xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/IR/Argument.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129 
130 #define DEBUG_TYPE "newgvn"
131 
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137           "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141           "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145           "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147               "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149               "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow.  This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154                                            cl::init(false), cl::Hidden);
155 
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158                                     cl::Hidden);
159 
160 //===----------------------------------------------------------------------===//
161 //                                GVN Pass
162 //===----------------------------------------------------------------------===//
163 
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167 
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175 
176 } // end namespace GVNExpression
177 } // end namespace llvm
178 
179 namespace {
180 
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
190   TarjanSCC() : Components(1) {}
191 
192   void Start(const Instruction *Start) {
193     if (Root.lookup(Start) == 0)
194       FindSCC(Start);
195   }
196 
197   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198     unsigned ComponentID = ValueToComponent.lookup(V);
199 
200     assert(ComponentID > 0 &&
201            "Asking for a component for a value we never processed");
202     return Components[ComponentID];
203   }
204 
205 private:
206   void FindSCC(const Instruction *I) {
207     Root[I] = ++DFSNum;
208     // Store the DFS Number we had before it possibly gets incremented.
209     unsigned int OurDFS = DFSNum;
210     for (auto &Op : I->operands()) {
211       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212         if (Root.lookup(Op) == 0)
213           FindSCC(InstOp);
214         if (!InComponent.count(Op))
215           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216       }
217     }
218     // See if we really were the root of a component, by seeing if we still have
219     // our DFSNumber.  If we do, we are the root of the component, and we have
220     // completed a component. If we do not, we are not the root of a component,
221     // and belong on the component stack.
222     if (Root.lookup(I) == OurDFS) {
223       unsigned ComponentID = Components.size();
224       Components.resize(Components.size() + 1);
225       auto &Component = Components.back();
226       Component.insert(I);
227       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228       InComponent.insert(I);
229       ValueToComponent[I] = ComponentID;
230       // Pop a component off the stack and label it.
231       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232         auto *Member = Stack.back();
233         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234         Component.insert(Member);
235         InComponent.insert(Member);
236         ValueToComponent[Member] = ComponentID;
237         Stack.pop_back();
238       }
239     } else {
240       // Part of a component, push to stack
241       Stack.push_back(I);
242     }
243   }
244 
245   unsigned int DFSNum = 1;
246   SmallPtrSet<const Value *, 8> InComponent;
247   DenseMap<const Value *, unsigned int> Root;
248   SmallVector<const Value *, 8> Stack;
249 
250   // Store the components as vector of ptr sets, because we need the topo order
251   // of SCC's, but not individual member order
252   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253 
254   DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256 
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization).  To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value.  Otherwise, the
272 // leader is the member of the value set with the smallest DFS number.  Each
273 // congruence class also has a defining expression, though the expression may be
274 // null.  If it exists, it can be used for forward propagation and reassociation
275 // of values.
276 
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something.  Unfortunately, this does not work
281 // easily.  The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression.  This
284 // leads to wasted propagation, and in some cases, missed optimization.  For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class.  This in turn will move at one
287 // of the memorydefs to a new memory congruence class.  Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number).  So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency.  While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297   using MemberType = Value;
298   using MemberSet = SmallPtrSet<MemberType *, 4>;
299   using MemoryMemberType = MemoryPhi;
300   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301 
302   explicit CongruenceClass(unsigned ID) : ID(ID) {}
303   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305 
306   unsigned getID() const { return ID; }
307 
308   // True if this class has no members left.  This is mainly used for assertion
309   // purposes, and for skipping empty classes.
310   bool isDead() const {
311     // If it's both dead from a value perspective, and dead from a memory
312     // perspective, it's really dead.
313     return empty() && memory_empty();
314   }
315 
316   // Leader functions
317   Value *getLeader() const { return RepLeader; }
318   void setLeader(Value *Leader) { RepLeader = Leader; }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < NextLeader.second)
325       NextLeader = LeaderPair;
326   }
327 
328   Value *getStoredValue() const { return RepStoredValue; }
329   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
330   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
331   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332 
333   // Forward propagation info
334   const Expression *getDefiningExpr() const { return DefiningExpr; }
335 
336   // Value member set
337   bool empty() const { return Members.empty(); }
338   unsigned size() const { return Members.size(); }
339   MemberSet::const_iterator begin() const { return Members.begin(); }
340   MemberSet::const_iterator end() const { return Members.end(); }
341   void insert(MemberType *M) { Members.insert(M); }
342   void erase(MemberType *M) { Members.erase(M); }
343   void swap(MemberSet &Other) { Members.swap(Other); }
344 
345   // Memory member set
346   bool memory_empty() const { return MemoryMembers.empty(); }
347   unsigned memory_size() const { return MemoryMembers.size(); }
348   MemoryMemberSet::const_iterator memory_begin() const {
349     return MemoryMembers.begin();
350   }
351   MemoryMemberSet::const_iterator memory_end() const {
352     return MemoryMembers.end();
353   }
354   iterator_range<MemoryMemberSet::const_iterator> memory() const {
355     return make_range(memory_begin(), memory_end());
356   }
357 
358   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
359   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360 
361   // Store count
362   unsigned getStoreCount() const { return StoreCount; }
363   void incStoreCount() { ++StoreCount; }
364   void decStoreCount() {
365     assert(StoreCount != 0 && "Store count went negative");
366     --StoreCount;
367   }
368 
369   // True if this class has no memory members.
370   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371 
372   // Return true if two congruence classes are equivalent to each other. This
373   // means that every field but the ID number and the dead field are equivalent.
374   bool isEquivalentTo(const CongruenceClass *Other) const {
375     if (!Other)
376       return false;
377     if (this == Other)
378       return true;
379 
380     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382                  Other->RepMemoryAccess))
383       return false;
384     if (DefiningExpr != Other->DefiningExpr)
385       if (!DefiningExpr || !Other->DefiningExpr ||
386           *DefiningExpr != *Other->DefiningExpr)
387         return false;
388 
389     if (Members.size() != Other->Members.size())
390       return false;
391 
392     return all_of(Members,
393                   [&](const Value *V) { return Other->Members.count(V); });
394   }
395 
396 private:
397   unsigned ID;
398 
399   // Representative leader.
400   Value *RepLeader = nullptr;
401 
402   // The most dominating leader after our current leader, because the member set
403   // is not sorted and is expensive to keep sorted all the time.
404   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
405 
406   // If this is represented by a store, the value of the store.
407   Value *RepStoredValue = nullptr;
408 
409   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
410   // access.
411   const MemoryAccess *RepMemoryAccess = nullptr;
412 
413   // Defining Expression.
414   const Expression *DefiningExpr = nullptr;
415 
416   // Actual members of this class.
417   MemberSet Members;
418 
419   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
420   // MemoryUses have real instructions representing them, so we only need to
421   // track MemoryPhis here.
422   MemoryMemberSet MemoryMembers;
423 
424   // Number of stores in this congruence class.
425   // This is used so we can detect store equivalence changes properly.
426   int StoreCount = 0;
427 };
428 
429 } // end anonymous namespace
430 
431 namespace llvm {
432 
433 struct ExactEqualsExpression {
434   const Expression &E;
435 
436   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
437 
438   hash_code getComputedHash() const { return E.getComputedHash(); }
439 
440   bool operator==(const Expression &Other) const {
441     return E.exactlyEquals(Other);
442   }
443 };
444 
445 template <> struct DenseMapInfo<const Expression *> {
446   static const Expression *getEmptyKey() {
447     auto Val = static_cast<uintptr_t>(-1);
448     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
449     return reinterpret_cast<const Expression *>(Val);
450   }
451 
452   static const Expression *getTombstoneKey() {
453     auto Val = static_cast<uintptr_t>(~1U);
454     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
455     return reinterpret_cast<const Expression *>(Val);
456   }
457 
458   static unsigned getHashValue(const Expression *E) {
459     return E->getComputedHash();
460   }
461 
462   static unsigned getHashValue(const ExactEqualsExpression &E) {
463     return E.getComputedHash();
464   }
465 
466   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
467     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
468       return false;
469     return LHS == *RHS;
470   }
471 
472   static bool isEqual(const Expression *LHS, const Expression *RHS) {
473     if (LHS == RHS)
474       return true;
475     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
476         LHS == getEmptyKey() || RHS == getEmptyKey())
477       return false;
478     // Compare hashes before equality.  This is *not* what the hashtable does,
479     // since it is computing it modulo the number of buckets, whereas we are
480     // using the full hash keyspace.  Since the hashes are precomputed, this
481     // check is *much* faster than equality.
482     if (LHS->getComputedHash() != RHS->getComputedHash())
483       return false;
484     return *LHS == *RHS;
485   }
486 };
487 
488 } // end namespace llvm
489 
490 namespace {
491 
492 class NewGVN {
493   Function &F;
494   DominatorTree *DT = nullptr;
495   const TargetLibraryInfo *TLI = nullptr;
496   AliasAnalysis *AA = nullptr;
497   MemorySSA *MSSA = nullptr;
498   MemorySSAWalker *MSSAWalker = nullptr;
499   AssumptionCache *AC = nullptr;
500   const DataLayout &DL;
501   std::unique_ptr<PredicateInfo> PredInfo;
502 
503   // These are the only two things the create* functions should have
504   // side-effects on due to allocating memory.
505   mutable BumpPtrAllocator ExpressionAllocator;
506   mutable ArrayRecycler<Value *> ArgRecycler;
507   mutable TarjanSCC SCCFinder;
508   const SimplifyQuery SQ;
509 
510   // Number of function arguments, used by ranking
511   unsigned int NumFuncArgs = 0;
512 
513   // RPOOrdering of basic blocks
514   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
515 
516   // Congruence class info.
517 
518   // This class is called INITIAL in the paper. It is the class everything
519   // startsout in, and represents any value. Being an optimistic analysis,
520   // anything in the TOP class has the value TOP, which is indeterminate and
521   // equivalent to everything.
522   CongruenceClass *TOPClass = nullptr;
523   std::vector<CongruenceClass *> CongruenceClasses;
524   unsigned NextCongruenceNum = 0;
525 
526   // Value Mappings.
527   DenseMap<Value *, CongruenceClass *> ValueToClass;
528   DenseMap<Value *, const Expression *> ValueToExpression;
529 
530   // Value PHI handling, used to make equivalence between phi(op, op) and
531   // op(phi, phi).
532   // These mappings just store various data that would normally be part of the
533   // IR.
534   SmallPtrSet<const Instruction *, 8> PHINodeUses;
535 
536   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
537 
538   // Map a temporary instruction we created to a parent block.
539   DenseMap<const Value *, BasicBlock *> TempToBlock;
540 
541   // Map between the already in-program instructions and the temporary phis we
542   // created that they are known equivalent to.
543   DenseMap<const Value *, PHINode *> RealToTemp;
544 
545   // In order to know when we should re-process instructions that have
546   // phi-of-ops, we track the set of expressions that they needed as
547   // leaders. When we discover new leaders for those expressions, we process the
548   // associated phi-of-op instructions again in case they have changed.  The
549   // other way they may change is if they had leaders, and those leaders
550   // disappear.  However, at the point they have leaders, there are uses of the
551   // relevant operands in the created phi node, and so they will get reprocessed
552   // through the normal user marking we perform.
553   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
554   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
555       ExpressionToPhiOfOps;
556 
557   // Map from temporary operation to MemoryAccess.
558   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
559 
560   // Set of all temporary instructions we created.
561   // Note: This will include instructions that were just created during value
562   // numbering.  The way to test if something is using them is to check
563   // RealToTemp.
564   DenseSet<Instruction *> AllTempInstructions;
565 
566   // This is the set of instructions to revisit on a reachability change.  At
567   // the end of the main iteration loop it will contain at least all the phi of
568   // ops instructions that will be changed to phis, as well as regular phis.
569   // During the iteration loop, it may contain other things, such as phi of ops
570   // instructions that used edge reachability to reach a result, and so need to
571   // be revisited when the edge changes, independent of whether the phi they
572   // depended on changes.
573   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
574 
575   // Mapping from predicate info we used to the instructions we used it with.
576   // In order to correctly ensure propagation, we must keep track of what
577   // comparisons we used, so that when the values of the comparisons change, we
578   // propagate the information to the places we used the comparison.
579   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
580       PredicateToUsers;
581 
582   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
583   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
584   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
585       MemoryToUsers;
586 
587   // A table storing which memorydefs/phis represent a memory state provably
588   // equivalent to another memory state.
589   // We could use the congruence class machinery, but the MemoryAccess's are
590   // abstract memory states, so they can only ever be equivalent to each other,
591   // and not to constants, etc.
592   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
593 
594   // We could, if we wanted, build MemoryPhiExpressions and
595   // MemoryVariableExpressions, etc, and value number them the same way we value
596   // number phi expressions.  For the moment, this seems like overkill.  They
597   // can only exist in one of three states: they can be TOP (equal to
598   // everything), Equivalent to something else, or unique.  Because we do not
599   // create expressions for them, we need to simulate leader change not just
600   // when they change class, but when they change state.  Note: We can do the
601   // same thing for phis, and avoid having phi expressions if we wanted, We
602   // should eventually unify in one direction or the other, so this is a little
603   // bit of an experiment in which turns out easier to maintain.
604   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
605   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
606 
607   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
608   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
609 
610   // Expression to class mapping.
611   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
612   ExpressionClassMap ExpressionToClass;
613 
614   // We have a single expression that represents currently DeadExpressions.
615   // For dead expressions we can prove will stay dead, we mark them with
616   // DFS number zero.  However, it's possible in the case of phi nodes
617   // for us to assume/prove all arguments are dead during fixpointing.
618   // We use DeadExpression for that case.
619   DeadExpression *SingletonDeadExpression = nullptr;
620 
621   // Which values have changed as a result of leader changes.
622   SmallPtrSet<Value *, 8> LeaderChanges;
623 
624   // Reachability info.
625   using BlockEdge = BasicBlockEdge;
626   DenseSet<BlockEdge> ReachableEdges;
627   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
628 
629   // This is a bitvector because, on larger functions, we may have
630   // thousands of touched instructions at once (entire blocks,
631   // instructions with hundreds of uses, etc).  Even with optimization
632   // for when we mark whole blocks as touched, when this was a
633   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
634   // the time in GVN just managing this list.  The bitvector, on the
635   // other hand, efficiently supports test/set/clear of both
636   // individual and ranges, as well as "find next element" This
637   // enables us to use it as a worklist with essentially 0 cost.
638   BitVector TouchedInstructions;
639 
640   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
641 
642 #ifndef NDEBUG
643   // Debugging for how many times each block and instruction got processed.
644   DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646 
647   // DFS info.
648   // This contains a mapping from Instructions to DFS numbers.
649   // The numbering starts at 1. An instruction with DFS number zero
650   // means that the instruction is dead.
651   DenseMap<const Value *, unsigned> InstrDFS;
652 
653   // This contains the mapping DFS numbers to instructions.
654   SmallVector<Value *, 32> DFSToInstr;
655 
656   // Deletion info.
657   SmallPtrSet<Instruction *, 8> InstructionsToErase;
658 
659 public:
660   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662          const DataLayout &DL)
663       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666            /*CanUseUndef=*/false) {}
667 
668   bool runGVN();
669 
670 private:
671   // Expression handling.
672   const Expression *createExpression(Instruction *) const;
673   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
674                                            Instruction *) const;
675 
676   // Our canonical form for phi arguments is a pair of incoming value, incoming
677   // basic block.
678   using ValPair = std::pair<Value *, BasicBlock *>;
679 
680   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
681                                      BasicBlock *, bool &HasBackEdge,
682                                      bool &OriginalOpsConstant) const;
683   const DeadExpression *createDeadExpression() const;
684   const VariableExpression *createVariableExpression(Value *) const;
685   const ConstantExpression *createConstantExpression(Constant *) const;
686   const Expression *createVariableOrConstant(Value *V) const;
687   const UnknownExpression *createUnknownExpression(Instruction *) const;
688   const StoreExpression *createStoreExpression(StoreInst *,
689                                                const MemoryAccess *) const;
690   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
691                                        const MemoryAccess *) const;
692   const CallExpression *createCallExpression(CallInst *,
693                                              const MemoryAccess *) const;
694   const AggregateValueExpression *
695   createAggregateValueExpression(Instruction *) const;
696   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
697 
698   // Congruence class handling.
699   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
700     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
701     CongruenceClasses.emplace_back(result);
702     return result;
703   }
704 
705   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
706     auto *CC = createCongruenceClass(nullptr, nullptr);
707     CC->setMemoryLeader(MA);
708     return CC;
709   }
710 
711   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
712     auto *CC = getMemoryClass(MA);
713     if (CC->getMemoryLeader() != MA)
714       CC = createMemoryClass(MA);
715     return CC;
716   }
717 
718   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
719     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
720     CClass->insert(Member);
721     ValueToClass[Member] = CClass;
722     return CClass;
723   }
724 
725   void initializeCongruenceClasses(Function &F);
726   const Expression *makePossiblePHIOfOps(Instruction *,
727                                          SmallPtrSetImpl<Value *> &);
728   Value *findLeaderForInst(Instruction *ValueOp,
729                            SmallPtrSetImpl<Value *> &Visited,
730                            MemoryAccess *MemAccess, Instruction *OrigInst,
731                            BasicBlock *PredBB);
732   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
733                                  SmallPtrSetImpl<const Value *> &Visited,
734                                  SmallVectorImpl<Instruction *> &Worklist);
735   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
736                            SmallPtrSetImpl<const Value *> &);
737   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
738   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
739 
740   // Value number an Instruction or MemoryPhi.
741   void valueNumberMemoryPhi(MemoryPhi *);
742   void valueNumberInstruction(Instruction *);
743 
744   // Symbolic evaluation.
745   const Expression *checkSimplificationResults(Expression *, Instruction *,
746                                                Value *) const;
747   const Expression *performSymbolicEvaluation(Value *,
748                                               SmallPtrSetImpl<Value *> &) const;
749   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
750                                                 Instruction *,
751                                                 MemoryAccess *) const;
752   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
753   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
754   const Expression *performSymbolicCallEvaluation(Instruction *) const;
755   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
756   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
757                                                  Instruction *I,
758                                                  BasicBlock *PHIBlock) const;
759   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
760   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
761   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
762 
763   // Congruence finding.
764   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
765   Value *lookupOperandLeader(Value *) const;
766   CongruenceClass *getClassForExpression(const Expression *E) const;
767   void performCongruenceFinding(Instruction *, const Expression *);
768   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
769                                      CongruenceClass *, CongruenceClass *);
770   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
771                                       CongruenceClass *, CongruenceClass *);
772   Value *getNextValueLeader(CongruenceClass *) const;
773   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
774   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
775   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
776   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
777   bool isMemoryAccessTOP(const MemoryAccess *) const;
778 
779   // Ranking
780   unsigned int getRank(const Value *) const;
781   bool shouldSwapOperands(const Value *, const Value *) const;
782 
783   // Reachability handling.
784   void updateReachableEdge(BasicBlock *, BasicBlock *);
785   void processOutgoingEdges(Instruction *, BasicBlock *);
786   Value *findConditionEquivalence(Value *) const;
787 
788   // Elimination.
789   struct ValueDFS;
790   void convertClassToDFSOrdered(const CongruenceClass &,
791                                 SmallVectorImpl<ValueDFS> &,
792                                 DenseMap<const Value *, unsigned int> &,
793                                 SmallPtrSetImpl<Instruction *> &) const;
794   void convertClassToLoadsAndStores(const CongruenceClass &,
795                                     SmallVectorImpl<ValueDFS> &) const;
796 
797   bool eliminateInstructions(Function &);
798   void replaceInstruction(Instruction *, Value *);
799   void markInstructionForDeletion(Instruction *);
800   void deleteInstructionsInBlock(BasicBlock *);
801   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
802                             const BasicBlock *) const;
803 
804   // Various instruction touch utilities
805   template <typename Map, typename KeyType>
806   void touchAndErase(Map &, const KeyType &);
807   void markUsersTouched(Value *);
808   void markMemoryUsersTouched(const MemoryAccess *);
809   void markMemoryDefTouched(const MemoryAccess *);
810   void markPredicateUsersTouched(Instruction *);
811   void markValueLeaderChangeTouched(CongruenceClass *CC);
812   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
813   void markPhiOfOpsChanged(const Expression *E);
814   void addPredicateUsers(const PredicateBase *, Instruction *) const;
815   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
816   void addAdditionalUsers(Value *To, Value *User) const;
817 
818   // Main loop of value numbering
819   void iterateTouchedInstructions();
820 
821   // Utilities.
822   void cleanupTables();
823   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
824   void updateProcessedCount(const Value *V);
825   void verifyMemoryCongruency() const;
826   void verifyIterationSettled(Function &F);
827   void verifyStoreExpressions() const;
828   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
829                               const MemoryAccess *, const MemoryAccess *) const;
830   BasicBlock *getBlockForValue(Value *V) const;
831   void deleteExpression(const Expression *E) const;
832   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
833   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
834   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
835 
836   unsigned InstrToDFSNum(const Value *V) const {
837     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
838     return InstrDFS.lookup(V);
839   }
840 
841   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
842     return MemoryToDFSNum(MA);
843   }
844 
845   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
846 
847   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
848   // This deliberately takes a value so it can be used with Use's, which will
849   // auto-convert to Value's but not to MemoryAccess's.
850   unsigned MemoryToDFSNum(const Value *MA) const {
851     assert(isa<MemoryAccess>(MA) &&
852            "This should not be used with instructions");
853     return isa<MemoryUseOrDef>(MA)
854                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
855                : InstrDFS.lookup(MA);
856   }
857 
858   bool isCycleFree(const Instruction *) const;
859   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
860 
861   // Debug counter info.  When verifying, we have to reset the value numbering
862   // debug counter to the same state it started in to get the same results.
863   int64_t StartingVNCounter = 0;
864 };
865 
866 } // end anonymous namespace
867 
868 template <typename T>
869 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
870   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
871     return false;
872   return LHS.MemoryExpression::equals(RHS);
873 }
874 
875 bool LoadExpression::equals(const Expression &Other) const {
876   return equalsLoadStoreHelper(*this, Other);
877 }
878 
879 bool StoreExpression::equals(const Expression &Other) const {
880   if (!equalsLoadStoreHelper(*this, Other))
881     return false;
882   // Make sure that store vs store includes the value operand.
883   if (const auto *S = dyn_cast<StoreExpression>(&Other))
884     if (getStoredValue() != S->getStoredValue())
885       return false;
886   return true;
887 }
888 
889 // Determine if the edge From->To is a backedge
890 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
891   return From == To ||
892          RPOOrdering.lookup(DT->getNode(From)) >=
893              RPOOrdering.lookup(DT->getNode(To));
894 }
895 
896 #ifndef NDEBUG
897 static std::string getBlockName(const BasicBlock *B) {
898   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
899 }
900 #endif
901 
902 // Get a MemoryAccess for an instruction, fake or real.
903 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
904   auto *Result = MSSA->getMemoryAccess(I);
905   return Result ? Result : TempToMemory.lookup(I);
906 }
907 
908 // Get a MemoryPhi for a basic block. These are all real.
909 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
910   return MSSA->getMemoryAccess(BB);
911 }
912 
913 // Get the basic block from an instruction/memory value.
914 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
915   if (auto *I = dyn_cast<Instruction>(V)) {
916     auto *Parent = I->getParent();
917     if (Parent)
918       return Parent;
919     Parent = TempToBlock.lookup(V);
920     assert(Parent && "Every fake instruction should have a block");
921     return Parent;
922   }
923 
924   auto *MP = dyn_cast<MemoryPhi>(V);
925   assert(MP && "Should have been an instruction or a MemoryPhi");
926   return MP->getBlock();
927 }
928 
929 // Delete a definitely dead expression, so it can be reused by the expression
930 // allocator.  Some of these are not in creation functions, so we have to accept
931 // const versions.
932 void NewGVN::deleteExpression(const Expression *E) const {
933   assert(isa<BasicExpression>(E));
934   auto *BE = cast<BasicExpression>(E);
935   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
936   ExpressionAllocator.Deallocate(E);
937 }
938 
939 // If V is a predicateinfo copy, get the thing it is a copy of.
940 static Value *getCopyOf(const Value *V) {
941   if (auto *II = dyn_cast<IntrinsicInst>(V))
942     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
943       return II->getOperand(0);
944   return nullptr;
945 }
946 
947 // Return true if V is really PN, even accounting for predicateinfo copies.
948 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
949   return V == PN || getCopyOf(V) == PN;
950 }
951 
952 static bool isCopyOfAPHI(const Value *V) {
953   auto *CO = getCopyOf(V);
954   return CO && isa<PHINode>(CO);
955 }
956 
957 // Sort PHI Operands into a canonical order.  What we use here is an RPO
958 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
959 // blocks.
960 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
961   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
962     return BlockInstRange.lookup(P1.second).first <
963            BlockInstRange.lookup(P2.second).first;
964   });
965 }
966 
967 // Return true if V is a value that will always be available (IE can
968 // be placed anywhere) in the function.  We don't do globals here
969 // because they are often worse to put in place.
970 static bool alwaysAvailable(Value *V) {
971   return isa<Constant>(V) || isa<Argument>(V);
972 }
973 
974 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
975 // the original instruction we are creating a PHIExpression for (but may not be
976 // a phi node). We require, as an invariant, that all the PHIOperands in the
977 // same block are sorted the same way. sortPHIOps will sort them into a
978 // canonical order.
979 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
980                                            const Instruction *I,
981                                            BasicBlock *PHIBlock,
982                                            bool &HasBackedge,
983                                            bool &OriginalOpsConstant) const {
984   unsigned NumOps = PHIOperands.size();
985   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
986 
987   E->allocateOperands(ArgRecycler, ExpressionAllocator);
988   E->setType(PHIOperands.begin()->first->getType());
989   E->setOpcode(Instruction::PHI);
990 
991   // Filter out unreachable phi operands.
992   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
993     auto *BB = P.second;
994     if (auto *PHIOp = dyn_cast<PHINode>(I))
995       if (isCopyOfPHI(P.first, PHIOp))
996         return false;
997     if (!ReachableEdges.count({BB, PHIBlock}))
998       return false;
999     // Things in TOPClass are equivalent to everything.
1000     if (ValueToClass.lookup(P.first) == TOPClass)
1001       return false;
1002     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1003     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1004     return lookupOperandLeader(P.first) != I;
1005   });
1006   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1007                  [&](const ValPair &P) -> Value * {
1008                    return lookupOperandLeader(P.first);
1009                  });
1010   return E;
1011 }
1012 
1013 // Set basic expression info (Arguments, type, opcode) for Expression
1014 // E from Instruction I in block B.
1015 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1016   bool AllConstant = true;
1017   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1018     E->setType(GEP->getSourceElementType());
1019   else
1020     E->setType(I->getType());
1021   E->setOpcode(I->getOpcode());
1022   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1023 
1024   // Transform the operand array into an operand leader array, and keep track of
1025   // whether all members are constant.
1026   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1027     auto Operand = lookupOperandLeader(O);
1028     AllConstant = AllConstant && isa<Constant>(Operand);
1029     return Operand;
1030   });
1031 
1032   return AllConstant;
1033 }
1034 
1035 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1036                                                  Value *Arg1, Value *Arg2,
1037                                                  Instruction *I) const {
1038   auto *E = new (ExpressionAllocator) BasicExpression(2);
1039 
1040   E->setType(T);
1041   E->setOpcode(Opcode);
1042   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1043   if (Instruction::isCommutative(Opcode)) {
1044     // Ensure that commutative instructions that only differ by a permutation
1045     // of their operands get the same value number by sorting the operand value
1046     // numbers.  Since all commutative instructions have two operands it is more
1047     // efficient to sort by hand rather than using, say, std::sort.
1048     if (shouldSwapOperands(Arg1, Arg2))
1049       std::swap(Arg1, Arg2);
1050   }
1051   E->op_push_back(lookupOperandLeader(Arg1));
1052   E->op_push_back(lookupOperandLeader(Arg2));
1053 
1054   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1055   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1056     return SimplifiedE;
1057   return E;
1058 }
1059 
1060 // Take a Value returned by simplification of Expression E/Instruction
1061 // I, and see if it resulted in a simpler expression. If so, return
1062 // that expression.
1063 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1064                                                      Instruction *I,
1065                                                      Value *V) const {
1066   if (!V)
1067     return nullptr;
1068   if (auto *C = dyn_cast<Constant>(V)) {
1069     if (I)
1070       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1071                         << " constant " << *C << "\n");
1072     NumGVNOpsSimplified++;
1073     assert(isa<BasicExpression>(E) &&
1074            "We should always have had a basic expression here");
1075     deleteExpression(E);
1076     return createConstantExpression(C);
1077   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1078     if (I)
1079       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1080                         << " variable " << *V << "\n");
1081     deleteExpression(E);
1082     return createVariableExpression(V);
1083   }
1084 
1085   CongruenceClass *CC = ValueToClass.lookup(V);
1086   if (CC) {
1087     if (CC->getLeader() && CC->getLeader() != I) {
1088       // If we simplified to something else, we need to communicate
1089       // that we're users of the value we simplified to.
1090       if (I != V) {
1091         // Don't add temporary instructions to the user lists.
1092         if (!AllTempInstructions.count(I))
1093           addAdditionalUsers(V, I);
1094       }
1095       return createVariableOrConstant(CC->getLeader());
1096     }
1097     if (CC->getDefiningExpr()) {
1098       // If we simplified to something else, we need to communicate
1099       // that we're users of the value we simplified to.
1100       if (I != V) {
1101         // Don't add temporary instructions to the user lists.
1102         if (!AllTempInstructions.count(I))
1103           addAdditionalUsers(V, I);
1104       }
1105 
1106       if (I)
1107         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1108                           << " expression " << *CC->getDefiningExpr() << "\n");
1109       NumGVNOpsSimplified++;
1110       deleteExpression(E);
1111       return CC->getDefiningExpr();
1112     }
1113   }
1114 
1115   return nullptr;
1116 }
1117 
1118 // Create a value expression from the instruction I, replacing operands with
1119 // their leaders.
1120 
1121 const Expression *NewGVN::createExpression(Instruction *I) const {
1122   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1123 
1124   bool AllConstant = setBasicExpressionInfo(I, E);
1125 
1126   if (I->isCommutative()) {
1127     // Ensure that commutative instructions that only differ by a permutation
1128     // of their operands get the same value number by sorting the operand value
1129     // numbers.  Since all commutative instructions have two operands it is more
1130     // efficient to sort by hand rather than using, say, std::sort.
1131     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1132     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1133       E->swapOperands(0, 1);
1134   }
1135   // Perform simplification.
1136   if (auto *CI = dyn_cast<CmpInst>(I)) {
1137     // Sort the operand value numbers so x<y and y>x get the same value
1138     // number.
1139     CmpInst::Predicate Predicate = CI->getPredicate();
1140     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1141       E->swapOperands(0, 1);
1142       Predicate = CmpInst::getSwappedPredicate(Predicate);
1143     }
1144     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1145     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1146     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1147            "Wrong types on cmp instruction");
1148     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1149             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1150     Value *V =
1151         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1152     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1153       return SimplifiedE;
1154   } else if (isa<SelectInst>(I)) {
1155     if (isa<Constant>(E->getOperand(0)) ||
1156         E->getOperand(1) == E->getOperand(2)) {
1157       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1158              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1159       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1160                                     E->getOperand(2), SQ);
1161       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1162         return SimplifiedE;
1163     }
1164   } else if (I->isBinaryOp()) {
1165     Value *V =
1166         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1167     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1168       return SimplifiedE;
1169   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1170     Value *V =
1171         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1172     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1173       return SimplifiedE;
1174   } else if (isa<GetElementPtrInst>(I)) {
1175     Value *V = SimplifyGEPInst(
1176         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1177     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1178       return SimplifiedE;
1179   } else if (AllConstant) {
1180     // We don't bother trying to simplify unless all of the operands
1181     // were constant.
1182     // TODO: There are a lot of Simplify*'s we could call here, if we
1183     // wanted to.  The original motivating case for this code was a
1184     // zext i1 false to i8, which we don't have an interface to
1185     // simplify (IE there is no SimplifyZExt).
1186 
1187     SmallVector<Constant *, 8> C;
1188     for (Value *Arg : E->operands())
1189       C.emplace_back(cast<Constant>(Arg));
1190 
1191     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1192       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1193         return SimplifiedE;
1194   }
1195   return E;
1196 }
1197 
1198 const AggregateValueExpression *
1199 NewGVN::createAggregateValueExpression(Instruction *I) const {
1200   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1201     auto *E = new (ExpressionAllocator)
1202         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1203     setBasicExpressionInfo(I, E);
1204     E->allocateIntOperands(ExpressionAllocator);
1205     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1206     return E;
1207   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1208     auto *E = new (ExpressionAllocator)
1209         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1210     setBasicExpressionInfo(EI, E);
1211     E->allocateIntOperands(ExpressionAllocator);
1212     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1213     return E;
1214   }
1215   llvm_unreachable("Unhandled type of aggregate value operation");
1216 }
1217 
1218 const DeadExpression *NewGVN::createDeadExpression() const {
1219   // DeadExpression has no arguments and all DeadExpression's are the same,
1220   // so we only need one of them.
1221   return SingletonDeadExpression;
1222 }
1223 
1224 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1225   auto *E = new (ExpressionAllocator) VariableExpression(V);
1226   E->setOpcode(V->getValueID());
1227   return E;
1228 }
1229 
1230 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1231   if (auto *C = dyn_cast<Constant>(V))
1232     return createConstantExpression(C);
1233   return createVariableExpression(V);
1234 }
1235 
1236 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1237   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1238   E->setOpcode(C->getValueID());
1239   return E;
1240 }
1241 
1242 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1243   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1244   E->setOpcode(I->getOpcode());
1245   return E;
1246 }
1247 
1248 const CallExpression *
1249 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1250   // FIXME: Add operand bundles for calls.
1251   // FIXME: Allow commutative matching for intrinsics.
1252   auto *E =
1253       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1254   setBasicExpressionInfo(CI, E);
1255   return E;
1256 }
1257 
1258 // Return true if some equivalent of instruction Inst dominates instruction U.
1259 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1260                                      const Instruction *U) const {
1261   auto *CC = ValueToClass.lookup(Inst);
1262    // This must be an instruction because we are only called from phi nodes
1263   // in the case that the value it needs to check against is an instruction.
1264 
1265   // The most likely candidates for dominance are the leader and the next leader.
1266   // The leader or nextleader will dominate in all cases where there is an
1267   // equivalent that is higher up in the dom tree.
1268   // We can't *only* check them, however, because the
1269   // dominator tree could have an infinite number of non-dominating siblings
1270   // with instructions that are in the right congruence class.
1271   //       A
1272   // B C D E F G
1273   // |
1274   // H
1275   // Instruction U could be in H,  with equivalents in every other sibling.
1276   // Depending on the rpo order picked, the leader could be the equivalent in
1277   // any of these siblings.
1278   if (!CC)
1279     return false;
1280   if (alwaysAvailable(CC->getLeader()))
1281     return true;
1282   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1283     return true;
1284   if (CC->getNextLeader().first &&
1285       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1286     return true;
1287   return llvm::any_of(*CC, [&](const Value *Member) {
1288     return Member != CC->getLeader() &&
1289            DT->dominates(cast<Instruction>(Member), U);
1290   });
1291 }
1292 
1293 // See if we have a congruence class and leader for this operand, and if so,
1294 // return it. Otherwise, return the operand itself.
1295 Value *NewGVN::lookupOperandLeader(Value *V) const {
1296   CongruenceClass *CC = ValueToClass.lookup(V);
1297   if (CC) {
1298     // Everything in TOP is represented by undef, as it can be any value.
1299     // We do have to make sure we get the type right though, so we can't set the
1300     // RepLeader to undef.
1301     if (CC == TOPClass)
1302       return UndefValue::get(V->getType());
1303     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1304   }
1305 
1306   return V;
1307 }
1308 
1309 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1310   auto *CC = getMemoryClass(MA);
1311   assert(CC->getMemoryLeader() &&
1312          "Every MemoryAccess should be mapped to a congruence class with a "
1313          "representative memory access");
1314   return CC->getMemoryLeader();
1315 }
1316 
1317 // Return true if the MemoryAccess is really equivalent to everything. This is
1318 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1319 // state of all MemoryAccesses.
1320 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1321   return getMemoryClass(MA) == TOPClass;
1322 }
1323 
1324 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1325                                              LoadInst *LI,
1326                                              const MemoryAccess *MA) const {
1327   auto *E =
1328       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1329   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1330   E->setType(LoadType);
1331 
1332   // Give store and loads same opcode so they value number together.
1333   E->setOpcode(0);
1334   E->op_push_back(PointerOp);
1335 
1336   // TODO: Value number heap versions. We may be able to discover
1337   // things alias analysis can't on it's own (IE that a store and a
1338   // load have the same value, and thus, it isn't clobbering the load).
1339   return E;
1340 }
1341 
1342 const StoreExpression *
1343 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1344   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1345   auto *E = new (ExpressionAllocator)
1346       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1347   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1348   E->setType(SI->getValueOperand()->getType());
1349 
1350   // Give store and loads same opcode so they value number together.
1351   E->setOpcode(0);
1352   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1353 
1354   // TODO: Value number heap versions. We may be able to discover
1355   // things alias analysis can't on it's own (IE that a store and a
1356   // load have the same value, and thus, it isn't clobbering the load).
1357   return E;
1358 }
1359 
1360 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1361   // Unlike loads, we never try to eliminate stores, so we do not check if they
1362   // are simple and avoid value numbering them.
1363   auto *SI = cast<StoreInst>(I);
1364   auto *StoreAccess = getMemoryAccess(SI);
1365   // Get the expression, if any, for the RHS of the MemoryDef.
1366   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1367   if (EnableStoreRefinement)
1368     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1369   // If we bypassed the use-def chains, make sure we add a use.
1370   StoreRHS = lookupMemoryLeader(StoreRHS);
1371   if (StoreRHS != StoreAccess->getDefiningAccess())
1372     addMemoryUsers(StoreRHS, StoreAccess);
1373   // If we are defined by ourselves, use the live on entry def.
1374   if (StoreRHS == StoreAccess)
1375     StoreRHS = MSSA->getLiveOnEntryDef();
1376 
1377   if (SI->isSimple()) {
1378     // See if we are defined by a previous store expression, it already has a
1379     // value, and it's the same value as our current store. FIXME: Right now, we
1380     // only do this for simple stores, we should expand to cover memcpys, etc.
1381     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1382     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1383     // We really want to check whether the expression we matched was a store. No
1384     // easy way to do that. However, we can check that the class we found has a
1385     // store, which, assuming the value numbering state is not corrupt, is
1386     // sufficient, because we must also be equivalent to that store's expression
1387     // for it to be in the same class as the load.
1388     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1389       return LastStore;
1390     // Also check if our value operand is defined by a load of the same memory
1391     // location, and the memory state is the same as it was then (otherwise, it
1392     // could have been overwritten later. See test32 in
1393     // transforms/DeadStoreElimination/simple.ll).
1394     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1395       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1396            LastStore->getOperand(0)) &&
1397           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1398            StoreRHS))
1399         return LastStore;
1400     deleteExpression(LastStore);
1401   }
1402 
1403   // If the store is not equivalent to anything, value number it as a store that
1404   // produces a unique memory state (instead of using it's MemoryUse, we use
1405   // it's MemoryDef).
1406   return createStoreExpression(SI, StoreAccess);
1407 }
1408 
1409 // See if we can extract the value of a loaded pointer from a load, a store, or
1410 // a memory instruction.
1411 const Expression *
1412 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1413                                     LoadInst *LI, Instruction *DepInst,
1414                                     MemoryAccess *DefiningAccess) const {
1415   assert((!LI || LI->isSimple()) && "Not a simple load");
1416   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1417     // Can't forward from non-atomic to atomic without violating memory model.
1418     // Also don't need to coerce if they are the same type, we will just
1419     // propagate.
1420     if (LI->isAtomic() > DepSI->isAtomic() ||
1421         LoadType == DepSI->getValueOperand()->getType())
1422       return nullptr;
1423     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1424     if (Offset >= 0) {
1425       if (auto *C = dyn_cast<Constant>(
1426               lookupOperandLeader(DepSI->getValueOperand()))) {
1427         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1428                           << " to constant " << *C << "\n");
1429         return createConstantExpression(
1430             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1431       }
1432     }
1433   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1434     // Can't forward from non-atomic to atomic without violating memory model.
1435     if (LI->isAtomic() > DepLI->isAtomic())
1436       return nullptr;
1437     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1438     if (Offset >= 0) {
1439       // We can coerce a constant load into a load.
1440       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1441         if (auto *PossibleConstant =
1442                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1443           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1444                             << " to constant " << *PossibleConstant << "\n");
1445           return createConstantExpression(PossibleConstant);
1446         }
1447     }
1448   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1449     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1450     if (Offset >= 0) {
1451       if (auto *PossibleConstant =
1452               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1453         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1454                           << " to constant " << *PossibleConstant << "\n");
1455         return createConstantExpression(PossibleConstant);
1456       }
1457     }
1458   }
1459 
1460   // All of the below are only true if the loaded pointer is produced
1461   // by the dependent instruction.
1462   if (LoadPtr != lookupOperandLeader(DepInst) &&
1463       !AA->isMustAlias(LoadPtr, DepInst))
1464     return nullptr;
1465   // If this load really doesn't depend on anything, then we must be loading an
1466   // undef value.  This can happen when loading for a fresh allocation with no
1467   // intervening stores, for example.  Note that this is only true in the case
1468   // that the result of the allocation is pointer equal to the load ptr.
1469   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1470       isAlignedAllocLikeFn(DepInst, TLI)) {
1471     return createConstantExpression(UndefValue::get(LoadType));
1472   }
1473   // If this load occurs either right after a lifetime begin,
1474   // then the loaded value is undefined.
1475   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1476     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1477       return createConstantExpression(UndefValue::get(LoadType));
1478   }
1479   // If this load follows a calloc (which zero initializes memory),
1480   // then the loaded value is zero
1481   else if (isCallocLikeFn(DepInst, TLI)) {
1482     return createConstantExpression(Constant::getNullValue(LoadType));
1483   }
1484 
1485   return nullptr;
1486 }
1487 
1488 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1489   auto *LI = cast<LoadInst>(I);
1490 
1491   // We can eliminate in favor of non-simple loads, but we won't be able to
1492   // eliminate the loads themselves.
1493   if (!LI->isSimple())
1494     return nullptr;
1495 
1496   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1497   // Load of undef is undef.
1498   if (isa<UndefValue>(LoadAddressLeader))
1499     return createConstantExpression(UndefValue::get(LI->getType()));
1500   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1501   MemoryAccess *DefiningAccess =
1502       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1503 
1504   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1505     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1506       Instruction *DefiningInst = MD->getMemoryInst();
1507       // If the defining instruction is not reachable, replace with undef.
1508       if (!ReachableBlocks.count(DefiningInst->getParent()))
1509         return createConstantExpression(UndefValue::get(LI->getType()));
1510       // This will handle stores and memory insts.  We only do if it the
1511       // defining access has a different type, or it is a pointer produced by
1512       // certain memory operations that cause the memory to have a fixed value
1513       // (IE things like calloc).
1514       if (const auto *CoercionResult =
1515               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1516                                           DefiningInst, DefiningAccess))
1517         return CoercionResult;
1518     }
1519   }
1520 
1521   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1522                                         DefiningAccess);
1523   // If our MemoryLeader is not our defining access, add a use to the
1524   // MemoryLeader, so that we get reprocessed when it changes.
1525   if (LE->getMemoryLeader() != DefiningAccess)
1526     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1527   return LE;
1528 }
1529 
1530 const Expression *
1531 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1532   auto *PI = PredInfo->getPredicateInfoFor(I);
1533   if (!PI)
1534     return nullptr;
1535 
1536   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1537 
1538   const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1539   if (!Constraint)
1540     return nullptr;
1541 
1542   CmpInst::Predicate Predicate = Constraint->Predicate;
1543   Value *CmpOp0 = I->getOperand(0);
1544   Value *CmpOp1 = Constraint->OtherOp;
1545 
1546   Value *FirstOp = lookupOperandLeader(CmpOp0);
1547   Value *SecondOp = lookupOperandLeader(CmpOp1);
1548   Value *AdditionallyUsedValue = CmpOp0;
1549 
1550   // Sort the ops.
1551   if (shouldSwapOperands(FirstOp, SecondOp)) {
1552     std::swap(FirstOp, SecondOp);
1553     Predicate = CmpInst::getSwappedPredicate(Predicate);
1554     AdditionallyUsedValue = CmpOp1;
1555   }
1556 
1557   if (Predicate == CmpInst::ICMP_EQ) {
1558     addPredicateUsers(PI, I);
1559     addAdditionalUsers(AdditionallyUsedValue, I);
1560     return createVariableOrConstant(FirstOp);
1561   }
1562 
1563   // Handle the special case of floating point.
1564   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1565       !cast<ConstantFP>(FirstOp)->isZero()) {
1566     addPredicateUsers(PI, I);
1567     addAdditionalUsers(AdditionallyUsedValue, I);
1568     return createConstantExpression(cast<Constant>(FirstOp));
1569   }
1570 
1571   return nullptr;
1572 }
1573 
1574 // Evaluate read only and pure calls, and create an expression result.
1575 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1576   auto *CI = cast<CallInst>(I);
1577   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1578     // Intrinsics with the returned attribute are copies of arguments.
1579     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1580       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1581         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1582           return Result;
1583       return createVariableOrConstant(ReturnedValue);
1584     }
1585   }
1586   if (AA->doesNotAccessMemory(CI)) {
1587     return createCallExpression(CI, TOPClass->getMemoryLeader());
1588   } else if (AA->onlyReadsMemory(CI)) {
1589     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1590       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1591       return createCallExpression(CI, DefiningAccess);
1592     } else // MSSA determined that CI does not access memory.
1593       return createCallExpression(CI, TOPClass->getMemoryLeader());
1594   }
1595   return nullptr;
1596 }
1597 
1598 // Retrieve the memory class for a given MemoryAccess.
1599 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1600   auto *Result = MemoryAccessToClass.lookup(MA);
1601   assert(Result && "Should have found memory class");
1602   return Result;
1603 }
1604 
1605 // Update the MemoryAccess equivalence table to say that From is equal to To,
1606 // and return true if this is different from what already existed in the table.
1607 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1608                             CongruenceClass *NewClass) {
1609   assert(NewClass &&
1610          "Every MemoryAccess should be getting mapped to a non-null class");
1611   LLVM_DEBUG(dbgs() << "Setting " << *From);
1612   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1613   LLVM_DEBUG(dbgs() << NewClass->getID()
1614                     << " with current MemoryAccess leader ");
1615   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1616 
1617   auto LookupResult = MemoryAccessToClass.find(From);
1618   bool Changed = false;
1619   // If it's already in the table, see if the value changed.
1620   if (LookupResult != MemoryAccessToClass.end()) {
1621     auto *OldClass = LookupResult->second;
1622     if (OldClass != NewClass) {
1623       // If this is a phi, we have to handle memory member updates.
1624       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1625         OldClass->memory_erase(MP);
1626         NewClass->memory_insert(MP);
1627         // This may have killed the class if it had no non-memory members
1628         if (OldClass->getMemoryLeader() == From) {
1629           if (OldClass->definesNoMemory()) {
1630             OldClass->setMemoryLeader(nullptr);
1631           } else {
1632             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1633             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1634                               << OldClass->getID() << " to "
1635                               << *OldClass->getMemoryLeader()
1636                               << " due to removal of a memory member " << *From
1637                               << "\n");
1638             markMemoryLeaderChangeTouched(OldClass);
1639           }
1640         }
1641       }
1642       // It wasn't equivalent before, and now it is.
1643       LookupResult->second = NewClass;
1644       Changed = true;
1645     }
1646   }
1647 
1648   return Changed;
1649 }
1650 
1651 // Determine if a instruction is cycle-free.  That means the values in the
1652 // instruction don't depend on any expressions that can change value as a result
1653 // of the instruction.  For example, a non-cycle free instruction would be v =
1654 // phi(0, v+1).
1655 bool NewGVN::isCycleFree(const Instruction *I) const {
1656   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1657   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1658   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1659   // other members are all phi nodes (as they do not compute anything, they are
1660   // copies).
1661   auto ICS = InstCycleState.lookup(I);
1662   if (ICS == ICS_Unknown) {
1663     SCCFinder.Start(I);
1664     auto &SCC = SCCFinder.getComponentFor(I);
1665     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1666     if (SCC.size() == 1)
1667       InstCycleState.insert({I, ICS_CycleFree});
1668     else {
1669       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1670         return isa<PHINode>(V) || isCopyOfAPHI(V);
1671       });
1672       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1673       for (auto *Member : SCC)
1674         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1675           InstCycleState.insert({MemberPhi, ICS});
1676     }
1677   }
1678   if (ICS == ICS_Cycle)
1679     return false;
1680   return true;
1681 }
1682 
1683 // Evaluate PHI nodes symbolically and create an expression result.
1684 const Expression *
1685 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1686                                      Instruction *I,
1687                                      BasicBlock *PHIBlock) const {
1688   // True if one of the incoming phi edges is a backedge.
1689   bool HasBackedge = false;
1690   // All constant tracks the state of whether all the *original* phi operands
1691   // This is really shorthand for "this phi cannot cycle due to forward
1692   // change in value of the phi is guaranteed not to later change the value of
1693   // the phi. IE it can't be v = phi(undef, v+1)
1694   bool OriginalOpsConstant = true;
1695   auto *E = cast<PHIExpression>(createPHIExpression(
1696       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1697   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1698   // See if all arguments are the same.
1699   // We track if any were undef because they need special handling.
1700   bool HasUndef = false;
1701   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1702     if (isa<UndefValue>(Arg)) {
1703       HasUndef = true;
1704       return false;
1705     }
1706     return true;
1707   });
1708   // If we are left with no operands, it's dead.
1709   if (Filtered.empty()) {
1710     // If it has undef at this point, it means there are no-non-undef arguments,
1711     // and thus, the value of the phi node must be undef.
1712     if (HasUndef) {
1713       LLVM_DEBUG(
1714           dbgs() << "PHI Node " << *I
1715                  << " has no non-undef arguments, valuing it as undef\n");
1716       return createConstantExpression(UndefValue::get(I->getType()));
1717     }
1718 
1719     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1720     deleteExpression(E);
1721     return createDeadExpression();
1722   }
1723   Value *AllSameValue = *(Filtered.begin());
1724   ++Filtered.begin();
1725   // Can't use std::equal here, sadly, because filter.begin moves.
1726   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1727     // In LLVM's non-standard representation of phi nodes, it's possible to have
1728     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1729     // on the original phi node), especially in weird CFG's where some arguments
1730     // are unreachable, or uninitialized along certain paths.  This can cause
1731     // infinite loops during evaluation. We work around this by not trying to
1732     // really evaluate them independently, but instead using a variable
1733     // expression to say if one is equivalent to the other.
1734     // We also special case undef, so that if we have an undef, we can't use the
1735     // common value unless it dominates the phi block.
1736     if (HasUndef) {
1737       // If we have undef and at least one other value, this is really a
1738       // multivalued phi, and we need to know if it's cycle free in order to
1739       // evaluate whether we can ignore the undef.  The other parts of this are
1740       // just shortcuts.  If there is no backedge, or all operands are
1741       // constants, it also must be cycle free.
1742       if (HasBackedge && !OriginalOpsConstant &&
1743           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1744         return E;
1745 
1746       // Only have to check for instructions
1747       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1748         if (!someEquivalentDominates(AllSameInst, I))
1749           return E;
1750     }
1751     // Can't simplify to something that comes later in the iteration.
1752     // Otherwise, when and if it changes congruence class, we will never catch
1753     // up. We will always be a class behind it.
1754     if (isa<Instruction>(AllSameValue) &&
1755         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1756       return E;
1757     NumGVNPhisAllSame++;
1758     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1759                       << "\n");
1760     deleteExpression(E);
1761     return createVariableOrConstant(AllSameValue);
1762   }
1763   return E;
1764 }
1765 
1766 const Expression *
1767 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1768   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1769     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1770     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1771       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1772       // a semantically equivalent expression instead of an extract value
1773       // expression.
1774       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1775                                     WO->getLHS(), WO->getRHS(), I);
1776   }
1777 
1778   return createAggregateValueExpression(I);
1779 }
1780 
1781 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1782   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1783 
1784   auto *CI = cast<CmpInst>(I);
1785   // See if our operands are equal to those of a previous predicate, and if so,
1786   // if it implies true or false.
1787   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1788   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1789   auto OurPredicate = CI->getPredicate();
1790   if (shouldSwapOperands(Op0, Op1)) {
1791     std::swap(Op0, Op1);
1792     OurPredicate = CI->getSwappedPredicate();
1793   }
1794 
1795   // Avoid processing the same info twice.
1796   const PredicateBase *LastPredInfo = nullptr;
1797   // See if we know something about the comparison itself, like it is the target
1798   // of an assume.
1799   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1800   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1801     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1802 
1803   if (Op0 == Op1) {
1804     // This condition does not depend on predicates, no need to add users
1805     if (CI->isTrueWhenEqual())
1806       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1807     else if (CI->isFalseWhenEqual())
1808       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1809   }
1810 
1811   // NOTE: Because we are comparing both operands here and below, and using
1812   // previous comparisons, we rely on fact that predicateinfo knows to mark
1813   // comparisons that use renamed operands as users of the earlier comparisons.
1814   // It is *not* enough to just mark predicateinfo renamed operands as users of
1815   // the earlier comparisons, because the *other* operand may have changed in a
1816   // previous iteration.
1817   // Example:
1818   // icmp slt %a, %b
1819   // %b.0 = ssa.copy(%b)
1820   // false branch:
1821   // icmp slt %c, %b.0
1822 
1823   // %c and %a may start out equal, and thus, the code below will say the second
1824   // %icmp is false.  c may become equal to something else, and in that case the
1825   // %second icmp *must* be reexamined, but would not if only the renamed
1826   // %operands are considered users of the icmp.
1827 
1828   // *Currently* we only check one level of comparisons back, and only mark one
1829   // level back as touched when changes happen.  If you modify this code to look
1830   // back farther through comparisons, you *must* mark the appropriate
1831   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1832   // we know something just from the operands themselves
1833 
1834   // See if our operands have predicate info, so that we may be able to derive
1835   // something from a previous comparison.
1836   for (const auto &Op : CI->operands()) {
1837     auto *PI = PredInfo->getPredicateInfoFor(Op);
1838     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1839       if (PI == LastPredInfo)
1840         continue;
1841       LastPredInfo = PI;
1842       // In phi of ops cases, we may have predicate info that we are evaluating
1843       // in a different context.
1844       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1845         continue;
1846       // TODO: Along the false edge, we may know more things too, like
1847       // icmp of
1848       // same operands is false.
1849       // TODO: We only handle actual comparison conditions below, not
1850       // and/or.
1851       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1852       if (!BranchCond)
1853         continue;
1854       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1855       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1856       auto BranchPredicate = BranchCond->getPredicate();
1857       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1858         std::swap(BranchOp0, BranchOp1);
1859         BranchPredicate = BranchCond->getSwappedPredicate();
1860       }
1861       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1862         if (PBranch->TrueEdge) {
1863           // If we know the previous predicate is true and we are in the true
1864           // edge then we may be implied true or false.
1865           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1866                                                   OurPredicate)) {
1867             addPredicateUsers(PI, I);
1868             return createConstantExpression(
1869                 ConstantInt::getTrue(CI->getType()));
1870           }
1871 
1872           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1873                                                    OurPredicate)) {
1874             addPredicateUsers(PI, I);
1875             return createConstantExpression(
1876                 ConstantInt::getFalse(CI->getType()));
1877           }
1878         } else {
1879           // Just handle the ne and eq cases, where if we have the same
1880           // operands, we may know something.
1881           if (BranchPredicate == OurPredicate) {
1882             addPredicateUsers(PI, I);
1883             // Same predicate, same ops,we know it was false, so this is false.
1884             return createConstantExpression(
1885                 ConstantInt::getFalse(CI->getType()));
1886           } else if (BranchPredicate ==
1887                      CmpInst::getInversePredicate(OurPredicate)) {
1888             addPredicateUsers(PI, I);
1889             // Inverse predicate, we know the other was false, so this is true.
1890             return createConstantExpression(
1891                 ConstantInt::getTrue(CI->getType()));
1892           }
1893         }
1894       }
1895     }
1896   }
1897   // Create expression will take care of simplifyCmpInst
1898   return createExpression(I);
1899 }
1900 
1901 // Substitute and symbolize the value before value numbering.
1902 const Expression *
1903 NewGVN::performSymbolicEvaluation(Value *V,
1904                                   SmallPtrSetImpl<Value *> &Visited) const {
1905   const Expression *E = nullptr;
1906   if (auto *C = dyn_cast<Constant>(V))
1907     E = createConstantExpression(C);
1908   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1909     E = createVariableExpression(V);
1910   } else {
1911     // TODO: memory intrinsics.
1912     // TODO: Some day, we should do the forward propagation and reassociation
1913     // parts of the algorithm.
1914     auto *I = cast<Instruction>(V);
1915     switch (I->getOpcode()) {
1916     case Instruction::ExtractValue:
1917     case Instruction::InsertValue:
1918       E = performSymbolicAggrValueEvaluation(I);
1919       break;
1920     case Instruction::PHI: {
1921       SmallVector<ValPair, 3> Ops;
1922       auto *PN = cast<PHINode>(I);
1923       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1924         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1925       // Sort to ensure the invariant createPHIExpression requires is met.
1926       sortPHIOps(Ops);
1927       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1928     } break;
1929     case Instruction::Call:
1930       E = performSymbolicCallEvaluation(I);
1931       break;
1932     case Instruction::Store:
1933       E = performSymbolicStoreEvaluation(I);
1934       break;
1935     case Instruction::Load:
1936       E = performSymbolicLoadEvaluation(I);
1937       break;
1938     case Instruction::BitCast:
1939     case Instruction::AddrSpaceCast:
1940       E = createExpression(I);
1941       break;
1942     case Instruction::ICmp:
1943     case Instruction::FCmp:
1944       E = performSymbolicCmpEvaluation(I);
1945       break;
1946     case Instruction::FNeg:
1947     case Instruction::Add:
1948     case Instruction::FAdd:
1949     case Instruction::Sub:
1950     case Instruction::FSub:
1951     case Instruction::Mul:
1952     case Instruction::FMul:
1953     case Instruction::UDiv:
1954     case Instruction::SDiv:
1955     case Instruction::FDiv:
1956     case Instruction::URem:
1957     case Instruction::SRem:
1958     case Instruction::FRem:
1959     case Instruction::Shl:
1960     case Instruction::LShr:
1961     case Instruction::AShr:
1962     case Instruction::And:
1963     case Instruction::Or:
1964     case Instruction::Xor:
1965     case Instruction::Trunc:
1966     case Instruction::ZExt:
1967     case Instruction::SExt:
1968     case Instruction::FPToUI:
1969     case Instruction::FPToSI:
1970     case Instruction::UIToFP:
1971     case Instruction::SIToFP:
1972     case Instruction::FPTrunc:
1973     case Instruction::FPExt:
1974     case Instruction::PtrToInt:
1975     case Instruction::IntToPtr:
1976     case Instruction::Select:
1977     case Instruction::ExtractElement:
1978     case Instruction::InsertElement:
1979     case Instruction::GetElementPtr:
1980       E = createExpression(I);
1981       break;
1982     case Instruction::ShuffleVector:
1983       // FIXME: Add support for shufflevector to createExpression.
1984       return nullptr;
1985     default:
1986       return nullptr;
1987     }
1988   }
1989   return E;
1990 }
1991 
1992 // Look up a container of values/instructions in a map, and touch all the
1993 // instructions in the container.  Then erase value from the map.
1994 template <typename Map, typename KeyType>
1995 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
1996   const auto Result = M.find_as(Key);
1997   if (Result != M.end()) {
1998     for (const typename Map::mapped_type::value_type Mapped : Result->second)
1999       TouchedInstructions.set(InstrToDFSNum(Mapped));
2000     M.erase(Result);
2001   }
2002 }
2003 
2004 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2005   assert(User && To != User);
2006   if (isa<Instruction>(To))
2007     AdditionalUsers[To].insert(User);
2008 }
2009 
2010 void NewGVN::markUsersTouched(Value *V) {
2011   // Now mark the users as touched.
2012   for (auto *User : V->users()) {
2013     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2014     TouchedInstructions.set(InstrToDFSNum(User));
2015   }
2016   touchAndErase(AdditionalUsers, V);
2017 }
2018 
2019 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2020   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2021   MemoryToUsers[To].insert(U);
2022 }
2023 
2024 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2025   TouchedInstructions.set(MemoryToDFSNum(MA));
2026 }
2027 
2028 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2029   if (isa<MemoryUse>(MA))
2030     return;
2031   for (auto U : MA->users())
2032     TouchedInstructions.set(MemoryToDFSNum(U));
2033   touchAndErase(MemoryToUsers, MA);
2034 }
2035 
2036 // Add I to the set of users of a given predicate.
2037 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2038   // Don't add temporary instructions to the user lists.
2039   if (AllTempInstructions.count(I))
2040     return;
2041 
2042   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2043     PredicateToUsers[PBranch->Condition].insert(I);
2044   else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2045     PredicateToUsers[PAssume->Condition].insert(I);
2046 }
2047 
2048 // Touch all the predicates that depend on this instruction.
2049 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2050   touchAndErase(PredicateToUsers, I);
2051 }
2052 
2053 // Mark users affected by a memory leader change.
2054 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2055   for (auto M : CC->memory())
2056     markMemoryDefTouched(M);
2057 }
2058 
2059 // Touch the instructions that need to be updated after a congruence class has a
2060 // leader change, and mark changed values.
2061 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2062   for (auto M : *CC) {
2063     if (auto *I = dyn_cast<Instruction>(M))
2064       TouchedInstructions.set(InstrToDFSNum(I));
2065     LeaderChanges.insert(M);
2066   }
2067 }
2068 
2069 // Give a range of things that have instruction DFS numbers, this will return
2070 // the member of the range with the smallest dfs number.
2071 template <class T, class Range>
2072 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2073   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2074   for (const auto X : R) {
2075     auto DFSNum = InstrToDFSNum(X);
2076     if (DFSNum < MinDFS.second)
2077       MinDFS = {X, DFSNum};
2078   }
2079   return MinDFS.first;
2080 }
2081 
2082 // This function returns the MemoryAccess that should be the next leader of
2083 // congruence class CC, under the assumption that the current leader is going to
2084 // disappear.
2085 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2086   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2087   // do for regular leaders.
2088   // Make sure there will be a leader to find.
2089   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2090   if (CC->getStoreCount() > 0) {
2091     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2092       return getMemoryAccess(NL);
2093     // Find the store with the minimum DFS number.
2094     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2095         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2096     return getMemoryAccess(cast<StoreInst>(V));
2097   }
2098   assert(CC->getStoreCount() == 0);
2099 
2100   // Given our assertion, hitting this part must mean
2101   // !OldClass->memory_empty()
2102   if (CC->memory_size() == 1)
2103     return *CC->memory_begin();
2104   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2105 }
2106 
2107 // This function returns the next value leader of a congruence class, under the
2108 // assumption that the current leader is going away.  This should end up being
2109 // the next most dominating member.
2110 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2111   // We don't need to sort members if there is only 1, and we don't care about
2112   // sorting the TOP class because everything either gets out of it or is
2113   // unreachable.
2114 
2115   if (CC->size() == 1 || CC == TOPClass) {
2116     return *(CC->begin());
2117   } else if (CC->getNextLeader().first) {
2118     ++NumGVNAvoidedSortedLeaderChanges;
2119     return CC->getNextLeader().first;
2120   } else {
2121     ++NumGVNSortedLeaderChanges;
2122     // NOTE: If this ends up to slow, we can maintain a dual structure for
2123     // member testing/insertion, or keep things mostly sorted, and sort only
2124     // here, or use SparseBitVector or ....
2125     return getMinDFSOfRange<Value>(*CC);
2126   }
2127 }
2128 
2129 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2130 // the memory members, etc for the move.
2131 //
2132 // The invariants of this function are:
2133 //
2134 // - I must be moving to NewClass from OldClass
2135 // - The StoreCount of OldClass and NewClass is expected to have been updated
2136 //   for I already if it is a store.
2137 // - The OldClass memory leader has not been updated yet if I was the leader.
2138 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2139                                             MemoryAccess *InstMA,
2140                                             CongruenceClass *OldClass,
2141                                             CongruenceClass *NewClass) {
2142   // If the leader is I, and we had a representative MemoryAccess, it should
2143   // be the MemoryAccess of OldClass.
2144   assert((!InstMA || !OldClass->getMemoryLeader() ||
2145           OldClass->getLeader() != I ||
2146           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2147               MemoryAccessToClass.lookup(InstMA)) &&
2148          "Representative MemoryAccess mismatch");
2149   // First, see what happens to the new class
2150   if (!NewClass->getMemoryLeader()) {
2151     // Should be a new class, or a store becoming a leader of a new class.
2152     assert(NewClass->size() == 1 ||
2153            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2154     NewClass->setMemoryLeader(InstMA);
2155     // Mark it touched if we didn't just create a singleton
2156     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2157                       << NewClass->getID()
2158                       << " due to new memory instruction becoming leader\n");
2159     markMemoryLeaderChangeTouched(NewClass);
2160   }
2161   setMemoryClass(InstMA, NewClass);
2162   // Now, fixup the old class if necessary
2163   if (OldClass->getMemoryLeader() == InstMA) {
2164     if (!OldClass->definesNoMemory()) {
2165       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2166       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2167                         << OldClass->getID() << " to "
2168                         << *OldClass->getMemoryLeader()
2169                         << " due to removal of old leader " << *InstMA << "\n");
2170       markMemoryLeaderChangeTouched(OldClass);
2171     } else
2172       OldClass->setMemoryLeader(nullptr);
2173   }
2174 }
2175 
2176 // Move a value, currently in OldClass, to be part of NewClass
2177 // Update OldClass and NewClass for the move (including changing leaders, etc).
2178 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2179                                            CongruenceClass *OldClass,
2180                                            CongruenceClass *NewClass) {
2181   if (I == OldClass->getNextLeader().first)
2182     OldClass->resetNextLeader();
2183 
2184   OldClass->erase(I);
2185   NewClass->insert(I);
2186 
2187   if (NewClass->getLeader() != I)
2188     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2189   // Handle our special casing of stores.
2190   if (auto *SI = dyn_cast<StoreInst>(I)) {
2191     OldClass->decStoreCount();
2192     // Okay, so when do we want to make a store a leader of a class?
2193     // If we have a store defined by an earlier load, we want the earlier load
2194     // to lead the class.
2195     // If we have a store defined by something else, we want the store to lead
2196     // the class so everything else gets the "something else" as a value.
2197     // If we have a store as the single member of the class, we want the store
2198     // as the leader
2199     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2200       // If it's a store expression we are using, it means we are not equivalent
2201       // to something earlier.
2202       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2203         NewClass->setStoredValue(SE->getStoredValue());
2204         markValueLeaderChangeTouched(NewClass);
2205         // Shift the new class leader to be the store
2206         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2207                           << NewClass->getID() << " from "
2208                           << *NewClass->getLeader() << " to  " << *SI
2209                           << " because store joined class\n");
2210         // If we changed the leader, we have to mark it changed because we don't
2211         // know what it will do to symbolic evaluation.
2212         NewClass->setLeader(SI);
2213       }
2214       // We rely on the code below handling the MemoryAccess change.
2215     }
2216     NewClass->incStoreCount();
2217   }
2218   // True if there is no memory instructions left in a class that had memory
2219   // instructions before.
2220 
2221   // If it's not a memory use, set the MemoryAccess equivalence
2222   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2223   if (InstMA)
2224     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2225   ValueToClass[I] = NewClass;
2226   // See if we destroyed the class or need to swap leaders.
2227   if (OldClass->empty() && OldClass != TOPClass) {
2228     if (OldClass->getDefiningExpr()) {
2229       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2230                         << " from table\n");
2231       // We erase it as an exact expression to make sure we don't just erase an
2232       // equivalent one.
2233       auto Iter = ExpressionToClass.find_as(
2234           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2235       if (Iter != ExpressionToClass.end())
2236         ExpressionToClass.erase(Iter);
2237 #ifdef EXPENSIVE_CHECKS
2238       assert(
2239           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2240           "We erased the expression we just inserted, which should not happen");
2241 #endif
2242     }
2243   } else if (OldClass->getLeader() == I) {
2244     // When the leader changes, the value numbering of
2245     // everything may change due to symbolization changes, so we need to
2246     // reprocess.
2247     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2248                       << OldClass->getID() << "\n");
2249     ++NumGVNLeaderChanges;
2250     // Destroy the stored value if there are no more stores to represent it.
2251     // Note that this is basically clean up for the expression removal that
2252     // happens below.  If we remove stores from a class, we may leave it as a
2253     // class of equivalent memory phis.
2254     if (OldClass->getStoreCount() == 0) {
2255       if (OldClass->getStoredValue())
2256         OldClass->setStoredValue(nullptr);
2257     }
2258     OldClass->setLeader(getNextValueLeader(OldClass));
2259     OldClass->resetNextLeader();
2260     markValueLeaderChangeTouched(OldClass);
2261   }
2262 }
2263 
2264 // For a given expression, mark the phi of ops instructions that could have
2265 // changed as a result.
2266 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2267   touchAndErase(ExpressionToPhiOfOps, E);
2268 }
2269 
2270 // Perform congruence finding on a given value numbering expression.
2271 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2272   // This is guaranteed to return something, since it will at least find
2273   // TOP.
2274 
2275   CongruenceClass *IClass = ValueToClass.lookup(I);
2276   assert(IClass && "Should have found a IClass");
2277   // Dead classes should have been eliminated from the mapping.
2278   assert(!IClass->isDead() && "Found a dead class");
2279 
2280   CongruenceClass *EClass = nullptr;
2281   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2282     EClass = ValueToClass.lookup(VE->getVariableValue());
2283   } else if (isa<DeadExpression>(E)) {
2284     EClass = TOPClass;
2285   }
2286   if (!EClass) {
2287     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2288 
2289     // If it's not in the value table, create a new congruence class.
2290     if (lookupResult.second) {
2291       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2292       auto place = lookupResult.first;
2293       place->second = NewClass;
2294 
2295       // Constants and variables should always be made the leader.
2296       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2297         NewClass->setLeader(CE->getConstantValue());
2298       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2299         StoreInst *SI = SE->getStoreInst();
2300         NewClass->setLeader(SI);
2301         NewClass->setStoredValue(SE->getStoredValue());
2302         // The RepMemoryAccess field will be filled in properly by the
2303         // moveValueToNewCongruenceClass call.
2304       } else {
2305         NewClass->setLeader(I);
2306       }
2307       assert(!isa<VariableExpression>(E) &&
2308              "VariableExpression should have been handled already");
2309 
2310       EClass = NewClass;
2311       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2312                         << " using expression " << *E << " at "
2313                         << NewClass->getID() << " and leader "
2314                         << *(NewClass->getLeader()));
2315       if (NewClass->getStoredValue())
2316         LLVM_DEBUG(dbgs() << " and stored value "
2317                           << *(NewClass->getStoredValue()));
2318       LLVM_DEBUG(dbgs() << "\n");
2319     } else {
2320       EClass = lookupResult.first->second;
2321       if (isa<ConstantExpression>(E))
2322         assert((isa<Constant>(EClass->getLeader()) ||
2323                 (EClass->getStoredValue() &&
2324                  isa<Constant>(EClass->getStoredValue()))) &&
2325                "Any class with a constant expression should have a "
2326                "constant leader");
2327 
2328       assert(EClass && "Somehow don't have an eclass");
2329 
2330       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2331     }
2332   }
2333   bool ClassChanged = IClass != EClass;
2334   bool LeaderChanged = LeaderChanges.erase(I);
2335   if (ClassChanged || LeaderChanged) {
2336     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2337                       << *E << "\n");
2338     if (ClassChanged) {
2339       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2340       markPhiOfOpsChanged(E);
2341     }
2342 
2343     markUsersTouched(I);
2344     if (MemoryAccess *MA = getMemoryAccess(I))
2345       markMemoryUsersTouched(MA);
2346     if (auto *CI = dyn_cast<CmpInst>(I))
2347       markPredicateUsersTouched(CI);
2348   }
2349   // If we changed the class of the store, we want to ensure nothing finds the
2350   // old store expression.  In particular, loads do not compare against stored
2351   // value, so they will find old store expressions (and associated class
2352   // mappings) if we leave them in the table.
2353   if (ClassChanged && isa<StoreInst>(I)) {
2354     auto *OldE = ValueToExpression.lookup(I);
2355     // It could just be that the old class died. We don't want to erase it if we
2356     // just moved classes.
2357     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2358       // Erase this as an exact expression to ensure we don't erase expressions
2359       // equivalent to it.
2360       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2361       if (Iter != ExpressionToClass.end())
2362         ExpressionToClass.erase(Iter);
2363     }
2364   }
2365   ValueToExpression[I] = E;
2366 }
2367 
2368 // Process the fact that Edge (from, to) is reachable, including marking
2369 // any newly reachable blocks and instructions for processing.
2370 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2371   // Check if the Edge was reachable before.
2372   if (ReachableEdges.insert({From, To}).second) {
2373     // If this block wasn't reachable before, all instructions are touched.
2374     if (ReachableBlocks.insert(To).second) {
2375       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2376                         << " marked reachable\n");
2377       const auto &InstRange = BlockInstRange.lookup(To);
2378       TouchedInstructions.set(InstRange.first, InstRange.second);
2379     } else {
2380       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2381                         << " was reachable, but new edge {"
2382                         << getBlockName(From) << "," << getBlockName(To)
2383                         << "} to it found\n");
2384 
2385       // We've made an edge reachable to an existing block, which may
2386       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2387       // they are the only thing that depend on new edges. Anything using their
2388       // values will get propagated to if necessary.
2389       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2390         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2391 
2392       // FIXME: We should just add a union op on a Bitvector and
2393       // SparseBitVector.  We can do it word by word faster than we are doing it
2394       // here.
2395       for (auto InstNum : RevisitOnReachabilityChange[To])
2396         TouchedInstructions.set(InstNum);
2397     }
2398   }
2399 }
2400 
2401 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2402 // see if we know some constant value for it already.
2403 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2404   auto Result = lookupOperandLeader(Cond);
2405   return isa<Constant>(Result) ? Result : nullptr;
2406 }
2407 
2408 // Process the outgoing edges of a block for reachability.
2409 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2410   // Evaluate reachability of terminator instruction.
2411   Value *Cond;
2412   BasicBlock *TrueSucc, *FalseSucc;
2413   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2414     Value *CondEvaluated = findConditionEquivalence(Cond);
2415     if (!CondEvaluated) {
2416       if (auto *I = dyn_cast<Instruction>(Cond)) {
2417         const Expression *E = createExpression(I);
2418         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2419           CondEvaluated = CE->getConstantValue();
2420         }
2421       } else if (isa<ConstantInt>(Cond)) {
2422         CondEvaluated = Cond;
2423       }
2424     }
2425     ConstantInt *CI;
2426     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2427       if (CI->isOne()) {
2428         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2429                           << " evaluated to true\n");
2430         updateReachableEdge(B, TrueSucc);
2431       } else if (CI->isZero()) {
2432         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2433                           << " evaluated to false\n");
2434         updateReachableEdge(B, FalseSucc);
2435       }
2436     } else {
2437       updateReachableEdge(B, TrueSucc);
2438       updateReachableEdge(B, FalseSucc);
2439     }
2440   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2441     // For switches, propagate the case values into the case
2442     // destinations.
2443 
2444     Value *SwitchCond = SI->getCondition();
2445     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2446     // See if we were able to turn this switch statement into a constant.
2447     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2448       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2449       // We should be able to get case value for this.
2450       auto Case = *SI->findCaseValue(CondVal);
2451       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2452         // We proved the value is outside of the range of the case.
2453         // We can't do anything other than mark the default dest as reachable,
2454         // and go home.
2455         updateReachableEdge(B, SI->getDefaultDest());
2456         return;
2457       }
2458       // Now get where it goes and mark it reachable.
2459       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2460       updateReachableEdge(B, TargetBlock);
2461     } else {
2462       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2463         BasicBlock *TargetBlock = SI->getSuccessor(i);
2464         updateReachableEdge(B, TargetBlock);
2465       }
2466     }
2467   } else {
2468     // Otherwise this is either unconditional, or a type we have no
2469     // idea about. Just mark successors as reachable.
2470     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2471       BasicBlock *TargetBlock = TI->getSuccessor(i);
2472       updateReachableEdge(B, TargetBlock);
2473     }
2474 
2475     // This also may be a memory defining terminator, in which case, set it
2476     // equivalent only to itself.
2477     //
2478     auto *MA = getMemoryAccess(TI);
2479     if (MA && !isa<MemoryUse>(MA)) {
2480       auto *CC = ensureLeaderOfMemoryClass(MA);
2481       if (setMemoryClass(MA, CC))
2482         markMemoryUsersTouched(MA);
2483     }
2484   }
2485 }
2486 
2487 // Remove the PHI of Ops PHI for I
2488 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2489   InstrDFS.erase(PHITemp);
2490   // It's still a temp instruction. We keep it in the array so it gets erased.
2491   // However, it's no longer used by I, or in the block
2492   TempToBlock.erase(PHITemp);
2493   RealToTemp.erase(I);
2494   // We don't remove the users from the phi node uses. This wastes a little
2495   // time, but such is life.  We could use two sets to track which were there
2496   // are the start of NewGVN, and which were added, but right nowt he cost of
2497   // tracking is more than the cost of checking for more phi of ops.
2498 }
2499 
2500 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2501 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2502                          Instruction *ExistingValue) {
2503   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2504   AllTempInstructions.insert(Op);
2505   TempToBlock[Op] = BB;
2506   RealToTemp[ExistingValue] = Op;
2507   // Add all users to phi node use, as they are now uses of the phi of ops phis
2508   // and may themselves be phi of ops.
2509   for (auto *U : ExistingValue->users())
2510     if (auto *UI = dyn_cast<Instruction>(U))
2511       PHINodeUses.insert(UI);
2512 }
2513 
2514 static bool okayForPHIOfOps(const Instruction *I) {
2515   if (!EnablePhiOfOps)
2516     return false;
2517   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2518          isa<LoadInst>(I);
2519 }
2520 
2521 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2522     Value *V, const BasicBlock *PHIBlock,
2523     SmallPtrSetImpl<const Value *> &Visited,
2524     SmallVectorImpl<Instruction *> &Worklist) {
2525 
2526   if (!isa<Instruction>(V))
2527     return true;
2528   auto OISIt = OpSafeForPHIOfOps.find(V);
2529   if (OISIt != OpSafeForPHIOfOps.end())
2530     return OISIt->second;
2531 
2532   // Keep walking until we either dominate the phi block, or hit a phi, or run
2533   // out of things to check.
2534   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2535     OpSafeForPHIOfOps.insert({V, true});
2536     return true;
2537   }
2538   // PHI in the same block.
2539   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2540     OpSafeForPHIOfOps.insert({V, false});
2541     return false;
2542   }
2543 
2544   auto *OrigI = cast<Instruction>(V);
2545   for (auto *Op : OrigI->operand_values()) {
2546     if (!isa<Instruction>(Op))
2547       continue;
2548     // Stop now if we find an unsafe operand.
2549     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2550     if (OISIt != OpSafeForPHIOfOps.end()) {
2551       if (!OISIt->second) {
2552         OpSafeForPHIOfOps.insert({V, false});
2553         return false;
2554       }
2555       continue;
2556     }
2557     if (!Visited.insert(Op).second)
2558       continue;
2559     Worklist.push_back(cast<Instruction>(Op));
2560   }
2561   return true;
2562 }
2563 
2564 // Return true if this operand will be safe to use for phi of ops.
2565 //
2566 // The reason some operands are unsafe is that we are not trying to recursively
2567 // translate everything back through phi nodes.  We actually expect some lookups
2568 // of expressions to fail.  In particular, a lookup where the expression cannot
2569 // exist in the predecessor.  This is true even if the expression, as shown, can
2570 // be determined to be constant.
2571 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2572                                  SmallPtrSetImpl<const Value *> &Visited) {
2573   SmallVector<Instruction *, 4> Worklist;
2574   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2575     return false;
2576   while (!Worklist.empty()) {
2577     auto *I = Worklist.pop_back_val();
2578     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2579       return false;
2580   }
2581   OpSafeForPHIOfOps.insert({V, true});
2582   return true;
2583 }
2584 
2585 // Try to find a leader for instruction TransInst, which is a phi translated
2586 // version of something in our original program.  Visited is used to ensure we
2587 // don't infinite loop during translations of cycles.  OrigInst is the
2588 // instruction in the original program, and PredBB is the predecessor we
2589 // translated it through.
2590 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2591                                  SmallPtrSetImpl<Value *> &Visited,
2592                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2593                                  BasicBlock *PredBB) {
2594   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2595   // Make sure it's marked as a temporary instruction.
2596   AllTempInstructions.insert(TransInst);
2597   // and make sure anything that tries to add it's DFS number is
2598   // redirected to the instruction we are making a phi of ops
2599   // for.
2600   TempToBlock.insert({TransInst, PredBB});
2601   InstrDFS.insert({TransInst, IDFSNum});
2602 
2603   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2604   InstrDFS.erase(TransInst);
2605   AllTempInstructions.erase(TransInst);
2606   TempToBlock.erase(TransInst);
2607   if (MemAccess)
2608     TempToMemory.erase(TransInst);
2609   if (!E)
2610     return nullptr;
2611   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2612   if (!FoundVal) {
2613     ExpressionToPhiOfOps[E].insert(OrigInst);
2614     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2615                       << " in block " << getBlockName(PredBB) << "\n");
2616     return nullptr;
2617   }
2618   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2619     FoundVal = SI->getValueOperand();
2620   return FoundVal;
2621 }
2622 
2623 // When we see an instruction that is an op of phis, generate the equivalent phi
2624 // of ops form.
2625 const Expression *
2626 NewGVN::makePossiblePHIOfOps(Instruction *I,
2627                              SmallPtrSetImpl<Value *> &Visited) {
2628   if (!okayForPHIOfOps(I))
2629     return nullptr;
2630 
2631   if (!Visited.insert(I).second)
2632     return nullptr;
2633   // For now, we require the instruction be cycle free because we don't
2634   // *always* create a phi of ops for instructions that could be done as phi
2635   // of ops, we only do it if we think it is useful.  If we did do it all the
2636   // time, we could remove the cycle free check.
2637   if (!isCycleFree(I))
2638     return nullptr;
2639 
2640   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2641   // TODO: We don't do phi translation on memory accesses because it's
2642   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2643   // which we don't have a good way of doing ATM.
2644   auto *MemAccess = getMemoryAccess(I);
2645   // If the memory operation is defined by a memory operation this block that
2646   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2647   // can't help, as it would still be killed by that memory operation.
2648   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2649       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2650     return nullptr;
2651 
2652   // Convert op of phis to phi of ops
2653   SmallPtrSet<const Value *, 10> VisitedOps;
2654   SmallVector<Value *, 4> Ops(I->operand_values());
2655   BasicBlock *SamePHIBlock = nullptr;
2656   PHINode *OpPHI = nullptr;
2657   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2658     return nullptr;
2659   for (auto *Op : Ops) {
2660     if (!isa<PHINode>(Op)) {
2661       auto *ValuePHI = RealToTemp.lookup(Op);
2662       if (!ValuePHI)
2663         continue;
2664       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2665       Op = ValuePHI;
2666     }
2667     OpPHI = cast<PHINode>(Op);
2668     if (!SamePHIBlock) {
2669       SamePHIBlock = getBlockForValue(OpPHI);
2670     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2671       LLVM_DEBUG(
2672           dbgs()
2673           << "PHIs for operands are not all in the same block, aborting\n");
2674       return nullptr;
2675     }
2676     // No point in doing this for one-operand phis.
2677     if (OpPHI->getNumOperands() == 1) {
2678       OpPHI = nullptr;
2679       continue;
2680     }
2681   }
2682 
2683   if (!OpPHI)
2684     return nullptr;
2685 
2686   SmallVector<ValPair, 4> PHIOps;
2687   SmallPtrSet<Value *, 4> Deps;
2688   auto *PHIBlock = getBlockForValue(OpPHI);
2689   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2690   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2691     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2692     Value *FoundVal = nullptr;
2693     SmallPtrSet<Value *, 4> CurrentDeps;
2694     // We could just skip unreachable edges entirely but it's tricky to do
2695     // with rewriting existing phi nodes.
2696     if (ReachableEdges.count({PredBB, PHIBlock})) {
2697       // Clone the instruction, create an expression from it that is
2698       // translated back into the predecessor, and see if we have a leader.
2699       Instruction *ValueOp = I->clone();
2700       if (MemAccess)
2701         TempToMemory.insert({ValueOp, MemAccess});
2702       bool SafeForPHIOfOps = true;
2703       VisitedOps.clear();
2704       for (auto &Op : ValueOp->operands()) {
2705         auto *OrigOp = &*Op;
2706         // When these operand changes, it could change whether there is a
2707         // leader for us or not, so we have to add additional users.
2708         if (isa<PHINode>(Op)) {
2709           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2710           if (Op != OrigOp && Op != I)
2711             CurrentDeps.insert(Op);
2712         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2713           if (getBlockForValue(ValuePHI) == PHIBlock)
2714             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2715         }
2716         // If we phi-translated the op, it must be safe.
2717         SafeForPHIOfOps =
2718             SafeForPHIOfOps &&
2719             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2720       }
2721       // FIXME: For those things that are not safe we could generate
2722       // expressions all the way down, and see if this comes out to a
2723       // constant.  For anything where that is true, and unsafe, we should
2724       // have made a phi-of-ops (or value numbered it equivalent to something)
2725       // for the pieces already.
2726       FoundVal = !SafeForPHIOfOps ? nullptr
2727                                   : findLeaderForInst(ValueOp, Visited,
2728                                                       MemAccess, I, PredBB);
2729       ValueOp->deleteValue();
2730       if (!FoundVal) {
2731         // We failed to find a leader for the current ValueOp, but this might
2732         // change in case of the translated operands change.
2733         if (SafeForPHIOfOps)
2734           for (auto Dep : CurrentDeps)
2735             addAdditionalUsers(Dep, I);
2736 
2737         return nullptr;
2738       }
2739       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2740     } else {
2741       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2742                         << getBlockName(PredBB)
2743                         << " because the block is unreachable\n");
2744       FoundVal = UndefValue::get(I->getType());
2745       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2746     }
2747 
2748     PHIOps.push_back({FoundVal, PredBB});
2749     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2750                       << getBlockName(PredBB) << "\n");
2751   }
2752   for (auto Dep : Deps)
2753     addAdditionalUsers(Dep, I);
2754   sortPHIOps(PHIOps);
2755   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2756   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2757     LLVM_DEBUG(
2758         dbgs()
2759         << "Not creating real PHI of ops because it simplified to existing "
2760            "value or constant\n");
2761     return E;
2762   }
2763   auto *ValuePHI = RealToTemp.lookup(I);
2764   bool NewPHI = false;
2765   if (!ValuePHI) {
2766     ValuePHI =
2767         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2768     addPhiOfOps(ValuePHI, PHIBlock, I);
2769     NewPHI = true;
2770     NumGVNPHIOfOpsCreated++;
2771   }
2772   if (NewPHI) {
2773     for (auto PHIOp : PHIOps)
2774       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2775   } else {
2776     TempToBlock[ValuePHI] = PHIBlock;
2777     unsigned int i = 0;
2778     for (auto PHIOp : PHIOps) {
2779       ValuePHI->setIncomingValue(i, PHIOp.first);
2780       ValuePHI->setIncomingBlock(i, PHIOp.second);
2781       ++i;
2782     }
2783   }
2784   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2785   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2786                     << "\n");
2787 
2788   return E;
2789 }
2790 
2791 // The algorithm initially places the values of the routine in the TOP
2792 // congruence class. The leader of TOP is the undetermined value `undef`.
2793 // When the algorithm has finished, values still in TOP are unreachable.
2794 void NewGVN::initializeCongruenceClasses(Function &F) {
2795   NextCongruenceNum = 0;
2796 
2797   // Note that even though we use the live on entry def as a representative
2798   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2799   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2800   // should be checking whether the MemoryAccess is top if we want to know if it
2801   // is equivalent to everything.  Otherwise, what this really signifies is that
2802   // the access "it reaches all the way back to the beginning of the function"
2803 
2804   // Initialize all other instructions to be in TOP class.
2805   TOPClass = createCongruenceClass(nullptr, nullptr);
2806   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2807   //  The live on entry def gets put into it's own class
2808   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2809       createMemoryClass(MSSA->getLiveOnEntryDef());
2810 
2811   for (auto DTN : nodes(DT)) {
2812     BasicBlock *BB = DTN->getBlock();
2813     // All MemoryAccesses are equivalent to live on entry to start. They must
2814     // be initialized to something so that initial changes are noticed. For
2815     // the maximal answer, we initialize them all to be the same as
2816     // liveOnEntry.
2817     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2818     if (MemoryBlockDefs)
2819       for (const auto &Def : *MemoryBlockDefs) {
2820         MemoryAccessToClass[&Def] = TOPClass;
2821         auto *MD = dyn_cast<MemoryDef>(&Def);
2822         // Insert the memory phis into the member list.
2823         if (!MD) {
2824           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2825           TOPClass->memory_insert(MP);
2826           MemoryPhiState.insert({MP, MPS_TOP});
2827         }
2828 
2829         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2830           TOPClass->incStoreCount();
2831       }
2832 
2833     // FIXME: This is trying to discover which instructions are uses of phi
2834     // nodes.  We should move this into one of the myriad of places that walk
2835     // all the operands already.
2836     for (auto &I : *BB) {
2837       if (isa<PHINode>(&I))
2838         for (auto *U : I.users())
2839           if (auto *UInst = dyn_cast<Instruction>(U))
2840             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2841               PHINodeUses.insert(UInst);
2842       // Don't insert void terminators into the class. We don't value number
2843       // them, and they just end up sitting in TOP.
2844       if (I.isTerminator() && I.getType()->isVoidTy())
2845         continue;
2846       TOPClass->insert(&I);
2847       ValueToClass[&I] = TOPClass;
2848     }
2849   }
2850 
2851   // Initialize arguments to be in their own unique congruence classes
2852   for (auto &FA : F.args())
2853     createSingletonCongruenceClass(&FA);
2854 }
2855 
2856 void NewGVN::cleanupTables() {
2857   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2858     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2859                       << " has " << CongruenceClasses[i]->size()
2860                       << " members\n");
2861     // Make sure we delete the congruence class (probably worth switching to
2862     // a unique_ptr at some point.
2863     delete CongruenceClasses[i];
2864     CongruenceClasses[i] = nullptr;
2865   }
2866 
2867   // Destroy the value expressions
2868   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2869                                          AllTempInstructions.end());
2870   AllTempInstructions.clear();
2871 
2872   // We have to drop all references for everything first, so there are no uses
2873   // left as we delete them.
2874   for (auto *I : TempInst) {
2875     I->dropAllReferences();
2876   }
2877 
2878   while (!TempInst.empty()) {
2879     auto *I = TempInst.pop_back_val();
2880     I->deleteValue();
2881   }
2882 
2883   ValueToClass.clear();
2884   ArgRecycler.clear(ExpressionAllocator);
2885   ExpressionAllocator.Reset();
2886   CongruenceClasses.clear();
2887   ExpressionToClass.clear();
2888   ValueToExpression.clear();
2889   RealToTemp.clear();
2890   AdditionalUsers.clear();
2891   ExpressionToPhiOfOps.clear();
2892   TempToBlock.clear();
2893   TempToMemory.clear();
2894   PHINodeUses.clear();
2895   OpSafeForPHIOfOps.clear();
2896   ReachableBlocks.clear();
2897   ReachableEdges.clear();
2898 #ifndef NDEBUG
2899   ProcessedCount.clear();
2900 #endif
2901   InstrDFS.clear();
2902   InstructionsToErase.clear();
2903   DFSToInstr.clear();
2904   BlockInstRange.clear();
2905   TouchedInstructions.clear();
2906   MemoryAccessToClass.clear();
2907   PredicateToUsers.clear();
2908   MemoryToUsers.clear();
2909   RevisitOnReachabilityChange.clear();
2910 }
2911 
2912 // Assign local DFS number mapping to instructions, and leave space for Value
2913 // PHI's.
2914 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2915                                                        unsigned Start) {
2916   unsigned End = Start;
2917   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2918     InstrDFS[MemPhi] = End++;
2919     DFSToInstr.emplace_back(MemPhi);
2920   }
2921 
2922   // Then the real block goes next.
2923   for (auto &I : *B) {
2924     // There's no need to call isInstructionTriviallyDead more than once on
2925     // an instruction. Therefore, once we know that an instruction is dead
2926     // we change its DFS number so that it doesn't get value numbered.
2927     if (isInstructionTriviallyDead(&I, TLI)) {
2928       InstrDFS[&I] = 0;
2929       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2930       markInstructionForDeletion(&I);
2931       continue;
2932     }
2933     if (isa<PHINode>(&I))
2934       RevisitOnReachabilityChange[B].set(End);
2935     InstrDFS[&I] = End++;
2936     DFSToInstr.emplace_back(&I);
2937   }
2938 
2939   // All of the range functions taken half-open ranges (open on the end side).
2940   // So we do not subtract one from count, because at this point it is one
2941   // greater than the last instruction.
2942   return std::make_pair(Start, End);
2943 }
2944 
2945 void NewGVN::updateProcessedCount(const Value *V) {
2946 #ifndef NDEBUG
2947   if (ProcessedCount.count(V) == 0) {
2948     ProcessedCount.insert({V, 1});
2949   } else {
2950     ++ProcessedCount[V];
2951     assert(ProcessedCount[V] < 100 &&
2952            "Seem to have processed the same Value a lot");
2953   }
2954 #endif
2955 }
2956 
2957 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2958 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2959   // If all the arguments are the same, the MemoryPhi has the same value as the
2960   // argument.  Filter out unreachable blocks and self phis from our operands.
2961   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
2962   // self-phi checking.
2963   const BasicBlock *PHIBlock = MP->getBlock();
2964   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
2965     return cast<MemoryAccess>(U) != MP &&
2966            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
2967            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
2968   });
2969   // If all that is left is nothing, our memoryphi is undef. We keep it as
2970   // InitialClass.  Note: The only case this should happen is if we have at
2971   // least one self-argument.
2972   if (Filtered.begin() == Filtered.end()) {
2973     if (setMemoryClass(MP, TOPClass))
2974       markMemoryUsersTouched(MP);
2975     return;
2976   }
2977 
2978   // Transform the remaining operands into operand leaders.
2979   // FIXME: mapped_iterator should have a range version.
2980   auto LookupFunc = [&](const Use &U) {
2981     return lookupMemoryLeader(cast<MemoryAccess>(U));
2982   };
2983   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2984   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2985 
2986   // and now check if all the elements are equal.
2987   // Sadly, we can't use std::equals since these are random access iterators.
2988   const auto *AllSameValue = *MappedBegin;
2989   ++MappedBegin;
2990   bool AllEqual = std::all_of(
2991       MappedBegin, MappedEnd,
2992       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2993 
2994   if (AllEqual)
2995     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
2996                       << "\n");
2997   else
2998     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
2999   // If it's equal to something, it's in that class. Otherwise, it has to be in
3000   // a class where it is the leader (other things may be equivalent to it, but
3001   // it needs to start off in its own class, which means it must have been the
3002   // leader, and it can't have stopped being the leader because it was never
3003   // removed).
3004   CongruenceClass *CC =
3005       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3006   auto OldState = MemoryPhiState.lookup(MP);
3007   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3008   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3009   MemoryPhiState[MP] = NewState;
3010   if (setMemoryClass(MP, CC) || OldState != NewState)
3011     markMemoryUsersTouched(MP);
3012 }
3013 
3014 // Value number a single instruction, symbolically evaluating, performing
3015 // congruence finding, and updating mappings.
3016 void NewGVN::valueNumberInstruction(Instruction *I) {
3017   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3018   if (!I->isTerminator()) {
3019     const Expression *Symbolized = nullptr;
3020     SmallPtrSet<Value *, 2> Visited;
3021     if (DebugCounter::shouldExecute(VNCounter)) {
3022       Symbolized = performSymbolicEvaluation(I, Visited);
3023       // Make a phi of ops if necessary
3024       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3025           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3026         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3027         // If we created a phi of ops, use it.
3028         // If we couldn't create one, make sure we don't leave one lying around
3029         if (PHIE) {
3030           Symbolized = PHIE;
3031         } else if (auto *Op = RealToTemp.lookup(I)) {
3032           removePhiOfOps(I, Op);
3033         }
3034       }
3035     } else {
3036       // Mark the instruction as unused so we don't value number it again.
3037       InstrDFS[I] = 0;
3038     }
3039     // If we couldn't come up with a symbolic expression, use the unknown
3040     // expression
3041     if (Symbolized == nullptr)
3042       Symbolized = createUnknownExpression(I);
3043     performCongruenceFinding(I, Symbolized);
3044   } else {
3045     // Handle terminators that return values. All of them produce values we
3046     // don't currently understand.  We don't place non-value producing
3047     // terminators in a class.
3048     if (!I->getType()->isVoidTy()) {
3049       auto *Symbolized = createUnknownExpression(I);
3050       performCongruenceFinding(I, Symbolized);
3051     }
3052     processOutgoingEdges(I, I->getParent());
3053   }
3054 }
3055 
3056 // Check if there is a path, using single or equal argument phi nodes, from
3057 // First to Second.
3058 bool NewGVN::singleReachablePHIPath(
3059     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3060     const MemoryAccess *Second) const {
3061   if (First == Second)
3062     return true;
3063   if (MSSA->isLiveOnEntryDef(First))
3064     return false;
3065 
3066   // This is not perfect, but as we're just verifying here, we can live with
3067   // the loss of precision. The real solution would be that of doing strongly
3068   // connected component finding in this routine, and it's probably not worth
3069   // the complexity for the time being. So, we just keep a set of visited
3070   // MemoryAccess and return true when we hit a cycle.
3071   if (Visited.count(First))
3072     return true;
3073   Visited.insert(First);
3074 
3075   const auto *EndDef = First;
3076   for (auto *ChainDef : optimized_def_chain(First)) {
3077     if (ChainDef == Second)
3078       return true;
3079     if (MSSA->isLiveOnEntryDef(ChainDef))
3080       return false;
3081     EndDef = ChainDef;
3082   }
3083   auto *MP = cast<MemoryPhi>(EndDef);
3084   auto ReachableOperandPred = [&](const Use &U) {
3085     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3086   };
3087   auto FilteredPhiArgs =
3088       make_filter_range(MP->operands(), ReachableOperandPred);
3089   SmallVector<const Value *, 32> OperandList;
3090   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3091   bool Okay = is_splat(OperandList);
3092   if (Okay)
3093     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3094                                   Second);
3095   return false;
3096 }
3097 
3098 // Verify the that the memory equivalence table makes sense relative to the
3099 // congruence classes.  Note that this checking is not perfect, and is currently
3100 // subject to very rare false negatives. It is only useful for
3101 // testing/debugging.
3102 void NewGVN::verifyMemoryCongruency() const {
3103 #ifndef NDEBUG
3104   // Verify that the memory table equivalence and memory member set match
3105   for (const auto *CC : CongruenceClasses) {
3106     if (CC == TOPClass || CC->isDead())
3107       continue;
3108     if (CC->getStoreCount() != 0) {
3109       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3110              "Any class with a store as a leader should have a "
3111              "representative stored value");
3112       assert(CC->getMemoryLeader() &&
3113              "Any congruence class with a store should have a "
3114              "representative access");
3115     }
3116 
3117     if (CC->getMemoryLeader())
3118       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3119              "Representative MemoryAccess does not appear to be reverse "
3120              "mapped properly");
3121     for (auto M : CC->memory())
3122       assert(MemoryAccessToClass.lookup(M) == CC &&
3123              "Memory member does not appear to be reverse mapped properly");
3124   }
3125 
3126   // Anything equivalent in the MemoryAccess table should be in the same
3127   // congruence class.
3128 
3129   // Filter out the unreachable and trivially dead entries, because they may
3130   // never have been updated if the instructions were not processed.
3131   auto ReachableAccessPred =
3132       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3133         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3134         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3135             MemoryToDFSNum(Pair.first) == 0)
3136           return false;
3137         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3138           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3139 
3140         // We could have phi nodes which operands are all trivially dead,
3141         // so we don't process them.
3142         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3143           for (auto &U : MemPHI->incoming_values()) {
3144             if (auto *I = dyn_cast<Instruction>(&*U)) {
3145               if (!isInstructionTriviallyDead(I))
3146                 return true;
3147             }
3148           }
3149           return false;
3150         }
3151 
3152         return true;
3153       };
3154 
3155   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3156   for (auto KV : Filtered) {
3157     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3158       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3159       if (FirstMUD && SecondMUD) {
3160         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3161         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3162                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3163                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3164                "The instructions for these memory operations should have "
3165                "been in the same congruence class or reachable through"
3166                "a single argument phi");
3167       }
3168     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3169       // We can only sanely verify that MemoryDefs in the operand list all have
3170       // the same class.
3171       auto ReachableOperandPred = [&](const Use &U) {
3172         return ReachableEdges.count(
3173                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3174                isa<MemoryDef>(U);
3175 
3176       };
3177       // All arguments should in the same class, ignoring unreachable arguments
3178       auto FilteredPhiArgs =
3179           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3180       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3181       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3182                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3183                        const MemoryDef *MD = cast<MemoryDef>(U);
3184                        return ValueToClass.lookup(MD->getMemoryInst());
3185                      });
3186       assert(is_splat(PhiOpClasses) &&
3187              "All MemoryPhi arguments should be in the same class");
3188     }
3189   }
3190 #endif
3191 }
3192 
3193 // Verify that the sparse propagation we did actually found the maximal fixpoint
3194 // We do this by storing the value to class mapping, touching all instructions,
3195 // and redoing the iteration to see if anything changed.
3196 void NewGVN::verifyIterationSettled(Function &F) {
3197 #ifndef NDEBUG
3198   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3199   if (DebugCounter::isCounterSet(VNCounter))
3200     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3201 
3202   // Note that we have to store the actual classes, as we may change existing
3203   // classes during iteration.  This is because our memory iteration propagation
3204   // is not perfect, and so may waste a little work.  But it should generate
3205   // exactly the same congruence classes we have now, with different IDs.
3206   std::map<const Value *, CongruenceClass> BeforeIteration;
3207 
3208   for (auto &KV : ValueToClass) {
3209     if (auto *I = dyn_cast<Instruction>(KV.first))
3210       // Skip unused/dead instructions.
3211       if (InstrToDFSNum(I) == 0)
3212         continue;
3213     BeforeIteration.insert({KV.first, *KV.second});
3214   }
3215 
3216   TouchedInstructions.set();
3217   TouchedInstructions.reset(0);
3218   iterateTouchedInstructions();
3219   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3220       EqualClasses;
3221   for (const auto &KV : ValueToClass) {
3222     if (auto *I = dyn_cast<Instruction>(KV.first))
3223       // Skip unused/dead instructions.
3224       if (InstrToDFSNum(I) == 0)
3225         continue;
3226     // We could sink these uses, but i think this adds a bit of clarity here as
3227     // to what we are comparing.
3228     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3229     auto *AfterCC = KV.second;
3230     // Note that the classes can't change at this point, so we memoize the set
3231     // that are equal.
3232     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3233       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3234              "Value number changed after main loop completed!");
3235       EqualClasses.insert({BeforeCC, AfterCC});
3236     }
3237   }
3238 #endif
3239 }
3240 
3241 // Verify that for each store expression in the expression to class mapping,
3242 // only the latest appears, and multiple ones do not appear.
3243 // Because loads do not use the stored value when doing equality with stores,
3244 // if we don't erase the old store expressions from the table, a load can find
3245 // a no-longer valid StoreExpression.
3246 void NewGVN::verifyStoreExpressions() const {
3247 #ifndef NDEBUG
3248   // This is the only use of this, and it's not worth defining a complicated
3249   // densemapinfo hash/equality function for it.
3250   std::set<
3251       std::pair<const Value *,
3252                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3253       StoreExpressionSet;
3254   for (const auto &KV : ExpressionToClass) {
3255     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3256       // Make sure a version that will conflict with loads is not already there
3257       auto Res = StoreExpressionSet.insert(
3258           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3259                                               SE->getStoredValue())});
3260       bool Okay = Res.second;
3261       // It's okay to have the same expression already in there if it is
3262       // identical in nature.
3263       // This can happen when the leader of the stored value changes over time.
3264       if (!Okay)
3265         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3266                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3267                 lookupOperandLeader(SE->getStoredValue()));
3268       assert(Okay && "Stored expression conflict exists in expression table");
3269       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3270       assert(ValueExpr && ValueExpr->equals(*SE) &&
3271              "StoreExpression in ExpressionToClass is not latest "
3272              "StoreExpression for value");
3273     }
3274   }
3275 #endif
3276 }
3277 
3278 // This is the main value numbering loop, it iterates over the initial touched
3279 // instruction set, propagating value numbers, marking things touched, etc,
3280 // until the set of touched instructions is completely empty.
3281 void NewGVN::iterateTouchedInstructions() {
3282   unsigned int Iterations = 0;
3283   // Figure out where touchedinstructions starts
3284   int FirstInstr = TouchedInstructions.find_first();
3285   // Nothing set, nothing to iterate, just return.
3286   if (FirstInstr == -1)
3287     return;
3288   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3289   while (TouchedInstructions.any()) {
3290     ++Iterations;
3291     // Walk through all the instructions in all the blocks in RPO.
3292     // TODO: As we hit a new block, we should push and pop equalities into a
3293     // table lookupOperandLeader can use, to catch things PredicateInfo
3294     // might miss, like edge-only equivalences.
3295     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3296 
3297       // This instruction was found to be dead. We don't bother looking
3298       // at it again.
3299       if (InstrNum == 0) {
3300         TouchedInstructions.reset(InstrNum);
3301         continue;
3302       }
3303 
3304       Value *V = InstrFromDFSNum(InstrNum);
3305       const BasicBlock *CurrBlock = getBlockForValue(V);
3306 
3307       // If we hit a new block, do reachability processing.
3308       if (CurrBlock != LastBlock) {
3309         LastBlock = CurrBlock;
3310         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3311         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3312 
3313         // If it's not reachable, erase any touched instructions and move on.
3314         if (!BlockReachable) {
3315           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3316           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3317                             << getBlockName(CurrBlock)
3318                             << " because it is unreachable\n");
3319           continue;
3320         }
3321         updateProcessedCount(CurrBlock);
3322       }
3323       // Reset after processing (because we may mark ourselves as touched when
3324       // we propagate equalities).
3325       TouchedInstructions.reset(InstrNum);
3326 
3327       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3328         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3329         valueNumberMemoryPhi(MP);
3330       } else if (auto *I = dyn_cast<Instruction>(V)) {
3331         valueNumberInstruction(I);
3332       } else {
3333         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3334       }
3335       updateProcessedCount(V);
3336     }
3337   }
3338   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3339 }
3340 
3341 // This is the main transformation entry point.
3342 bool NewGVN::runGVN() {
3343   if (DebugCounter::isCounterSet(VNCounter))
3344     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3345   bool Changed = false;
3346   NumFuncArgs = F.arg_size();
3347   MSSAWalker = MSSA->getWalker();
3348   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3349 
3350   // Count number of instructions for sizing of hash tables, and come
3351   // up with a global dfs numbering for instructions.
3352   unsigned ICount = 1;
3353   // Add an empty instruction to account for the fact that we start at 1
3354   DFSToInstr.emplace_back(nullptr);
3355   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3356   // same as dominator tree order, particularly with regard whether backedges
3357   // get visited first or second, given a block with multiple successors.
3358   // If we visit in the wrong order, we will end up performing N times as many
3359   // iterations.
3360   // The dominator tree does guarantee that, for a given dom tree node, it's
3361   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3362   // the siblings.
3363   ReversePostOrderTraversal<Function *> RPOT(&F);
3364   unsigned Counter = 0;
3365   for (auto &B : RPOT) {
3366     auto *Node = DT->getNode(B);
3367     assert(Node && "RPO and Dominator tree should have same reachability");
3368     RPOOrdering[Node] = ++Counter;
3369   }
3370   // Sort dominator tree children arrays into RPO.
3371   for (auto &B : RPOT) {
3372     auto *Node = DT->getNode(B);
3373     if (Node->getNumChildren() > 1)
3374       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3375         return RPOOrdering[A] < RPOOrdering[B];
3376       });
3377   }
3378 
3379   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3380   for (auto DTN : depth_first(DT->getRootNode())) {
3381     BasicBlock *B = DTN->getBlock();
3382     const auto &BlockRange = assignDFSNumbers(B, ICount);
3383     BlockInstRange.insert({B, BlockRange});
3384     ICount += BlockRange.second - BlockRange.first;
3385   }
3386   initializeCongruenceClasses(F);
3387 
3388   TouchedInstructions.resize(ICount);
3389   // Ensure we don't end up resizing the expressionToClass map, as
3390   // that can be quite expensive. At most, we have one expression per
3391   // instruction.
3392   ExpressionToClass.reserve(ICount);
3393 
3394   // Initialize the touched instructions to include the entry block.
3395   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3396   TouchedInstructions.set(InstRange.first, InstRange.second);
3397   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3398                     << " marked reachable\n");
3399   ReachableBlocks.insert(&F.getEntryBlock());
3400 
3401   iterateTouchedInstructions();
3402   verifyMemoryCongruency();
3403   verifyIterationSettled(F);
3404   verifyStoreExpressions();
3405 
3406   Changed |= eliminateInstructions(F);
3407 
3408   // Delete all instructions marked for deletion.
3409   for (Instruction *ToErase : InstructionsToErase) {
3410     if (!ToErase->use_empty())
3411       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3412 
3413     assert(ToErase->getParent() &&
3414            "BB containing ToErase deleted unexpectedly!");
3415     ToErase->eraseFromParent();
3416   }
3417   Changed |= !InstructionsToErase.empty();
3418 
3419   // Delete all unreachable blocks.
3420   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3421     return !ReachableBlocks.count(&BB);
3422   };
3423 
3424   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3425     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3426                       << " is unreachable\n");
3427     deleteInstructionsInBlock(&BB);
3428     Changed = true;
3429   }
3430 
3431   cleanupTables();
3432   return Changed;
3433 }
3434 
3435 struct NewGVN::ValueDFS {
3436   int DFSIn = 0;
3437   int DFSOut = 0;
3438   int LocalNum = 0;
3439 
3440   // Only one of Def and U will be set.
3441   // The bool in the Def tells us whether the Def is the stored value of a
3442   // store.
3443   PointerIntPair<Value *, 1, bool> Def;
3444   Use *U = nullptr;
3445 
3446   bool operator<(const ValueDFS &Other) const {
3447     // It's not enough that any given field be less than - we have sets
3448     // of fields that need to be evaluated together to give a proper ordering.
3449     // For example, if you have;
3450     // DFS (1, 3)
3451     // Val 0
3452     // DFS (1, 2)
3453     // Val 50
3454     // We want the second to be less than the first, but if we just go field
3455     // by field, we will get to Val 0 < Val 50 and say the first is less than
3456     // the second. We only want it to be less than if the DFS orders are equal.
3457     //
3458     // Each LLVM instruction only produces one value, and thus the lowest-level
3459     // differentiator that really matters for the stack (and what we use as as a
3460     // replacement) is the local dfs number.
3461     // Everything else in the structure is instruction level, and only affects
3462     // the order in which we will replace operands of a given instruction.
3463     //
3464     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3465     // the order of replacement of uses does not matter.
3466     // IE given,
3467     //  a = 5
3468     //  b = a + a
3469     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3470     // localnum.
3471     // The .val will be the same as well.
3472     // The .u's will be different.
3473     // You will replace both, and it does not matter what order you replace them
3474     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3475     // operand 2).
3476     // Similarly for the case of same dfsin, dfsout, localnum, but different
3477     // .val's
3478     //  a = 5
3479     //  b  = 6
3480     //  c = a + b
3481     // in c, we will a valuedfs for a, and one for b,with everything the same
3482     // but .val  and .u.
3483     // It does not matter what order we replace these operands in.
3484     // You will always end up with the same IR, and this is guaranteed.
3485     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3486            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3487                     Other.U);
3488   }
3489 };
3490 
3491 // This function converts the set of members for a congruence class from values,
3492 // to sets of defs and uses with associated DFS info.  The total number of
3493 // reachable uses for each value is stored in UseCount, and instructions that
3494 // seem
3495 // dead (have no non-dead uses) are stored in ProbablyDead.
3496 void NewGVN::convertClassToDFSOrdered(
3497     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3498     DenseMap<const Value *, unsigned int> &UseCounts,
3499     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3500   for (auto D : Dense) {
3501     // First add the value.
3502     BasicBlock *BB = getBlockForValue(D);
3503     // Constants are handled prior to ever calling this function, so
3504     // we should only be left with instructions as members.
3505     assert(BB && "Should have figured out a basic block for value");
3506     ValueDFS VDDef;
3507     DomTreeNode *DomNode = DT->getNode(BB);
3508     VDDef.DFSIn = DomNode->getDFSNumIn();
3509     VDDef.DFSOut = DomNode->getDFSNumOut();
3510     // If it's a store, use the leader of the value operand, if it's always
3511     // available, or the value operand.  TODO: We could do dominance checks to
3512     // find a dominating leader, but not worth it ATM.
3513     if (auto *SI = dyn_cast<StoreInst>(D)) {
3514       auto Leader = lookupOperandLeader(SI->getValueOperand());
3515       if (alwaysAvailable(Leader)) {
3516         VDDef.Def.setPointer(Leader);
3517       } else {
3518         VDDef.Def.setPointer(SI->getValueOperand());
3519         VDDef.Def.setInt(true);
3520       }
3521     } else {
3522       VDDef.Def.setPointer(D);
3523     }
3524     assert(isa<Instruction>(D) &&
3525            "The dense set member should always be an instruction");
3526     Instruction *Def = cast<Instruction>(D);
3527     VDDef.LocalNum = InstrToDFSNum(D);
3528     DFSOrderedSet.push_back(VDDef);
3529     // If there is a phi node equivalent, add it
3530     if (auto *PN = RealToTemp.lookup(Def)) {
3531       auto *PHIE =
3532           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3533       if (PHIE) {
3534         VDDef.Def.setInt(false);
3535         VDDef.Def.setPointer(PN);
3536         VDDef.LocalNum = 0;
3537         DFSOrderedSet.push_back(VDDef);
3538       }
3539     }
3540 
3541     unsigned int UseCount = 0;
3542     // Now add the uses.
3543     for (auto &U : Def->uses()) {
3544       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3545         // Don't try to replace into dead uses
3546         if (InstructionsToErase.count(I))
3547           continue;
3548         ValueDFS VDUse;
3549         // Put the phi node uses in the incoming block.
3550         BasicBlock *IBlock;
3551         if (auto *P = dyn_cast<PHINode>(I)) {
3552           IBlock = P->getIncomingBlock(U);
3553           // Make phi node users appear last in the incoming block
3554           // they are from.
3555           VDUse.LocalNum = InstrDFS.size() + 1;
3556         } else {
3557           IBlock = getBlockForValue(I);
3558           VDUse.LocalNum = InstrToDFSNum(I);
3559         }
3560 
3561         // Skip uses in unreachable blocks, as we're going
3562         // to delete them.
3563         if (ReachableBlocks.count(IBlock) == 0)
3564           continue;
3565 
3566         DomTreeNode *DomNode = DT->getNode(IBlock);
3567         VDUse.DFSIn = DomNode->getDFSNumIn();
3568         VDUse.DFSOut = DomNode->getDFSNumOut();
3569         VDUse.U = &U;
3570         ++UseCount;
3571         DFSOrderedSet.emplace_back(VDUse);
3572       }
3573     }
3574 
3575     // If there are no uses, it's probably dead (but it may have side-effects,
3576     // so not definitely dead. Otherwise, store the number of uses so we can
3577     // track if it becomes dead later).
3578     if (UseCount == 0)
3579       ProbablyDead.insert(Def);
3580     else
3581       UseCounts[Def] = UseCount;
3582   }
3583 }
3584 
3585 // This function converts the set of members for a congruence class from values,
3586 // to the set of defs for loads and stores, with associated DFS info.
3587 void NewGVN::convertClassToLoadsAndStores(
3588     const CongruenceClass &Dense,
3589     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3590   for (auto D : Dense) {
3591     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3592       continue;
3593 
3594     BasicBlock *BB = getBlockForValue(D);
3595     ValueDFS VD;
3596     DomTreeNode *DomNode = DT->getNode(BB);
3597     VD.DFSIn = DomNode->getDFSNumIn();
3598     VD.DFSOut = DomNode->getDFSNumOut();
3599     VD.Def.setPointer(D);
3600 
3601     // If it's an instruction, use the real local dfs number.
3602     if (auto *I = dyn_cast<Instruction>(D))
3603       VD.LocalNum = InstrToDFSNum(I);
3604     else
3605       llvm_unreachable("Should have been an instruction");
3606 
3607     LoadsAndStores.emplace_back(VD);
3608   }
3609 }
3610 
3611 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3612   patchReplacementInstruction(I, Repl);
3613   I->replaceAllUsesWith(Repl);
3614 }
3615 
3616 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3617   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3618   ++NumGVNBlocksDeleted;
3619 
3620   // Delete the instructions backwards, as it has a reduced likelihood of having
3621   // to update as many def-use and use-def chains. Start after the terminator.
3622   auto StartPoint = BB->rbegin();
3623   ++StartPoint;
3624   // Note that we explicitly recalculate BB->rend() on each iteration,
3625   // as it may change when we remove the first instruction.
3626   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3627     Instruction &Inst = *I++;
3628     if (!Inst.use_empty())
3629       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3630     if (isa<LandingPadInst>(Inst))
3631       continue;
3632     salvageKnowledge(&Inst, AC);
3633 
3634     Inst.eraseFromParent();
3635     ++NumGVNInstrDeleted;
3636   }
3637   // Now insert something that simplifycfg will turn into an unreachable.
3638   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3639   new StoreInst(UndefValue::get(Int8Ty),
3640                 Constant::getNullValue(Int8Ty->getPointerTo()),
3641                 BB->getTerminator());
3642 }
3643 
3644 void NewGVN::markInstructionForDeletion(Instruction *I) {
3645   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3646   InstructionsToErase.insert(I);
3647 }
3648 
3649 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3650   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3651   patchAndReplaceAllUsesWith(I, V);
3652   // We save the actual erasing to avoid invalidating memory
3653   // dependencies until we are done with everything.
3654   markInstructionForDeletion(I);
3655 }
3656 
3657 namespace {
3658 
3659 // This is a stack that contains both the value and dfs info of where
3660 // that value is valid.
3661 class ValueDFSStack {
3662 public:
3663   Value *back() const { return ValueStack.back(); }
3664   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3665 
3666   void push_back(Value *V, int DFSIn, int DFSOut) {
3667     ValueStack.emplace_back(V);
3668     DFSStack.emplace_back(DFSIn, DFSOut);
3669   }
3670 
3671   bool empty() const { return DFSStack.empty(); }
3672 
3673   bool isInScope(int DFSIn, int DFSOut) const {
3674     if (empty())
3675       return false;
3676     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3677   }
3678 
3679   void popUntilDFSScope(int DFSIn, int DFSOut) {
3680 
3681     // These two should always be in sync at this point.
3682     assert(ValueStack.size() == DFSStack.size() &&
3683            "Mismatch between ValueStack and DFSStack");
3684     while (
3685         !DFSStack.empty() &&
3686         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3687       DFSStack.pop_back();
3688       ValueStack.pop_back();
3689     }
3690   }
3691 
3692 private:
3693   SmallVector<Value *, 8> ValueStack;
3694   SmallVector<std::pair<int, int>, 8> DFSStack;
3695 };
3696 
3697 } // end anonymous namespace
3698 
3699 // Given an expression, get the congruence class for it.
3700 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3701   if (auto *VE = dyn_cast<VariableExpression>(E))
3702     return ValueToClass.lookup(VE->getVariableValue());
3703   else if (isa<DeadExpression>(E))
3704     return TOPClass;
3705   return ExpressionToClass.lookup(E);
3706 }
3707 
3708 // Given a value and a basic block we are trying to see if it is available in,
3709 // see if the value has a leader available in that block.
3710 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3711                                   const Instruction *OrigInst,
3712                                   const BasicBlock *BB) const {
3713   // It would already be constant if we could make it constant
3714   if (auto *CE = dyn_cast<ConstantExpression>(E))
3715     return CE->getConstantValue();
3716   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3717     auto *V = VE->getVariableValue();
3718     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3719       return VE->getVariableValue();
3720   }
3721 
3722   auto *CC = getClassForExpression(E);
3723   if (!CC)
3724     return nullptr;
3725   if (alwaysAvailable(CC->getLeader()))
3726     return CC->getLeader();
3727 
3728   for (auto Member : *CC) {
3729     auto *MemberInst = dyn_cast<Instruction>(Member);
3730     if (MemberInst == OrigInst)
3731       continue;
3732     // Anything that isn't an instruction is always available.
3733     if (!MemberInst)
3734       return Member;
3735     if (DT->dominates(getBlockForValue(MemberInst), BB))
3736       return Member;
3737   }
3738   return nullptr;
3739 }
3740 
3741 bool NewGVN::eliminateInstructions(Function &F) {
3742   // This is a non-standard eliminator. The normal way to eliminate is
3743   // to walk the dominator tree in order, keeping track of available
3744   // values, and eliminating them.  However, this is mildly
3745   // pointless. It requires doing lookups on every instruction,
3746   // regardless of whether we will ever eliminate it.  For
3747   // instructions part of most singleton congruence classes, we know we
3748   // will never eliminate them.
3749 
3750   // Instead, this eliminator looks at the congruence classes directly, sorts
3751   // them into a DFS ordering of the dominator tree, and then we just
3752   // perform elimination straight on the sets by walking the congruence
3753   // class member uses in order, and eliminate the ones dominated by the
3754   // last member.   This is worst case O(E log E) where E = number of
3755   // instructions in a single congruence class.  In theory, this is all
3756   // instructions.   In practice, it is much faster, as most instructions are
3757   // either in singleton congruence classes or can't possibly be eliminated
3758   // anyway (if there are no overlapping DFS ranges in class).
3759   // When we find something not dominated, it becomes the new leader
3760   // for elimination purposes.
3761   // TODO: If we wanted to be faster, We could remove any members with no
3762   // overlapping ranges while sorting, as we will never eliminate anything
3763   // with those members, as they don't dominate anything else in our set.
3764 
3765   bool AnythingReplaced = false;
3766 
3767   // Since we are going to walk the domtree anyway, and we can't guarantee the
3768   // DFS numbers are updated, we compute some ourselves.
3769   DT->updateDFSNumbers();
3770 
3771   // Go through all of our phi nodes, and kill the arguments associated with
3772   // unreachable edges.
3773   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3774     for (auto &Operand : PHI->incoming_values())
3775       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3776         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3777                           << " for block "
3778                           << getBlockName(PHI->getIncomingBlock(Operand))
3779                           << " with undef due to it being unreachable\n");
3780         Operand.set(UndefValue::get(PHI->getType()));
3781       }
3782   };
3783   // Replace unreachable phi arguments.
3784   // At this point, RevisitOnReachabilityChange only contains:
3785   //
3786   // 1. PHIs
3787   // 2. Temporaries that will convert to PHIs
3788   // 3. Operations that are affected by an unreachable edge but do not fit into
3789   // 1 or 2 (rare).
3790   // So it is a slight overshoot of what we want. We could make it exact by
3791   // using two SparseBitVectors per block.
3792   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3793   for (auto &KV : ReachableEdges)
3794     ReachablePredCount[KV.getEnd()]++;
3795   for (auto &BBPair : RevisitOnReachabilityChange) {
3796     for (auto InstNum : BBPair.second) {
3797       auto *Inst = InstrFromDFSNum(InstNum);
3798       auto *PHI = dyn_cast<PHINode>(Inst);
3799       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3800       if (!PHI)
3801         continue;
3802       auto *BB = BBPair.first;
3803       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3804         ReplaceUnreachablePHIArgs(PHI, BB);
3805     }
3806   }
3807 
3808   // Map to store the use counts
3809   DenseMap<const Value *, unsigned int> UseCounts;
3810   for (auto *CC : reverse(CongruenceClasses)) {
3811     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3812                       << "\n");
3813     // Track the equivalent store info so we can decide whether to try
3814     // dead store elimination.
3815     SmallVector<ValueDFS, 8> PossibleDeadStores;
3816     SmallPtrSet<Instruction *, 8> ProbablyDead;
3817     if (CC->isDead() || CC->empty())
3818       continue;
3819     // Everything still in the TOP class is unreachable or dead.
3820     if (CC == TOPClass) {
3821       for (auto M : *CC) {
3822         auto *VTE = ValueToExpression.lookup(M);
3823         if (VTE && isa<DeadExpression>(VTE))
3824           markInstructionForDeletion(cast<Instruction>(M));
3825         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3826                 InstructionsToErase.count(cast<Instruction>(M))) &&
3827                "Everything in TOP should be unreachable or dead at this "
3828                "point");
3829       }
3830       continue;
3831     }
3832 
3833     assert(CC->getLeader() && "We should have had a leader");
3834     // If this is a leader that is always available, and it's a
3835     // constant or has no equivalences, just replace everything with
3836     // it. We then update the congruence class with whatever members
3837     // are left.
3838     Value *Leader =
3839         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3840     if (alwaysAvailable(Leader)) {
3841       CongruenceClass::MemberSet MembersLeft;
3842       for (auto M : *CC) {
3843         Value *Member = M;
3844         // Void things have no uses we can replace.
3845         if (Member == Leader || !isa<Instruction>(Member) ||
3846             Member->getType()->isVoidTy()) {
3847           MembersLeft.insert(Member);
3848           continue;
3849         }
3850         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3851                           << *Member << "\n");
3852         auto *I = cast<Instruction>(Member);
3853         assert(Leader != I && "About to accidentally remove our leader");
3854         replaceInstruction(I, Leader);
3855         AnythingReplaced = true;
3856       }
3857       CC->swap(MembersLeft);
3858     } else {
3859       // If this is a singleton, we can skip it.
3860       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3861         // This is a stack because equality replacement/etc may place
3862         // constants in the middle of the member list, and we want to use
3863         // those constant values in preference to the current leader, over
3864         // the scope of those constants.
3865         ValueDFSStack EliminationStack;
3866 
3867         // Convert the members to DFS ordered sets and then merge them.
3868         SmallVector<ValueDFS, 8> DFSOrderedSet;
3869         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3870 
3871         // Sort the whole thing.
3872         llvm::sort(DFSOrderedSet);
3873         for (auto &VD : DFSOrderedSet) {
3874           int MemberDFSIn = VD.DFSIn;
3875           int MemberDFSOut = VD.DFSOut;
3876           Value *Def = VD.Def.getPointer();
3877           bool FromStore = VD.Def.getInt();
3878           Use *U = VD.U;
3879           // We ignore void things because we can't get a value from them.
3880           if (Def && Def->getType()->isVoidTy())
3881             continue;
3882           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3883           if (DefInst && AllTempInstructions.count(DefInst)) {
3884             auto *PN = cast<PHINode>(DefInst);
3885 
3886             // If this is a value phi and that's the expression we used, insert
3887             // it into the program
3888             // remove from temp instruction list.
3889             AllTempInstructions.erase(PN);
3890             auto *DefBlock = getBlockForValue(Def);
3891             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3892                               << " into block "
3893                               << getBlockName(getBlockForValue(Def)) << "\n");
3894             PN->insertBefore(&DefBlock->front());
3895             Def = PN;
3896             NumGVNPHIOfOpsEliminations++;
3897           }
3898 
3899           if (EliminationStack.empty()) {
3900             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3901           } else {
3902             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3903                               << EliminationStack.dfs_back().first << ","
3904                               << EliminationStack.dfs_back().second << ")\n");
3905           }
3906 
3907           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3908                             << MemberDFSOut << ")\n");
3909           // First, we see if we are out of scope or empty.  If so,
3910           // and there equivalences, we try to replace the top of
3911           // stack with equivalences (if it's on the stack, it must
3912           // not have been eliminated yet).
3913           // Then we synchronize to our current scope, by
3914           // popping until we are back within a DFS scope that
3915           // dominates the current member.
3916           // Then, what happens depends on a few factors
3917           // If the stack is now empty, we need to push
3918           // If we have a constant or a local equivalence we want to
3919           // start using, we also push.
3920           // Otherwise, we walk along, processing members who are
3921           // dominated by this scope, and eliminate them.
3922           bool ShouldPush = Def && EliminationStack.empty();
3923           bool OutOfScope =
3924               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3925 
3926           if (OutOfScope || ShouldPush) {
3927             // Sync to our current scope.
3928             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3929             bool ShouldPush = Def && EliminationStack.empty();
3930             if (ShouldPush) {
3931               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3932             }
3933           }
3934 
3935           // Skip the Def's, we only want to eliminate on their uses.  But mark
3936           // dominated defs as dead.
3937           if (Def) {
3938             // For anything in this case, what and how we value number
3939             // guarantees that any side-effets that would have occurred (ie
3940             // throwing, etc) can be proven to either still occur (because it's
3941             // dominated by something that has the same side-effects), or never
3942             // occur.  Otherwise, we would not have been able to prove it value
3943             // equivalent to something else. For these things, we can just mark
3944             // it all dead.  Note that this is different from the "ProbablyDead"
3945             // set, which may not be dominated by anything, and thus, are only
3946             // easy to prove dead if they are also side-effect free. Note that
3947             // because stores are put in terms of the stored value, we skip
3948             // stored values here. If the stored value is really dead, it will
3949             // still be marked for deletion when we process it in its own class.
3950             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
3951                 isa<Instruction>(Def) && !FromStore)
3952               markInstructionForDeletion(cast<Instruction>(Def));
3953             continue;
3954           }
3955           // At this point, we know it is a Use we are trying to possibly
3956           // replace.
3957 
3958           assert(isa<Instruction>(U->get()) &&
3959                  "Current def should have been an instruction");
3960           assert(isa<Instruction>(U->getUser()) &&
3961                  "Current user should have been an instruction");
3962 
3963           // If the thing we are replacing into is already marked to be dead,
3964           // this use is dead.  Note that this is true regardless of whether
3965           // we have anything dominating the use or not.  We do this here
3966           // because we are already walking all the uses anyway.
3967           Instruction *InstUse = cast<Instruction>(U->getUser());
3968           if (InstructionsToErase.count(InstUse)) {
3969             auto &UseCount = UseCounts[U->get()];
3970             if (--UseCount == 0) {
3971               ProbablyDead.insert(cast<Instruction>(U->get()));
3972             }
3973           }
3974 
3975           // If we get to this point, and the stack is empty we must have a use
3976           // with nothing we can use to eliminate this use, so just skip it.
3977           if (EliminationStack.empty())
3978             continue;
3979 
3980           Value *DominatingLeader = EliminationStack.back();
3981 
3982           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
3983           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
3984           if (isSSACopy)
3985             DominatingLeader = II->getOperand(0);
3986 
3987           // Don't replace our existing users with ourselves.
3988           if (U->get() == DominatingLeader)
3989             continue;
3990           LLVM_DEBUG(dbgs()
3991                      << "Found replacement " << *DominatingLeader << " for "
3992                      << *U->get() << " in " << *(U->getUser()) << "\n");
3993 
3994           // If we replaced something in an instruction, handle the patching of
3995           // metadata.  Skip this if we are replacing predicateinfo with its
3996           // original operand, as we already know we can just drop it.
3997           auto *ReplacedInst = cast<Instruction>(U->get());
3998           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3999           if (!PI || DominatingLeader != PI->OriginalOp)
4000             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4001           U->set(DominatingLeader);
4002           // This is now a use of the dominating leader, which means if the
4003           // dominating leader was dead, it's now live!
4004           auto &LeaderUseCount = UseCounts[DominatingLeader];
4005           // It's about to be alive again.
4006           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4007             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4008           // For copy instructions, we use their operand as a leader,
4009           // which means we remove a user of the copy and it may become dead.
4010           if (isSSACopy) {
4011             unsigned &IIUseCount = UseCounts[II];
4012             if (--IIUseCount == 0)
4013               ProbablyDead.insert(II);
4014           }
4015           ++LeaderUseCount;
4016           AnythingReplaced = true;
4017         }
4018       }
4019     }
4020 
4021     // At this point, anything still in the ProbablyDead set is actually dead if
4022     // would be trivially dead.
4023     for (auto *I : ProbablyDead)
4024       if (wouldInstructionBeTriviallyDead(I))
4025         markInstructionForDeletion(I);
4026 
4027     // Cleanup the congruence class.
4028     CongruenceClass::MemberSet MembersLeft;
4029     for (auto *Member : *CC)
4030       if (!isa<Instruction>(Member) ||
4031           !InstructionsToErase.count(cast<Instruction>(Member)))
4032         MembersLeft.insert(Member);
4033     CC->swap(MembersLeft);
4034 
4035     // If we have possible dead stores to look at, try to eliminate them.
4036     if (CC->getStoreCount() > 0) {
4037       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4038       llvm::sort(PossibleDeadStores);
4039       ValueDFSStack EliminationStack;
4040       for (auto &VD : PossibleDeadStores) {
4041         int MemberDFSIn = VD.DFSIn;
4042         int MemberDFSOut = VD.DFSOut;
4043         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4044         if (EliminationStack.empty() ||
4045             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4046           // Sync to our current scope.
4047           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4048           if (EliminationStack.empty()) {
4049             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4050             continue;
4051           }
4052         }
4053         // We already did load elimination, so nothing to do here.
4054         if (isa<LoadInst>(Member))
4055           continue;
4056         assert(!EliminationStack.empty());
4057         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4058         (void)Leader;
4059         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4060         // Member is dominater by Leader, and thus dead
4061         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4062                           << " that is dominated by " << *Leader << "\n");
4063         markInstructionForDeletion(Member);
4064         CC->erase(Member);
4065         ++NumGVNDeadStores;
4066       }
4067     }
4068   }
4069   return AnythingReplaced;
4070 }
4071 
4072 // This function provides global ranking of operations so that we can place them
4073 // in a canonical order.  Note that rank alone is not necessarily enough for a
4074 // complete ordering, as constants all have the same rank.  However, generally,
4075 // we will simplify an operation with all constants so that it doesn't matter
4076 // what order they appear in.
4077 unsigned int NewGVN::getRank(const Value *V) const {
4078   // Prefer constants to undef to anything else
4079   // Undef is a constant, have to check it first.
4080   // Prefer smaller constants to constantexprs
4081   if (isa<ConstantExpr>(V))
4082     return 2;
4083   if (isa<UndefValue>(V))
4084     return 1;
4085   if (isa<Constant>(V))
4086     return 0;
4087   else if (auto *A = dyn_cast<Argument>(V))
4088     return 3 + A->getArgNo();
4089 
4090   // Need to shift the instruction DFS by number of arguments + 3 to account for
4091   // the constant and argument ranking above.
4092   unsigned Result = InstrToDFSNum(V);
4093   if (Result > 0)
4094     return 4 + NumFuncArgs + Result;
4095   // Unreachable or something else, just return a really large number.
4096   return ~0;
4097 }
4098 
4099 // This is a function that says whether two commutative operations should
4100 // have their order swapped when canonicalizing.
4101 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4102   // Because we only care about a total ordering, and don't rewrite expressions
4103   // in this order, we order by rank, which will give a strict weak ordering to
4104   // everything but constants, and then we order by pointer address.
4105   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4106 }
4107 
4108 namespace {
4109 
4110 class NewGVNLegacyPass : public FunctionPass {
4111 public:
4112   // Pass identification, replacement for typeid.
4113   static char ID;
4114 
4115   NewGVNLegacyPass() : FunctionPass(ID) {
4116     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4117   }
4118 
4119   bool runOnFunction(Function &F) override;
4120 
4121 private:
4122   void getAnalysisUsage(AnalysisUsage &AU) const override {
4123     AU.addRequired<AssumptionCacheTracker>();
4124     AU.addRequired<DominatorTreeWrapperPass>();
4125     AU.addRequired<TargetLibraryInfoWrapperPass>();
4126     AU.addRequired<MemorySSAWrapperPass>();
4127     AU.addRequired<AAResultsWrapperPass>();
4128     AU.addPreserved<DominatorTreeWrapperPass>();
4129     AU.addPreserved<GlobalsAAWrapperPass>();
4130   }
4131 };
4132 
4133 } // end anonymous namespace
4134 
4135 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4136   if (skipFunction(F))
4137     return false;
4138   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4139                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4140                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4141                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4142                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4143                 F.getParent()->getDataLayout())
4144       .runGVN();
4145 }
4146 
4147 char NewGVNLegacyPass::ID = 0;
4148 
4149 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4150                       false, false)
4151 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4152 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4156 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4157 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4158                     false)
4159 
4160 // createGVNPass - The public interface to this file.
4161 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4162 
4163 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4164   // Apparently the order in which we get these results matter for
4165   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4166   // the same order here, just in case.
4167   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4168   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4169   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4170   auto &AA = AM.getResult<AAManager>(F);
4171   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4172   bool Changed =
4173       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4174           .runGVN();
4175   if (!Changed)
4176     return PreservedAnalyses::all();
4177   PreservedAnalyses PA;
4178   PA.preserve<DominatorTreeAnalysis>();
4179   PA.preserve<GlobalsAA>();
4180   return PA;
4181 }
4182