xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/PatternMatch.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Use.h"
96 #include "llvm/IR/User.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/InitializePasses.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Allocator.h"
101 #include "llvm/Support/ArrayRecycler.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/DebugCounter.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/PointerLikeTypeTraits.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Transforms/Scalar.h"
110 #include "llvm/Transforms/Scalar/GVNExpression.h"
111 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include "llvm/Transforms/Utils/PredicateInfo.h"
114 #include "llvm/Transforms/Utils/VNCoercion.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cstdint>
118 #include <iterator>
119 #include <map>
120 #include <memory>
121 #include <set>
122 #include <string>
123 #include <tuple>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 using namespace llvm::GVNExpression;
129 using namespace llvm::VNCoercion;
130 using namespace llvm::PatternMatch;
131 
132 #define DEBUG_TYPE "newgvn"
133 
134 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
135 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
136 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
137 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
138 STATISTIC(NumGVNMaxIterations,
139           "Maximum Number of iterations it took to converge GVN");
140 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
141 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
142 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
143           "Number of avoided sorted leader changes");
144 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
145 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
146 STATISTIC(NumGVNPHIOfOpsEliminations,
147           "Number of things eliminated using PHI of ops");
148 DEBUG_COUNTER(VNCounter, "newgvn-vn",
149               "Controls which instructions are value numbered");
150 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
151               "Controls which instructions we create phi of ops for");
152 // Currently store defining access refinement is too slow due to basicaa being
153 // egregiously slow.  This flag lets us keep it working while we work on this
154 // issue.
155 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
156                                            cl::init(false), cl::Hidden);
157 
158 /// Currently, the generation "phi of ops" can result in correctness issues.
159 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
160                                     cl::Hidden);
161 
162 //===----------------------------------------------------------------------===//
163 //                                GVN Pass
164 //===----------------------------------------------------------------------===//
165 
166 // Anchor methods.
167 namespace llvm {
168 namespace GVNExpression {
169 
170 Expression::~Expression() = default;
171 BasicExpression::~BasicExpression() = default;
172 CallExpression::~CallExpression() = default;
173 LoadExpression::~LoadExpression() = default;
174 StoreExpression::~StoreExpression() = default;
175 AggregateValueExpression::~AggregateValueExpression() = default;
176 PHIExpression::~PHIExpression() = default;
177 
178 } // end namespace GVNExpression
179 } // end namespace llvm
180 
181 namespace {
182 
183 // Tarjan's SCC finding algorithm with Nuutila's improvements
184 // SCCIterator is actually fairly complex for the simple thing we want.
185 // It also wants to hand us SCC's that are unrelated to the phi node we ask
186 // about, and have us process them there or risk redoing work.
187 // Graph traits over a filter iterator also doesn't work that well here.
188 // This SCC finder is specialized to walk use-def chains, and only follows
189 // instructions,
190 // not generic values (arguments, etc).
191 struct TarjanSCC {
192   TarjanSCC() : Components(1) {}
193 
194   void Start(const Instruction *Start) {
195     if (Root.lookup(Start) == 0)
196       FindSCC(Start);
197   }
198 
199   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
200     unsigned ComponentID = ValueToComponent.lookup(V);
201 
202     assert(ComponentID > 0 &&
203            "Asking for a component for a value we never processed");
204     return Components[ComponentID];
205   }
206 
207 private:
208   void FindSCC(const Instruction *I) {
209     Root[I] = ++DFSNum;
210     // Store the DFS Number we had before it possibly gets incremented.
211     unsigned int OurDFS = DFSNum;
212     for (auto &Op : I->operands()) {
213       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
214         if (Root.lookup(Op) == 0)
215           FindSCC(InstOp);
216         if (!InComponent.count(Op))
217           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
218       }
219     }
220     // See if we really were the root of a component, by seeing if we still have
221     // our DFSNumber.  If we do, we are the root of the component, and we have
222     // completed a component. If we do not, we are not the root of a component,
223     // and belong on the component stack.
224     if (Root.lookup(I) == OurDFS) {
225       unsigned ComponentID = Components.size();
226       Components.resize(Components.size() + 1);
227       auto &Component = Components.back();
228       Component.insert(I);
229       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
230       InComponent.insert(I);
231       ValueToComponent[I] = ComponentID;
232       // Pop a component off the stack and label it.
233       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
234         auto *Member = Stack.back();
235         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
236         Component.insert(Member);
237         InComponent.insert(Member);
238         ValueToComponent[Member] = ComponentID;
239         Stack.pop_back();
240       }
241     } else {
242       // Part of a component, push to stack
243       Stack.push_back(I);
244     }
245   }
246 
247   unsigned int DFSNum = 1;
248   SmallPtrSet<const Value *, 8> InComponent;
249   DenseMap<const Value *, unsigned int> Root;
250   SmallVector<const Value *, 8> Stack;
251 
252   // Store the components as vector of ptr sets, because we need the topo order
253   // of SCC's, but not individual member order
254   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
255 
256   DenseMap<const Value *, unsigned> ValueToComponent;
257 };
258 
259 // Congruence classes represent the set of expressions/instructions
260 // that are all the same *during some scope in the function*.
261 // That is, because of the way we perform equality propagation, and
262 // because of memory value numbering, it is not correct to assume
263 // you can willy-nilly replace any member with any other at any
264 // point in the function.
265 //
266 // For any Value in the Member set, it is valid to replace any dominated member
267 // with that Value.
268 //
269 // Every congruence class has a leader, and the leader is used to symbolize
270 // instructions in a canonical way (IE every operand of an instruction that is a
271 // member of the same congruence class will always be replaced with leader
272 // during symbolization).  To simplify symbolization, we keep the leader as a
273 // constant if class can be proved to be a constant value.  Otherwise, the
274 // leader is the member of the value set with the smallest DFS number.  Each
275 // congruence class also has a defining expression, though the expression may be
276 // null.  If it exists, it can be used for forward propagation and reassociation
277 // of values.
278 
279 // For memory, we also track a representative MemoryAccess, and a set of memory
280 // members for MemoryPhis (which have no real instructions). Note that for
281 // memory, it seems tempting to try to split the memory members into a
282 // MemoryCongruenceClass or something.  Unfortunately, this does not work
283 // easily.  The value numbering of a given memory expression depends on the
284 // leader of the memory congruence class, and the leader of memory congruence
285 // class depends on the value numbering of a given memory expression.  This
286 // leads to wasted propagation, and in some cases, missed optimization.  For
287 // example: If we had value numbered two stores together before, but now do not,
288 // we move them to a new value congruence class.  This in turn will move at one
289 // of the memorydefs to a new memory congruence class.  Which in turn, affects
290 // the value numbering of the stores we just value numbered (because the memory
291 // congruence class is part of the value number).  So while theoretically
292 // possible to split them up, it turns out to be *incredibly* complicated to get
293 // it to work right, because of the interdependency.  While structurally
294 // slightly messier, it is algorithmically much simpler and faster to do what we
295 // do here, and track them both at once in the same class.
296 // Note: The default iterators for this class iterate over values
297 class CongruenceClass {
298 public:
299   using MemberType = Value;
300   using MemberSet = SmallPtrSet<MemberType *, 4>;
301   using MemoryMemberType = MemoryPhi;
302   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
303 
304   explicit CongruenceClass(unsigned ID) : ID(ID) {}
305   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
306       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
307 
308   unsigned getID() const { return ID; }
309 
310   // True if this class has no members left.  This is mainly used for assertion
311   // purposes, and for skipping empty classes.
312   bool isDead() const {
313     // If it's both dead from a value perspective, and dead from a memory
314     // perspective, it's really dead.
315     return empty() && memory_empty();
316   }
317 
318   // Leader functions
319   Value *getLeader() const { return RepLeader; }
320   void setLeader(Value *Leader) { RepLeader = Leader; }
321   const std::pair<Value *, unsigned int> &getNextLeader() const {
322     return NextLeader;
323   }
324   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
325   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
326     if (LeaderPair.second < NextLeader.second)
327       NextLeader = LeaderPair;
328   }
329 
330   Value *getStoredValue() const { return RepStoredValue; }
331   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
332   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
333   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
334 
335   // Forward propagation info
336   const Expression *getDefiningExpr() const { return DefiningExpr; }
337 
338   // Value member set
339   bool empty() const { return Members.empty(); }
340   unsigned size() const { return Members.size(); }
341   MemberSet::const_iterator begin() const { return Members.begin(); }
342   MemberSet::const_iterator end() const { return Members.end(); }
343   void insert(MemberType *M) { Members.insert(M); }
344   void erase(MemberType *M) { Members.erase(M); }
345   void swap(MemberSet &Other) { Members.swap(Other); }
346 
347   // Memory member set
348   bool memory_empty() const { return MemoryMembers.empty(); }
349   unsigned memory_size() const { return MemoryMembers.size(); }
350   MemoryMemberSet::const_iterator memory_begin() const {
351     return MemoryMembers.begin();
352   }
353   MemoryMemberSet::const_iterator memory_end() const {
354     return MemoryMembers.end();
355   }
356   iterator_range<MemoryMemberSet::const_iterator> memory() const {
357     return make_range(memory_begin(), memory_end());
358   }
359 
360   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
361   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
362 
363   // Store count
364   unsigned getStoreCount() const { return StoreCount; }
365   void incStoreCount() { ++StoreCount; }
366   void decStoreCount() {
367     assert(StoreCount != 0 && "Store count went negative");
368     --StoreCount;
369   }
370 
371   // True if this class has no memory members.
372   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
373 
374   // Return true if two congruence classes are equivalent to each other. This
375   // means that every field but the ID number and the dead field are equivalent.
376   bool isEquivalentTo(const CongruenceClass *Other) const {
377     if (!Other)
378       return false;
379     if (this == Other)
380       return true;
381 
382     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
383         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
384                  Other->RepMemoryAccess))
385       return false;
386     if (DefiningExpr != Other->DefiningExpr)
387       if (!DefiningExpr || !Other->DefiningExpr ||
388           *DefiningExpr != *Other->DefiningExpr)
389         return false;
390 
391     if (Members.size() != Other->Members.size())
392       return false;
393 
394     return llvm::set_is_subset(Members, Other->Members);
395   }
396 
397 private:
398   unsigned ID;
399 
400   // Representative leader.
401   Value *RepLeader = nullptr;
402 
403   // The most dominating leader after our current leader, because the member set
404   // is not sorted and is expensive to keep sorted all the time.
405   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
406 
407   // If this is represented by a store, the value of the store.
408   Value *RepStoredValue = nullptr;
409 
410   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
411   // access.
412   const MemoryAccess *RepMemoryAccess = nullptr;
413 
414   // Defining Expression.
415   const Expression *DefiningExpr = nullptr;
416 
417   // Actual members of this class.
418   MemberSet Members;
419 
420   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
421   // MemoryUses have real instructions representing them, so we only need to
422   // track MemoryPhis here.
423   MemoryMemberSet MemoryMembers;
424 
425   // Number of stores in this congruence class.
426   // This is used so we can detect store equivalence changes properly.
427   int StoreCount = 0;
428 };
429 
430 } // end anonymous namespace
431 
432 namespace llvm {
433 
434 struct ExactEqualsExpression {
435   const Expression &E;
436 
437   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
438 
439   hash_code getComputedHash() const { return E.getComputedHash(); }
440 
441   bool operator==(const Expression &Other) const {
442     return E.exactlyEquals(Other);
443   }
444 };
445 
446 template <> struct DenseMapInfo<const Expression *> {
447   static const Expression *getEmptyKey() {
448     auto Val = static_cast<uintptr_t>(-1);
449     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
450     return reinterpret_cast<const Expression *>(Val);
451   }
452 
453   static const Expression *getTombstoneKey() {
454     auto Val = static_cast<uintptr_t>(~1U);
455     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
456     return reinterpret_cast<const Expression *>(Val);
457   }
458 
459   static unsigned getHashValue(const Expression *E) {
460     return E->getComputedHash();
461   }
462 
463   static unsigned getHashValue(const ExactEqualsExpression &E) {
464     return E.getComputedHash();
465   }
466 
467   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
468     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
469       return false;
470     return LHS == *RHS;
471   }
472 
473   static bool isEqual(const Expression *LHS, const Expression *RHS) {
474     if (LHS == RHS)
475       return true;
476     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
477         LHS == getEmptyKey() || RHS == getEmptyKey())
478       return false;
479     // Compare hashes before equality.  This is *not* what the hashtable does,
480     // since it is computing it modulo the number of buckets, whereas we are
481     // using the full hash keyspace.  Since the hashes are precomputed, this
482     // check is *much* faster than equality.
483     if (LHS->getComputedHash() != RHS->getComputedHash())
484       return false;
485     return *LHS == *RHS;
486   }
487 };
488 
489 } // end namespace llvm
490 
491 namespace {
492 
493 class NewGVN {
494   Function &F;
495   DominatorTree *DT = nullptr;
496   const TargetLibraryInfo *TLI = nullptr;
497   AliasAnalysis *AA = nullptr;
498   MemorySSA *MSSA = nullptr;
499   MemorySSAWalker *MSSAWalker = nullptr;
500   AssumptionCache *AC = nullptr;
501   const DataLayout &DL;
502   std::unique_ptr<PredicateInfo> PredInfo;
503 
504   // These are the only two things the create* functions should have
505   // side-effects on due to allocating memory.
506   mutable BumpPtrAllocator ExpressionAllocator;
507   mutable ArrayRecycler<Value *> ArgRecycler;
508   mutable TarjanSCC SCCFinder;
509   const SimplifyQuery SQ;
510 
511   // Number of function arguments, used by ranking
512   unsigned int NumFuncArgs = 0;
513 
514   // RPOOrdering of basic blocks
515   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
516 
517   // Congruence class info.
518 
519   // This class is called INITIAL in the paper. It is the class everything
520   // startsout in, and represents any value. Being an optimistic analysis,
521   // anything in the TOP class has the value TOP, which is indeterminate and
522   // equivalent to everything.
523   CongruenceClass *TOPClass = nullptr;
524   std::vector<CongruenceClass *> CongruenceClasses;
525   unsigned NextCongruenceNum = 0;
526 
527   // Value Mappings.
528   DenseMap<Value *, CongruenceClass *> ValueToClass;
529   DenseMap<Value *, const Expression *> ValueToExpression;
530 
531   // Value PHI handling, used to make equivalence between phi(op, op) and
532   // op(phi, phi).
533   // These mappings just store various data that would normally be part of the
534   // IR.
535   SmallPtrSet<const Instruction *, 8> PHINodeUses;
536 
537   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
538 
539   // Map a temporary instruction we created to a parent block.
540   DenseMap<const Value *, BasicBlock *> TempToBlock;
541 
542   // Map between the already in-program instructions and the temporary phis we
543   // created that they are known equivalent to.
544   DenseMap<const Value *, PHINode *> RealToTemp;
545 
546   // In order to know when we should re-process instructions that have
547   // phi-of-ops, we track the set of expressions that they needed as
548   // leaders. When we discover new leaders for those expressions, we process the
549   // associated phi-of-op instructions again in case they have changed.  The
550   // other way they may change is if they had leaders, and those leaders
551   // disappear.  However, at the point they have leaders, there are uses of the
552   // relevant operands in the created phi node, and so they will get reprocessed
553   // through the normal user marking we perform.
554   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
555   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
556       ExpressionToPhiOfOps;
557 
558   // Map from temporary operation to MemoryAccess.
559   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
560 
561   // Set of all temporary instructions we created.
562   // Note: This will include instructions that were just created during value
563   // numbering.  The way to test if something is using them is to check
564   // RealToTemp.
565   DenseSet<Instruction *> AllTempInstructions;
566 
567   // This is the set of instructions to revisit on a reachability change.  At
568   // the end of the main iteration loop it will contain at least all the phi of
569   // ops instructions that will be changed to phis, as well as regular phis.
570   // During the iteration loop, it may contain other things, such as phi of ops
571   // instructions that used edge reachability to reach a result, and so need to
572   // be revisited when the edge changes, independent of whether the phi they
573   // depended on changes.
574   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
575 
576   // Mapping from predicate info we used to the instructions we used it with.
577   // In order to correctly ensure propagation, we must keep track of what
578   // comparisons we used, so that when the values of the comparisons change, we
579   // propagate the information to the places we used the comparison.
580   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
581       PredicateToUsers;
582 
583   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
584   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
585   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
586       MemoryToUsers;
587 
588   // A table storing which memorydefs/phis represent a memory state provably
589   // equivalent to another memory state.
590   // We could use the congruence class machinery, but the MemoryAccess's are
591   // abstract memory states, so they can only ever be equivalent to each other,
592   // and not to constants, etc.
593   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
594 
595   // We could, if we wanted, build MemoryPhiExpressions and
596   // MemoryVariableExpressions, etc, and value number them the same way we value
597   // number phi expressions.  For the moment, this seems like overkill.  They
598   // can only exist in one of three states: they can be TOP (equal to
599   // everything), Equivalent to something else, or unique.  Because we do not
600   // create expressions for them, we need to simulate leader change not just
601   // when they change class, but when they change state.  Note: We can do the
602   // same thing for phis, and avoid having phi expressions if we wanted, We
603   // should eventually unify in one direction or the other, so this is a little
604   // bit of an experiment in which turns out easier to maintain.
605   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
606   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
607 
608   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
609   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
610 
611   // Expression to class mapping.
612   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
613   ExpressionClassMap ExpressionToClass;
614 
615   // We have a single expression that represents currently DeadExpressions.
616   // For dead expressions we can prove will stay dead, we mark them with
617   // DFS number zero.  However, it's possible in the case of phi nodes
618   // for us to assume/prove all arguments are dead during fixpointing.
619   // We use DeadExpression for that case.
620   DeadExpression *SingletonDeadExpression = nullptr;
621 
622   // Which values have changed as a result of leader changes.
623   SmallPtrSet<Value *, 8> LeaderChanges;
624 
625   // Reachability info.
626   using BlockEdge = BasicBlockEdge;
627   DenseSet<BlockEdge> ReachableEdges;
628   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
629 
630   // This is a bitvector because, on larger functions, we may have
631   // thousands of touched instructions at once (entire blocks,
632   // instructions with hundreds of uses, etc).  Even with optimization
633   // for when we mark whole blocks as touched, when this was a
634   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
635   // the time in GVN just managing this list.  The bitvector, on the
636   // other hand, efficiently supports test/set/clear of both
637   // individual and ranges, as well as "find next element" This
638   // enables us to use it as a worklist with essentially 0 cost.
639   BitVector TouchedInstructions;
640 
641   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
642   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
643 
644 #ifndef NDEBUG
645   // Debugging for how many times each block and instruction got processed.
646   DenseMap<const Value *, unsigned> ProcessedCount;
647 #endif
648 
649   // DFS info.
650   // This contains a mapping from Instructions to DFS numbers.
651   // The numbering starts at 1. An instruction with DFS number zero
652   // means that the instruction is dead.
653   DenseMap<const Value *, unsigned> InstrDFS;
654 
655   // This contains the mapping DFS numbers to instructions.
656   SmallVector<Value *, 32> DFSToInstr;
657 
658   // Deletion info.
659   SmallPtrSet<Instruction *, 8> InstructionsToErase;
660 
661 public:
662   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
663          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
664          const DataLayout &DL)
665       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
666         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
667         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
668            /*CanUseUndef=*/false) {}
669 
670   bool runGVN();
671 
672 private:
673   /// Helper struct return a Expression with an optional extra dependency.
674   struct ExprResult {
675     const Expression *Expr;
676     Value *ExtraDep;
677     const PredicateBase *PredDep;
678 
679     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
680                const PredicateBase *PredDep = nullptr)
681         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
682     ExprResult(const ExprResult &) = delete;
683     ExprResult(ExprResult &&Other)
684         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
685       Other.Expr = nullptr;
686       Other.ExtraDep = nullptr;
687       Other.PredDep = nullptr;
688     }
689     ExprResult &operator=(const ExprResult &Other) = delete;
690     ExprResult &operator=(ExprResult &&Other) = delete;
691 
692     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
693 
694     operator bool() const { return Expr; }
695 
696     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
697     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
698       return {Expr, ExtraDep, nullptr};
699     }
700     static ExprResult some(const Expression *Expr,
701                            const PredicateBase *PredDep) {
702       return {Expr, nullptr, PredDep};
703     }
704     static ExprResult some(const Expression *Expr, Value *ExtraDep,
705                            const PredicateBase *PredDep) {
706       return {Expr, ExtraDep, PredDep};
707     }
708   };
709 
710   // Expression handling.
711   ExprResult createExpression(Instruction *) const;
712   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
713                                            Instruction *) const;
714 
715   // Our canonical form for phi arguments is a pair of incoming value, incoming
716   // basic block.
717   using ValPair = std::pair<Value *, BasicBlock *>;
718 
719   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
720                                      BasicBlock *, bool &HasBackEdge,
721                                      bool &OriginalOpsConstant) const;
722   const DeadExpression *createDeadExpression() const;
723   const VariableExpression *createVariableExpression(Value *) const;
724   const ConstantExpression *createConstantExpression(Constant *) const;
725   const Expression *createVariableOrConstant(Value *V) const;
726   const UnknownExpression *createUnknownExpression(Instruction *) const;
727   const StoreExpression *createStoreExpression(StoreInst *,
728                                                const MemoryAccess *) const;
729   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
730                                        const MemoryAccess *) const;
731   const CallExpression *createCallExpression(CallInst *,
732                                              const MemoryAccess *) const;
733   const AggregateValueExpression *
734   createAggregateValueExpression(Instruction *) const;
735   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
736 
737   // Congruence class handling.
738   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
739     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
740     CongruenceClasses.emplace_back(result);
741     return result;
742   }
743 
744   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
745     auto *CC = createCongruenceClass(nullptr, nullptr);
746     CC->setMemoryLeader(MA);
747     return CC;
748   }
749 
750   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
751     auto *CC = getMemoryClass(MA);
752     if (CC->getMemoryLeader() != MA)
753       CC = createMemoryClass(MA);
754     return CC;
755   }
756 
757   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
758     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
759     CClass->insert(Member);
760     ValueToClass[Member] = CClass;
761     return CClass;
762   }
763 
764   void initializeCongruenceClasses(Function &F);
765   const Expression *makePossiblePHIOfOps(Instruction *,
766                                          SmallPtrSetImpl<Value *> &);
767   Value *findLeaderForInst(Instruction *ValueOp,
768                            SmallPtrSetImpl<Value *> &Visited,
769                            MemoryAccess *MemAccess, Instruction *OrigInst,
770                            BasicBlock *PredBB);
771   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
772                                  SmallPtrSetImpl<const Value *> &Visited,
773                                  SmallVectorImpl<Instruction *> &Worklist);
774   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
775                            SmallPtrSetImpl<const Value *> &);
776   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
777   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
778 
779   // Value number an Instruction or MemoryPhi.
780   void valueNumberMemoryPhi(MemoryPhi *);
781   void valueNumberInstruction(Instruction *);
782 
783   // Symbolic evaluation.
784   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
785   ExprResult performSymbolicEvaluation(Value *,
786                                        SmallPtrSetImpl<Value *> &) const;
787   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
788                                                 Instruction *,
789                                                 MemoryAccess *) const;
790   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
791   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
792   ExprResult performSymbolicCallEvaluation(Instruction *) const;
793   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
794   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
795                                                  Instruction *I,
796                                                  BasicBlock *PHIBlock) const;
797   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
798   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
799   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
800 
801   // Congruence finding.
802   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
803   Value *lookupOperandLeader(Value *) const;
804   CongruenceClass *getClassForExpression(const Expression *E) const;
805   void performCongruenceFinding(Instruction *, const Expression *);
806   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
807                                      CongruenceClass *, CongruenceClass *);
808   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
809                                       CongruenceClass *, CongruenceClass *);
810   Value *getNextValueLeader(CongruenceClass *) const;
811   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
812   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
813   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
814   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
815   bool isMemoryAccessTOP(const MemoryAccess *) const;
816 
817   // Ranking
818   unsigned int getRank(const Value *) const;
819   bool shouldSwapOperands(const Value *, const Value *) const;
820   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
821                                       const IntrinsicInst *I) const;
822 
823   // Reachability handling.
824   void updateReachableEdge(BasicBlock *, BasicBlock *);
825   void processOutgoingEdges(Instruction *, BasicBlock *);
826   Value *findConditionEquivalence(Value *) const;
827 
828   // Elimination.
829   struct ValueDFS;
830   void convertClassToDFSOrdered(const CongruenceClass &,
831                                 SmallVectorImpl<ValueDFS> &,
832                                 DenseMap<const Value *, unsigned int> &,
833                                 SmallPtrSetImpl<Instruction *> &) const;
834   void convertClassToLoadsAndStores(const CongruenceClass &,
835                                     SmallVectorImpl<ValueDFS> &) const;
836 
837   bool eliminateInstructions(Function &);
838   void replaceInstruction(Instruction *, Value *);
839   void markInstructionForDeletion(Instruction *);
840   void deleteInstructionsInBlock(BasicBlock *);
841   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
842                             const BasicBlock *) const;
843 
844   // Various instruction touch utilities
845   template <typename Map, typename KeyType>
846   void touchAndErase(Map &, const KeyType &);
847   void markUsersTouched(Value *);
848   void markMemoryUsersTouched(const MemoryAccess *);
849   void markMemoryDefTouched(const MemoryAccess *);
850   void markPredicateUsersTouched(Instruction *);
851   void markValueLeaderChangeTouched(CongruenceClass *CC);
852   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
853   void markPhiOfOpsChanged(const Expression *E);
854   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
855   void addAdditionalUsers(Value *To, Value *User) const;
856   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
857 
858   // Main loop of value numbering
859   void iterateTouchedInstructions();
860 
861   // Utilities.
862   void cleanupTables();
863   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
864   void updateProcessedCount(const Value *V);
865   void verifyMemoryCongruency() const;
866   void verifyIterationSettled(Function &F);
867   void verifyStoreExpressions() const;
868   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
869                               const MemoryAccess *, const MemoryAccess *) const;
870   BasicBlock *getBlockForValue(Value *V) const;
871   void deleteExpression(const Expression *E) const;
872   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
873   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
874   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
875 
876   unsigned InstrToDFSNum(const Value *V) const {
877     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
878     return InstrDFS.lookup(V);
879   }
880 
881   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
882     return MemoryToDFSNum(MA);
883   }
884 
885   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
886 
887   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
888   // This deliberately takes a value so it can be used with Use's, which will
889   // auto-convert to Value's but not to MemoryAccess's.
890   unsigned MemoryToDFSNum(const Value *MA) const {
891     assert(isa<MemoryAccess>(MA) &&
892            "This should not be used with instructions");
893     return isa<MemoryUseOrDef>(MA)
894                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
895                : InstrDFS.lookup(MA);
896   }
897 
898   bool isCycleFree(const Instruction *) const;
899   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
900 
901   // Debug counter info.  When verifying, we have to reset the value numbering
902   // debug counter to the same state it started in to get the same results.
903   int64_t StartingVNCounter = 0;
904 };
905 
906 } // end anonymous namespace
907 
908 template <typename T>
909 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
910   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
911     return false;
912   return LHS.MemoryExpression::equals(RHS);
913 }
914 
915 bool LoadExpression::equals(const Expression &Other) const {
916   return equalsLoadStoreHelper(*this, Other);
917 }
918 
919 bool StoreExpression::equals(const Expression &Other) const {
920   if (!equalsLoadStoreHelper(*this, Other))
921     return false;
922   // Make sure that store vs store includes the value operand.
923   if (const auto *S = dyn_cast<StoreExpression>(&Other))
924     if (getStoredValue() != S->getStoredValue())
925       return false;
926   return true;
927 }
928 
929 // Determine if the edge From->To is a backedge
930 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
931   return From == To ||
932          RPOOrdering.lookup(DT->getNode(From)) >=
933              RPOOrdering.lookup(DT->getNode(To));
934 }
935 
936 #ifndef NDEBUG
937 static std::string getBlockName(const BasicBlock *B) {
938   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
939 }
940 #endif
941 
942 // Get a MemoryAccess for an instruction, fake or real.
943 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
944   auto *Result = MSSA->getMemoryAccess(I);
945   return Result ? Result : TempToMemory.lookup(I);
946 }
947 
948 // Get a MemoryPhi for a basic block. These are all real.
949 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
950   return MSSA->getMemoryAccess(BB);
951 }
952 
953 // Get the basic block from an instruction/memory value.
954 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
955   if (auto *I = dyn_cast<Instruction>(V)) {
956     auto *Parent = I->getParent();
957     if (Parent)
958       return Parent;
959     Parent = TempToBlock.lookup(V);
960     assert(Parent && "Every fake instruction should have a block");
961     return Parent;
962   }
963 
964   auto *MP = dyn_cast<MemoryPhi>(V);
965   assert(MP && "Should have been an instruction or a MemoryPhi");
966   return MP->getBlock();
967 }
968 
969 // Delete a definitely dead expression, so it can be reused by the expression
970 // allocator.  Some of these are not in creation functions, so we have to accept
971 // const versions.
972 void NewGVN::deleteExpression(const Expression *E) const {
973   assert(isa<BasicExpression>(E));
974   auto *BE = cast<BasicExpression>(E);
975   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
976   ExpressionAllocator.Deallocate(E);
977 }
978 
979 // If V is a predicateinfo copy, get the thing it is a copy of.
980 static Value *getCopyOf(const Value *V) {
981   if (auto *II = dyn_cast<IntrinsicInst>(V))
982     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
983       return II->getOperand(0);
984   return nullptr;
985 }
986 
987 // Return true if V is really PN, even accounting for predicateinfo copies.
988 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
989   return V == PN || getCopyOf(V) == PN;
990 }
991 
992 static bool isCopyOfAPHI(const Value *V) {
993   auto *CO = getCopyOf(V);
994   return CO && isa<PHINode>(CO);
995 }
996 
997 // Sort PHI Operands into a canonical order.  What we use here is an RPO
998 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
999 // blocks.
1000 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
1001   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1002     return BlockInstRange.lookup(P1.second).first <
1003            BlockInstRange.lookup(P2.second).first;
1004   });
1005 }
1006 
1007 // Return true if V is a value that will always be available (IE can
1008 // be placed anywhere) in the function.  We don't do globals here
1009 // because they are often worse to put in place.
1010 static bool alwaysAvailable(Value *V) {
1011   return isa<Constant>(V) || isa<Argument>(V);
1012 }
1013 
1014 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1015 // the original instruction we are creating a PHIExpression for (but may not be
1016 // a phi node). We require, as an invariant, that all the PHIOperands in the
1017 // same block are sorted the same way. sortPHIOps will sort them into a
1018 // canonical order.
1019 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1020                                            const Instruction *I,
1021                                            BasicBlock *PHIBlock,
1022                                            bool &HasBackedge,
1023                                            bool &OriginalOpsConstant) const {
1024   unsigned NumOps = PHIOperands.size();
1025   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1026 
1027   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1028   E->setType(PHIOperands.begin()->first->getType());
1029   E->setOpcode(Instruction::PHI);
1030 
1031   // Filter out unreachable phi operands.
1032   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1033     auto *BB = P.second;
1034     if (auto *PHIOp = dyn_cast<PHINode>(I))
1035       if (isCopyOfPHI(P.first, PHIOp))
1036         return false;
1037     if (!ReachableEdges.count({BB, PHIBlock}))
1038       return false;
1039     // Things in TOPClass are equivalent to everything.
1040     if (ValueToClass.lookup(P.first) == TOPClass)
1041       return false;
1042     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1043     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1044     return lookupOperandLeader(P.first) != I;
1045   });
1046   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1047                  [&](const ValPair &P) -> Value * {
1048                    return lookupOperandLeader(P.first);
1049                  });
1050   return E;
1051 }
1052 
1053 // Set basic expression info (Arguments, type, opcode) for Expression
1054 // E from Instruction I in block B.
1055 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1056   bool AllConstant = true;
1057   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1058     E->setType(GEP->getSourceElementType());
1059   else
1060     E->setType(I->getType());
1061   E->setOpcode(I->getOpcode());
1062   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1063 
1064   // Transform the operand array into an operand leader array, and keep track of
1065   // whether all members are constant.
1066   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1067     auto Operand = lookupOperandLeader(O);
1068     AllConstant = AllConstant && isa<Constant>(Operand);
1069     return Operand;
1070   });
1071 
1072   return AllConstant;
1073 }
1074 
1075 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1076                                                  Value *Arg1, Value *Arg2,
1077                                                  Instruction *I) const {
1078   auto *E = new (ExpressionAllocator) BasicExpression(2);
1079 
1080   E->setType(T);
1081   E->setOpcode(Opcode);
1082   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1083   if (Instruction::isCommutative(Opcode)) {
1084     // Ensure that commutative instructions that only differ by a permutation
1085     // of their operands get the same value number by sorting the operand value
1086     // numbers.  Since all commutative instructions have two operands it is more
1087     // efficient to sort by hand rather than using, say, std::sort.
1088     if (shouldSwapOperands(Arg1, Arg2))
1089       std::swap(Arg1, Arg2);
1090   }
1091   E->op_push_back(lookupOperandLeader(Arg1));
1092   E->op_push_back(lookupOperandLeader(Arg2));
1093 
1094   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1095   if (auto Simplified = checkExprResults(E, I, V)) {
1096     addAdditionalUsers(Simplified, I);
1097     return Simplified.Expr;
1098   }
1099   return E;
1100 }
1101 
1102 // Take a Value returned by simplification of Expression E/Instruction
1103 // I, and see if it resulted in a simpler expression. If so, return
1104 // that expression.
1105 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1106                                             Value *V) const {
1107   if (!V)
1108     return ExprResult::none();
1109 
1110   if (auto *C = dyn_cast<Constant>(V)) {
1111     if (I)
1112       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1113                         << " constant " << *C << "\n");
1114     NumGVNOpsSimplified++;
1115     assert(isa<BasicExpression>(E) &&
1116            "We should always have had a basic expression here");
1117     deleteExpression(E);
1118     return ExprResult::some(createConstantExpression(C));
1119   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1120     if (I)
1121       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1122                         << " variable " << *V << "\n");
1123     deleteExpression(E);
1124     return ExprResult::some(createVariableExpression(V));
1125   }
1126 
1127   CongruenceClass *CC = ValueToClass.lookup(V);
1128   if (CC) {
1129     if (CC->getLeader() && CC->getLeader() != I) {
1130       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1131     }
1132     if (CC->getDefiningExpr()) {
1133       if (I)
1134         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1135                           << " expression " << *CC->getDefiningExpr() << "\n");
1136       NumGVNOpsSimplified++;
1137       deleteExpression(E);
1138       return ExprResult::some(CC->getDefiningExpr(), V);
1139     }
1140   }
1141 
1142   return ExprResult::none();
1143 }
1144 
1145 // Create a value expression from the instruction I, replacing operands with
1146 // their leaders.
1147 
1148 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1149   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1150 
1151   bool AllConstant = setBasicExpressionInfo(I, E);
1152 
1153   if (I->isCommutative()) {
1154     // Ensure that commutative instructions that only differ by a permutation
1155     // of their operands get the same value number by sorting the operand value
1156     // numbers.  Since all commutative instructions have two operands it is more
1157     // efficient to sort by hand rather than using, say, std::sort.
1158     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1159     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1160       E->swapOperands(0, 1);
1161   }
1162   // Perform simplification.
1163   if (auto *CI = dyn_cast<CmpInst>(I)) {
1164     // Sort the operand value numbers so x<y and y>x get the same value
1165     // number.
1166     CmpInst::Predicate Predicate = CI->getPredicate();
1167     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1168       E->swapOperands(0, 1);
1169       Predicate = CmpInst::getSwappedPredicate(Predicate);
1170     }
1171     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1172     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1173     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1174            "Wrong types on cmp instruction");
1175     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1176             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1177     Value *V =
1178         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1179     if (auto Simplified = checkExprResults(E, I, V))
1180       return Simplified;
1181   } else if (isa<SelectInst>(I)) {
1182     if (isa<Constant>(E->getOperand(0)) ||
1183         E->getOperand(1) == E->getOperand(2)) {
1184       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1185              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1186       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1187                                     E->getOperand(2), SQ);
1188       if (auto Simplified = checkExprResults(E, I, V))
1189         return Simplified;
1190     }
1191   } else if (I->isBinaryOp()) {
1192     Value *V =
1193         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1194     if (auto Simplified = checkExprResults(E, I, V))
1195       return Simplified;
1196   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1197     Value *V =
1198         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1199     if (auto Simplified = checkExprResults(E, I, V))
1200       return Simplified;
1201   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1202     Value *V =
1203         SimplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1204                         makeArrayRef(std::next(E->op_begin()), E->op_end()),
1205                         GEPI->isInBounds(), SQ);
1206     if (auto Simplified = checkExprResults(E, I, V))
1207       return Simplified;
1208   } else if (AllConstant) {
1209     // We don't bother trying to simplify unless all of the operands
1210     // were constant.
1211     // TODO: There are a lot of Simplify*'s we could call here, if we
1212     // wanted to.  The original motivating case for this code was a
1213     // zext i1 false to i8, which we don't have an interface to
1214     // simplify (IE there is no SimplifyZExt).
1215 
1216     SmallVector<Constant *, 8> C;
1217     for (Value *Arg : E->operands())
1218       C.emplace_back(cast<Constant>(Arg));
1219 
1220     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1221       if (auto Simplified = checkExprResults(E, I, V))
1222         return Simplified;
1223   }
1224   return ExprResult::some(E);
1225 }
1226 
1227 const AggregateValueExpression *
1228 NewGVN::createAggregateValueExpression(Instruction *I) const {
1229   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1230     auto *E = new (ExpressionAllocator)
1231         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1232     setBasicExpressionInfo(I, E);
1233     E->allocateIntOperands(ExpressionAllocator);
1234     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1235     return E;
1236   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1237     auto *E = new (ExpressionAllocator)
1238         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1239     setBasicExpressionInfo(EI, E);
1240     E->allocateIntOperands(ExpressionAllocator);
1241     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1242     return E;
1243   }
1244   llvm_unreachable("Unhandled type of aggregate value operation");
1245 }
1246 
1247 const DeadExpression *NewGVN::createDeadExpression() const {
1248   // DeadExpression has no arguments and all DeadExpression's are the same,
1249   // so we only need one of them.
1250   return SingletonDeadExpression;
1251 }
1252 
1253 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1254   auto *E = new (ExpressionAllocator) VariableExpression(V);
1255   E->setOpcode(V->getValueID());
1256   return E;
1257 }
1258 
1259 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1260   if (auto *C = dyn_cast<Constant>(V))
1261     return createConstantExpression(C);
1262   return createVariableExpression(V);
1263 }
1264 
1265 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1266   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1267   E->setOpcode(C->getValueID());
1268   return E;
1269 }
1270 
1271 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1272   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1273   E->setOpcode(I->getOpcode());
1274   return E;
1275 }
1276 
1277 const CallExpression *
1278 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1279   // FIXME: Add operand bundles for calls.
1280   // FIXME: Allow commutative matching for intrinsics.
1281   auto *E =
1282       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1283   setBasicExpressionInfo(CI, E);
1284   return E;
1285 }
1286 
1287 // Return true if some equivalent of instruction Inst dominates instruction U.
1288 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1289                                      const Instruction *U) const {
1290   auto *CC = ValueToClass.lookup(Inst);
1291    // This must be an instruction because we are only called from phi nodes
1292   // in the case that the value it needs to check against is an instruction.
1293 
1294   // The most likely candidates for dominance are the leader and the next leader.
1295   // The leader or nextleader will dominate in all cases where there is an
1296   // equivalent that is higher up in the dom tree.
1297   // We can't *only* check them, however, because the
1298   // dominator tree could have an infinite number of non-dominating siblings
1299   // with instructions that are in the right congruence class.
1300   //       A
1301   // B C D E F G
1302   // |
1303   // H
1304   // Instruction U could be in H,  with equivalents in every other sibling.
1305   // Depending on the rpo order picked, the leader could be the equivalent in
1306   // any of these siblings.
1307   if (!CC)
1308     return false;
1309   if (alwaysAvailable(CC->getLeader()))
1310     return true;
1311   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1312     return true;
1313   if (CC->getNextLeader().first &&
1314       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1315     return true;
1316   return llvm::any_of(*CC, [&](const Value *Member) {
1317     return Member != CC->getLeader() &&
1318            DT->dominates(cast<Instruction>(Member), U);
1319   });
1320 }
1321 
1322 // See if we have a congruence class and leader for this operand, and if so,
1323 // return it. Otherwise, return the operand itself.
1324 Value *NewGVN::lookupOperandLeader(Value *V) const {
1325   CongruenceClass *CC = ValueToClass.lookup(V);
1326   if (CC) {
1327     // Everything in TOP is represented by poison, as it can be any value.
1328     // We do have to make sure we get the type right though, so we can't set the
1329     // RepLeader to poison.
1330     if (CC == TOPClass)
1331       return PoisonValue::get(V->getType());
1332     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1333   }
1334 
1335   return V;
1336 }
1337 
1338 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1339   auto *CC = getMemoryClass(MA);
1340   assert(CC->getMemoryLeader() &&
1341          "Every MemoryAccess should be mapped to a congruence class with a "
1342          "representative memory access");
1343   return CC->getMemoryLeader();
1344 }
1345 
1346 // Return true if the MemoryAccess is really equivalent to everything. This is
1347 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1348 // state of all MemoryAccesses.
1349 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1350   return getMemoryClass(MA) == TOPClass;
1351 }
1352 
1353 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1354                                              LoadInst *LI,
1355                                              const MemoryAccess *MA) const {
1356   auto *E =
1357       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1358   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1359   E->setType(LoadType);
1360 
1361   // Give store and loads same opcode so they value number together.
1362   E->setOpcode(0);
1363   E->op_push_back(PointerOp);
1364 
1365   // TODO: Value number heap versions. We may be able to discover
1366   // things alias analysis can't on it's own (IE that a store and a
1367   // load have the same value, and thus, it isn't clobbering the load).
1368   return E;
1369 }
1370 
1371 const StoreExpression *
1372 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1373   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1374   auto *E = new (ExpressionAllocator)
1375       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1376   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1377   E->setType(SI->getValueOperand()->getType());
1378 
1379   // Give store and loads same opcode so they value number together.
1380   E->setOpcode(0);
1381   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1382 
1383   // TODO: Value number heap versions. We may be able to discover
1384   // things alias analysis can't on it's own (IE that a store and a
1385   // load have the same value, and thus, it isn't clobbering the load).
1386   return E;
1387 }
1388 
1389 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1390   // Unlike loads, we never try to eliminate stores, so we do not check if they
1391   // are simple and avoid value numbering them.
1392   auto *SI = cast<StoreInst>(I);
1393   auto *StoreAccess = getMemoryAccess(SI);
1394   // Get the expression, if any, for the RHS of the MemoryDef.
1395   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1396   if (EnableStoreRefinement)
1397     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1398   // If we bypassed the use-def chains, make sure we add a use.
1399   StoreRHS = lookupMemoryLeader(StoreRHS);
1400   if (StoreRHS != StoreAccess->getDefiningAccess())
1401     addMemoryUsers(StoreRHS, StoreAccess);
1402   // If we are defined by ourselves, use the live on entry def.
1403   if (StoreRHS == StoreAccess)
1404     StoreRHS = MSSA->getLiveOnEntryDef();
1405 
1406   if (SI->isSimple()) {
1407     // See if we are defined by a previous store expression, it already has a
1408     // value, and it's the same value as our current store. FIXME: Right now, we
1409     // only do this for simple stores, we should expand to cover memcpys, etc.
1410     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1411     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1412     // We really want to check whether the expression we matched was a store. No
1413     // easy way to do that. However, we can check that the class we found has a
1414     // store, which, assuming the value numbering state is not corrupt, is
1415     // sufficient, because we must also be equivalent to that store's expression
1416     // for it to be in the same class as the load.
1417     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1418       return LastStore;
1419     // Also check if our value operand is defined by a load of the same memory
1420     // location, and the memory state is the same as it was then (otherwise, it
1421     // could have been overwritten later. See test32 in
1422     // transforms/DeadStoreElimination/simple.ll).
1423     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1424       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1425            LastStore->getOperand(0)) &&
1426           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1427            StoreRHS))
1428         return LastStore;
1429     deleteExpression(LastStore);
1430   }
1431 
1432   // If the store is not equivalent to anything, value number it as a store that
1433   // produces a unique memory state (instead of using it's MemoryUse, we use
1434   // it's MemoryDef).
1435   return createStoreExpression(SI, StoreAccess);
1436 }
1437 
1438 // See if we can extract the value of a loaded pointer from a load, a store, or
1439 // a memory instruction.
1440 const Expression *
1441 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1442                                     LoadInst *LI, Instruction *DepInst,
1443                                     MemoryAccess *DefiningAccess) const {
1444   assert((!LI || LI->isSimple()) && "Not a simple load");
1445   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1446     // Can't forward from non-atomic to atomic without violating memory model.
1447     // Also don't need to coerce if they are the same type, we will just
1448     // propagate.
1449     if (LI->isAtomic() > DepSI->isAtomic() ||
1450         LoadType == DepSI->getValueOperand()->getType())
1451       return nullptr;
1452     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1453     if (Offset >= 0) {
1454       if (auto *C = dyn_cast<Constant>(
1455               lookupOperandLeader(DepSI->getValueOperand()))) {
1456         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1457                           << " to constant " << *C << "\n");
1458         return createConstantExpression(
1459             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1460       }
1461     }
1462   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1463     // Can't forward from non-atomic to atomic without violating memory model.
1464     if (LI->isAtomic() > DepLI->isAtomic())
1465       return nullptr;
1466     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1467     if (Offset >= 0) {
1468       // We can coerce a constant load into a load.
1469       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1470         if (auto *PossibleConstant =
1471                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1472           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1473                             << " to constant " << *PossibleConstant << "\n");
1474           return createConstantExpression(PossibleConstant);
1475         }
1476     }
1477   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1478     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1479     if (Offset >= 0) {
1480       if (auto *PossibleConstant =
1481               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1482         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1483                           << " to constant " << *PossibleConstant << "\n");
1484         return createConstantExpression(PossibleConstant);
1485       }
1486     }
1487   }
1488 
1489   // All of the below are only true if the loaded pointer is produced
1490   // by the dependent instruction.
1491   if (LoadPtr != lookupOperandLeader(DepInst) &&
1492       !AA->isMustAlias(LoadPtr, DepInst))
1493     return nullptr;
1494   // If this load really doesn't depend on anything, then we must be loading an
1495   // undef value.  This can happen when loading for a fresh allocation with no
1496   // intervening stores, for example.  Note that this is only true in the case
1497   // that the result of the allocation is pointer equal to the load ptr.
1498   if (isa<AllocaInst>(DepInst)) {
1499     return createConstantExpression(UndefValue::get(LoadType));
1500   }
1501   // If this load occurs either right after a lifetime begin,
1502   // then the loaded value is undefined.
1503   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1504     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1505       return createConstantExpression(UndefValue::get(LoadType));
1506   } else if (isAllocationFn(DepInst, TLI))
1507     if (auto *InitVal = getInitialValueOfAllocation(cast<CallBase>(DepInst),
1508                                                     TLI, LoadType))
1509       return createConstantExpression(InitVal);
1510 
1511   return nullptr;
1512 }
1513 
1514 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1515   auto *LI = cast<LoadInst>(I);
1516 
1517   // We can eliminate in favor of non-simple loads, but we won't be able to
1518   // eliminate the loads themselves.
1519   if (!LI->isSimple())
1520     return nullptr;
1521 
1522   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1523   // Load of undef is UB.
1524   if (isa<UndefValue>(LoadAddressLeader))
1525     return createConstantExpression(PoisonValue::get(LI->getType()));
1526   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1527   MemoryAccess *DefiningAccess =
1528       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1529 
1530   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1531     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1532       Instruction *DefiningInst = MD->getMemoryInst();
1533       // If the defining instruction is not reachable, replace with poison.
1534       if (!ReachableBlocks.count(DefiningInst->getParent()))
1535         return createConstantExpression(PoisonValue::get(LI->getType()));
1536       // This will handle stores and memory insts.  We only do if it the
1537       // defining access has a different type, or it is a pointer produced by
1538       // certain memory operations that cause the memory to have a fixed value
1539       // (IE things like calloc).
1540       if (const auto *CoercionResult =
1541               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1542                                           DefiningInst, DefiningAccess))
1543         return CoercionResult;
1544     }
1545   }
1546 
1547   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1548                                         DefiningAccess);
1549   // If our MemoryLeader is not our defining access, add a use to the
1550   // MemoryLeader, so that we get reprocessed when it changes.
1551   if (LE->getMemoryLeader() != DefiningAccess)
1552     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1553   return LE;
1554 }
1555 
1556 NewGVN::ExprResult
1557 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1558   auto *PI = PredInfo->getPredicateInfoFor(I);
1559   if (!PI)
1560     return ExprResult::none();
1561 
1562   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1563 
1564   const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1565   if (!Constraint)
1566     return ExprResult::none();
1567 
1568   CmpInst::Predicate Predicate = Constraint->Predicate;
1569   Value *CmpOp0 = I->getOperand(0);
1570   Value *CmpOp1 = Constraint->OtherOp;
1571 
1572   Value *FirstOp = lookupOperandLeader(CmpOp0);
1573   Value *SecondOp = lookupOperandLeader(CmpOp1);
1574   Value *AdditionallyUsedValue = CmpOp0;
1575 
1576   // Sort the ops.
1577   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1578     std::swap(FirstOp, SecondOp);
1579     Predicate = CmpInst::getSwappedPredicate(Predicate);
1580     AdditionallyUsedValue = CmpOp1;
1581   }
1582 
1583   if (Predicate == CmpInst::ICMP_EQ)
1584     return ExprResult::some(createVariableOrConstant(FirstOp),
1585                             AdditionallyUsedValue, PI);
1586 
1587   // Handle the special case of floating point.
1588   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1589       !cast<ConstantFP>(FirstOp)->isZero())
1590     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1591                             AdditionallyUsedValue, PI);
1592 
1593   return ExprResult::none();
1594 }
1595 
1596 // Evaluate read only and pure calls, and create an expression result.
1597 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1598   auto *CI = cast<CallInst>(I);
1599   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1600     // Intrinsics with the returned attribute are copies of arguments.
1601     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1602       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1603         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1604           return Res;
1605       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1606     }
1607   }
1608   if (AA->doesNotAccessMemory(CI)) {
1609     return ExprResult::some(
1610         createCallExpression(CI, TOPClass->getMemoryLeader()));
1611   } else if (AA->onlyReadsMemory(CI)) {
1612     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1613       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1614       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1615     } else // MSSA determined that CI does not access memory.
1616       return ExprResult::some(
1617           createCallExpression(CI, TOPClass->getMemoryLeader()));
1618   }
1619   return ExprResult::none();
1620 }
1621 
1622 // Retrieve the memory class for a given MemoryAccess.
1623 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1624   auto *Result = MemoryAccessToClass.lookup(MA);
1625   assert(Result && "Should have found memory class");
1626   return Result;
1627 }
1628 
1629 // Update the MemoryAccess equivalence table to say that From is equal to To,
1630 // and return true if this is different from what already existed in the table.
1631 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1632                             CongruenceClass *NewClass) {
1633   assert(NewClass &&
1634          "Every MemoryAccess should be getting mapped to a non-null class");
1635   LLVM_DEBUG(dbgs() << "Setting " << *From);
1636   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1637   LLVM_DEBUG(dbgs() << NewClass->getID()
1638                     << " with current MemoryAccess leader ");
1639   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1640 
1641   auto LookupResult = MemoryAccessToClass.find(From);
1642   bool Changed = false;
1643   // If it's already in the table, see if the value changed.
1644   if (LookupResult != MemoryAccessToClass.end()) {
1645     auto *OldClass = LookupResult->second;
1646     if (OldClass != NewClass) {
1647       // If this is a phi, we have to handle memory member updates.
1648       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1649         OldClass->memory_erase(MP);
1650         NewClass->memory_insert(MP);
1651         // This may have killed the class if it had no non-memory members
1652         if (OldClass->getMemoryLeader() == From) {
1653           if (OldClass->definesNoMemory()) {
1654             OldClass->setMemoryLeader(nullptr);
1655           } else {
1656             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1657             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1658                               << OldClass->getID() << " to "
1659                               << *OldClass->getMemoryLeader()
1660                               << " due to removal of a memory member " << *From
1661                               << "\n");
1662             markMemoryLeaderChangeTouched(OldClass);
1663           }
1664         }
1665       }
1666       // It wasn't equivalent before, and now it is.
1667       LookupResult->second = NewClass;
1668       Changed = true;
1669     }
1670   }
1671 
1672   return Changed;
1673 }
1674 
1675 // Determine if a instruction is cycle-free.  That means the values in the
1676 // instruction don't depend on any expressions that can change value as a result
1677 // of the instruction.  For example, a non-cycle free instruction would be v =
1678 // phi(0, v+1).
1679 bool NewGVN::isCycleFree(const Instruction *I) const {
1680   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1681   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1682   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1683   // other members are all phi nodes (as they do not compute anything, they are
1684   // copies).
1685   auto ICS = InstCycleState.lookup(I);
1686   if (ICS == ICS_Unknown) {
1687     SCCFinder.Start(I);
1688     auto &SCC = SCCFinder.getComponentFor(I);
1689     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1690     if (SCC.size() == 1)
1691       InstCycleState.insert({I, ICS_CycleFree});
1692     else {
1693       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1694         return isa<PHINode>(V) || isCopyOfAPHI(V);
1695       });
1696       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1697       for (auto *Member : SCC)
1698         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1699           InstCycleState.insert({MemberPhi, ICS});
1700     }
1701   }
1702   if (ICS == ICS_Cycle)
1703     return false;
1704   return true;
1705 }
1706 
1707 // Evaluate PHI nodes symbolically and create an expression result.
1708 const Expression *
1709 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1710                                      Instruction *I,
1711                                      BasicBlock *PHIBlock) const {
1712   // True if one of the incoming phi edges is a backedge.
1713   bool HasBackedge = false;
1714   // All constant tracks the state of whether all the *original* phi operands
1715   // This is really shorthand for "this phi cannot cycle due to forward
1716   // change in value of the phi is guaranteed not to later change the value of
1717   // the phi. IE it can't be v = phi(undef, v+1)
1718   bool OriginalOpsConstant = true;
1719   auto *E = cast<PHIExpression>(createPHIExpression(
1720       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1721   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1722   // See if all arguments are the same.
1723   // We track if any were undef because they need special handling.
1724   bool HasUndef = false, HasPoison = false;
1725   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1726     if (isa<PoisonValue>(Arg)) {
1727       HasPoison = true;
1728       return false;
1729     }
1730     if (isa<UndefValue>(Arg)) {
1731       HasUndef = true;
1732       return false;
1733     }
1734     return true;
1735   });
1736   // If we are left with no operands, it's dead.
1737   if (Filtered.empty()) {
1738     // If it has undef or poison at this point, it means there are no-non-undef
1739     // arguments, and thus, the value of the phi node must be undef.
1740     if (HasUndef) {
1741       LLVM_DEBUG(
1742           dbgs() << "PHI Node " << *I
1743                  << " has no non-undef arguments, valuing it as undef\n");
1744       return createConstantExpression(UndefValue::get(I->getType()));
1745     }
1746     if (HasPoison) {
1747       LLVM_DEBUG(
1748           dbgs() << "PHI Node " << *I
1749                  << " has no non-poison arguments, valuing it as poison\n");
1750       return createConstantExpression(PoisonValue::get(I->getType()));
1751     }
1752 
1753     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1754     deleteExpression(E);
1755     return createDeadExpression();
1756   }
1757   Value *AllSameValue = *(Filtered.begin());
1758   ++Filtered.begin();
1759   // Can't use std::equal here, sadly, because filter.begin moves.
1760   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1761     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1762     // in the worst case).
1763     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1764       return E;
1765 
1766     // In LLVM's non-standard representation of phi nodes, it's possible to have
1767     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1768     // on the original phi node), especially in weird CFG's where some arguments
1769     // are unreachable, or uninitialized along certain paths.  This can cause
1770     // infinite loops during evaluation. We work around this by not trying to
1771     // really evaluate them independently, but instead using a variable
1772     // expression to say if one is equivalent to the other.
1773     // We also special case undef/poison, so that if we have an undef, we can't
1774     // use the common value unless it dominates the phi block.
1775     if (HasPoison || HasUndef) {
1776       // If we have undef and at least one other value, this is really a
1777       // multivalued phi, and we need to know if it's cycle free in order to
1778       // evaluate whether we can ignore the undef.  The other parts of this are
1779       // just shortcuts.  If there is no backedge, or all operands are
1780       // constants, it also must be cycle free.
1781       if (HasBackedge && !OriginalOpsConstant &&
1782           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1783         return E;
1784 
1785       // Only have to check for instructions
1786       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1787         if (!someEquivalentDominates(AllSameInst, I))
1788           return E;
1789     }
1790     // Can't simplify to something that comes later in the iteration.
1791     // Otherwise, when and if it changes congruence class, we will never catch
1792     // up. We will always be a class behind it.
1793     if (isa<Instruction>(AllSameValue) &&
1794         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1795       return E;
1796     NumGVNPhisAllSame++;
1797     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1798                       << "\n");
1799     deleteExpression(E);
1800     return createVariableOrConstant(AllSameValue);
1801   }
1802   return E;
1803 }
1804 
1805 const Expression *
1806 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1807   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1808     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1809     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1810       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1811       // a semantically equivalent expression instead of an extract value
1812       // expression.
1813       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1814                                     WO->getLHS(), WO->getRHS(), I);
1815   }
1816 
1817   return createAggregateValueExpression(I);
1818 }
1819 
1820 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1821   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1822 
1823   auto *CI = cast<CmpInst>(I);
1824   // See if our operands are equal to those of a previous predicate, and if so,
1825   // if it implies true or false.
1826   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1827   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1828   auto OurPredicate = CI->getPredicate();
1829   if (shouldSwapOperands(Op0, Op1)) {
1830     std::swap(Op0, Op1);
1831     OurPredicate = CI->getSwappedPredicate();
1832   }
1833 
1834   // Avoid processing the same info twice.
1835   const PredicateBase *LastPredInfo = nullptr;
1836   // See if we know something about the comparison itself, like it is the target
1837   // of an assume.
1838   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1839   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1840     return ExprResult::some(
1841         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1842 
1843   if (Op0 == Op1) {
1844     // This condition does not depend on predicates, no need to add users
1845     if (CI->isTrueWhenEqual())
1846       return ExprResult::some(
1847           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1848     else if (CI->isFalseWhenEqual())
1849       return ExprResult::some(
1850           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1851   }
1852 
1853   // NOTE: Because we are comparing both operands here and below, and using
1854   // previous comparisons, we rely on fact that predicateinfo knows to mark
1855   // comparisons that use renamed operands as users of the earlier comparisons.
1856   // It is *not* enough to just mark predicateinfo renamed operands as users of
1857   // the earlier comparisons, because the *other* operand may have changed in a
1858   // previous iteration.
1859   // Example:
1860   // icmp slt %a, %b
1861   // %b.0 = ssa.copy(%b)
1862   // false branch:
1863   // icmp slt %c, %b.0
1864 
1865   // %c and %a may start out equal, and thus, the code below will say the second
1866   // %icmp is false.  c may become equal to something else, and in that case the
1867   // %second icmp *must* be reexamined, but would not if only the renamed
1868   // %operands are considered users of the icmp.
1869 
1870   // *Currently* we only check one level of comparisons back, and only mark one
1871   // level back as touched when changes happen.  If you modify this code to look
1872   // back farther through comparisons, you *must* mark the appropriate
1873   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1874   // we know something just from the operands themselves
1875 
1876   // See if our operands have predicate info, so that we may be able to derive
1877   // something from a previous comparison.
1878   for (const auto &Op : CI->operands()) {
1879     auto *PI = PredInfo->getPredicateInfoFor(Op);
1880     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1881       if (PI == LastPredInfo)
1882         continue;
1883       LastPredInfo = PI;
1884       // In phi of ops cases, we may have predicate info that we are evaluating
1885       // in a different context.
1886       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1887         continue;
1888       // TODO: Along the false edge, we may know more things too, like
1889       // icmp of
1890       // same operands is false.
1891       // TODO: We only handle actual comparison conditions below, not
1892       // and/or.
1893       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1894       if (!BranchCond)
1895         continue;
1896       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1897       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1898       auto BranchPredicate = BranchCond->getPredicate();
1899       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1900         std::swap(BranchOp0, BranchOp1);
1901         BranchPredicate = BranchCond->getSwappedPredicate();
1902       }
1903       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1904         if (PBranch->TrueEdge) {
1905           // If we know the previous predicate is true and we are in the true
1906           // edge then we may be implied true or false.
1907           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1908                                                   OurPredicate)) {
1909             return ExprResult::some(
1910                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1911                 PI);
1912           }
1913 
1914           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1915                                                    OurPredicate)) {
1916             return ExprResult::some(
1917                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1918                 PI);
1919           }
1920         } else {
1921           // Just handle the ne and eq cases, where if we have the same
1922           // operands, we may know something.
1923           if (BranchPredicate == OurPredicate) {
1924             // Same predicate, same ops,we know it was false, so this is false.
1925             return ExprResult::some(
1926                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1927                 PI);
1928           } else if (BranchPredicate ==
1929                      CmpInst::getInversePredicate(OurPredicate)) {
1930             // Inverse predicate, we know the other was false, so this is true.
1931             return ExprResult::some(
1932                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1933                 PI);
1934           }
1935         }
1936       }
1937     }
1938   }
1939   // Create expression will take care of simplifyCmpInst
1940   return createExpression(I);
1941 }
1942 
1943 // Substitute and symbolize the value before value numbering.
1944 NewGVN::ExprResult
1945 NewGVN::performSymbolicEvaluation(Value *V,
1946                                   SmallPtrSetImpl<Value *> &Visited) const {
1947 
1948   const Expression *E = nullptr;
1949   if (auto *C = dyn_cast<Constant>(V))
1950     E = createConstantExpression(C);
1951   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1952     E = createVariableExpression(V);
1953   } else {
1954     // TODO: memory intrinsics.
1955     // TODO: Some day, we should do the forward propagation and reassociation
1956     // parts of the algorithm.
1957     auto *I = cast<Instruction>(V);
1958     switch (I->getOpcode()) {
1959     case Instruction::ExtractValue:
1960     case Instruction::InsertValue:
1961       E = performSymbolicAggrValueEvaluation(I);
1962       break;
1963     case Instruction::PHI: {
1964       SmallVector<ValPair, 3> Ops;
1965       auto *PN = cast<PHINode>(I);
1966       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1967         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1968       // Sort to ensure the invariant createPHIExpression requires is met.
1969       sortPHIOps(Ops);
1970       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1971     } break;
1972     case Instruction::Call:
1973       return performSymbolicCallEvaluation(I);
1974       break;
1975     case Instruction::Store:
1976       E = performSymbolicStoreEvaluation(I);
1977       break;
1978     case Instruction::Load:
1979       E = performSymbolicLoadEvaluation(I);
1980       break;
1981     case Instruction::BitCast:
1982     case Instruction::AddrSpaceCast:
1983       return createExpression(I);
1984       break;
1985     case Instruction::ICmp:
1986     case Instruction::FCmp:
1987       return performSymbolicCmpEvaluation(I);
1988       break;
1989     case Instruction::FNeg:
1990     case Instruction::Add:
1991     case Instruction::FAdd:
1992     case Instruction::Sub:
1993     case Instruction::FSub:
1994     case Instruction::Mul:
1995     case Instruction::FMul:
1996     case Instruction::UDiv:
1997     case Instruction::SDiv:
1998     case Instruction::FDiv:
1999     case Instruction::URem:
2000     case Instruction::SRem:
2001     case Instruction::FRem:
2002     case Instruction::Shl:
2003     case Instruction::LShr:
2004     case Instruction::AShr:
2005     case Instruction::And:
2006     case Instruction::Or:
2007     case Instruction::Xor:
2008     case Instruction::Trunc:
2009     case Instruction::ZExt:
2010     case Instruction::SExt:
2011     case Instruction::FPToUI:
2012     case Instruction::FPToSI:
2013     case Instruction::UIToFP:
2014     case Instruction::SIToFP:
2015     case Instruction::FPTrunc:
2016     case Instruction::FPExt:
2017     case Instruction::PtrToInt:
2018     case Instruction::IntToPtr:
2019     case Instruction::Select:
2020     case Instruction::ExtractElement:
2021     case Instruction::InsertElement:
2022     case Instruction::GetElementPtr:
2023       return createExpression(I);
2024       break;
2025     case Instruction::ShuffleVector:
2026       // FIXME: Add support for shufflevector to createExpression.
2027       return ExprResult::none();
2028     default:
2029       return ExprResult::none();
2030     }
2031   }
2032   return ExprResult::some(E);
2033 }
2034 
2035 // Look up a container of values/instructions in a map, and touch all the
2036 // instructions in the container.  Then erase value from the map.
2037 template <typename Map, typename KeyType>
2038 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2039   const auto Result = M.find_as(Key);
2040   if (Result != M.end()) {
2041     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2042       TouchedInstructions.set(InstrToDFSNum(Mapped));
2043     M.erase(Result);
2044   }
2045 }
2046 
2047 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2048   assert(User && To != User);
2049   if (isa<Instruction>(To))
2050     AdditionalUsers[To].insert(User);
2051 }
2052 
2053 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2054   if (Res.ExtraDep && Res.ExtraDep != User)
2055     addAdditionalUsers(Res.ExtraDep, User);
2056   Res.ExtraDep = nullptr;
2057 
2058   if (Res.PredDep) {
2059     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2060       PredicateToUsers[PBranch->Condition].insert(User);
2061     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2062       PredicateToUsers[PAssume->Condition].insert(User);
2063   }
2064   Res.PredDep = nullptr;
2065 }
2066 
2067 void NewGVN::markUsersTouched(Value *V) {
2068   // Now mark the users as touched.
2069   for (auto *User : V->users()) {
2070     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2071     TouchedInstructions.set(InstrToDFSNum(User));
2072   }
2073   touchAndErase(AdditionalUsers, V);
2074 }
2075 
2076 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2077   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2078   MemoryToUsers[To].insert(U);
2079 }
2080 
2081 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2082   TouchedInstructions.set(MemoryToDFSNum(MA));
2083 }
2084 
2085 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2086   if (isa<MemoryUse>(MA))
2087     return;
2088   for (auto U : MA->users())
2089     TouchedInstructions.set(MemoryToDFSNum(U));
2090   touchAndErase(MemoryToUsers, MA);
2091 }
2092 
2093 // Touch all the predicates that depend on this instruction.
2094 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2095   touchAndErase(PredicateToUsers, I);
2096 }
2097 
2098 // Mark users affected by a memory leader change.
2099 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2100   for (auto M : CC->memory())
2101     markMemoryDefTouched(M);
2102 }
2103 
2104 // Touch the instructions that need to be updated after a congruence class has a
2105 // leader change, and mark changed values.
2106 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2107   for (auto M : *CC) {
2108     if (auto *I = dyn_cast<Instruction>(M))
2109       TouchedInstructions.set(InstrToDFSNum(I));
2110     LeaderChanges.insert(M);
2111   }
2112 }
2113 
2114 // Give a range of things that have instruction DFS numbers, this will return
2115 // the member of the range with the smallest dfs number.
2116 template <class T, class Range>
2117 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2118   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2119   for (const auto X : R) {
2120     auto DFSNum = InstrToDFSNum(X);
2121     if (DFSNum < MinDFS.second)
2122       MinDFS = {X, DFSNum};
2123   }
2124   return MinDFS.first;
2125 }
2126 
2127 // This function returns the MemoryAccess that should be the next leader of
2128 // congruence class CC, under the assumption that the current leader is going to
2129 // disappear.
2130 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2131   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2132   // do for regular leaders.
2133   // Make sure there will be a leader to find.
2134   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2135   if (CC->getStoreCount() > 0) {
2136     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2137       return getMemoryAccess(NL);
2138     // Find the store with the minimum DFS number.
2139     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2140         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2141     return getMemoryAccess(cast<StoreInst>(V));
2142   }
2143   assert(CC->getStoreCount() == 0);
2144 
2145   // Given our assertion, hitting this part must mean
2146   // !OldClass->memory_empty()
2147   if (CC->memory_size() == 1)
2148     return *CC->memory_begin();
2149   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2150 }
2151 
2152 // This function returns the next value leader of a congruence class, under the
2153 // assumption that the current leader is going away.  This should end up being
2154 // the next most dominating member.
2155 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2156   // We don't need to sort members if there is only 1, and we don't care about
2157   // sorting the TOP class because everything either gets out of it or is
2158   // unreachable.
2159 
2160   if (CC->size() == 1 || CC == TOPClass) {
2161     return *(CC->begin());
2162   } else if (CC->getNextLeader().first) {
2163     ++NumGVNAvoidedSortedLeaderChanges;
2164     return CC->getNextLeader().first;
2165   } else {
2166     ++NumGVNSortedLeaderChanges;
2167     // NOTE: If this ends up to slow, we can maintain a dual structure for
2168     // member testing/insertion, or keep things mostly sorted, and sort only
2169     // here, or use SparseBitVector or ....
2170     return getMinDFSOfRange<Value>(*CC);
2171   }
2172 }
2173 
2174 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2175 // the memory members, etc for the move.
2176 //
2177 // The invariants of this function are:
2178 //
2179 // - I must be moving to NewClass from OldClass
2180 // - The StoreCount of OldClass and NewClass is expected to have been updated
2181 //   for I already if it is a store.
2182 // - The OldClass memory leader has not been updated yet if I was the leader.
2183 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2184                                             MemoryAccess *InstMA,
2185                                             CongruenceClass *OldClass,
2186                                             CongruenceClass *NewClass) {
2187   // If the leader is I, and we had a representative MemoryAccess, it should
2188   // be the MemoryAccess of OldClass.
2189   assert((!InstMA || !OldClass->getMemoryLeader() ||
2190           OldClass->getLeader() != I ||
2191           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2192               MemoryAccessToClass.lookup(InstMA)) &&
2193          "Representative MemoryAccess mismatch");
2194   // First, see what happens to the new class
2195   if (!NewClass->getMemoryLeader()) {
2196     // Should be a new class, or a store becoming a leader of a new class.
2197     assert(NewClass->size() == 1 ||
2198            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2199     NewClass->setMemoryLeader(InstMA);
2200     // Mark it touched if we didn't just create a singleton
2201     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2202                       << NewClass->getID()
2203                       << " due to new memory instruction becoming leader\n");
2204     markMemoryLeaderChangeTouched(NewClass);
2205   }
2206   setMemoryClass(InstMA, NewClass);
2207   // Now, fixup the old class if necessary
2208   if (OldClass->getMemoryLeader() == InstMA) {
2209     if (!OldClass->definesNoMemory()) {
2210       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2211       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2212                         << OldClass->getID() << " to "
2213                         << *OldClass->getMemoryLeader()
2214                         << " due to removal of old leader " << *InstMA << "\n");
2215       markMemoryLeaderChangeTouched(OldClass);
2216     } else
2217       OldClass->setMemoryLeader(nullptr);
2218   }
2219 }
2220 
2221 // Move a value, currently in OldClass, to be part of NewClass
2222 // Update OldClass and NewClass for the move (including changing leaders, etc).
2223 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2224                                            CongruenceClass *OldClass,
2225                                            CongruenceClass *NewClass) {
2226   if (I == OldClass->getNextLeader().first)
2227     OldClass->resetNextLeader();
2228 
2229   OldClass->erase(I);
2230   NewClass->insert(I);
2231 
2232   if (NewClass->getLeader() != I)
2233     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2234   // Handle our special casing of stores.
2235   if (auto *SI = dyn_cast<StoreInst>(I)) {
2236     OldClass->decStoreCount();
2237     // Okay, so when do we want to make a store a leader of a class?
2238     // If we have a store defined by an earlier load, we want the earlier load
2239     // to lead the class.
2240     // If we have a store defined by something else, we want the store to lead
2241     // the class so everything else gets the "something else" as a value.
2242     // If we have a store as the single member of the class, we want the store
2243     // as the leader
2244     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2245       // If it's a store expression we are using, it means we are not equivalent
2246       // to something earlier.
2247       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2248         NewClass->setStoredValue(SE->getStoredValue());
2249         markValueLeaderChangeTouched(NewClass);
2250         // Shift the new class leader to be the store
2251         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2252                           << NewClass->getID() << " from "
2253                           << *NewClass->getLeader() << " to  " << *SI
2254                           << " because store joined class\n");
2255         // If we changed the leader, we have to mark it changed because we don't
2256         // know what it will do to symbolic evaluation.
2257         NewClass->setLeader(SI);
2258       }
2259       // We rely on the code below handling the MemoryAccess change.
2260     }
2261     NewClass->incStoreCount();
2262   }
2263   // True if there is no memory instructions left in a class that had memory
2264   // instructions before.
2265 
2266   // If it's not a memory use, set the MemoryAccess equivalence
2267   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2268   if (InstMA)
2269     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2270   ValueToClass[I] = NewClass;
2271   // See if we destroyed the class or need to swap leaders.
2272   if (OldClass->empty() && OldClass != TOPClass) {
2273     if (OldClass->getDefiningExpr()) {
2274       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2275                         << " from table\n");
2276       // We erase it as an exact expression to make sure we don't just erase an
2277       // equivalent one.
2278       auto Iter = ExpressionToClass.find_as(
2279           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2280       if (Iter != ExpressionToClass.end())
2281         ExpressionToClass.erase(Iter);
2282 #ifdef EXPENSIVE_CHECKS
2283       assert(
2284           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2285           "We erased the expression we just inserted, which should not happen");
2286 #endif
2287     }
2288   } else if (OldClass->getLeader() == I) {
2289     // When the leader changes, the value numbering of
2290     // everything may change due to symbolization changes, so we need to
2291     // reprocess.
2292     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2293                       << OldClass->getID() << "\n");
2294     ++NumGVNLeaderChanges;
2295     // Destroy the stored value if there are no more stores to represent it.
2296     // Note that this is basically clean up for the expression removal that
2297     // happens below.  If we remove stores from a class, we may leave it as a
2298     // class of equivalent memory phis.
2299     if (OldClass->getStoreCount() == 0) {
2300       if (OldClass->getStoredValue())
2301         OldClass->setStoredValue(nullptr);
2302     }
2303     OldClass->setLeader(getNextValueLeader(OldClass));
2304     OldClass->resetNextLeader();
2305     markValueLeaderChangeTouched(OldClass);
2306   }
2307 }
2308 
2309 // For a given expression, mark the phi of ops instructions that could have
2310 // changed as a result.
2311 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2312   touchAndErase(ExpressionToPhiOfOps, E);
2313 }
2314 
2315 // Perform congruence finding on a given value numbering expression.
2316 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2317   // This is guaranteed to return something, since it will at least find
2318   // TOP.
2319 
2320   CongruenceClass *IClass = ValueToClass.lookup(I);
2321   assert(IClass && "Should have found a IClass");
2322   // Dead classes should have been eliminated from the mapping.
2323   assert(!IClass->isDead() && "Found a dead class");
2324 
2325   CongruenceClass *EClass = nullptr;
2326   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2327     EClass = ValueToClass.lookup(VE->getVariableValue());
2328   } else if (isa<DeadExpression>(E)) {
2329     EClass = TOPClass;
2330   }
2331   if (!EClass) {
2332     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2333 
2334     // If it's not in the value table, create a new congruence class.
2335     if (lookupResult.second) {
2336       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2337       auto place = lookupResult.first;
2338       place->second = NewClass;
2339 
2340       // Constants and variables should always be made the leader.
2341       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2342         NewClass->setLeader(CE->getConstantValue());
2343       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2344         StoreInst *SI = SE->getStoreInst();
2345         NewClass->setLeader(SI);
2346         NewClass->setStoredValue(SE->getStoredValue());
2347         // The RepMemoryAccess field will be filled in properly by the
2348         // moveValueToNewCongruenceClass call.
2349       } else {
2350         NewClass->setLeader(I);
2351       }
2352       assert(!isa<VariableExpression>(E) &&
2353              "VariableExpression should have been handled already");
2354 
2355       EClass = NewClass;
2356       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2357                         << " using expression " << *E << " at "
2358                         << NewClass->getID() << " and leader "
2359                         << *(NewClass->getLeader()));
2360       if (NewClass->getStoredValue())
2361         LLVM_DEBUG(dbgs() << " and stored value "
2362                           << *(NewClass->getStoredValue()));
2363       LLVM_DEBUG(dbgs() << "\n");
2364     } else {
2365       EClass = lookupResult.first->second;
2366       if (isa<ConstantExpression>(E))
2367         assert((isa<Constant>(EClass->getLeader()) ||
2368                 (EClass->getStoredValue() &&
2369                  isa<Constant>(EClass->getStoredValue()))) &&
2370                "Any class with a constant expression should have a "
2371                "constant leader");
2372 
2373       assert(EClass && "Somehow don't have an eclass");
2374 
2375       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2376     }
2377   }
2378   bool ClassChanged = IClass != EClass;
2379   bool LeaderChanged = LeaderChanges.erase(I);
2380   if (ClassChanged || LeaderChanged) {
2381     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2382                       << *E << "\n");
2383     if (ClassChanged) {
2384       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2385       markPhiOfOpsChanged(E);
2386     }
2387 
2388     markUsersTouched(I);
2389     if (MemoryAccess *MA = getMemoryAccess(I))
2390       markMemoryUsersTouched(MA);
2391     if (auto *CI = dyn_cast<CmpInst>(I))
2392       markPredicateUsersTouched(CI);
2393   }
2394   // If we changed the class of the store, we want to ensure nothing finds the
2395   // old store expression.  In particular, loads do not compare against stored
2396   // value, so they will find old store expressions (and associated class
2397   // mappings) if we leave them in the table.
2398   if (ClassChanged && isa<StoreInst>(I)) {
2399     auto *OldE = ValueToExpression.lookup(I);
2400     // It could just be that the old class died. We don't want to erase it if we
2401     // just moved classes.
2402     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2403       // Erase this as an exact expression to ensure we don't erase expressions
2404       // equivalent to it.
2405       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2406       if (Iter != ExpressionToClass.end())
2407         ExpressionToClass.erase(Iter);
2408     }
2409   }
2410   ValueToExpression[I] = E;
2411 }
2412 
2413 // Process the fact that Edge (from, to) is reachable, including marking
2414 // any newly reachable blocks and instructions for processing.
2415 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2416   // Check if the Edge was reachable before.
2417   if (ReachableEdges.insert({From, To}).second) {
2418     // If this block wasn't reachable before, all instructions are touched.
2419     if (ReachableBlocks.insert(To).second) {
2420       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2421                         << " marked reachable\n");
2422       const auto &InstRange = BlockInstRange.lookup(To);
2423       TouchedInstructions.set(InstRange.first, InstRange.second);
2424     } else {
2425       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2426                         << " was reachable, but new edge {"
2427                         << getBlockName(From) << "," << getBlockName(To)
2428                         << "} to it found\n");
2429 
2430       // We've made an edge reachable to an existing block, which may
2431       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2432       // they are the only thing that depend on new edges. Anything using their
2433       // values will get propagated to if necessary.
2434       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2435         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2436 
2437       // FIXME: We should just add a union op on a Bitvector and
2438       // SparseBitVector.  We can do it word by word faster than we are doing it
2439       // here.
2440       for (auto InstNum : RevisitOnReachabilityChange[To])
2441         TouchedInstructions.set(InstNum);
2442     }
2443   }
2444 }
2445 
2446 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2447 // see if we know some constant value for it already.
2448 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2449   auto Result = lookupOperandLeader(Cond);
2450   return isa<Constant>(Result) ? Result : nullptr;
2451 }
2452 
2453 // Process the outgoing edges of a block for reachability.
2454 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2455   // Evaluate reachability of terminator instruction.
2456   Value *Cond;
2457   BasicBlock *TrueSucc, *FalseSucc;
2458   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2459     Value *CondEvaluated = findConditionEquivalence(Cond);
2460     if (!CondEvaluated) {
2461       if (auto *I = dyn_cast<Instruction>(Cond)) {
2462         SmallPtrSet<Value *, 4> Visited;
2463         auto Res = performSymbolicEvaluation(I, Visited);
2464         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2465           CondEvaluated = CE->getConstantValue();
2466           addAdditionalUsers(Res, I);
2467         } else {
2468           // Did not use simplification result, no need to add the extra
2469           // dependency.
2470           Res.ExtraDep = nullptr;
2471         }
2472       } else if (isa<ConstantInt>(Cond)) {
2473         CondEvaluated = Cond;
2474       }
2475     }
2476     ConstantInt *CI;
2477     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2478       if (CI->isOne()) {
2479         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2480                           << " evaluated to true\n");
2481         updateReachableEdge(B, TrueSucc);
2482       } else if (CI->isZero()) {
2483         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2484                           << " evaluated to false\n");
2485         updateReachableEdge(B, FalseSucc);
2486       }
2487     } else {
2488       updateReachableEdge(B, TrueSucc);
2489       updateReachableEdge(B, FalseSucc);
2490     }
2491   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2492     // For switches, propagate the case values into the case
2493     // destinations.
2494 
2495     Value *SwitchCond = SI->getCondition();
2496     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2497     // See if we were able to turn this switch statement into a constant.
2498     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2499       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2500       // We should be able to get case value for this.
2501       auto Case = *SI->findCaseValue(CondVal);
2502       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2503         // We proved the value is outside of the range of the case.
2504         // We can't do anything other than mark the default dest as reachable,
2505         // and go home.
2506         updateReachableEdge(B, SI->getDefaultDest());
2507         return;
2508       }
2509       // Now get where it goes and mark it reachable.
2510       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2511       updateReachableEdge(B, TargetBlock);
2512     } else {
2513       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2514         BasicBlock *TargetBlock = SI->getSuccessor(i);
2515         updateReachableEdge(B, TargetBlock);
2516       }
2517     }
2518   } else {
2519     // Otherwise this is either unconditional, or a type we have no
2520     // idea about. Just mark successors as reachable.
2521     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2522       BasicBlock *TargetBlock = TI->getSuccessor(i);
2523       updateReachableEdge(B, TargetBlock);
2524     }
2525 
2526     // This also may be a memory defining terminator, in which case, set it
2527     // equivalent only to itself.
2528     //
2529     auto *MA = getMemoryAccess(TI);
2530     if (MA && !isa<MemoryUse>(MA)) {
2531       auto *CC = ensureLeaderOfMemoryClass(MA);
2532       if (setMemoryClass(MA, CC))
2533         markMemoryUsersTouched(MA);
2534     }
2535   }
2536 }
2537 
2538 // Remove the PHI of Ops PHI for I
2539 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2540   InstrDFS.erase(PHITemp);
2541   // It's still a temp instruction. We keep it in the array so it gets erased.
2542   // However, it's no longer used by I, or in the block
2543   TempToBlock.erase(PHITemp);
2544   RealToTemp.erase(I);
2545   // We don't remove the users from the phi node uses. This wastes a little
2546   // time, but such is life.  We could use two sets to track which were there
2547   // are the start of NewGVN, and which were added, but right nowt he cost of
2548   // tracking is more than the cost of checking for more phi of ops.
2549 }
2550 
2551 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2552 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2553                          Instruction *ExistingValue) {
2554   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2555   AllTempInstructions.insert(Op);
2556   TempToBlock[Op] = BB;
2557   RealToTemp[ExistingValue] = Op;
2558   // Add all users to phi node use, as they are now uses of the phi of ops phis
2559   // and may themselves be phi of ops.
2560   for (auto *U : ExistingValue->users())
2561     if (auto *UI = dyn_cast<Instruction>(U))
2562       PHINodeUses.insert(UI);
2563 }
2564 
2565 static bool okayForPHIOfOps(const Instruction *I) {
2566   if (!EnablePhiOfOps)
2567     return false;
2568   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2569          isa<LoadInst>(I);
2570 }
2571 
2572 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2573     Value *V, const BasicBlock *PHIBlock,
2574     SmallPtrSetImpl<const Value *> &Visited,
2575     SmallVectorImpl<Instruction *> &Worklist) {
2576 
2577   if (!isa<Instruction>(V))
2578     return true;
2579   auto OISIt = OpSafeForPHIOfOps.find(V);
2580   if (OISIt != OpSafeForPHIOfOps.end())
2581     return OISIt->second;
2582 
2583   // Keep walking until we either dominate the phi block, or hit a phi, or run
2584   // out of things to check.
2585   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2586     OpSafeForPHIOfOps.insert({V, true});
2587     return true;
2588   }
2589   // PHI in the same block.
2590   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2591     OpSafeForPHIOfOps.insert({V, false});
2592     return false;
2593   }
2594 
2595   auto *OrigI = cast<Instruction>(V);
2596   // When we hit an instruction that reads memory (load, call, etc), we must
2597   // consider any store that may happen in the loop. For now, we assume the
2598   // worst: there is a store in the loop that alias with this read.
2599   // The case where the load is outside the loop is already covered by the
2600   // dominator check above.
2601   // TODO: relax this condition
2602   if (OrigI->mayReadFromMemory())
2603     return false;
2604 
2605   for (auto *Op : OrigI->operand_values()) {
2606     if (!isa<Instruction>(Op))
2607       continue;
2608     // Stop now if we find an unsafe operand.
2609     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2610     if (OISIt != OpSafeForPHIOfOps.end()) {
2611       if (!OISIt->second) {
2612         OpSafeForPHIOfOps.insert({V, false});
2613         return false;
2614       }
2615       continue;
2616     }
2617     if (!Visited.insert(Op).second)
2618       continue;
2619     Worklist.push_back(cast<Instruction>(Op));
2620   }
2621   return true;
2622 }
2623 
2624 // Return true if this operand will be safe to use for phi of ops.
2625 //
2626 // The reason some operands are unsafe is that we are not trying to recursively
2627 // translate everything back through phi nodes.  We actually expect some lookups
2628 // of expressions to fail.  In particular, a lookup where the expression cannot
2629 // exist in the predecessor.  This is true even if the expression, as shown, can
2630 // be determined to be constant.
2631 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2632                                  SmallPtrSetImpl<const Value *> &Visited) {
2633   SmallVector<Instruction *, 4> Worklist;
2634   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2635     return false;
2636   while (!Worklist.empty()) {
2637     auto *I = Worklist.pop_back_val();
2638     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2639       return false;
2640   }
2641   OpSafeForPHIOfOps.insert({V, true});
2642   return true;
2643 }
2644 
2645 // Try to find a leader for instruction TransInst, which is a phi translated
2646 // version of something in our original program.  Visited is used to ensure we
2647 // don't infinite loop during translations of cycles.  OrigInst is the
2648 // instruction in the original program, and PredBB is the predecessor we
2649 // translated it through.
2650 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2651                                  SmallPtrSetImpl<Value *> &Visited,
2652                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2653                                  BasicBlock *PredBB) {
2654   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2655   // Make sure it's marked as a temporary instruction.
2656   AllTempInstructions.insert(TransInst);
2657   // and make sure anything that tries to add it's DFS number is
2658   // redirected to the instruction we are making a phi of ops
2659   // for.
2660   TempToBlock.insert({TransInst, PredBB});
2661   InstrDFS.insert({TransInst, IDFSNum});
2662 
2663   auto Res = performSymbolicEvaluation(TransInst, Visited);
2664   const Expression *E = Res.Expr;
2665   addAdditionalUsers(Res, OrigInst);
2666   InstrDFS.erase(TransInst);
2667   AllTempInstructions.erase(TransInst);
2668   TempToBlock.erase(TransInst);
2669   if (MemAccess)
2670     TempToMemory.erase(TransInst);
2671   if (!E)
2672     return nullptr;
2673   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2674   if (!FoundVal) {
2675     ExpressionToPhiOfOps[E].insert(OrigInst);
2676     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2677                       << " in block " << getBlockName(PredBB) << "\n");
2678     return nullptr;
2679   }
2680   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2681     FoundVal = SI->getValueOperand();
2682   return FoundVal;
2683 }
2684 
2685 // When we see an instruction that is an op of phis, generate the equivalent phi
2686 // of ops form.
2687 const Expression *
2688 NewGVN::makePossiblePHIOfOps(Instruction *I,
2689                              SmallPtrSetImpl<Value *> &Visited) {
2690   if (!okayForPHIOfOps(I))
2691     return nullptr;
2692 
2693   if (!Visited.insert(I).second)
2694     return nullptr;
2695   // For now, we require the instruction be cycle free because we don't
2696   // *always* create a phi of ops for instructions that could be done as phi
2697   // of ops, we only do it if we think it is useful.  If we did do it all the
2698   // time, we could remove the cycle free check.
2699   if (!isCycleFree(I))
2700     return nullptr;
2701 
2702   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2703   // TODO: We don't do phi translation on memory accesses because it's
2704   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2705   // which we don't have a good way of doing ATM.
2706   auto *MemAccess = getMemoryAccess(I);
2707   // If the memory operation is defined by a memory operation this block that
2708   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2709   // can't help, as it would still be killed by that memory operation.
2710   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2711       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2712     return nullptr;
2713 
2714   // Convert op of phis to phi of ops
2715   SmallPtrSet<const Value *, 10> VisitedOps;
2716   SmallVector<Value *, 4> Ops(I->operand_values());
2717   BasicBlock *SamePHIBlock = nullptr;
2718   PHINode *OpPHI = nullptr;
2719   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2720     return nullptr;
2721   for (auto *Op : Ops) {
2722     if (!isa<PHINode>(Op)) {
2723       auto *ValuePHI = RealToTemp.lookup(Op);
2724       if (!ValuePHI)
2725         continue;
2726       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2727       Op = ValuePHI;
2728     }
2729     OpPHI = cast<PHINode>(Op);
2730     if (!SamePHIBlock) {
2731       SamePHIBlock = getBlockForValue(OpPHI);
2732     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2733       LLVM_DEBUG(
2734           dbgs()
2735           << "PHIs for operands are not all in the same block, aborting\n");
2736       return nullptr;
2737     }
2738     // No point in doing this for one-operand phis.
2739     if (OpPHI->getNumOperands() == 1) {
2740       OpPHI = nullptr;
2741       continue;
2742     }
2743   }
2744 
2745   if (!OpPHI)
2746     return nullptr;
2747 
2748   SmallVector<ValPair, 4> PHIOps;
2749   SmallPtrSet<Value *, 4> Deps;
2750   auto *PHIBlock = getBlockForValue(OpPHI);
2751   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2752   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2753     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2754     Value *FoundVal = nullptr;
2755     SmallPtrSet<Value *, 4> CurrentDeps;
2756     // We could just skip unreachable edges entirely but it's tricky to do
2757     // with rewriting existing phi nodes.
2758     if (ReachableEdges.count({PredBB, PHIBlock})) {
2759       // Clone the instruction, create an expression from it that is
2760       // translated back into the predecessor, and see if we have a leader.
2761       Instruction *ValueOp = I->clone();
2762       if (MemAccess)
2763         TempToMemory.insert({ValueOp, MemAccess});
2764       bool SafeForPHIOfOps = true;
2765       VisitedOps.clear();
2766       for (auto &Op : ValueOp->operands()) {
2767         auto *OrigOp = &*Op;
2768         // When these operand changes, it could change whether there is a
2769         // leader for us or not, so we have to add additional users.
2770         if (isa<PHINode>(Op)) {
2771           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2772           if (Op != OrigOp && Op != I)
2773             CurrentDeps.insert(Op);
2774         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2775           if (getBlockForValue(ValuePHI) == PHIBlock)
2776             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2777         }
2778         // If we phi-translated the op, it must be safe.
2779         SafeForPHIOfOps =
2780             SafeForPHIOfOps &&
2781             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2782       }
2783       // FIXME: For those things that are not safe we could generate
2784       // expressions all the way down, and see if this comes out to a
2785       // constant.  For anything where that is true, and unsafe, we should
2786       // have made a phi-of-ops (or value numbered it equivalent to something)
2787       // for the pieces already.
2788       FoundVal = !SafeForPHIOfOps ? nullptr
2789                                   : findLeaderForInst(ValueOp, Visited,
2790                                                       MemAccess, I, PredBB);
2791       ValueOp->deleteValue();
2792       if (!FoundVal) {
2793         // We failed to find a leader for the current ValueOp, but this might
2794         // change in case of the translated operands change.
2795         if (SafeForPHIOfOps)
2796           for (auto Dep : CurrentDeps)
2797             addAdditionalUsers(Dep, I);
2798 
2799         return nullptr;
2800       }
2801       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2802     } else {
2803       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2804                         << getBlockName(PredBB)
2805                         << " because the block is unreachable\n");
2806       FoundVal = PoisonValue::get(I->getType());
2807       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2808     }
2809 
2810     PHIOps.push_back({FoundVal, PredBB});
2811     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2812                       << getBlockName(PredBB) << "\n");
2813   }
2814   for (auto Dep : Deps)
2815     addAdditionalUsers(Dep, I);
2816   sortPHIOps(PHIOps);
2817   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2818   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2819     LLVM_DEBUG(
2820         dbgs()
2821         << "Not creating real PHI of ops because it simplified to existing "
2822            "value or constant\n");
2823     // We have leaders for all operands, but do not create a real PHI node with
2824     // those leaders as operands, so the link between the operands and the
2825     // PHI-of-ops is not materialized in the IR. If any of those leaders
2826     // changes, the PHI-of-op may change also, so we need to add the operands as
2827     // additional users.
2828     for (auto &O : PHIOps)
2829       addAdditionalUsers(O.first, I);
2830 
2831     return E;
2832   }
2833   auto *ValuePHI = RealToTemp.lookup(I);
2834   bool NewPHI = false;
2835   if (!ValuePHI) {
2836     ValuePHI =
2837         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2838     addPhiOfOps(ValuePHI, PHIBlock, I);
2839     NewPHI = true;
2840     NumGVNPHIOfOpsCreated++;
2841   }
2842   if (NewPHI) {
2843     for (auto PHIOp : PHIOps)
2844       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2845   } else {
2846     TempToBlock[ValuePHI] = PHIBlock;
2847     unsigned int i = 0;
2848     for (auto PHIOp : PHIOps) {
2849       ValuePHI->setIncomingValue(i, PHIOp.first);
2850       ValuePHI->setIncomingBlock(i, PHIOp.second);
2851       ++i;
2852     }
2853   }
2854   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2855   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2856                     << "\n");
2857 
2858   return E;
2859 }
2860 
2861 // The algorithm initially places the values of the routine in the TOP
2862 // congruence class. The leader of TOP is the undetermined value `poison`.
2863 // When the algorithm has finished, values still in TOP are unreachable.
2864 void NewGVN::initializeCongruenceClasses(Function &F) {
2865   NextCongruenceNum = 0;
2866 
2867   // Note that even though we use the live on entry def as a representative
2868   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2869   // have no real equivalent to poison for MemoryAccesses, and so we really
2870   // should be checking whether the MemoryAccess is top if we want to know if it
2871   // is equivalent to everything.  Otherwise, what this really signifies is that
2872   // the access "it reaches all the way back to the beginning of the function"
2873 
2874   // Initialize all other instructions to be in TOP class.
2875   TOPClass = createCongruenceClass(nullptr, nullptr);
2876   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2877   //  The live on entry def gets put into it's own class
2878   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2879       createMemoryClass(MSSA->getLiveOnEntryDef());
2880 
2881   for (auto DTN : nodes(DT)) {
2882     BasicBlock *BB = DTN->getBlock();
2883     // All MemoryAccesses are equivalent to live on entry to start. They must
2884     // be initialized to something so that initial changes are noticed. For
2885     // the maximal answer, we initialize them all to be the same as
2886     // liveOnEntry.
2887     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2888     if (MemoryBlockDefs)
2889       for (const auto &Def : *MemoryBlockDefs) {
2890         MemoryAccessToClass[&Def] = TOPClass;
2891         auto *MD = dyn_cast<MemoryDef>(&Def);
2892         // Insert the memory phis into the member list.
2893         if (!MD) {
2894           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2895           TOPClass->memory_insert(MP);
2896           MemoryPhiState.insert({MP, MPS_TOP});
2897         }
2898 
2899         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2900           TOPClass->incStoreCount();
2901       }
2902 
2903     // FIXME: This is trying to discover which instructions are uses of phi
2904     // nodes.  We should move this into one of the myriad of places that walk
2905     // all the operands already.
2906     for (auto &I : *BB) {
2907       if (isa<PHINode>(&I))
2908         for (auto *U : I.users())
2909           if (auto *UInst = dyn_cast<Instruction>(U))
2910             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2911               PHINodeUses.insert(UInst);
2912       // Don't insert void terminators into the class. We don't value number
2913       // them, and they just end up sitting in TOP.
2914       if (I.isTerminator() && I.getType()->isVoidTy())
2915         continue;
2916       TOPClass->insert(&I);
2917       ValueToClass[&I] = TOPClass;
2918     }
2919   }
2920 
2921   // Initialize arguments to be in their own unique congruence classes
2922   for (auto &FA : F.args())
2923     createSingletonCongruenceClass(&FA);
2924 }
2925 
2926 void NewGVN::cleanupTables() {
2927   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2928     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2929                       << " has " << CongruenceClasses[i]->size()
2930                       << " members\n");
2931     // Make sure we delete the congruence class (probably worth switching to
2932     // a unique_ptr at some point.
2933     delete CongruenceClasses[i];
2934     CongruenceClasses[i] = nullptr;
2935   }
2936 
2937   // Destroy the value expressions
2938   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2939                                          AllTempInstructions.end());
2940   AllTempInstructions.clear();
2941 
2942   // We have to drop all references for everything first, so there are no uses
2943   // left as we delete them.
2944   for (auto *I : TempInst) {
2945     I->dropAllReferences();
2946   }
2947 
2948   while (!TempInst.empty()) {
2949     auto *I = TempInst.pop_back_val();
2950     I->deleteValue();
2951   }
2952 
2953   ValueToClass.clear();
2954   ArgRecycler.clear(ExpressionAllocator);
2955   ExpressionAllocator.Reset();
2956   CongruenceClasses.clear();
2957   ExpressionToClass.clear();
2958   ValueToExpression.clear();
2959   RealToTemp.clear();
2960   AdditionalUsers.clear();
2961   ExpressionToPhiOfOps.clear();
2962   TempToBlock.clear();
2963   TempToMemory.clear();
2964   PHINodeUses.clear();
2965   OpSafeForPHIOfOps.clear();
2966   ReachableBlocks.clear();
2967   ReachableEdges.clear();
2968 #ifndef NDEBUG
2969   ProcessedCount.clear();
2970 #endif
2971   InstrDFS.clear();
2972   InstructionsToErase.clear();
2973   DFSToInstr.clear();
2974   BlockInstRange.clear();
2975   TouchedInstructions.clear();
2976   MemoryAccessToClass.clear();
2977   PredicateToUsers.clear();
2978   MemoryToUsers.clear();
2979   RevisitOnReachabilityChange.clear();
2980   IntrinsicInstPred.clear();
2981 }
2982 
2983 // Assign local DFS number mapping to instructions, and leave space for Value
2984 // PHI's.
2985 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2986                                                        unsigned Start) {
2987   unsigned End = Start;
2988   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2989     InstrDFS[MemPhi] = End++;
2990     DFSToInstr.emplace_back(MemPhi);
2991   }
2992 
2993   // Then the real block goes next.
2994   for (auto &I : *B) {
2995     // There's no need to call isInstructionTriviallyDead more than once on
2996     // an instruction. Therefore, once we know that an instruction is dead
2997     // we change its DFS number so that it doesn't get value numbered.
2998     if (isInstructionTriviallyDead(&I, TLI)) {
2999       InstrDFS[&I] = 0;
3000       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3001       markInstructionForDeletion(&I);
3002       continue;
3003     }
3004     if (isa<PHINode>(&I))
3005       RevisitOnReachabilityChange[B].set(End);
3006     InstrDFS[&I] = End++;
3007     DFSToInstr.emplace_back(&I);
3008   }
3009 
3010   // All of the range functions taken half-open ranges (open on the end side).
3011   // So we do not subtract one from count, because at this point it is one
3012   // greater than the last instruction.
3013   return std::make_pair(Start, End);
3014 }
3015 
3016 void NewGVN::updateProcessedCount(const Value *V) {
3017 #ifndef NDEBUG
3018   if (ProcessedCount.count(V) == 0) {
3019     ProcessedCount.insert({V, 1});
3020   } else {
3021     ++ProcessedCount[V];
3022     assert(ProcessedCount[V] < 100 &&
3023            "Seem to have processed the same Value a lot");
3024   }
3025 #endif
3026 }
3027 
3028 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3029 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3030   // If all the arguments are the same, the MemoryPhi has the same value as the
3031   // argument.  Filter out unreachable blocks and self phis from our operands.
3032   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3033   // self-phi checking.
3034   const BasicBlock *PHIBlock = MP->getBlock();
3035   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3036     return cast<MemoryAccess>(U) != MP &&
3037            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3038            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3039   });
3040   // If all that is left is nothing, our memoryphi is poison. We keep it as
3041   // InitialClass.  Note: The only case this should happen is if we have at
3042   // least one self-argument.
3043   if (Filtered.begin() == Filtered.end()) {
3044     if (setMemoryClass(MP, TOPClass))
3045       markMemoryUsersTouched(MP);
3046     return;
3047   }
3048 
3049   // Transform the remaining operands into operand leaders.
3050   // FIXME: mapped_iterator should have a range version.
3051   auto LookupFunc = [&](const Use &U) {
3052     return lookupMemoryLeader(cast<MemoryAccess>(U));
3053   };
3054   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3055   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3056 
3057   // and now check if all the elements are equal.
3058   // Sadly, we can't use std::equals since these are random access iterators.
3059   const auto *AllSameValue = *MappedBegin;
3060   ++MappedBegin;
3061   bool AllEqual = std::all_of(
3062       MappedBegin, MappedEnd,
3063       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3064 
3065   if (AllEqual)
3066     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3067                       << "\n");
3068   else
3069     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3070   // If it's equal to something, it's in that class. Otherwise, it has to be in
3071   // a class where it is the leader (other things may be equivalent to it, but
3072   // it needs to start off in its own class, which means it must have been the
3073   // leader, and it can't have stopped being the leader because it was never
3074   // removed).
3075   CongruenceClass *CC =
3076       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3077   auto OldState = MemoryPhiState.lookup(MP);
3078   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3079   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3080   MemoryPhiState[MP] = NewState;
3081   if (setMemoryClass(MP, CC) || OldState != NewState)
3082     markMemoryUsersTouched(MP);
3083 }
3084 
3085 // Value number a single instruction, symbolically evaluating, performing
3086 // congruence finding, and updating mappings.
3087 void NewGVN::valueNumberInstruction(Instruction *I) {
3088   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3089   if (!I->isTerminator()) {
3090     const Expression *Symbolized = nullptr;
3091     SmallPtrSet<Value *, 2> Visited;
3092     if (DebugCounter::shouldExecute(VNCounter)) {
3093       auto Res = performSymbolicEvaluation(I, Visited);
3094       Symbolized = Res.Expr;
3095       addAdditionalUsers(Res, I);
3096 
3097       // Make a phi of ops if necessary
3098       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3099           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3100         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3101         // If we created a phi of ops, use it.
3102         // If we couldn't create one, make sure we don't leave one lying around
3103         if (PHIE) {
3104           Symbolized = PHIE;
3105         } else if (auto *Op = RealToTemp.lookup(I)) {
3106           removePhiOfOps(I, Op);
3107         }
3108       }
3109     } else {
3110       // Mark the instruction as unused so we don't value number it again.
3111       InstrDFS[I] = 0;
3112     }
3113     // If we couldn't come up with a symbolic expression, use the unknown
3114     // expression
3115     if (Symbolized == nullptr)
3116       Symbolized = createUnknownExpression(I);
3117     performCongruenceFinding(I, Symbolized);
3118   } else {
3119     // Handle terminators that return values. All of them produce values we
3120     // don't currently understand.  We don't place non-value producing
3121     // terminators in a class.
3122     if (!I->getType()->isVoidTy()) {
3123       auto *Symbolized = createUnknownExpression(I);
3124       performCongruenceFinding(I, Symbolized);
3125     }
3126     processOutgoingEdges(I, I->getParent());
3127   }
3128 }
3129 
3130 // Check if there is a path, using single or equal argument phi nodes, from
3131 // First to Second.
3132 bool NewGVN::singleReachablePHIPath(
3133     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3134     const MemoryAccess *Second) const {
3135   if (First == Second)
3136     return true;
3137   if (MSSA->isLiveOnEntryDef(First))
3138     return false;
3139 
3140   // This is not perfect, but as we're just verifying here, we can live with
3141   // the loss of precision. The real solution would be that of doing strongly
3142   // connected component finding in this routine, and it's probably not worth
3143   // the complexity for the time being. So, we just keep a set of visited
3144   // MemoryAccess and return true when we hit a cycle.
3145   if (Visited.count(First))
3146     return true;
3147   Visited.insert(First);
3148 
3149   const auto *EndDef = First;
3150   for (auto *ChainDef : optimized_def_chain(First)) {
3151     if (ChainDef == Second)
3152       return true;
3153     if (MSSA->isLiveOnEntryDef(ChainDef))
3154       return false;
3155     EndDef = ChainDef;
3156   }
3157   auto *MP = cast<MemoryPhi>(EndDef);
3158   auto ReachableOperandPred = [&](const Use &U) {
3159     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3160   };
3161   auto FilteredPhiArgs =
3162       make_filter_range(MP->operands(), ReachableOperandPred);
3163   SmallVector<const Value *, 32> OperandList;
3164   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3165   bool Okay = is_splat(OperandList);
3166   if (Okay)
3167     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3168                                   Second);
3169   return false;
3170 }
3171 
3172 // Verify the that the memory equivalence table makes sense relative to the
3173 // congruence classes.  Note that this checking is not perfect, and is currently
3174 // subject to very rare false negatives. It is only useful for
3175 // testing/debugging.
3176 void NewGVN::verifyMemoryCongruency() const {
3177 #ifndef NDEBUG
3178   // Verify that the memory table equivalence and memory member set match
3179   for (const auto *CC : CongruenceClasses) {
3180     if (CC == TOPClass || CC->isDead())
3181       continue;
3182     if (CC->getStoreCount() != 0) {
3183       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3184              "Any class with a store as a leader should have a "
3185              "representative stored value");
3186       assert(CC->getMemoryLeader() &&
3187              "Any congruence class with a store should have a "
3188              "representative access");
3189     }
3190 
3191     if (CC->getMemoryLeader())
3192       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3193              "Representative MemoryAccess does not appear to be reverse "
3194              "mapped properly");
3195     for (auto M : CC->memory())
3196       assert(MemoryAccessToClass.lookup(M) == CC &&
3197              "Memory member does not appear to be reverse mapped properly");
3198   }
3199 
3200   // Anything equivalent in the MemoryAccess table should be in the same
3201   // congruence class.
3202 
3203   // Filter out the unreachable and trivially dead entries, because they may
3204   // never have been updated if the instructions were not processed.
3205   auto ReachableAccessPred =
3206       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3207         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3208         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3209             MemoryToDFSNum(Pair.first) == 0)
3210           return false;
3211         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3212           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3213 
3214         // We could have phi nodes which operands are all trivially dead,
3215         // so we don't process them.
3216         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3217           for (auto &U : MemPHI->incoming_values()) {
3218             if (auto *I = dyn_cast<Instruction>(&*U)) {
3219               if (!isInstructionTriviallyDead(I))
3220                 return true;
3221             }
3222           }
3223           return false;
3224         }
3225 
3226         return true;
3227       };
3228 
3229   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3230   for (auto KV : Filtered) {
3231     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3232       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3233       if (FirstMUD && SecondMUD) {
3234         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3235         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3236                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3237                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3238                "The instructions for these memory operations should have "
3239                "been in the same congruence class or reachable through"
3240                "a single argument phi");
3241       }
3242     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3243       // We can only sanely verify that MemoryDefs in the operand list all have
3244       // the same class.
3245       auto ReachableOperandPred = [&](const Use &U) {
3246         return ReachableEdges.count(
3247                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3248                isa<MemoryDef>(U);
3249 
3250       };
3251       // All arguments should in the same class, ignoring unreachable arguments
3252       auto FilteredPhiArgs =
3253           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3254       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3255       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3256                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3257                        const MemoryDef *MD = cast<MemoryDef>(U);
3258                        return ValueToClass.lookup(MD->getMemoryInst());
3259                      });
3260       assert(is_splat(PhiOpClasses) &&
3261              "All MemoryPhi arguments should be in the same class");
3262     }
3263   }
3264 #endif
3265 }
3266 
3267 // Verify that the sparse propagation we did actually found the maximal fixpoint
3268 // We do this by storing the value to class mapping, touching all instructions,
3269 // and redoing the iteration to see if anything changed.
3270 void NewGVN::verifyIterationSettled(Function &F) {
3271 #ifndef NDEBUG
3272   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3273   if (DebugCounter::isCounterSet(VNCounter))
3274     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3275 
3276   // Note that we have to store the actual classes, as we may change existing
3277   // classes during iteration.  This is because our memory iteration propagation
3278   // is not perfect, and so may waste a little work.  But it should generate
3279   // exactly the same congruence classes we have now, with different IDs.
3280   std::map<const Value *, CongruenceClass> BeforeIteration;
3281 
3282   for (auto &KV : ValueToClass) {
3283     if (auto *I = dyn_cast<Instruction>(KV.first))
3284       // Skip unused/dead instructions.
3285       if (InstrToDFSNum(I) == 0)
3286         continue;
3287     BeforeIteration.insert({KV.first, *KV.second});
3288   }
3289 
3290   TouchedInstructions.set();
3291   TouchedInstructions.reset(0);
3292   iterateTouchedInstructions();
3293   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3294       EqualClasses;
3295   for (const auto &KV : ValueToClass) {
3296     if (auto *I = dyn_cast<Instruction>(KV.first))
3297       // Skip unused/dead instructions.
3298       if (InstrToDFSNum(I) == 0)
3299         continue;
3300     // We could sink these uses, but i think this adds a bit of clarity here as
3301     // to what we are comparing.
3302     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3303     auto *AfterCC = KV.second;
3304     // Note that the classes can't change at this point, so we memoize the set
3305     // that are equal.
3306     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3307       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3308              "Value number changed after main loop completed!");
3309       EqualClasses.insert({BeforeCC, AfterCC});
3310     }
3311   }
3312 #endif
3313 }
3314 
3315 // Verify that for each store expression in the expression to class mapping,
3316 // only the latest appears, and multiple ones do not appear.
3317 // Because loads do not use the stored value when doing equality with stores,
3318 // if we don't erase the old store expressions from the table, a load can find
3319 // a no-longer valid StoreExpression.
3320 void NewGVN::verifyStoreExpressions() const {
3321 #ifndef NDEBUG
3322   // This is the only use of this, and it's not worth defining a complicated
3323   // densemapinfo hash/equality function for it.
3324   std::set<
3325       std::pair<const Value *,
3326                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3327       StoreExpressionSet;
3328   for (const auto &KV : ExpressionToClass) {
3329     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3330       // Make sure a version that will conflict with loads is not already there
3331       auto Res = StoreExpressionSet.insert(
3332           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3333                                               SE->getStoredValue())});
3334       bool Okay = Res.second;
3335       // It's okay to have the same expression already in there if it is
3336       // identical in nature.
3337       // This can happen when the leader of the stored value changes over time.
3338       if (!Okay)
3339         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3340                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3341                 lookupOperandLeader(SE->getStoredValue()));
3342       assert(Okay && "Stored expression conflict exists in expression table");
3343       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3344       assert(ValueExpr && ValueExpr->equals(*SE) &&
3345              "StoreExpression in ExpressionToClass is not latest "
3346              "StoreExpression for value");
3347     }
3348   }
3349 #endif
3350 }
3351 
3352 // This is the main value numbering loop, it iterates over the initial touched
3353 // instruction set, propagating value numbers, marking things touched, etc,
3354 // until the set of touched instructions is completely empty.
3355 void NewGVN::iterateTouchedInstructions() {
3356   unsigned int Iterations = 0;
3357   // Figure out where touchedinstructions starts
3358   int FirstInstr = TouchedInstructions.find_first();
3359   // Nothing set, nothing to iterate, just return.
3360   if (FirstInstr == -1)
3361     return;
3362   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3363   while (TouchedInstructions.any()) {
3364     ++Iterations;
3365     // Walk through all the instructions in all the blocks in RPO.
3366     // TODO: As we hit a new block, we should push and pop equalities into a
3367     // table lookupOperandLeader can use, to catch things PredicateInfo
3368     // might miss, like edge-only equivalences.
3369     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3370 
3371       // This instruction was found to be dead. We don't bother looking
3372       // at it again.
3373       if (InstrNum == 0) {
3374         TouchedInstructions.reset(InstrNum);
3375         continue;
3376       }
3377 
3378       Value *V = InstrFromDFSNum(InstrNum);
3379       const BasicBlock *CurrBlock = getBlockForValue(V);
3380 
3381       // If we hit a new block, do reachability processing.
3382       if (CurrBlock != LastBlock) {
3383         LastBlock = CurrBlock;
3384         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3385         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3386 
3387         // If it's not reachable, erase any touched instructions and move on.
3388         if (!BlockReachable) {
3389           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3390           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3391                             << getBlockName(CurrBlock)
3392                             << " because it is unreachable\n");
3393           continue;
3394         }
3395         updateProcessedCount(CurrBlock);
3396       }
3397       // Reset after processing (because we may mark ourselves as touched when
3398       // we propagate equalities).
3399       TouchedInstructions.reset(InstrNum);
3400 
3401       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3402         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3403         valueNumberMemoryPhi(MP);
3404       } else if (auto *I = dyn_cast<Instruction>(V)) {
3405         valueNumberInstruction(I);
3406       } else {
3407         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3408       }
3409       updateProcessedCount(V);
3410     }
3411   }
3412   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3413 }
3414 
3415 // This is the main transformation entry point.
3416 bool NewGVN::runGVN() {
3417   if (DebugCounter::isCounterSet(VNCounter))
3418     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3419   bool Changed = false;
3420   NumFuncArgs = F.arg_size();
3421   MSSAWalker = MSSA->getWalker();
3422   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3423 
3424   // Count number of instructions for sizing of hash tables, and come
3425   // up with a global dfs numbering for instructions.
3426   unsigned ICount = 1;
3427   // Add an empty instruction to account for the fact that we start at 1
3428   DFSToInstr.emplace_back(nullptr);
3429   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3430   // same as dominator tree order, particularly with regard whether backedges
3431   // get visited first or second, given a block with multiple successors.
3432   // If we visit in the wrong order, we will end up performing N times as many
3433   // iterations.
3434   // The dominator tree does guarantee that, for a given dom tree node, it's
3435   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3436   // the siblings.
3437   ReversePostOrderTraversal<Function *> RPOT(&F);
3438   unsigned Counter = 0;
3439   for (auto &B : RPOT) {
3440     auto *Node = DT->getNode(B);
3441     assert(Node && "RPO and Dominator tree should have same reachability");
3442     RPOOrdering[Node] = ++Counter;
3443   }
3444   // Sort dominator tree children arrays into RPO.
3445   for (auto &B : RPOT) {
3446     auto *Node = DT->getNode(B);
3447     if (Node->getNumChildren() > 1)
3448       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3449         return RPOOrdering[A] < RPOOrdering[B];
3450       });
3451   }
3452 
3453   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3454   for (auto DTN : depth_first(DT->getRootNode())) {
3455     BasicBlock *B = DTN->getBlock();
3456     const auto &BlockRange = assignDFSNumbers(B, ICount);
3457     BlockInstRange.insert({B, BlockRange});
3458     ICount += BlockRange.second - BlockRange.first;
3459   }
3460   initializeCongruenceClasses(F);
3461 
3462   TouchedInstructions.resize(ICount);
3463   // Ensure we don't end up resizing the expressionToClass map, as
3464   // that can be quite expensive. At most, we have one expression per
3465   // instruction.
3466   ExpressionToClass.reserve(ICount);
3467 
3468   // Initialize the touched instructions to include the entry block.
3469   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3470   TouchedInstructions.set(InstRange.first, InstRange.second);
3471   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3472                     << " marked reachable\n");
3473   ReachableBlocks.insert(&F.getEntryBlock());
3474 
3475   iterateTouchedInstructions();
3476   verifyMemoryCongruency();
3477   verifyIterationSettled(F);
3478   verifyStoreExpressions();
3479 
3480   Changed |= eliminateInstructions(F);
3481 
3482   // Delete all instructions marked for deletion.
3483   for (Instruction *ToErase : InstructionsToErase) {
3484     if (!ToErase->use_empty())
3485       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3486 
3487     assert(ToErase->getParent() &&
3488            "BB containing ToErase deleted unexpectedly!");
3489     ToErase->eraseFromParent();
3490   }
3491   Changed |= !InstructionsToErase.empty();
3492 
3493   // Delete all unreachable blocks.
3494   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3495     return !ReachableBlocks.count(&BB);
3496   };
3497 
3498   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3499     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3500                       << " is unreachable\n");
3501     deleteInstructionsInBlock(&BB);
3502     Changed = true;
3503   }
3504 
3505   cleanupTables();
3506   return Changed;
3507 }
3508 
3509 struct NewGVN::ValueDFS {
3510   int DFSIn = 0;
3511   int DFSOut = 0;
3512   int LocalNum = 0;
3513 
3514   // Only one of Def and U will be set.
3515   // The bool in the Def tells us whether the Def is the stored value of a
3516   // store.
3517   PointerIntPair<Value *, 1, bool> Def;
3518   Use *U = nullptr;
3519 
3520   bool operator<(const ValueDFS &Other) const {
3521     // It's not enough that any given field be less than - we have sets
3522     // of fields that need to be evaluated together to give a proper ordering.
3523     // For example, if you have;
3524     // DFS (1, 3)
3525     // Val 0
3526     // DFS (1, 2)
3527     // Val 50
3528     // We want the second to be less than the first, but if we just go field
3529     // by field, we will get to Val 0 < Val 50 and say the first is less than
3530     // the second. We only want it to be less than if the DFS orders are equal.
3531     //
3532     // Each LLVM instruction only produces one value, and thus the lowest-level
3533     // differentiator that really matters for the stack (and what we use as as a
3534     // replacement) is the local dfs number.
3535     // Everything else in the structure is instruction level, and only affects
3536     // the order in which we will replace operands of a given instruction.
3537     //
3538     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3539     // the order of replacement of uses does not matter.
3540     // IE given,
3541     //  a = 5
3542     //  b = a + a
3543     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3544     // localnum.
3545     // The .val will be the same as well.
3546     // The .u's will be different.
3547     // You will replace both, and it does not matter what order you replace them
3548     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3549     // operand 2).
3550     // Similarly for the case of same dfsin, dfsout, localnum, but different
3551     // .val's
3552     //  a = 5
3553     //  b  = 6
3554     //  c = a + b
3555     // in c, we will a valuedfs for a, and one for b,with everything the same
3556     // but .val  and .u.
3557     // It does not matter what order we replace these operands in.
3558     // You will always end up with the same IR, and this is guaranteed.
3559     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3560            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3561                     Other.U);
3562   }
3563 };
3564 
3565 // This function converts the set of members for a congruence class from values,
3566 // to sets of defs and uses with associated DFS info.  The total number of
3567 // reachable uses for each value is stored in UseCount, and instructions that
3568 // seem
3569 // dead (have no non-dead uses) are stored in ProbablyDead.
3570 void NewGVN::convertClassToDFSOrdered(
3571     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3572     DenseMap<const Value *, unsigned int> &UseCounts,
3573     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3574   for (auto D : Dense) {
3575     // First add the value.
3576     BasicBlock *BB = getBlockForValue(D);
3577     // Constants are handled prior to ever calling this function, so
3578     // we should only be left with instructions as members.
3579     assert(BB && "Should have figured out a basic block for value");
3580     ValueDFS VDDef;
3581     DomTreeNode *DomNode = DT->getNode(BB);
3582     VDDef.DFSIn = DomNode->getDFSNumIn();
3583     VDDef.DFSOut = DomNode->getDFSNumOut();
3584     // If it's a store, use the leader of the value operand, if it's always
3585     // available, or the value operand.  TODO: We could do dominance checks to
3586     // find a dominating leader, but not worth it ATM.
3587     if (auto *SI = dyn_cast<StoreInst>(D)) {
3588       auto Leader = lookupOperandLeader(SI->getValueOperand());
3589       if (alwaysAvailable(Leader)) {
3590         VDDef.Def.setPointer(Leader);
3591       } else {
3592         VDDef.Def.setPointer(SI->getValueOperand());
3593         VDDef.Def.setInt(true);
3594       }
3595     } else {
3596       VDDef.Def.setPointer(D);
3597     }
3598     assert(isa<Instruction>(D) &&
3599            "The dense set member should always be an instruction");
3600     Instruction *Def = cast<Instruction>(D);
3601     VDDef.LocalNum = InstrToDFSNum(D);
3602     DFSOrderedSet.push_back(VDDef);
3603     // If there is a phi node equivalent, add it
3604     if (auto *PN = RealToTemp.lookup(Def)) {
3605       auto *PHIE =
3606           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3607       if (PHIE) {
3608         VDDef.Def.setInt(false);
3609         VDDef.Def.setPointer(PN);
3610         VDDef.LocalNum = 0;
3611         DFSOrderedSet.push_back(VDDef);
3612       }
3613     }
3614 
3615     unsigned int UseCount = 0;
3616     // Now add the uses.
3617     for (auto &U : Def->uses()) {
3618       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3619         // Don't try to replace into dead uses
3620         if (InstructionsToErase.count(I))
3621           continue;
3622         ValueDFS VDUse;
3623         // Put the phi node uses in the incoming block.
3624         BasicBlock *IBlock;
3625         if (auto *P = dyn_cast<PHINode>(I)) {
3626           IBlock = P->getIncomingBlock(U);
3627           // Make phi node users appear last in the incoming block
3628           // they are from.
3629           VDUse.LocalNum = InstrDFS.size() + 1;
3630         } else {
3631           IBlock = getBlockForValue(I);
3632           VDUse.LocalNum = InstrToDFSNum(I);
3633         }
3634 
3635         // Skip uses in unreachable blocks, as we're going
3636         // to delete them.
3637         if (!ReachableBlocks.contains(IBlock))
3638           continue;
3639 
3640         DomTreeNode *DomNode = DT->getNode(IBlock);
3641         VDUse.DFSIn = DomNode->getDFSNumIn();
3642         VDUse.DFSOut = DomNode->getDFSNumOut();
3643         VDUse.U = &U;
3644         ++UseCount;
3645         DFSOrderedSet.emplace_back(VDUse);
3646       }
3647     }
3648 
3649     // If there are no uses, it's probably dead (but it may have side-effects,
3650     // so not definitely dead. Otherwise, store the number of uses so we can
3651     // track if it becomes dead later).
3652     if (UseCount == 0)
3653       ProbablyDead.insert(Def);
3654     else
3655       UseCounts[Def] = UseCount;
3656   }
3657 }
3658 
3659 // This function converts the set of members for a congruence class from values,
3660 // to the set of defs for loads and stores, with associated DFS info.
3661 void NewGVN::convertClassToLoadsAndStores(
3662     const CongruenceClass &Dense,
3663     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3664   for (auto D : Dense) {
3665     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3666       continue;
3667 
3668     BasicBlock *BB = getBlockForValue(D);
3669     ValueDFS VD;
3670     DomTreeNode *DomNode = DT->getNode(BB);
3671     VD.DFSIn = DomNode->getDFSNumIn();
3672     VD.DFSOut = DomNode->getDFSNumOut();
3673     VD.Def.setPointer(D);
3674 
3675     // If it's an instruction, use the real local dfs number.
3676     if (auto *I = dyn_cast<Instruction>(D))
3677       VD.LocalNum = InstrToDFSNum(I);
3678     else
3679       llvm_unreachable("Should have been an instruction");
3680 
3681     LoadsAndStores.emplace_back(VD);
3682   }
3683 }
3684 
3685 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3686   patchReplacementInstruction(I, Repl);
3687   I->replaceAllUsesWith(Repl);
3688 }
3689 
3690 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3691   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3692   ++NumGVNBlocksDeleted;
3693 
3694   // Delete the instructions backwards, as it has a reduced likelihood of having
3695   // to update as many def-use and use-def chains. Start after the terminator.
3696   auto StartPoint = BB->rbegin();
3697   ++StartPoint;
3698   // Note that we explicitly recalculate BB->rend() on each iteration,
3699   // as it may change when we remove the first instruction.
3700   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3701     Instruction &Inst = *I++;
3702     if (!Inst.use_empty())
3703       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3704     if (isa<LandingPadInst>(Inst))
3705       continue;
3706     salvageKnowledge(&Inst, AC);
3707 
3708     Inst.eraseFromParent();
3709     ++NumGVNInstrDeleted;
3710   }
3711   // Now insert something that simplifycfg will turn into an unreachable.
3712   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3713   new StoreInst(PoisonValue::get(Int8Ty),
3714                 Constant::getNullValue(Int8Ty->getPointerTo()),
3715                 BB->getTerminator());
3716 }
3717 
3718 void NewGVN::markInstructionForDeletion(Instruction *I) {
3719   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3720   InstructionsToErase.insert(I);
3721 }
3722 
3723 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3724   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3725   patchAndReplaceAllUsesWith(I, V);
3726   // We save the actual erasing to avoid invalidating memory
3727   // dependencies until we are done with everything.
3728   markInstructionForDeletion(I);
3729 }
3730 
3731 namespace {
3732 
3733 // This is a stack that contains both the value and dfs info of where
3734 // that value is valid.
3735 class ValueDFSStack {
3736 public:
3737   Value *back() const { return ValueStack.back(); }
3738   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3739 
3740   void push_back(Value *V, int DFSIn, int DFSOut) {
3741     ValueStack.emplace_back(V);
3742     DFSStack.emplace_back(DFSIn, DFSOut);
3743   }
3744 
3745   bool empty() const { return DFSStack.empty(); }
3746 
3747   bool isInScope(int DFSIn, int DFSOut) const {
3748     if (empty())
3749       return false;
3750     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3751   }
3752 
3753   void popUntilDFSScope(int DFSIn, int DFSOut) {
3754 
3755     // These two should always be in sync at this point.
3756     assert(ValueStack.size() == DFSStack.size() &&
3757            "Mismatch between ValueStack and DFSStack");
3758     while (
3759         !DFSStack.empty() &&
3760         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3761       DFSStack.pop_back();
3762       ValueStack.pop_back();
3763     }
3764   }
3765 
3766 private:
3767   SmallVector<Value *, 8> ValueStack;
3768   SmallVector<std::pair<int, int>, 8> DFSStack;
3769 };
3770 
3771 } // end anonymous namespace
3772 
3773 // Given an expression, get the congruence class for it.
3774 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3775   if (auto *VE = dyn_cast<VariableExpression>(E))
3776     return ValueToClass.lookup(VE->getVariableValue());
3777   else if (isa<DeadExpression>(E))
3778     return TOPClass;
3779   return ExpressionToClass.lookup(E);
3780 }
3781 
3782 // Given a value and a basic block we are trying to see if it is available in,
3783 // see if the value has a leader available in that block.
3784 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3785                                   const Instruction *OrigInst,
3786                                   const BasicBlock *BB) const {
3787   // It would already be constant if we could make it constant
3788   if (auto *CE = dyn_cast<ConstantExpression>(E))
3789     return CE->getConstantValue();
3790   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3791     auto *V = VE->getVariableValue();
3792     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3793       return VE->getVariableValue();
3794   }
3795 
3796   auto *CC = getClassForExpression(E);
3797   if (!CC)
3798     return nullptr;
3799   if (alwaysAvailable(CC->getLeader()))
3800     return CC->getLeader();
3801 
3802   for (auto Member : *CC) {
3803     auto *MemberInst = dyn_cast<Instruction>(Member);
3804     if (MemberInst == OrigInst)
3805       continue;
3806     // Anything that isn't an instruction is always available.
3807     if (!MemberInst)
3808       return Member;
3809     if (DT->dominates(getBlockForValue(MemberInst), BB))
3810       return Member;
3811   }
3812   return nullptr;
3813 }
3814 
3815 bool NewGVN::eliminateInstructions(Function &F) {
3816   // This is a non-standard eliminator. The normal way to eliminate is
3817   // to walk the dominator tree in order, keeping track of available
3818   // values, and eliminating them.  However, this is mildly
3819   // pointless. It requires doing lookups on every instruction,
3820   // regardless of whether we will ever eliminate it.  For
3821   // instructions part of most singleton congruence classes, we know we
3822   // will never eliminate them.
3823 
3824   // Instead, this eliminator looks at the congruence classes directly, sorts
3825   // them into a DFS ordering of the dominator tree, and then we just
3826   // perform elimination straight on the sets by walking the congruence
3827   // class member uses in order, and eliminate the ones dominated by the
3828   // last member.   This is worst case O(E log E) where E = number of
3829   // instructions in a single congruence class.  In theory, this is all
3830   // instructions.   In practice, it is much faster, as most instructions are
3831   // either in singleton congruence classes or can't possibly be eliminated
3832   // anyway (if there are no overlapping DFS ranges in class).
3833   // When we find something not dominated, it becomes the new leader
3834   // for elimination purposes.
3835   // TODO: If we wanted to be faster, We could remove any members with no
3836   // overlapping ranges while sorting, as we will never eliminate anything
3837   // with those members, as they don't dominate anything else in our set.
3838 
3839   bool AnythingReplaced = false;
3840 
3841   // Since we are going to walk the domtree anyway, and we can't guarantee the
3842   // DFS numbers are updated, we compute some ourselves.
3843   DT->updateDFSNumbers();
3844 
3845   // Go through all of our phi nodes, and kill the arguments associated with
3846   // unreachable edges.
3847   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3848     for (auto &Operand : PHI->incoming_values())
3849       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3850         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3851                           << " for block "
3852                           << getBlockName(PHI->getIncomingBlock(Operand))
3853                           << " with poison due to it being unreachable\n");
3854         Operand.set(PoisonValue::get(PHI->getType()));
3855       }
3856   };
3857   // Replace unreachable phi arguments.
3858   // At this point, RevisitOnReachabilityChange only contains:
3859   //
3860   // 1. PHIs
3861   // 2. Temporaries that will convert to PHIs
3862   // 3. Operations that are affected by an unreachable edge but do not fit into
3863   // 1 or 2 (rare).
3864   // So it is a slight overshoot of what we want. We could make it exact by
3865   // using two SparseBitVectors per block.
3866   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3867   for (auto &KV : ReachableEdges)
3868     ReachablePredCount[KV.getEnd()]++;
3869   for (auto &BBPair : RevisitOnReachabilityChange) {
3870     for (auto InstNum : BBPair.second) {
3871       auto *Inst = InstrFromDFSNum(InstNum);
3872       auto *PHI = dyn_cast<PHINode>(Inst);
3873       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3874       if (!PHI)
3875         continue;
3876       auto *BB = BBPair.first;
3877       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3878         ReplaceUnreachablePHIArgs(PHI, BB);
3879     }
3880   }
3881 
3882   // Map to store the use counts
3883   DenseMap<const Value *, unsigned int> UseCounts;
3884   for (auto *CC : reverse(CongruenceClasses)) {
3885     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3886                       << "\n");
3887     // Track the equivalent store info so we can decide whether to try
3888     // dead store elimination.
3889     SmallVector<ValueDFS, 8> PossibleDeadStores;
3890     SmallPtrSet<Instruction *, 8> ProbablyDead;
3891     if (CC->isDead() || CC->empty())
3892       continue;
3893     // Everything still in the TOP class is unreachable or dead.
3894     if (CC == TOPClass) {
3895       for (auto M : *CC) {
3896         auto *VTE = ValueToExpression.lookup(M);
3897         if (VTE && isa<DeadExpression>(VTE))
3898           markInstructionForDeletion(cast<Instruction>(M));
3899         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3900                 InstructionsToErase.count(cast<Instruction>(M))) &&
3901                "Everything in TOP should be unreachable or dead at this "
3902                "point");
3903       }
3904       continue;
3905     }
3906 
3907     assert(CC->getLeader() && "We should have had a leader");
3908     // If this is a leader that is always available, and it's a
3909     // constant or has no equivalences, just replace everything with
3910     // it. We then update the congruence class with whatever members
3911     // are left.
3912     Value *Leader =
3913         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3914     if (alwaysAvailable(Leader)) {
3915       CongruenceClass::MemberSet MembersLeft;
3916       for (auto M : *CC) {
3917         Value *Member = M;
3918         // Void things have no uses we can replace.
3919         if (Member == Leader || !isa<Instruction>(Member) ||
3920             Member->getType()->isVoidTy()) {
3921           MembersLeft.insert(Member);
3922           continue;
3923         }
3924         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3925                           << *Member << "\n");
3926         auto *I = cast<Instruction>(Member);
3927         assert(Leader != I && "About to accidentally remove our leader");
3928         replaceInstruction(I, Leader);
3929         AnythingReplaced = true;
3930       }
3931       CC->swap(MembersLeft);
3932     } else {
3933       // If this is a singleton, we can skip it.
3934       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3935         // This is a stack because equality replacement/etc may place
3936         // constants in the middle of the member list, and we want to use
3937         // those constant values in preference to the current leader, over
3938         // the scope of those constants.
3939         ValueDFSStack EliminationStack;
3940 
3941         // Convert the members to DFS ordered sets and then merge them.
3942         SmallVector<ValueDFS, 8> DFSOrderedSet;
3943         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3944 
3945         // Sort the whole thing.
3946         llvm::sort(DFSOrderedSet);
3947         for (auto &VD : DFSOrderedSet) {
3948           int MemberDFSIn = VD.DFSIn;
3949           int MemberDFSOut = VD.DFSOut;
3950           Value *Def = VD.Def.getPointer();
3951           bool FromStore = VD.Def.getInt();
3952           Use *U = VD.U;
3953           // We ignore void things because we can't get a value from them.
3954           if (Def && Def->getType()->isVoidTy())
3955             continue;
3956           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3957           if (DefInst && AllTempInstructions.count(DefInst)) {
3958             auto *PN = cast<PHINode>(DefInst);
3959 
3960             // If this is a value phi and that's the expression we used, insert
3961             // it into the program
3962             // remove from temp instruction list.
3963             AllTempInstructions.erase(PN);
3964             auto *DefBlock = getBlockForValue(Def);
3965             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3966                               << " into block "
3967                               << getBlockName(getBlockForValue(Def)) << "\n");
3968             PN->insertBefore(&DefBlock->front());
3969             Def = PN;
3970             NumGVNPHIOfOpsEliminations++;
3971           }
3972 
3973           if (EliminationStack.empty()) {
3974             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3975           } else {
3976             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3977                               << EliminationStack.dfs_back().first << ","
3978                               << EliminationStack.dfs_back().second << ")\n");
3979           }
3980 
3981           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3982                             << MemberDFSOut << ")\n");
3983           // First, we see if we are out of scope or empty.  If so,
3984           // and there equivalences, we try to replace the top of
3985           // stack with equivalences (if it's on the stack, it must
3986           // not have been eliminated yet).
3987           // Then we synchronize to our current scope, by
3988           // popping until we are back within a DFS scope that
3989           // dominates the current member.
3990           // Then, what happens depends on a few factors
3991           // If the stack is now empty, we need to push
3992           // If we have a constant or a local equivalence we want to
3993           // start using, we also push.
3994           // Otherwise, we walk along, processing members who are
3995           // dominated by this scope, and eliminate them.
3996           bool ShouldPush = Def && EliminationStack.empty();
3997           bool OutOfScope =
3998               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3999 
4000           if (OutOfScope || ShouldPush) {
4001             // Sync to our current scope.
4002             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4003             bool ShouldPush = Def && EliminationStack.empty();
4004             if (ShouldPush) {
4005               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4006             }
4007           }
4008 
4009           // Skip the Def's, we only want to eliminate on their uses.  But mark
4010           // dominated defs as dead.
4011           if (Def) {
4012             // For anything in this case, what and how we value number
4013             // guarantees that any side-effets that would have occurred (ie
4014             // throwing, etc) can be proven to either still occur (because it's
4015             // dominated by something that has the same side-effects), or never
4016             // occur.  Otherwise, we would not have been able to prove it value
4017             // equivalent to something else. For these things, we can just mark
4018             // it all dead.  Note that this is different from the "ProbablyDead"
4019             // set, which may not be dominated by anything, and thus, are only
4020             // easy to prove dead if they are also side-effect free. Note that
4021             // because stores are put in terms of the stored value, we skip
4022             // stored values here. If the stored value is really dead, it will
4023             // still be marked for deletion when we process it in its own class.
4024             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4025                 isa<Instruction>(Def) && !FromStore)
4026               markInstructionForDeletion(cast<Instruction>(Def));
4027             continue;
4028           }
4029           // At this point, we know it is a Use we are trying to possibly
4030           // replace.
4031 
4032           assert(isa<Instruction>(U->get()) &&
4033                  "Current def should have been an instruction");
4034           assert(isa<Instruction>(U->getUser()) &&
4035                  "Current user should have been an instruction");
4036 
4037           // If the thing we are replacing into is already marked to be dead,
4038           // this use is dead.  Note that this is true regardless of whether
4039           // we have anything dominating the use or not.  We do this here
4040           // because we are already walking all the uses anyway.
4041           Instruction *InstUse = cast<Instruction>(U->getUser());
4042           if (InstructionsToErase.count(InstUse)) {
4043             auto &UseCount = UseCounts[U->get()];
4044             if (--UseCount == 0) {
4045               ProbablyDead.insert(cast<Instruction>(U->get()));
4046             }
4047           }
4048 
4049           // If we get to this point, and the stack is empty we must have a use
4050           // with nothing we can use to eliminate this use, so just skip it.
4051           if (EliminationStack.empty())
4052             continue;
4053 
4054           Value *DominatingLeader = EliminationStack.back();
4055 
4056           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4057           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4058           if (isSSACopy)
4059             DominatingLeader = II->getOperand(0);
4060 
4061           // Don't replace our existing users with ourselves.
4062           if (U->get() == DominatingLeader)
4063             continue;
4064           LLVM_DEBUG(dbgs()
4065                      << "Found replacement " << *DominatingLeader << " for "
4066                      << *U->get() << " in " << *(U->getUser()) << "\n");
4067 
4068           // If we replaced something in an instruction, handle the patching of
4069           // metadata.  Skip this if we are replacing predicateinfo with its
4070           // original operand, as we already know we can just drop it.
4071           auto *ReplacedInst = cast<Instruction>(U->get());
4072           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4073           if (!PI || DominatingLeader != PI->OriginalOp)
4074             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4075           U->set(DominatingLeader);
4076           // This is now a use of the dominating leader, which means if the
4077           // dominating leader was dead, it's now live!
4078           auto &LeaderUseCount = UseCounts[DominatingLeader];
4079           // It's about to be alive again.
4080           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4081             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4082           // For copy instructions, we use their operand as a leader,
4083           // which means we remove a user of the copy and it may become dead.
4084           if (isSSACopy) {
4085             unsigned &IIUseCount = UseCounts[II];
4086             if (--IIUseCount == 0)
4087               ProbablyDead.insert(II);
4088           }
4089           ++LeaderUseCount;
4090           AnythingReplaced = true;
4091         }
4092       }
4093     }
4094 
4095     // At this point, anything still in the ProbablyDead set is actually dead if
4096     // would be trivially dead.
4097     for (auto *I : ProbablyDead)
4098       if (wouldInstructionBeTriviallyDead(I))
4099         markInstructionForDeletion(I);
4100 
4101     // Cleanup the congruence class.
4102     CongruenceClass::MemberSet MembersLeft;
4103     for (auto *Member : *CC)
4104       if (!isa<Instruction>(Member) ||
4105           !InstructionsToErase.count(cast<Instruction>(Member)))
4106         MembersLeft.insert(Member);
4107     CC->swap(MembersLeft);
4108 
4109     // If we have possible dead stores to look at, try to eliminate them.
4110     if (CC->getStoreCount() > 0) {
4111       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4112       llvm::sort(PossibleDeadStores);
4113       ValueDFSStack EliminationStack;
4114       for (auto &VD : PossibleDeadStores) {
4115         int MemberDFSIn = VD.DFSIn;
4116         int MemberDFSOut = VD.DFSOut;
4117         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4118         if (EliminationStack.empty() ||
4119             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4120           // Sync to our current scope.
4121           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4122           if (EliminationStack.empty()) {
4123             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4124             continue;
4125           }
4126         }
4127         // We already did load elimination, so nothing to do here.
4128         if (isa<LoadInst>(Member))
4129           continue;
4130         assert(!EliminationStack.empty());
4131         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4132         (void)Leader;
4133         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4134         // Member is dominater by Leader, and thus dead
4135         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4136                           << " that is dominated by " << *Leader << "\n");
4137         markInstructionForDeletion(Member);
4138         CC->erase(Member);
4139         ++NumGVNDeadStores;
4140       }
4141     }
4142   }
4143   return AnythingReplaced;
4144 }
4145 
4146 // This function provides global ranking of operations so that we can place them
4147 // in a canonical order.  Note that rank alone is not necessarily enough for a
4148 // complete ordering, as constants all have the same rank.  However, generally,
4149 // we will simplify an operation with all constants so that it doesn't matter
4150 // what order they appear in.
4151 unsigned int NewGVN::getRank(const Value *V) const {
4152   // Prefer constants to undef to anything else
4153   // Undef is a constant, have to check it first.
4154   // Prefer poison to undef as it's less defined.
4155   // Prefer smaller constants to constantexprs
4156   // Note that the order here matters because of class inheritance
4157   if (isa<ConstantExpr>(V))
4158     return 3;
4159   if (isa<PoisonValue>(V))
4160     return 1;
4161   if (isa<UndefValue>(V))
4162     return 2;
4163   if (isa<Constant>(V))
4164     return 0;
4165   if (auto *A = dyn_cast<Argument>(V))
4166     return 4 + A->getArgNo();
4167 
4168   // Need to shift the instruction DFS by number of arguments + 5 to account for
4169   // the constant and argument ranking above.
4170   unsigned Result = InstrToDFSNum(V);
4171   if (Result > 0)
4172     return 5 + NumFuncArgs + Result;
4173   // Unreachable or something else, just return a really large number.
4174   return ~0;
4175 }
4176 
4177 // This is a function that says whether two commutative operations should
4178 // have their order swapped when canonicalizing.
4179 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4180   // Because we only care about a total ordering, and don't rewrite expressions
4181   // in this order, we order by rank, which will give a strict weak ordering to
4182   // everything but constants, and then we order by pointer address.
4183   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4184 }
4185 
4186 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4187                                             const IntrinsicInst *I) const {
4188   auto LookupResult = IntrinsicInstPred.find(I);
4189   if (shouldSwapOperands(A, B)) {
4190     if (LookupResult == IntrinsicInstPred.end())
4191       IntrinsicInstPred.insert({I, B});
4192     else
4193       LookupResult->second = B;
4194     return true;
4195   }
4196 
4197   if (LookupResult != IntrinsicInstPred.end()) {
4198     auto *SeenPredicate = LookupResult->second;
4199     if (SeenPredicate) {
4200       if (SeenPredicate == B)
4201         return true;
4202       else
4203         LookupResult->second = nullptr;
4204     }
4205   }
4206   return false;
4207 }
4208 
4209 namespace {
4210 
4211 class NewGVNLegacyPass : public FunctionPass {
4212 public:
4213   // Pass identification, replacement for typeid.
4214   static char ID;
4215 
4216   NewGVNLegacyPass() : FunctionPass(ID) {
4217     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4218   }
4219 
4220   bool runOnFunction(Function &F) override;
4221 
4222 private:
4223   void getAnalysisUsage(AnalysisUsage &AU) const override {
4224     AU.addRequired<AssumptionCacheTracker>();
4225     AU.addRequired<DominatorTreeWrapperPass>();
4226     AU.addRequired<TargetLibraryInfoWrapperPass>();
4227     AU.addRequired<MemorySSAWrapperPass>();
4228     AU.addRequired<AAResultsWrapperPass>();
4229     AU.addPreserved<DominatorTreeWrapperPass>();
4230     AU.addPreserved<GlobalsAAWrapperPass>();
4231   }
4232 };
4233 
4234 } // end anonymous namespace
4235 
4236 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4237   if (skipFunction(F))
4238     return false;
4239   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4240                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4241                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4242                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4243                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4244                 F.getParent()->getDataLayout())
4245       .runGVN();
4246 }
4247 
4248 char NewGVNLegacyPass::ID = 0;
4249 
4250 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4251                       false, false)
4252 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4253 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4255 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4256 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4257 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4258 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4259                     false)
4260 
4261 // createGVNPass - The public interface to this file.
4262 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4263 
4264 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4265   // Apparently the order in which we get these results matter for
4266   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4267   // the same order here, just in case.
4268   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4269   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4270   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4271   auto &AA = AM.getResult<AAManager>(F);
4272   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4273   bool Changed =
4274       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4275           .runGVN();
4276   if (!Changed)
4277     return PreservedAnalyses::all();
4278   PreservedAnalyses PA;
4279   PA.preserve<DominatorTreeAnalysis>();
4280   return PA;
4281 }
4282