xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129 
130 #define DEBUG_TYPE "newgvn"
131 
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137           "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141           "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145           "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147               "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149               "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow.  This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154                                            cl::init(false), cl::Hidden);
155 
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158                                     cl::Hidden);
159 
160 //===----------------------------------------------------------------------===//
161 //                                GVN Pass
162 //===----------------------------------------------------------------------===//
163 
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167 
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175 
176 } // end namespace GVNExpression
177 } // end namespace llvm
178 
179 namespace {
180 
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
190   TarjanSCC() : Components(1) {}
191 
192   void Start(const Instruction *Start) {
193     if (Root.lookup(Start) == 0)
194       FindSCC(Start);
195   }
196 
197   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198     unsigned ComponentID = ValueToComponent.lookup(V);
199 
200     assert(ComponentID > 0 &&
201            "Asking for a component for a value we never processed");
202     return Components[ComponentID];
203   }
204 
205 private:
206   void FindSCC(const Instruction *I) {
207     Root[I] = ++DFSNum;
208     // Store the DFS Number we had before it possibly gets incremented.
209     unsigned int OurDFS = DFSNum;
210     for (auto &Op : I->operands()) {
211       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212         if (Root.lookup(Op) == 0)
213           FindSCC(InstOp);
214         if (!InComponent.count(Op))
215           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216       }
217     }
218     // See if we really were the root of a component, by seeing if we still have
219     // our DFSNumber.  If we do, we are the root of the component, and we have
220     // completed a component. If we do not, we are not the root of a component,
221     // and belong on the component stack.
222     if (Root.lookup(I) == OurDFS) {
223       unsigned ComponentID = Components.size();
224       Components.resize(Components.size() + 1);
225       auto &Component = Components.back();
226       Component.insert(I);
227       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228       InComponent.insert(I);
229       ValueToComponent[I] = ComponentID;
230       // Pop a component off the stack and label it.
231       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232         auto *Member = Stack.back();
233         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234         Component.insert(Member);
235         InComponent.insert(Member);
236         ValueToComponent[Member] = ComponentID;
237         Stack.pop_back();
238       }
239     } else {
240       // Part of a component, push to stack
241       Stack.push_back(I);
242     }
243   }
244 
245   unsigned int DFSNum = 1;
246   SmallPtrSet<const Value *, 8> InComponent;
247   DenseMap<const Value *, unsigned int> Root;
248   SmallVector<const Value *, 8> Stack;
249 
250   // Store the components as vector of ptr sets, because we need the topo order
251   // of SCC's, but not individual member order
252   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253 
254   DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256 
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization).  To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value.  Otherwise, the
272 // leader is the member of the value set with the smallest DFS number.  Each
273 // congruence class also has a defining expression, though the expression may be
274 // null.  If it exists, it can be used for forward propagation and reassociation
275 // of values.
276 
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something.  Unfortunately, this does not work
281 // easily.  The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression.  This
284 // leads to wasted propagation, and in some cases, missed optimization.  For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class.  This in turn will move at one
287 // of the memorydefs to a new memory congruence class.  Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number).  So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency.  While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297   using MemberType = Value;
298   using MemberSet = SmallPtrSet<MemberType *, 4>;
299   using MemoryMemberType = MemoryPhi;
300   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301 
302   explicit CongruenceClass(unsigned ID) : ID(ID) {}
303   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305 
306   unsigned getID() const { return ID; }
307 
308   // True if this class has no members left.  This is mainly used for assertion
309   // purposes, and for skipping empty classes.
310   bool isDead() const {
311     // If it's both dead from a value perspective, and dead from a memory
312     // perspective, it's really dead.
313     return empty() && memory_empty();
314   }
315 
316   // Leader functions
317   Value *getLeader() const { return RepLeader; }
318   void setLeader(Value *Leader) { RepLeader = Leader; }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < NextLeader.second)
325       NextLeader = LeaderPair;
326   }
327 
328   Value *getStoredValue() const { return RepStoredValue; }
329   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
330   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
331   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332 
333   // Forward propagation info
334   const Expression *getDefiningExpr() const { return DefiningExpr; }
335 
336   // Value member set
337   bool empty() const { return Members.empty(); }
338   unsigned size() const { return Members.size(); }
339   MemberSet::const_iterator begin() const { return Members.begin(); }
340   MemberSet::const_iterator end() const { return Members.end(); }
341   void insert(MemberType *M) { Members.insert(M); }
342   void erase(MemberType *M) { Members.erase(M); }
343   void swap(MemberSet &Other) { Members.swap(Other); }
344 
345   // Memory member set
346   bool memory_empty() const { return MemoryMembers.empty(); }
347   unsigned memory_size() const { return MemoryMembers.size(); }
348   MemoryMemberSet::const_iterator memory_begin() const {
349     return MemoryMembers.begin();
350   }
351   MemoryMemberSet::const_iterator memory_end() const {
352     return MemoryMembers.end();
353   }
354   iterator_range<MemoryMemberSet::const_iterator> memory() const {
355     return make_range(memory_begin(), memory_end());
356   }
357 
358   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
359   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360 
361   // Store count
362   unsigned getStoreCount() const { return StoreCount; }
363   void incStoreCount() { ++StoreCount; }
364   void decStoreCount() {
365     assert(StoreCount != 0 && "Store count went negative");
366     --StoreCount;
367   }
368 
369   // True if this class has no memory members.
370   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371 
372   // Return true if two congruence classes are equivalent to each other. This
373   // means that every field but the ID number and the dead field are equivalent.
374   bool isEquivalentTo(const CongruenceClass *Other) const {
375     if (!Other)
376       return false;
377     if (this == Other)
378       return true;
379 
380     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382                  Other->RepMemoryAccess))
383       return false;
384     if (DefiningExpr != Other->DefiningExpr)
385       if (!DefiningExpr || !Other->DefiningExpr ||
386           *DefiningExpr != *Other->DefiningExpr)
387         return false;
388 
389     if (Members.size() != Other->Members.size())
390       return false;
391 
392     return llvm::set_is_subset(Members, Other->Members);
393   }
394 
395 private:
396   unsigned ID;
397 
398   // Representative leader.
399   Value *RepLeader = nullptr;
400 
401   // The most dominating leader after our current leader, because the member set
402   // is not sorted and is expensive to keep sorted all the time.
403   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404 
405   // If this is represented by a store, the value of the store.
406   Value *RepStoredValue = nullptr;
407 
408   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409   // access.
410   const MemoryAccess *RepMemoryAccess = nullptr;
411 
412   // Defining Expression.
413   const Expression *DefiningExpr = nullptr;
414 
415   // Actual members of this class.
416   MemberSet Members;
417 
418   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419   // MemoryUses have real instructions representing them, so we only need to
420   // track MemoryPhis here.
421   MemoryMemberSet MemoryMembers;
422 
423   // Number of stores in this congruence class.
424   // This is used so we can detect store equivalence changes properly.
425   int StoreCount = 0;
426 };
427 
428 } // end anonymous namespace
429 
430 namespace llvm {
431 
432 struct ExactEqualsExpression {
433   const Expression &E;
434 
435   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436 
437   hash_code getComputedHash() const { return E.getComputedHash(); }
438 
439   bool operator==(const Expression &Other) const {
440     return E.exactlyEquals(Other);
441   }
442 };
443 
444 template <> struct DenseMapInfo<const Expression *> {
445   static const Expression *getEmptyKey() {
446     auto Val = static_cast<uintptr_t>(-1);
447     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448     return reinterpret_cast<const Expression *>(Val);
449   }
450 
451   static const Expression *getTombstoneKey() {
452     auto Val = static_cast<uintptr_t>(~1U);
453     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454     return reinterpret_cast<const Expression *>(Val);
455   }
456 
457   static unsigned getHashValue(const Expression *E) {
458     return E->getComputedHash();
459   }
460 
461   static unsigned getHashValue(const ExactEqualsExpression &E) {
462     return E.getComputedHash();
463   }
464 
465   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467       return false;
468     return LHS == *RHS;
469   }
470 
471   static bool isEqual(const Expression *LHS, const Expression *RHS) {
472     if (LHS == RHS)
473       return true;
474     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475         LHS == getEmptyKey() || RHS == getEmptyKey())
476       return false;
477     // Compare hashes before equality.  This is *not* what the hashtable does,
478     // since it is computing it modulo the number of buckets, whereas we are
479     // using the full hash keyspace.  Since the hashes are precomputed, this
480     // check is *much* faster than equality.
481     if (LHS->getComputedHash() != RHS->getComputedHash())
482       return false;
483     return *LHS == *RHS;
484   }
485 };
486 
487 } // end namespace llvm
488 
489 namespace {
490 
491 class NewGVN {
492   Function &F;
493   DominatorTree *DT = nullptr;
494   const TargetLibraryInfo *TLI = nullptr;
495   AliasAnalysis *AA = nullptr;
496   MemorySSA *MSSA = nullptr;
497   MemorySSAWalker *MSSAWalker = nullptr;
498   AssumptionCache *AC = nullptr;
499   const DataLayout &DL;
500   std::unique_ptr<PredicateInfo> PredInfo;
501 
502   // These are the only two things the create* functions should have
503   // side-effects on due to allocating memory.
504   mutable BumpPtrAllocator ExpressionAllocator;
505   mutable ArrayRecycler<Value *> ArgRecycler;
506   mutable TarjanSCC SCCFinder;
507   const SimplifyQuery SQ;
508 
509   // Number of function arguments, used by ranking
510   unsigned int NumFuncArgs = 0;
511 
512   // RPOOrdering of basic blocks
513   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
514 
515   // Congruence class info.
516 
517   // This class is called INITIAL in the paper. It is the class everything
518   // startsout in, and represents any value. Being an optimistic analysis,
519   // anything in the TOP class has the value TOP, which is indeterminate and
520   // equivalent to everything.
521   CongruenceClass *TOPClass = nullptr;
522   std::vector<CongruenceClass *> CongruenceClasses;
523   unsigned NextCongruenceNum = 0;
524 
525   // Value Mappings.
526   DenseMap<Value *, CongruenceClass *> ValueToClass;
527   DenseMap<Value *, const Expression *> ValueToExpression;
528 
529   // Value PHI handling, used to make equivalence between phi(op, op) and
530   // op(phi, phi).
531   // These mappings just store various data that would normally be part of the
532   // IR.
533   SmallPtrSet<const Instruction *, 8> PHINodeUses;
534 
535   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
536 
537   // Map a temporary instruction we created to a parent block.
538   DenseMap<const Value *, BasicBlock *> TempToBlock;
539 
540   // Map between the already in-program instructions and the temporary phis we
541   // created that they are known equivalent to.
542   DenseMap<const Value *, PHINode *> RealToTemp;
543 
544   // In order to know when we should re-process instructions that have
545   // phi-of-ops, we track the set of expressions that they needed as
546   // leaders. When we discover new leaders for those expressions, we process the
547   // associated phi-of-op instructions again in case they have changed.  The
548   // other way they may change is if they had leaders, and those leaders
549   // disappear.  However, at the point they have leaders, there are uses of the
550   // relevant operands in the created phi node, and so they will get reprocessed
551   // through the normal user marking we perform.
552   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
553   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
554       ExpressionToPhiOfOps;
555 
556   // Map from temporary operation to MemoryAccess.
557   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
558 
559   // Set of all temporary instructions we created.
560   // Note: This will include instructions that were just created during value
561   // numbering.  The way to test if something is using them is to check
562   // RealToTemp.
563   DenseSet<Instruction *> AllTempInstructions;
564 
565   // This is the set of instructions to revisit on a reachability change.  At
566   // the end of the main iteration loop it will contain at least all the phi of
567   // ops instructions that will be changed to phis, as well as regular phis.
568   // During the iteration loop, it may contain other things, such as phi of ops
569   // instructions that used edge reachability to reach a result, and so need to
570   // be revisited when the edge changes, independent of whether the phi they
571   // depended on changes.
572   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
573 
574   // Mapping from predicate info we used to the instructions we used it with.
575   // In order to correctly ensure propagation, we must keep track of what
576   // comparisons we used, so that when the values of the comparisons change, we
577   // propagate the information to the places we used the comparison.
578   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
579       PredicateToUsers;
580 
581   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
582   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
583   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
584       MemoryToUsers;
585 
586   // A table storing which memorydefs/phis represent a memory state provably
587   // equivalent to another memory state.
588   // We could use the congruence class machinery, but the MemoryAccess's are
589   // abstract memory states, so they can only ever be equivalent to each other,
590   // and not to constants, etc.
591   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
592 
593   // We could, if we wanted, build MemoryPhiExpressions and
594   // MemoryVariableExpressions, etc, and value number them the same way we value
595   // number phi expressions.  For the moment, this seems like overkill.  They
596   // can only exist in one of three states: they can be TOP (equal to
597   // everything), Equivalent to something else, or unique.  Because we do not
598   // create expressions for them, we need to simulate leader change not just
599   // when they change class, but when they change state.  Note: We can do the
600   // same thing for phis, and avoid having phi expressions if we wanted, We
601   // should eventually unify in one direction or the other, so this is a little
602   // bit of an experiment in which turns out easier to maintain.
603   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
604   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
605 
606   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
607   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
608 
609   // Expression to class mapping.
610   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
611   ExpressionClassMap ExpressionToClass;
612 
613   // We have a single expression that represents currently DeadExpressions.
614   // For dead expressions we can prove will stay dead, we mark them with
615   // DFS number zero.  However, it's possible in the case of phi nodes
616   // for us to assume/prove all arguments are dead during fixpointing.
617   // We use DeadExpression for that case.
618   DeadExpression *SingletonDeadExpression = nullptr;
619 
620   // Which values have changed as a result of leader changes.
621   SmallPtrSet<Value *, 8> LeaderChanges;
622 
623   // Reachability info.
624   using BlockEdge = BasicBlockEdge;
625   DenseSet<BlockEdge> ReachableEdges;
626   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
627 
628   // This is a bitvector because, on larger functions, we may have
629   // thousands of touched instructions at once (entire blocks,
630   // instructions with hundreds of uses, etc).  Even with optimization
631   // for when we mark whole blocks as touched, when this was a
632   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
633   // the time in GVN just managing this list.  The bitvector, on the
634   // other hand, efficiently supports test/set/clear of both
635   // individual and ranges, as well as "find next element" This
636   // enables us to use it as a worklist with essentially 0 cost.
637   BitVector TouchedInstructions;
638 
639   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
640   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
641 
642 #ifndef NDEBUG
643   // Debugging for how many times each block and instruction got processed.
644   DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646 
647   // DFS info.
648   // This contains a mapping from Instructions to DFS numbers.
649   // The numbering starts at 1. An instruction with DFS number zero
650   // means that the instruction is dead.
651   DenseMap<const Value *, unsigned> InstrDFS;
652 
653   // This contains the mapping DFS numbers to instructions.
654   SmallVector<Value *, 32> DFSToInstr;
655 
656   // Deletion info.
657   SmallPtrSet<Instruction *, 8> InstructionsToErase;
658 
659 public:
660   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662          const DataLayout &DL)
663       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666            /*CanUseUndef=*/false) {}
667 
668   bool runGVN();
669 
670 private:
671   /// Helper struct return a Expression with an optional extra dependency.
672   struct ExprResult {
673     const Expression *Expr;
674     Value *ExtraDep;
675     const PredicateBase *PredDep;
676 
677     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678                const PredicateBase *PredDep = nullptr)
679         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680     ExprResult(const ExprResult &) = delete;
681     ExprResult(ExprResult &&Other)
682         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683       Other.Expr = nullptr;
684       Other.ExtraDep = nullptr;
685       Other.PredDep = nullptr;
686     }
687     ExprResult &operator=(const ExprResult &Other) = delete;
688     ExprResult &operator=(ExprResult &&Other) = delete;
689 
690     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
691 
692     operator bool() const { return Expr; }
693 
694     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
695     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696       return {Expr, ExtraDep, nullptr};
697     }
698     static ExprResult some(const Expression *Expr,
699                            const PredicateBase *PredDep) {
700       return {Expr, nullptr, PredDep};
701     }
702     static ExprResult some(const Expression *Expr, Value *ExtraDep,
703                            const PredicateBase *PredDep) {
704       return {Expr, ExtraDep, PredDep};
705     }
706   };
707 
708   // Expression handling.
709   ExprResult createExpression(Instruction *) const;
710   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711                                            Instruction *) const;
712 
713   // Our canonical form for phi arguments is a pair of incoming value, incoming
714   // basic block.
715   using ValPair = std::pair<Value *, BasicBlock *>;
716 
717   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718                                      BasicBlock *, bool &HasBackEdge,
719                                      bool &OriginalOpsConstant) const;
720   const DeadExpression *createDeadExpression() const;
721   const VariableExpression *createVariableExpression(Value *) const;
722   const ConstantExpression *createConstantExpression(Constant *) const;
723   const Expression *createVariableOrConstant(Value *V) const;
724   const UnknownExpression *createUnknownExpression(Instruction *) const;
725   const StoreExpression *createStoreExpression(StoreInst *,
726                                                const MemoryAccess *) const;
727   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728                                        const MemoryAccess *) const;
729   const CallExpression *createCallExpression(CallInst *,
730                                              const MemoryAccess *) const;
731   const AggregateValueExpression *
732   createAggregateValueExpression(Instruction *) const;
733   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
734 
735   // Congruence class handling.
736   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738     CongruenceClasses.emplace_back(result);
739     return result;
740   }
741 
742   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743     auto *CC = createCongruenceClass(nullptr, nullptr);
744     CC->setMemoryLeader(MA);
745     return CC;
746   }
747 
748   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749     auto *CC = getMemoryClass(MA);
750     if (CC->getMemoryLeader() != MA)
751       CC = createMemoryClass(MA);
752     return CC;
753   }
754 
755   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757     CClass->insert(Member);
758     ValueToClass[Member] = CClass;
759     return CClass;
760   }
761 
762   void initializeCongruenceClasses(Function &F);
763   const Expression *makePossiblePHIOfOps(Instruction *,
764                                          SmallPtrSetImpl<Value *> &);
765   Value *findLeaderForInst(Instruction *ValueOp,
766                            SmallPtrSetImpl<Value *> &Visited,
767                            MemoryAccess *MemAccess, Instruction *OrigInst,
768                            BasicBlock *PredBB);
769   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
770                                  SmallPtrSetImpl<const Value *> &Visited,
771                                  SmallVectorImpl<Instruction *> &Worklist);
772   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
773                            SmallPtrSetImpl<const Value *> &);
774   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
775   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
776 
777   // Value number an Instruction or MemoryPhi.
778   void valueNumberMemoryPhi(MemoryPhi *);
779   void valueNumberInstruction(Instruction *);
780 
781   // Symbolic evaluation.
782   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
783   ExprResult performSymbolicEvaluation(Value *,
784                                        SmallPtrSetImpl<Value *> &) const;
785   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
786                                                 Instruction *,
787                                                 MemoryAccess *) const;
788   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
789   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
790   ExprResult performSymbolicCallEvaluation(Instruction *) const;
791   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
792   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
793                                                  Instruction *I,
794                                                  BasicBlock *PHIBlock) const;
795   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
796   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
797   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
798 
799   // Congruence finding.
800   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
801   Value *lookupOperandLeader(Value *) const;
802   CongruenceClass *getClassForExpression(const Expression *E) const;
803   void performCongruenceFinding(Instruction *, const Expression *);
804   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
805                                      CongruenceClass *, CongruenceClass *);
806   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
807                                       CongruenceClass *, CongruenceClass *);
808   Value *getNextValueLeader(CongruenceClass *) const;
809   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
810   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
811   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
812   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
813   bool isMemoryAccessTOP(const MemoryAccess *) const;
814 
815   // Ranking
816   unsigned int getRank(const Value *) const;
817   bool shouldSwapOperands(const Value *, const Value *) const;
818   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
819                                       const IntrinsicInst *I) const;
820 
821   // Reachability handling.
822   void updateReachableEdge(BasicBlock *, BasicBlock *);
823   void processOutgoingEdges(Instruction *, BasicBlock *);
824   Value *findConditionEquivalence(Value *) const;
825 
826   // Elimination.
827   struct ValueDFS;
828   void convertClassToDFSOrdered(const CongruenceClass &,
829                                 SmallVectorImpl<ValueDFS> &,
830                                 DenseMap<const Value *, unsigned int> &,
831                                 SmallPtrSetImpl<Instruction *> &) const;
832   void convertClassToLoadsAndStores(const CongruenceClass &,
833                                     SmallVectorImpl<ValueDFS> &) const;
834 
835   bool eliminateInstructions(Function &);
836   void replaceInstruction(Instruction *, Value *);
837   void markInstructionForDeletion(Instruction *);
838   void deleteInstructionsInBlock(BasicBlock *);
839   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
840                             const BasicBlock *) const;
841 
842   // Various instruction touch utilities
843   template <typename Map, typename KeyType>
844   void touchAndErase(Map &, const KeyType &);
845   void markUsersTouched(Value *);
846   void markMemoryUsersTouched(const MemoryAccess *);
847   void markMemoryDefTouched(const MemoryAccess *);
848   void markPredicateUsersTouched(Instruction *);
849   void markValueLeaderChangeTouched(CongruenceClass *CC);
850   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
851   void markPhiOfOpsChanged(const Expression *E);
852   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
853   void addAdditionalUsers(Value *To, Value *User) const;
854   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
855 
856   // Main loop of value numbering
857   void iterateTouchedInstructions();
858 
859   // Utilities.
860   void cleanupTables();
861   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
862   void updateProcessedCount(const Value *V);
863   void verifyMemoryCongruency() const;
864   void verifyIterationSettled(Function &F);
865   void verifyStoreExpressions() const;
866   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
867                               const MemoryAccess *, const MemoryAccess *) const;
868   BasicBlock *getBlockForValue(Value *V) const;
869   void deleteExpression(const Expression *E) const;
870   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
871   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
872   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
873 
874   unsigned InstrToDFSNum(const Value *V) const {
875     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
876     return InstrDFS.lookup(V);
877   }
878 
879   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
880     return MemoryToDFSNum(MA);
881   }
882 
883   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
884 
885   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
886   // This deliberately takes a value so it can be used with Use's, which will
887   // auto-convert to Value's but not to MemoryAccess's.
888   unsigned MemoryToDFSNum(const Value *MA) const {
889     assert(isa<MemoryAccess>(MA) &&
890            "This should not be used with instructions");
891     return isa<MemoryUseOrDef>(MA)
892                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
893                : InstrDFS.lookup(MA);
894   }
895 
896   bool isCycleFree(const Instruction *) const;
897   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
898 
899   // Debug counter info.  When verifying, we have to reset the value numbering
900   // debug counter to the same state it started in to get the same results.
901   int64_t StartingVNCounter = 0;
902 };
903 
904 } // end anonymous namespace
905 
906 template <typename T>
907 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
908   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
909     return false;
910   return LHS.MemoryExpression::equals(RHS);
911 }
912 
913 bool LoadExpression::equals(const Expression &Other) const {
914   return equalsLoadStoreHelper(*this, Other);
915 }
916 
917 bool StoreExpression::equals(const Expression &Other) const {
918   if (!equalsLoadStoreHelper(*this, Other))
919     return false;
920   // Make sure that store vs store includes the value operand.
921   if (const auto *S = dyn_cast<StoreExpression>(&Other))
922     if (getStoredValue() != S->getStoredValue())
923       return false;
924   return true;
925 }
926 
927 // Determine if the edge From->To is a backedge
928 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
929   return From == To ||
930          RPOOrdering.lookup(DT->getNode(From)) >=
931              RPOOrdering.lookup(DT->getNode(To));
932 }
933 
934 #ifndef NDEBUG
935 static std::string getBlockName(const BasicBlock *B) {
936   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
937 }
938 #endif
939 
940 // Get a MemoryAccess for an instruction, fake or real.
941 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
942   auto *Result = MSSA->getMemoryAccess(I);
943   return Result ? Result : TempToMemory.lookup(I);
944 }
945 
946 // Get a MemoryPhi for a basic block. These are all real.
947 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
948   return MSSA->getMemoryAccess(BB);
949 }
950 
951 // Get the basic block from an instruction/memory value.
952 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
953   if (auto *I = dyn_cast<Instruction>(V)) {
954     auto *Parent = I->getParent();
955     if (Parent)
956       return Parent;
957     Parent = TempToBlock.lookup(V);
958     assert(Parent && "Every fake instruction should have a block");
959     return Parent;
960   }
961 
962   auto *MP = dyn_cast<MemoryPhi>(V);
963   assert(MP && "Should have been an instruction or a MemoryPhi");
964   return MP->getBlock();
965 }
966 
967 // Delete a definitely dead expression, so it can be reused by the expression
968 // allocator.  Some of these are not in creation functions, so we have to accept
969 // const versions.
970 void NewGVN::deleteExpression(const Expression *E) const {
971   assert(isa<BasicExpression>(E));
972   auto *BE = cast<BasicExpression>(E);
973   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
974   ExpressionAllocator.Deallocate(E);
975 }
976 
977 // If V is a predicateinfo copy, get the thing it is a copy of.
978 static Value *getCopyOf(const Value *V) {
979   if (auto *II = dyn_cast<IntrinsicInst>(V))
980     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
981       return II->getOperand(0);
982   return nullptr;
983 }
984 
985 // Return true if V is really PN, even accounting for predicateinfo copies.
986 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
987   return V == PN || getCopyOf(V) == PN;
988 }
989 
990 static bool isCopyOfAPHI(const Value *V) {
991   auto *CO = getCopyOf(V);
992   return CO && isa<PHINode>(CO);
993 }
994 
995 // Sort PHI Operands into a canonical order.  What we use here is an RPO
996 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
997 // blocks.
998 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
999   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1000     return BlockInstRange.lookup(P1.second).first <
1001            BlockInstRange.lookup(P2.second).first;
1002   });
1003 }
1004 
1005 // Return true if V is a value that will always be available (IE can
1006 // be placed anywhere) in the function.  We don't do globals here
1007 // because they are often worse to put in place.
1008 static bool alwaysAvailable(Value *V) {
1009   return isa<Constant>(V) || isa<Argument>(V);
1010 }
1011 
1012 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1013 // the original instruction we are creating a PHIExpression for (but may not be
1014 // a phi node). We require, as an invariant, that all the PHIOperands in the
1015 // same block are sorted the same way. sortPHIOps will sort them into a
1016 // canonical order.
1017 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1018                                            const Instruction *I,
1019                                            BasicBlock *PHIBlock,
1020                                            bool &HasBackedge,
1021                                            bool &OriginalOpsConstant) const {
1022   unsigned NumOps = PHIOperands.size();
1023   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1024 
1025   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026   E->setType(PHIOperands.begin()->first->getType());
1027   E->setOpcode(Instruction::PHI);
1028 
1029   // Filter out unreachable phi operands.
1030   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1031     auto *BB = P.second;
1032     if (auto *PHIOp = dyn_cast<PHINode>(I))
1033       if (isCopyOfPHI(P.first, PHIOp))
1034         return false;
1035     if (!ReachableEdges.count({BB, PHIBlock}))
1036       return false;
1037     // Things in TOPClass are equivalent to everything.
1038     if (ValueToClass.lookup(P.first) == TOPClass)
1039       return false;
1040     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1041     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1042     return lookupOperandLeader(P.first) != I;
1043   });
1044   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1045                  [&](const ValPair &P) -> Value * {
1046                    return lookupOperandLeader(P.first);
1047                  });
1048   return E;
1049 }
1050 
1051 // Set basic expression info (Arguments, type, opcode) for Expression
1052 // E from Instruction I in block B.
1053 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1054   bool AllConstant = true;
1055   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1056     E->setType(GEP->getSourceElementType());
1057   else
1058     E->setType(I->getType());
1059   E->setOpcode(I->getOpcode());
1060   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1061 
1062   // Transform the operand array into an operand leader array, and keep track of
1063   // whether all members are constant.
1064   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1065     auto Operand = lookupOperandLeader(O);
1066     AllConstant = AllConstant && isa<Constant>(Operand);
1067     return Operand;
1068   });
1069 
1070   return AllConstant;
1071 }
1072 
1073 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1074                                                  Value *Arg1, Value *Arg2,
1075                                                  Instruction *I) const {
1076   auto *E = new (ExpressionAllocator) BasicExpression(2);
1077   // TODO: we need to remove context instruction after Value Tracking
1078   // can run without context instruction
1079   const SimplifyQuery Q = SQ.getWithInstruction(I);
1080 
1081   E->setType(T);
1082   E->setOpcode(Opcode);
1083   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1084   if (Instruction::isCommutative(Opcode)) {
1085     // Ensure that commutative instructions that only differ by a permutation
1086     // of their operands get the same value number by sorting the operand value
1087     // numbers.  Since all commutative instructions have two operands it is more
1088     // efficient to sort by hand rather than using, say, std::sort.
1089     if (shouldSwapOperands(Arg1, Arg2))
1090       std::swap(Arg1, Arg2);
1091   }
1092   E->op_push_back(lookupOperandLeader(Arg1));
1093   E->op_push_back(lookupOperandLeader(Arg2));
1094 
1095   Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1096   if (auto Simplified = checkExprResults(E, I, V)) {
1097     addAdditionalUsers(Simplified, I);
1098     return Simplified.Expr;
1099   }
1100   return E;
1101 }
1102 
1103 // Take a Value returned by simplification of Expression E/Instruction
1104 // I, and see if it resulted in a simpler expression. If so, return
1105 // that expression.
1106 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1107                                             Value *V) const {
1108   if (!V)
1109     return ExprResult::none();
1110 
1111   if (auto *C = dyn_cast<Constant>(V)) {
1112     if (I)
1113       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1114                         << " constant " << *C << "\n");
1115     NumGVNOpsSimplified++;
1116     assert(isa<BasicExpression>(E) &&
1117            "We should always have had a basic expression here");
1118     deleteExpression(E);
1119     return ExprResult::some(createConstantExpression(C));
1120   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1121     if (I)
1122       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1123                         << " variable " << *V << "\n");
1124     deleteExpression(E);
1125     return ExprResult::some(createVariableExpression(V));
1126   }
1127 
1128   CongruenceClass *CC = ValueToClass.lookup(V);
1129   if (CC) {
1130     if (CC->getLeader() && CC->getLeader() != I) {
1131       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1132     }
1133     if (CC->getDefiningExpr()) {
1134       if (I)
1135         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1136                           << " expression " << *CC->getDefiningExpr() << "\n");
1137       NumGVNOpsSimplified++;
1138       deleteExpression(E);
1139       return ExprResult::some(CC->getDefiningExpr(), V);
1140     }
1141   }
1142 
1143   return ExprResult::none();
1144 }
1145 
1146 // Create a value expression from the instruction I, replacing operands with
1147 // their leaders.
1148 
1149 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1150   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1151   // TODO: we need to remove context instruction after Value Tracking
1152   // can run without context instruction
1153   const SimplifyQuery Q = SQ.getWithInstruction(I);
1154 
1155   bool AllConstant = setBasicExpressionInfo(I, E);
1156 
1157   if (I->isCommutative()) {
1158     // Ensure that commutative instructions that only differ by a permutation
1159     // of their operands get the same value number by sorting the operand value
1160     // numbers.  Since all commutative instructions have two operands it is more
1161     // efficient to sort by hand rather than using, say, std::sort.
1162     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1163     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1164       E->swapOperands(0, 1);
1165   }
1166   // Perform simplification.
1167   if (auto *CI = dyn_cast<CmpInst>(I)) {
1168     // Sort the operand value numbers so x<y and y>x get the same value
1169     // number.
1170     CmpInst::Predicate Predicate = CI->getPredicate();
1171     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1172       E->swapOperands(0, 1);
1173       Predicate = CmpInst::getSwappedPredicate(Predicate);
1174     }
1175     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1176     // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1177     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1178            "Wrong types on cmp instruction");
1179     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1180             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1181     Value *V =
1182         simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1183     if (auto Simplified = checkExprResults(E, I, V))
1184       return Simplified;
1185   } else if (isa<SelectInst>(I)) {
1186     if (isa<Constant>(E->getOperand(0)) ||
1187         E->getOperand(1) == E->getOperand(2)) {
1188       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1189              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1190       Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1191                                     E->getOperand(2), Q);
1192       if (auto Simplified = checkExprResults(E, I, V))
1193         return Simplified;
1194     }
1195   } else if (I->isBinaryOp()) {
1196     Value *V =
1197         simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1198     if (auto Simplified = checkExprResults(E, I, V))
1199       return Simplified;
1200   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1201     Value *V =
1202         simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1203     if (auto Simplified = checkExprResults(E, I, V))
1204       return Simplified;
1205   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1206     Value *V =
1207         simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1208                         makeArrayRef(std::next(E->op_begin()), E->op_end()),
1209                         GEPI->isInBounds(), Q);
1210     if (auto Simplified = checkExprResults(E, I, V))
1211       return Simplified;
1212   } else if (AllConstant) {
1213     // We don't bother trying to simplify unless all of the operands
1214     // were constant.
1215     // TODO: There are a lot of Simplify*'s we could call here, if we
1216     // wanted to.  The original motivating case for this code was a
1217     // zext i1 false to i8, which we don't have an interface to
1218     // simplify (IE there is no SimplifyZExt).
1219 
1220     SmallVector<Constant *, 8> C;
1221     for (Value *Arg : E->operands())
1222       C.emplace_back(cast<Constant>(Arg));
1223 
1224     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1225       if (auto Simplified = checkExprResults(E, I, V))
1226         return Simplified;
1227   }
1228   return ExprResult::some(E);
1229 }
1230 
1231 const AggregateValueExpression *
1232 NewGVN::createAggregateValueExpression(Instruction *I) const {
1233   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1234     auto *E = new (ExpressionAllocator)
1235         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1236     setBasicExpressionInfo(I, E);
1237     E->allocateIntOperands(ExpressionAllocator);
1238     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1239     return E;
1240   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1241     auto *E = new (ExpressionAllocator)
1242         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1243     setBasicExpressionInfo(EI, E);
1244     E->allocateIntOperands(ExpressionAllocator);
1245     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1246     return E;
1247   }
1248   llvm_unreachable("Unhandled type of aggregate value operation");
1249 }
1250 
1251 const DeadExpression *NewGVN::createDeadExpression() const {
1252   // DeadExpression has no arguments and all DeadExpression's are the same,
1253   // so we only need one of them.
1254   return SingletonDeadExpression;
1255 }
1256 
1257 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1258   auto *E = new (ExpressionAllocator) VariableExpression(V);
1259   E->setOpcode(V->getValueID());
1260   return E;
1261 }
1262 
1263 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1264   if (auto *C = dyn_cast<Constant>(V))
1265     return createConstantExpression(C);
1266   return createVariableExpression(V);
1267 }
1268 
1269 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1270   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1271   E->setOpcode(C->getValueID());
1272   return E;
1273 }
1274 
1275 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1276   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1277   E->setOpcode(I->getOpcode());
1278   return E;
1279 }
1280 
1281 const CallExpression *
1282 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1283   // FIXME: Add operand bundles for calls.
1284   // FIXME: Allow commutative matching for intrinsics.
1285   auto *E =
1286       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1287   setBasicExpressionInfo(CI, E);
1288   return E;
1289 }
1290 
1291 // Return true if some equivalent of instruction Inst dominates instruction U.
1292 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1293                                      const Instruction *U) const {
1294   auto *CC = ValueToClass.lookup(Inst);
1295    // This must be an instruction because we are only called from phi nodes
1296   // in the case that the value it needs to check against is an instruction.
1297 
1298   // The most likely candidates for dominance are the leader and the next leader.
1299   // The leader or nextleader will dominate in all cases where there is an
1300   // equivalent that is higher up in the dom tree.
1301   // We can't *only* check them, however, because the
1302   // dominator tree could have an infinite number of non-dominating siblings
1303   // with instructions that are in the right congruence class.
1304   //       A
1305   // B C D E F G
1306   // |
1307   // H
1308   // Instruction U could be in H,  with equivalents in every other sibling.
1309   // Depending on the rpo order picked, the leader could be the equivalent in
1310   // any of these siblings.
1311   if (!CC)
1312     return false;
1313   if (alwaysAvailable(CC->getLeader()))
1314     return true;
1315   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1316     return true;
1317   if (CC->getNextLeader().first &&
1318       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1319     return true;
1320   return llvm::any_of(*CC, [&](const Value *Member) {
1321     return Member != CC->getLeader() &&
1322            DT->dominates(cast<Instruction>(Member), U);
1323   });
1324 }
1325 
1326 // See if we have a congruence class and leader for this operand, and if so,
1327 // return it. Otherwise, return the operand itself.
1328 Value *NewGVN::lookupOperandLeader(Value *V) const {
1329   CongruenceClass *CC = ValueToClass.lookup(V);
1330   if (CC) {
1331     // Everything in TOP is represented by poison, as it can be any value.
1332     // We do have to make sure we get the type right though, so we can't set the
1333     // RepLeader to poison.
1334     if (CC == TOPClass)
1335       return PoisonValue::get(V->getType());
1336     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1337   }
1338 
1339   return V;
1340 }
1341 
1342 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1343   auto *CC = getMemoryClass(MA);
1344   assert(CC->getMemoryLeader() &&
1345          "Every MemoryAccess should be mapped to a congruence class with a "
1346          "representative memory access");
1347   return CC->getMemoryLeader();
1348 }
1349 
1350 // Return true if the MemoryAccess is really equivalent to everything. This is
1351 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1352 // state of all MemoryAccesses.
1353 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1354   return getMemoryClass(MA) == TOPClass;
1355 }
1356 
1357 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1358                                              LoadInst *LI,
1359                                              const MemoryAccess *MA) const {
1360   auto *E =
1361       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1362   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1363   E->setType(LoadType);
1364 
1365   // Give store and loads same opcode so they value number together.
1366   E->setOpcode(0);
1367   E->op_push_back(PointerOp);
1368 
1369   // TODO: Value number heap versions. We may be able to discover
1370   // things alias analysis can't on it's own (IE that a store and a
1371   // load have the same value, and thus, it isn't clobbering the load).
1372   return E;
1373 }
1374 
1375 const StoreExpression *
1376 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1377   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1378   auto *E = new (ExpressionAllocator)
1379       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1380   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1381   E->setType(SI->getValueOperand()->getType());
1382 
1383   // Give store and loads same opcode so they value number together.
1384   E->setOpcode(0);
1385   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1386 
1387   // TODO: Value number heap versions. We may be able to discover
1388   // things alias analysis can't on it's own (IE that a store and a
1389   // load have the same value, and thus, it isn't clobbering the load).
1390   return E;
1391 }
1392 
1393 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1394   // Unlike loads, we never try to eliminate stores, so we do not check if they
1395   // are simple and avoid value numbering them.
1396   auto *SI = cast<StoreInst>(I);
1397   auto *StoreAccess = getMemoryAccess(SI);
1398   // Get the expression, if any, for the RHS of the MemoryDef.
1399   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1400   if (EnableStoreRefinement)
1401     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1402   // If we bypassed the use-def chains, make sure we add a use.
1403   StoreRHS = lookupMemoryLeader(StoreRHS);
1404   if (StoreRHS != StoreAccess->getDefiningAccess())
1405     addMemoryUsers(StoreRHS, StoreAccess);
1406   // If we are defined by ourselves, use the live on entry def.
1407   if (StoreRHS == StoreAccess)
1408     StoreRHS = MSSA->getLiveOnEntryDef();
1409 
1410   if (SI->isSimple()) {
1411     // See if we are defined by a previous store expression, it already has a
1412     // value, and it's the same value as our current store. FIXME: Right now, we
1413     // only do this for simple stores, we should expand to cover memcpys, etc.
1414     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1415     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1416     // We really want to check whether the expression we matched was a store. No
1417     // easy way to do that. However, we can check that the class we found has a
1418     // store, which, assuming the value numbering state is not corrupt, is
1419     // sufficient, because we must also be equivalent to that store's expression
1420     // for it to be in the same class as the load.
1421     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1422       return LastStore;
1423     // Also check if our value operand is defined by a load of the same memory
1424     // location, and the memory state is the same as it was then (otherwise, it
1425     // could have been overwritten later. See test32 in
1426     // transforms/DeadStoreElimination/simple.ll).
1427     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1428       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1429            LastStore->getOperand(0)) &&
1430           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1431            StoreRHS))
1432         return LastStore;
1433     deleteExpression(LastStore);
1434   }
1435 
1436   // If the store is not equivalent to anything, value number it as a store that
1437   // produces a unique memory state (instead of using it's MemoryUse, we use
1438   // it's MemoryDef).
1439   return createStoreExpression(SI, StoreAccess);
1440 }
1441 
1442 // See if we can extract the value of a loaded pointer from a load, a store, or
1443 // a memory instruction.
1444 const Expression *
1445 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1446                                     LoadInst *LI, Instruction *DepInst,
1447                                     MemoryAccess *DefiningAccess) const {
1448   assert((!LI || LI->isSimple()) && "Not a simple load");
1449   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1450     // Can't forward from non-atomic to atomic without violating memory model.
1451     // Also don't need to coerce if they are the same type, we will just
1452     // propagate.
1453     if (LI->isAtomic() > DepSI->isAtomic() ||
1454         LoadType == DepSI->getValueOperand()->getType())
1455       return nullptr;
1456     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1457     if (Offset >= 0) {
1458       if (auto *C = dyn_cast<Constant>(
1459               lookupOperandLeader(DepSI->getValueOperand()))) {
1460         if (Constant *Res =
1461                 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) {
1462           LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1463                             << " to constant " << *Res << "\n");
1464           return createConstantExpression(Res);
1465         }
1466       }
1467     }
1468   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1469     // Can't forward from non-atomic to atomic without violating memory model.
1470     if (LI->isAtomic() > DepLI->isAtomic())
1471       return nullptr;
1472     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1473     if (Offset >= 0) {
1474       // We can coerce a constant load into a load.
1475       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1476         if (auto *PossibleConstant =
1477                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1478           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1479                             << " to constant " << *PossibleConstant << "\n");
1480           return createConstantExpression(PossibleConstant);
1481         }
1482     }
1483   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1484     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1485     if (Offset >= 0) {
1486       if (auto *PossibleConstant =
1487               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1488         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1489                           << " to constant " << *PossibleConstant << "\n");
1490         return createConstantExpression(PossibleConstant);
1491       }
1492     }
1493   }
1494 
1495   // All of the below are only true if the loaded pointer is produced
1496   // by the dependent instruction.
1497   if (LoadPtr != lookupOperandLeader(DepInst) &&
1498       !AA->isMustAlias(LoadPtr, DepInst))
1499     return nullptr;
1500   // If this load really doesn't depend on anything, then we must be loading an
1501   // undef value.  This can happen when loading for a fresh allocation with no
1502   // intervening stores, for example.  Note that this is only true in the case
1503   // that the result of the allocation is pointer equal to the load ptr.
1504   if (isa<AllocaInst>(DepInst)) {
1505     return createConstantExpression(UndefValue::get(LoadType));
1506   }
1507   // If this load occurs either right after a lifetime begin,
1508   // then the loaded value is undefined.
1509   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1510     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1511       return createConstantExpression(UndefValue::get(LoadType));
1512   } else if (auto *InitVal =
1513                  getInitialValueOfAllocation(DepInst, TLI, LoadType))
1514       return createConstantExpression(InitVal);
1515 
1516   return nullptr;
1517 }
1518 
1519 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1520   auto *LI = cast<LoadInst>(I);
1521 
1522   // We can eliminate in favor of non-simple loads, but we won't be able to
1523   // eliminate the loads themselves.
1524   if (!LI->isSimple())
1525     return nullptr;
1526 
1527   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1528   // Load of undef is UB.
1529   if (isa<UndefValue>(LoadAddressLeader))
1530     return createConstantExpression(PoisonValue::get(LI->getType()));
1531   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1532   MemoryAccess *DefiningAccess =
1533       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1534 
1535   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1536     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1537       Instruction *DefiningInst = MD->getMemoryInst();
1538       // If the defining instruction is not reachable, replace with poison.
1539       if (!ReachableBlocks.count(DefiningInst->getParent()))
1540         return createConstantExpression(PoisonValue::get(LI->getType()));
1541       // This will handle stores and memory insts.  We only do if it the
1542       // defining access has a different type, or it is a pointer produced by
1543       // certain memory operations that cause the memory to have a fixed value
1544       // (IE things like calloc).
1545       if (const auto *CoercionResult =
1546               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1547                                           DefiningInst, DefiningAccess))
1548         return CoercionResult;
1549     }
1550   }
1551 
1552   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1553                                         DefiningAccess);
1554   // If our MemoryLeader is not our defining access, add a use to the
1555   // MemoryLeader, so that we get reprocessed when it changes.
1556   if (LE->getMemoryLeader() != DefiningAccess)
1557     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1558   return LE;
1559 }
1560 
1561 NewGVN::ExprResult
1562 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1563   auto *PI = PredInfo->getPredicateInfoFor(I);
1564   if (!PI)
1565     return ExprResult::none();
1566 
1567   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1568 
1569   const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1570   if (!Constraint)
1571     return ExprResult::none();
1572 
1573   CmpInst::Predicate Predicate = Constraint->Predicate;
1574   Value *CmpOp0 = I->getOperand(0);
1575   Value *CmpOp1 = Constraint->OtherOp;
1576 
1577   Value *FirstOp = lookupOperandLeader(CmpOp0);
1578   Value *SecondOp = lookupOperandLeader(CmpOp1);
1579   Value *AdditionallyUsedValue = CmpOp0;
1580 
1581   // Sort the ops.
1582   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1583     std::swap(FirstOp, SecondOp);
1584     Predicate = CmpInst::getSwappedPredicate(Predicate);
1585     AdditionallyUsedValue = CmpOp1;
1586   }
1587 
1588   if (Predicate == CmpInst::ICMP_EQ)
1589     return ExprResult::some(createVariableOrConstant(FirstOp),
1590                             AdditionallyUsedValue, PI);
1591 
1592   // Handle the special case of floating point.
1593   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1594       !cast<ConstantFP>(FirstOp)->isZero())
1595     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1596                             AdditionallyUsedValue, PI);
1597 
1598   return ExprResult::none();
1599 }
1600 
1601 // Evaluate read only and pure calls, and create an expression result.
1602 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1603   auto *CI = cast<CallInst>(I);
1604   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1605     // Intrinsics with the returned attribute are copies of arguments.
1606     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1607       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1608         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1609           return Res;
1610       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1611     }
1612   }
1613   if (AA->doesNotAccessMemory(CI)) {
1614     return ExprResult::some(
1615         createCallExpression(CI, TOPClass->getMemoryLeader()));
1616   } else if (AA->onlyReadsMemory(CI)) {
1617     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1618       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1619       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1620     } else // MSSA determined that CI does not access memory.
1621       return ExprResult::some(
1622           createCallExpression(CI, TOPClass->getMemoryLeader()));
1623   }
1624   return ExprResult::none();
1625 }
1626 
1627 // Retrieve the memory class for a given MemoryAccess.
1628 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1629   auto *Result = MemoryAccessToClass.lookup(MA);
1630   assert(Result && "Should have found memory class");
1631   return Result;
1632 }
1633 
1634 // Update the MemoryAccess equivalence table to say that From is equal to To,
1635 // and return true if this is different from what already existed in the table.
1636 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1637                             CongruenceClass *NewClass) {
1638   assert(NewClass &&
1639          "Every MemoryAccess should be getting mapped to a non-null class");
1640   LLVM_DEBUG(dbgs() << "Setting " << *From);
1641   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1642   LLVM_DEBUG(dbgs() << NewClass->getID()
1643                     << " with current MemoryAccess leader ");
1644   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1645 
1646   auto LookupResult = MemoryAccessToClass.find(From);
1647   bool Changed = false;
1648   // If it's already in the table, see if the value changed.
1649   if (LookupResult != MemoryAccessToClass.end()) {
1650     auto *OldClass = LookupResult->second;
1651     if (OldClass != NewClass) {
1652       // If this is a phi, we have to handle memory member updates.
1653       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1654         OldClass->memory_erase(MP);
1655         NewClass->memory_insert(MP);
1656         // This may have killed the class if it had no non-memory members
1657         if (OldClass->getMemoryLeader() == From) {
1658           if (OldClass->definesNoMemory()) {
1659             OldClass->setMemoryLeader(nullptr);
1660           } else {
1661             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1662             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1663                               << OldClass->getID() << " to "
1664                               << *OldClass->getMemoryLeader()
1665                               << " due to removal of a memory member " << *From
1666                               << "\n");
1667             markMemoryLeaderChangeTouched(OldClass);
1668           }
1669         }
1670       }
1671       // It wasn't equivalent before, and now it is.
1672       LookupResult->second = NewClass;
1673       Changed = true;
1674     }
1675   }
1676 
1677   return Changed;
1678 }
1679 
1680 // Determine if a instruction is cycle-free.  That means the values in the
1681 // instruction don't depend on any expressions that can change value as a result
1682 // of the instruction.  For example, a non-cycle free instruction would be v =
1683 // phi(0, v+1).
1684 bool NewGVN::isCycleFree(const Instruction *I) const {
1685   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1686   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1687   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1688   // other members are all phi nodes (as they do not compute anything, they are
1689   // copies).
1690   auto ICS = InstCycleState.lookup(I);
1691   if (ICS == ICS_Unknown) {
1692     SCCFinder.Start(I);
1693     auto &SCC = SCCFinder.getComponentFor(I);
1694     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1695     if (SCC.size() == 1)
1696       InstCycleState.insert({I, ICS_CycleFree});
1697     else {
1698       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1699         return isa<PHINode>(V) || isCopyOfAPHI(V);
1700       });
1701       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1702       for (auto *Member : SCC)
1703         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1704           InstCycleState.insert({MemberPhi, ICS});
1705     }
1706   }
1707   if (ICS == ICS_Cycle)
1708     return false;
1709   return true;
1710 }
1711 
1712 // Evaluate PHI nodes symbolically and create an expression result.
1713 const Expression *
1714 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1715                                      Instruction *I,
1716                                      BasicBlock *PHIBlock) const {
1717   // True if one of the incoming phi edges is a backedge.
1718   bool HasBackedge = false;
1719   // All constant tracks the state of whether all the *original* phi operands
1720   // This is really shorthand for "this phi cannot cycle due to forward
1721   // change in value of the phi is guaranteed not to later change the value of
1722   // the phi. IE it can't be v = phi(undef, v+1)
1723   bool OriginalOpsConstant = true;
1724   auto *E = cast<PHIExpression>(createPHIExpression(
1725       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1726   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1727   // See if all arguments are the same.
1728   // We track if any were undef because they need special handling.
1729   bool HasUndef = false, HasPoison = false;
1730   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1731     if (isa<PoisonValue>(Arg)) {
1732       HasPoison = true;
1733       return false;
1734     }
1735     if (isa<UndefValue>(Arg)) {
1736       HasUndef = true;
1737       return false;
1738     }
1739     return true;
1740   });
1741   // If we are left with no operands, it's dead.
1742   if (Filtered.empty()) {
1743     // If it has undef or poison at this point, it means there are no-non-undef
1744     // arguments, and thus, the value of the phi node must be undef.
1745     if (HasUndef) {
1746       LLVM_DEBUG(
1747           dbgs() << "PHI Node " << *I
1748                  << " has no non-undef arguments, valuing it as undef\n");
1749       return createConstantExpression(UndefValue::get(I->getType()));
1750     }
1751     if (HasPoison) {
1752       LLVM_DEBUG(
1753           dbgs() << "PHI Node " << *I
1754                  << " has no non-poison arguments, valuing it as poison\n");
1755       return createConstantExpression(PoisonValue::get(I->getType()));
1756     }
1757 
1758     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1759     deleteExpression(E);
1760     return createDeadExpression();
1761   }
1762   Value *AllSameValue = *(Filtered.begin());
1763   ++Filtered.begin();
1764   // Can't use std::equal here, sadly, because filter.begin moves.
1765   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1766     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1767     // in the worst case).
1768     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1769       return E;
1770 
1771     // In LLVM's non-standard representation of phi nodes, it's possible to have
1772     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1773     // on the original phi node), especially in weird CFG's where some arguments
1774     // are unreachable, or uninitialized along certain paths.  This can cause
1775     // infinite loops during evaluation. We work around this by not trying to
1776     // really evaluate them independently, but instead using a variable
1777     // expression to say if one is equivalent to the other.
1778     // We also special case undef/poison, so that if we have an undef, we can't
1779     // use the common value unless it dominates the phi block.
1780     if (HasPoison || HasUndef) {
1781       // If we have undef and at least one other value, this is really a
1782       // multivalued phi, and we need to know if it's cycle free in order to
1783       // evaluate whether we can ignore the undef.  The other parts of this are
1784       // just shortcuts.  If there is no backedge, or all operands are
1785       // constants, it also must be cycle free.
1786       if (HasBackedge && !OriginalOpsConstant &&
1787           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1788         return E;
1789 
1790       // Only have to check for instructions
1791       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1792         if (!someEquivalentDominates(AllSameInst, I))
1793           return E;
1794     }
1795     // Can't simplify to something that comes later in the iteration.
1796     // Otherwise, when and if it changes congruence class, we will never catch
1797     // up. We will always be a class behind it.
1798     if (isa<Instruction>(AllSameValue) &&
1799         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1800       return E;
1801     NumGVNPhisAllSame++;
1802     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1803                       << "\n");
1804     deleteExpression(E);
1805     return createVariableOrConstant(AllSameValue);
1806   }
1807   return E;
1808 }
1809 
1810 const Expression *
1811 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1812   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1813     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1814     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1815       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1816       // a semantically equivalent expression instead of an extract value
1817       // expression.
1818       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1819                                     WO->getLHS(), WO->getRHS(), I);
1820   }
1821 
1822   return createAggregateValueExpression(I);
1823 }
1824 
1825 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1826   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1827 
1828   auto *CI = cast<CmpInst>(I);
1829   // See if our operands are equal to those of a previous predicate, and if so,
1830   // if it implies true or false.
1831   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1832   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1833   auto OurPredicate = CI->getPredicate();
1834   if (shouldSwapOperands(Op0, Op1)) {
1835     std::swap(Op0, Op1);
1836     OurPredicate = CI->getSwappedPredicate();
1837   }
1838 
1839   // Avoid processing the same info twice.
1840   const PredicateBase *LastPredInfo = nullptr;
1841   // See if we know something about the comparison itself, like it is the target
1842   // of an assume.
1843   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1844   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1845     return ExprResult::some(
1846         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1847 
1848   if (Op0 == Op1) {
1849     // This condition does not depend on predicates, no need to add users
1850     if (CI->isTrueWhenEqual())
1851       return ExprResult::some(
1852           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1853     else if (CI->isFalseWhenEqual())
1854       return ExprResult::some(
1855           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1856   }
1857 
1858   // NOTE: Because we are comparing both operands here and below, and using
1859   // previous comparisons, we rely on fact that predicateinfo knows to mark
1860   // comparisons that use renamed operands as users of the earlier comparisons.
1861   // It is *not* enough to just mark predicateinfo renamed operands as users of
1862   // the earlier comparisons, because the *other* operand may have changed in a
1863   // previous iteration.
1864   // Example:
1865   // icmp slt %a, %b
1866   // %b.0 = ssa.copy(%b)
1867   // false branch:
1868   // icmp slt %c, %b.0
1869 
1870   // %c and %a may start out equal, and thus, the code below will say the second
1871   // %icmp is false.  c may become equal to something else, and in that case the
1872   // %second icmp *must* be reexamined, but would not if only the renamed
1873   // %operands are considered users of the icmp.
1874 
1875   // *Currently* we only check one level of comparisons back, and only mark one
1876   // level back as touched when changes happen.  If you modify this code to look
1877   // back farther through comparisons, you *must* mark the appropriate
1878   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1879   // we know something just from the operands themselves
1880 
1881   // See if our operands have predicate info, so that we may be able to derive
1882   // something from a previous comparison.
1883   for (const auto &Op : CI->operands()) {
1884     auto *PI = PredInfo->getPredicateInfoFor(Op);
1885     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1886       if (PI == LastPredInfo)
1887         continue;
1888       LastPredInfo = PI;
1889       // In phi of ops cases, we may have predicate info that we are evaluating
1890       // in a different context.
1891       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1892         continue;
1893       // TODO: Along the false edge, we may know more things too, like
1894       // icmp of
1895       // same operands is false.
1896       // TODO: We only handle actual comparison conditions below, not
1897       // and/or.
1898       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1899       if (!BranchCond)
1900         continue;
1901       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1902       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1903       auto BranchPredicate = BranchCond->getPredicate();
1904       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1905         std::swap(BranchOp0, BranchOp1);
1906         BranchPredicate = BranchCond->getSwappedPredicate();
1907       }
1908       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1909         if (PBranch->TrueEdge) {
1910           // If we know the previous predicate is true and we are in the true
1911           // edge then we may be implied true or false.
1912           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1913                                                   OurPredicate)) {
1914             return ExprResult::some(
1915                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1916                 PI);
1917           }
1918 
1919           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1920                                                    OurPredicate)) {
1921             return ExprResult::some(
1922                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1923                 PI);
1924           }
1925         } else {
1926           // Just handle the ne and eq cases, where if we have the same
1927           // operands, we may know something.
1928           if (BranchPredicate == OurPredicate) {
1929             // Same predicate, same ops,we know it was false, so this is false.
1930             return ExprResult::some(
1931                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1932                 PI);
1933           } else if (BranchPredicate ==
1934                      CmpInst::getInversePredicate(OurPredicate)) {
1935             // Inverse predicate, we know the other was false, so this is true.
1936             return ExprResult::some(
1937                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1938                 PI);
1939           }
1940         }
1941       }
1942     }
1943   }
1944   // Create expression will take care of simplifyCmpInst
1945   return createExpression(I);
1946 }
1947 
1948 // Substitute and symbolize the value before value numbering.
1949 NewGVN::ExprResult
1950 NewGVN::performSymbolicEvaluation(Value *V,
1951                                   SmallPtrSetImpl<Value *> &Visited) const {
1952 
1953   const Expression *E = nullptr;
1954   if (auto *C = dyn_cast<Constant>(V))
1955     E = createConstantExpression(C);
1956   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1957     E = createVariableExpression(V);
1958   } else {
1959     // TODO: memory intrinsics.
1960     // TODO: Some day, we should do the forward propagation and reassociation
1961     // parts of the algorithm.
1962     auto *I = cast<Instruction>(V);
1963     switch (I->getOpcode()) {
1964     case Instruction::ExtractValue:
1965     case Instruction::InsertValue:
1966       E = performSymbolicAggrValueEvaluation(I);
1967       break;
1968     case Instruction::PHI: {
1969       SmallVector<ValPair, 3> Ops;
1970       auto *PN = cast<PHINode>(I);
1971       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1972         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1973       // Sort to ensure the invariant createPHIExpression requires is met.
1974       sortPHIOps(Ops);
1975       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1976     } break;
1977     case Instruction::Call:
1978       return performSymbolicCallEvaluation(I);
1979       break;
1980     case Instruction::Store:
1981       E = performSymbolicStoreEvaluation(I);
1982       break;
1983     case Instruction::Load:
1984       E = performSymbolicLoadEvaluation(I);
1985       break;
1986     case Instruction::BitCast:
1987     case Instruction::AddrSpaceCast:
1988       return createExpression(I);
1989       break;
1990     case Instruction::ICmp:
1991     case Instruction::FCmp:
1992       return performSymbolicCmpEvaluation(I);
1993       break;
1994     case Instruction::FNeg:
1995     case Instruction::Add:
1996     case Instruction::FAdd:
1997     case Instruction::Sub:
1998     case Instruction::FSub:
1999     case Instruction::Mul:
2000     case Instruction::FMul:
2001     case Instruction::UDiv:
2002     case Instruction::SDiv:
2003     case Instruction::FDiv:
2004     case Instruction::URem:
2005     case Instruction::SRem:
2006     case Instruction::FRem:
2007     case Instruction::Shl:
2008     case Instruction::LShr:
2009     case Instruction::AShr:
2010     case Instruction::And:
2011     case Instruction::Or:
2012     case Instruction::Xor:
2013     case Instruction::Trunc:
2014     case Instruction::ZExt:
2015     case Instruction::SExt:
2016     case Instruction::FPToUI:
2017     case Instruction::FPToSI:
2018     case Instruction::UIToFP:
2019     case Instruction::SIToFP:
2020     case Instruction::FPTrunc:
2021     case Instruction::FPExt:
2022     case Instruction::PtrToInt:
2023     case Instruction::IntToPtr:
2024     case Instruction::Select:
2025     case Instruction::ExtractElement:
2026     case Instruction::InsertElement:
2027     case Instruction::GetElementPtr:
2028       return createExpression(I);
2029       break;
2030     case Instruction::ShuffleVector:
2031       // FIXME: Add support for shufflevector to createExpression.
2032       return ExprResult::none();
2033     default:
2034       return ExprResult::none();
2035     }
2036   }
2037   return ExprResult::some(E);
2038 }
2039 
2040 // Look up a container of values/instructions in a map, and touch all the
2041 // instructions in the container.  Then erase value from the map.
2042 template <typename Map, typename KeyType>
2043 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2044   const auto Result = M.find_as(Key);
2045   if (Result != M.end()) {
2046     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2047       TouchedInstructions.set(InstrToDFSNum(Mapped));
2048     M.erase(Result);
2049   }
2050 }
2051 
2052 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2053   assert(User && To != User);
2054   if (isa<Instruction>(To))
2055     AdditionalUsers[To].insert(User);
2056 }
2057 
2058 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2059   if (Res.ExtraDep && Res.ExtraDep != User)
2060     addAdditionalUsers(Res.ExtraDep, User);
2061   Res.ExtraDep = nullptr;
2062 
2063   if (Res.PredDep) {
2064     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2065       PredicateToUsers[PBranch->Condition].insert(User);
2066     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2067       PredicateToUsers[PAssume->Condition].insert(User);
2068   }
2069   Res.PredDep = nullptr;
2070 }
2071 
2072 void NewGVN::markUsersTouched(Value *V) {
2073   // Now mark the users as touched.
2074   for (auto *User : V->users()) {
2075     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2076     TouchedInstructions.set(InstrToDFSNum(User));
2077   }
2078   touchAndErase(AdditionalUsers, V);
2079 }
2080 
2081 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2082   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2083   MemoryToUsers[To].insert(U);
2084 }
2085 
2086 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2087   TouchedInstructions.set(MemoryToDFSNum(MA));
2088 }
2089 
2090 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2091   if (isa<MemoryUse>(MA))
2092     return;
2093   for (auto U : MA->users())
2094     TouchedInstructions.set(MemoryToDFSNum(U));
2095   touchAndErase(MemoryToUsers, MA);
2096 }
2097 
2098 // Touch all the predicates that depend on this instruction.
2099 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2100   touchAndErase(PredicateToUsers, I);
2101 }
2102 
2103 // Mark users affected by a memory leader change.
2104 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2105   for (auto M : CC->memory())
2106     markMemoryDefTouched(M);
2107 }
2108 
2109 // Touch the instructions that need to be updated after a congruence class has a
2110 // leader change, and mark changed values.
2111 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2112   for (auto M : *CC) {
2113     if (auto *I = dyn_cast<Instruction>(M))
2114       TouchedInstructions.set(InstrToDFSNum(I));
2115     LeaderChanges.insert(M);
2116   }
2117 }
2118 
2119 // Give a range of things that have instruction DFS numbers, this will return
2120 // the member of the range with the smallest dfs number.
2121 template <class T, class Range>
2122 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2123   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2124   for (const auto X : R) {
2125     auto DFSNum = InstrToDFSNum(X);
2126     if (DFSNum < MinDFS.second)
2127       MinDFS = {X, DFSNum};
2128   }
2129   return MinDFS.first;
2130 }
2131 
2132 // This function returns the MemoryAccess that should be the next leader of
2133 // congruence class CC, under the assumption that the current leader is going to
2134 // disappear.
2135 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2136   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2137   // do for regular leaders.
2138   // Make sure there will be a leader to find.
2139   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2140   if (CC->getStoreCount() > 0) {
2141     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2142       return getMemoryAccess(NL);
2143     // Find the store with the minimum DFS number.
2144     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2145         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2146     return getMemoryAccess(cast<StoreInst>(V));
2147   }
2148   assert(CC->getStoreCount() == 0);
2149 
2150   // Given our assertion, hitting this part must mean
2151   // !OldClass->memory_empty()
2152   if (CC->memory_size() == 1)
2153     return *CC->memory_begin();
2154   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2155 }
2156 
2157 // This function returns the next value leader of a congruence class, under the
2158 // assumption that the current leader is going away.  This should end up being
2159 // the next most dominating member.
2160 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2161   // We don't need to sort members if there is only 1, and we don't care about
2162   // sorting the TOP class because everything either gets out of it or is
2163   // unreachable.
2164 
2165   if (CC->size() == 1 || CC == TOPClass) {
2166     return *(CC->begin());
2167   } else if (CC->getNextLeader().first) {
2168     ++NumGVNAvoidedSortedLeaderChanges;
2169     return CC->getNextLeader().first;
2170   } else {
2171     ++NumGVNSortedLeaderChanges;
2172     // NOTE: If this ends up to slow, we can maintain a dual structure for
2173     // member testing/insertion, or keep things mostly sorted, and sort only
2174     // here, or use SparseBitVector or ....
2175     return getMinDFSOfRange<Value>(*CC);
2176   }
2177 }
2178 
2179 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2180 // the memory members, etc for the move.
2181 //
2182 // The invariants of this function are:
2183 //
2184 // - I must be moving to NewClass from OldClass
2185 // - The StoreCount of OldClass and NewClass is expected to have been updated
2186 //   for I already if it is a store.
2187 // - The OldClass memory leader has not been updated yet if I was the leader.
2188 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2189                                             MemoryAccess *InstMA,
2190                                             CongruenceClass *OldClass,
2191                                             CongruenceClass *NewClass) {
2192   // If the leader is I, and we had a representative MemoryAccess, it should
2193   // be the MemoryAccess of OldClass.
2194   assert((!InstMA || !OldClass->getMemoryLeader() ||
2195           OldClass->getLeader() != I ||
2196           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2197               MemoryAccessToClass.lookup(InstMA)) &&
2198          "Representative MemoryAccess mismatch");
2199   // First, see what happens to the new class
2200   if (!NewClass->getMemoryLeader()) {
2201     // Should be a new class, or a store becoming a leader of a new class.
2202     assert(NewClass->size() == 1 ||
2203            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2204     NewClass->setMemoryLeader(InstMA);
2205     // Mark it touched if we didn't just create a singleton
2206     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2207                       << NewClass->getID()
2208                       << " due to new memory instruction becoming leader\n");
2209     markMemoryLeaderChangeTouched(NewClass);
2210   }
2211   setMemoryClass(InstMA, NewClass);
2212   // Now, fixup the old class if necessary
2213   if (OldClass->getMemoryLeader() == InstMA) {
2214     if (!OldClass->definesNoMemory()) {
2215       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2216       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2217                         << OldClass->getID() << " to "
2218                         << *OldClass->getMemoryLeader()
2219                         << " due to removal of old leader " << *InstMA << "\n");
2220       markMemoryLeaderChangeTouched(OldClass);
2221     } else
2222       OldClass->setMemoryLeader(nullptr);
2223   }
2224 }
2225 
2226 // Move a value, currently in OldClass, to be part of NewClass
2227 // Update OldClass and NewClass for the move (including changing leaders, etc).
2228 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2229                                            CongruenceClass *OldClass,
2230                                            CongruenceClass *NewClass) {
2231   if (I == OldClass->getNextLeader().first)
2232     OldClass->resetNextLeader();
2233 
2234   OldClass->erase(I);
2235   NewClass->insert(I);
2236 
2237   if (NewClass->getLeader() != I)
2238     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2239   // Handle our special casing of stores.
2240   if (auto *SI = dyn_cast<StoreInst>(I)) {
2241     OldClass->decStoreCount();
2242     // Okay, so when do we want to make a store a leader of a class?
2243     // If we have a store defined by an earlier load, we want the earlier load
2244     // to lead the class.
2245     // If we have a store defined by something else, we want the store to lead
2246     // the class so everything else gets the "something else" as a value.
2247     // If we have a store as the single member of the class, we want the store
2248     // as the leader
2249     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2250       // If it's a store expression we are using, it means we are not equivalent
2251       // to something earlier.
2252       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2253         NewClass->setStoredValue(SE->getStoredValue());
2254         markValueLeaderChangeTouched(NewClass);
2255         // Shift the new class leader to be the store
2256         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2257                           << NewClass->getID() << " from "
2258                           << *NewClass->getLeader() << " to  " << *SI
2259                           << " because store joined class\n");
2260         // If we changed the leader, we have to mark it changed because we don't
2261         // know what it will do to symbolic evaluation.
2262         NewClass->setLeader(SI);
2263       }
2264       // We rely on the code below handling the MemoryAccess change.
2265     }
2266     NewClass->incStoreCount();
2267   }
2268   // True if there is no memory instructions left in a class that had memory
2269   // instructions before.
2270 
2271   // If it's not a memory use, set the MemoryAccess equivalence
2272   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2273   if (InstMA)
2274     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2275   ValueToClass[I] = NewClass;
2276   // See if we destroyed the class or need to swap leaders.
2277   if (OldClass->empty() && OldClass != TOPClass) {
2278     if (OldClass->getDefiningExpr()) {
2279       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2280                         << " from table\n");
2281       // We erase it as an exact expression to make sure we don't just erase an
2282       // equivalent one.
2283       auto Iter = ExpressionToClass.find_as(
2284           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2285       if (Iter != ExpressionToClass.end())
2286         ExpressionToClass.erase(Iter);
2287 #ifdef EXPENSIVE_CHECKS
2288       assert(
2289           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2290           "We erased the expression we just inserted, which should not happen");
2291 #endif
2292     }
2293   } else if (OldClass->getLeader() == I) {
2294     // When the leader changes, the value numbering of
2295     // everything may change due to symbolization changes, so we need to
2296     // reprocess.
2297     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2298                       << OldClass->getID() << "\n");
2299     ++NumGVNLeaderChanges;
2300     // Destroy the stored value if there are no more stores to represent it.
2301     // Note that this is basically clean up for the expression removal that
2302     // happens below.  If we remove stores from a class, we may leave it as a
2303     // class of equivalent memory phis.
2304     if (OldClass->getStoreCount() == 0) {
2305       if (OldClass->getStoredValue())
2306         OldClass->setStoredValue(nullptr);
2307     }
2308     OldClass->setLeader(getNextValueLeader(OldClass));
2309     OldClass->resetNextLeader();
2310     markValueLeaderChangeTouched(OldClass);
2311   }
2312 }
2313 
2314 // For a given expression, mark the phi of ops instructions that could have
2315 // changed as a result.
2316 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2317   touchAndErase(ExpressionToPhiOfOps, E);
2318 }
2319 
2320 // Perform congruence finding on a given value numbering expression.
2321 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2322   // This is guaranteed to return something, since it will at least find
2323   // TOP.
2324 
2325   CongruenceClass *IClass = ValueToClass.lookup(I);
2326   assert(IClass && "Should have found a IClass");
2327   // Dead classes should have been eliminated from the mapping.
2328   assert(!IClass->isDead() && "Found a dead class");
2329 
2330   CongruenceClass *EClass = nullptr;
2331   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2332     EClass = ValueToClass.lookup(VE->getVariableValue());
2333   } else if (isa<DeadExpression>(E)) {
2334     EClass = TOPClass;
2335   }
2336   if (!EClass) {
2337     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2338 
2339     // If it's not in the value table, create a new congruence class.
2340     if (lookupResult.second) {
2341       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2342       auto place = lookupResult.first;
2343       place->second = NewClass;
2344 
2345       // Constants and variables should always be made the leader.
2346       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2347         NewClass->setLeader(CE->getConstantValue());
2348       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2349         StoreInst *SI = SE->getStoreInst();
2350         NewClass->setLeader(SI);
2351         NewClass->setStoredValue(SE->getStoredValue());
2352         // The RepMemoryAccess field will be filled in properly by the
2353         // moveValueToNewCongruenceClass call.
2354       } else {
2355         NewClass->setLeader(I);
2356       }
2357       assert(!isa<VariableExpression>(E) &&
2358              "VariableExpression should have been handled already");
2359 
2360       EClass = NewClass;
2361       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2362                         << " using expression " << *E << " at "
2363                         << NewClass->getID() << " and leader "
2364                         << *(NewClass->getLeader()));
2365       if (NewClass->getStoredValue())
2366         LLVM_DEBUG(dbgs() << " and stored value "
2367                           << *(NewClass->getStoredValue()));
2368       LLVM_DEBUG(dbgs() << "\n");
2369     } else {
2370       EClass = lookupResult.first->second;
2371       if (isa<ConstantExpression>(E))
2372         assert((isa<Constant>(EClass->getLeader()) ||
2373                 (EClass->getStoredValue() &&
2374                  isa<Constant>(EClass->getStoredValue()))) &&
2375                "Any class with a constant expression should have a "
2376                "constant leader");
2377 
2378       assert(EClass && "Somehow don't have an eclass");
2379 
2380       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2381     }
2382   }
2383   bool ClassChanged = IClass != EClass;
2384   bool LeaderChanged = LeaderChanges.erase(I);
2385   if (ClassChanged || LeaderChanged) {
2386     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2387                       << *E << "\n");
2388     if (ClassChanged) {
2389       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2390       markPhiOfOpsChanged(E);
2391     }
2392 
2393     markUsersTouched(I);
2394     if (MemoryAccess *MA = getMemoryAccess(I))
2395       markMemoryUsersTouched(MA);
2396     if (auto *CI = dyn_cast<CmpInst>(I))
2397       markPredicateUsersTouched(CI);
2398   }
2399   // If we changed the class of the store, we want to ensure nothing finds the
2400   // old store expression.  In particular, loads do not compare against stored
2401   // value, so they will find old store expressions (and associated class
2402   // mappings) if we leave them in the table.
2403   if (ClassChanged && isa<StoreInst>(I)) {
2404     auto *OldE = ValueToExpression.lookup(I);
2405     // It could just be that the old class died. We don't want to erase it if we
2406     // just moved classes.
2407     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2408       // Erase this as an exact expression to ensure we don't erase expressions
2409       // equivalent to it.
2410       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2411       if (Iter != ExpressionToClass.end())
2412         ExpressionToClass.erase(Iter);
2413     }
2414   }
2415   ValueToExpression[I] = E;
2416 }
2417 
2418 // Process the fact that Edge (from, to) is reachable, including marking
2419 // any newly reachable blocks and instructions for processing.
2420 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2421   // Check if the Edge was reachable before.
2422   if (ReachableEdges.insert({From, To}).second) {
2423     // If this block wasn't reachable before, all instructions are touched.
2424     if (ReachableBlocks.insert(To).second) {
2425       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2426                         << " marked reachable\n");
2427       const auto &InstRange = BlockInstRange.lookup(To);
2428       TouchedInstructions.set(InstRange.first, InstRange.second);
2429     } else {
2430       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2431                         << " was reachable, but new edge {"
2432                         << getBlockName(From) << "," << getBlockName(To)
2433                         << "} to it found\n");
2434 
2435       // We've made an edge reachable to an existing block, which may
2436       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2437       // they are the only thing that depend on new edges. Anything using their
2438       // values will get propagated to if necessary.
2439       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2440         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2441 
2442       // FIXME: We should just add a union op on a Bitvector and
2443       // SparseBitVector.  We can do it word by word faster than we are doing it
2444       // here.
2445       for (auto InstNum : RevisitOnReachabilityChange[To])
2446         TouchedInstructions.set(InstNum);
2447     }
2448   }
2449 }
2450 
2451 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2452 // see if we know some constant value for it already.
2453 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2454   auto Result = lookupOperandLeader(Cond);
2455   return isa<Constant>(Result) ? Result : nullptr;
2456 }
2457 
2458 // Process the outgoing edges of a block for reachability.
2459 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2460   // Evaluate reachability of terminator instruction.
2461   Value *Cond;
2462   BasicBlock *TrueSucc, *FalseSucc;
2463   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2464     Value *CondEvaluated = findConditionEquivalence(Cond);
2465     if (!CondEvaluated) {
2466       if (auto *I = dyn_cast<Instruction>(Cond)) {
2467         SmallPtrSet<Value *, 4> Visited;
2468         auto Res = performSymbolicEvaluation(I, Visited);
2469         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2470           CondEvaluated = CE->getConstantValue();
2471           addAdditionalUsers(Res, I);
2472         } else {
2473           // Did not use simplification result, no need to add the extra
2474           // dependency.
2475           Res.ExtraDep = nullptr;
2476         }
2477       } else if (isa<ConstantInt>(Cond)) {
2478         CondEvaluated = Cond;
2479       }
2480     }
2481     ConstantInt *CI;
2482     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2483       if (CI->isOne()) {
2484         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2485                           << " evaluated to true\n");
2486         updateReachableEdge(B, TrueSucc);
2487       } else if (CI->isZero()) {
2488         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2489                           << " evaluated to false\n");
2490         updateReachableEdge(B, FalseSucc);
2491       }
2492     } else {
2493       updateReachableEdge(B, TrueSucc);
2494       updateReachableEdge(B, FalseSucc);
2495     }
2496   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2497     // For switches, propagate the case values into the case
2498     // destinations.
2499 
2500     Value *SwitchCond = SI->getCondition();
2501     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2502     // See if we were able to turn this switch statement into a constant.
2503     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2504       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2505       // We should be able to get case value for this.
2506       auto Case = *SI->findCaseValue(CondVal);
2507       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2508         // We proved the value is outside of the range of the case.
2509         // We can't do anything other than mark the default dest as reachable,
2510         // and go home.
2511         updateReachableEdge(B, SI->getDefaultDest());
2512         return;
2513       }
2514       // Now get where it goes and mark it reachable.
2515       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2516       updateReachableEdge(B, TargetBlock);
2517     } else {
2518       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2519         BasicBlock *TargetBlock = SI->getSuccessor(i);
2520         updateReachableEdge(B, TargetBlock);
2521       }
2522     }
2523   } else {
2524     // Otherwise this is either unconditional, or a type we have no
2525     // idea about. Just mark successors as reachable.
2526     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2527       BasicBlock *TargetBlock = TI->getSuccessor(i);
2528       updateReachableEdge(B, TargetBlock);
2529     }
2530 
2531     // This also may be a memory defining terminator, in which case, set it
2532     // equivalent only to itself.
2533     //
2534     auto *MA = getMemoryAccess(TI);
2535     if (MA && !isa<MemoryUse>(MA)) {
2536       auto *CC = ensureLeaderOfMemoryClass(MA);
2537       if (setMemoryClass(MA, CC))
2538         markMemoryUsersTouched(MA);
2539     }
2540   }
2541 }
2542 
2543 // Remove the PHI of Ops PHI for I
2544 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2545   InstrDFS.erase(PHITemp);
2546   // It's still a temp instruction. We keep it in the array so it gets erased.
2547   // However, it's no longer used by I, or in the block
2548   TempToBlock.erase(PHITemp);
2549   RealToTemp.erase(I);
2550   // We don't remove the users from the phi node uses. This wastes a little
2551   // time, but such is life.  We could use two sets to track which were there
2552   // are the start of NewGVN, and which were added, but right nowt he cost of
2553   // tracking is more than the cost of checking for more phi of ops.
2554 }
2555 
2556 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2557 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2558                          Instruction *ExistingValue) {
2559   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2560   AllTempInstructions.insert(Op);
2561   TempToBlock[Op] = BB;
2562   RealToTemp[ExistingValue] = Op;
2563   // Add all users to phi node use, as they are now uses of the phi of ops phis
2564   // and may themselves be phi of ops.
2565   for (auto *U : ExistingValue->users())
2566     if (auto *UI = dyn_cast<Instruction>(U))
2567       PHINodeUses.insert(UI);
2568 }
2569 
2570 static bool okayForPHIOfOps(const Instruction *I) {
2571   if (!EnablePhiOfOps)
2572     return false;
2573   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2574          isa<LoadInst>(I);
2575 }
2576 
2577 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2578     Value *V, const BasicBlock *PHIBlock,
2579     SmallPtrSetImpl<const Value *> &Visited,
2580     SmallVectorImpl<Instruction *> &Worklist) {
2581 
2582   if (!isa<Instruction>(V))
2583     return true;
2584   auto OISIt = OpSafeForPHIOfOps.find(V);
2585   if (OISIt != OpSafeForPHIOfOps.end())
2586     return OISIt->second;
2587 
2588   // Keep walking until we either dominate the phi block, or hit a phi, or run
2589   // out of things to check.
2590   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2591     OpSafeForPHIOfOps.insert({V, true});
2592     return true;
2593   }
2594   // PHI in the same block.
2595   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2596     OpSafeForPHIOfOps.insert({V, false});
2597     return false;
2598   }
2599 
2600   auto *OrigI = cast<Instruction>(V);
2601   // When we hit an instruction that reads memory (load, call, etc), we must
2602   // consider any store that may happen in the loop. For now, we assume the
2603   // worst: there is a store in the loop that alias with this read.
2604   // The case where the load is outside the loop is already covered by the
2605   // dominator check above.
2606   // TODO: relax this condition
2607   if (OrigI->mayReadFromMemory())
2608     return false;
2609 
2610   for (auto *Op : OrigI->operand_values()) {
2611     if (!isa<Instruction>(Op))
2612       continue;
2613     // Stop now if we find an unsafe operand.
2614     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2615     if (OISIt != OpSafeForPHIOfOps.end()) {
2616       if (!OISIt->second) {
2617         OpSafeForPHIOfOps.insert({V, false});
2618         return false;
2619       }
2620       continue;
2621     }
2622     if (!Visited.insert(Op).second)
2623       continue;
2624     Worklist.push_back(cast<Instruction>(Op));
2625   }
2626   return true;
2627 }
2628 
2629 // Return true if this operand will be safe to use for phi of ops.
2630 //
2631 // The reason some operands are unsafe is that we are not trying to recursively
2632 // translate everything back through phi nodes.  We actually expect some lookups
2633 // of expressions to fail.  In particular, a lookup where the expression cannot
2634 // exist in the predecessor.  This is true even if the expression, as shown, can
2635 // be determined to be constant.
2636 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2637                                  SmallPtrSetImpl<const Value *> &Visited) {
2638   SmallVector<Instruction *, 4> Worklist;
2639   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2640     return false;
2641   while (!Worklist.empty()) {
2642     auto *I = Worklist.pop_back_val();
2643     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2644       return false;
2645   }
2646   OpSafeForPHIOfOps.insert({V, true});
2647   return true;
2648 }
2649 
2650 // Try to find a leader for instruction TransInst, which is a phi translated
2651 // version of something in our original program.  Visited is used to ensure we
2652 // don't infinite loop during translations of cycles.  OrigInst is the
2653 // instruction in the original program, and PredBB is the predecessor we
2654 // translated it through.
2655 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2656                                  SmallPtrSetImpl<Value *> &Visited,
2657                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2658                                  BasicBlock *PredBB) {
2659   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2660   // Make sure it's marked as a temporary instruction.
2661   AllTempInstructions.insert(TransInst);
2662   // and make sure anything that tries to add it's DFS number is
2663   // redirected to the instruction we are making a phi of ops
2664   // for.
2665   TempToBlock.insert({TransInst, PredBB});
2666   InstrDFS.insert({TransInst, IDFSNum});
2667 
2668   auto Res = performSymbolicEvaluation(TransInst, Visited);
2669   const Expression *E = Res.Expr;
2670   addAdditionalUsers(Res, OrigInst);
2671   InstrDFS.erase(TransInst);
2672   AllTempInstructions.erase(TransInst);
2673   TempToBlock.erase(TransInst);
2674   if (MemAccess)
2675     TempToMemory.erase(TransInst);
2676   if (!E)
2677     return nullptr;
2678   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2679   if (!FoundVal) {
2680     ExpressionToPhiOfOps[E].insert(OrigInst);
2681     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2682                       << " in block " << getBlockName(PredBB) << "\n");
2683     return nullptr;
2684   }
2685   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2686     FoundVal = SI->getValueOperand();
2687   return FoundVal;
2688 }
2689 
2690 // When we see an instruction that is an op of phis, generate the equivalent phi
2691 // of ops form.
2692 const Expression *
2693 NewGVN::makePossiblePHIOfOps(Instruction *I,
2694                              SmallPtrSetImpl<Value *> &Visited) {
2695   if (!okayForPHIOfOps(I))
2696     return nullptr;
2697 
2698   if (!Visited.insert(I).second)
2699     return nullptr;
2700   // For now, we require the instruction be cycle free because we don't
2701   // *always* create a phi of ops for instructions that could be done as phi
2702   // of ops, we only do it if we think it is useful.  If we did do it all the
2703   // time, we could remove the cycle free check.
2704   if (!isCycleFree(I))
2705     return nullptr;
2706 
2707   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2708   // TODO: We don't do phi translation on memory accesses because it's
2709   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2710   // which we don't have a good way of doing ATM.
2711   auto *MemAccess = getMemoryAccess(I);
2712   // If the memory operation is defined by a memory operation this block that
2713   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2714   // can't help, as it would still be killed by that memory operation.
2715   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2716       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2717     return nullptr;
2718 
2719   // Convert op of phis to phi of ops
2720   SmallPtrSet<const Value *, 10> VisitedOps;
2721   SmallVector<Value *, 4> Ops(I->operand_values());
2722   BasicBlock *SamePHIBlock = nullptr;
2723   PHINode *OpPHI = nullptr;
2724   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2725     return nullptr;
2726   for (auto *Op : Ops) {
2727     if (!isa<PHINode>(Op)) {
2728       auto *ValuePHI = RealToTemp.lookup(Op);
2729       if (!ValuePHI)
2730         continue;
2731       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2732       Op = ValuePHI;
2733     }
2734     OpPHI = cast<PHINode>(Op);
2735     if (!SamePHIBlock) {
2736       SamePHIBlock = getBlockForValue(OpPHI);
2737     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2738       LLVM_DEBUG(
2739           dbgs()
2740           << "PHIs for operands are not all in the same block, aborting\n");
2741       return nullptr;
2742     }
2743     // No point in doing this for one-operand phis.
2744     if (OpPHI->getNumOperands() == 1) {
2745       OpPHI = nullptr;
2746       continue;
2747     }
2748   }
2749 
2750   if (!OpPHI)
2751     return nullptr;
2752 
2753   SmallVector<ValPair, 4> PHIOps;
2754   SmallPtrSet<Value *, 4> Deps;
2755   auto *PHIBlock = getBlockForValue(OpPHI);
2756   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2757   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2758     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2759     Value *FoundVal = nullptr;
2760     SmallPtrSet<Value *, 4> CurrentDeps;
2761     // We could just skip unreachable edges entirely but it's tricky to do
2762     // with rewriting existing phi nodes.
2763     if (ReachableEdges.count({PredBB, PHIBlock})) {
2764       // Clone the instruction, create an expression from it that is
2765       // translated back into the predecessor, and see if we have a leader.
2766       Instruction *ValueOp = I->clone();
2767       if (MemAccess)
2768         TempToMemory.insert({ValueOp, MemAccess});
2769       bool SafeForPHIOfOps = true;
2770       VisitedOps.clear();
2771       for (auto &Op : ValueOp->operands()) {
2772         auto *OrigOp = &*Op;
2773         // When these operand changes, it could change whether there is a
2774         // leader for us or not, so we have to add additional users.
2775         if (isa<PHINode>(Op)) {
2776           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2777           if (Op != OrigOp && Op != I)
2778             CurrentDeps.insert(Op);
2779         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2780           if (getBlockForValue(ValuePHI) == PHIBlock)
2781             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2782         }
2783         // If we phi-translated the op, it must be safe.
2784         SafeForPHIOfOps =
2785             SafeForPHIOfOps &&
2786             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2787       }
2788       // FIXME: For those things that are not safe we could generate
2789       // expressions all the way down, and see if this comes out to a
2790       // constant.  For anything where that is true, and unsafe, we should
2791       // have made a phi-of-ops (or value numbered it equivalent to something)
2792       // for the pieces already.
2793       FoundVal = !SafeForPHIOfOps ? nullptr
2794                                   : findLeaderForInst(ValueOp, Visited,
2795                                                       MemAccess, I, PredBB);
2796       ValueOp->deleteValue();
2797       if (!FoundVal) {
2798         // We failed to find a leader for the current ValueOp, but this might
2799         // change in case of the translated operands change.
2800         if (SafeForPHIOfOps)
2801           for (auto Dep : CurrentDeps)
2802             addAdditionalUsers(Dep, I);
2803 
2804         return nullptr;
2805       }
2806       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2807     } else {
2808       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2809                         << getBlockName(PredBB)
2810                         << " because the block is unreachable\n");
2811       FoundVal = PoisonValue::get(I->getType());
2812       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2813     }
2814 
2815     PHIOps.push_back({FoundVal, PredBB});
2816     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2817                       << getBlockName(PredBB) << "\n");
2818   }
2819   for (auto Dep : Deps)
2820     addAdditionalUsers(Dep, I);
2821   sortPHIOps(PHIOps);
2822   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2823   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2824     LLVM_DEBUG(
2825         dbgs()
2826         << "Not creating real PHI of ops because it simplified to existing "
2827            "value or constant\n");
2828     // We have leaders for all operands, but do not create a real PHI node with
2829     // those leaders as operands, so the link between the operands and the
2830     // PHI-of-ops is not materialized in the IR. If any of those leaders
2831     // changes, the PHI-of-op may change also, so we need to add the operands as
2832     // additional users.
2833     for (auto &O : PHIOps)
2834       addAdditionalUsers(O.first, I);
2835 
2836     return E;
2837   }
2838   auto *ValuePHI = RealToTemp.lookup(I);
2839   bool NewPHI = false;
2840   if (!ValuePHI) {
2841     ValuePHI =
2842         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2843     addPhiOfOps(ValuePHI, PHIBlock, I);
2844     NewPHI = true;
2845     NumGVNPHIOfOpsCreated++;
2846   }
2847   if (NewPHI) {
2848     for (auto PHIOp : PHIOps)
2849       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2850   } else {
2851     TempToBlock[ValuePHI] = PHIBlock;
2852     unsigned int i = 0;
2853     for (auto PHIOp : PHIOps) {
2854       ValuePHI->setIncomingValue(i, PHIOp.first);
2855       ValuePHI->setIncomingBlock(i, PHIOp.second);
2856       ++i;
2857     }
2858   }
2859   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2860   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2861                     << "\n");
2862 
2863   return E;
2864 }
2865 
2866 // The algorithm initially places the values of the routine in the TOP
2867 // congruence class. The leader of TOP is the undetermined value `poison`.
2868 // When the algorithm has finished, values still in TOP are unreachable.
2869 void NewGVN::initializeCongruenceClasses(Function &F) {
2870   NextCongruenceNum = 0;
2871 
2872   // Note that even though we use the live on entry def as a representative
2873   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2874   // have no real equivalent to poison for MemoryAccesses, and so we really
2875   // should be checking whether the MemoryAccess is top if we want to know if it
2876   // is equivalent to everything.  Otherwise, what this really signifies is that
2877   // the access "it reaches all the way back to the beginning of the function"
2878 
2879   // Initialize all other instructions to be in TOP class.
2880   TOPClass = createCongruenceClass(nullptr, nullptr);
2881   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2882   //  The live on entry def gets put into it's own class
2883   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2884       createMemoryClass(MSSA->getLiveOnEntryDef());
2885 
2886   for (auto DTN : nodes(DT)) {
2887     BasicBlock *BB = DTN->getBlock();
2888     // All MemoryAccesses are equivalent to live on entry to start. They must
2889     // be initialized to something so that initial changes are noticed. For
2890     // the maximal answer, we initialize them all to be the same as
2891     // liveOnEntry.
2892     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2893     if (MemoryBlockDefs)
2894       for (const auto &Def : *MemoryBlockDefs) {
2895         MemoryAccessToClass[&Def] = TOPClass;
2896         auto *MD = dyn_cast<MemoryDef>(&Def);
2897         // Insert the memory phis into the member list.
2898         if (!MD) {
2899           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2900           TOPClass->memory_insert(MP);
2901           MemoryPhiState.insert({MP, MPS_TOP});
2902         }
2903 
2904         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2905           TOPClass->incStoreCount();
2906       }
2907 
2908     // FIXME: This is trying to discover which instructions are uses of phi
2909     // nodes.  We should move this into one of the myriad of places that walk
2910     // all the operands already.
2911     for (auto &I : *BB) {
2912       if (isa<PHINode>(&I))
2913         for (auto *U : I.users())
2914           if (auto *UInst = dyn_cast<Instruction>(U))
2915             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2916               PHINodeUses.insert(UInst);
2917       // Don't insert void terminators into the class. We don't value number
2918       // them, and they just end up sitting in TOP.
2919       if (I.isTerminator() && I.getType()->isVoidTy())
2920         continue;
2921       TOPClass->insert(&I);
2922       ValueToClass[&I] = TOPClass;
2923     }
2924   }
2925 
2926   // Initialize arguments to be in their own unique congruence classes
2927   for (auto &FA : F.args())
2928     createSingletonCongruenceClass(&FA);
2929 }
2930 
2931 void NewGVN::cleanupTables() {
2932   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2933     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2934                       << " has " << CongruenceClasses[i]->size()
2935                       << " members\n");
2936     // Make sure we delete the congruence class (probably worth switching to
2937     // a unique_ptr at some point.
2938     delete CongruenceClasses[i];
2939     CongruenceClasses[i] = nullptr;
2940   }
2941 
2942   // Destroy the value expressions
2943   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2944                                          AllTempInstructions.end());
2945   AllTempInstructions.clear();
2946 
2947   // We have to drop all references for everything first, so there are no uses
2948   // left as we delete them.
2949   for (auto *I : TempInst) {
2950     I->dropAllReferences();
2951   }
2952 
2953   while (!TempInst.empty()) {
2954     auto *I = TempInst.pop_back_val();
2955     I->deleteValue();
2956   }
2957 
2958   ValueToClass.clear();
2959   ArgRecycler.clear(ExpressionAllocator);
2960   ExpressionAllocator.Reset();
2961   CongruenceClasses.clear();
2962   ExpressionToClass.clear();
2963   ValueToExpression.clear();
2964   RealToTemp.clear();
2965   AdditionalUsers.clear();
2966   ExpressionToPhiOfOps.clear();
2967   TempToBlock.clear();
2968   TempToMemory.clear();
2969   PHINodeUses.clear();
2970   OpSafeForPHIOfOps.clear();
2971   ReachableBlocks.clear();
2972   ReachableEdges.clear();
2973 #ifndef NDEBUG
2974   ProcessedCount.clear();
2975 #endif
2976   InstrDFS.clear();
2977   InstructionsToErase.clear();
2978   DFSToInstr.clear();
2979   BlockInstRange.clear();
2980   TouchedInstructions.clear();
2981   MemoryAccessToClass.clear();
2982   PredicateToUsers.clear();
2983   MemoryToUsers.clear();
2984   RevisitOnReachabilityChange.clear();
2985   IntrinsicInstPred.clear();
2986 }
2987 
2988 // Assign local DFS number mapping to instructions, and leave space for Value
2989 // PHI's.
2990 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2991                                                        unsigned Start) {
2992   unsigned End = Start;
2993   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2994     InstrDFS[MemPhi] = End++;
2995     DFSToInstr.emplace_back(MemPhi);
2996   }
2997 
2998   // Then the real block goes next.
2999   for (auto &I : *B) {
3000     // There's no need to call isInstructionTriviallyDead more than once on
3001     // an instruction. Therefore, once we know that an instruction is dead
3002     // we change its DFS number so that it doesn't get value numbered.
3003     if (isInstructionTriviallyDead(&I, TLI)) {
3004       InstrDFS[&I] = 0;
3005       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3006       markInstructionForDeletion(&I);
3007       continue;
3008     }
3009     if (isa<PHINode>(&I))
3010       RevisitOnReachabilityChange[B].set(End);
3011     InstrDFS[&I] = End++;
3012     DFSToInstr.emplace_back(&I);
3013   }
3014 
3015   // All of the range functions taken half-open ranges (open on the end side).
3016   // So we do not subtract one from count, because at this point it is one
3017   // greater than the last instruction.
3018   return std::make_pair(Start, End);
3019 }
3020 
3021 void NewGVN::updateProcessedCount(const Value *V) {
3022 #ifndef NDEBUG
3023   if (ProcessedCount.count(V) == 0) {
3024     ProcessedCount.insert({V, 1});
3025   } else {
3026     ++ProcessedCount[V];
3027     assert(ProcessedCount[V] < 100 &&
3028            "Seem to have processed the same Value a lot");
3029   }
3030 #endif
3031 }
3032 
3033 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3034 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3035   // If all the arguments are the same, the MemoryPhi has the same value as the
3036   // argument.  Filter out unreachable blocks and self phis from our operands.
3037   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3038   // self-phi checking.
3039   const BasicBlock *PHIBlock = MP->getBlock();
3040   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3041     return cast<MemoryAccess>(U) != MP &&
3042            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3043            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3044   });
3045   // If all that is left is nothing, our memoryphi is poison. We keep it as
3046   // InitialClass.  Note: The only case this should happen is if we have at
3047   // least one self-argument.
3048   if (Filtered.begin() == Filtered.end()) {
3049     if (setMemoryClass(MP, TOPClass))
3050       markMemoryUsersTouched(MP);
3051     return;
3052   }
3053 
3054   // Transform the remaining operands into operand leaders.
3055   // FIXME: mapped_iterator should have a range version.
3056   auto LookupFunc = [&](const Use &U) {
3057     return lookupMemoryLeader(cast<MemoryAccess>(U));
3058   };
3059   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3060   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3061 
3062   // and now check if all the elements are equal.
3063   // Sadly, we can't use std::equals since these are random access iterators.
3064   const auto *AllSameValue = *MappedBegin;
3065   ++MappedBegin;
3066   bool AllEqual = std::all_of(
3067       MappedBegin, MappedEnd,
3068       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3069 
3070   if (AllEqual)
3071     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3072                       << "\n");
3073   else
3074     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3075   // If it's equal to something, it's in that class. Otherwise, it has to be in
3076   // a class where it is the leader (other things may be equivalent to it, but
3077   // it needs to start off in its own class, which means it must have been the
3078   // leader, and it can't have stopped being the leader because it was never
3079   // removed).
3080   CongruenceClass *CC =
3081       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3082   auto OldState = MemoryPhiState.lookup(MP);
3083   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3084   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3085   MemoryPhiState[MP] = NewState;
3086   if (setMemoryClass(MP, CC) || OldState != NewState)
3087     markMemoryUsersTouched(MP);
3088 }
3089 
3090 // Value number a single instruction, symbolically evaluating, performing
3091 // congruence finding, and updating mappings.
3092 void NewGVN::valueNumberInstruction(Instruction *I) {
3093   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3094   if (!I->isTerminator()) {
3095     const Expression *Symbolized = nullptr;
3096     SmallPtrSet<Value *, 2> Visited;
3097     if (DebugCounter::shouldExecute(VNCounter)) {
3098       auto Res = performSymbolicEvaluation(I, Visited);
3099       Symbolized = Res.Expr;
3100       addAdditionalUsers(Res, I);
3101 
3102       // Make a phi of ops if necessary
3103       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3104           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3105         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3106         // If we created a phi of ops, use it.
3107         // If we couldn't create one, make sure we don't leave one lying around
3108         if (PHIE) {
3109           Symbolized = PHIE;
3110         } else if (auto *Op = RealToTemp.lookup(I)) {
3111           removePhiOfOps(I, Op);
3112         }
3113       }
3114     } else {
3115       // Mark the instruction as unused so we don't value number it again.
3116       InstrDFS[I] = 0;
3117     }
3118     // If we couldn't come up with a symbolic expression, use the unknown
3119     // expression
3120     if (Symbolized == nullptr)
3121       Symbolized = createUnknownExpression(I);
3122     performCongruenceFinding(I, Symbolized);
3123   } else {
3124     // Handle terminators that return values. All of them produce values we
3125     // don't currently understand.  We don't place non-value producing
3126     // terminators in a class.
3127     if (!I->getType()->isVoidTy()) {
3128       auto *Symbolized = createUnknownExpression(I);
3129       performCongruenceFinding(I, Symbolized);
3130     }
3131     processOutgoingEdges(I, I->getParent());
3132   }
3133 }
3134 
3135 // Check if there is a path, using single or equal argument phi nodes, from
3136 // First to Second.
3137 bool NewGVN::singleReachablePHIPath(
3138     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3139     const MemoryAccess *Second) const {
3140   if (First == Second)
3141     return true;
3142   if (MSSA->isLiveOnEntryDef(First))
3143     return false;
3144 
3145   // This is not perfect, but as we're just verifying here, we can live with
3146   // the loss of precision. The real solution would be that of doing strongly
3147   // connected component finding in this routine, and it's probably not worth
3148   // the complexity for the time being. So, we just keep a set of visited
3149   // MemoryAccess and return true when we hit a cycle.
3150   if (!Visited.insert(First).second)
3151     return true;
3152 
3153   const auto *EndDef = First;
3154   for (auto *ChainDef : optimized_def_chain(First)) {
3155     if (ChainDef == Second)
3156       return true;
3157     if (MSSA->isLiveOnEntryDef(ChainDef))
3158       return false;
3159     EndDef = ChainDef;
3160   }
3161   auto *MP = cast<MemoryPhi>(EndDef);
3162   auto ReachableOperandPred = [&](const Use &U) {
3163     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3164   };
3165   auto FilteredPhiArgs =
3166       make_filter_range(MP->operands(), ReachableOperandPred);
3167   SmallVector<const Value *, 32> OperandList;
3168   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3169   bool Okay = is_splat(OperandList);
3170   if (Okay)
3171     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3172                                   Second);
3173   return false;
3174 }
3175 
3176 // Verify the that the memory equivalence table makes sense relative to the
3177 // congruence classes.  Note that this checking is not perfect, and is currently
3178 // subject to very rare false negatives. It is only useful for
3179 // testing/debugging.
3180 void NewGVN::verifyMemoryCongruency() const {
3181 #ifndef NDEBUG
3182   // Verify that the memory table equivalence and memory member set match
3183   for (const auto *CC : CongruenceClasses) {
3184     if (CC == TOPClass || CC->isDead())
3185       continue;
3186     if (CC->getStoreCount() != 0) {
3187       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3188              "Any class with a store as a leader should have a "
3189              "representative stored value");
3190       assert(CC->getMemoryLeader() &&
3191              "Any congruence class with a store should have a "
3192              "representative access");
3193     }
3194 
3195     if (CC->getMemoryLeader())
3196       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3197              "Representative MemoryAccess does not appear to be reverse "
3198              "mapped properly");
3199     for (auto M : CC->memory())
3200       assert(MemoryAccessToClass.lookup(M) == CC &&
3201              "Memory member does not appear to be reverse mapped properly");
3202   }
3203 
3204   // Anything equivalent in the MemoryAccess table should be in the same
3205   // congruence class.
3206 
3207   // Filter out the unreachable and trivially dead entries, because they may
3208   // never have been updated if the instructions were not processed.
3209   auto ReachableAccessPred =
3210       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3211         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3212         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3213             MemoryToDFSNum(Pair.first) == 0)
3214           return false;
3215         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3216           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3217 
3218         // We could have phi nodes which operands are all trivially dead,
3219         // so we don't process them.
3220         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3221           for (auto &U : MemPHI->incoming_values()) {
3222             if (auto *I = dyn_cast<Instruction>(&*U)) {
3223               if (!isInstructionTriviallyDead(I))
3224                 return true;
3225             }
3226           }
3227           return false;
3228         }
3229 
3230         return true;
3231       };
3232 
3233   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3234   for (auto KV : Filtered) {
3235     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3236       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3237       if (FirstMUD && SecondMUD) {
3238         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3239         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3240                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3241                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3242                "The instructions for these memory operations should have "
3243                "been in the same congruence class or reachable through"
3244                "a single argument phi");
3245       }
3246     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3247       // We can only sanely verify that MemoryDefs in the operand list all have
3248       // the same class.
3249       auto ReachableOperandPred = [&](const Use &U) {
3250         return ReachableEdges.count(
3251                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3252                isa<MemoryDef>(U);
3253 
3254       };
3255       // All arguments should in the same class, ignoring unreachable arguments
3256       auto FilteredPhiArgs =
3257           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3258       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3259       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3260                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3261                        const MemoryDef *MD = cast<MemoryDef>(U);
3262                        return ValueToClass.lookup(MD->getMemoryInst());
3263                      });
3264       assert(is_splat(PhiOpClasses) &&
3265              "All MemoryPhi arguments should be in the same class");
3266     }
3267   }
3268 #endif
3269 }
3270 
3271 // Verify that the sparse propagation we did actually found the maximal fixpoint
3272 // We do this by storing the value to class mapping, touching all instructions,
3273 // and redoing the iteration to see if anything changed.
3274 void NewGVN::verifyIterationSettled(Function &F) {
3275 #ifndef NDEBUG
3276   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3277   if (DebugCounter::isCounterSet(VNCounter))
3278     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3279 
3280   // Note that we have to store the actual classes, as we may change existing
3281   // classes during iteration.  This is because our memory iteration propagation
3282   // is not perfect, and so may waste a little work.  But it should generate
3283   // exactly the same congruence classes we have now, with different IDs.
3284   std::map<const Value *, CongruenceClass> BeforeIteration;
3285 
3286   for (auto &KV : ValueToClass) {
3287     if (auto *I = dyn_cast<Instruction>(KV.first))
3288       // Skip unused/dead instructions.
3289       if (InstrToDFSNum(I) == 0)
3290         continue;
3291     BeforeIteration.insert({KV.first, *KV.second});
3292   }
3293 
3294   TouchedInstructions.set();
3295   TouchedInstructions.reset(0);
3296   iterateTouchedInstructions();
3297   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3298       EqualClasses;
3299   for (const auto &KV : ValueToClass) {
3300     if (auto *I = dyn_cast<Instruction>(KV.first))
3301       // Skip unused/dead instructions.
3302       if (InstrToDFSNum(I) == 0)
3303         continue;
3304     // We could sink these uses, but i think this adds a bit of clarity here as
3305     // to what we are comparing.
3306     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3307     auto *AfterCC = KV.second;
3308     // Note that the classes can't change at this point, so we memoize the set
3309     // that are equal.
3310     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3311       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3312              "Value number changed after main loop completed!");
3313       EqualClasses.insert({BeforeCC, AfterCC});
3314     }
3315   }
3316 #endif
3317 }
3318 
3319 // Verify that for each store expression in the expression to class mapping,
3320 // only the latest appears, and multiple ones do not appear.
3321 // Because loads do not use the stored value when doing equality with stores,
3322 // if we don't erase the old store expressions from the table, a load can find
3323 // a no-longer valid StoreExpression.
3324 void NewGVN::verifyStoreExpressions() const {
3325 #ifndef NDEBUG
3326   // This is the only use of this, and it's not worth defining a complicated
3327   // densemapinfo hash/equality function for it.
3328   std::set<
3329       std::pair<const Value *,
3330                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3331       StoreExpressionSet;
3332   for (const auto &KV : ExpressionToClass) {
3333     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3334       // Make sure a version that will conflict with loads is not already there
3335       auto Res = StoreExpressionSet.insert(
3336           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3337                                               SE->getStoredValue())});
3338       bool Okay = Res.second;
3339       // It's okay to have the same expression already in there if it is
3340       // identical in nature.
3341       // This can happen when the leader of the stored value changes over time.
3342       if (!Okay)
3343         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3344                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3345                 lookupOperandLeader(SE->getStoredValue()));
3346       assert(Okay && "Stored expression conflict exists in expression table");
3347       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3348       assert(ValueExpr && ValueExpr->equals(*SE) &&
3349              "StoreExpression in ExpressionToClass is not latest "
3350              "StoreExpression for value");
3351     }
3352   }
3353 #endif
3354 }
3355 
3356 // This is the main value numbering loop, it iterates over the initial touched
3357 // instruction set, propagating value numbers, marking things touched, etc,
3358 // until the set of touched instructions is completely empty.
3359 void NewGVN::iterateTouchedInstructions() {
3360   uint64_t Iterations = 0;
3361   // Figure out where touchedinstructions starts
3362   int FirstInstr = TouchedInstructions.find_first();
3363   // Nothing set, nothing to iterate, just return.
3364   if (FirstInstr == -1)
3365     return;
3366   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3367   while (TouchedInstructions.any()) {
3368     ++Iterations;
3369     // Walk through all the instructions in all the blocks in RPO.
3370     // TODO: As we hit a new block, we should push and pop equalities into a
3371     // table lookupOperandLeader can use, to catch things PredicateInfo
3372     // might miss, like edge-only equivalences.
3373     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3374 
3375       // This instruction was found to be dead. We don't bother looking
3376       // at it again.
3377       if (InstrNum == 0) {
3378         TouchedInstructions.reset(InstrNum);
3379         continue;
3380       }
3381 
3382       Value *V = InstrFromDFSNum(InstrNum);
3383       const BasicBlock *CurrBlock = getBlockForValue(V);
3384 
3385       // If we hit a new block, do reachability processing.
3386       if (CurrBlock != LastBlock) {
3387         LastBlock = CurrBlock;
3388         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3389         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3390 
3391         // If it's not reachable, erase any touched instructions and move on.
3392         if (!BlockReachable) {
3393           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3394           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3395                             << getBlockName(CurrBlock)
3396                             << " because it is unreachable\n");
3397           continue;
3398         }
3399         updateProcessedCount(CurrBlock);
3400       }
3401       // Reset after processing (because we may mark ourselves as touched when
3402       // we propagate equalities).
3403       TouchedInstructions.reset(InstrNum);
3404 
3405       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3406         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3407         valueNumberMemoryPhi(MP);
3408       } else if (auto *I = dyn_cast<Instruction>(V)) {
3409         valueNumberInstruction(I);
3410       } else {
3411         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3412       }
3413       updateProcessedCount(V);
3414     }
3415   }
3416   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3417 }
3418 
3419 // This is the main transformation entry point.
3420 bool NewGVN::runGVN() {
3421   if (DebugCounter::isCounterSet(VNCounter))
3422     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3423   bool Changed = false;
3424   NumFuncArgs = F.arg_size();
3425   MSSAWalker = MSSA->getWalker();
3426   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3427 
3428   // Count number of instructions for sizing of hash tables, and come
3429   // up with a global dfs numbering for instructions.
3430   unsigned ICount = 1;
3431   // Add an empty instruction to account for the fact that we start at 1
3432   DFSToInstr.emplace_back(nullptr);
3433   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3434   // same as dominator tree order, particularly with regard whether backedges
3435   // get visited first or second, given a block with multiple successors.
3436   // If we visit in the wrong order, we will end up performing N times as many
3437   // iterations.
3438   // The dominator tree does guarantee that, for a given dom tree node, it's
3439   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3440   // the siblings.
3441   ReversePostOrderTraversal<Function *> RPOT(&F);
3442   unsigned Counter = 0;
3443   for (auto &B : RPOT) {
3444     auto *Node = DT->getNode(B);
3445     assert(Node && "RPO and Dominator tree should have same reachability");
3446     RPOOrdering[Node] = ++Counter;
3447   }
3448   // Sort dominator tree children arrays into RPO.
3449   for (auto &B : RPOT) {
3450     auto *Node = DT->getNode(B);
3451     if (Node->getNumChildren() > 1)
3452       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3453         return RPOOrdering[A] < RPOOrdering[B];
3454       });
3455   }
3456 
3457   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3458   for (auto DTN : depth_first(DT->getRootNode())) {
3459     BasicBlock *B = DTN->getBlock();
3460     const auto &BlockRange = assignDFSNumbers(B, ICount);
3461     BlockInstRange.insert({B, BlockRange});
3462     ICount += BlockRange.second - BlockRange.first;
3463   }
3464   initializeCongruenceClasses(F);
3465 
3466   TouchedInstructions.resize(ICount);
3467   // Ensure we don't end up resizing the expressionToClass map, as
3468   // that can be quite expensive. At most, we have one expression per
3469   // instruction.
3470   ExpressionToClass.reserve(ICount);
3471 
3472   // Initialize the touched instructions to include the entry block.
3473   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3474   TouchedInstructions.set(InstRange.first, InstRange.second);
3475   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3476                     << " marked reachable\n");
3477   ReachableBlocks.insert(&F.getEntryBlock());
3478 
3479   iterateTouchedInstructions();
3480   verifyMemoryCongruency();
3481   verifyIterationSettled(F);
3482   verifyStoreExpressions();
3483 
3484   Changed |= eliminateInstructions(F);
3485 
3486   // Delete all instructions marked for deletion.
3487   for (Instruction *ToErase : InstructionsToErase) {
3488     if (!ToErase->use_empty())
3489       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3490 
3491     assert(ToErase->getParent() &&
3492            "BB containing ToErase deleted unexpectedly!");
3493     ToErase->eraseFromParent();
3494   }
3495   Changed |= !InstructionsToErase.empty();
3496 
3497   // Delete all unreachable blocks.
3498   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3499     return !ReachableBlocks.count(&BB);
3500   };
3501 
3502   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3503     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3504                       << " is unreachable\n");
3505     deleteInstructionsInBlock(&BB);
3506     Changed = true;
3507   }
3508 
3509   cleanupTables();
3510   return Changed;
3511 }
3512 
3513 struct NewGVN::ValueDFS {
3514   int DFSIn = 0;
3515   int DFSOut = 0;
3516   int LocalNum = 0;
3517 
3518   // Only one of Def and U will be set.
3519   // The bool in the Def tells us whether the Def is the stored value of a
3520   // store.
3521   PointerIntPair<Value *, 1, bool> Def;
3522   Use *U = nullptr;
3523 
3524   bool operator<(const ValueDFS &Other) const {
3525     // It's not enough that any given field be less than - we have sets
3526     // of fields that need to be evaluated together to give a proper ordering.
3527     // For example, if you have;
3528     // DFS (1, 3)
3529     // Val 0
3530     // DFS (1, 2)
3531     // Val 50
3532     // We want the second to be less than the first, but if we just go field
3533     // by field, we will get to Val 0 < Val 50 and say the first is less than
3534     // the second. We only want it to be less than if the DFS orders are equal.
3535     //
3536     // Each LLVM instruction only produces one value, and thus the lowest-level
3537     // differentiator that really matters for the stack (and what we use as as a
3538     // replacement) is the local dfs number.
3539     // Everything else in the structure is instruction level, and only affects
3540     // the order in which we will replace operands of a given instruction.
3541     //
3542     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3543     // the order of replacement of uses does not matter.
3544     // IE given,
3545     //  a = 5
3546     //  b = a + a
3547     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3548     // localnum.
3549     // The .val will be the same as well.
3550     // The .u's will be different.
3551     // You will replace both, and it does not matter what order you replace them
3552     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3553     // operand 2).
3554     // Similarly for the case of same dfsin, dfsout, localnum, but different
3555     // .val's
3556     //  a = 5
3557     //  b  = 6
3558     //  c = a + b
3559     // in c, we will a valuedfs for a, and one for b,with everything the same
3560     // but .val  and .u.
3561     // It does not matter what order we replace these operands in.
3562     // You will always end up with the same IR, and this is guaranteed.
3563     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3564            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3565                     Other.U);
3566   }
3567 };
3568 
3569 // This function converts the set of members for a congruence class from values,
3570 // to sets of defs and uses with associated DFS info.  The total number of
3571 // reachable uses for each value is stored in UseCount, and instructions that
3572 // seem
3573 // dead (have no non-dead uses) are stored in ProbablyDead.
3574 void NewGVN::convertClassToDFSOrdered(
3575     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3576     DenseMap<const Value *, unsigned int> &UseCounts,
3577     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3578   for (auto D : Dense) {
3579     // First add the value.
3580     BasicBlock *BB = getBlockForValue(D);
3581     // Constants are handled prior to ever calling this function, so
3582     // we should only be left with instructions as members.
3583     assert(BB && "Should have figured out a basic block for value");
3584     ValueDFS VDDef;
3585     DomTreeNode *DomNode = DT->getNode(BB);
3586     VDDef.DFSIn = DomNode->getDFSNumIn();
3587     VDDef.DFSOut = DomNode->getDFSNumOut();
3588     // If it's a store, use the leader of the value operand, if it's always
3589     // available, or the value operand.  TODO: We could do dominance checks to
3590     // find a dominating leader, but not worth it ATM.
3591     if (auto *SI = dyn_cast<StoreInst>(D)) {
3592       auto Leader = lookupOperandLeader(SI->getValueOperand());
3593       if (alwaysAvailable(Leader)) {
3594         VDDef.Def.setPointer(Leader);
3595       } else {
3596         VDDef.Def.setPointer(SI->getValueOperand());
3597         VDDef.Def.setInt(true);
3598       }
3599     } else {
3600       VDDef.Def.setPointer(D);
3601     }
3602     assert(isa<Instruction>(D) &&
3603            "The dense set member should always be an instruction");
3604     Instruction *Def = cast<Instruction>(D);
3605     VDDef.LocalNum = InstrToDFSNum(D);
3606     DFSOrderedSet.push_back(VDDef);
3607     // If there is a phi node equivalent, add it
3608     if (auto *PN = RealToTemp.lookup(Def)) {
3609       auto *PHIE =
3610           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3611       if (PHIE) {
3612         VDDef.Def.setInt(false);
3613         VDDef.Def.setPointer(PN);
3614         VDDef.LocalNum = 0;
3615         DFSOrderedSet.push_back(VDDef);
3616       }
3617     }
3618 
3619     unsigned int UseCount = 0;
3620     // Now add the uses.
3621     for (auto &U : Def->uses()) {
3622       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3623         // Don't try to replace into dead uses
3624         if (InstructionsToErase.count(I))
3625           continue;
3626         ValueDFS VDUse;
3627         // Put the phi node uses in the incoming block.
3628         BasicBlock *IBlock;
3629         if (auto *P = dyn_cast<PHINode>(I)) {
3630           IBlock = P->getIncomingBlock(U);
3631           // Make phi node users appear last in the incoming block
3632           // they are from.
3633           VDUse.LocalNum = InstrDFS.size() + 1;
3634         } else {
3635           IBlock = getBlockForValue(I);
3636           VDUse.LocalNum = InstrToDFSNum(I);
3637         }
3638 
3639         // Skip uses in unreachable blocks, as we're going
3640         // to delete them.
3641         if (!ReachableBlocks.contains(IBlock))
3642           continue;
3643 
3644         DomTreeNode *DomNode = DT->getNode(IBlock);
3645         VDUse.DFSIn = DomNode->getDFSNumIn();
3646         VDUse.DFSOut = DomNode->getDFSNumOut();
3647         VDUse.U = &U;
3648         ++UseCount;
3649         DFSOrderedSet.emplace_back(VDUse);
3650       }
3651     }
3652 
3653     // If there are no uses, it's probably dead (but it may have side-effects,
3654     // so not definitely dead. Otherwise, store the number of uses so we can
3655     // track if it becomes dead later).
3656     if (UseCount == 0)
3657       ProbablyDead.insert(Def);
3658     else
3659       UseCounts[Def] = UseCount;
3660   }
3661 }
3662 
3663 // This function converts the set of members for a congruence class from values,
3664 // to the set of defs for loads and stores, with associated DFS info.
3665 void NewGVN::convertClassToLoadsAndStores(
3666     const CongruenceClass &Dense,
3667     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3668   for (auto D : Dense) {
3669     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3670       continue;
3671 
3672     BasicBlock *BB = getBlockForValue(D);
3673     ValueDFS VD;
3674     DomTreeNode *DomNode = DT->getNode(BB);
3675     VD.DFSIn = DomNode->getDFSNumIn();
3676     VD.DFSOut = DomNode->getDFSNumOut();
3677     VD.Def.setPointer(D);
3678 
3679     // If it's an instruction, use the real local dfs number.
3680     if (auto *I = dyn_cast<Instruction>(D))
3681       VD.LocalNum = InstrToDFSNum(I);
3682     else
3683       llvm_unreachable("Should have been an instruction");
3684 
3685     LoadsAndStores.emplace_back(VD);
3686   }
3687 }
3688 
3689 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3690   patchReplacementInstruction(I, Repl);
3691   I->replaceAllUsesWith(Repl);
3692 }
3693 
3694 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3695   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3696   ++NumGVNBlocksDeleted;
3697 
3698   // Delete the instructions backwards, as it has a reduced likelihood of having
3699   // to update as many def-use and use-def chains. Start after the terminator.
3700   auto StartPoint = BB->rbegin();
3701   ++StartPoint;
3702   // Note that we explicitly recalculate BB->rend() on each iteration,
3703   // as it may change when we remove the first instruction.
3704   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3705     Instruction &Inst = *I++;
3706     if (!Inst.use_empty())
3707       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3708     if (isa<LandingPadInst>(Inst))
3709       continue;
3710     salvageKnowledge(&Inst, AC);
3711 
3712     Inst.eraseFromParent();
3713     ++NumGVNInstrDeleted;
3714   }
3715   // Now insert something that simplifycfg will turn into an unreachable.
3716   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3717   new StoreInst(PoisonValue::get(Int8Ty),
3718                 Constant::getNullValue(Int8Ty->getPointerTo()),
3719                 BB->getTerminator());
3720 }
3721 
3722 void NewGVN::markInstructionForDeletion(Instruction *I) {
3723   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3724   InstructionsToErase.insert(I);
3725 }
3726 
3727 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3728   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3729   patchAndReplaceAllUsesWith(I, V);
3730   // We save the actual erasing to avoid invalidating memory
3731   // dependencies until we are done with everything.
3732   markInstructionForDeletion(I);
3733 }
3734 
3735 namespace {
3736 
3737 // This is a stack that contains both the value and dfs info of where
3738 // that value is valid.
3739 class ValueDFSStack {
3740 public:
3741   Value *back() const { return ValueStack.back(); }
3742   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3743 
3744   void push_back(Value *V, int DFSIn, int DFSOut) {
3745     ValueStack.emplace_back(V);
3746     DFSStack.emplace_back(DFSIn, DFSOut);
3747   }
3748 
3749   bool empty() const { return DFSStack.empty(); }
3750 
3751   bool isInScope(int DFSIn, int DFSOut) const {
3752     if (empty())
3753       return false;
3754     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3755   }
3756 
3757   void popUntilDFSScope(int DFSIn, int DFSOut) {
3758 
3759     // These two should always be in sync at this point.
3760     assert(ValueStack.size() == DFSStack.size() &&
3761            "Mismatch between ValueStack and DFSStack");
3762     while (
3763         !DFSStack.empty() &&
3764         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3765       DFSStack.pop_back();
3766       ValueStack.pop_back();
3767     }
3768   }
3769 
3770 private:
3771   SmallVector<Value *, 8> ValueStack;
3772   SmallVector<std::pair<int, int>, 8> DFSStack;
3773 };
3774 
3775 } // end anonymous namespace
3776 
3777 // Given an expression, get the congruence class for it.
3778 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3779   if (auto *VE = dyn_cast<VariableExpression>(E))
3780     return ValueToClass.lookup(VE->getVariableValue());
3781   else if (isa<DeadExpression>(E))
3782     return TOPClass;
3783   return ExpressionToClass.lookup(E);
3784 }
3785 
3786 // Given a value and a basic block we are trying to see if it is available in,
3787 // see if the value has a leader available in that block.
3788 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3789                                   const Instruction *OrigInst,
3790                                   const BasicBlock *BB) const {
3791   // It would already be constant if we could make it constant
3792   if (auto *CE = dyn_cast<ConstantExpression>(E))
3793     return CE->getConstantValue();
3794   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3795     auto *V = VE->getVariableValue();
3796     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3797       return VE->getVariableValue();
3798   }
3799 
3800   auto *CC = getClassForExpression(E);
3801   if (!CC)
3802     return nullptr;
3803   if (alwaysAvailable(CC->getLeader()))
3804     return CC->getLeader();
3805 
3806   for (auto Member : *CC) {
3807     auto *MemberInst = dyn_cast<Instruction>(Member);
3808     if (MemberInst == OrigInst)
3809       continue;
3810     // Anything that isn't an instruction is always available.
3811     if (!MemberInst)
3812       return Member;
3813     if (DT->dominates(getBlockForValue(MemberInst), BB))
3814       return Member;
3815   }
3816   return nullptr;
3817 }
3818 
3819 bool NewGVN::eliminateInstructions(Function &F) {
3820   // This is a non-standard eliminator. The normal way to eliminate is
3821   // to walk the dominator tree in order, keeping track of available
3822   // values, and eliminating them.  However, this is mildly
3823   // pointless. It requires doing lookups on every instruction,
3824   // regardless of whether we will ever eliminate it.  For
3825   // instructions part of most singleton congruence classes, we know we
3826   // will never eliminate them.
3827 
3828   // Instead, this eliminator looks at the congruence classes directly, sorts
3829   // them into a DFS ordering of the dominator tree, and then we just
3830   // perform elimination straight on the sets by walking the congruence
3831   // class member uses in order, and eliminate the ones dominated by the
3832   // last member.   This is worst case O(E log E) where E = number of
3833   // instructions in a single congruence class.  In theory, this is all
3834   // instructions.   In practice, it is much faster, as most instructions are
3835   // either in singleton congruence classes or can't possibly be eliminated
3836   // anyway (if there are no overlapping DFS ranges in class).
3837   // When we find something not dominated, it becomes the new leader
3838   // for elimination purposes.
3839   // TODO: If we wanted to be faster, We could remove any members with no
3840   // overlapping ranges while sorting, as we will never eliminate anything
3841   // with those members, as they don't dominate anything else in our set.
3842 
3843   bool AnythingReplaced = false;
3844 
3845   // Since we are going to walk the domtree anyway, and we can't guarantee the
3846   // DFS numbers are updated, we compute some ourselves.
3847   DT->updateDFSNumbers();
3848 
3849   // Go through all of our phi nodes, and kill the arguments associated with
3850   // unreachable edges.
3851   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3852     for (auto &Operand : PHI->incoming_values())
3853       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3854         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3855                           << " for block "
3856                           << getBlockName(PHI->getIncomingBlock(Operand))
3857                           << " with poison due to it being unreachable\n");
3858         Operand.set(PoisonValue::get(PHI->getType()));
3859       }
3860   };
3861   // Replace unreachable phi arguments.
3862   // At this point, RevisitOnReachabilityChange only contains:
3863   //
3864   // 1. PHIs
3865   // 2. Temporaries that will convert to PHIs
3866   // 3. Operations that are affected by an unreachable edge but do not fit into
3867   // 1 or 2 (rare).
3868   // So it is a slight overshoot of what we want. We could make it exact by
3869   // using two SparseBitVectors per block.
3870   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3871   for (auto &KV : ReachableEdges)
3872     ReachablePredCount[KV.getEnd()]++;
3873   for (auto &BBPair : RevisitOnReachabilityChange) {
3874     for (auto InstNum : BBPair.second) {
3875       auto *Inst = InstrFromDFSNum(InstNum);
3876       auto *PHI = dyn_cast<PHINode>(Inst);
3877       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3878       if (!PHI)
3879         continue;
3880       auto *BB = BBPair.first;
3881       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3882         ReplaceUnreachablePHIArgs(PHI, BB);
3883     }
3884   }
3885 
3886   // Map to store the use counts
3887   DenseMap<const Value *, unsigned int> UseCounts;
3888   for (auto *CC : reverse(CongruenceClasses)) {
3889     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3890                       << "\n");
3891     // Track the equivalent store info so we can decide whether to try
3892     // dead store elimination.
3893     SmallVector<ValueDFS, 8> PossibleDeadStores;
3894     SmallPtrSet<Instruction *, 8> ProbablyDead;
3895     if (CC->isDead() || CC->empty())
3896       continue;
3897     // Everything still in the TOP class is unreachable or dead.
3898     if (CC == TOPClass) {
3899       for (auto M : *CC) {
3900         auto *VTE = ValueToExpression.lookup(M);
3901         if (VTE && isa<DeadExpression>(VTE))
3902           markInstructionForDeletion(cast<Instruction>(M));
3903         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3904                 InstructionsToErase.count(cast<Instruction>(M))) &&
3905                "Everything in TOP should be unreachable or dead at this "
3906                "point");
3907       }
3908       continue;
3909     }
3910 
3911     assert(CC->getLeader() && "We should have had a leader");
3912     // If this is a leader that is always available, and it's a
3913     // constant or has no equivalences, just replace everything with
3914     // it. We then update the congruence class with whatever members
3915     // are left.
3916     Value *Leader =
3917         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3918     if (alwaysAvailable(Leader)) {
3919       CongruenceClass::MemberSet MembersLeft;
3920       for (auto M : *CC) {
3921         Value *Member = M;
3922         // Void things have no uses we can replace.
3923         if (Member == Leader || !isa<Instruction>(Member) ||
3924             Member->getType()->isVoidTy()) {
3925           MembersLeft.insert(Member);
3926           continue;
3927         }
3928         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3929                           << *Member << "\n");
3930         auto *I = cast<Instruction>(Member);
3931         assert(Leader != I && "About to accidentally remove our leader");
3932         replaceInstruction(I, Leader);
3933         AnythingReplaced = true;
3934       }
3935       CC->swap(MembersLeft);
3936     } else {
3937       // If this is a singleton, we can skip it.
3938       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3939         // This is a stack because equality replacement/etc may place
3940         // constants in the middle of the member list, and we want to use
3941         // those constant values in preference to the current leader, over
3942         // the scope of those constants.
3943         ValueDFSStack EliminationStack;
3944 
3945         // Convert the members to DFS ordered sets and then merge them.
3946         SmallVector<ValueDFS, 8> DFSOrderedSet;
3947         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3948 
3949         // Sort the whole thing.
3950         llvm::sort(DFSOrderedSet);
3951         for (auto &VD : DFSOrderedSet) {
3952           int MemberDFSIn = VD.DFSIn;
3953           int MemberDFSOut = VD.DFSOut;
3954           Value *Def = VD.Def.getPointer();
3955           bool FromStore = VD.Def.getInt();
3956           Use *U = VD.U;
3957           // We ignore void things because we can't get a value from them.
3958           if (Def && Def->getType()->isVoidTy())
3959             continue;
3960           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3961           if (DefInst && AllTempInstructions.count(DefInst)) {
3962             auto *PN = cast<PHINode>(DefInst);
3963 
3964             // If this is a value phi and that's the expression we used, insert
3965             // it into the program
3966             // remove from temp instruction list.
3967             AllTempInstructions.erase(PN);
3968             auto *DefBlock = getBlockForValue(Def);
3969             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3970                               << " into block "
3971                               << getBlockName(getBlockForValue(Def)) << "\n");
3972             PN->insertBefore(&DefBlock->front());
3973             Def = PN;
3974             NumGVNPHIOfOpsEliminations++;
3975           }
3976 
3977           if (EliminationStack.empty()) {
3978             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3979           } else {
3980             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3981                               << EliminationStack.dfs_back().first << ","
3982                               << EliminationStack.dfs_back().second << ")\n");
3983           }
3984 
3985           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3986                             << MemberDFSOut << ")\n");
3987           // First, we see if we are out of scope or empty.  If so,
3988           // and there equivalences, we try to replace the top of
3989           // stack with equivalences (if it's on the stack, it must
3990           // not have been eliminated yet).
3991           // Then we synchronize to our current scope, by
3992           // popping until we are back within a DFS scope that
3993           // dominates the current member.
3994           // Then, what happens depends on a few factors
3995           // If the stack is now empty, we need to push
3996           // If we have a constant or a local equivalence we want to
3997           // start using, we also push.
3998           // Otherwise, we walk along, processing members who are
3999           // dominated by this scope, and eliminate them.
4000           bool ShouldPush = Def && EliminationStack.empty();
4001           bool OutOfScope =
4002               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4003 
4004           if (OutOfScope || ShouldPush) {
4005             // Sync to our current scope.
4006             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4007             bool ShouldPush = Def && EliminationStack.empty();
4008             if (ShouldPush) {
4009               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4010             }
4011           }
4012 
4013           // Skip the Def's, we only want to eliminate on their uses.  But mark
4014           // dominated defs as dead.
4015           if (Def) {
4016             // For anything in this case, what and how we value number
4017             // guarantees that any side-effets that would have occurred (ie
4018             // throwing, etc) can be proven to either still occur (because it's
4019             // dominated by something that has the same side-effects), or never
4020             // occur.  Otherwise, we would not have been able to prove it value
4021             // equivalent to something else. For these things, we can just mark
4022             // it all dead.  Note that this is different from the "ProbablyDead"
4023             // set, which may not be dominated by anything, and thus, are only
4024             // easy to prove dead if they are also side-effect free. Note that
4025             // because stores are put in terms of the stored value, we skip
4026             // stored values here. If the stored value is really dead, it will
4027             // still be marked for deletion when we process it in its own class.
4028             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4029                 isa<Instruction>(Def) && !FromStore)
4030               markInstructionForDeletion(cast<Instruction>(Def));
4031             continue;
4032           }
4033           // At this point, we know it is a Use we are trying to possibly
4034           // replace.
4035 
4036           assert(isa<Instruction>(U->get()) &&
4037                  "Current def should have been an instruction");
4038           assert(isa<Instruction>(U->getUser()) &&
4039                  "Current user should have been an instruction");
4040 
4041           // If the thing we are replacing into is already marked to be dead,
4042           // this use is dead.  Note that this is true regardless of whether
4043           // we have anything dominating the use or not.  We do this here
4044           // because we are already walking all the uses anyway.
4045           Instruction *InstUse = cast<Instruction>(U->getUser());
4046           if (InstructionsToErase.count(InstUse)) {
4047             auto &UseCount = UseCounts[U->get()];
4048             if (--UseCount == 0) {
4049               ProbablyDead.insert(cast<Instruction>(U->get()));
4050             }
4051           }
4052 
4053           // If we get to this point, and the stack is empty we must have a use
4054           // with nothing we can use to eliminate this use, so just skip it.
4055           if (EliminationStack.empty())
4056             continue;
4057 
4058           Value *DominatingLeader = EliminationStack.back();
4059 
4060           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4061           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4062           if (isSSACopy)
4063             DominatingLeader = II->getOperand(0);
4064 
4065           // Don't replace our existing users with ourselves.
4066           if (U->get() == DominatingLeader)
4067             continue;
4068           LLVM_DEBUG(dbgs()
4069                      << "Found replacement " << *DominatingLeader << " for "
4070                      << *U->get() << " in " << *(U->getUser()) << "\n");
4071 
4072           // If we replaced something in an instruction, handle the patching of
4073           // metadata.  Skip this if we are replacing predicateinfo with its
4074           // original operand, as we already know we can just drop it.
4075           auto *ReplacedInst = cast<Instruction>(U->get());
4076           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4077           if (!PI || DominatingLeader != PI->OriginalOp)
4078             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4079           U->set(DominatingLeader);
4080           // This is now a use of the dominating leader, which means if the
4081           // dominating leader was dead, it's now live!
4082           auto &LeaderUseCount = UseCounts[DominatingLeader];
4083           // It's about to be alive again.
4084           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4085             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4086           // For copy instructions, we use their operand as a leader,
4087           // which means we remove a user of the copy and it may become dead.
4088           if (isSSACopy) {
4089             unsigned &IIUseCount = UseCounts[II];
4090             if (--IIUseCount == 0)
4091               ProbablyDead.insert(II);
4092           }
4093           ++LeaderUseCount;
4094           AnythingReplaced = true;
4095         }
4096       }
4097     }
4098 
4099     // At this point, anything still in the ProbablyDead set is actually dead if
4100     // would be trivially dead.
4101     for (auto *I : ProbablyDead)
4102       if (wouldInstructionBeTriviallyDead(I))
4103         markInstructionForDeletion(I);
4104 
4105     // Cleanup the congruence class.
4106     CongruenceClass::MemberSet MembersLeft;
4107     for (auto *Member : *CC)
4108       if (!isa<Instruction>(Member) ||
4109           !InstructionsToErase.count(cast<Instruction>(Member)))
4110         MembersLeft.insert(Member);
4111     CC->swap(MembersLeft);
4112 
4113     // If we have possible dead stores to look at, try to eliminate them.
4114     if (CC->getStoreCount() > 0) {
4115       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4116       llvm::sort(PossibleDeadStores);
4117       ValueDFSStack EliminationStack;
4118       for (auto &VD : PossibleDeadStores) {
4119         int MemberDFSIn = VD.DFSIn;
4120         int MemberDFSOut = VD.DFSOut;
4121         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4122         if (EliminationStack.empty() ||
4123             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4124           // Sync to our current scope.
4125           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4126           if (EliminationStack.empty()) {
4127             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4128             continue;
4129           }
4130         }
4131         // We already did load elimination, so nothing to do here.
4132         if (isa<LoadInst>(Member))
4133           continue;
4134         assert(!EliminationStack.empty());
4135         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4136         (void)Leader;
4137         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4138         // Member is dominater by Leader, and thus dead
4139         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4140                           << " that is dominated by " << *Leader << "\n");
4141         markInstructionForDeletion(Member);
4142         CC->erase(Member);
4143         ++NumGVNDeadStores;
4144       }
4145     }
4146   }
4147   return AnythingReplaced;
4148 }
4149 
4150 // This function provides global ranking of operations so that we can place them
4151 // in a canonical order.  Note that rank alone is not necessarily enough for a
4152 // complete ordering, as constants all have the same rank.  However, generally,
4153 // we will simplify an operation with all constants so that it doesn't matter
4154 // what order they appear in.
4155 unsigned int NewGVN::getRank(const Value *V) const {
4156   // Prefer constants to undef to anything else
4157   // Undef is a constant, have to check it first.
4158   // Prefer poison to undef as it's less defined.
4159   // Prefer smaller constants to constantexprs
4160   // Note that the order here matters because of class inheritance
4161   if (isa<ConstantExpr>(V))
4162     return 3;
4163   if (isa<PoisonValue>(V))
4164     return 1;
4165   if (isa<UndefValue>(V))
4166     return 2;
4167   if (isa<Constant>(V))
4168     return 0;
4169   if (auto *A = dyn_cast<Argument>(V))
4170     return 4 + A->getArgNo();
4171 
4172   // Need to shift the instruction DFS by number of arguments + 5 to account for
4173   // the constant and argument ranking above.
4174   unsigned Result = InstrToDFSNum(V);
4175   if (Result > 0)
4176     return 5 + NumFuncArgs + Result;
4177   // Unreachable or something else, just return a really large number.
4178   return ~0;
4179 }
4180 
4181 // This is a function that says whether two commutative operations should
4182 // have their order swapped when canonicalizing.
4183 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4184   // Because we only care about a total ordering, and don't rewrite expressions
4185   // in this order, we order by rank, which will give a strict weak ordering to
4186   // everything but constants, and then we order by pointer address.
4187   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4188 }
4189 
4190 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4191                                             const IntrinsicInst *I) const {
4192   auto LookupResult = IntrinsicInstPred.find(I);
4193   if (shouldSwapOperands(A, B)) {
4194     if (LookupResult == IntrinsicInstPred.end())
4195       IntrinsicInstPred.insert({I, B});
4196     else
4197       LookupResult->second = B;
4198     return true;
4199   }
4200 
4201   if (LookupResult != IntrinsicInstPred.end()) {
4202     auto *SeenPredicate = LookupResult->second;
4203     if (SeenPredicate) {
4204       if (SeenPredicate == B)
4205         return true;
4206       else
4207         LookupResult->second = nullptr;
4208     }
4209   }
4210   return false;
4211 }
4212 
4213 namespace {
4214 
4215 class NewGVNLegacyPass : public FunctionPass {
4216 public:
4217   // Pass identification, replacement for typeid.
4218   static char ID;
4219 
4220   NewGVNLegacyPass() : FunctionPass(ID) {
4221     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4222   }
4223 
4224   bool runOnFunction(Function &F) override;
4225 
4226 private:
4227   void getAnalysisUsage(AnalysisUsage &AU) const override {
4228     AU.addRequired<AssumptionCacheTracker>();
4229     AU.addRequired<DominatorTreeWrapperPass>();
4230     AU.addRequired<TargetLibraryInfoWrapperPass>();
4231     AU.addRequired<MemorySSAWrapperPass>();
4232     AU.addRequired<AAResultsWrapperPass>();
4233     AU.addPreserved<DominatorTreeWrapperPass>();
4234     AU.addPreserved<GlobalsAAWrapperPass>();
4235   }
4236 };
4237 
4238 } // end anonymous namespace
4239 
4240 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4241   if (skipFunction(F))
4242     return false;
4243   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4244                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4245                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4246                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4247                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4248                 F.getParent()->getDataLayout())
4249       .runGVN();
4250 }
4251 
4252 char NewGVNLegacyPass::ID = 0;
4253 
4254 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4255                       false, false)
4256 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4257 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4258 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4259 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4260 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4261 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4262 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4263                     false)
4264 
4265 // createGVNPass - The public interface to this file.
4266 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4267 
4268 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4269   // Apparently the order in which we get these results matter for
4270   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4271   // the same order here, just in case.
4272   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4273   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4274   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4275   auto &AA = AM.getResult<AAManager>(F);
4276   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4277   bool Changed =
4278       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4279           .runGVN();
4280   if (!Changed)
4281     return PreservedAnalyses::all();
4282   PreservedAnalyses PA;
4283   PA.preserve<DominatorTreeAnalysis>();
4284   return PA;
4285 }
4286