127 } 3128 processOutgoingEdges(I, I->getParent()); 3129 } 3130 } 3131 3132 // Check if there is a path, using single or equal argument phi nodes, from 3133 // First to Second. 3134 bool NewGVN::singleReachablePHIPath( 3135 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3136 const MemoryAccess *Second) const { 3137 if (First == Second) 3138 return true; 3139 if (MSSA->isLiveOnEntryDef(First)) 3140 return false; 3141 3142 // This is not perfect, but as we're just verifying here, we can live with 3143 // the loss of precision. The real solution would be that of doing strongly 3144 // connected component finding in this routine, and it's probably not worth 3145 // the complexity for the time being. So, we just keep a set of visited 3146 // MemoryAccess and return true when we hit a cycle. 3147 if (!Visited.insert(First).second) 3148 return true; 3149 3150 const auto *EndDef = First; 3151 for (const auto *ChainDef : optimized_def_chain(First)) { 3152 if (ChainDef == Second) 3153 return true; 3154 if (MSSA->isLiveOnEntryDef(ChainDef)) 3155 return false; 3156 EndDef = ChainDef; 3157 } 3158 auto *MP = cast<MemoryPhi>(EndDef); 3159 auto ReachableOperandPred = [&](const Use &U) { 3160 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3161 }; 3162 auto FilteredPhiArgs = 3163 make_filter_range(MP->operands(), ReachableOperandPred); 3164 SmallVector<const Value *, 32> OperandList; 3165 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3166 bool Okay = all_equal(OperandList); 3167 if (Okay) 3168 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3169 Second); 3170 return false; 3171 } 3172 3173 // Verify the that the memory equivalence table makes sense relative to the 3174 // congruence classes. Note that this checking is not perfect, and is currently 3175 // subject to very rare false negatives. It is only useful for 3176 // testing/debugging. 3177 void NewGVN::verifyMemoryCongruency() const { 3178 #ifndef NDEBUG 3179 // Verify that the memory table equivalence and memory member set match 3180 for (const auto *CC : CongruenceClasses) { 3181 if (CC == TOPClass || CC->isDead()) 3182 continue; 3183 if (CC->getStoreCount() != 0) { 3184 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3185 "Any class with a store as a leader should have a " 3186 "representative stored value"); 3187 assert(CC->getMemoryLeader() && 3188 "Any congruence class with a store should have a " 3189 "representative access"); 3190 } 3191 3192 if (CC->getMemoryLeader()) 3193 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3194 "Representative MemoryAccess does not appear to be reverse " 3195 "mapped properly"); 3196 for (const auto *M : CC->memory()) 3197 assert(MemoryAccessToClass.lookup(M) == CC && 3198 "Memory member does not appear to be reverse mapped properly"); 3199 } 3200 3201 // Anything equivalent in the MemoryAccess table should be in the same 3202 // congruence class. 3203 3204 // Filter out the unreachable and trivially dead entries, because they may 3205 // never have been updated if the instructions were not processed. 3206 auto ReachableAccessPred = 3207 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3208 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3209 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3210 MemoryToDFSNum(Pair.first) == 0) 3211 return false; 3212 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3213 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3214 3215 // We could have phi nodes which operands are all trivially dead, 3216 // so we don't process them. 3217 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3218 for (const auto &U : MemPHI->incoming_values()) { 3219 if (auto *I = dyn_cast<Instruction>(&*U)) { 3220 if (!isInstructionTriviallyDead(I)) 3221 return true; 3222 } 3223 } 3224 return false; 3225 } 3226 3227 return true; 3228 }; 3229 3230 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3231 for (auto KV : Filtered) { 3232 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3233 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3234 if (FirstMUD && SecondMUD) { 3235 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3236 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3237 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3238 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3239 "The instructions for these memory operations should have " 3240 "been in the same congruence class or reachable through" 3241 "a single argument phi"); 3242 } 3243 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3244 // We can only sanely verify that MemoryDefs in the operand list all have 3245 // the same class. 3246 auto ReachableOperandPred = [&](const Use &U) { 3247 return ReachableEdges.count( 3248 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3249 isa<MemoryDef>(U); 3250 3251 }; 3252 // All arguments should in the same class, ignoring unreachable arguments 3253 auto FilteredPhiArgs = 3254 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3255 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3256 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3257 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3258 const MemoryDef *MD = cast<MemoryDef>(U); 3259 return ValueToClass.lookup(MD->getMemoryInst()); 3260 }); 3261 assert(all_equal(PhiOpClasses) && 3262 "All MemoryPhi arguments should be in the same class"); 3263 } 3264 } 3265 #endif 3266 } 3267 3268 // Verify that the sparse propagation we did actually found the maximal fixpoint 3269 // We do this by storing the value to class mapping, touching all instructions, 3270 // and redoing the iteration to see if anything changed. 3271 void NewGVN::verifyIterationSettled(Function &F) { 3272 #ifndef NDEBUG 3273 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3274 if (DebugCounter::isCounterSet(VNCounter)) 3275 DebugCounter::setCounterValue(VNCounter, StartingVNCounter); 3276 3277 // Note that we have to store the actual classes, as we may change existing 3278 // classes during iteration. This is because our memory iteration propagation 3279 // is not perfect, and so may waste a little work. But it should generate 3280 // exactly the same congruence classes we have now, with different IDs. 3281 std::map<const Value *, CongruenceClass> BeforeIteration; 3282 3283 for (auto &KV : ValueToClass) { 3284 if (auto *I = dyn_cast<Instruction>(KV.first)) 3285 // Skip unused/dead instructions. 3286 if (InstrToDFSNum(I) == 0) 3287 continue; 3288 BeforeIteration.insert({KV.first, *KV.second}); 3289 } 3290 3291 TouchedInstructions.set(); 3292 TouchedInstructions.reset(0); 3293 OpSafeForPHIOfOps.clear(); 3294 iterateTouchedInstructions(); 3295 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3296 EqualClasses; 3297 for (const auto &KV : ValueToClass) { 3298 if (auto *I = dyn_cast<Instruction>(KV.first)) 3299 // Skip unused/dead instructions. 3300 if (InstrToDFSNum(I) == 0) 3301 continue; 3302 // We could sink these uses, but i think this adds a bit of clarity here as 3303 // to what we are comparing. 3304 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3305 auto *AfterCC = KV.second; 3306 // Note that the classes can't change at this point, so we memoize the set 3307 // that are equal. 3308 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3309 assert(BeforeCC->isEquivalentTo(AfterCC) && 3310 "Value number changed after main loop completed!"); 3311 EqualClasses.insert({BeforeCC, AfterCC}); 3312 } 3313 } 3314 #endif 3315 } 3316 3317 // Verify that for each store expression in the expression to class mapping, 3318 // only the latest appears, and multiple ones do not appear. 3319 // Because loads do not use the stored value when doing equality with stores, 3320 // if we don't erase the old store expressions from the table, a load can find 3321 // a no-longer valid StoreExpression. 3322 void NewGVN::verifyStoreExpressions() const { 3323 #ifndef NDEBUG 3324 // This is the only use of this, and it's not worth defining a complicated 3325 // densemapinfo hash/equality function for it. 3326 std::set< 3327 std::pair<const Value *, 3328 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3329 StoreExpressionSet; 3330 for (const auto &KV : ExpressionToClass) { 3331 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3332 // Make sure a version that will conflict with loads is not already there 3333 auto Res = StoreExpressionSet.insert( 3334 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3335 SE->getStoredValue())}); 3336 bool Okay = Res.second; 3337 // It's okay to have the same expression already in there if it is 3338 // identical in nature. 3339 // This can happen when the leader of the stored value changes over time. 3340 if (!Okay) 3341 Okay = (std::get<1>(Res.first->second) == KV.second) && 3342 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3343 lookupOperandLeader(SE->getStoredValue())); 3344 assert(Okay && "Stored expression conflict exists in expression table"); 3345 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3346 assert(ValueExpr && ValueExpr->equals(*SE) && 3347 "StoreExpression in ExpressionToClass is not latest " 3348 "StoreExpression for value"); 3349 } 3350 } 3351 #endif 3352 } 3353 3354 // This is the main value numbering loop, it iterates over the initial touched 3355 // instruction set, propagating value numbers, marking things touched, etc, 3356 // until the set of touched instructions is completely empty. 3357 void NewGVN::iterateTouchedInstructions() { 3358 uint64_t Iterations = 0; 3359 // Figure out where touchedinstructions starts 3360 int FirstInstr = TouchedInstructions.find_first(); 3361 // Nothing set, nothing to iterate, just return. 3362 if (FirstInstr == -1) 3363 return; 3364 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3365 while (TouchedInstructions.any()) { 3366 ++Iterations; 3367 // Walk through all the instructions in all the blocks in RPO. 3368 // TODO: As we hit a new block, we should push and pop equalities into a 3369 // table lookupOperandLeader can use, to catch things PredicateInfo 3370 // might miss, like edge-only equivalences. 3371 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3372 3373 // This instruction was found to be dead. We don't bother looking 3374 // at it again. 3375 if (InstrNum == 0) { 3376 TouchedInstructions.reset(InstrNum); 3377 continue; 3378 } 3379 3380 Value *V = InstrFromDFSNum(InstrNum); 3381 const BasicBlock *CurrBlock = getBlockForValue(V); 3382 3383 // If we hit a new block, do reachability processing. 3384 if (CurrBlock != LastBlock) { 3385 LastBlock = CurrBlock; 3386 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3387 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3388 3389 // If it's not reachable, erase any touched instructions and move on. 3390 if (!BlockReachable) { 3391 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3392 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3393 << getBlockName(CurrBlock) 3394 << " because it is unreachable\n"); 3395 continue; 3396 } 3397 updateProcessedCount(CurrBlock); 3398 } 3399 // Reset after processing (because we may mark ourselves as touched when 3400 // we propagate equalities). 3401 TouchedInstructions.reset(InstrNum); 3402 3403 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3404 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3405 valueNumberMemoryPhi(MP); 3406 } else if (auto *I = dyn_cast<Instruction>(V)) { 3407 valueNumberInstruction(I); 3408 } else { 3409 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3410 } 3411 updateProcessedCount(V); 3412 } 3413 } 3414 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3415 } 3416 3417 // This is the main transformation entry point. 3418 bool NewGVN::runGVN() { 3419 if (DebugCounter::isCounterSet(VNCounter)) 3420 StartingVNCounter = DebugCounter::getCounterValue(VNCounter); 3421 bool Changed = false; 3422 NumFuncArgs = F.arg_size(); 3423 MSSAWalker = MSSA->getWalker(); 3424 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3425 3426 // Count number of instructions for sizing of hash tables, and come 3427 // up with a global dfs numbering for instructions. 3428 unsigned ICount = 1; 3429 // Add an empty instruction to account for the fact that we start at 1 3430 DFSToInstr.emplace_back(nullptr); 3431 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3432 // same as dominator tree order, particularly with regard whether backedges 3433 // get visited first or second, given a block with multiple successors. 3434 // If we visit in the wrong order, we will end up performing N times as many 3435 // iterations. 3436 // The dominator tree does guarantee that, for a given dom tree node, it's 3437 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3438 // the siblings. 3439 ReversePostOrderTraversal<Function *> RPOT(&F); 3440 unsigned Counter = 0; 3441 for (auto &B : RPOT) { 3442 auto *Node = DT->getNode(B); 3443 assert(Node && "RPO and Dominator tree should have same reachability"); 3444 RPOOrdering[Node] = ++Counter; 3445 } 3446 // Sort dominator tree children arrays into RPO. 3447 for (auto &B : RPOT) { 3448 auto *Node = DT->getNode(B); 3449 if (Node->getNumChildren() > 1) 3450 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3451 return RPOOrdering[A] < RPOOrdering[B]; 3452 }); 3453 } 3454 3455 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3456 for (auto *DTN : depth_first(DT->getRootNode())) { 3457 BasicBlock *B = DTN->getBlock(); 3458 const auto &BlockRange = assignDFSNumbers(B, ICount); 3459 BlockInstRange.insert({B, BlockRange}); 3460 ICount += BlockRange.second - BlockRange.first; 3461 } 3462 initializeCongruenceClasses(F); 3463 3464 TouchedInstructions.resize(ICount); 3465 // Ensure we don't end up resizing the expressionToClass map, as 3466 // that can be quite expensive. At most, we have one expression per 3467 // instruction. 3468 ExpressionToClass.reserve(ICount); 3469 3470 // Initialize the touched instructions to include the entry block. 3471 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3472 TouchedInstructions.set(InstRange.first, InstRange.second); 3473 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3474 << " marked reachable\n"); 3475 ReachableBlocks.insert(&F.getEntryBlock()); 3476 3477 iterateTouchedInstructions(); 3478 verifyMemoryCongruency(); 3479 verifyIterationSettled(F); 3480 verifyStoreExpressions(); 3481 3482 Changed |= eliminateInstructions(F); 3483 3484 // Delete all instructions marked for deletion. 3485 for (Instruction *ToErase : InstructionsToErase) { 3486 if (!ToErase->use_empty()) 3487 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType())); 3488 3489 assert(ToErase->getParent() && 3490 "BB containing ToErase deleted unexpectedly!"); 3491 ToErase->eraseFromParent(); 3492 } 3493 Changed |= !InstructionsToErase.empty(); 3494 3495 // Delete all unreachable blocks. 3496 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3497 return !ReachableBlocks.count(&BB); 3498 }; 3499 3500 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3501 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3502 << " is unreachable\n"); 3503 deleteInstructionsInBlock(&BB); 3504 Changed = true; 3505 } 3506 3507 cleanupTables(); 3508 return Changed; 3509 } 3510 3511 struct NewGVN::ValueDFS { 3512 int DFSIn = 0; 3513 int DFSOut = 0; 3514 int LocalNum = 0; 3515 3516 // Only one of Def and U will be set. 3517 // The bool in the Def tells us whether the Def is the stored value of a 3518 // store. 3519 PointerIntPair<Value *, 1, bool> Def; 3520 Use *U = nullptr; 3521 3522 bool operator<(const ValueDFS &Other) const { 3523 // It's not enough that any given field be less than - we have sets 3524 // of fields that need to be evaluated together to give a proper ordering. 3525 // For example, if you have; 3526 // DFS (1, 3) 3527 // Val 0 3528 // DFS (1, 2) 3529 // Val 50 3530 // We want the second to be less than the first, but if we just go field 3531 // by field, we will get to Val 0 < Val 50 and say the first is less than 3532 // the second. We only want it to be less than if the DFS orders are equal. 3533 // 3534 // Each LLVM instruction only produces one value, and thus the lowest-level 3535 // differentiator that really matters for the stack (and what we use as as a 3536 // replacement) is the local dfs number. 3537 // Everything else in the structure is instruction level, and only affects 3538 // the order in which we will replace operands of a given instruction. 3539 // 3540 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3541 // the order of replacement of uses does not matter. 3542 // IE given, 3543 // a = 5 3544 // b = a + a 3545 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3546 // localnum. 3547 // The .val will be the same as well. 3548 // The .u's will be different. 3549 // You will replace both, and it does not matter what order you replace them 3550 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3551 // operand 2). 3552 // Similarly for the case of same dfsin, dfsout, localnum, but different 3553 // .val's 3554 // a = 5 3555 // b = 6 3556 // c = a + b 3557 // in c, we will a valuedfs for a, and one for b,with everything the same 3558 // but .val and .u. 3559 // It does not matter what order we replace these operands in. 3560 // You will always end up with the same IR, and this is guaranteed. 3561 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3562 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3563 Other.U); 3564 } 3565 }; 3566 3567 // This function converts the set of members for a congruence class from values, 3568 // to sets of defs and uses with associated DFS info. The total number of 3569 // reachable uses for each value is stored in UseCount, and instructions that 3570 // seem 3571 // dead (have no non-dead uses) are stored in ProbablyDead. 3572 void NewGVN::convertClassToDFSOrdered( 3573 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3574 DenseMap<const Value *, unsigned int> &UseCounts, 3575 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3576 for (auto *D : Dense) { 3577 // First add the value. 3578 BasicBlock *BB = getBlockForValue(D); 3579 // Constants are handled prior to ever calling this function, so 3580 // we should only be left with instructions as members. 3581 assert(BB && "Should have figured out a basic block for value"); 3582 ValueDFS VDDef; 3583 DomTreeNode *DomNode = DT->getNode(BB); 3584 VDDef.DFSIn = DomNode->getDFSNumIn(); 3585 VDDef.DFSOut = DomNode->getDFSNumOut(); 3586 // If it's a store, use the leader of the value operand, if it's always 3587 // available, or the value operand. TODO: We could do dominance checks to 3588 // find a dominating leader, but not worth it ATM. 3589 if (auto *SI = dyn_cast<StoreInst>(D)) { 3590 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3591 if (alwaysAvailable(Leader)) { 3592 VDDef.Def.setPointer(Leader); 3593 } else { 3594 VDDef.Def.setPointer(SI->getValueOperand()); 3595 VDDef.Def.setInt(true); 3596 } 3597 } else { 3598 VDDef.Def.setPointer(D); 3599 } 3600 assert(isa<Instruction>(D) && 3601 "The dense set member should always be an instruction"); 3602 Instruction *Def = cast<Instruction>(D); 3603 VDDef.LocalNum = InstrToDFSNum(D); 3604 DFSOrderedSet.push_back(VDDef); 3605 // If there is a phi node equivalent, add it 3606 if (auto *PN = RealToTemp.lookup(Def)) { 3607 auto *PHIE = 3608 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3609 if (PHIE) { 3610 VDDef.Def.setInt(false); 3611 VDDef.Def.setPointer(PN); 3612 VDDef.LocalNum = 0; 3613 DFSOrderedSet.push_back(VDDef); 3614 } 3615 } 3616 3617 unsigned int UseCount = 0; 3618 // Now add the uses. 3619 for (auto &U : Def->uses()) { 3620 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3621 // Don't try to replace into dead uses 3622 if (InstructionsToErase.count(I)) 3623 continue; 3624 ValueDFS VDUse; 3625 // Put the phi node uses in the incoming block. 3626 BasicBlock *IBlock; 3627 if (auto *P = dyn_cast<PHINode>(I)) { 3628 IBlock = P->getIncomingBlock(U); 3629 // Make phi node users appear last in the incoming block 3630 // they are from. 3631 VDUse.LocalNum = InstrDFS.size() + 1; 3632 } else { 3633 IBlock = getBlockForValue(I); 3634 VDUse.LocalNum = InstrToDFSNum(I); 3635 } 3636 3637 // Skip uses in unreachable blocks, as we're going 3638 // to delete them. 3639 if (!ReachableBlocks.contains(IBlock)) 3640 continue; 3641 3642 DomTreeNode *DomNode = DT->getNode(IBlock); 3643 VDUse.DFSIn = DomNode->getDFSNumIn(); 3644 VDUse.DFSOut = DomNode->getDFSNumOut(); 3645 VDUse.U = &U; 3646 ++UseCount; 3647 DFSOrderedSet.emplace_back(VDUse); 3648 } 3649 } 3650 3651 // If there are no uses, it's probably dead (but it may have side-effects, 3652 // so not definitely dead. Otherwise, store the number of uses so we can 3653 // track if it becomes dead later). 3654 if (UseCount == 0) 3655 ProbablyDead.insert(Def); 3656 else 3657 UseCounts[Def] = UseCount; 3658 } 3659 } 3660 3661 // This function converts the set of members for a congruence class from values, 3662 // to the set of defs for loads and stores, with associated DFS info. 3663 void NewGVN::convertClassToLoadsAndStores( 3664 const CongruenceClass &Dense, 3665 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3666 for (auto *D : Dense) { 3667 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3668 continue; 3669 3670 BasicBlock *BB = getBlockForValue(D); 3671 ValueDFS VD; 3672 DomTreeNode *DomNode = DT->getNode(BB); 3673 VD.DFSIn = DomNode->getDFSNumIn(); 3674 VD.DFSOut = DomNode->getDFSNumOut(); 3675 VD.Def.setPointer(D); 3676 3677 // If it's an instruction, use the real local dfs number. 3678 if (auto *I = dyn_cast<Instruction>(D)) 3679 VD.LocalNum = InstrToDFSNum(I); 3680 else 3681 llvm_unreachable("Should have been an instruction"); 3682 3683 LoadsAndStores.emplace_back(VD); 3684 } 3685 } 3686 3687 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3688 patchReplacementInstruction(I, Repl); 3689 I->replaceAllUsesWith(Repl); 3690 } 3691 3692 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3693 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3694 ++NumGVNBlocksDeleted; 3695 3696 // Delete the instructions backwards, as it has a reduced likelihood of having 3697 // to update as many def-use and use-def chains. Start after the terminator. 3698 auto StartPoint = BB->rbegin(); 3699 ++StartPoint; 3700 // Note that we explicitly recalculate BB->rend() on each iteration, 3701 // as it may change when we remove the first instruction. 3702 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3703 Instruction &Inst = *I++; 3704 if (!Inst.use_empty()) 3705 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType())); 3706 if (isa<LandingPadInst>(Inst)) 3707 continue; 3708 salvageKnowledge(&Inst, AC); 3709 3710 Inst.eraseFromParent(); 3711 ++NumGVNInstrDeleted; 3712 } 3713 // Now insert something that simplifycfg will turn into an unreachable. 3714 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3715 new StoreInst(PoisonValue::get(Int8Ty), 3716 Constant::getNullValue(Int8Ty->getPointerTo()), 3717 BB->getTerminator()); 3718 } 3719 3720 void NewGVN::markInstructionForDeletion(Instruction *I) { 3721 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3722 InstructionsToErase.insert(I); 3723 } 3724 3725 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3726 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3727 patchAndReplaceAllUsesWith(I, V); 3728 // We save the actual erasing to avoid invalidating memory 3729 // dependencies until we are done with everything. 3730 markInstructionForDeletion(I); 3731 } 3732 3733 namespace { 3734 3735 // This is a stack that contains both the value and dfs info of where 3736 // that value is valid. 3737 class ValueDFSStack { 3738 public: 3739 Value *back() const { return ValueStack.back(); } 3740 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3741 3742 void push_back(Value *V, int DFSIn, int DFSOut) { 3743 ValueStack.emplace_back(V); 3744 DFSStack.emplace_back(DFSIn, DFSOut); 3745 } 3746 3747 bool empty() const { return DFSStack.empty(); } 3748 3749 bool isInScope(int DFSIn, int DFSOut) const { 3750 if (empty()) 3751 return false; 3752 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3753 } 3754 3755 void popUntilDFSScope(int DFSIn, int DFSOut) { 3756 3757 // These two should always be in sync at this point. 3758 assert(ValueStack.size() == DFSStack.size() && 3759 "Mismatch between ValueStack and DFSStack"); 3760 while ( 3761 !DFSStack.empty() && 3762 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3763 DFSStack.pop_back(); 3764 ValueStack.pop_back(); 3765 } 3766 } 3767 3768 private: 3769 SmallVector<Value *, 8> ValueStack; 3770 SmallVector<std::pair<int, int>, 8> DFSStack; 3771 }; 3772 3773 } // end anonymous namespace 3774 3775 // Given an expression, get the congruence class for it. 3776 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3777 if (auto *VE = dyn_cast<VariableExpression>(E)) 3778 return ValueToClass.lookup(VE->getVariableValue()); 3779 else if (isa<DeadExpression>(E)) 3780 return TOPClass; 3781 return ExpressionToClass.lookup(E); 3782 } 3783 3784 // Given a value and a basic block we are trying to see if it is available in, 3785 // see if the value has a leader available in that block. 3786 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3787 const Instruction *OrigInst, 3788 const BasicBlock *BB) const { 3789 // It would already be constant if we could make it constant 3790 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3791 return CE->getConstantValue(); 3792 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3793 auto *V = VE->getVariableValue(); 3794 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3795 return VE->getVariableValue(); 3796 } 3797 3798 auto *CC = getClassForExpression(E); 3799 if (!CC) 3800 return nullptr; 3801 if (alwaysAvailable(CC->getLeader())) 3802 return CC->getLeader(); 3803 3804 for (auto *Member : *CC) { 3805 auto *MemberInst = dyn_cast<Instruction>(Member); 3806 if (MemberInst == OrigInst) 3807 continue; 3808 // Anything that isn't an instruction is always available. 3809 if (!MemberInst) 3810 return Member; 3811 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3812 return Member; 3813 } 3814 return nullptr; 3815 } 3816 3817 bool NewGVN::eliminateInstructions(Function &F) { 3818 // This is a non-standard eliminator. The normal way to eliminate is 3819 // to walk the dominator tree in order, keeping track of available 3820 // values, and eliminating them. However, this is mildly 3821 // pointless. It requires doing lookups on every instruction, 3822 // regardless of whether we will ever eliminate it. For 3823 // instructions part of most singleton congruence classes, we know we 3824 // will never eliminate them. 3825 3826 // Instead, this eliminator looks at the congruence classes directly, sorts 3827 // them into a DFS ordering of the dominator tree, and then we just 3828 // perform elimination straight on the sets by walking the congruence 3829 // class member uses in order, and eliminate the ones dominated by the 3830 // last member. This is worst case O(E log E) where E = number of 3831 // instructions in a single congruence class. In theory, this is all 3832 // instructions. In practice, it is much faster, as most instructions are 3833 // either in singleton congruence classes or can't possibly be eliminated 3834 // anyway (if there are no overlapping DFS ranges in class). 3835 // When we find something not dominated, it becomes the new leader 3836 // for elimination purposes. 3837 // TODO: If we wanted to be faster, We could remove any members with no 3838 // overlapping ranges while sorting, as we will never eliminate anything 3839 // with those members, as they don't dominate anything else in our set. 3840 3841 bool AnythingReplaced = false; 3842 3843 // Since we are going to walk the domtree anyway, and we can't guarantee the 3844 // DFS numbers are updated, we compute some ourselves. 3845 DT->updateDFSNumbers(); 3846 3847 // Go through all of our phi nodes, and kill the arguments associated with 3848 // unreachable edges. 3849 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3850 for (auto &Operand : PHI->incoming_values()) 3851 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3852 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3853 << " for block " 3854 << getBlockName(PHI->getIncomingBlock(Operand)) 3855 << " with poison due to it being unreachable\n"); 3856 Operand.set(PoisonValue::get(PHI->getType())); 3857 } 3858 }; 3859 // Replace unreachable phi arguments. 3860 // At this point, RevisitOnReachabilityChange only contains: 3861 // 3862 // 1. PHIs 3863 // 2. Temporaries that will convert to PHIs 3864 // 3. Operations that are affected by an unreachable edge but do not fit into 3865 // 1 or 2 (rare). 3866 // So it is a slight overshoot of what we want. We could make it exact by 3867 // using two SparseBitVectors per block. 3868 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3869 for (auto &KV : ReachableEdges) 3870 ReachablePredCount[KV.getEnd()]++; 3871 for (auto &BBPair : RevisitOnReachabilityChange) { 3872 for (auto InstNum : BBPair.second) { 3873 auto *Inst = InstrFromDFSNum(InstNum); 3874 auto *PHI = dyn_cast<PHINode>(Inst); 3875 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3876 if (!PHI) 3877 continue; 3878 auto *BB = BBPair.first; 3879 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3880 ReplaceUnreachablePHIArgs(PHI, BB); 3881 } 3882 } 3883 3884 // Map to store the use counts 3885 DenseMap<const Value *, unsigned int> UseCounts; 3886 for (auto *CC : reverse(CongruenceClasses)) { 3887 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3888 << "\n"); 3889 // Track the equivalent store info so we can decide whether to try 3890 // dead store elimination. 3891 SmallVector<ValueDFS, 8> PossibleDeadStores; 3892 SmallPtrSet<Instruction *, 8> ProbablyDead; 3893 if (CC->isDead() || CC->empty()) 3894 continue; 3895 // Everything still in the TOP class is unreachable or dead. 3896 if (CC == TOPClass) { 3897 for (auto *M : *CC) { 3898 auto *VTE = ValueToExpression.lookup(M); 3899 if (VTE && isa<DeadExpression>(VTE)) 3900 markInstructionForDeletion(cast<Instruction>(M)); 3901 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3902 InstructionsToErase.count(cast<Instruction>(M))) && 3903 "Everything in TOP should be unreachable or dead at this " 3904 "point"); 3905 } 3906 continue; 3907 } 3908 3909 assert(CC->getLeader() && "We should have had a leader"); 3910 // If this is a leader that is always available, and it's a 3911 // constant or has no equivalences, just replace everything with 3912 // it. We then update the congruence class with whatever members 3913 // are left. 3914 Value *Leader = 3915 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3916 if (alwaysAvailable(Leader)) { 3917 CongruenceClass::MemberSet MembersLeft; 3918 for (auto *M : *CC) { 3919 Value *Member = M; 3920 // Void things have no uses we can replace. 3921 if (Member == Leader || !isa<Instruction>(Member) || 3922 Member->getType()->isVoidTy()) { 3923 MembersLeft.insert(Member); 3924 continue; 3925 } 3926 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3927 << *Member << "\n"); 3928 auto *I = cast<Instruction>(Member); 3929 assert(Leader != I && "About to accidentally remove our leader"); 3930 replaceInstruction(I, Leader); 3931 AnythingReplaced = true; 3932 } 3933 CC->swap(MembersLeft); 3934 } else { 3935 // If this is a singleton, we can skip it. 3936 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3937 // This is a stack because equality replacement/etc may place 3938 // constants in the middle of the member list, and we want to use 3939 // those constant values in preference to the current leader, over 3940 // the scope of those constants. 3941 ValueDFSStack EliminationStack; 3942 3943 // Convert the members to DFS ordered sets and then merge them. 3944 SmallVector<ValueDFS, 8> DFSOrderedSet; 3945 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3946 3947 // Sort the whole thing. 3948 llvm::sort(DFSOrderedSet); 3949 for (auto &VD : DFSOrderedSet) { 3950 int MemberDFSIn = VD.DFSIn; 3951 int MemberDFSOut = VD.DFSOut; 3952 Value *Def = VD.Def.getPointer(); 3953 bool FromStore = VD.Def.getInt(); 3954 Use *U = VD.U; 3955 // We ignore void things because we can't get a value from them. 3956 if (Def && Def->getType()->isVoidTy()) 3957 continue; 3958 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3959 if (DefInst && AllTempInstructions.count(DefInst)) { 3960 auto *PN = cast<PHINode>(DefInst); 3961 3962 // If this is a value phi and that's the expression we used, insert 3963 // it into the program 3964 // remove from temp instruction list. 3965 AllTempInstructions.erase(PN); 3966 auto *DefBlock = getBlockForValue(Def); 3967 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3968 << " into block " 3969 << getBlockName(getBlockForValue(Def)) << "\n"); 3970 PN->insertBefore(&DefBlock->front()); 3971 Def = PN; 3972 NumGVNPHIOfOpsEliminations++; 3973 } 3974 3975 if (EliminationStack.empty()) { 3976 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3977 } else { 3978 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3979 << EliminationStack.dfs_back().first << "," 3980 << EliminationStack.dfs_back().second << ")\n"); 3981 } 3982 3983 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3984 << MemberDFSOut << ")\n"); 3985 // First, we see if we are out of scope or empty. If so, 3986 // and there equivalences, we try to replace the top of 3987 // stack with equivalences (if it's on the stack, it must 3988 // not have been eliminated yet). 3989 // Then we synchronize to our current scope, by 3990 // popping until we are back within a DFS scope that 3991 // dominates the current member. 3992 // Then, what happens depends on a few factors 3993 // If the stack is now empty, we need to push 3994 // If we have a constant or a local equivalence we want to 3995 // start using, we also push. 3996 // Otherwise, we walk along, processing members who are 3997 // dominated by this scope, and eliminate them. 3998 bool ShouldPush = Def && EliminationStack.empty(); 3999 bool OutOfScope = 4000 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 4001 4002 if (OutOfScope || ShouldPush) { 4003 // Sync to our current scope. 4004 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4005 bool ShouldPush = Def && EliminationStack.empty(); 4006 if (ShouldPush) { 4007 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 4008 } 4009 } 4010 4011 // Skip the Def's, we only want to eliminate on their uses. But mark 4012 // dominated defs as dead. 4013 if (Def) { 4014 // For anything in this case, what and how we value number 4015 // guarantees that any side-effets that would have occurred (ie 4016 // throwing, etc) can be proven to either still occur (because it's 4017 // dominated by something that has the same side-effects), or never 4018 // occur. Otherwise, we would not have been able to prove it value 4019 // equivalent to something else. For these things, we can just mark 4020 // it all dead. Note that this is different from the "ProbablyDead" 4021 // set, which may not be dominated by anything, and thus, are only 4022 // easy to prove dead if they are also side-effect free. Note that 4023 // because stores are put in terms of the stored value, we skip 4024 // stored values here. If the stored value is really dead, it will 4025 // still be marked for deletion when we process it in its own class. 4026 if (!EliminationStack.empty() && Def != EliminationStack.back() && 4027 isa<Instruction>(Def) && !FromStore) 4028 markInstructionForDeletion(cast<Instruction>(Def)); 4029 continue; 4030 } 4031 // At this point, we know it is a Use we are trying to possibly 4032 // replace. 4033 4034 assert(isa<Instruction>(U->get()) && 4035 "Current def should have been an instruction"); 4036 assert(isa<Instruction>(U->getUser()) && 4037 "Current user should have been an instruction"); 4038 4039 // If the thing we are replacing into is already marked to be dead, 4040 // this use is dead. Note that this is true regardless of whether 4041 // we have anything dominating the use or not. We do this here 4042 // because we are already walking all the uses anyway. 4043 Instruction *InstUse = cast<Instruction>(U->getUser()); 4044 if (InstructionsToErase.count(InstUse)) { 4045 auto &UseCount = UseCounts[U->get()]; 4046 if (--UseCount == 0) { 4047 ProbablyDead.insert(cast<Instruction>(U->get())); 4048 } 4049 } 4050 4051 // If we get to this point, and the stack is empty we must have a use 4052 // with nothing we can use to eliminate this use, so just skip it. 4053 if (EliminationStack.empty()) 4054 continue; 4055 4056 Value *DominatingLeader = EliminationStack.back(); 4057 4058 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4059 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4060 if (isSSACopy) 4061 DominatingLeader = II->getOperand(0); 4062 4063 // Don't replace our existing users with ourselves. 4064 if (U->get() == DominatingLeader) 4065 continue; 4066 LLVM_DEBUG(dbgs() 4067 << "Found replacement " << *DominatingLeader << " for " 4068 << *U->get() << " in " << *(U->getUser()) << "\n"); 4069 4070 // If we replaced something in an instruction, handle the patching of 4071 // metadata. Skip this if we are replacing predicateinfo with its 4072 // original operand, as we already know we can just drop it. 4073 auto *ReplacedInst = cast<Instruction>(U->get()); 4074 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4075 if (!PI || DominatingLeader != PI->OriginalOp) 4076 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4077 U->set(DominatingLeader); 4078 // This is now a use of the dominating leader, which means if the 4079 // dominating leader was dead, it's now live! 4080 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4081 // It's about to be alive again. 4082 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4083 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4084 // For copy instructions, we use their operand as a leader, 4085 // which means we remove a user of the copy and it may become dead. 4086 if (isSSACopy) { 4087 unsigned &IIUseCount = UseCounts[II]; 4088 if (--IIUseCount == 0) 4089 ProbablyDead.insert(II); 4090 } 4091 ++LeaderUseCount; 4092 AnythingReplaced = true; 4093 } 4094 } 4095 } 4096 4097 // At this point, anything still in the ProbablyDead set is actually dead if 4098 // would be trivially dead. 4099 for (auto *I : ProbablyDead) 4100 if (wouldInstructionBeTriviallyDead(I)) 4101 markInstructionForDeletion(I); 4102 4103 // Cleanup the congruence class. 4104 CongruenceClass::MemberSet MembersLeft; 4105 for (auto *Member : *CC) 4106 if (!isa<Instruction>(Member) || 4107 !InstructionsToErase.count(cast<Instruction>(Member))) 4108 MembersLeft.insert(Member); 4109 CC->swap(MembersLeft); 4110 4111 // If we have possible dead stores to look at, try to eliminate them. 4112 if (CC->getStoreCount() > 0) { 4113 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4114 llvm::sort(PossibleDeadStores); 4115 ValueDFSStack EliminationStack; 4116 for (auto &VD : PossibleDeadStores) { 4117 int MemberDFSIn = VD.DFSIn; 4118 int MemberDFSOut = VD.DFSOut; 4119 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4120 if (EliminationStack.empty() || 4121 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4122 // Sync to our current scope. 4123 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4124 if (EliminationStack.empty()) { 4125 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4126 continue; 4127 } 4128 } 4129 // We already did load elimination, so nothing to do here. 4130 if (isa<LoadInst>(Member)) 4131 continue; 4132 assert(!EliminationStack.empty()); 4133 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4134 (void)Leader; 4135 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4136 // Member is dominater by Leader, and thus dead 4137 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4138 << " that is dominated by " << *Leader << "\n"); 4139 markInstructionForDeletion(Member); 4140 CC->erase(Member); 4141 ++NumGVNDeadStores; 4142 } 4143 } 4144 } 4145 return AnythingReplaced; 4146 } 4147 4148 // This function provides global ranking of operations so that we can place them 4149 // in a canonical order. Note that rank alone is not necessarily enough for a 4150 // complete ordering, as constants all have the same rank. However, generally, 4151 // we will simplify an operation with all constants so that it doesn't matter 4152 // what order they appear in. 4153 unsigned int NewGVN::getRank(const Value *V) const { 4154 // Prefer constants to undef to anything else 4155 // Undef is a constant, have to check it first. 4156 // Prefer poison to undef as it's less defined. 4157 // Prefer smaller constants to constantexprs 4158 // Note that the order here matters because of class inheritance 4159 if (isa<ConstantExpr>(V)) 4160 return 3; 4161 if (isa<PoisonValue>(V)) 4162 return 1; 4163 if (isa<UndefValue>(V)) 4164 return 2; 4165 if (isa<Constant>(V)) 4166 return 0; 4167 if (auto *A = dyn_cast<Argument>(V)) 4168 return 4 + A->getArgNo(); 4169 4170 // Need to shift the instruction DFS by number of arguments + 5 to account for 4171 // the constant and argument ranking above. 4172 unsigned Result = InstrToDFSNum(V); 4173 if (Result > 0) 4174 return 5 + NumFuncArgs + Result; 4175 // Unreachable or something else, just return a really large number. 4176 return ~0; 4177 } 4178 4179 // This is a function that says whether two commutative operations should 4180 // have their order swapped when canonicalizing. 4181 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4182 // Because we only care about a total ordering, and don't rewrite expressions 4183 // in this order, we order by rank, which will give a strict weak ordering to 4184 // everything but constants, and then we order by pointer address. 4185 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4186 } 4187 4188 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B, 4189 const IntrinsicInst *I) const { 4190 auto LookupResult = IntrinsicInstPred.find(I); 4191 if (shouldSwapOperands(A, B)) { 4192 if (LookupResult == IntrinsicInstPred.end()) 4193 IntrinsicInstPred.insert({I, B}); 4194 else 4195 LookupResult->second = B; 4196 return true; 4197 } 4198 4199 if (LookupResult != IntrinsicInstPred.end()) { 4200 auto *SeenPredicate = LookupResult->second; 4201 if (SeenPredicate) { 4202 if (SeenPredicate == B) 4203 return true; 4204 else 4205 LookupResult->second = nullptr; 4206 } 4207 } 4208 return false; 4209 } 4210 4211 namespace { 4212 4213 class NewGVNLegacyPass : public FunctionPass { 4214 public: 4215 // Pass identification, replacement for typeid. 4216 static char ID; 4217 4218 NewGVNLegacyPass() : FunctionPass(ID) { 4219 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 4220 } 4221 4222 bool runOnFunction(Function &F) override; 4223 4224 private: 4225 void getAnalysisUsage(AnalysisUsage &AU) const override { 4226 AU.addRequired<AssumptionCacheTracker>(); 4227 AU.addRequired<DominatorTreeWrapperPass>(); 4228 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4229 AU.addRequired<MemorySSAWrapperPass>(); 4230 AU.addRequired<AAResultsWrapperPass>(); 4231 AU.addPreserved<DominatorTreeWrapperPass>(); 4232 AU.addPreserved<GlobalsAAWrapperPass>(); 4233 } 4234 }; 4235 4236 } // end anonymous namespace 4237 4238 bool NewGVNLegacyPass::runOnFunction(Function &F) { 4239 if (skipFunction(F)) 4240 return false; 4241 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4242 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 4243 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 4244 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 4245 &getAnalysis<MemorySSAWrapperPass>().getMSSA(), 4246 F.getParent()->getDataLayout()) 4247 .runGVN(); 4248 } 4249 4250 char NewGVNLegacyPass::ID = 0; 4251 4252 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering", 4253 false, false) 4254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4255 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 4256 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4257 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4258 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4259 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4260 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false, 4261 false) 4262 4263 // createGVNPass - The public interface to this file. 4264 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); } 4265 4266 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4267 // Apparently the order in which we get these results matter for 4268 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4269 // the same order here, just in case. 4270 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4271 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4272 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4273 auto &AA = AM.getResult<AAManager>(F); 4274 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4275 bool Changed = 4276 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout()) 4277 .runGVN(); 4278 if (!Changed) 4279 return PreservedAnalyses::all(); 4280 PreservedAnalyses PA; 4281 PA.preserve<DominatorTreeAnalysis>(); 4282 return PA; 4283 } 4284