1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/IR/Argument.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/Support/Allocator.h" 97 #include "llvm/Support/ArrayRecycler.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/CommandLine.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/DebugCounter.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/PointerLikeTypeTraits.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Transforms/Scalar/GVNExpression.h" 106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/PredicateInfo.h" 109 #include "llvm/Transforms/Utils/VNCoercion.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstdint> 113 #include <iterator> 114 #include <map> 115 #include <memory> 116 #include <set> 117 #include <string> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 using namespace llvm::GVNExpression; 124 using namespace llvm::VNCoercion; 125 using namespace llvm::PatternMatch; 126 127 #define DEBUG_TYPE "newgvn" 128 129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 133 STATISTIC(NumGVNMaxIterations, 134 "Maximum Number of iterations it took to converge GVN"); 135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 137 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 138 "Number of avoided sorted leader changes"); 139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 141 STATISTIC(NumGVNPHIOfOpsEliminations, 142 "Number of things eliminated using PHI of ops"); 143 DEBUG_COUNTER(VNCounter, "newgvn-vn", 144 "Controls which instructions are value numbered"); 145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 146 "Controls which instructions we create phi of ops for"); 147 // Currently store defining access refinement is too slow due to basicaa being 148 // egregiously slow. This flag lets us keep it working while we work on this 149 // issue. 150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 151 cl::init(false), cl::Hidden); 152 153 /// Currently, the generation "phi of ops" can result in correctness issues. 154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 155 cl::Hidden); 156 157 //===----------------------------------------------------------------------===// 158 // GVN Pass 159 //===----------------------------------------------------------------------===// 160 161 // Anchor methods. 162 namespace llvm { 163 namespace GVNExpression { 164 165 Expression::~Expression() = default; 166 BasicExpression::~BasicExpression() = default; 167 CallExpression::~CallExpression() = default; 168 LoadExpression::~LoadExpression() = default; 169 StoreExpression::~StoreExpression() = default; 170 AggregateValueExpression::~AggregateValueExpression() = default; 171 PHIExpression::~PHIExpression() = default; 172 173 } // end namespace GVNExpression 174 } // end namespace llvm 175 176 namespace { 177 178 // Tarjan's SCC finding algorithm with Nuutila's improvements 179 // SCCIterator is actually fairly complex for the simple thing we want. 180 // It also wants to hand us SCC's that are unrelated to the phi node we ask 181 // about, and have us process them there or risk redoing work. 182 // Graph traits over a filter iterator also doesn't work that well here. 183 // This SCC finder is specialized to walk use-def chains, and only follows 184 // instructions, 185 // not generic values (arguments, etc). 186 struct TarjanSCC { 187 TarjanSCC() : Components(1) {} 188 189 void Start(const Instruction *Start) { 190 if (Root.lookup(Start) == 0) 191 FindSCC(Start); 192 } 193 194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 195 unsigned ComponentID = ValueToComponent.lookup(V); 196 197 assert(ComponentID > 0 && 198 "Asking for a component for a value we never processed"); 199 return Components[ComponentID]; 200 } 201 202 private: 203 void FindSCC(const Instruction *I) { 204 Root[I] = ++DFSNum; 205 // Store the DFS Number we had before it possibly gets incremented. 206 unsigned int OurDFS = DFSNum; 207 for (const auto &Op : I->operands()) { 208 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 209 if (Root.lookup(Op) == 0) 210 FindSCC(InstOp); 211 if (!InComponent.count(Op)) 212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 213 } 214 } 215 // See if we really were the root of a component, by seeing if we still have 216 // our DFSNumber. If we do, we are the root of the component, and we have 217 // completed a component. If we do not, we are not the root of a component, 218 // and belong on the component stack. 219 if (Root.lookup(I) == OurDFS) { 220 unsigned ComponentID = Components.size(); 221 Components.resize(Components.size() + 1); 222 auto &Component = Components.back(); 223 Component.insert(I); 224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 225 InComponent.insert(I); 226 ValueToComponent[I] = ComponentID; 227 // Pop a component off the stack and label it. 228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 229 auto *Member = Stack.back(); 230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 231 Component.insert(Member); 232 InComponent.insert(Member); 233 ValueToComponent[Member] = ComponentID; 234 Stack.pop_back(); 235 } 236 } else { 237 // Part of a component, push to stack 238 Stack.push_back(I); 239 } 240 } 241 242 unsigned int DFSNum = 1; 243 SmallPtrSet<const Value *, 8> InComponent; 244 DenseMap<const Value *, unsigned int> Root; 245 SmallVector<const Value *, 8> Stack; 246 247 // Store the components as vector of ptr sets, because we need the topo order 248 // of SCC's, but not individual member order 249 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 250 251 DenseMap<const Value *, unsigned> ValueToComponent; 252 }; 253 254 // Congruence classes represent the set of expressions/instructions 255 // that are all the same *during some scope in the function*. 256 // That is, because of the way we perform equality propagation, and 257 // because of memory value numbering, it is not correct to assume 258 // you can willy-nilly replace any member with any other at any 259 // point in the function. 260 // 261 // For any Value in the Member set, it is valid to replace any dominated member 262 // with that Value. 263 // 264 // Every congruence class has a leader, and the leader is used to symbolize 265 // instructions in a canonical way (IE every operand of an instruction that is a 266 // member of the same congruence class will always be replaced with leader 267 // during symbolization). To simplify symbolization, we keep the leader as a 268 // constant if class can be proved to be a constant value. Otherwise, the 269 // leader is the member of the value set with the smallest DFS number. Each 270 // congruence class also has a defining expression, though the expression may be 271 // null. If it exists, it can be used for forward propagation and reassociation 272 // of values. 273 274 // For memory, we also track a representative MemoryAccess, and a set of memory 275 // members for MemoryPhis (which have no real instructions). Note that for 276 // memory, it seems tempting to try to split the memory members into a 277 // MemoryCongruenceClass or something. Unfortunately, this does not work 278 // easily. The value numbering of a given memory expression depends on the 279 // leader of the memory congruence class, and the leader of memory congruence 280 // class depends on the value numbering of a given memory expression. This 281 // leads to wasted propagation, and in some cases, missed optimization. For 282 // example: If we had value numbered two stores together before, but now do not, 283 // we move them to a new value congruence class. This in turn will move at one 284 // of the memorydefs to a new memory congruence class. Which in turn, affects 285 // the value numbering of the stores we just value numbered (because the memory 286 // congruence class is part of the value number). So while theoretically 287 // possible to split them up, it turns out to be *incredibly* complicated to get 288 // it to work right, because of the interdependency. While structurally 289 // slightly messier, it is algorithmically much simpler and faster to do what we 290 // do here, and track them both at once in the same class. 291 // Note: The default iterators for this class iterate over values 292 class CongruenceClass { 293 public: 294 using MemberType = Value; 295 using MemberSet = SmallPtrSet<MemberType *, 4>; 296 using MemoryMemberType = MemoryPhi; 297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 298 299 explicit CongruenceClass(unsigned ID) : ID(ID) {} 300 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 301 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 302 303 unsigned getID() const { return ID; } 304 305 // True if this class has no members left. This is mainly used for assertion 306 // purposes, and for skipping empty classes. 307 bool isDead() const { 308 // If it's both dead from a value perspective, and dead from a memory 309 // perspective, it's really dead. 310 return empty() && memory_empty(); 311 } 312 313 // Leader functions 314 Value *getLeader() const { return RepLeader; } 315 void setLeader(Value *Leader) { RepLeader = Leader; } 316 const std::pair<Value *, unsigned int> &getNextLeader() const { 317 return NextLeader; 318 } 319 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 320 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 321 if (LeaderPair.second < NextLeader.second) 322 NextLeader = LeaderPair; 323 } 324 325 Value *getStoredValue() const { return RepStoredValue; } 326 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 327 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 328 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 329 330 // Forward propagation info 331 const Expression *getDefiningExpr() const { return DefiningExpr; } 332 333 // Value member set 334 bool empty() const { return Members.empty(); } 335 unsigned size() const { return Members.size(); } 336 MemberSet::const_iterator begin() const { return Members.begin(); } 337 MemberSet::const_iterator end() const { return Members.end(); } 338 void insert(MemberType *M) { Members.insert(M); } 339 void erase(MemberType *M) { Members.erase(M); } 340 void swap(MemberSet &Other) { Members.swap(Other); } 341 342 // Memory member set 343 bool memory_empty() const { return MemoryMembers.empty(); } 344 unsigned memory_size() const { return MemoryMembers.size(); } 345 MemoryMemberSet::const_iterator memory_begin() const { 346 return MemoryMembers.begin(); 347 } 348 MemoryMemberSet::const_iterator memory_end() const { 349 return MemoryMembers.end(); 350 } 351 iterator_range<MemoryMemberSet::const_iterator> memory() const { 352 return make_range(memory_begin(), memory_end()); 353 } 354 355 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 356 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 357 358 // Store count 359 unsigned getStoreCount() const { return StoreCount; } 360 void incStoreCount() { ++StoreCount; } 361 void decStoreCount() { 362 assert(StoreCount != 0 && "Store count went negative"); 363 --StoreCount; 364 } 365 366 // True if this class has no memory members. 367 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 368 369 // Return true if two congruence classes are equivalent to each other. This 370 // means that every field but the ID number and the dead field are equivalent. 371 bool isEquivalentTo(const CongruenceClass *Other) const { 372 if (!Other) 373 return false; 374 if (this == Other) 375 return true; 376 377 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 378 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 379 Other->RepMemoryAccess)) 380 return false; 381 if (DefiningExpr != Other->DefiningExpr) 382 if (!DefiningExpr || !Other->DefiningExpr || 383 *DefiningExpr != *Other->DefiningExpr) 384 return false; 385 386 if (Members.size() != Other->Members.size()) 387 return false; 388 389 return llvm::set_is_subset(Members, Other->Members); 390 } 391 392 private: 393 unsigned ID; 394 395 // Representative leader. 396 Value *RepLeader = nullptr; 397 398 // The most dominating leader after our current leader, because the member set 399 // is not sorted and is expensive to keep sorted all the time. 400 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 401 402 // If this is represented by a store, the value of the store. 403 Value *RepStoredValue = nullptr; 404 405 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 406 // access. 407 const MemoryAccess *RepMemoryAccess = nullptr; 408 409 // Defining Expression. 410 const Expression *DefiningExpr = nullptr; 411 412 // Actual members of this class. 413 MemberSet Members; 414 415 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 416 // MemoryUses have real instructions representing them, so we only need to 417 // track MemoryPhis here. 418 MemoryMemberSet MemoryMembers; 419 420 // Number of stores in this congruence class. 421 // This is used so we can detect store equivalence changes properly. 422 int StoreCount = 0; 423 }; 424 425 } // end anonymous namespace 426 427 namespace llvm { 428 429 struct ExactEqualsExpression { 430 const Expression &E; 431 432 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 433 434 hash_code getComputedHash() const { return E.getComputedHash(); } 435 436 bool operator==(const Expression &Other) const { 437 return E.exactlyEquals(Other); 438 } 439 }; 440 441 template <> struct DenseMapInfo<const Expression *> { 442 static const Expression *getEmptyKey() { 443 auto Val = static_cast<uintptr_t>(-1); 444 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 445 return reinterpret_cast<const Expression *>(Val); 446 } 447 448 static const Expression *getTombstoneKey() { 449 auto Val = static_cast<uintptr_t>(~1U); 450 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 451 return reinterpret_cast<const Expression *>(Val); 452 } 453 454 static unsigned getHashValue(const Expression *E) { 455 return E->getComputedHash(); 456 } 457 458 static unsigned getHashValue(const ExactEqualsExpression &E) { 459 return E.getComputedHash(); 460 } 461 462 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 463 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 464 return false; 465 return LHS == *RHS; 466 } 467 468 static bool isEqual(const Expression *LHS, const Expression *RHS) { 469 if (LHS == RHS) 470 return true; 471 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 472 LHS == getEmptyKey() || RHS == getEmptyKey()) 473 return false; 474 // Compare hashes before equality. This is *not* what the hashtable does, 475 // since it is computing it modulo the number of buckets, whereas we are 476 // using the full hash keyspace. Since the hashes are precomputed, this 477 // check is *much* faster than equality. 478 if (LHS->getComputedHash() != RHS->getComputedHash()) 479 return false; 480 return *LHS == *RHS; 481 } 482 }; 483 484 } // end namespace llvm 485 486 namespace { 487 488 class NewGVN { 489 Function &F; 490 DominatorTree *DT = nullptr; 491 const TargetLibraryInfo *TLI = nullptr; 492 AliasAnalysis *AA = nullptr; 493 MemorySSA *MSSA = nullptr; 494 MemorySSAWalker *MSSAWalker = nullptr; 495 AssumptionCache *AC = nullptr; 496 const DataLayout &DL; 497 std::unique_ptr<PredicateInfo> PredInfo; 498 499 // These are the only two things the create* functions should have 500 // side-effects on due to allocating memory. 501 mutable BumpPtrAllocator ExpressionAllocator; 502 mutable ArrayRecycler<Value *> ArgRecycler; 503 mutable TarjanSCC SCCFinder; 504 const SimplifyQuery SQ; 505 506 // Number of function arguments, used by ranking 507 unsigned int NumFuncArgs = 0; 508 509 // RPOOrdering of basic blocks 510 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 511 512 // Congruence class info. 513 514 // This class is called INITIAL in the paper. It is the class everything 515 // startsout in, and represents any value. Being an optimistic analysis, 516 // anything in the TOP class has the value TOP, which is indeterminate and 517 // equivalent to everything. 518 CongruenceClass *TOPClass = nullptr; 519 std::vector<CongruenceClass *> CongruenceClasses; 520 unsigned NextCongruenceNum = 0; 521 522 // Value Mappings. 523 DenseMap<Value *, CongruenceClass *> ValueToClass; 524 DenseMap<Value *, const Expression *> ValueToExpression; 525 526 // Value PHI handling, used to make equivalence between phi(op, op) and 527 // op(phi, phi). 528 // These mappings just store various data that would normally be part of the 529 // IR. 530 SmallPtrSet<const Instruction *, 8> PHINodeUses; 531 532 DenseMap<const Value *, bool> OpSafeForPHIOfOps; 533 534 // Map a temporary instruction we created to a parent block. 535 DenseMap<const Value *, BasicBlock *> TempToBlock; 536 537 // Map between the already in-program instructions and the temporary phis we 538 // created that they are known equivalent to. 539 DenseMap<const Value *, PHINode *> RealToTemp; 540 541 // In order to know when we should re-process instructions that have 542 // phi-of-ops, we track the set of expressions that they needed as 543 // leaders. When we discover new leaders for those expressions, we process the 544 // associated phi-of-op instructions again in case they have changed. The 545 // other way they may change is if they had leaders, and those leaders 546 // disappear. However, at the point they have leaders, there are uses of the 547 // relevant operands in the created phi node, and so they will get reprocessed 548 // through the normal user marking we perform. 549 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 550 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 551 ExpressionToPhiOfOps; 552 553 // Map from temporary operation to MemoryAccess. 554 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 555 556 // Set of all temporary instructions we created. 557 // Note: This will include instructions that were just created during value 558 // numbering. The way to test if something is using them is to check 559 // RealToTemp. 560 DenseSet<Instruction *> AllTempInstructions; 561 562 // This is the set of instructions to revisit on a reachability change. At 563 // the end of the main iteration loop it will contain at least all the phi of 564 // ops instructions that will be changed to phis, as well as regular phis. 565 // During the iteration loop, it may contain other things, such as phi of ops 566 // instructions that used edge reachability to reach a result, and so need to 567 // be revisited when the edge changes, independent of whether the phi they 568 // depended on changes. 569 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 570 571 // Mapping from predicate info we used to the instructions we used it with. 572 // In order to correctly ensure propagation, we must keep track of what 573 // comparisons we used, so that when the values of the comparisons change, we 574 // propagate the information to the places we used the comparison. 575 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 576 PredicateToUsers; 577 578 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 579 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 580 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 581 MemoryToUsers; 582 583 // A table storing which memorydefs/phis represent a memory state provably 584 // equivalent to another memory state. 585 // We could use the congruence class machinery, but the MemoryAccess's are 586 // abstract memory states, so they can only ever be equivalent to each other, 587 // and not to constants, etc. 588 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 589 590 // We could, if we wanted, build MemoryPhiExpressions and 591 // MemoryVariableExpressions, etc, and value number them the same way we value 592 // number phi expressions. For the moment, this seems like overkill. They 593 // can only exist in one of three states: they can be TOP (equal to 594 // everything), Equivalent to something else, or unique. Because we do not 595 // create expressions for them, we need to simulate leader change not just 596 // when they change class, but when they change state. Note: We can do the 597 // same thing for phis, and avoid having phi expressions if we wanted, We 598 // should eventually unify in one direction or the other, so this is a little 599 // bit of an experiment in which turns out easier to maintain. 600 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 601 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 602 603 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 604 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 605 606 // Expression to class mapping. 607 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 608 ExpressionClassMap ExpressionToClass; 609 610 // We have a single expression that represents currently DeadExpressions. 611 // For dead expressions we can prove will stay dead, we mark them with 612 // DFS number zero. However, it's possible in the case of phi nodes 613 // for us to assume/prove all arguments are dead during fixpointing. 614 // We use DeadExpression for that case. 615 DeadExpression *SingletonDeadExpression = nullptr; 616 617 // Which values have changed as a result of leader changes. 618 SmallPtrSet<Value *, 8> LeaderChanges; 619 620 // Reachability info. 621 using BlockEdge = BasicBlockEdge; 622 DenseSet<BlockEdge> ReachableEdges; 623 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 624 625 // This is a bitvector because, on larger functions, we may have 626 // thousands of touched instructions at once (entire blocks, 627 // instructions with hundreds of uses, etc). Even with optimization 628 // for when we mark whole blocks as touched, when this was a 629 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 630 // the time in GVN just managing this list. The bitvector, on the 631 // other hand, efficiently supports test/set/clear of both 632 // individual and ranges, as well as "find next element" This 633 // enables us to use it as a worklist with essentially 0 cost. 634 BitVector TouchedInstructions; 635 636 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 637 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred; 638 639 #ifndef NDEBUG 640 // Debugging for how many times each block and instruction got processed. 641 DenseMap<const Value *, unsigned> ProcessedCount; 642 #endif 643 644 // DFS info. 645 // This contains a mapping from Instructions to DFS numbers. 646 // The numbering starts at 1. An instruction with DFS number zero 647 // means that the instruction is dead. 648 DenseMap<const Value *, unsigned> InstrDFS; 649 650 // This contains the mapping DFS numbers to instructions. 651 SmallVector<Value *, 32> DFSToInstr; 652 653 // Deletion info. 654 SmallPtrSet<Instruction *, 8> InstructionsToErase; 655 656 public: 657 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 658 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 659 const DataLayout &DL) 660 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 661 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 662 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 663 /*CanUseUndef=*/false) {} 664 665 bool runGVN(); 666 667 private: 668 /// Helper struct return a Expression with an optional extra dependency. 669 struct ExprResult { 670 const Expression *Expr; 671 Value *ExtraDep; 672 const PredicateBase *PredDep; 673 674 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 675 const PredicateBase *PredDep = nullptr) 676 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 677 ExprResult(const ExprResult &) = delete; 678 ExprResult(ExprResult &&Other) 679 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 680 Other.Expr = nullptr; 681 Other.ExtraDep = nullptr; 682 Other.PredDep = nullptr; 683 } 684 ExprResult &operator=(const ExprResult &Other) = delete; 685 ExprResult &operator=(ExprResult &&Other) = delete; 686 687 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 688 689 operator bool() const { return Expr; } 690 691 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 692 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 693 return {Expr, ExtraDep, nullptr}; 694 } 695 static ExprResult some(const Expression *Expr, 696 const PredicateBase *PredDep) { 697 return {Expr, nullptr, PredDep}; 698 } 699 static ExprResult some(const Expression *Expr, Value *ExtraDep, 700 const PredicateBase *PredDep) { 701 return {Expr, ExtraDep, PredDep}; 702 } 703 }; 704 705 // Expression handling. 706 ExprResult createExpression(Instruction *) const; 707 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 708 Instruction *) const; 709 710 // Our canonical form for phi arguments is a pair of incoming value, incoming 711 // basic block. 712 using ValPair = std::pair<Value *, BasicBlock *>; 713 714 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 715 BasicBlock *, bool &HasBackEdge, 716 bool &OriginalOpsConstant) const; 717 const DeadExpression *createDeadExpression() const; 718 const VariableExpression *createVariableExpression(Value *) const; 719 const ConstantExpression *createConstantExpression(Constant *) const; 720 const Expression *createVariableOrConstant(Value *V) const; 721 const UnknownExpression *createUnknownExpression(Instruction *) const; 722 const StoreExpression *createStoreExpression(StoreInst *, 723 const MemoryAccess *) const; 724 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 725 const MemoryAccess *) const; 726 const CallExpression *createCallExpression(CallInst *, 727 const MemoryAccess *) const; 728 const AggregateValueExpression * 729 createAggregateValueExpression(Instruction *) const; 730 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 731 732 // Congruence class handling. 733 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 734 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 735 CongruenceClasses.emplace_back(result); 736 return result; 737 } 738 739 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 740 auto *CC = createCongruenceClass(nullptr, nullptr); 741 CC->setMemoryLeader(MA); 742 return CC; 743 } 744 745 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 746 auto *CC = getMemoryClass(MA); 747 if (CC->getMemoryLeader() != MA) 748 CC = createMemoryClass(MA); 749 return CC; 750 } 751 752 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 753 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 754 CClass->insert(Member); 755 ValueToClass[Member] = CClass; 756 return CClass; 757 } 758 759 void initializeCongruenceClasses(Function &F); 760 const Expression *makePossiblePHIOfOps(Instruction *, 761 SmallPtrSetImpl<Value *> &); 762 Value *findLeaderForInst(Instruction *ValueOp, 763 SmallPtrSetImpl<Value *> &Visited, 764 MemoryAccess *MemAccess, Instruction *OrigInst, 765 BasicBlock *PredBB); 766 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 767 SmallPtrSetImpl<const Value *> &); 768 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 769 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 770 771 // Value number an Instruction or MemoryPhi. 772 void valueNumberMemoryPhi(MemoryPhi *); 773 void valueNumberInstruction(Instruction *); 774 775 // Symbolic evaluation. 776 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 777 ExprResult performSymbolicEvaluation(Value *, 778 SmallPtrSetImpl<Value *> &) const; 779 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 780 Instruction *, 781 MemoryAccess *) const; 782 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 783 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 784 ExprResult performSymbolicCallEvaluation(Instruction *) const; 785 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 786 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 787 Instruction *I, 788 BasicBlock *PHIBlock) const; 789 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 790 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 791 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const; 792 793 // Congruence finding. 794 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 795 Value *lookupOperandLeader(Value *) const; 796 CongruenceClass *getClassForExpression(const Expression *E) const; 797 void performCongruenceFinding(Instruction *, const Expression *); 798 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 799 CongruenceClass *, CongruenceClass *); 800 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 801 CongruenceClass *, CongruenceClass *); 802 Value *getNextValueLeader(CongruenceClass *) const; 803 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 804 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 805 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 806 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 807 bool isMemoryAccessTOP(const MemoryAccess *) const; 808 809 // Ranking 810 unsigned int getRank(const Value *) const; 811 bool shouldSwapOperands(const Value *, const Value *) const; 812 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *, 813 const IntrinsicInst *I) const; 814 815 // Reachability handling. 816 void updateReachableEdge(BasicBlock *, BasicBlock *); 817 void processOutgoingEdges(Instruction *, BasicBlock *); 818 Value *findConditionEquivalence(Value *) const; 819 820 // Elimination. 821 struct ValueDFS; 822 void convertClassToDFSOrdered(const CongruenceClass &, 823 SmallVectorImpl<ValueDFS> &, 824 DenseMap<const Value *, unsigned int> &, 825 SmallPtrSetImpl<Instruction *> &) const; 826 void convertClassToLoadsAndStores(const CongruenceClass &, 827 SmallVectorImpl<ValueDFS> &) const; 828 829 bool eliminateInstructions(Function &); 830 void replaceInstruction(Instruction *, Value *); 831 void markInstructionForDeletion(Instruction *); 832 void deleteInstructionsInBlock(BasicBlock *); 833 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 834 const BasicBlock *) const; 835 836 // Various instruction touch utilities 837 template <typename Map, typename KeyType> 838 void touchAndErase(Map &, const KeyType &); 839 void markUsersTouched(Value *); 840 void markMemoryUsersTouched(const MemoryAccess *); 841 void markMemoryDefTouched(const MemoryAccess *); 842 void markPredicateUsersTouched(Instruction *); 843 void markValueLeaderChangeTouched(CongruenceClass *CC); 844 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 845 void markPhiOfOpsChanged(const Expression *E); 846 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 847 void addAdditionalUsers(Value *To, Value *User) const; 848 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 849 850 // Main loop of value numbering 851 void iterateTouchedInstructions(); 852 853 // Utilities. 854 void cleanupTables(); 855 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 856 void updateProcessedCount(const Value *V); 857 void verifyMemoryCongruency() const; 858 void verifyIterationSettled(Function &F); 859 void verifyStoreExpressions() const; 860 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 861 const MemoryAccess *, const MemoryAccess *) const; 862 BasicBlock *getBlockForValue(Value *V) const; 863 void deleteExpression(const Expression *E) const; 864 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 865 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 866 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 867 868 unsigned InstrToDFSNum(const Value *V) const { 869 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 870 return InstrDFS.lookup(V); 871 } 872 873 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 874 return MemoryToDFSNum(MA); 875 } 876 877 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 878 879 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 880 // This deliberately takes a value so it can be used with Use's, which will 881 // auto-convert to Value's but not to MemoryAccess's. 882 unsigned MemoryToDFSNum(const Value *MA) const { 883 assert(isa<MemoryAccess>(MA) && 884 "This should not be used with instructions"); 885 return isa<MemoryUseOrDef>(MA) 886 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 887 : InstrDFS.lookup(MA); 888 } 889 890 bool isCycleFree(const Instruction *) const; 891 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 892 893 // Debug counter info. When verifying, we have to reset the value numbering 894 // debug counter to the same state it started in to get the same results. 895 int64_t StartingVNCounter = 0; 896 }; 897 898 } // end anonymous namespace 899 900 template <typename T> 901 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 902 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 903 return false; 904 return LHS.MemoryExpression::equals(RHS); 905 } 906 907 bool LoadExpression::equals(const Expression &Other) const { 908 return equalsLoadStoreHelper(*this, Other); 909 } 910 911 bool StoreExpression::equals(const Expression &Other) const { 912 if (!equalsLoadStoreHelper(*this, Other)) 913 return false; 914 // Make sure that store vs store includes the value operand. 915 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 916 if (getStoredValue() != S->getStoredValue()) 917 return false; 918 return true; 919 } 920 921 // Determine if the edge From->To is a backedge 922 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 923 return From == To || 924 RPOOrdering.lookup(DT->getNode(From)) >= 925 RPOOrdering.lookup(DT->getNode(To)); 926 } 927 928 #ifndef NDEBUG 929 static std::string getBlockName(const BasicBlock *B) { 930 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 931 } 932 #endif 933 934 // Get a MemoryAccess for an instruction, fake or real. 935 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 936 auto *Result = MSSA->getMemoryAccess(I); 937 return Result ? Result : TempToMemory.lookup(I); 938 } 939 940 // Get a MemoryPhi for a basic block. These are all real. 941 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 942 return MSSA->getMemoryAccess(BB); 943 } 944 945 // Get the basic block from an instruction/memory value. 946 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 947 if (auto *I = dyn_cast<Instruction>(V)) { 948 auto *Parent = I->getParent(); 949 if (Parent) 950 return Parent; 951 Parent = TempToBlock.lookup(V); 952 assert(Parent && "Every fake instruction should have a block"); 953 return Parent; 954 } 955 956 auto *MP = dyn_cast<MemoryPhi>(V); 957 assert(MP && "Should have been an instruction or a MemoryPhi"); 958 return MP->getBlock(); 959 } 960 961 // Delete a definitely dead expression, so it can be reused by the expression 962 // allocator. Some of these are not in creation functions, so we have to accept 963 // const versions. 964 void NewGVN::deleteExpression(const Expression *E) const { 965 assert(isa<BasicExpression>(E)); 966 auto *BE = cast<BasicExpression>(E); 967 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 968 ExpressionAllocator.Deallocate(E); 969 } 970 971 // If V is a predicateinfo copy, get the thing it is a copy of. 972 static Value *getCopyOf(const Value *V) { 973 if (auto *II = dyn_cast<IntrinsicInst>(V)) 974 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 975 return II->getOperand(0); 976 return nullptr; 977 } 978 979 // Return true if V is really PN, even accounting for predicateinfo copies. 980 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 981 return V == PN || getCopyOf(V) == PN; 982 } 983 984 static bool isCopyOfAPHI(const Value *V) { 985 auto *CO = getCopyOf(V); 986 return CO && isa<PHINode>(CO); 987 } 988 989 // Sort PHI Operands into a canonical order. What we use here is an RPO 990 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 991 // blocks. 992 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 993 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 994 return BlockInstRange.lookup(P1.second).first < 995 BlockInstRange.lookup(P2.second).first; 996 }); 997 } 998 999 // Return true if V is a value that will always be available (IE can 1000 // be placed anywhere) in the function. We don't do globals here 1001 // because they are often worse to put in place. 1002 static bool alwaysAvailable(Value *V) { 1003 return isa<Constant>(V) || isa<Argument>(V); 1004 } 1005 1006 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1007 // the original instruction we are creating a PHIExpression for (but may not be 1008 // a phi node). We require, as an invariant, that all the PHIOperands in the 1009 // same block are sorted the same way. sortPHIOps will sort them into a 1010 // canonical order. 1011 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1012 const Instruction *I, 1013 BasicBlock *PHIBlock, 1014 bool &HasBackedge, 1015 bool &OriginalOpsConstant) const { 1016 unsigned NumOps = PHIOperands.size(); 1017 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1018 1019 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1020 E->setType(PHIOperands.begin()->first->getType()); 1021 E->setOpcode(Instruction::PHI); 1022 1023 // Filter out unreachable phi operands. 1024 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1025 auto *BB = P.second; 1026 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1027 if (isCopyOfPHI(P.first, PHIOp)) 1028 return false; 1029 if (!ReachableEdges.count({BB, PHIBlock})) 1030 return false; 1031 // Things in TOPClass are equivalent to everything. 1032 if (ValueToClass.lookup(P.first) == TOPClass) 1033 return false; 1034 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1035 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1036 return lookupOperandLeader(P.first) != I; 1037 }); 1038 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1039 [&](const ValPair &P) -> Value * { 1040 return lookupOperandLeader(P.first); 1041 }); 1042 return E; 1043 } 1044 1045 // Set basic expression info (Arguments, type, opcode) for Expression 1046 // E from Instruction I in block B. 1047 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1048 bool AllConstant = true; 1049 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1050 E->setType(GEP->getSourceElementType()); 1051 else 1052 E->setType(I->getType()); 1053 E->setOpcode(I->getOpcode()); 1054 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1055 1056 // Transform the operand array into an operand leader array, and keep track of 1057 // whether all members are constant. 1058 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1059 auto Operand = lookupOperandLeader(O); 1060 AllConstant = AllConstant && isa<Constant>(Operand); 1061 return Operand; 1062 }); 1063 1064 return AllConstant; 1065 } 1066 1067 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1068 Value *Arg1, Value *Arg2, 1069 Instruction *I) const { 1070 auto *E = new (ExpressionAllocator) BasicExpression(2); 1071 // TODO: we need to remove context instruction after Value Tracking 1072 // can run without context instruction 1073 const SimplifyQuery Q = SQ.getWithInstruction(I); 1074 1075 E->setType(T); 1076 E->setOpcode(Opcode); 1077 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1078 if (Instruction::isCommutative(Opcode)) { 1079 // Ensure that commutative instructions that only differ by a permutation 1080 // of their operands get the same value number by sorting the operand value 1081 // numbers. Since all commutative instructions have two operands it is more 1082 // efficient to sort by hand rather than using, say, std::sort. 1083 if (shouldSwapOperands(Arg1, Arg2)) 1084 std::swap(Arg1, Arg2); 1085 } 1086 E->op_push_back(lookupOperandLeader(Arg1)); 1087 E->op_push_back(lookupOperandLeader(Arg2)); 1088 1089 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q); 1090 if (auto Simplified = checkExprResults(E, I, V)) { 1091 addAdditionalUsers(Simplified, I); 1092 return Simplified.Expr; 1093 } 1094 return E; 1095 } 1096 1097 // Take a Value returned by simplification of Expression E/Instruction 1098 // I, and see if it resulted in a simpler expression. If so, return 1099 // that expression. 1100 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1101 Value *V) const { 1102 if (!V) 1103 return ExprResult::none(); 1104 1105 if (auto *C = dyn_cast<Constant>(V)) { 1106 if (I) 1107 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1108 << " constant " << *C << "\n"); 1109 NumGVNOpsSimplified++; 1110 assert(isa<BasicExpression>(E) && 1111 "We should always have had a basic expression here"); 1112 deleteExpression(E); 1113 return ExprResult::some(createConstantExpression(C)); 1114 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1115 if (I) 1116 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1117 << " variable " << *V << "\n"); 1118 deleteExpression(E); 1119 return ExprResult::some(createVariableExpression(V)); 1120 } 1121 1122 CongruenceClass *CC = ValueToClass.lookup(V); 1123 if (CC) { 1124 if (CC->getLeader() && CC->getLeader() != I) { 1125 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1126 } 1127 if (CC->getDefiningExpr()) { 1128 if (I) 1129 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1130 << " expression " << *CC->getDefiningExpr() << "\n"); 1131 NumGVNOpsSimplified++; 1132 deleteExpression(E); 1133 return ExprResult::some(CC->getDefiningExpr(), V); 1134 } 1135 } 1136 1137 return ExprResult::none(); 1138 } 1139 1140 // Create a value expression from the instruction I, replacing operands with 1141 // their leaders. 1142 1143 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1144 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1145 // TODO: we need to remove context instruction after Value Tracking 1146 // can run without context instruction 1147 const SimplifyQuery Q = SQ.getWithInstruction(I); 1148 1149 bool AllConstant = setBasicExpressionInfo(I, E); 1150 1151 if (I->isCommutative()) { 1152 // Ensure that commutative instructions that only differ by a permutation 1153 // of their operands get the same value number by sorting the operand value 1154 // numbers. Since all commutative instructions have two operands it is more 1155 // efficient to sort by hand rather than using, say, std::sort. 1156 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1157 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1158 E->swapOperands(0, 1); 1159 } 1160 // Perform simplification. 1161 if (auto *CI = dyn_cast<CmpInst>(I)) { 1162 // Sort the operand value numbers so x<y and y>x get the same value 1163 // number. 1164 CmpInst::Predicate Predicate = CI->getPredicate(); 1165 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1166 E->swapOperands(0, 1); 1167 Predicate = CmpInst::getSwappedPredicate(Predicate); 1168 } 1169 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1170 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands 1171 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1172 "Wrong types on cmp instruction"); 1173 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1174 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1175 Value *V = 1176 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q); 1177 if (auto Simplified = checkExprResults(E, I, V)) 1178 return Simplified; 1179 } else if (isa<SelectInst>(I)) { 1180 if (isa<Constant>(E->getOperand(0)) || 1181 E->getOperand(1) == E->getOperand(2)) { 1182 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1183 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1184 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1), 1185 E->getOperand(2), Q); 1186 if (auto Simplified = checkExprResults(E, I, V)) 1187 return Simplified; 1188 } 1189 } else if (I->isBinaryOp()) { 1190 Value *V = 1191 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q); 1192 if (auto Simplified = checkExprResults(E, I, V)) 1193 return Simplified; 1194 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1195 Value *V = 1196 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q); 1197 if (auto Simplified = checkExprResults(E, I, V)) 1198 return Simplified; 1199 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) { 1200 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(), 1201 ArrayRef(std::next(E->op_begin()), E->op_end()), 1202 GEPI->isInBounds(), Q); 1203 if (auto Simplified = checkExprResults(E, I, V)) 1204 return Simplified; 1205 } else if (AllConstant) { 1206 // We don't bother trying to simplify unless all of the operands 1207 // were constant. 1208 // TODO: There are a lot of Simplify*'s we could call here, if we 1209 // wanted to. The original motivating case for this code was a 1210 // zext i1 false to i8, which we don't have an interface to 1211 // simplify (IE there is no SimplifyZExt). 1212 1213 SmallVector<Constant *, 8> C; 1214 for (Value *Arg : E->operands()) 1215 C.emplace_back(cast<Constant>(Arg)); 1216 1217 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1218 if (auto Simplified = checkExprResults(E, I, V)) 1219 return Simplified; 1220 } 1221 return ExprResult::some(E); 1222 } 1223 1224 const AggregateValueExpression * 1225 NewGVN::createAggregateValueExpression(Instruction *I) const { 1226 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1227 auto *E = new (ExpressionAllocator) 1228 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1229 setBasicExpressionInfo(I, E); 1230 E->allocateIntOperands(ExpressionAllocator); 1231 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1232 return E; 1233 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1234 auto *E = new (ExpressionAllocator) 1235 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1236 setBasicExpressionInfo(EI, E); 1237 E->allocateIntOperands(ExpressionAllocator); 1238 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1239 return E; 1240 } 1241 llvm_unreachable("Unhandled type of aggregate value operation"); 1242 } 1243 1244 const DeadExpression *NewGVN::createDeadExpression() const { 1245 // DeadExpression has no arguments and all DeadExpression's are the same, 1246 // so we only need one of them. 1247 return SingletonDeadExpression; 1248 } 1249 1250 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1251 auto *E = new (ExpressionAllocator) VariableExpression(V); 1252 E->setOpcode(V->getValueID()); 1253 return E; 1254 } 1255 1256 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1257 if (auto *C = dyn_cast<Constant>(V)) 1258 return createConstantExpression(C); 1259 return createVariableExpression(V); 1260 } 1261 1262 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1263 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1264 E->setOpcode(C->getValueID()); 1265 return E; 1266 } 1267 1268 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1269 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1270 E->setOpcode(I->getOpcode()); 1271 return E; 1272 } 1273 1274 const CallExpression * 1275 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1276 // FIXME: Add operand bundles for calls. 1277 auto *E = 1278 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1279 setBasicExpressionInfo(CI, E); 1280 if (CI->isCommutative()) { 1281 // Ensure that commutative intrinsics that only differ by a permutation 1282 // of their operands get the same value number by sorting the operand value 1283 // numbers. 1284 assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!"); 1285 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1286 E->swapOperands(0, 1); 1287 } 1288 return E; 1289 } 1290 1291 // Return true if some equivalent of instruction Inst dominates instruction U. 1292 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1293 const Instruction *U) const { 1294 auto *CC = ValueToClass.lookup(Inst); 1295 // This must be an instruction because we are only called from phi nodes 1296 // in the case that the value it needs to check against is an instruction. 1297 1298 // The most likely candidates for dominance are the leader and the next leader. 1299 // The leader or nextleader will dominate in all cases where there is an 1300 // equivalent that is higher up in the dom tree. 1301 // We can't *only* check them, however, because the 1302 // dominator tree could have an infinite number of non-dominating siblings 1303 // with instructions that are in the right congruence class. 1304 // A 1305 // B C D E F G 1306 // | 1307 // H 1308 // Instruction U could be in H, with equivalents in every other sibling. 1309 // Depending on the rpo order picked, the leader could be the equivalent in 1310 // any of these siblings. 1311 if (!CC) 1312 return false; 1313 if (alwaysAvailable(CC->getLeader())) 1314 return true; 1315 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1316 return true; 1317 if (CC->getNextLeader().first && 1318 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1319 return true; 1320 return llvm::any_of(*CC, [&](const Value *Member) { 1321 return Member != CC->getLeader() && 1322 DT->dominates(cast<Instruction>(Member), U); 1323 }); 1324 } 1325 1326 // See if we have a congruence class and leader for this operand, and if so, 1327 // return it. Otherwise, return the operand itself. 1328 Value *NewGVN::lookupOperandLeader(Value *V) const { 1329 CongruenceClass *CC = ValueToClass.lookup(V); 1330 if (CC) { 1331 // Everything in TOP is represented by poison, as it can be any value. 1332 // We do have to make sure we get the type right though, so we can't set the 1333 // RepLeader to poison. 1334 if (CC == TOPClass) 1335 return PoisonValue::get(V->getType()); 1336 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1337 } 1338 1339 return V; 1340 } 1341 1342 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1343 auto *CC = getMemoryClass(MA); 1344 assert(CC->getMemoryLeader() && 1345 "Every MemoryAccess should be mapped to a congruence class with a " 1346 "representative memory access"); 1347 return CC->getMemoryLeader(); 1348 } 1349 1350 // Return true if the MemoryAccess is really equivalent to everything. This is 1351 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1352 // state of all MemoryAccesses. 1353 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1354 return getMemoryClass(MA) == TOPClass; 1355 } 1356 1357 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1358 LoadInst *LI, 1359 const MemoryAccess *MA) const { 1360 auto *E = 1361 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1362 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1363 E->setType(LoadType); 1364 1365 // Give store and loads same opcode so they value number together. 1366 E->setOpcode(0); 1367 E->op_push_back(PointerOp); 1368 1369 // TODO: Value number heap versions. We may be able to discover 1370 // things alias analysis can't on it's own (IE that a store and a 1371 // load have the same value, and thus, it isn't clobbering the load). 1372 return E; 1373 } 1374 1375 const StoreExpression * 1376 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1377 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1378 auto *E = new (ExpressionAllocator) 1379 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1380 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1381 E->setType(SI->getValueOperand()->getType()); 1382 1383 // Give store and loads same opcode so they value number together. 1384 E->setOpcode(0); 1385 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1386 1387 // TODO: Value number heap versions. We may be able to discover 1388 // things alias analysis can't on it's own (IE that a store and a 1389 // load have the same value, and thus, it isn't clobbering the load). 1390 return E; 1391 } 1392 1393 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1394 // Unlike loads, we never try to eliminate stores, so we do not check if they 1395 // are simple and avoid value numbering them. 1396 auto *SI = cast<StoreInst>(I); 1397 auto *StoreAccess = getMemoryAccess(SI); 1398 // Get the expression, if any, for the RHS of the MemoryDef. 1399 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1400 if (EnableStoreRefinement) 1401 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1402 // If we bypassed the use-def chains, make sure we add a use. 1403 StoreRHS = lookupMemoryLeader(StoreRHS); 1404 if (StoreRHS != StoreAccess->getDefiningAccess()) 1405 addMemoryUsers(StoreRHS, StoreAccess); 1406 // If we are defined by ourselves, use the live on entry def. 1407 if (StoreRHS == StoreAccess) 1408 StoreRHS = MSSA->getLiveOnEntryDef(); 1409 1410 if (SI->isSimple()) { 1411 // See if we are defined by a previous store expression, it already has a 1412 // value, and it's the same value as our current store. FIXME: Right now, we 1413 // only do this for simple stores, we should expand to cover memcpys, etc. 1414 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1415 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1416 // We really want to check whether the expression we matched was a store. No 1417 // easy way to do that. However, we can check that the class we found has a 1418 // store, which, assuming the value numbering state is not corrupt, is 1419 // sufficient, because we must also be equivalent to that store's expression 1420 // for it to be in the same class as the load. 1421 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1422 return LastStore; 1423 // Also check if our value operand is defined by a load of the same memory 1424 // location, and the memory state is the same as it was then (otherwise, it 1425 // could have been overwritten later. See test32 in 1426 // transforms/DeadStoreElimination/simple.ll). 1427 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1428 if ((lookupOperandLeader(LI->getPointerOperand()) == 1429 LastStore->getOperand(0)) && 1430 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1431 StoreRHS)) 1432 return LastStore; 1433 deleteExpression(LastStore); 1434 } 1435 1436 // If the store is not equivalent to anything, value number it as a store that 1437 // produces a unique memory state (instead of using it's MemoryUse, we use 1438 // it's MemoryDef). 1439 return createStoreExpression(SI, StoreAccess); 1440 } 1441 1442 // See if we can extract the value of a loaded pointer from a load, a store, or 1443 // a memory instruction. 1444 const Expression * 1445 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1446 LoadInst *LI, Instruction *DepInst, 1447 MemoryAccess *DefiningAccess) const { 1448 assert((!LI || LI->isSimple()) && "Not a simple load"); 1449 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1450 // Can't forward from non-atomic to atomic without violating memory model. 1451 // Also don't need to coerce if they are the same type, we will just 1452 // propagate. 1453 if (LI->isAtomic() > DepSI->isAtomic() || 1454 LoadType == DepSI->getValueOperand()->getType()) 1455 return nullptr; 1456 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1457 if (Offset >= 0) { 1458 if (auto *C = dyn_cast<Constant>( 1459 lookupOperandLeader(DepSI->getValueOperand()))) { 1460 if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) { 1461 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1462 << " to constant " << *Res << "\n"); 1463 return createConstantExpression(Res); 1464 } 1465 } 1466 } 1467 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1468 // Can't forward from non-atomic to atomic without violating memory model. 1469 if (LI->isAtomic() > DepLI->isAtomic()) 1470 return nullptr; 1471 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1472 if (Offset >= 0) { 1473 // We can coerce a constant load into a load. 1474 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1475 if (auto *PossibleConstant = 1476 getConstantValueForLoad(C, Offset, LoadType, DL)) { 1477 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1478 << " to constant " << *PossibleConstant << "\n"); 1479 return createConstantExpression(PossibleConstant); 1480 } 1481 } 1482 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1483 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1484 if (Offset >= 0) { 1485 if (auto *PossibleConstant = 1486 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1487 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1488 << " to constant " << *PossibleConstant << "\n"); 1489 return createConstantExpression(PossibleConstant); 1490 } 1491 } 1492 } 1493 1494 // All of the below are only true if the loaded pointer is produced 1495 // by the dependent instruction. 1496 if (LoadPtr != lookupOperandLeader(DepInst) && 1497 !AA->isMustAlias(LoadPtr, DepInst)) 1498 return nullptr; 1499 // If this load really doesn't depend on anything, then we must be loading an 1500 // undef value. This can happen when loading for a fresh allocation with no 1501 // intervening stores, for example. Note that this is only true in the case 1502 // that the result of the allocation is pointer equal to the load ptr. 1503 if (isa<AllocaInst>(DepInst)) { 1504 return createConstantExpression(UndefValue::get(LoadType)); 1505 } 1506 // If this load occurs either right after a lifetime begin, 1507 // then the loaded value is undefined. 1508 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1509 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1510 return createConstantExpression(UndefValue::get(LoadType)); 1511 } else if (auto *InitVal = 1512 getInitialValueOfAllocation(DepInst, TLI, LoadType)) 1513 return createConstantExpression(InitVal); 1514 1515 return nullptr; 1516 } 1517 1518 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1519 auto *LI = cast<LoadInst>(I); 1520 1521 // We can eliminate in favor of non-simple loads, but we won't be able to 1522 // eliminate the loads themselves. 1523 if (!LI->isSimple()) 1524 return nullptr; 1525 1526 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1527 // Load of undef is UB. 1528 if (isa<UndefValue>(LoadAddressLeader)) 1529 return createConstantExpression(PoisonValue::get(LI->getType())); 1530 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1531 MemoryAccess *DefiningAccess = 1532 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1533 1534 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1535 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1536 Instruction *DefiningInst = MD->getMemoryInst(); 1537 // If the defining instruction is not reachable, replace with poison. 1538 if (!ReachableBlocks.count(DefiningInst->getParent())) 1539 return createConstantExpression(PoisonValue::get(LI->getType())); 1540 // This will handle stores and memory insts. We only do if it the 1541 // defining access has a different type, or it is a pointer produced by 1542 // certain memory operations that cause the memory to have a fixed value 1543 // (IE things like calloc). 1544 if (const auto *CoercionResult = 1545 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1546 DefiningInst, DefiningAccess)) 1547 return CoercionResult; 1548 } 1549 } 1550 1551 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1552 DefiningAccess); 1553 // If our MemoryLeader is not our defining access, add a use to the 1554 // MemoryLeader, so that we get reprocessed when it changes. 1555 if (LE->getMemoryLeader() != DefiningAccess) 1556 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1557 return LE; 1558 } 1559 1560 NewGVN::ExprResult 1561 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const { 1562 auto *PI = PredInfo->getPredicateInfoFor(I); 1563 if (!PI) 1564 return ExprResult::none(); 1565 1566 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1567 1568 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1569 if (!Constraint) 1570 return ExprResult::none(); 1571 1572 CmpInst::Predicate Predicate = Constraint->Predicate; 1573 Value *CmpOp0 = I->getOperand(0); 1574 Value *CmpOp1 = Constraint->OtherOp; 1575 1576 Value *FirstOp = lookupOperandLeader(CmpOp0); 1577 Value *SecondOp = lookupOperandLeader(CmpOp1); 1578 Value *AdditionallyUsedValue = CmpOp0; 1579 1580 // Sort the ops. 1581 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) { 1582 std::swap(FirstOp, SecondOp); 1583 Predicate = CmpInst::getSwappedPredicate(Predicate); 1584 AdditionallyUsedValue = CmpOp1; 1585 } 1586 1587 if (Predicate == CmpInst::ICMP_EQ) 1588 return ExprResult::some(createVariableOrConstant(FirstOp), 1589 AdditionallyUsedValue, PI); 1590 1591 // Handle the special case of floating point. 1592 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1593 !cast<ConstantFP>(FirstOp)->isZero()) 1594 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1595 AdditionallyUsedValue, PI); 1596 1597 return ExprResult::none(); 1598 } 1599 1600 // Evaluate read only and pure calls, and create an expression result. 1601 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1602 auto *CI = cast<CallInst>(I); 1603 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1604 // Intrinsics with the returned attribute are copies of arguments. 1605 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1606 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1607 if (auto Res = performSymbolicPredicateInfoEvaluation(II)) 1608 return Res; 1609 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1610 } 1611 } 1612 1613 // FIXME: Currently the calls which may access the thread id may 1614 // be considered as not accessing the memory. But this is 1615 // problematic for coroutines, since coroutines may resume in a 1616 // different thread. So we disable the optimization here for the 1617 // correctness. However, it may block many other correct 1618 // optimizations. Revert this one when we detect the memory 1619 // accessing kind more precisely. 1620 if (CI->getFunction()->isPresplitCoroutine()) 1621 return ExprResult::none(); 1622 1623 // Do not combine convergent calls since they implicitly depend on the set of 1624 // threads that is currently executing, and they might be in different basic 1625 // blocks. 1626 if (CI->isConvergent()) 1627 return ExprResult::none(); 1628 1629 if (AA->doesNotAccessMemory(CI)) { 1630 return ExprResult::some( 1631 createCallExpression(CI, TOPClass->getMemoryLeader())); 1632 } else if (AA->onlyReadsMemory(CI)) { 1633 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1634 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1635 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1636 } else // MSSA determined that CI does not access memory. 1637 return ExprResult::some( 1638 createCallExpression(CI, TOPClass->getMemoryLeader())); 1639 } 1640 return ExprResult::none(); 1641 } 1642 1643 // Retrieve the memory class for a given MemoryAccess. 1644 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1645 auto *Result = MemoryAccessToClass.lookup(MA); 1646 assert(Result && "Should have found memory class"); 1647 return Result; 1648 } 1649 1650 // Update the MemoryAccess equivalence table to say that From is equal to To, 1651 // and return true if this is different from what already existed in the table. 1652 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1653 CongruenceClass *NewClass) { 1654 assert(NewClass && 1655 "Every MemoryAccess should be getting mapped to a non-null class"); 1656 LLVM_DEBUG(dbgs() << "Setting " << *From); 1657 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1658 LLVM_DEBUG(dbgs() << NewClass->getID() 1659 << " with current MemoryAccess leader "); 1660 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1661 1662 auto LookupResult = MemoryAccessToClass.find(From); 1663 bool Changed = false; 1664 // If it's already in the table, see if the value changed. 1665 if (LookupResult != MemoryAccessToClass.end()) { 1666 auto *OldClass = LookupResult->second; 1667 if (OldClass != NewClass) { 1668 // If this is a phi, we have to handle memory member updates. 1669 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1670 OldClass->memory_erase(MP); 1671 NewClass->memory_insert(MP); 1672 // This may have killed the class if it had no non-memory members 1673 if (OldClass->getMemoryLeader() == From) { 1674 if (OldClass->definesNoMemory()) { 1675 OldClass->setMemoryLeader(nullptr); 1676 } else { 1677 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1678 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1679 << OldClass->getID() << " to " 1680 << *OldClass->getMemoryLeader() 1681 << " due to removal of a memory member " << *From 1682 << "\n"); 1683 markMemoryLeaderChangeTouched(OldClass); 1684 } 1685 } 1686 } 1687 // It wasn't equivalent before, and now it is. 1688 LookupResult->second = NewClass; 1689 Changed = true; 1690 } 1691 } 1692 1693 return Changed; 1694 } 1695 1696 // Determine if a instruction is cycle-free. That means the values in the 1697 // instruction don't depend on any expressions that can change value as a result 1698 // of the instruction. For example, a non-cycle free instruction would be v = 1699 // phi(0, v+1). 1700 bool NewGVN::isCycleFree(const Instruction *I) const { 1701 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1702 // and see what kind of SCC it ends up in. If it is a singleton, it is 1703 // cycle-free. If it is not in a singleton, it is only cycle free if the 1704 // other members are all phi nodes (as they do not compute anything, they are 1705 // copies). 1706 auto ICS = InstCycleState.lookup(I); 1707 if (ICS == ICS_Unknown) { 1708 SCCFinder.Start(I); 1709 auto &SCC = SCCFinder.getComponentFor(I); 1710 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1711 if (SCC.size() == 1) 1712 InstCycleState.insert({I, ICS_CycleFree}); 1713 else { 1714 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1715 return isa<PHINode>(V) || isCopyOfAPHI(V); 1716 }); 1717 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1718 for (const auto *Member : SCC) 1719 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1720 InstCycleState.insert({MemberPhi, ICS}); 1721 } 1722 } 1723 if (ICS == ICS_Cycle) 1724 return false; 1725 return true; 1726 } 1727 1728 // Evaluate PHI nodes symbolically and create an expression result. 1729 const Expression * 1730 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1731 Instruction *I, 1732 BasicBlock *PHIBlock) const { 1733 // True if one of the incoming phi edges is a backedge. 1734 bool HasBackedge = false; 1735 // All constant tracks the state of whether all the *original* phi operands 1736 // This is really shorthand for "this phi cannot cycle due to forward 1737 // change in value of the phi is guaranteed not to later change the value of 1738 // the phi. IE it can't be v = phi(undef, v+1) 1739 bool OriginalOpsConstant = true; 1740 auto *E = cast<PHIExpression>(createPHIExpression( 1741 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1742 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1743 // See if all arguments are the same. 1744 // We track if any were undef because they need special handling. 1745 bool HasUndef = false, HasPoison = false; 1746 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1747 if (isa<PoisonValue>(Arg)) { 1748 HasPoison = true; 1749 return false; 1750 } 1751 if (isa<UndefValue>(Arg)) { 1752 HasUndef = true; 1753 return false; 1754 } 1755 return true; 1756 }); 1757 // If we are left with no operands, it's dead. 1758 if (Filtered.empty()) { 1759 // If it has undef or poison at this point, it means there are no-non-undef 1760 // arguments, and thus, the value of the phi node must be undef. 1761 if (HasUndef) { 1762 LLVM_DEBUG( 1763 dbgs() << "PHI Node " << *I 1764 << " has no non-undef arguments, valuing it as undef\n"); 1765 return createConstantExpression(UndefValue::get(I->getType())); 1766 } 1767 if (HasPoison) { 1768 LLVM_DEBUG( 1769 dbgs() << "PHI Node " << *I 1770 << " has no non-poison arguments, valuing it as poison\n"); 1771 return createConstantExpression(PoisonValue::get(I->getType())); 1772 } 1773 1774 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1775 deleteExpression(E); 1776 return createDeadExpression(); 1777 } 1778 Value *AllSameValue = *(Filtered.begin()); 1779 ++Filtered.begin(); 1780 // Can't use std::equal here, sadly, because filter.begin moves. 1781 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1782 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef 1783 // in the worst case). 1784 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT)) 1785 return E; 1786 1787 // In LLVM's non-standard representation of phi nodes, it's possible to have 1788 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1789 // on the original phi node), especially in weird CFG's where some arguments 1790 // are unreachable, or uninitialized along certain paths. This can cause 1791 // infinite loops during evaluation. We work around this by not trying to 1792 // really evaluate them independently, but instead using a variable 1793 // expression to say if one is equivalent to the other. 1794 // We also special case undef/poison, so that if we have an undef, we can't 1795 // use the common value unless it dominates the phi block. 1796 if (HasPoison || HasUndef) { 1797 // If we have undef and at least one other value, this is really a 1798 // multivalued phi, and we need to know if it's cycle free in order to 1799 // evaluate whether we can ignore the undef. The other parts of this are 1800 // just shortcuts. If there is no backedge, or all operands are 1801 // constants, it also must be cycle free. 1802 if (HasBackedge && !OriginalOpsConstant && 1803 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1804 return E; 1805 1806 // Only have to check for instructions 1807 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1808 if (!someEquivalentDominates(AllSameInst, I)) 1809 return E; 1810 } 1811 // Can't simplify to something that comes later in the iteration. 1812 // Otherwise, when and if it changes congruence class, we will never catch 1813 // up. We will always be a class behind it. 1814 if (isa<Instruction>(AllSameValue) && 1815 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1816 return E; 1817 NumGVNPhisAllSame++; 1818 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1819 << "\n"); 1820 deleteExpression(E); 1821 return createVariableOrConstant(AllSameValue); 1822 } 1823 return E; 1824 } 1825 1826 const Expression * 1827 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1828 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1829 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1830 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1831 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1832 // a semantically equivalent expression instead of an extract value 1833 // expression. 1834 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1835 WO->getLHS(), WO->getRHS(), I); 1836 } 1837 1838 return createAggregateValueExpression(I); 1839 } 1840 1841 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1842 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1843 1844 auto *CI = cast<CmpInst>(I); 1845 // See if our operands are equal to those of a previous predicate, and if so, 1846 // if it implies true or false. 1847 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1848 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1849 auto OurPredicate = CI->getPredicate(); 1850 if (shouldSwapOperands(Op0, Op1)) { 1851 std::swap(Op0, Op1); 1852 OurPredicate = CI->getSwappedPredicate(); 1853 } 1854 1855 // Avoid processing the same info twice. 1856 const PredicateBase *LastPredInfo = nullptr; 1857 // See if we know something about the comparison itself, like it is the target 1858 // of an assume. 1859 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1860 if (isa_and_nonnull<PredicateAssume>(CmpPI)) 1861 return ExprResult::some( 1862 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1863 1864 if (Op0 == Op1) { 1865 // This condition does not depend on predicates, no need to add users 1866 if (CI->isTrueWhenEqual()) 1867 return ExprResult::some( 1868 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1869 else if (CI->isFalseWhenEqual()) 1870 return ExprResult::some( 1871 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1872 } 1873 1874 // NOTE: Because we are comparing both operands here and below, and using 1875 // previous comparisons, we rely on fact that predicateinfo knows to mark 1876 // comparisons that use renamed operands as users of the earlier comparisons. 1877 // It is *not* enough to just mark predicateinfo renamed operands as users of 1878 // the earlier comparisons, because the *other* operand may have changed in a 1879 // previous iteration. 1880 // Example: 1881 // icmp slt %a, %b 1882 // %b.0 = ssa.copy(%b) 1883 // false branch: 1884 // icmp slt %c, %b.0 1885 1886 // %c and %a may start out equal, and thus, the code below will say the second 1887 // %icmp is false. c may become equal to something else, and in that case the 1888 // %second icmp *must* be reexamined, but would not if only the renamed 1889 // %operands are considered users of the icmp. 1890 1891 // *Currently* we only check one level of comparisons back, and only mark one 1892 // level back as touched when changes happen. If you modify this code to look 1893 // back farther through comparisons, you *must* mark the appropriate 1894 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1895 // we know something just from the operands themselves 1896 1897 // See if our operands have predicate info, so that we may be able to derive 1898 // something from a previous comparison. 1899 for (const auto &Op : CI->operands()) { 1900 auto *PI = PredInfo->getPredicateInfoFor(Op); 1901 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1902 if (PI == LastPredInfo) 1903 continue; 1904 LastPredInfo = PI; 1905 // In phi of ops cases, we may have predicate info that we are evaluating 1906 // in a different context. 1907 if (!DT->dominates(PBranch->To, getBlockForValue(I))) 1908 continue; 1909 // TODO: Along the false edge, we may know more things too, like 1910 // icmp of 1911 // same operands is false. 1912 // TODO: We only handle actual comparison conditions below, not 1913 // and/or. 1914 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1915 if (!BranchCond) 1916 continue; 1917 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1918 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1919 auto BranchPredicate = BranchCond->getPredicate(); 1920 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1921 std::swap(BranchOp0, BranchOp1); 1922 BranchPredicate = BranchCond->getSwappedPredicate(); 1923 } 1924 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1925 if (PBranch->TrueEdge) { 1926 // If we know the previous predicate is true and we are in the true 1927 // edge then we may be implied true or false. 1928 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1929 OurPredicate)) { 1930 return ExprResult::some( 1931 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1932 PI); 1933 } 1934 1935 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1936 OurPredicate)) { 1937 return ExprResult::some( 1938 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1939 PI); 1940 } 1941 } else { 1942 // Just handle the ne and eq cases, where if we have the same 1943 // operands, we may know something. 1944 if (BranchPredicate == OurPredicate) { 1945 // Same predicate, same ops,we know it was false, so this is false. 1946 return ExprResult::some( 1947 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1948 PI); 1949 } else if (BranchPredicate == 1950 CmpInst::getInversePredicate(OurPredicate)) { 1951 // Inverse predicate, we know the other was false, so this is true. 1952 return ExprResult::some( 1953 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1954 PI); 1955 } 1956 } 1957 } 1958 } 1959 } 1960 // Create expression will take care of simplifyCmpInst 1961 return createExpression(I); 1962 } 1963 1964 // Substitute and symbolize the value before value numbering. 1965 NewGVN::ExprResult 1966 NewGVN::performSymbolicEvaluation(Value *V, 1967 SmallPtrSetImpl<Value *> &Visited) const { 1968 1969 const Expression *E = nullptr; 1970 if (auto *C = dyn_cast<Constant>(V)) 1971 E = createConstantExpression(C); 1972 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1973 E = createVariableExpression(V); 1974 } else { 1975 // TODO: memory intrinsics. 1976 // TODO: Some day, we should do the forward propagation and reassociation 1977 // parts of the algorithm. 1978 auto *I = cast<Instruction>(V); 1979 switch (I->getOpcode()) { 1980 case Instruction::ExtractValue: 1981 case Instruction::InsertValue: 1982 E = performSymbolicAggrValueEvaluation(I); 1983 break; 1984 case Instruction::PHI: { 1985 SmallVector<ValPair, 3> Ops; 1986 auto *PN = cast<PHINode>(I); 1987 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1988 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1989 // Sort to ensure the invariant createPHIExpression requires is met. 1990 sortPHIOps(Ops); 1991 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1992 } break; 1993 case Instruction::Call: 1994 return performSymbolicCallEvaluation(I); 1995 break; 1996 case Instruction::Store: 1997 E = performSymbolicStoreEvaluation(I); 1998 break; 1999 case Instruction::Load: 2000 E = performSymbolicLoadEvaluation(I); 2001 break; 2002 case Instruction::BitCast: 2003 case Instruction::AddrSpaceCast: 2004 case Instruction::Freeze: 2005 return createExpression(I); 2006 break; 2007 case Instruction::ICmp: 2008 case Instruction::FCmp: 2009 return performSymbolicCmpEvaluation(I); 2010 break; 2011 case Instruction::FNeg: 2012 case Instruction::Add: 2013 case Instruction::FAdd: 2014 case Instruction::Sub: 2015 case Instruction::FSub: 2016 case Instruction::Mul: 2017 case Instruction::FMul: 2018 case Instruction::UDiv: 2019 case Instruction::SDiv: 2020 case Instruction::FDiv: 2021 case Instruction::URem: 2022 case Instruction::SRem: 2023 case Instruction::FRem: 2024 case Instruction::Shl: 2025 case Instruction::LShr: 2026 case Instruction::AShr: 2027 case Instruction::And: 2028 case Instruction::Or: 2029 case Instruction::Xor: 2030 case Instruction::Trunc: 2031 case Instruction::ZExt: 2032 case Instruction::SExt: 2033 case Instruction::FPToUI: 2034 case Instruction::FPToSI: 2035 case Instruction::UIToFP: 2036 case Instruction::SIToFP: 2037 case Instruction::FPTrunc: 2038 case Instruction::FPExt: 2039 case Instruction::PtrToInt: 2040 case Instruction::IntToPtr: 2041 case Instruction::Select: 2042 case Instruction::ExtractElement: 2043 case Instruction::InsertElement: 2044 case Instruction::GetElementPtr: 2045 return createExpression(I); 2046 break; 2047 case Instruction::ShuffleVector: 2048 // FIXME: Add support for shufflevector to createExpression. 2049 return ExprResult::none(); 2050 default: 2051 return ExprResult::none(); 2052 } 2053 } 2054 return ExprResult::some(E); 2055 } 2056 2057 // Look up a container of values/instructions in a map, and touch all the 2058 // instructions in the container. Then erase value from the map. 2059 template <typename Map, typename KeyType> 2060 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2061 const auto Result = M.find_as(Key); 2062 if (Result != M.end()) { 2063 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2064 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2065 M.erase(Result); 2066 } 2067 } 2068 2069 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2070 assert(User && To != User); 2071 if (isa<Instruction>(To)) 2072 AdditionalUsers[To].insert(User); 2073 } 2074 2075 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2076 if (Res.ExtraDep && Res.ExtraDep != User) 2077 addAdditionalUsers(Res.ExtraDep, User); 2078 Res.ExtraDep = nullptr; 2079 2080 if (Res.PredDep) { 2081 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2082 PredicateToUsers[PBranch->Condition].insert(User); 2083 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2084 PredicateToUsers[PAssume->Condition].insert(User); 2085 } 2086 Res.PredDep = nullptr; 2087 } 2088 2089 void NewGVN::markUsersTouched(Value *V) { 2090 // Now mark the users as touched. 2091 for (auto *User : V->users()) { 2092 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2093 TouchedInstructions.set(InstrToDFSNum(User)); 2094 } 2095 touchAndErase(AdditionalUsers, V); 2096 } 2097 2098 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2099 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2100 MemoryToUsers[To].insert(U); 2101 } 2102 2103 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2104 TouchedInstructions.set(MemoryToDFSNum(MA)); 2105 } 2106 2107 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2108 if (isa<MemoryUse>(MA)) 2109 return; 2110 for (const auto *U : MA->users()) 2111 TouchedInstructions.set(MemoryToDFSNum(U)); 2112 touchAndErase(MemoryToUsers, MA); 2113 } 2114 2115 // Touch all the predicates that depend on this instruction. 2116 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2117 touchAndErase(PredicateToUsers, I); 2118 } 2119 2120 // Mark users affected by a memory leader change. 2121 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2122 for (const auto *M : CC->memory()) 2123 markMemoryDefTouched(M); 2124 } 2125 2126 // Touch the instructions that need to be updated after a congruence class has a 2127 // leader change, and mark changed values. 2128 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2129 for (auto *M : *CC) { 2130 if (auto *I = dyn_cast<Instruction>(M)) 2131 TouchedInstructions.set(InstrToDFSNum(I)); 2132 LeaderChanges.insert(M); 2133 } 2134 } 2135 2136 // Give a range of things that have instruction DFS numbers, this will return 2137 // the member of the range with the smallest dfs number. 2138 template <class T, class Range> 2139 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2140 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2141 for (const auto X : R) { 2142 auto DFSNum = InstrToDFSNum(X); 2143 if (DFSNum < MinDFS.second) 2144 MinDFS = {X, DFSNum}; 2145 } 2146 return MinDFS.first; 2147 } 2148 2149 // This function returns the MemoryAccess that should be the next leader of 2150 // congruence class CC, under the assumption that the current leader is going to 2151 // disappear. 2152 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2153 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2154 // do for regular leaders. 2155 // Make sure there will be a leader to find. 2156 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2157 if (CC->getStoreCount() > 0) { 2158 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2159 return getMemoryAccess(NL); 2160 // Find the store with the minimum DFS number. 2161 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2162 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2163 return getMemoryAccess(cast<StoreInst>(V)); 2164 } 2165 assert(CC->getStoreCount() == 0); 2166 2167 // Given our assertion, hitting this part must mean 2168 // !OldClass->memory_empty() 2169 if (CC->memory_size() == 1) 2170 return *CC->memory_begin(); 2171 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2172 } 2173 2174 // This function returns the next value leader of a congruence class, under the 2175 // assumption that the current leader is going away. This should end up being 2176 // the next most dominating member. 2177 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2178 // We don't need to sort members if there is only 1, and we don't care about 2179 // sorting the TOP class because everything either gets out of it or is 2180 // unreachable. 2181 2182 if (CC->size() == 1 || CC == TOPClass) { 2183 return *(CC->begin()); 2184 } else if (CC->getNextLeader().first) { 2185 ++NumGVNAvoidedSortedLeaderChanges; 2186 return CC->getNextLeader().first; 2187 } else { 2188 ++NumGVNSortedLeaderChanges; 2189 // NOTE: If this ends up to slow, we can maintain a dual structure for 2190 // member testing/insertion, or keep things mostly sorted, and sort only 2191 // here, or use SparseBitVector or .... 2192 return getMinDFSOfRange<Value>(*CC); 2193 } 2194 } 2195 2196 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2197 // the memory members, etc for the move. 2198 // 2199 // The invariants of this function are: 2200 // 2201 // - I must be moving to NewClass from OldClass 2202 // - The StoreCount of OldClass and NewClass is expected to have been updated 2203 // for I already if it is a store. 2204 // - The OldClass memory leader has not been updated yet if I was the leader. 2205 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2206 MemoryAccess *InstMA, 2207 CongruenceClass *OldClass, 2208 CongruenceClass *NewClass) { 2209 // If the leader is I, and we had a representative MemoryAccess, it should 2210 // be the MemoryAccess of OldClass. 2211 assert((!InstMA || !OldClass->getMemoryLeader() || 2212 OldClass->getLeader() != I || 2213 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2214 MemoryAccessToClass.lookup(InstMA)) && 2215 "Representative MemoryAccess mismatch"); 2216 // First, see what happens to the new class 2217 if (!NewClass->getMemoryLeader()) { 2218 // Should be a new class, or a store becoming a leader of a new class. 2219 assert(NewClass->size() == 1 || 2220 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2221 NewClass->setMemoryLeader(InstMA); 2222 // Mark it touched if we didn't just create a singleton 2223 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2224 << NewClass->getID() 2225 << " due to new memory instruction becoming leader\n"); 2226 markMemoryLeaderChangeTouched(NewClass); 2227 } 2228 setMemoryClass(InstMA, NewClass); 2229 // Now, fixup the old class if necessary 2230 if (OldClass->getMemoryLeader() == InstMA) { 2231 if (!OldClass->definesNoMemory()) { 2232 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2233 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2234 << OldClass->getID() << " to " 2235 << *OldClass->getMemoryLeader() 2236 << " due to removal of old leader " << *InstMA << "\n"); 2237 markMemoryLeaderChangeTouched(OldClass); 2238 } else 2239 OldClass->setMemoryLeader(nullptr); 2240 } 2241 } 2242 2243 // Move a value, currently in OldClass, to be part of NewClass 2244 // Update OldClass and NewClass for the move (including changing leaders, etc). 2245 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2246 CongruenceClass *OldClass, 2247 CongruenceClass *NewClass) { 2248 if (I == OldClass->getNextLeader().first) 2249 OldClass->resetNextLeader(); 2250 2251 OldClass->erase(I); 2252 NewClass->insert(I); 2253 2254 if (NewClass->getLeader() != I) 2255 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2256 // Handle our special casing of stores. 2257 if (auto *SI = dyn_cast<StoreInst>(I)) { 2258 OldClass->decStoreCount(); 2259 // Okay, so when do we want to make a store a leader of a class? 2260 // If we have a store defined by an earlier load, we want the earlier load 2261 // to lead the class. 2262 // If we have a store defined by something else, we want the store to lead 2263 // the class so everything else gets the "something else" as a value. 2264 // If we have a store as the single member of the class, we want the store 2265 // as the leader 2266 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2267 // If it's a store expression we are using, it means we are not equivalent 2268 // to something earlier. 2269 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2270 NewClass->setStoredValue(SE->getStoredValue()); 2271 markValueLeaderChangeTouched(NewClass); 2272 // Shift the new class leader to be the store 2273 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2274 << NewClass->getID() << " from " 2275 << *NewClass->getLeader() << " to " << *SI 2276 << " because store joined class\n"); 2277 // If we changed the leader, we have to mark it changed because we don't 2278 // know what it will do to symbolic evaluation. 2279 NewClass->setLeader(SI); 2280 } 2281 // We rely on the code below handling the MemoryAccess change. 2282 } 2283 NewClass->incStoreCount(); 2284 } 2285 // True if there is no memory instructions left in a class that had memory 2286 // instructions before. 2287 2288 // If it's not a memory use, set the MemoryAccess equivalence 2289 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2290 if (InstMA) 2291 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2292 ValueToClass[I] = NewClass; 2293 // See if we destroyed the class or need to swap leaders. 2294 if (OldClass->empty() && OldClass != TOPClass) { 2295 if (OldClass->getDefiningExpr()) { 2296 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2297 << " from table\n"); 2298 // We erase it as an exact expression to make sure we don't just erase an 2299 // equivalent one. 2300 auto Iter = ExpressionToClass.find_as( 2301 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2302 if (Iter != ExpressionToClass.end()) 2303 ExpressionToClass.erase(Iter); 2304 #ifdef EXPENSIVE_CHECKS 2305 assert( 2306 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2307 "We erased the expression we just inserted, which should not happen"); 2308 #endif 2309 } 2310 } else if (OldClass->getLeader() == I) { 2311 // When the leader changes, the value numbering of 2312 // everything may change due to symbolization changes, so we need to 2313 // reprocess. 2314 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2315 << OldClass->getID() << "\n"); 2316 ++NumGVNLeaderChanges; 2317 // Destroy the stored value if there are no more stores to represent it. 2318 // Note that this is basically clean up for the expression removal that 2319 // happens below. If we remove stores from a class, we may leave it as a 2320 // class of equivalent memory phis. 2321 if (OldClass->getStoreCount() == 0) { 2322 if (OldClass->getStoredValue()) 2323 OldClass->setStoredValue(nullptr); 2324 } 2325 OldClass->setLeader(getNextValueLeader(OldClass)); 2326 OldClass->resetNextLeader(); 2327 markValueLeaderChangeTouched(OldClass); 2328 } 2329 } 2330 2331 // For a given expression, mark the phi of ops instructions that could have 2332 // changed as a result. 2333 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2334 touchAndErase(ExpressionToPhiOfOps, E); 2335 } 2336 2337 // Perform congruence finding on a given value numbering expression. 2338 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2339 // This is guaranteed to return something, since it will at least find 2340 // TOP. 2341 2342 CongruenceClass *IClass = ValueToClass.lookup(I); 2343 assert(IClass && "Should have found a IClass"); 2344 // Dead classes should have been eliminated from the mapping. 2345 assert(!IClass->isDead() && "Found a dead class"); 2346 2347 CongruenceClass *EClass = nullptr; 2348 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2349 EClass = ValueToClass.lookup(VE->getVariableValue()); 2350 } else if (isa<DeadExpression>(E)) { 2351 EClass = TOPClass; 2352 } 2353 if (!EClass) { 2354 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2355 2356 // If it's not in the value table, create a new congruence class. 2357 if (lookupResult.second) { 2358 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2359 auto place = lookupResult.first; 2360 place->second = NewClass; 2361 2362 // Constants and variables should always be made the leader. 2363 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2364 NewClass->setLeader(CE->getConstantValue()); 2365 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2366 StoreInst *SI = SE->getStoreInst(); 2367 NewClass->setLeader(SI); 2368 NewClass->setStoredValue(SE->getStoredValue()); 2369 // The RepMemoryAccess field will be filled in properly by the 2370 // moveValueToNewCongruenceClass call. 2371 } else { 2372 NewClass->setLeader(I); 2373 } 2374 assert(!isa<VariableExpression>(E) && 2375 "VariableExpression should have been handled already"); 2376 2377 EClass = NewClass; 2378 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2379 << " using expression " << *E << " at " 2380 << NewClass->getID() << " and leader " 2381 << *(NewClass->getLeader())); 2382 if (NewClass->getStoredValue()) 2383 LLVM_DEBUG(dbgs() << " and stored value " 2384 << *(NewClass->getStoredValue())); 2385 LLVM_DEBUG(dbgs() << "\n"); 2386 } else { 2387 EClass = lookupResult.first->second; 2388 if (isa<ConstantExpression>(E)) 2389 assert((isa<Constant>(EClass->getLeader()) || 2390 (EClass->getStoredValue() && 2391 isa<Constant>(EClass->getStoredValue()))) && 2392 "Any class with a constant expression should have a " 2393 "constant leader"); 2394 2395 assert(EClass && "Somehow don't have an eclass"); 2396 2397 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2398 } 2399 } 2400 bool ClassChanged = IClass != EClass; 2401 bool LeaderChanged = LeaderChanges.erase(I); 2402 if (ClassChanged || LeaderChanged) { 2403 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2404 << *E << "\n"); 2405 if (ClassChanged) { 2406 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2407 markPhiOfOpsChanged(E); 2408 } 2409 2410 markUsersTouched(I); 2411 if (MemoryAccess *MA = getMemoryAccess(I)) 2412 markMemoryUsersTouched(MA); 2413 if (auto *CI = dyn_cast<CmpInst>(I)) 2414 markPredicateUsersTouched(CI); 2415 } 2416 // If we changed the class of the store, we want to ensure nothing finds the 2417 // old store expression. In particular, loads do not compare against stored 2418 // value, so they will find old store expressions (and associated class 2419 // mappings) if we leave them in the table. 2420 if (ClassChanged && isa<StoreInst>(I)) { 2421 auto *OldE = ValueToExpression.lookup(I); 2422 // It could just be that the old class died. We don't want to erase it if we 2423 // just moved classes. 2424 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2425 // Erase this as an exact expression to ensure we don't erase expressions 2426 // equivalent to it. 2427 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2428 if (Iter != ExpressionToClass.end()) 2429 ExpressionToClass.erase(Iter); 2430 } 2431 } 2432 ValueToExpression[I] = E; 2433 } 2434 2435 // Process the fact that Edge (from, to) is reachable, including marking 2436 // any newly reachable blocks and instructions for processing. 2437 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2438 // Check if the Edge was reachable before. 2439 if (ReachableEdges.insert({From, To}).second) { 2440 // If this block wasn't reachable before, all instructions are touched. 2441 if (ReachableBlocks.insert(To).second) { 2442 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2443 << " marked reachable\n"); 2444 const auto &InstRange = BlockInstRange.lookup(To); 2445 TouchedInstructions.set(InstRange.first, InstRange.second); 2446 } else { 2447 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2448 << " was reachable, but new edge {" 2449 << getBlockName(From) << "," << getBlockName(To) 2450 << "} to it found\n"); 2451 2452 // We've made an edge reachable to an existing block, which may 2453 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2454 // they are the only thing that depend on new edges. Anything using their 2455 // values will get propagated to if necessary. 2456 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2457 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2458 2459 // FIXME: We should just add a union op on a Bitvector and 2460 // SparseBitVector. We can do it word by word faster than we are doing it 2461 // here. 2462 for (auto InstNum : RevisitOnReachabilityChange[To]) 2463 TouchedInstructions.set(InstNum); 2464 } 2465 } 2466 } 2467 2468 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2469 // see if we know some constant value for it already. 2470 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2471 auto Result = lookupOperandLeader(Cond); 2472 return isa<Constant>(Result) ? Result : nullptr; 2473 } 2474 2475 // Process the outgoing edges of a block for reachability. 2476 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2477 // Evaluate reachability of terminator instruction. 2478 Value *Cond; 2479 BasicBlock *TrueSucc, *FalseSucc; 2480 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2481 Value *CondEvaluated = findConditionEquivalence(Cond); 2482 if (!CondEvaluated) { 2483 if (auto *I = dyn_cast<Instruction>(Cond)) { 2484 SmallPtrSet<Value *, 4> Visited; 2485 auto Res = performSymbolicEvaluation(I, Visited); 2486 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2487 CondEvaluated = CE->getConstantValue(); 2488 addAdditionalUsers(Res, I); 2489 } else { 2490 // Did not use simplification result, no need to add the extra 2491 // dependency. 2492 Res.ExtraDep = nullptr; 2493 } 2494 } else if (isa<ConstantInt>(Cond)) { 2495 CondEvaluated = Cond; 2496 } 2497 } 2498 ConstantInt *CI; 2499 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2500 if (CI->isOne()) { 2501 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2502 << " evaluated to true\n"); 2503 updateReachableEdge(B, TrueSucc); 2504 } else if (CI->isZero()) { 2505 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2506 << " evaluated to false\n"); 2507 updateReachableEdge(B, FalseSucc); 2508 } 2509 } else { 2510 updateReachableEdge(B, TrueSucc); 2511 updateReachableEdge(B, FalseSucc); 2512 } 2513 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2514 // For switches, propagate the case values into the case 2515 // destinations. 2516 2517 Value *SwitchCond = SI->getCondition(); 2518 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2519 // See if we were able to turn this switch statement into a constant. 2520 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2521 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2522 // We should be able to get case value for this. 2523 auto Case = *SI->findCaseValue(CondVal); 2524 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2525 // We proved the value is outside of the range of the case. 2526 // We can't do anything other than mark the default dest as reachable, 2527 // and go home. 2528 updateReachableEdge(B, SI->getDefaultDest()); 2529 return; 2530 } 2531 // Now get where it goes and mark it reachable. 2532 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2533 updateReachableEdge(B, TargetBlock); 2534 } else { 2535 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 2536 BasicBlock *TargetBlock = SI->getSuccessor(i); 2537 updateReachableEdge(B, TargetBlock); 2538 } 2539 } 2540 } else { 2541 // Otherwise this is either unconditional, or a type we have no 2542 // idea about. Just mark successors as reachable. 2543 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 2544 BasicBlock *TargetBlock = TI->getSuccessor(i); 2545 updateReachableEdge(B, TargetBlock); 2546 } 2547 2548 // This also may be a memory defining terminator, in which case, set it 2549 // equivalent only to itself. 2550 // 2551 auto *MA = getMemoryAccess(TI); 2552 if (MA && !isa<MemoryUse>(MA)) { 2553 auto *CC = ensureLeaderOfMemoryClass(MA); 2554 if (setMemoryClass(MA, CC)) 2555 markMemoryUsersTouched(MA); 2556 } 2557 } 2558 } 2559 2560 // Remove the PHI of Ops PHI for I 2561 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2562 InstrDFS.erase(PHITemp); 2563 // It's still a temp instruction. We keep it in the array so it gets erased. 2564 // However, it's no longer used by I, or in the block 2565 TempToBlock.erase(PHITemp); 2566 RealToTemp.erase(I); 2567 // We don't remove the users from the phi node uses. This wastes a little 2568 // time, but such is life. We could use two sets to track which were there 2569 // are the start of NewGVN, and which were added, but right nowt he cost of 2570 // tracking is more than the cost of checking for more phi of ops. 2571 } 2572 2573 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2574 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2575 Instruction *ExistingValue) { 2576 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2577 AllTempInstructions.insert(Op); 2578 TempToBlock[Op] = BB; 2579 RealToTemp[ExistingValue] = Op; 2580 // Add all users to phi node use, as they are now uses of the phi of ops phis 2581 // and may themselves be phi of ops. 2582 for (auto *U : ExistingValue->users()) 2583 if (auto *UI = dyn_cast<Instruction>(U)) 2584 PHINodeUses.insert(UI); 2585 } 2586 2587 static bool okayForPHIOfOps(const Instruction *I) { 2588 if (!EnablePhiOfOps) 2589 return false; 2590 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2591 isa<LoadInst>(I); 2592 } 2593 2594 // Return true if this operand will be safe to use for phi of ops. 2595 // 2596 // The reason some operands are unsafe is that we are not trying to recursively 2597 // translate everything back through phi nodes. We actually expect some lookups 2598 // of expressions to fail. In particular, a lookup where the expression cannot 2599 // exist in the predecessor. This is true even if the expression, as shown, can 2600 // be determined to be constant. 2601 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2602 SmallPtrSetImpl<const Value *> &Visited) { 2603 SmallVector<Value *, 4> Worklist; 2604 Worklist.push_back(V); 2605 while (!Worklist.empty()) { 2606 auto *I = Worklist.pop_back_val(); 2607 if (!isa<Instruction>(I)) 2608 continue; 2609 2610 auto OISIt = OpSafeForPHIOfOps.find(I); 2611 if (OISIt != OpSafeForPHIOfOps.end()) 2612 return OISIt->second; 2613 2614 // Keep walking until we either dominate the phi block, or hit a phi, or run 2615 // out of things to check. 2616 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) { 2617 OpSafeForPHIOfOps.insert({I, true}); 2618 continue; 2619 } 2620 // PHI in the same block. 2621 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) { 2622 OpSafeForPHIOfOps.insert({I, false}); 2623 return false; 2624 } 2625 2626 auto *OrigI = cast<Instruction>(I); 2627 // When we hit an instruction that reads memory (load, call, etc), we must 2628 // consider any store that may happen in the loop. For now, we assume the 2629 // worst: there is a store in the loop that alias with this read. 2630 // The case where the load is outside the loop is already covered by the 2631 // dominator check above. 2632 // TODO: relax this condition 2633 if (OrigI->mayReadFromMemory()) 2634 return false; 2635 2636 // Check the operands of the current instruction. 2637 for (auto *Op : OrigI->operand_values()) { 2638 if (!isa<Instruction>(Op)) 2639 continue; 2640 // Stop now if we find an unsafe operand. 2641 auto OISIt = OpSafeForPHIOfOps.find(OrigI); 2642 if (OISIt != OpSafeForPHIOfOps.end()) { 2643 if (!OISIt->second) { 2644 OpSafeForPHIOfOps.insert({I, false}); 2645 return false; 2646 } 2647 continue; 2648 } 2649 if (!Visited.insert(Op).second) 2650 continue; 2651 Worklist.push_back(cast<Instruction>(Op)); 2652 } 2653 } 2654 OpSafeForPHIOfOps.insert({V, true}); 2655 return true; 2656 } 2657 2658 // Try to find a leader for instruction TransInst, which is a phi translated 2659 // version of something in our original program. Visited is used to ensure we 2660 // don't infinite loop during translations of cycles. OrigInst is the 2661 // instruction in the original program, and PredBB is the predecessor we 2662 // translated it through. 2663 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2664 SmallPtrSetImpl<Value *> &Visited, 2665 MemoryAccess *MemAccess, Instruction *OrigInst, 2666 BasicBlock *PredBB) { 2667 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2668 // Make sure it's marked as a temporary instruction. 2669 AllTempInstructions.insert(TransInst); 2670 // and make sure anything that tries to add it's DFS number is 2671 // redirected to the instruction we are making a phi of ops 2672 // for. 2673 TempToBlock.insert({TransInst, PredBB}); 2674 InstrDFS.insert({TransInst, IDFSNum}); 2675 2676 auto Res = performSymbolicEvaluation(TransInst, Visited); 2677 const Expression *E = Res.Expr; 2678 addAdditionalUsers(Res, OrigInst); 2679 InstrDFS.erase(TransInst); 2680 AllTempInstructions.erase(TransInst); 2681 TempToBlock.erase(TransInst); 2682 if (MemAccess) 2683 TempToMemory.erase(TransInst); 2684 if (!E) 2685 return nullptr; 2686 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2687 if (!FoundVal) { 2688 ExpressionToPhiOfOps[E].insert(OrigInst); 2689 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2690 << " in block " << getBlockName(PredBB) << "\n"); 2691 return nullptr; 2692 } 2693 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2694 FoundVal = SI->getValueOperand(); 2695 return FoundVal; 2696 } 2697 2698 // When we see an instruction that is an op of phis, generate the equivalent phi 2699 // of ops form. 2700 const Expression * 2701 NewGVN::makePossiblePHIOfOps(Instruction *I, 2702 SmallPtrSetImpl<Value *> &Visited) { 2703 if (!okayForPHIOfOps(I)) 2704 return nullptr; 2705 2706 if (!Visited.insert(I).second) 2707 return nullptr; 2708 // For now, we require the instruction be cycle free because we don't 2709 // *always* create a phi of ops for instructions that could be done as phi 2710 // of ops, we only do it if we think it is useful. If we did do it all the 2711 // time, we could remove the cycle free check. 2712 if (!isCycleFree(I)) 2713 return nullptr; 2714 2715 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2716 // TODO: We don't do phi translation on memory accesses because it's 2717 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2718 // which we don't have a good way of doing ATM. 2719 auto *MemAccess = getMemoryAccess(I); 2720 // If the memory operation is defined by a memory operation this block that 2721 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2722 // can't help, as it would still be killed by that memory operation. 2723 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2724 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2725 return nullptr; 2726 2727 // Convert op of phis to phi of ops 2728 SmallPtrSet<const Value *, 10> VisitedOps; 2729 SmallVector<Value *, 4> Ops(I->operand_values()); 2730 BasicBlock *SamePHIBlock = nullptr; 2731 PHINode *OpPHI = nullptr; 2732 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2733 return nullptr; 2734 for (auto *Op : Ops) { 2735 if (!isa<PHINode>(Op)) { 2736 auto *ValuePHI = RealToTemp.lookup(Op); 2737 if (!ValuePHI) 2738 continue; 2739 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2740 Op = ValuePHI; 2741 } 2742 OpPHI = cast<PHINode>(Op); 2743 if (!SamePHIBlock) { 2744 SamePHIBlock = getBlockForValue(OpPHI); 2745 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2746 LLVM_DEBUG( 2747 dbgs() 2748 << "PHIs for operands are not all in the same block, aborting\n"); 2749 return nullptr; 2750 } 2751 // No point in doing this for one-operand phis. 2752 // Since all PHIs for operands must be in the same block, then they must 2753 // have the same number of operands so we can just abort. 2754 if (OpPHI->getNumOperands() == 1) 2755 return nullptr; 2756 } 2757 2758 if (!OpPHI) 2759 return nullptr; 2760 2761 SmallVector<ValPair, 4> PHIOps; 2762 SmallPtrSet<Value *, 4> Deps; 2763 auto *PHIBlock = getBlockForValue(OpPHI); 2764 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2765 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2766 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2767 Value *FoundVal = nullptr; 2768 SmallPtrSet<Value *, 4> CurrentDeps; 2769 // We could just skip unreachable edges entirely but it's tricky to do 2770 // with rewriting existing phi nodes. 2771 if (ReachableEdges.count({PredBB, PHIBlock})) { 2772 // Clone the instruction, create an expression from it that is 2773 // translated back into the predecessor, and see if we have a leader. 2774 Instruction *ValueOp = I->clone(); 2775 if (MemAccess) 2776 TempToMemory.insert({ValueOp, MemAccess}); 2777 bool SafeForPHIOfOps = true; 2778 VisitedOps.clear(); 2779 for (auto &Op : ValueOp->operands()) { 2780 auto *OrigOp = &*Op; 2781 // When these operand changes, it could change whether there is a 2782 // leader for us or not, so we have to add additional users. 2783 if (isa<PHINode>(Op)) { 2784 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2785 if (Op != OrigOp && Op != I) 2786 CurrentDeps.insert(Op); 2787 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2788 if (getBlockForValue(ValuePHI) == PHIBlock) 2789 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2790 } 2791 // If we phi-translated the op, it must be safe. 2792 SafeForPHIOfOps = 2793 SafeForPHIOfOps && 2794 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2795 } 2796 // FIXME: For those things that are not safe we could generate 2797 // expressions all the way down, and see if this comes out to a 2798 // constant. For anything where that is true, and unsafe, we should 2799 // have made a phi-of-ops (or value numbered it equivalent to something) 2800 // for the pieces already. 2801 FoundVal = !SafeForPHIOfOps ? nullptr 2802 : findLeaderForInst(ValueOp, Visited, 2803 MemAccess, I, PredBB); 2804 ValueOp->deleteValue(); 2805 if (!FoundVal) { 2806 // We failed to find a leader for the current ValueOp, but this might 2807 // change in case of the translated operands change. 2808 if (SafeForPHIOfOps) 2809 for (auto *Dep : CurrentDeps) 2810 addAdditionalUsers(Dep, I); 2811 2812 return nullptr; 2813 } 2814 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2815 } else { 2816 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2817 << getBlockName(PredBB) 2818 << " because the block is unreachable\n"); 2819 FoundVal = PoisonValue::get(I->getType()); 2820 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2821 } 2822 2823 PHIOps.push_back({FoundVal, PredBB}); 2824 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2825 << getBlockName(PredBB) << "\n"); 2826 } 2827 for (auto *Dep : Deps) 2828 addAdditionalUsers(Dep, I); 2829 sortPHIOps(PHIOps); 2830 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2831 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2832 LLVM_DEBUG( 2833 dbgs() 2834 << "Not creating real PHI of ops because it simplified to existing " 2835 "value or constant\n"); 2836 // We have leaders for all operands, but do not create a real PHI node with 2837 // those leaders as operands, so the link between the operands and the 2838 // PHI-of-ops is not materialized in the IR. If any of those leaders 2839 // changes, the PHI-of-op may change also, so we need to add the operands as 2840 // additional users. 2841 for (auto &O : PHIOps) 2842 addAdditionalUsers(O.first, I); 2843 2844 return E; 2845 } 2846 auto *ValuePHI = RealToTemp.lookup(I); 2847 bool NewPHI = false; 2848 if (!ValuePHI) { 2849 ValuePHI = 2850 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2851 addPhiOfOps(ValuePHI, PHIBlock, I); 2852 NewPHI = true; 2853 NumGVNPHIOfOpsCreated++; 2854 } 2855 if (NewPHI) { 2856 for (auto PHIOp : PHIOps) 2857 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2858 } else { 2859 TempToBlock[ValuePHI] = PHIBlock; 2860 unsigned int i = 0; 2861 for (auto PHIOp : PHIOps) { 2862 ValuePHI->setIncomingValue(i, PHIOp.first); 2863 ValuePHI->setIncomingBlock(i, PHIOp.second); 2864 ++i; 2865 } 2866 } 2867 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2868 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2869 << "\n"); 2870 2871 return E; 2872 } 2873 2874 // The algorithm initially places the values of the routine in the TOP 2875 // congruence class. The leader of TOP is the undetermined value `poison`. 2876 // When the algorithm has finished, values still in TOP are unreachable. 2877 void NewGVN::initializeCongruenceClasses(Function &F) { 2878 NextCongruenceNum = 0; 2879 2880 // Note that even though we use the live on entry def as a representative 2881 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2882 // have no real equivalent to poison for MemoryAccesses, and so we really 2883 // should be checking whether the MemoryAccess is top if we want to know if it 2884 // is equivalent to everything. Otherwise, what this really signifies is that 2885 // the access "it reaches all the way back to the beginning of the function" 2886 2887 // Initialize all other instructions to be in TOP class. 2888 TOPClass = createCongruenceClass(nullptr, nullptr); 2889 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2890 // The live on entry def gets put into it's own class 2891 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2892 createMemoryClass(MSSA->getLiveOnEntryDef()); 2893 2894 for (auto *DTN : nodes(DT)) { 2895 BasicBlock *BB = DTN->getBlock(); 2896 // All MemoryAccesses are equivalent to live on entry to start. They must 2897 // be initialized to something so that initial changes are noticed. For 2898 // the maximal answer, we initialize them all to be the same as 2899 // liveOnEntry. 2900 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2901 if (MemoryBlockDefs) 2902 for (const auto &Def : *MemoryBlockDefs) { 2903 MemoryAccessToClass[&Def] = TOPClass; 2904 auto *MD = dyn_cast<MemoryDef>(&Def); 2905 // Insert the memory phis into the member list. 2906 if (!MD) { 2907 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2908 TOPClass->memory_insert(MP); 2909 MemoryPhiState.insert({MP, MPS_TOP}); 2910 } 2911 2912 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2913 TOPClass->incStoreCount(); 2914 } 2915 2916 // FIXME: This is trying to discover which instructions are uses of phi 2917 // nodes. We should move this into one of the myriad of places that walk 2918 // all the operands already. 2919 for (auto &I : *BB) { 2920 if (isa<PHINode>(&I)) 2921 for (auto *U : I.users()) 2922 if (auto *UInst = dyn_cast<Instruction>(U)) 2923 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2924 PHINodeUses.insert(UInst); 2925 // Don't insert void terminators into the class. We don't value number 2926 // them, and they just end up sitting in TOP. 2927 if (I.isTerminator() && I.getType()->isVoidTy()) 2928 continue; 2929 TOPClass->insert(&I); 2930 ValueToClass[&I] = TOPClass; 2931 } 2932 } 2933 2934 // Initialize arguments to be in their own unique congruence classes 2935 for (auto &FA : F.args()) 2936 createSingletonCongruenceClass(&FA); 2937 } 2938 2939 void NewGVN::cleanupTables() { 2940 for (CongruenceClass *&CC : CongruenceClasses) { 2941 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has " 2942 << CC->size() << " members\n"); 2943 // Make sure we delete the congruence class (probably worth switching to 2944 // a unique_ptr at some point. 2945 delete CC; 2946 CC = nullptr; 2947 } 2948 2949 // Destroy the value expressions 2950 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2951 AllTempInstructions.end()); 2952 AllTempInstructions.clear(); 2953 2954 // We have to drop all references for everything first, so there are no uses 2955 // left as we delete them. 2956 for (auto *I : TempInst) { 2957 I->dropAllReferences(); 2958 } 2959 2960 while (!TempInst.empty()) { 2961 auto *I = TempInst.pop_back_val(); 2962 I->deleteValue(); 2963 } 2964 2965 ValueToClass.clear(); 2966 ArgRecycler.clear(ExpressionAllocator); 2967 ExpressionAllocator.Reset(); 2968 CongruenceClasses.clear(); 2969 ExpressionToClass.clear(); 2970 ValueToExpression.clear(); 2971 RealToTemp.clear(); 2972 AdditionalUsers.clear(); 2973 ExpressionToPhiOfOps.clear(); 2974 TempToBlock.clear(); 2975 TempToMemory.clear(); 2976 PHINodeUses.clear(); 2977 OpSafeForPHIOfOps.clear(); 2978 ReachableBlocks.clear(); 2979 ReachableEdges.clear(); 2980 #ifndef NDEBUG 2981 ProcessedCount.clear(); 2982 #endif 2983 InstrDFS.clear(); 2984 InstructionsToErase.clear(); 2985 DFSToInstr.clear(); 2986 BlockInstRange.clear(); 2987 TouchedInstructions.clear(); 2988 MemoryAccessToClass.clear(); 2989 PredicateToUsers.clear(); 2990 MemoryToUsers.clear(); 2991 RevisitOnReachabilityChange.clear(); 2992 IntrinsicInstPred.clear(); 2993 } 2994 2995 // Assign local DFS number mapping to instructions, and leave space for Value 2996 // PHI's. 2997 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2998 unsigned Start) { 2999 unsigned End = Start; 3000 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 3001 InstrDFS[MemPhi] = End++; 3002 DFSToInstr.emplace_back(MemPhi); 3003 } 3004 3005 // Then the real block goes next. 3006 for (auto &I : *B) { 3007 // There's no need to call isInstructionTriviallyDead more than once on 3008 // an instruction. Therefore, once we know that an instruction is dead 3009 // we change its DFS number so that it doesn't get value numbered. 3010 if (isInstructionTriviallyDead(&I, TLI)) { 3011 InstrDFS[&I] = 0; 3012 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 3013 markInstructionForDeletion(&I); 3014 continue; 3015 } 3016 if (isa<PHINode>(&I)) 3017 RevisitOnReachabilityChange[B].set(End); 3018 InstrDFS[&I] = End++; 3019 DFSToInstr.emplace_back(&I); 3020 } 3021 3022 // All of the range functions taken half-open ranges (open on the end side). 3023 // So we do not subtract one from count, because at this point it is one 3024 // greater than the last instruction. 3025 return std::make_pair(Start, End); 3026 } 3027 3028 void NewGVN::updateProcessedCount(const Value *V) { 3029 #ifndef NDEBUG 3030 if (ProcessedCount.count(V) == 0) { 3031 ProcessedCount.insert({V, 1}); 3032 } else { 3033 ++ProcessedCount[V]; 3034 assert(ProcessedCount[V] < 100 && 3035 "Seem to have processed the same Value a lot"); 3036 } 3037 #endif 3038 } 3039 3040 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3041 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3042 // If all the arguments are the same, the MemoryPhi has the same value as the 3043 // argument. Filter out unreachable blocks and self phis from our operands. 3044 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3045 // self-phi checking. 3046 const BasicBlock *PHIBlock = MP->getBlock(); 3047 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3048 return cast<MemoryAccess>(U) != MP && 3049 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3050 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3051 }); 3052 // If all that is left is nothing, our memoryphi is poison. We keep it as 3053 // InitialClass. Note: The only case this should happen is if we have at 3054 // least one self-argument. 3055 if (Filtered.begin() == Filtered.end()) { 3056 if (setMemoryClass(MP, TOPClass)) 3057 markMemoryUsersTouched(MP); 3058 return; 3059 } 3060 3061 // Transform the remaining operands into operand leaders. 3062 // FIXME: mapped_iterator should have a range version. 3063 auto LookupFunc = [&](const Use &U) { 3064 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3065 }; 3066 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3067 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3068 3069 // and now check if all the elements are equal. 3070 // Sadly, we can't use std::equals since these are random access iterators. 3071 const auto *AllSameValue = *MappedBegin; 3072 ++MappedBegin; 3073 bool AllEqual = std::all_of( 3074 MappedBegin, MappedEnd, 3075 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3076 3077 if (AllEqual) 3078 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3079 << "\n"); 3080 else 3081 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3082 // If it's equal to something, it's in that class. Otherwise, it has to be in 3083 // a class where it is the leader (other things may be equivalent to it, but 3084 // it needs to start off in its own class, which means it must have been the 3085 // leader, and it can't have stopped being the leader because it was never 3086 // removed). 3087 CongruenceClass *CC = 3088 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3089 auto OldState = MemoryPhiState.lookup(MP); 3090 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3091 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3092 MemoryPhiState[MP] = NewState; 3093 if (setMemoryClass(MP, CC) || OldState != NewState) 3094 markMemoryUsersTouched(MP); 3095 } 3096 3097 // Value number a single instruction, symbolically evaluating, performing 3098 // congruence finding, and updating mappings. 3099 void NewGVN::valueNumberInstruction(Instruction *I) { 3100 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3101 if (!I->isTerminator()) { 3102 const Expression *Symbolized = nullptr; 3103 SmallPtrSet<Value *, 2> Visited; 3104 if (DebugCounter::shouldExecute(VNCounter)) { 3105 auto Res = performSymbolicEvaluation(I, Visited); 3106 Symbolized = Res.Expr; 3107 addAdditionalUsers(Res, I); 3108 3109 // Make a phi of ops if necessary 3110 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3111 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3112 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3113 // If we created a phi of ops, use it. 3114 // If we couldn't create one, make sure we don't leave one lying around 3115 if (PHIE) { 3116 Symbolized = PHIE; 3117 } else if (auto *Op = RealToTemp.lookup(I)) { 3118 removePhiOfOps(I, Op); 3119 } 3120 } 3121 } else { 3122 // Mark the instruction as unused so we don't value number it again. 3123 InstrDFS[I] = 0; 3124 } 3125 // If we couldn't come up with a symbolic expression, use the unknown 3126 // expression 3127 if (Symbolized == nullptr) 3128 Symbolized = createUnknownExpression(I); 3129 performCongruenceFinding(I, Symbolized); 3130 } else { 3131 // Handle terminators that return values. All of them produce values we 3132 // don't currently understand. We don't place non-value producing 3133 // terminators in a class. 3134 if (!I->getType()->isVoidTy()) { 3135 auto *Symbolized = createUnknownExpression(I); 3136 performCongruenceFinding(I, Symbolized); 3137 } 3138 processOutgoingEdges(I, I->getParent()); 3139 } 3140 } 3141 3142 // Check if there is a path, using single or equal argument phi nodes, from 3143 // First to Second. 3144 bool NewGVN::singleReachablePHIPath( 3145 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3146 const MemoryAccess *Second) const { 3147 if (First == Second) 3148 return true; 3149 if (MSSA->isLiveOnEntryDef(First)) 3150 return false; 3151 3152 // This is not perfect, but as we're just verifying here, we can live with 3153 // the loss of precision. The real solution would be that of doing strongly 3154 // connected component finding in this routine, and it's probably not worth 3155 // the complexity for the time being. So, we just keep a set of visited 3156 // MemoryAccess and return true when we hit a cycle. 3157 if (!Visited.insert(First).second) 3158 return true; 3159 3160 const auto *EndDef = First; 3161 for (const auto *ChainDef : optimized_def_chain(First)) { 3162 if (ChainDef == Second) 3163 return true; 3164 if (MSSA->isLiveOnEntryDef(ChainDef)) 3165 return false; 3166 EndDef = ChainDef; 3167 } 3168 auto *MP = cast<MemoryPhi>(EndDef); 3169 auto ReachableOperandPred = [&](const Use &U) { 3170 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3171 }; 3172 auto FilteredPhiArgs = 3173 make_filter_range(MP->operands(), ReachableOperandPred); 3174 SmallVector<const Value *, 32> OperandList; 3175 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3176 bool Okay = all_equal(OperandList); 3177 if (Okay) 3178 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3179 Second); 3180 return false; 3181 } 3182 3183 // Verify the that the memory equivalence table makes sense relative to the 3184 // congruence classes. Note that this checking is not perfect, and is currently 3185 // subject to very rare false negatives. It is only useful for 3186 // testing/debugging. 3187 void NewGVN::verifyMemoryCongruency() const { 3188 #ifndef NDEBUG 3189 // Verify that the memory table equivalence and memory member set match 3190 for (const auto *CC : CongruenceClasses) { 3191 if (CC == TOPClass || CC->isDead()) 3192 continue; 3193 if (CC->getStoreCount() != 0) { 3194 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3195 "Any class with a store as a leader should have a " 3196 "representative stored value"); 3197 assert(CC->getMemoryLeader() && 3198 "Any congruence class with a store should have a " 3199 "representative access"); 3200 } 3201 3202 if (CC->getMemoryLeader()) 3203 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3204 "Representative MemoryAccess does not appear to be reverse " 3205 "mapped properly"); 3206 for (const auto *M : CC->memory()) 3207 assert(MemoryAccessToClass.lookup(M) == CC && 3208 "Memory member does not appear to be reverse mapped properly"); 3209 } 3210 3211 // Anything equivalent in the MemoryAccess table should be in the same 3212 // congruence class. 3213 3214 // Filter out the unreachable and trivially dead entries, because they may 3215 // never have been updated if the instructions were not processed. 3216 auto ReachableAccessPred = 3217 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3218 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3219 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3220 MemoryToDFSNum(Pair.first) == 0) 3221 return false; 3222 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3223 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3224 3225 // We could have phi nodes which operands are all trivially dead, 3226 // so we don't process them. 3227 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3228 for (const auto &U : MemPHI->incoming_values()) { 3229 if (auto *I = dyn_cast<Instruction>(&*U)) { 3230 if (!isInstructionTriviallyDead(I)) 3231 return true; 3232 } 3233 } 3234 return false; 3235 } 3236 3237 return true; 3238 }; 3239 3240 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3241 for (auto KV : Filtered) { 3242 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3243 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3244 if (FirstMUD && SecondMUD) { 3245 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3246 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3247 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3248 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3249 "The instructions for these memory operations should have " 3250 "been in the same congruence class or reachable through" 3251 "a single argument phi"); 3252 } 3253 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3254 // We can only sanely verify that MemoryDefs in the operand list all have 3255 // the same class. 3256 auto ReachableOperandPred = [&](const Use &U) { 3257 return ReachableEdges.count( 3258 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3259 isa<MemoryDef>(U); 3260 3261 }; 3262 // All arguments should in the same class, ignoring unreachable arguments 3263 auto FilteredPhiArgs = 3264 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3265 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3266 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3267 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3268 const MemoryDef *MD = cast<MemoryDef>(U); 3269 return ValueToClass.lookup(MD->getMemoryInst()); 3270 }); 3271 assert(all_equal(PhiOpClasses) && 3272 "All MemoryPhi arguments should be in the same class"); 3273 } 3274 } 3275 #endif 3276 } 3277 3278 // Verify that the sparse propagation we did actually found the maximal fixpoint 3279 // We do this by storing the value to class mapping, touching all instructions, 3280 // and redoing the iteration to see if anything changed. 3281 void NewGVN::verifyIterationSettled(Function &F) { 3282 #ifndef NDEBUG 3283 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3284 if (DebugCounter::isCounterSet(VNCounter)) 3285 DebugCounter::setCounterValue(VNCounter, StartingVNCounter); 3286 3287 // Note that we have to store the actual classes, as we may change existing 3288 // classes during iteration. This is because our memory iteration propagation 3289 // is not perfect, and so may waste a little work. But it should generate 3290 // exactly the same congruence classes we have now, with different IDs. 3291 std::map<const Value *, CongruenceClass> BeforeIteration; 3292 3293 for (auto &KV : ValueToClass) { 3294 if (auto *I = dyn_cast<Instruction>(KV.first)) 3295 // Skip unused/dead instructions. 3296 if (InstrToDFSNum(I) == 0) 3297 continue; 3298 BeforeIteration.insert({KV.first, *KV.second}); 3299 } 3300 3301 TouchedInstructions.set(); 3302 TouchedInstructions.reset(0); 3303 OpSafeForPHIOfOps.clear(); 3304 iterateTouchedInstructions(); 3305 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3306 EqualClasses; 3307 for (const auto &KV : ValueToClass) { 3308 if (auto *I = dyn_cast<Instruction>(KV.first)) 3309 // Skip unused/dead instructions. 3310 if (InstrToDFSNum(I) == 0) 3311 continue; 3312 // We could sink these uses, but i think this adds a bit of clarity here as 3313 // to what we are comparing. 3314 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3315 auto *AfterCC = KV.second; 3316 // Note that the classes can't change at this point, so we memoize the set 3317 // that are equal. 3318 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3319 assert(BeforeCC->isEquivalentTo(AfterCC) && 3320 "Value number changed after main loop completed!"); 3321 EqualClasses.insert({BeforeCC, AfterCC}); 3322 } 3323 } 3324 #endif 3325 } 3326 3327 // Verify that for each store expression in the expression to class mapping, 3328 // only the latest appears, and multiple ones do not appear. 3329 // Because loads do not use the stored value when doing equality with stores, 3330 // if we don't erase the old store expressions from the table, a load can find 3331 // a no-longer valid StoreExpression. 3332 void NewGVN::verifyStoreExpressions() const { 3333 #ifndef NDEBUG 3334 // This is the only use of this, and it's not worth defining a complicated 3335 // densemapinfo hash/equality function for it. 3336 std::set< 3337 std::pair<const Value *, 3338 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3339 StoreExpressionSet; 3340 for (const auto &KV : ExpressionToClass) { 3341 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3342 // Make sure a version that will conflict with loads is not already there 3343 auto Res = StoreExpressionSet.insert( 3344 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3345 SE->getStoredValue())}); 3346 bool Okay = Res.second; 3347 // It's okay to have the same expression already in there if it is 3348 // identical in nature. 3349 // This can happen when the leader of the stored value changes over time. 3350 if (!Okay) 3351 Okay = (std::get<1>(Res.first->second) == KV.second) && 3352 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3353 lookupOperandLeader(SE->getStoredValue())); 3354 assert(Okay && "Stored expression conflict exists in expression table"); 3355 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3356 assert(ValueExpr && ValueExpr->equals(*SE) && 3357 "StoreExpression in ExpressionToClass is not latest " 3358 "StoreExpression for value"); 3359 } 3360 } 3361 #endif 3362 } 3363 3364 // This is the main value numbering loop, it iterates over the initial touched 3365 // instruction set, propagating value numbers, marking things touched, etc, 3366 // until the set of touched instructions is completely empty. 3367 void NewGVN::iterateTouchedInstructions() { 3368 uint64_t Iterations = 0; 3369 // Figure out where touchedinstructions starts 3370 int FirstInstr = TouchedInstructions.find_first(); 3371 // Nothing set, nothing to iterate, just return. 3372 if (FirstInstr == -1) 3373 return; 3374 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3375 while (TouchedInstructions.any()) { 3376 ++Iterations; 3377 // Walk through all the instructions in all the blocks in RPO. 3378 // TODO: As we hit a new block, we should push and pop equalities into a 3379 // table lookupOperandLeader can use, to catch things PredicateInfo 3380 // might miss, like edge-only equivalences. 3381 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3382 3383 // This instruction was found to be dead. We don't bother looking 3384 // at it again. 3385 if (InstrNum == 0) { 3386 TouchedInstructions.reset(InstrNum); 3387 continue; 3388 } 3389 3390 Value *V = InstrFromDFSNum(InstrNum); 3391 const BasicBlock *CurrBlock = getBlockForValue(V); 3392 3393 // If we hit a new block, do reachability processing. 3394 if (CurrBlock != LastBlock) { 3395 LastBlock = CurrBlock; 3396 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3397 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3398 3399 // If it's not reachable, erase any touched instructions and move on. 3400 if (!BlockReachable) { 3401 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3402 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3403 << getBlockName(CurrBlock) 3404 << " because it is unreachable\n"); 3405 continue; 3406 } 3407 updateProcessedCount(CurrBlock); 3408 } 3409 // Reset after processing (because we may mark ourselves as touched when 3410 // we propagate equalities). 3411 TouchedInstructions.reset(InstrNum); 3412 3413 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3414 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3415 valueNumberMemoryPhi(MP); 3416 } else if (auto *I = dyn_cast<Instruction>(V)) { 3417 valueNumberInstruction(I); 3418 } else { 3419 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3420 } 3421 updateProcessedCount(V); 3422 } 3423 } 3424 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3425 } 3426 3427 // This is the main transformation entry point. 3428 bool NewGVN::runGVN() { 3429 if (DebugCounter::isCounterSet(VNCounter)) 3430 StartingVNCounter = DebugCounter::getCounterValue(VNCounter); 3431 bool Changed = false; 3432 NumFuncArgs = F.arg_size(); 3433 MSSAWalker = MSSA->getWalker(); 3434 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3435 3436 // Count number of instructions for sizing of hash tables, and come 3437 // up with a global dfs numbering for instructions. 3438 unsigned ICount = 1; 3439 // Add an empty instruction to account for the fact that we start at 1 3440 DFSToInstr.emplace_back(nullptr); 3441 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3442 // same as dominator tree order, particularly with regard whether backedges 3443 // get visited first or second, given a block with multiple successors. 3444 // If we visit in the wrong order, we will end up performing N times as many 3445 // iterations. 3446 // The dominator tree does guarantee that, for a given dom tree node, it's 3447 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3448 // the siblings. 3449 ReversePostOrderTraversal<Function *> RPOT(&F); 3450 unsigned Counter = 0; 3451 for (auto &B : RPOT) { 3452 auto *Node = DT->getNode(B); 3453 assert(Node && "RPO and Dominator tree should have same reachability"); 3454 RPOOrdering[Node] = ++Counter; 3455 } 3456 // Sort dominator tree children arrays into RPO. 3457 for (auto &B : RPOT) { 3458 auto *Node = DT->getNode(B); 3459 if (Node->getNumChildren() > 1) 3460 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3461 return RPOOrdering[A] < RPOOrdering[B]; 3462 }); 3463 } 3464 3465 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3466 for (auto *DTN : depth_first(DT->getRootNode())) { 3467 BasicBlock *B = DTN->getBlock(); 3468 const auto &BlockRange = assignDFSNumbers(B, ICount); 3469 BlockInstRange.insert({B, BlockRange}); 3470 ICount += BlockRange.second - BlockRange.first; 3471 } 3472 initializeCongruenceClasses(F); 3473 3474 TouchedInstructions.resize(ICount); 3475 // Ensure we don't end up resizing the expressionToClass map, as 3476 // that can be quite expensive. At most, we have one expression per 3477 // instruction. 3478 ExpressionToClass.reserve(ICount); 3479 3480 // Initialize the touched instructions to include the entry block. 3481 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3482 TouchedInstructions.set(InstRange.first, InstRange.second); 3483 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3484 << " marked reachable\n"); 3485 ReachableBlocks.insert(&F.getEntryBlock()); 3486 3487 iterateTouchedInstructions(); 3488 verifyMemoryCongruency(); 3489 verifyIterationSettled(F); 3490 verifyStoreExpressions(); 3491 3492 Changed |= eliminateInstructions(F); 3493 3494 // Delete all instructions marked for deletion. 3495 for (Instruction *ToErase : InstructionsToErase) { 3496 if (!ToErase->use_empty()) 3497 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType())); 3498 3499 assert(ToErase->getParent() && 3500 "BB containing ToErase deleted unexpectedly!"); 3501 ToErase->eraseFromParent(); 3502 } 3503 Changed |= !InstructionsToErase.empty(); 3504 3505 // Delete all unreachable blocks. 3506 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3507 return !ReachableBlocks.count(&BB); 3508 }; 3509 3510 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3511 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3512 << " is unreachable\n"); 3513 deleteInstructionsInBlock(&BB); 3514 Changed = true; 3515 } 3516 3517 cleanupTables(); 3518 return Changed; 3519 } 3520 3521 struct NewGVN::ValueDFS { 3522 int DFSIn = 0; 3523 int DFSOut = 0; 3524 int LocalNum = 0; 3525 3526 // Only one of Def and U will be set. 3527 // The bool in the Def tells us whether the Def is the stored value of a 3528 // store. 3529 PointerIntPair<Value *, 1, bool> Def; 3530 Use *U = nullptr; 3531 3532 bool operator<(const ValueDFS &Other) const { 3533 // It's not enough that any given field be less than - we have sets 3534 // of fields that need to be evaluated together to give a proper ordering. 3535 // For example, if you have; 3536 // DFS (1, 3) 3537 // Val 0 3538 // DFS (1, 2) 3539 // Val 50 3540 // We want the second to be less than the first, but if we just go field 3541 // by field, we will get to Val 0 < Val 50 and say the first is less than 3542 // the second. We only want it to be less than if the DFS orders are equal. 3543 // 3544 // Each LLVM instruction only produces one value, and thus the lowest-level 3545 // differentiator that really matters for the stack (and what we use as as a 3546 // replacement) is the local dfs number. 3547 // Everything else in the structure is instruction level, and only affects 3548 // the order in which we will replace operands of a given instruction. 3549 // 3550 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3551 // the order of replacement of uses does not matter. 3552 // IE given, 3553 // a = 5 3554 // b = a + a 3555 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3556 // localnum. 3557 // The .val will be the same as well. 3558 // The .u's will be different. 3559 // You will replace both, and it does not matter what order you replace them 3560 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3561 // operand 2). 3562 // Similarly for the case of same dfsin, dfsout, localnum, but different 3563 // .val's 3564 // a = 5 3565 // b = 6 3566 // c = a + b 3567 // in c, we will a valuedfs for a, and one for b,with everything the same 3568 // but .val and .u. 3569 // It does not matter what order we replace these operands in. 3570 // You will always end up with the same IR, and this is guaranteed. 3571 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3572 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3573 Other.U); 3574 } 3575 }; 3576 3577 // This function converts the set of members for a congruence class from values, 3578 // to sets of defs and uses with associated DFS info. The total number of 3579 // reachable uses for each value is stored in UseCount, and instructions that 3580 // seem 3581 // dead (have no non-dead uses) are stored in ProbablyDead. 3582 void NewGVN::convertClassToDFSOrdered( 3583 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3584 DenseMap<const Value *, unsigned int> &UseCounts, 3585 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3586 for (auto *D : Dense) { 3587 // First add the value. 3588 BasicBlock *BB = getBlockForValue(D); 3589 // Constants are handled prior to ever calling this function, so 3590 // we should only be left with instructions as members. 3591 assert(BB && "Should have figured out a basic block for value"); 3592 ValueDFS VDDef; 3593 DomTreeNode *DomNode = DT->getNode(BB); 3594 VDDef.DFSIn = DomNode->getDFSNumIn(); 3595 VDDef.DFSOut = DomNode->getDFSNumOut(); 3596 // If it's a store, use the leader of the value operand, if it's always 3597 // available, or the value operand. TODO: We could do dominance checks to 3598 // find a dominating leader, but not worth it ATM. 3599 if (auto *SI = dyn_cast<StoreInst>(D)) { 3600 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3601 if (alwaysAvailable(Leader)) { 3602 VDDef.Def.setPointer(Leader); 3603 } else { 3604 VDDef.Def.setPointer(SI->getValueOperand()); 3605 VDDef.Def.setInt(true); 3606 } 3607 } else { 3608 VDDef.Def.setPointer(D); 3609 } 3610 assert(isa<Instruction>(D) && 3611 "The dense set member should always be an instruction"); 3612 Instruction *Def = cast<Instruction>(D); 3613 VDDef.LocalNum = InstrToDFSNum(D); 3614 DFSOrderedSet.push_back(VDDef); 3615 // If there is a phi node equivalent, add it 3616 if (auto *PN = RealToTemp.lookup(Def)) { 3617 auto *PHIE = 3618 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3619 if (PHIE) { 3620 VDDef.Def.setInt(false); 3621 VDDef.Def.setPointer(PN); 3622 VDDef.LocalNum = 0; 3623 DFSOrderedSet.push_back(VDDef); 3624 } 3625 } 3626 3627 unsigned int UseCount = 0; 3628 // Now add the uses. 3629 for (auto &U : Def->uses()) { 3630 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3631 // Don't try to replace into dead uses 3632 if (InstructionsToErase.count(I)) 3633 continue; 3634 ValueDFS VDUse; 3635 // Put the phi node uses in the incoming block. 3636 BasicBlock *IBlock; 3637 if (auto *P = dyn_cast<PHINode>(I)) { 3638 IBlock = P->getIncomingBlock(U); 3639 // Make phi node users appear last in the incoming block 3640 // they are from. 3641 VDUse.LocalNum = InstrDFS.size() + 1; 3642 } else { 3643 IBlock = getBlockForValue(I); 3644 VDUse.LocalNum = InstrToDFSNum(I); 3645 } 3646 3647 // Skip uses in unreachable blocks, as we're going 3648 // to delete them. 3649 if (!ReachableBlocks.contains(IBlock)) 3650 continue; 3651 3652 DomTreeNode *DomNode = DT->getNode(IBlock); 3653 VDUse.DFSIn = DomNode->getDFSNumIn(); 3654 VDUse.DFSOut = DomNode->getDFSNumOut(); 3655 VDUse.U = &U; 3656 ++UseCount; 3657 DFSOrderedSet.emplace_back(VDUse); 3658 } 3659 } 3660 3661 // If there are no uses, it's probably dead (but it may have side-effects, 3662 // so not definitely dead. Otherwise, store the number of uses so we can 3663 // track if it becomes dead later). 3664 if (UseCount == 0) 3665 ProbablyDead.insert(Def); 3666 else 3667 UseCounts[Def] = UseCount; 3668 } 3669 } 3670 3671 // This function converts the set of members for a congruence class from values, 3672 // to the set of defs for loads and stores, with associated DFS info. 3673 void NewGVN::convertClassToLoadsAndStores( 3674 const CongruenceClass &Dense, 3675 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3676 for (auto *D : Dense) { 3677 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3678 continue; 3679 3680 BasicBlock *BB = getBlockForValue(D); 3681 ValueDFS VD; 3682 DomTreeNode *DomNode = DT->getNode(BB); 3683 VD.DFSIn = DomNode->getDFSNumIn(); 3684 VD.DFSOut = DomNode->getDFSNumOut(); 3685 VD.Def.setPointer(D); 3686 3687 // If it's an instruction, use the real local dfs number. 3688 if (auto *I = dyn_cast<Instruction>(D)) 3689 VD.LocalNum = InstrToDFSNum(I); 3690 else 3691 llvm_unreachable("Should have been an instruction"); 3692 3693 LoadsAndStores.emplace_back(VD); 3694 } 3695 } 3696 3697 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3698 patchReplacementInstruction(I, Repl); 3699 I->replaceAllUsesWith(Repl); 3700 } 3701 3702 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3703 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3704 ++NumGVNBlocksDeleted; 3705 3706 // Delete the instructions backwards, as it has a reduced likelihood of having 3707 // to update as many def-use and use-def chains. Start after the terminator. 3708 auto StartPoint = BB->rbegin(); 3709 ++StartPoint; 3710 // Note that we explicitly recalculate BB->rend() on each iteration, 3711 // as it may change when we remove the first instruction. 3712 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3713 Instruction &Inst = *I++; 3714 if (!Inst.use_empty()) 3715 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType())); 3716 if (isa<LandingPadInst>(Inst)) 3717 continue; 3718 salvageKnowledge(&Inst, AC); 3719 3720 Inst.eraseFromParent(); 3721 ++NumGVNInstrDeleted; 3722 } 3723 // Now insert something that simplifycfg will turn into an unreachable. 3724 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3725 new StoreInst( 3726 PoisonValue::get(Int8Ty), 3727 Constant::getNullValue(PointerType::getUnqual(BB->getContext())), 3728 BB->getTerminator()); 3729 } 3730 3731 void NewGVN::markInstructionForDeletion(Instruction *I) { 3732 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3733 InstructionsToErase.insert(I); 3734 } 3735 3736 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3737 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3738 patchAndReplaceAllUsesWith(I, V); 3739 // We save the actual erasing to avoid invalidating memory 3740 // dependencies until we are done with everything. 3741 markInstructionForDeletion(I); 3742 } 3743 3744 namespace { 3745 3746 // This is a stack that contains both the value and dfs info of where 3747 // that value is valid. 3748 class ValueDFSStack { 3749 public: 3750 Value *back() const { return ValueStack.back(); } 3751 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3752 3753 void push_back(Value *V, int DFSIn, int DFSOut) { 3754 ValueStack.emplace_back(V); 3755 DFSStack.emplace_back(DFSIn, DFSOut); 3756 } 3757 3758 bool empty() const { return DFSStack.empty(); } 3759 3760 bool isInScope(int DFSIn, int DFSOut) const { 3761 if (empty()) 3762 return false; 3763 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3764 } 3765 3766 void popUntilDFSScope(int DFSIn, int DFSOut) { 3767 3768 // These two should always be in sync at this point. 3769 assert(ValueStack.size() == DFSStack.size() && 3770 "Mismatch between ValueStack and DFSStack"); 3771 while ( 3772 !DFSStack.empty() && 3773 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3774 DFSStack.pop_back(); 3775 ValueStack.pop_back(); 3776 } 3777 } 3778 3779 private: 3780 SmallVector<Value *, 8> ValueStack; 3781 SmallVector<std::pair<int, int>, 8> DFSStack; 3782 }; 3783 3784 } // end anonymous namespace 3785 3786 // Given an expression, get the congruence class for it. 3787 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3788 if (auto *VE = dyn_cast<VariableExpression>(E)) 3789 return ValueToClass.lookup(VE->getVariableValue()); 3790 else if (isa<DeadExpression>(E)) 3791 return TOPClass; 3792 return ExpressionToClass.lookup(E); 3793 } 3794 3795 // Given a value and a basic block we are trying to see if it is available in, 3796 // see if the value has a leader available in that block. 3797 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3798 const Instruction *OrigInst, 3799 const BasicBlock *BB) const { 3800 // It would already be constant if we could make it constant 3801 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3802 return CE->getConstantValue(); 3803 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3804 auto *V = VE->getVariableValue(); 3805 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3806 return VE->getVariableValue(); 3807 } 3808 3809 auto *CC = getClassForExpression(E); 3810 if (!CC) 3811 return nullptr; 3812 if (alwaysAvailable(CC->getLeader())) 3813 return CC->getLeader(); 3814 3815 for (auto *Member : *CC) { 3816 auto *MemberInst = dyn_cast<Instruction>(Member); 3817 if (MemberInst == OrigInst) 3818 continue; 3819 // Anything that isn't an instruction is always available. 3820 if (!MemberInst) 3821 return Member; 3822 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3823 return Member; 3824 } 3825 return nullptr; 3826 } 3827 3828 bool NewGVN::eliminateInstructions(Function &F) { 3829 // This is a non-standard eliminator. The normal way to eliminate is 3830 // to walk the dominator tree in order, keeping track of available 3831 // values, and eliminating them. However, this is mildly 3832 // pointless. It requires doing lookups on every instruction, 3833 // regardless of whether we will ever eliminate it. For 3834 // instructions part of most singleton congruence classes, we know we 3835 // will never eliminate them. 3836 3837 // Instead, this eliminator looks at the congruence classes directly, sorts 3838 // them into a DFS ordering of the dominator tree, and then we just 3839 // perform elimination straight on the sets by walking the congruence 3840 // class member uses in order, and eliminate the ones dominated by the 3841 // last member. This is worst case O(E log E) where E = number of 3842 // instructions in a single congruence class. In theory, this is all 3843 // instructions. In practice, it is much faster, as most instructions are 3844 // either in singleton congruence classes or can't possibly be eliminated 3845 // anyway (if there are no overlapping DFS ranges in class). 3846 // When we find something not dominated, it becomes the new leader 3847 // for elimination purposes. 3848 // TODO: If we wanted to be faster, We could remove any members with no 3849 // overlapping ranges while sorting, as we will never eliminate anything 3850 // with those members, as they don't dominate anything else in our set. 3851 3852 bool AnythingReplaced = false; 3853 3854 // Since we are going to walk the domtree anyway, and we can't guarantee the 3855 // DFS numbers are updated, we compute some ourselves. 3856 DT->updateDFSNumbers(); 3857 3858 // Go through all of our phi nodes, and kill the arguments associated with 3859 // unreachable edges. 3860 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3861 for (auto &Operand : PHI->incoming_values()) 3862 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3863 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3864 << " for block " 3865 << getBlockName(PHI->getIncomingBlock(Operand)) 3866 << " with poison due to it being unreachable\n"); 3867 Operand.set(PoisonValue::get(PHI->getType())); 3868 } 3869 }; 3870 // Replace unreachable phi arguments. 3871 // At this point, RevisitOnReachabilityChange only contains: 3872 // 3873 // 1. PHIs 3874 // 2. Temporaries that will convert to PHIs 3875 // 3. Operations that are affected by an unreachable edge but do not fit into 3876 // 1 or 2 (rare). 3877 // So it is a slight overshoot of what we want. We could make it exact by 3878 // using two SparseBitVectors per block. 3879 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3880 for (auto &KV : ReachableEdges) 3881 ReachablePredCount[KV.getEnd()]++; 3882 for (auto &BBPair : RevisitOnReachabilityChange) { 3883 for (auto InstNum : BBPair.second) { 3884 auto *Inst = InstrFromDFSNum(InstNum); 3885 auto *PHI = dyn_cast<PHINode>(Inst); 3886 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3887 if (!PHI) 3888 continue; 3889 auto *BB = BBPair.first; 3890 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3891 ReplaceUnreachablePHIArgs(PHI, BB); 3892 } 3893 } 3894 3895 // Map to store the use counts 3896 DenseMap<const Value *, unsigned int> UseCounts; 3897 for (auto *CC : reverse(CongruenceClasses)) { 3898 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3899 << "\n"); 3900 // Track the equivalent store info so we can decide whether to try 3901 // dead store elimination. 3902 SmallVector<ValueDFS, 8> PossibleDeadStores; 3903 SmallPtrSet<Instruction *, 8> ProbablyDead; 3904 if (CC->isDead() || CC->empty()) 3905 continue; 3906 // Everything still in the TOP class is unreachable or dead. 3907 if (CC == TOPClass) { 3908 for (auto *M : *CC) { 3909 auto *VTE = ValueToExpression.lookup(M); 3910 if (VTE && isa<DeadExpression>(VTE)) 3911 markInstructionForDeletion(cast<Instruction>(M)); 3912 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3913 InstructionsToErase.count(cast<Instruction>(M))) && 3914 "Everything in TOP should be unreachable or dead at this " 3915 "point"); 3916 } 3917 continue; 3918 } 3919 3920 assert(CC->getLeader() && "We should have had a leader"); 3921 // If this is a leader that is always available, and it's a 3922 // constant or has no equivalences, just replace everything with 3923 // it. We then update the congruence class with whatever members 3924 // are left. 3925 Value *Leader = 3926 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3927 if (alwaysAvailable(Leader)) { 3928 CongruenceClass::MemberSet MembersLeft; 3929 for (auto *M : *CC) { 3930 Value *Member = M; 3931 // Void things have no uses we can replace. 3932 if (Member == Leader || !isa<Instruction>(Member) || 3933 Member->getType()->isVoidTy()) { 3934 MembersLeft.insert(Member); 3935 continue; 3936 } 3937 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3938 << *Member << "\n"); 3939 auto *I = cast<Instruction>(Member); 3940 assert(Leader != I && "About to accidentally remove our leader"); 3941 replaceInstruction(I, Leader); 3942 AnythingReplaced = true; 3943 } 3944 CC->swap(MembersLeft); 3945 } else { 3946 // If this is a singleton, we can skip it. 3947 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3948 // This is a stack because equality replacement/etc may place 3949 // constants in the middle of the member list, and we want to use 3950 // those constant values in preference to the current leader, over 3951 // the scope of those constants. 3952 ValueDFSStack EliminationStack; 3953 3954 // Convert the members to DFS ordered sets and then merge them. 3955 SmallVector<ValueDFS, 8> DFSOrderedSet; 3956 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3957 3958 // Sort the whole thing. 3959 llvm::sort(DFSOrderedSet); 3960 for (auto &VD : DFSOrderedSet) { 3961 int MemberDFSIn = VD.DFSIn; 3962 int MemberDFSOut = VD.DFSOut; 3963 Value *Def = VD.Def.getPointer(); 3964 bool FromStore = VD.Def.getInt(); 3965 Use *U = VD.U; 3966 // We ignore void things because we can't get a value from them. 3967 if (Def && Def->getType()->isVoidTy()) 3968 continue; 3969 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3970 if (DefInst && AllTempInstructions.count(DefInst)) { 3971 auto *PN = cast<PHINode>(DefInst); 3972 3973 // If this is a value phi and that's the expression we used, insert 3974 // it into the program 3975 // remove from temp instruction list. 3976 AllTempInstructions.erase(PN); 3977 auto *DefBlock = getBlockForValue(Def); 3978 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3979 << " into block " 3980 << getBlockName(getBlockForValue(Def)) << "\n"); 3981 PN->insertBefore(&DefBlock->front()); 3982 Def = PN; 3983 NumGVNPHIOfOpsEliminations++; 3984 } 3985 3986 if (EliminationStack.empty()) { 3987 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3988 } else { 3989 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3990 << EliminationStack.dfs_back().first << "," 3991 << EliminationStack.dfs_back().second << ")\n"); 3992 } 3993 3994 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3995 << MemberDFSOut << ")\n"); 3996 // First, we see if we are out of scope or empty. If so, 3997 // and there equivalences, we try to replace the top of 3998 // stack with equivalences (if it's on the stack, it must 3999 // not have been eliminated yet). 4000 // Then we synchronize to our current scope, by 4001 // popping until we are back within a DFS scope that 4002 // dominates the current member. 4003 // Then, what happens depends on a few factors 4004 // If the stack is now empty, we need to push 4005 // If we have a constant or a local equivalence we want to 4006 // start using, we also push. 4007 // Otherwise, we walk along, processing members who are 4008 // dominated by this scope, and eliminate them. 4009 bool ShouldPush = Def && EliminationStack.empty(); 4010 bool OutOfScope = 4011 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 4012 4013 if (OutOfScope || ShouldPush) { 4014 // Sync to our current scope. 4015 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4016 bool ShouldPush = Def && EliminationStack.empty(); 4017 if (ShouldPush) { 4018 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 4019 } 4020 } 4021 4022 // Skip the Def's, we only want to eliminate on their uses. But mark 4023 // dominated defs as dead. 4024 if (Def) { 4025 // For anything in this case, what and how we value number 4026 // guarantees that any side-effets that would have occurred (ie 4027 // throwing, etc) can be proven to either still occur (because it's 4028 // dominated by something that has the same side-effects), or never 4029 // occur. Otherwise, we would not have been able to prove it value 4030 // equivalent to something else. For these things, we can just mark 4031 // it all dead. Note that this is different from the "ProbablyDead" 4032 // set, which may not be dominated by anything, and thus, are only 4033 // easy to prove dead if they are also side-effect free. Note that 4034 // because stores are put in terms of the stored value, we skip 4035 // stored values here. If the stored value is really dead, it will 4036 // still be marked for deletion when we process it in its own class. 4037 if (!EliminationStack.empty() && Def != EliminationStack.back() && 4038 isa<Instruction>(Def) && !FromStore) 4039 markInstructionForDeletion(cast<Instruction>(Def)); 4040 continue; 4041 } 4042 // At this point, we know it is a Use we are trying to possibly 4043 // replace. 4044 4045 assert(isa<Instruction>(U->get()) && 4046 "Current def should have been an instruction"); 4047 assert(isa<Instruction>(U->getUser()) && 4048 "Current user should have been an instruction"); 4049 4050 // If the thing we are replacing into is already marked to be dead, 4051 // this use is dead. Note that this is true regardless of whether 4052 // we have anything dominating the use or not. We do this here 4053 // because we are already walking all the uses anyway. 4054 Instruction *InstUse = cast<Instruction>(U->getUser()); 4055 if (InstructionsToErase.count(InstUse)) { 4056 auto &UseCount = UseCounts[U->get()]; 4057 if (--UseCount == 0) { 4058 ProbablyDead.insert(cast<Instruction>(U->get())); 4059 } 4060 } 4061 4062 // If we get to this point, and the stack is empty we must have a use 4063 // with nothing we can use to eliminate this use, so just skip it. 4064 if (EliminationStack.empty()) 4065 continue; 4066 4067 Value *DominatingLeader = EliminationStack.back(); 4068 4069 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4070 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4071 if (isSSACopy) 4072 DominatingLeader = II->getOperand(0); 4073 4074 // Don't replace our existing users with ourselves. 4075 if (U->get() == DominatingLeader) 4076 continue; 4077 LLVM_DEBUG(dbgs() 4078 << "Found replacement " << *DominatingLeader << " for " 4079 << *U->get() << " in " << *(U->getUser()) << "\n"); 4080 4081 // If we replaced something in an instruction, handle the patching of 4082 // metadata. Skip this if we are replacing predicateinfo with its 4083 // original operand, as we already know we can just drop it. 4084 auto *ReplacedInst = cast<Instruction>(U->get()); 4085 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4086 if (!PI || DominatingLeader != PI->OriginalOp) 4087 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4088 U->set(DominatingLeader); 4089 // This is now a use of the dominating leader, which means if the 4090 // dominating leader was dead, it's now live! 4091 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4092 // It's about to be alive again. 4093 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4094 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4095 // For copy instructions, we use their operand as a leader, 4096 // which means we remove a user of the copy and it may become dead. 4097 if (isSSACopy) { 4098 unsigned &IIUseCount = UseCounts[II]; 4099 if (--IIUseCount == 0) 4100 ProbablyDead.insert(II); 4101 } 4102 ++LeaderUseCount; 4103 AnythingReplaced = true; 4104 } 4105 } 4106 } 4107 4108 // At this point, anything still in the ProbablyDead set is actually dead if 4109 // would be trivially dead. 4110 for (auto *I : ProbablyDead) 4111 if (wouldInstructionBeTriviallyDead(I)) 4112 markInstructionForDeletion(I); 4113 4114 // Cleanup the congruence class. 4115 CongruenceClass::MemberSet MembersLeft; 4116 for (auto *Member : *CC) 4117 if (!isa<Instruction>(Member) || 4118 !InstructionsToErase.count(cast<Instruction>(Member))) 4119 MembersLeft.insert(Member); 4120 CC->swap(MembersLeft); 4121 4122 // If we have possible dead stores to look at, try to eliminate them. 4123 if (CC->getStoreCount() > 0) { 4124 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4125 llvm::sort(PossibleDeadStores); 4126 ValueDFSStack EliminationStack; 4127 for (auto &VD : PossibleDeadStores) { 4128 int MemberDFSIn = VD.DFSIn; 4129 int MemberDFSOut = VD.DFSOut; 4130 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4131 if (EliminationStack.empty() || 4132 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4133 // Sync to our current scope. 4134 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4135 if (EliminationStack.empty()) { 4136 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4137 continue; 4138 } 4139 } 4140 // We already did load elimination, so nothing to do here. 4141 if (isa<LoadInst>(Member)) 4142 continue; 4143 assert(!EliminationStack.empty()); 4144 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4145 (void)Leader; 4146 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4147 // Member is dominater by Leader, and thus dead 4148 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4149 << " that is dominated by " << *Leader << "\n"); 4150 markInstructionForDeletion(Member); 4151 CC->erase(Member); 4152 ++NumGVNDeadStores; 4153 } 4154 } 4155 } 4156 return AnythingReplaced; 4157 } 4158 4159 // This function provides global ranking of operations so that we can place them 4160 // in a canonical order. Note that rank alone is not necessarily enough for a 4161 // complete ordering, as constants all have the same rank. However, generally, 4162 // we will simplify an operation with all constants so that it doesn't matter 4163 // what order they appear in. 4164 unsigned int NewGVN::getRank(const Value *V) const { 4165 // Prefer constants to undef to anything else 4166 // Undef is a constant, have to check it first. 4167 // Prefer poison to undef as it's less defined. 4168 // Prefer smaller constants to constantexprs 4169 // Note that the order here matters because of class inheritance 4170 if (isa<ConstantExpr>(V)) 4171 return 3; 4172 if (isa<PoisonValue>(V)) 4173 return 1; 4174 if (isa<UndefValue>(V)) 4175 return 2; 4176 if (isa<Constant>(V)) 4177 return 0; 4178 if (auto *A = dyn_cast<Argument>(V)) 4179 return 4 + A->getArgNo(); 4180 4181 // Need to shift the instruction DFS by number of arguments + 5 to account for 4182 // the constant and argument ranking above. 4183 unsigned Result = InstrToDFSNum(V); 4184 if (Result > 0) 4185 return 5 + NumFuncArgs + Result; 4186 // Unreachable or something else, just return a really large number. 4187 return ~0; 4188 } 4189 4190 // This is a function that says whether two commutative operations should 4191 // have their order swapped when canonicalizing. 4192 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4193 // Because we only care about a total ordering, and don't rewrite expressions 4194 // in this order, we order by rank, which will give a strict weak ordering to 4195 // everything but constants, and then we order by pointer address. 4196 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4197 } 4198 4199 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B, 4200 const IntrinsicInst *I) const { 4201 auto LookupResult = IntrinsicInstPred.find(I); 4202 if (shouldSwapOperands(A, B)) { 4203 if (LookupResult == IntrinsicInstPred.end()) 4204 IntrinsicInstPred.insert({I, B}); 4205 else 4206 LookupResult->second = B; 4207 return true; 4208 } 4209 4210 if (LookupResult != IntrinsicInstPred.end()) { 4211 auto *SeenPredicate = LookupResult->second; 4212 if (SeenPredicate) { 4213 if (SeenPredicate == B) 4214 return true; 4215 else 4216 LookupResult->second = nullptr; 4217 } 4218 } 4219 return false; 4220 } 4221 4222 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4223 // Apparently the order in which we get these results matter for 4224 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4225 // the same order here, just in case. 4226 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4227 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4228 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4229 auto &AA = AM.getResult<AAManager>(F); 4230 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4231 bool Changed = 4232 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout()) 4233 .runGVN(); 4234 if (!Changed) 4235 return PreservedAnalyses::all(); 4236 PreservedAnalyses PA; 4237 PA.preserve<DominatorTreeAnalysis>(); 4238 return PA; 4239 } 4240