1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/IR/Argument.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/Support/Allocator.h" 97 #include "llvm/Support/ArrayRecycler.h" 98 #include "llvm/Support/Casting.h" 99 #include "llvm/Support/CommandLine.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/DebugCounter.h" 102 #include "llvm/Support/ErrorHandling.h" 103 #include "llvm/Support/PointerLikeTypeTraits.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Transforms/Scalar/GVNExpression.h" 106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/PredicateInfo.h" 109 #include "llvm/Transforms/Utils/VNCoercion.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstdint> 113 #include <iterator> 114 #include <map> 115 #include <memory> 116 #include <set> 117 #include <string> 118 #include <tuple> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 using namespace llvm::GVNExpression; 124 using namespace llvm::VNCoercion; 125 using namespace llvm::PatternMatch; 126 127 #define DEBUG_TYPE "newgvn" 128 129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 133 STATISTIC(NumGVNMaxIterations, 134 "Maximum Number of iterations it took to converge GVN"); 135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 137 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 138 "Number of avoided sorted leader changes"); 139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 141 STATISTIC(NumGVNPHIOfOpsEliminations, 142 "Number of things eliminated using PHI of ops"); 143 DEBUG_COUNTER(VNCounter, "newgvn-vn", 144 "Controls which instructions are value numbered"); 145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 146 "Controls which instructions we create phi of ops for"); 147 // Currently store defining access refinement is too slow due to basicaa being 148 // egregiously slow. This flag lets us keep it working while we work on this 149 // issue. 150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 151 cl::init(false), cl::Hidden); 152 153 /// Currently, the generation "phi of ops" can result in correctness issues. 154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 155 cl::Hidden); 156 157 //===----------------------------------------------------------------------===// 158 // GVN Pass 159 //===----------------------------------------------------------------------===// 160 161 // Anchor methods. 162 namespace llvm { 163 namespace GVNExpression { 164 165 Expression::~Expression() = default; 166 BasicExpression::~BasicExpression() = default; 167 CallExpression::~CallExpression() = default; 168 LoadExpression::~LoadExpression() = default; 169 StoreExpression::~StoreExpression() = default; 170 AggregateValueExpression::~AggregateValueExpression() = default; 171 PHIExpression::~PHIExpression() = default; 172 173 } // end namespace GVNExpression 174 } // end namespace llvm 175 176 namespace { 177 178 // Tarjan's SCC finding algorithm with Nuutila's improvements 179 // SCCIterator is actually fairly complex for the simple thing we want. 180 // It also wants to hand us SCC's that are unrelated to the phi node we ask 181 // about, and have us process them there or risk redoing work. 182 // Graph traits over a filter iterator also doesn't work that well here. 183 // This SCC finder is specialized to walk use-def chains, and only follows 184 // instructions, 185 // not generic values (arguments, etc). 186 struct TarjanSCC { 187 TarjanSCC() : Components(1) {} 188 189 void Start(const Instruction *Start) { 190 if (Root.lookup(Start) == 0) 191 FindSCC(Start); 192 } 193 194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 195 unsigned ComponentID = ValueToComponent.lookup(V); 196 197 assert(ComponentID > 0 && 198 "Asking for a component for a value we never processed"); 199 return Components[ComponentID]; 200 } 201 202 private: 203 void FindSCC(const Instruction *I) { 204 Root[I] = ++DFSNum; 205 // Store the DFS Number we had before it possibly gets incremented. 206 unsigned int OurDFS = DFSNum; 207 for (const auto &Op : I->operands()) { 208 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 209 if (Root.lookup(Op) == 0) 210 FindSCC(InstOp); 211 if (!InComponent.count(Op)) 212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 213 } 214 } 215 // See if we really were the root of a component, by seeing if we still have 216 // our DFSNumber. If we do, we are the root of the component, and we have 217 // completed a component. If we do not, we are not the root of a component, 218 // and belong on the component stack. 219 if (Root.lookup(I) == OurDFS) { 220 unsigned ComponentID = Components.size(); 221 Components.resize(Components.size() + 1); 222 auto &Component = Components.back(); 223 Component.insert(I); 224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 225 InComponent.insert(I); 226 ValueToComponent[I] = ComponentID; 227 // Pop a component off the stack and label it. 228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 229 auto *Member = Stack.back(); 230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 231 Component.insert(Member); 232 InComponent.insert(Member); 233 ValueToComponent[Member] = ComponentID; 234 Stack.pop_back(); 235 } 236 } else { 237 // Part of a component, push to stack 238 Stack.push_back(I); 239 } 240 } 241 242 unsigned int DFSNum = 1; 243 SmallPtrSet<const Value *, 8> InComponent; 244 DenseMap<const Value *, unsigned int> Root; 245 SmallVector<const Value *, 8> Stack; 246 247 // Store the components as vector of ptr sets, because we need the topo order 248 // of SCC's, but not individual member order 249 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 250 251 DenseMap<const Value *, unsigned> ValueToComponent; 252 }; 253 254 // Congruence classes represent the set of expressions/instructions 255 // that are all the same *during some scope in the function*. 256 // That is, because of the way we perform equality propagation, and 257 // because of memory value numbering, it is not correct to assume 258 // you can willy-nilly replace any member with any other at any 259 // point in the function. 260 // 261 // For any Value in the Member set, it is valid to replace any dominated member 262 // with that Value. 263 // 264 // Every congruence class has a leader, and the leader is used to symbolize 265 // instructions in a canonical way (IE every operand of an instruction that is a 266 // member of the same congruence class will always be replaced with leader 267 // during symbolization). To simplify symbolization, we keep the leader as a 268 // constant if class can be proved to be a constant value. Otherwise, the 269 // leader is the member of the value set with the smallest DFS number. Each 270 // congruence class also has a defining expression, though the expression may be 271 // null. If it exists, it can be used for forward propagation and reassociation 272 // of values. 273 274 // For memory, we also track a representative MemoryAccess, and a set of memory 275 // members for MemoryPhis (which have no real instructions). Note that for 276 // memory, it seems tempting to try to split the memory members into a 277 // MemoryCongruenceClass or something. Unfortunately, this does not work 278 // easily. The value numbering of a given memory expression depends on the 279 // leader of the memory congruence class, and the leader of memory congruence 280 // class depends on the value numbering of a given memory expression. This 281 // leads to wasted propagation, and in some cases, missed optimization. For 282 // example: If we had value numbered two stores together before, but now do not, 283 // we move them to a new value congruence class. This in turn will move at one 284 // of the memorydefs to a new memory congruence class. Which in turn, affects 285 // the value numbering of the stores we just value numbered (because the memory 286 // congruence class is part of the value number). So while theoretically 287 // possible to split them up, it turns out to be *incredibly* complicated to get 288 // it to work right, because of the interdependency. While structurally 289 // slightly messier, it is algorithmically much simpler and faster to do what we 290 // do here, and track them both at once in the same class. 291 // Note: The default iterators for this class iterate over values 292 class CongruenceClass { 293 public: 294 using MemberType = Value; 295 using MemberSet = SmallPtrSet<MemberType *, 4>; 296 using MemoryMemberType = MemoryPhi; 297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 298 299 explicit CongruenceClass(unsigned ID) : ID(ID) {} 300 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 301 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 302 303 unsigned getID() const { return ID; } 304 305 // True if this class has no members left. This is mainly used for assertion 306 // purposes, and for skipping empty classes. 307 bool isDead() const { 308 // If it's both dead from a value perspective, and dead from a memory 309 // perspective, it's really dead. 310 return empty() && memory_empty(); 311 } 312 313 // Leader functions 314 Value *getLeader() const { return RepLeader; } 315 void setLeader(Value *Leader) { RepLeader = Leader; } 316 const std::pair<Value *, unsigned int> &getNextLeader() const { 317 return NextLeader; 318 } 319 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 320 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 321 if (LeaderPair.second < NextLeader.second) 322 NextLeader = LeaderPair; 323 } 324 325 Value *getStoredValue() const { return RepStoredValue; } 326 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 327 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 328 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 329 330 // Forward propagation info 331 const Expression *getDefiningExpr() const { return DefiningExpr; } 332 333 // Value member set 334 bool empty() const { return Members.empty(); } 335 unsigned size() const { return Members.size(); } 336 MemberSet::const_iterator begin() const { return Members.begin(); } 337 MemberSet::const_iterator end() const { return Members.end(); } 338 void insert(MemberType *M) { Members.insert(M); } 339 void erase(MemberType *M) { Members.erase(M); } 340 void swap(MemberSet &Other) { Members.swap(Other); } 341 342 // Memory member set 343 bool memory_empty() const { return MemoryMembers.empty(); } 344 unsigned memory_size() const { return MemoryMembers.size(); } 345 MemoryMemberSet::const_iterator memory_begin() const { 346 return MemoryMembers.begin(); 347 } 348 MemoryMemberSet::const_iterator memory_end() const { 349 return MemoryMembers.end(); 350 } 351 iterator_range<MemoryMemberSet::const_iterator> memory() const { 352 return make_range(memory_begin(), memory_end()); 353 } 354 355 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 356 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 357 358 // Store count 359 unsigned getStoreCount() const { return StoreCount; } 360 void incStoreCount() { ++StoreCount; } 361 void decStoreCount() { 362 assert(StoreCount != 0 && "Store count went negative"); 363 --StoreCount; 364 } 365 366 // True if this class has no memory members. 367 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 368 369 // Return true if two congruence classes are equivalent to each other. This 370 // means that every field but the ID number and the dead field are equivalent. 371 bool isEquivalentTo(const CongruenceClass *Other) const { 372 if (!Other) 373 return false; 374 if (this == Other) 375 return true; 376 377 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 378 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 379 Other->RepMemoryAccess)) 380 return false; 381 if (DefiningExpr != Other->DefiningExpr) 382 if (!DefiningExpr || !Other->DefiningExpr || 383 *DefiningExpr != *Other->DefiningExpr) 384 return false; 385 386 if (Members.size() != Other->Members.size()) 387 return false; 388 389 return llvm::set_is_subset(Members, Other->Members); 390 } 391 392 private: 393 unsigned ID; 394 395 // Representative leader. 396 Value *RepLeader = nullptr; 397 398 // The most dominating leader after our current leader, because the member set 399 // is not sorted and is expensive to keep sorted all the time. 400 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 401 402 // If this is represented by a store, the value of the store. 403 Value *RepStoredValue = nullptr; 404 405 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 406 // access. 407 const MemoryAccess *RepMemoryAccess = nullptr; 408 409 // Defining Expression. 410 const Expression *DefiningExpr = nullptr; 411 412 // Actual members of this class. 413 MemberSet Members; 414 415 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 416 // MemoryUses have real instructions representing them, so we only need to 417 // track MemoryPhis here. 418 MemoryMemberSet MemoryMembers; 419 420 // Number of stores in this congruence class. 421 // This is used so we can detect store equivalence changes properly. 422 int StoreCount = 0; 423 }; 424 425 } // end anonymous namespace 426 427 namespace llvm { 428 429 struct ExactEqualsExpression { 430 const Expression &E; 431 432 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 433 434 hash_code getComputedHash() const { return E.getComputedHash(); } 435 436 bool operator==(const Expression &Other) const { 437 return E.exactlyEquals(Other); 438 } 439 }; 440 441 template <> struct DenseMapInfo<const Expression *> { 442 static const Expression *getEmptyKey() { 443 auto Val = static_cast<uintptr_t>(-1); 444 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 445 return reinterpret_cast<const Expression *>(Val); 446 } 447 448 static const Expression *getTombstoneKey() { 449 auto Val = static_cast<uintptr_t>(~1U); 450 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 451 return reinterpret_cast<const Expression *>(Val); 452 } 453 454 static unsigned getHashValue(const Expression *E) { 455 return E->getComputedHash(); 456 } 457 458 static unsigned getHashValue(const ExactEqualsExpression &E) { 459 return E.getComputedHash(); 460 } 461 462 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 463 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 464 return false; 465 return LHS == *RHS; 466 } 467 468 static bool isEqual(const Expression *LHS, const Expression *RHS) { 469 if (LHS == RHS) 470 return true; 471 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 472 LHS == getEmptyKey() || RHS == getEmptyKey()) 473 return false; 474 // Compare hashes before equality. This is *not* what the hashtable does, 475 // since it is computing it modulo the number of buckets, whereas we are 476 // using the full hash keyspace. Since the hashes are precomputed, this 477 // check is *much* faster than equality. 478 if (LHS->getComputedHash() != RHS->getComputedHash()) 479 return false; 480 return *LHS == *RHS; 481 } 482 }; 483 484 } // end namespace llvm 485 486 namespace { 487 488 class NewGVN { 489 Function &F; 490 DominatorTree *DT = nullptr; 491 const TargetLibraryInfo *TLI = nullptr; 492 AliasAnalysis *AA = nullptr; 493 MemorySSA *MSSA = nullptr; 494 MemorySSAWalker *MSSAWalker = nullptr; 495 AssumptionCache *AC = nullptr; 496 const DataLayout &DL; 497 std::unique_ptr<PredicateInfo> PredInfo; 498 499 // These are the only two things the create* functions should have 500 // side-effects on due to allocating memory. 501 mutable BumpPtrAllocator ExpressionAllocator; 502 mutable ArrayRecycler<Value *> ArgRecycler; 503 mutable TarjanSCC SCCFinder; 504 const SimplifyQuery SQ; 505 506 // Number of function arguments, used by ranking 507 unsigned int NumFuncArgs = 0; 508 509 // RPOOrdering of basic blocks 510 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 511 512 // Congruence class info. 513 514 // This class is called INITIAL in the paper. It is the class everything 515 // startsout in, and represents any value. Being an optimistic analysis, 516 // anything in the TOP class has the value TOP, which is indeterminate and 517 // equivalent to everything. 518 CongruenceClass *TOPClass = nullptr; 519 std::vector<CongruenceClass *> CongruenceClasses; 520 unsigned NextCongruenceNum = 0; 521 522 // Value Mappings. 523 DenseMap<Value *, CongruenceClass *> ValueToClass; 524 DenseMap<Value *, const Expression *> ValueToExpression; 525 526 // Value PHI handling, used to make equivalence between phi(op, op) and 527 // op(phi, phi). 528 // These mappings just store various data that would normally be part of the 529 // IR. 530 SmallPtrSet<const Instruction *, 8> PHINodeUses; 531 532 // The cached results, in general, are only valid for the specific block where 533 // they were computed. The unsigned part of the key is a unique block 534 // identifier 535 DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps; 536 unsigned CacheIdx; 537 538 // Map a temporary instruction we created to a parent block. 539 DenseMap<const Value *, BasicBlock *> TempToBlock; 540 541 // Map between the already in-program instructions and the temporary phis we 542 // created that they are known equivalent to. 543 DenseMap<const Value *, PHINode *> RealToTemp; 544 545 // In order to know when we should re-process instructions that have 546 // phi-of-ops, we track the set of expressions that they needed as 547 // leaders. When we discover new leaders for those expressions, we process the 548 // associated phi-of-op instructions again in case they have changed. The 549 // other way they may change is if they had leaders, and those leaders 550 // disappear. However, at the point they have leaders, there are uses of the 551 // relevant operands in the created phi node, and so they will get reprocessed 552 // through the normal user marking we perform. 553 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 554 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 555 ExpressionToPhiOfOps; 556 557 // Map from temporary operation to MemoryAccess. 558 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 559 560 // Set of all temporary instructions we created. 561 // Note: This will include instructions that were just created during value 562 // numbering. The way to test if something is using them is to check 563 // RealToTemp. 564 DenseSet<Instruction *> AllTempInstructions; 565 566 // This is the set of instructions to revisit on a reachability change. At 567 // the end of the main iteration loop it will contain at least all the phi of 568 // ops instructions that will be changed to phis, as well as regular phis. 569 // During the iteration loop, it may contain other things, such as phi of ops 570 // instructions that used edge reachability to reach a result, and so need to 571 // be revisited when the edge changes, independent of whether the phi they 572 // depended on changes. 573 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 574 575 // Mapping from predicate info we used to the instructions we used it with. 576 // In order to correctly ensure propagation, we must keep track of what 577 // comparisons we used, so that when the values of the comparisons change, we 578 // propagate the information to the places we used the comparison. 579 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 580 PredicateToUsers; 581 582 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 583 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 584 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 585 MemoryToUsers; 586 587 // A table storing which memorydefs/phis represent a memory state provably 588 // equivalent to another memory state. 589 // We could use the congruence class machinery, but the MemoryAccess's are 590 // abstract memory states, so they can only ever be equivalent to each other, 591 // and not to constants, etc. 592 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 593 594 // We could, if we wanted, build MemoryPhiExpressions and 595 // MemoryVariableExpressions, etc, and value number them the same way we value 596 // number phi expressions. For the moment, this seems like overkill. They 597 // can only exist in one of three states: they can be TOP (equal to 598 // everything), Equivalent to something else, or unique. Because we do not 599 // create expressions for them, we need to simulate leader change not just 600 // when they change class, but when they change state. Note: We can do the 601 // same thing for phis, and avoid having phi expressions if we wanted, We 602 // should eventually unify in one direction or the other, so this is a little 603 // bit of an experiment in which turns out easier to maintain. 604 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 605 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 606 607 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 608 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 609 610 // Expression to class mapping. 611 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 612 ExpressionClassMap ExpressionToClass; 613 614 // We have a single expression that represents currently DeadExpressions. 615 // For dead expressions we can prove will stay dead, we mark them with 616 // DFS number zero. However, it's possible in the case of phi nodes 617 // for us to assume/prove all arguments are dead during fixpointing. 618 // We use DeadExpression for that case. 619 DeadExpression *SingletonDeadExpression = nullptr; 620 621 // Which values have changed as a result of leader changes. 622 SmallPtrSet<Value *, 8> LeaderChanges; 623 624 // Reachability info. 625 using BlockEdge = BasicBlockEdge; 626 DenseSet<BlockEdge> ReachableEdges; 627 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 628 629 // This is a bitvector because, on larger functions, we may have 630 // thousands of touched instructions at once (entire blocks, 631 // instructions with hundreds of uses, etc). Even with optimization 632 // for when we mark whole blocks as touched, when this was a 633 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 634 // the time in GVN just managing this list. The bitvector, on the 635 // other hand, efficiently supports test/set/clear of both 636 // individual and ranges, as well as "find next element" This 637 // enables us to use it as a worklist with essentially 0 cost. 638 BitVector TouchedInstructions; 639 640 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 641 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred; 642 643 #ifndef NDEBUG 644 // Debugging for how many times each block and instruction got processed. 645 DenseMap<const Value *, unsigned> ProcessedCount; 646 #endif 647 648 // DFS info. 649 // This contains a mapping from Instructions to DFS numbers. 650 // The numbering starts at 1. An instruction with DFS number zero 651 // means that the instruction is dead. 652 DenseMap<const Value *, unsigned> InstrDFS; 653 654 // This contains the mapping DFS numbers to instructions. 655 SmallVector<Value *, 32> DFSToInstr; 656 657 // Deletion info. 658 SmallPtrSet<Instruction *, 8> InstructionsToErase; 659 660 public: 661 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 662 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 663 const DataLayout &DL) 664 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 665 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 666 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 667 /*CanUseUndef=*/false) {} 668 669 bool runGVN(); 670 671 private: 672 /// Helper struct return a Expression with an optional extra dependency. 673 struct ExprResult { 674 const Expression *Expr; 675 Value *ExtraDep; 676 const PredicateBase *PredDep; 677 678 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 679 const PredicateBase *PredDep = nullptr) 680 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 681 ExprResult(const ExprResult &) = delete; 682 ExprResult(ExprResult &&Other) 683 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 684 Other.Expr = nullptr; 685 Other.ExtraDep = nullptr; 686 Other.PredDep = nullptr; 687 } 688 ExprResult &operator=(const ExprResult &Other) = delete; 689 ExprResult &operator=(ExprResult &&Other) = delete; 690 691 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 692 693 operator bool() const { return Expr; } 694 695 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 696 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 697 return {Expr, ExtraDep, nullptr}; 698 } 699 static ExprResult some(const Expression *Expr, 700 const PredicateBase *PredDep) { 701 return {Expr, nullptr, PredDep}; 702 } 703 static ExprResult some(const Expression *Expr, Value *ExtraDep, 704 const PredicateBase *PredDep) { 705 return {Expr, ExtraDep, PredDep}; 706 } 707 }; 708 709 // Expression handling. 710 ExprResult createExpression(Instruction *) const; 711 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 712 Instruction *) const; 713 714 // Our canonical form for phi arguments is a pair of incoming value, incoming 715 // basic block. 716 using ValPair = std::pair<Value *, BasicBlock *>; 717 718 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 719 BasicBlock *, bool &HasBackEdge, 720 bool &OriginalOpsConstant) const; 721 const DeadExpression *createDeadExpression() const; 722 const VariableExpression *createVariableExpression(Value *) const; 723 const ConstantExpression *createConstantExpression(Constant *) const; 724 const Expression *createVariableOrConstant(Value *V) const; 725 const UnknownExpression *createUnknownExpression(Instruction *) const; 726 const StoreExpression *createStoreExpression(StoreInst *, 727 const MemoryAccess *) const; 728 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 729 const MemoryAccess *) const; 730 const CallExpression *createCallExpression(CallInst *, 731 const MemoryAccess *) const; 732 const AggregateValueExpression * 733 createAggregateValueExpression(Instruction *) const; 734 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 735 736 // Congruence class handling. 737 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 738 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 739 CongruenceClasses.emplace_back(result); 740 return result; 741 } 742 743 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 744 auto *CC = createCongruenceClass(nullptr, nullptr); 745 CC->setMemoryLeader(MA); 746 return CC; 747 } 748 749 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 750 auto *CC = getMemoryClass(MA); 751 if (CC->getMemoryLeader() != MA) 752 CC = createMemoryClass(MA); 753 return CC; 754 } 755 756 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 757 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 758 CClass->insert(Member); 759 ValueToClass[Member] = CClass; 760 return CClass; 761 } 762 763 void initializeCongruenceClasses(Function &F); 764 const Expression *makePossiblePHIOfOps(Instruction *, 765 SmallPtrSetImpl<Value *> &); 766 Value *findLeaderForInst(Instruction *ValueOp, 767 SmallPtrSetImpl<Value *> &Visited, 768 MemoryAccess *MemAccess, Instruction *OrigInst, 769 BasicBlock *PredBB); 770 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 771 SmallPtrSetImpl<const Value *> &); 772 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 773 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 774 775 // Value number an Instruction or MemoryPhi. 776 void valueNumberMemoryPhi(MemoryPhi *); 777 void valueNumberInstruction(Instruction *); 778 779 // Symbolic evaluation. 780 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 781 ExprResult performSymbolicEvaluation(Instruction *, 782 SmallPtrSetImpl<Value *> &) const; 783 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 784 Instruction *, 785 MemoryAccess *) const; 786 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 787 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 788 ExprResult performSymbolicCallEvaluation(Instruction *) const; 789 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 790 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 791 Instruction *I, 792 BasicBlock *PHIBlock) const; 793 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 794 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 795 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const; 796 797 // Congruence finding. 798 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 799 Value *lookupOperandLeader(Value *) const; 800 CongruenceClass *getClassForExpression(const Expression *E) const; 801 void performCongruenceFinding(Instruction *, const Expression *); 802 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 803 CongruenceClass *, CongruenceClass *); 804 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 805 CongruenceClass *, CongruenceClass *); 806 Value *getNextValueLeader(CongruenceClass *) const; 807 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 808 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 809 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 810 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 811 bool isMemoryAccessTOP(const MemoryAccess *) const; 812 813 // Ranking 814 unsigned int getRank(const Value *) const; 815 bool shouldSwapOperands(const Value *, const Value *) const; 816 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *, 817 const IntrinsicInst *I) const; 818 819 // Reachability handling. 820 void updateReachableEdge(BasicBlock *, BasicBlock *); 821 void processOutgoingEdges(Instruction *, BasicBlock *); 822 Value *findConditionEquivalence(Value *) const; 823 824 // Elimination. 825 struct ValueDFS; 826 void convertClassToDFSOrdered(const CongruenceClass &, 827 SmallVectorImpl<ValueDFS> &, 828 DenseMap<const Value *, unsigned int> &, 829 SmallPtrSetImpl<Instruction *> &) const; 830 void convertClassToLoadsAndStores(const CongruenceClass &, 831 SmallVectorImpl<ValueDFS> &) const; 832 833 bool eliminateInstructions(Function &); 834 void replaceInstruction(Instruction *, Value *); 835 void markInstructionForDeletion(Instruction *); 836 void deleteInstructionsInBlock(BasicBlock *); 837 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 838 const BasicBlock *) const; 839 840 // Various instruction touch utilities 841 template <typename Map, typename KeyType> 842 void touchAndErase(Map &, const KeyType &); 843 void markUsersTouched(Value *); 844 void markMemoryUsersTouched(const MemoryAccess *); 845 void markMemoryDefTouched(const MemoryAccess *); 846 void markPredicateUsersTouched(Instruction *); 847 void markValueLeaderChangeTouched(CongruenceClass *CC); 848 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 849 void markPhiOfOpsChanged(const Expression *E); 850 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 851 void addAdditionalUsers(Value *To, Value *User) const; 852 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 853 854 // Main loop of value numbering 855 void iterateTouchedInstructions(); 856 857 // Utilities. 858 void cleanupTables(); 859 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 860 void updateProcessedCount(const Value *V); 861 void verifyMemoryCongruency() const; 862 void verifyIterationSettled(Function &F); 863 void verifyStoreExpressions() const; 864 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 865 const MemoryAccess *, const MemoryAccess *) const; 866 BasicBlock *getBlockForValue(Value *V) const; 867 void deleteExpression(const Expression *E) const; 868 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 869 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 870 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 871 872 unsigned InstrToDFSNum(const Value *V) const { 873 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 874 return InstrDFS.lookup(V); 875 } 876 877 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 878 return MemoryToDFSNum(MA); 879 } 880 881 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 882 883 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 884 // This deliberately takes a value so it can be used with Use's, which will 885 // auto-convert to Value's but not to MemoryAccess's. 886 unsigned MemoryToDFSNum(const Value *MA) const { 887 assert(isa<MemoryAccess>(MA) && 888 "This should not be used with instructions"); 889 return isa<MemoryUseOrDef>(MA) 890 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 891 : InstrDFS.lookup(MA); 892 } 893 894 bool isCycleFree(const Instruction *) const; 895 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 896 897 // Debug counter info. When verifying, we have to reset the value numbering 898 // debug counter to the same state it started in to get the same results. 899 DebugCounter::CounterState StartingVNCounter; 900 }; 901 902 } // end anonymous namespace 903 904 template <typename T> 905 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 906 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 907 return false; 908 return LHS.MemoryExpression::equals(RHS); 909 } 910 911 bool LoadExpression::equals(const Expression &Other) const { 912 return equalsLoadStoreHelper(*this, Other); 913 } 914 915 bool StoreExpression::equals(const Expression &Other) const { 916 if (!equalsLoadStoreHelper(*this, Other)) 917 return false; 918 // Make sure that store vs store includes the value operand. 919 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 920 if (getStoredValue() != S->getStoredValue()) 921 return false; 922 return true; 923 } 924 925 // Determine if the edge From->To is a backedge 926 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 927 return From == To || 928 RPOOrdering.lookup(DT->getNode(From)) >= 929 RPOOrdering.lookup(DT->getNode(To)); 930 } 931 932 #ifndef NDEBUG 933 static std::string getBlockName(const BasicBlock *B) { 934 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 935 } 936 #endif 937 938 // Get a MemoryAccess for an instruction, fake or real. 939 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 940 auto *Result = MSSA->getMemoryAccess(I); 941 return Result ? Result : TempToMemory.lookup(I); 942 } 943 944 // Get a MemoryPhi for a basic block. These are all real. 945 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 946 return MSSA->getMemoryAccess(BB); 947 } 948 949 // Get the basic block from an instruction/memory value. 950 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 951 if (auto *I = dyn_cast<Instruction>(V)) { 952 auto *Parent = I->getParent(); 953 if (Parent) 954 return Parent; 955 Parent = TempToBlock.lookup(V); 956 assert(Parent && "Every fake instruction should have a block"); 957 return Parent; 958 } 959 960 auto *MP = dyn_cast<MemoryPhi>(V); 961 assert(MP && "Should have been an instruction or a MemoryPhi"); 962 return MP->getBlock(); 963 } 964 965 // Delete a definitely dead expression, so it can be reused by the expression 966 // allocator. Some of these are not in creation functions, so we have to accept 967 // const versions. 968 void NewGVN::deleteExpression(const Expression *E) const { 969 assert(isa<BasicExpression>(E)); 970 auto *BE = cast<BasicExpression>(E); 971 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 972 ExpressionAllocator.Deallocate(E); 973 } 974 975 // If V is a predicateinfo copy, get the thing it is a copy of. 976 static Value *getCopyOf(const Value *V) { 977 if (auto *II = dyn_cast<IntrinsicInst>(V)) 978 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 979 return II->getOperand(0); 980 return nullptr; 981 } 982 983 // Return true if V is really PN, even accounting for predicateinfo copies. 984 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 985 return V == PN || getCopyOf(V) == PN; 986 } 987 988 static bool isCopyOfAPHI(const Value *V) { 989 auto *CO = getCopyOf(V); 990 return CO && isa<PHINode>(CO); 991 } 992 993 // Sort PHI Operands into a canonical order. What we use here is an RPO 994 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 995 // blocks. 996 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 997 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 998 return BlockInstRange.lookup(P1.second).first < 999 BlockInstRange.lookup(P2.second).first; 1000 }); 1001 } 1002 1003 // Return true if V is a value that will always be available (IE can 1004 // be placed anywhere) in the function. We don't do globals here 1005 // because they are often worse to put in place. 1006 static bool alwaysAvailable(Value *V) { 1007 return isa<Constant>(V) || isa<Argument>(V); 1008 } 1009 1010 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1011 // the original instruction we are creating a PHIExpression for (but may not be 1012 // a phi node). We require, as an invariant, that all the PHIOperands in the 1013 // same block are sorted the same way. sortPHIOps will sort them into a 1014 // canonical order. 1015 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1016 const Instruction *I, 1017 BasicBlock *PHIBlock, 1018 bool &HasBackedge, 1019 bool &OriginalOpsConstant) const { 1020 unsigned NumOps = PHIOperands.size(); 1021 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1022 1023 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1024 E->setType(PHIOperands.begin()->first->getType()); 1025 E->setOpcode(Instruction::PHI); 1026 1027 // Filter out unreachable phi operands. 1028 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1029 auto *BB = P.second; 1030 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1031 if (isCopyOfPHI(P.first, PHIOp)) 1032 return false; 1033 if (!ReachableEdges.count({BB, PHIBlock})) 1034 return false; 1035 // Things in TOPClass are equivalent to everything. 1036 if (ValueToClass.lookup(P.first) == TOPClass) 1037 return false; 1038 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1039 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1040 return lookupOperandLeader(P.first) != I; 1041 }); 1042 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1043 [&](const ValPair &P) -> Value * { 1044 return lookupOperandLeader(P.first); 1045 }); 1046 return E; 1047 } 1048 1049 // Set basic expression info (Arguments, type, opcode) for Expression 1050 // E from Instruction I in block B. 1051 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1052 bool AllConstant = true; 1053 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1054 E->setType(GEP->getSourceElementType()); 1055 else 1056 E->setType(I->getType()); 1057 E->setOpcode(I->getOpcode()); 1058 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1059 1060 // Transform the operand array into an operand leader array, and keep track of 1061 // whether all members are constant. 1062 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1063 auto Operand = lookupOperandLeader(O); 1064 AllConstant = AllConstant && isa<Constant>(Operand); 1065 return Operand; 1066 }); 1067 1068 return AllConstant; 1069 } 1070 1071 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1072 Value *Arg1, Value *Arg2, 1073 Instruction *I) const { 1074 auto *E = new (ExpressionAllocator) BasicExpression(2); 1075 // TODO: we need to remove context instruction after Value Tracking 1076 // can run without context instruction 1077 const SimplifyQuery Q = SQ.getWithInstruction(I); 1078 1079 E->setType(T); 1080 E->setOpcode(Opcode); 1081 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1082 if (Instruction::isCommutative(Opcode)) { 1083 // Ensure that commutative instructions that only differ by a permutation 1084 // of their operands get the same value number by sorting the operand value 1085 // numbers. Since all commutative instructions have two operands it is more 1086 // efficient to sort by hand rather than using, say, std::sort. 1087 if (shouldSwapOperands(Arg1, Arg2)) 1088 std::swap(Arg1, Arg2); 1089 } 1090 E->op_push_back(lookupOperandLeader(Arg1)); 1091 E->op_push_back(lookupOperandLeader(Arg2)); 1092 1093 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q); 1094 if (auto Simplified = checkExprResults(E, I, V)) { 1095 addAdditionalUsers(Simplified, I); 1096 return Simplified.Expr; 1097 } 1098 return E; 1099 } 1100 1101 // Take a Value returned by simplification of Expression E/Instruction 1102 // I, and see if it resulted in a simpler expression. If so, return 1103 // that expression. 1104 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1105 Value *V) const { 1106 if (!V) 1107 return ExprResult::none(); 1108 1109 if (auto *C = dyn_cast<Constant>(V)) { 1110 if (I) 1111 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1112 << " constant " << *C << "\n"); 1113 NumGVNOpsSimplified++; 1114 assert(isa<BasicExpression>(E) && 1115 "We should always have had a basic expression here"); 1116 deleteExpression(E); 1117 return ExprResult::some(createConstantExpression(C)); 1118 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1119 if (I) 1120 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1121 << " variable " << *V << "\n"); 1122 deleteExpression(E); 1123 return ExprResult::some(createVariableExpression(V)); 1124 } 1125 1126 CongruenceClass *CC = ValueToClass.lookup(V); 1127 if (CC) { 1128 if (CC->getLeader() && CC->getLeader() != I) { 1129 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1130 } 1131 if (CC->getDefiningExpr()) { 1132 if (I) 1133 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1134 << " expression " << *CC->getDefiningExpr() << "\n"); 1135 NumGVNOpsSimplified++; 1136 deleteExpression(E); 1137 return ExprResult::some(CC->getDefiningExpr(), V); 1138 } 1139 } 1140 1141 return ExprResult::none(); 1142 } 1143 1144 // Create a value expression from the instruction I, replacing operands with 1145 // their leaders. 1146 1147 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1148 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1149 // TODO: we need to remove context instruction after Value Tracking 1150 // can run without context instruction 1151 const SimplifyQuery Q = SQ.getWithInstruction(I); 1152 1153 bool AllConstant = setBasicExpressionInfo(I, E); 1154 1155 if (I->isCommutative()) { 1156 // Ensure that commutative instructions that only differ by a permutation 1157 // of their operands get the same value number by sorting the operand value 1158 // numbers. Since all commutative instructions have two operands it is more 1159 // efficient to sort by hand rather than using, say, std::sort. 1160 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1161 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1162 E->swapOperands(0, 1); 1163 } 1164 // Perform simplification. 1165 if (auto *CI = dyn_cast<CmpInst>(I)) { 1166 // Sort the operand value numbers so x<y and y>x get the same value 1167 // number. 1168 CmpInst::Predicate Predicate = CI->getPredicate(); 1169 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1170 E->swapOperands(0, 1); 1171 Predicate = CmpInst::getSwappedPredicate(Predicate); 1172 } 1173 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1174 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands 1175 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1176 "Wrong types on cmp instruction"); 1177 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1178 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1179 Value *V = 1180 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q); 1181 if (auto Simplified = checkExprResults(E, I, V)) 1182 return Simplified; 1183 } else if (isa<SelectInst>(I)) { 1184 if (isa<Constant>(E->getOperand(0)) || 1185 E->getOperand(1) == E->getOperand(2)) { 1186 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1187 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1188 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1), 1189 E->getOperand(2), Q); 1190 if (auto Simplified = checkExprResults(E, I, V)) 1191 return Simplified; 1192 } 1193 } else if (I->isBinaryOp()) { 1194 Value *V = 1195 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q); 1196 if (auto Simplified = checkExprResults(E, I, V)) 1197 return Simplified; 1198 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1199 Value *V = 1200 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q); 1201 if (auto Simplified = checkExprResults(E, I, V)) 1202 return Simplified; 1203 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) { 1204 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(), 1205 ArrayRef(std::next(E->op_begin()), E->op_end()), 1206 GEPI->getNoWrapFlags(), Q); 1207 if (auto Simplified = checkExprResults(E, I, V)) 1208 return Simplified; 1209 } else if (AllConstant) { 1210 // We don't bother trying to simplify unless all of the operands 1211 // were constant. 1212 // TODO: There are a lot of Simplify*'s we could call here, if we 1213 // wanted to. The original motivating case for this code was a 1214 // zext i1 false to i8, which we don't have an interface to 1215 // simplify (IE there is no SimplifyZExt). 1216 1217 SmallVector<Constant *, 8> C; 1218 for (Value *Arg : E->operands()) 1219 C.emplace_back(cast<Constant>(Arg)); 1220 1221 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1222 if (auto Simplified = checkExprResults(E, I, V)) 1223 return Simplified; 1224 } 1225 return ExprResult::some(E); 1226 } 1227 1228 const AggregateValueExpression * 1229 NewGVN::createAggregateValueExpression(Instruction *I) const { 1230 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1231 auto *E = new (ExpressionAllocator) 1232 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1233 setBasicExpressionInfo(I, E); 1234 E->allocateIntOperands(ExpressionAllocator); 1235 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1236 return E; 1237 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1238 auto *E = new (ExpressionAllocator) 1239 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1240 setBasicExpressionInfo(EI, E); 1241 E->allocateIntOperands(ExpressionAllocator); 1242 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1243 return E; 1244 } 1245 llvm_unreachable("Unhandled type of aggregate value operation"); 1246 } 1247 1248 const DeadExpression *NewGVN::createDeadExpression() const { 1249 // DeadExpression has no arguments and all DeadExpression's are the same, 1250 // so we only need one of them. 1251 return SingletonDeadExpression; 1252 } 1253 1254 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1255 auto *E = new (ExpressionAllocator) VariableExpression(V); 1256 E->setOpcode(V->getValueID()); 1257 return E; 1258 } 1259 1260 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1261 if (auto *C = dyn_cast<Constant>(V)) 1262 return createConstantExpression(C); 1263 return createVariableExpression(V); 1264 } 1265 1266 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1267 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1268 E->setOpcode(C->getValueID()); 1269 return E; 1270 } 1271 1272 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1273 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1274 E->setOpcode(I->getOpcode()); 1275 return E; 1276 } 1277 1278 const CallExpression * 1279 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1280 // FIXME: Add operand bundles for calls. 1281 auto *E = 1282 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1283 setBasicExpressionInfo(CI, E); 1284 if (CI->isCommutative()) { 1285 // Ensure that commutative intrinsics that only differ by a permutation 1286 // of their operands get the same value number by sorting the operand value 1287 // numbers. 1288 assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!"); 1289 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1290 E->swapOperands(0, 1); 1291 } 1292 return E; 1293 } 1294 1295 // Return true if some equivalent of instruction Inst dominates instruction U. 1296 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1297 const Instruction *U) const { 1298 auto *CC = ValueToClass.lookup(Inst); 1299 // This must be an instruction because we are only called from phi nodes 1300 // in the case that the value it needs to check against is an instruction. 1301 1302 // The most likely candidates for dominance are the leader and the next leader. 1303 // The leader or nextleader will dominate in all cases where there is an 1304 // equivalent that is higher up in the dom tree. 1305 // We can't *only* check them, however, because the 1306 // dominator tree could have an infinite number of non-dominating siblings 1307 // with instructions that are in the right congruence class. 1308 // A 1309 // B C D E F G 1310 // | 1311 // H 1312 // Instruction U could be in H, with equivalents in every other sibling. 1313 // Depending on the rpo order picked, the leader could be the equivalent in 1314 // any of these siblings. 1315 if (!CC) 1316 return false; 1317 if (alwaysAvailable(CC->getLeader())) 1318 return true; 1319 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1320 return true; 1321 if (CC->getNextLeader().first && 1322 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1323 return true; 1324 return llvm::any_of(*CC, [&](const Value *Member) { 1325 return Member != CC->getLeader() && 1326 DT->dominates(cast<Instruction>(Member), U); 1327 }); 1328 } 1329 1330 // See if we have a congruence class and leader for this operand, and if so, 1331 // return it. Otherwise, return the operand itself. 1332 Value *NewGVN::lookupOperandLeader(Value *V) const { 1333 CongruenceClass *CC = ValueToClass.lookup(V); 1334 if (CC) { 1335 // Everything in TOP is represented by poison, as it can be any value. 1336 // We do have to make sure we get the type right though, so we can't set the 1337 // RepLeader to poison. 1338 if (CC == TOPClass) 1339 return PoisonValue::get(V->getType()); 1340 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1341 } 1342 1343 return V; 1344 } 1345 1346 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1347 auto *CC = getMemoryClass(MA); 1348 assert(CC->getMemoryLeader() && 1349 "Every MemoryAccess should be mapped to a congruence class with a " 1350 "representative memory access"); 1351 return CC->getMemoryLeader(); 1352 } 1353 1354 // Return true if the MemoryAccess is really equivalent to everything. This is 1355 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1356 // state of all MemoryAccesses. 1357 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1358 return getMemoryClass(MA) == TOPClass; 1359 } 1360 1361 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1362 LoadInst *LI, 1363 const MemoryAccess *MA) const { 1364 auto *E = 1365 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1366 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1367 E->setType(LoadType); 1368 1369 // Give store and loads same opcode so they value number together. 1370 E->setOpcode(0); 1371 E->op_push_back(PointerOp); 1372 1373 // TODO: Value number heap versions. We may be able to discover 1374 // things alias analysis can't on it's own (IE that a store and a 1375 // load have the same value, and thus, it isn't clobbering the load). 1376 return E; 1377 } 1378 1379 const StoreExpression * 1380 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1381 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1382 auto *E = new (ExpressionAllocator) 1383 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1384 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1385 E->setType(SI->getValueOperand()->getType()); 1386 1387 // Give store and loads same opcode so they value number together. 1388 E->setOpcode(0); 1389 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1390 1391 // TODO: Value number heap versions. We may be able to discover 1392 // things alias analysis can't on it's own (IE that a store and a 1393 // load have the same value, and thus, it isn't clobbering the load). 1394 return E; 1395 } 1396 1397 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1398 // Unlike loads, we never try to eliminate stores, so we do not check if they 1399 // are simple and avoid value numbering them. 1400 auto *SI = cast<StoreInst>(I); 1401 auto *StoreAccess = getMemoryAccess(SI); 1402 // Get the expression, if any, for the RHS of the MemoryDef. 1403 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1404 if (EnableStoreRefinement) 1405 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1406 // If we bypassed the use-def chains, make sure we add a use. 1407 StoreRHS = lookupMemoryLeader(StoreRHS); 1408 if (StoreRHS != StoreAccess->getDefiningAccess()) 1409 addMemoryUsers(StoreRHS, StoreAccess); 1410 // If we are defined by ourselves, use the live on entry def. 1411 if (StoreRHS == StoreAccess) 1412 StoreRHS = MSSA->getLiveOnEntryDef(); 1413 1414 if (SI->isSimple()) { 1415 // See if we are defined by a previous store expression, it already has a 1416 // value, and it's the same value as our current store. FIXME: Right now, we 1417 // only do this for simple stores, we should expand to cover memcpys, etc. 1418 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1419 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1420 // We really want to check whether the expression we matched was a store. No 1421 // easy way to do that. However, we can check that the class we found has a 1422 // store, which, assuming the value numbering state is not corrupt, is 1423 // sufficient, because we must also be equivalent to that store's expression 1424 // for it to be in the same class as the load. 1425 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1426 return LastStore; 1427 // Also check if our value operand is defined by a load of the same memory 1428 // location, and the memory state is the same as it was then (otherwise, it 1429 // could have been overwritten later. See test32 in 1430 // transforms/DeadStoreElimination/simple.ll). 1431 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1432 if ((lookupOperandLeader(LI->getPointerOperand()) == 1433 LastStore->getOperand(0)) && 1434 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1435 StoreRHS)) 1436 return LastStore; 1437 deleteExpression(LastStore); 1438 } 1439 1440 // If the store is not equivalent to anything, value number it as a store that 1441 // produces a unique memory state (instead of using it's MemoryUse, we use 1442 // it's MemoryDef). 1443 return createStoreExpression(SI, StoreAccess); 1444 } 1445 1446 // See if we can extract the value of a loaded pointer from a load, a store, or 1447 // a memory instruction. 1448 const Expression * 1449 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1450 LoadInst *LI, Instruction *DepInst, 1451 MemoryAccess *DefiningAccess) const { 1452 assert((!LI || LI->isSimple()) && "Not a simple load"); 1453 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1454 // Can't forward from non-atomic to atomic without violating memory model. 1455 // Also don't need to coerce if they are the same type, we will just 1456 // propagate. 1457 if (LI->isAtomic() > DepSI->isAtomic() || 1458 LoadType == DepSI->getValueOperand()->getType()) 1459 return nullptr; 1460 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1461 if (Offset >= 0) { 1462 if (auto *C = dyn_cast<Constant>( 1463 lookupOperandLeader(DepSI->getValueOperand()))) { 1464 if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) { 1465 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1466 << " to constant " << *Res << "\n"); 1467 return createConstantExpression(Res); 1468 } 1469 } 1470 } 1471 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1472 // Can't forward from non-atomic to atomic without violating memory model. 1473 if (LI->isAtomic() > DepLI->isAtomic()) 1474 return nullptr; 1475 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1476 if (Offset >= 0) { 1477 // We can coerce a constant load into a load. 1478 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1479 if (auto *PossibleConstant = 1480 getConstantValueForLoad(C, Offset, LoadType, DL)) { 1481 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1482 << " to constant " << *PossibleConstant << "\n"); 1483 return createConstantExpression(PossibleConstant); 1484 } 1485 } 1486 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1487 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1488 if (Offset >= 0) { 1489 if (auto *PossibleConstant = 1490 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1491 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1492 << " to constant " << *PossibleConstant << "\n"); 1493 return createConstantExpression(PossibleConstant); 1494 } 1495 } 1496 } 1497 1498 // All of the below are only true if the loaded pointer is produced 1499 // by the dependent instruction. 1500 if (LoadPtr != lookupOperandLeader(DepInst) && 1501 !AA->isMustAlias(LoadPtr, DepInst)) 1502 return nullptr; 1503 // If this load really doesn't depend on anything, then we must be loading an 1504 // undef value. This can happen when loading for a fresh allocation with no 1505 // intervening stores, for example. Note that this is only true in the case 1506 // that the result of the allocation is pointer equal to the load ptr. 1507 if (isa<AllocaInst>(DepInst)) { 1508 return createConstantExpression(UndefValue::get(LoadType)); 1509 } 1510 // If this load occurs either right after a lifetime begin, 1511 // then the loaded value is undefined. 1512 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1513 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1514 return createConstantExpression(UndefValue::get(LoadType)); 1515 } else if (auto *InitVal = 1516 getInitialValueOfAllocation(DepInst, TLI, LoadType)) 1517 return createConstantExpression(InitVal); 1518 1519 return nullptr; 1520 } 1521 1522 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1523 auto *LI = cast<LoadInst>(I); 1524 1525 // We can eliminate in favor of non-simple loads, but we won't be able to 1526 // eliminate the loads themselves. 1527 if (!LI->isSimple()) 1528 return nullptr; 1529 1530 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1531 // Load of undef is UB. 1532 if (isa<UndefValue>(LoadAddressLeader)) 1533 return createConstantExpression(PoisonValue::get(LI->getType())); 1534 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1535 MemoryAccess *DefiningAccess = 1536 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1537 1538 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1539 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1540 Instruction *DefiningInst = MD->getMemoryInst(); 1541 // If the defining instruction is not reachable, replace with poison. 1542 if (!ReachableBlocks.count(DefiningInst->getParent())) 1543 return createConstantExpression(PoisonValue::get(LI->getType())); 1544 // This will handle stores and memory insts. We only do if it the 1545 // defining access has a different type, or it is a pointer produced by 1546 // certain memory operations that cause the memory to have a fixed value 1547 // (IE things like calloc). 1548 if (const auto *CoercionResult = 1549 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1550 DefiningInst, DefiningAccess)) 1551 return CoercionResult; 1552 } 1553 } 1554 1555 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1556 DefiningAccess); 1557 // If our MemoryLeader is not our defining access, add a use to the 1558 // MemoryLeader, so that we get reprocessed when it changes. 1559 if (LE->getMemoryLeader() != DefiningAccess) 1560 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1561 return LE; 1562 } 1563 1564 NewGVN::ExprResult 1565 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const { 1566 auto *PI = PredInfo->getPredicateInfoFor(I); 1567 if (!PI) 1568 return ExprResult::none(); 1569 1570 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1571 1572 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1573 if (!Constraint) 1574 return ExprResult::none(); 1575 1576 CmpInst::Predicate Predicate = Constraint->Predicate; 1577 Value *CmpOp0 = I->getOperand(0); 1578 Value *CmpOp1 = Constraint->OtherOp; 1579 1580 Value *FirstOp = lookupOperandLeader(CmpOp0); 1581 Value *SecondOp = lookupOperandLeader(CmpOp1); 1582 Value *AdditionallyUsedValue = CmpOp0; 1583 1584 // Sort the ops. 1585 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) { 1586 std::swap(FirstOp, SecondOp); 1587 Predicate = CmpInst::getSwappedPredicate(Predicate); 1588 AdditionallyUsedValue = CmpOp1; 1589 } 1590 1591 if (Predicate == CmpInst::ICMP_EQ) 1592 return ExprResult::some(createVariableOrConstant(FirstOp), 1593 AdditionallyUsedValue, PI); 1594 1595 // Handle the special case of floating point. 1596 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1597 !cast<ConstantFP>(FirstOp)->isZero()) 1598 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1599 AdditionallyUsedValue, PI); 1600 1601 return ExprResult::none(); 1602 } 1603 1604 // Evaluate read only and pure calls, and create an expression result. 1605 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1606 auto *CI = cast<CallInst>(I); 1607 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1608 // Intrinsics with the returned attribute are copies of arguments. 1609 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1610 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1611 if (auto Res = performSymbolicPredicateInfoEvaluation(II)) 1612 return Res; 1613 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1614 } 1615 } 1616 1617 // FIXME: Currently the calls which may access the thread id may 1618 // be considered as not accessing the memory. But this is 1619 // problematic for coroutines, since coroutines may resume in a 1620 // different thread. So we disable the optimization here for the 1621 // correctness. However, it may block many other correct 1622 // optimizations. Revert this one when we detect the memory 1623 // accessing kind more precisely. 1624 if (CI->getFunction()->isPresplitCoroutine()) 1625 return ExprResult::none(); 1626 1627 // Do not combine convergent calls since they implicitly depend on the set of 1628 // threads that is currently executing, and they might be in different basic 1629 // blocks. 1630 if (CI->isConvergent()) 1631 return ExprResult::none(); 1632 1633 if (AA->doesNotAccessMemory(CI)) { 1634 return ExprResult::some( 1635 createCallExpression(CI, TOPClass->getMemoryLeader())); 1636 } else if (AA->onlyReadsMemory(CI)) { 1637 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1638 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1639 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1640 } else // MSSA determined that CI does not access memory. 1641 return ExprResult::some( 1642 createCallExpression(CI, TOPClass->getMemoryLeader())); 1643 } 1644 return ExprResult::none(); 1645 } 1646 1647 // Retrieve the memory class for a given MemoryAccess. 1648 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1649 auto *Result = MemoryAccessToClass.lookup(MA); 1650 assert(Result && "Should have found memory class"); 1651 return Result; 1652 } 1653 1654 // Update the MemoryAccess equivalence table to say that From is equal to To, 1655 // and return true if this is different from what already existed in the table. 1656 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1657 CongruenceClass *NewClass) { 1658 assert(NewClass && 1659 "Every MemoryAccess should be getting mapped to a non-null class"); 1660 LLVM_DEBUG(dbgs() << "Setting " << *From); 1661 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1662 LLVM_DEBUG(dbgs() << NewClass->getID() 1663 << " with current MemoryAccess leader "); 1664 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1665 1666 auto LookupResult = MemoryAccessToClass.find(From); 1667 bool Changed = false; 1668 // If it's already in the table, see if the value changed. 1669 if (LookupResult != MemoryAccessToClass.end()) { 1670 auto *OldClass = LookupResult->second; 1671 if (OldClass != NewClass) { 1672 // If this is a phi, we have to handle memory member updates. 1673 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1674 OldClass->memory_erase(MP); 1675 NewClass->memory_insert(MP); 1676 // This may have killed the class if it had no non-memory members 1677 if (OldClass->getMemoryLeader() == From) { 1678 if (OldClass->definesNoMemory()) { 1679 OldClass->setMemoryLeader(nullptr); 1680 } else { 1681 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1682 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1683 << OldClass->getID() << " to " 1684 << *OldClass->getMemoryLeader() 1685 << " due to removal of a memory member " << *From 1686 << "\n"); 1687 markMemoryLeaderChangeTouched(OldClass); 1688 } 1689 } 1690 } 1691 // It wasn't equivalent before, and now it is. 1692 LookupResult->second = NewClass; 1693 Changed = true; 1694 } 1695 } 1696 1697 return Changed; 1698 } 1699 1700 // Determine if a instruction is cycle-free. That means the values in the 1701 // instruction don't depend on any expressions that can change value as a result 1702 // of the instruction. For example, a non-cycle free instruction would be v = 1703 // phi(0, v+1). 1704 bool NewGVN::isCycleFree(const Instruction *I) const { 1705 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1706 // and see what kind of SCC it ends up in. If it is a singleton, it is 1707 // cycle-free. If it is not in a singleton, it is only cycle free if the 1708 // other members are all phi nodes (as they do not compute anything, they are 1709 // copies). 1710 auto ICS = InstCycleState.lookup(I); 1711 if (ICS == ICS_Unknown) { 1712 SCCFinder.Start(I); 1713 auto &SCC = SCCFinder.getComponentFor(I); 1714 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1715 if (SCC.size() == 1) 1716 InstCycleState.insert({I, ICS_CycleFree}); 1717 else { 1718 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1719 return isa<PHINode>(V) || isCopyOfAPHI(V); 1720 }); 1721 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1722 for (const auto *Member : SCC) 1723 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1724 InstCycleState.insert({MemberPhi, ICS}); 1725 } 1726 } 1727 if (ICS == ICS_Cycle) 1728 return false; 1729 return true; 1730 } 1731 1732 // Evaluate PHI nodes symbolically and create an expression result. 1733 const Expression * 1734 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1735 Instruction *I, 1736 BasicBlock *PHIBlock) const { 1737 // True if one of the incoming phi edges is a backedge. 1738 bool HasBackedge = false; 1739 // All constant tracks the state of whether all the *original* phi operands 1740 // This is really shorthand for "this phi cannot cycle due to forward 1741 // change in value of the phi is guaranteed not to later change the value of 1742 // the phi. IE it can't be v = phi(undef, v+1) 1743 bool OriginalOpsConstant = true; 1744 auto *E = cast<PHIExpression>(createPHIExpression( 1745 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1746 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1747 // See if all arguments are the same. 1748 // We track if any were undef because they need special handling. 1749 bool HasUndef = false, HasPoison = false; 1750 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1751 if (isa<PoisonValue>(Arg)) { 1752 HasPoison = true; 1753 return false; 1754 } 1755 if (isa<UndefValue>(Arg)) { 1756 HasUndef = true; 1757 return false; 1758 } 1759 return true; 1760 }); 1761 // If we are left with no operands, it's dead. 1762 if (Filtered.empty()) { 1763 // If it has undef or poison at this point, it means there are no-non-undef 1764 // arguments, and thus, the value of the phi node must be undef. 1765 if (HasUndef) { 1766 LLVM_DEBUG( 1767 dbgs() << "PHI Node " << *I 1768 << " has no non-undef arguments, valuing it as undef\n"); 1769 return createConstantExpression(UndefValue::get(I->getType())); 1770 } 1771 if (HasPoison) { 1772 LLVM_DEBUG( 1773 dbgs() << "PHI Node " << *I 1774 << " has no non-poison arguments, valuing it as poison\n"); 1775 return createConstantExpression(PoisonValue::get(I->getType())); 1776 } 1777 1778 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1779 deleteExpression(E); 1780 return createDeadExpression(); 1781 } 1782 Value *AllSameValue = *(Filtered.begin()); 1783 ++Filtered.begin(); 1784 // Can't use std::equal here, sadly, because filter.begin moves. 1785 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1786 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef 1787 // in the worst case). 1788 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT)) 1789 return E; 1790 1791 // In LLVM's non-standard representation of phi nodes, it's possible to have 1792 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1793 // on the original phi node), especially in weird CFG's where some arguments 1794 // are unreachable, or uninitialized along certain paths. This can cause 1795 // infinite loops during evaluation. We work around this by not trying to 1796 // really evaluate them independently, but instead using a variable 1797 // expression to say if one is equivalent to the other. 1798 // We also special case undef/poison, so that if we have an undef, we can't 1799 // use the common value unless it dominates the phi block. 1800 if (HasPoison || HasUndef) { 1801 // If we have undef and at least one other value, this is really a 1802 // multivalued phi, and we need to know if it's cycle free in order to 1803 // evaluate whether we can ignore the undef. The other parts of this are 1804 // just shortcuts. If there is no backedge, or all operands are 1805 // constants, it also must be cycle free. 1806 if (HasBackedge && !OriginalOpsConstant && 1807 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1808 return E; 1809 1810 // Only have to check for instructions 1811 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1812 if (!someEquivalentDominates(AllSameInst, I)) 1813 return E; 1814 } 1815 // Can't simplify to something that comes later in the iteration. 1816 // Otherwise, when and if it changes congruence class, we will never catch 1817 // up. We will always be a class behind it. 1818 if (isa<Instruction>(AllSameValue) && 1819 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1820 return E; 1821 NumGVNPhisAllSame++; 1822 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1823 << "\n"); 1824 deleteExpression(E); 1825 return createVariableOrConstant(AllSameValue); 1826 } 1827 return E; 1828 } 1829 1830 const Expression * 1831 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1832 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1833 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1834 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1835 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1836 // a semantically equivalent expression instead of an extract value 1837 // expression. 1838 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1839 WO->getLHS(), WO->getRHS(), I); 1840 } 1841 1842 return createAggregateValueExpression(I); 1843 } 1844 1845 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1846 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1847 1848 auto *CI = cast<CmpInst>(I); 1849 // See if our operands are equal to those of a previous predicate, and if so, 1850 // if it implies true or false. 1851 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1852 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1853 auto OurPredicate = CI->getPredicate(); 1854 if (shouldSwapOperands(Op0, Op1)) { 1855 std::swap(Op0, Op1); 1856 OurPredicate = CI->getSwappedPredicate(); 1857 } 1858 1859 // Avoid processing the same info twice. 1860 const PredicateBase *LastPredInfo = nullptr; 1861 // See if we know something about the comparison itself, like it is the target 1862 // of an assume. 1863 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1864 if (isa_and_nonnull<PredicateAssume>(CmpPI)) 1865 return ExprResult::some( 1866 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1867 1868 if (Op0 == Op1) { 1869 // This condition does not depend on predicates, no need to add users 1870 if (CI->isTrueWhenEqual()) 1871 return ExprResult::some( 1872 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1873 else if (CI->isFalseWhenEqual()) 1874 return ExprResult::some( 1875 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1876 } 1877 1878 // NOTE: Because we are comparing both operands here and below, and using 1879 // previous comparisons, we rely on fact that predicateinfo knows to mark 1880 // comparisons that use renamed operands as users of the earlier comparisons. 1881 // It is *not* enough to just mark predicateinfo renamed operands as users of 1882 // the earlier comparisons, because the *other* operand may have changed in a 1883 // previous iteration. 1884 // Example: 1885 // icmp slt %a, %b 1886 // %b.0 = ssa.copy(%b) 1887 // false branch: 1888 // icmp slt %c, %b.0 1889 1890 // %c and %a may start out equal, and thus, the code below will say the second 1891 // %icmp is false. c may become equal to something else, and in that case the 1892 // %second icmp *must* be reexamined, but would not if only the renamed 1893 // %operands are considered users of the icmp. 1894 1895 // *Currently* we only check one level of comparisons back, and only mark one 1896 // level back as touched when changes happen. If you modify this code to look 1897 // back farther through comparisons, you *must* mark the appropriate 1898 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1899 // we know something just from the operands themselves 1900 1901 // See if our operands have predicate info, so that we may be able to derive 1902 // something from a previous comparison. 1903 for (const auto &Op : CI->operands()) { 1904 auto *PI = PredInfo->getPredicateInfoFor(Op); 1905 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1906 if (PI == LastPredInfo) 1907 continue; 1908 LastPredInfo = PI; 1909 // In phi of ops cases, we may have predicate info that we are evaluating 1910 // in a different context. 1911 if (!DT->dominates(PBranch->To, I->getParent())) 1912 continue; 1913 // TODO: Along the false edge, we may know more things too, like 1914 // icmp of 1915 // same operands is false. 1916 // TODO: We only handle actual comparison conditions below, not 1917 // and/or. 1918 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1919 if (!BranchCond) 1920 continue; 1921 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1922 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1923 auto BranchPredicate = BranchCond->getPredicate(); 1924 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1925 std::swap(BranchOp0, BranchOp1); 1926 BranchPredicate = BranchCond->getSwappedPredicate(); 1927 } 1928 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1929 if (PBranch->TrueEdge) { 1930 // If we know the previous predicate is true and we are in the true 1931 // edge then we may be implied true or false. 1932 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1933 OurPredicate)) { 1934 return ExprResult::some( 1935 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1936 PI); 1937 } 1938 1939 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1940 OurPredicate)) { 1941 return ExprResult::some( 1942 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1943 PI); 1944 } 1945 } else { 1946 // Just handle the ne and eq cases, where if we have the same 1947 // operands, we may know something. 1948 if (BranchPredicate == OurPredicate) { 1949 // Same predicate, same ops,we know it was false, so this is false. 1950 return ExprResult::some( 1951 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1952 PI); 1953 } else if (BranchPredicate == 1954 CmpInst::getInversePredicate(OurPredicate)) { 1955 // Inverse predicate, we know the other was false, so this is true. 1956 return ExprResult::some( 1957 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1958 PI); 1959 } 1960 } 1961 } 1962 } 1963 } 1964 // Create expression will take care of simplifyCmpInst 1965 return createExpression(I); 1966 } 1967 1968 // Substitute and symbolize the instruction before value numbering. 1969 NewGVN::ExprResult 1970 NewGVN::performSymbolicEvaluation(Instruction *I, 1971 SmallPtrSetImpl<Value *> &Visited) const { 1972 1973 const Expression *E = nullptr; 1974 // TODO: memory intrinsics. 1975 // TODO: Some day, we should do the forward propagation and reassociation 1976 // parts of the algorithm. 1977 switch (I->getOpcode()) { 1978 case Instruction::ExtractValue: 1979 case Instruction::InsertValue: 1980 E = performSymbolicAggrValueEvaluation(I); 1981 break; 1982 case Instruction::PHI: { 1983 SmallVector<ValPair, 3> Ops; 1984 auto *PN = cast<PHINode>(I); 1985 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1986 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1987 // Sort to ensure the invariant createPHIExpression requires is met. 1988 sortPHIOps(Ops); 1989 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1990 } break; 1991 case Instruction::Call: 1992 return performSymbolicCallEvaluation(I); 1993 break; 1994 case Instruction::Store: 1995 E = performSymbolicStoreEvaluation(I); 1996 break; 1997 case Instruction::Load: 1998 E = performSymbolicLoadEvaluation(I); 1999 break; 2000 case Instruction::BitCast: 2001 case Instruction::AddrSpaceCast: 2002 case Instruction::Freeze: 2003 return createExpression(I); 2004 break; 2005 case Instruction::ICmp: 2006 case Instruction::FCmp: 2007 return performSymbolicCmpEvaluation(I); 2008 break; 2009 case Instruction::FNeg: 2010 case Instruction::Add: 2011 case Instruction::FAdd: 2012 case Instruction::Sub: 2013 case Instruction::FSub: 2014 case Instruction::Mul: 2015 case Instruction::FMul: 2016 case Instruction::UDiv: 2017 case Instruction::SDiv: 2018 case Instruction::FDiv: 2019 case Instruction::URem: 2020 case Instruction::SRem: 2021 case Instruction::FRem: 2022 case Instruction::Shl: 2023 case Instruction::LShr: 2024 case Instruction::AShr: 2025 case Instruction::And: 2026 case Instruction::Or: 2027 case Instruction::Xor: 2028 case Instruction::Trunc: 2029 case Instruction::ZExt: 2030 case Instruction::SExt: 2031 case Instruction::FPToUI: 2032 case Instruction::FPToSI: 2033 case Instruction::UIToFP: 2034 case Instruction::SIToFP: 2035 case Instruction::FPTrunc: 2036 case Instruction::FPExt: 2037 case Instruction::PtrToInt: 2038 case Instruction::IntToPtr: 2039 case Instruction::Select: 2040 case Instruction::ExtractElement: 2041 case Instruction::InsertElement: 2042 case Instruction::GetElementPtr: 2043 return createExpression(I); 2044 break; 2045 case Instruction::ShuffleVector: 2046 // FIXME: Add support for shufflevector to createExpression. 2047 return ExprResult::none(); 2048 default: 2049 return ExprResult::none(); 2050 } 2051 return ExprResult::some(E); 2052 } 2053 2054 // Look up a container of values/instructions in a map, and touch all the 2055 // instructions in the container. Then erase value from the map. 2056 template <typename Map, typename KeyType> 2057 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2058 const auto Result = M.find_as(Key); 2059 if (Result != M.end()) { 2060 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2061 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2062 M.erase(Result); 2063 } 2064 } 2065 2066 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2067 assert(User && To != User); 2068 if (isa<Instruction>(To)) 2069 AdditionalUsers[To].insert(User); 2070 } 2071 2072 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2073 if (Res.ExtraDep && Res.ExtraDep != User) 2074 addAdditionalUsers(Res.ExtraDep, User); 2075 Res.ExtraDep = nullptr; 2076 2077 if (Res.PredDep) { 2078 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2079 PredicateToUsers[PBranch->Condition].insert(User); 2080 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2081 PredicateToUsers[PAssume->Condition].insert(User); 2082 } 2083 Res.PredDep = nullptr; 2084 } 2085 2086 void NewGVN::markUsersTouched(Value *V) { 2087 // Now mark the users as touched. 2088 for (auto *User : V->users()) { 2089 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2090 TouchedInstructions.set(InstrToDFSNum(User)); 2091 } 2092 touchAndErase(AdditionalUsers, V); 2093 } 2094 2095 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2096 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2097 MemoryToUsers[To].insert(U); 2098 } 2099 2100 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2101 TouchedInstructions.set(MemoryToDFSNum(MA)); 2102 } 2103 2104 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2105 if (isa<MemoryUse>(MA)) 2106 return; 2107 for (const auto *U : MA->users()) 2108 TouchedInstructions.set(MemoryToDFSNum(U)); 2109 touchAndErase(MemoryToUsers, MA); 2110 } 2111 2112 // Touch all the predicates that depend on this instruction. 2113 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2114 touchAndErase(PredicateToUsers, I); 2115 } 2116 2117 // Mark users affected by a memory leader change. 2118 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2119 for (const auto *M : CC->memory()) 2120 markMemoryDefTouched(M); 2121 } 2122 2123 // Touch the instructions that need to be updated after a congruence class has a 2124 // leader change, and mark changed values. 2125 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2126 for (auto *M : *CC) { 2127 if (auto *I = dyn_cast<Instruction>(M)) 2128 TouchedInstructions.set(InstrToDFSNum(I)); 2129 LeaderChanges.insert(M); 2130 } 2131 } 2132 2133 // Give a range of things that have instruction DFS numbers, this will return 2134 // the member of the range with the smallest dfs number. 2135 template <class T, class Range> 2136 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2137 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2138 for (const auto X : R) { 2139 auto DFSNum = InstrToDFSNum(X); 2140 if (DFSNum < MinDFS.second) 2141 MinDFS = {X, DFSNum}; 2142 } 2143 return MinDFS.first; 2144 } 2145 2146 // This function returns the MemoryAccess that should be the next leader of 2147 // congruence class CC, under the assumption that the current leader is going to 2148 // disappear. 2149 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2150 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2151 // do for regular leaders. 2152 // Make sure there will be a leader to find. 2153 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2154 if (CC->getStoreCount() > 0) { 2155 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2156 return getMemoryAccess(NL); 2157 // Find the store with the minimum DFS number. 2158 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2159 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2160 return getMemoryAccess(cast<StoreInst>(V)); 2161 } 2162 assert(CC->getStoreCount() == 0); 2163 2164 // Given our assertion, hitting this part must mean 2165 // !OldClass->memory_empty() 2166 if (CC->memory_size() == 1) 2167 return *CC->memory_begin(); 2168 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2169 } 2170 2171 // This function returns the next value leader of a congruence class, under the 2172 // assumption that the current leader is going away. This should end up being 2173 // the next most dominating member. 2174 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2175 // We don't need to sort members if there is only 1, and we don't care about 2176 // sorting the TOP class because everything either gets out of it or is 2177 // unreachable. 2178 2179 if (CC->size() == 1 || CC == TOPClass) { 2180 return *(CC->begin()); 2181 } else if (CC->getNextLeader().first) { 2182 ++NumGVNAvoidedSortedLeaderChanges; 2183 return CC->getNextLeader().first; 2184 } else { 2185 ++NumGVNSortedLeaderChanges; 2186 // NOTE: If this ends up to slow, we can maintain a dual structure for 2187 // member testing/insertion, or keep things mostly sorted, and sort only 2188 // here, or use SparseBitVector or .... 2189 return getMinDFSOfRange<Value>(*CC); 2190 } 2191 } 2192 2193 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2194 // the memory members, etc for the move. 2195 // 2196 // The invariants of this function are: 2197 // 2198 // - I must be moving to NewClass from OldClass 2199 // - The StoreCount of OldClass and NewClass is expected to have been updated 2200 // for I already if it is a store. 2201 // - The OldClass memory leader has not been updated yet if I was the leader. 2202 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2203 MemoryAccess *InstMA, 2204 CongruenceClass *OldClass, 2205 CongruenceClass *NewClass) { 2206 // If the leader is I, and we had a representative MemoryAccess, it should 2207 // be the MemoryAccess of OldClass. 2208 assert((!InstMA || !OldClass->getMemoryLeader() || 2209 OldClass->getLeader() != I || 2210 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2211 MemoryAccessToClass.lookup(InstMA)) && 2212 "Representative MemoryAccess mismatch"); 2213 // First, see what happens to the new class 2214 if (!NewClass->getMemoryLeader()) { 2215 // Should be a new class, or a store becoming a leader of a new class. 2216 assert(NewClass->size() == 1 || 2217 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2218 NewClass->setMemoryLeader(InstMA); 2219 // Mark it touched if we didn't just create a singleton 2220 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2221 << NewClass->getID() 2222 << " due to new memory instruction becoming leader\n"); 2223 markMemoryLeaderChangeTouched(NewClass); 2224 } 2225 setMemoryClass(InstMA, NewClass); 2226 // Now, fixup the old class if necessary 2227 if (OldClass->getMemoryLeader() == InstMA) { 2228 if (!OldClass->definesNoMemory()) { 2229 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2230 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2231 << OldClass->getID() << " to " 2232 << *OldClass->getMemoryLeader() 2233 << " due to removal of old leader " << *InstMA << "\n"); 2234 markMemoryLeaderChangeTouched(OldClass); 2235 } else 2236 OldClass->setMemoryLeader(nullptr); 2237 } 2238 } 2239 2240 // Move a value, currently in OldClass, to be part of NewClass 2241 // Update OldClass and NewClass for the move (including changing leaders, etc). 2242 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2243 CongruenceClass *OldClass, 2244 CongruenceClass *NewClass) { 2245 if (I == OldClass->getNextLeader().first) 2246 OldClass->resetNextLeader(); 2247 2248 OldClass->erase(I); 2249 NewClass->insert(I); 2250 2251 if (NewClass->getLeader() != I) 2252 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2253 // Handle our special casing of stores. 2254 if (auto *SI = dyn_cast<StoreInst>(I)) { 2255 OldClass->decStoreCount(); 2256 // Okay, so when do we want to make a store a leader of a class? 2257 // If we have a store defined by an earlier load, we want the earlier load 2258 // to lead the class. 2259 // If we have a store defined by something else, we want the store to lead 2260 // the class so everything else gets the "something else" as a value. 2261 // If we have a store as the single member of the class, we want the store 2262 // as the leader 2263 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2264 // If it's a store expression we are using, it means we are not equivalent 2265 // to something earlier. 2266 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2267 NewClass->setStoredValue(SE->getStoredValue()); 2268 markValueLeaderChangeTouched(NewClass); 2269 // Shift the new class leader to be the store 2270 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2271 << NewClass->getID() << " from " 2272 << *NewClass->getLeader() << " to " << *SI 2273 << " because store joined class\n"); 2274 // If we changed the leader, we have to mark it changed because we don't 2275 // know what it will do to symbolic evaluation. 2276 NewClass->setLeader(SI); 2277 } 2278 // We rely on the code below handling the MemoryAccess change. 2279 } 2280 NewClass->incStoreCount(); 2281 } 2282 // True if there is no memory instructions left in a class that had memory 2283 // instructions before. 2284 2285 // If it's not a memory use, set the MemoryAccess equivalence 2286 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2287 if (InstMA) 2288 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2289 ValueToClass[I] = NewClass; 2290 // See if we destroyed the class or need to swap leaders. 2291 if (OldClass->empty() && OldClass != TOPClass) { 2292 if (OldClass->getDefiningExpr()) { 2293 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2294 << " from table\n"); 2295 // We erase it as an exact expression to make sure we don't just erase an 2296 // equivalent one. 2297 auto Iter = ExpressionToClass.find_as( 2298 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2299 if (Iter != ExpressionToClass.end()) 2300 ExpressionToClass.erase(Iter); 2301 #ifdef EXPENSIVE_CHECKS 2302 assert( 2303 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2304 "We erased the expression we just inserted, which should not happen"); 2305 #endif 2306 } 2307 } else if (OldClass->getLeader() == I) { 2308 // When the leader changes, the value numbering of 2309 // everything may change due to symbolization changes, so we need to 2310 // reprocess. 2311 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2312 << OldClass->getID() << "\n"); 2313 ++NumGVNLeaderChanges; 2314 // Destroy the stored value if there are no more stores to represent it. 2315 // Note that this is basically clean up for the expression removal that 2316 // happens below. If we remove stores from a class, we may leave it as a 2317 // class of equivalent memory phis. 2318 if (OldClass->getStoreCount() == 0) { 2319 if (OldClass->getStoredValue()) 2320 OldClass->setStoredValue(nullptr); 2321 } 2322 OldClass->setLeader(getNextValueLeader(OldClass)); 2323 OldClass->resetNextLeader(); 2324 markValueLeaderChangeTouched(OldClass); 2325 } 2326 } 2327 2328 // For a given expression, mark the phi of ops instructions that could have 2329 // changed as a result. 2330 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2331 touchAndErase(ExpressionToPhiOfOps, E); 2332 } 2333 2334 // Perform congruence finding on a given value numbering expression. 2335 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2336 // This is guaranteed to return something, since it will at least find 2337 // TOP. 2338 2339 CongruenceClass *IClass = ValueToClass.lookup(I); 2340 assert(IClass && "Should have found a IClass"); 2341 // Dead classes should have been eliminated from the mapping. 2342 assert(!IClass->isDead() && "Found a dead class"); 2343 2344 CongruenceClass *EClass = nullptr; 2345 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2346 EClass = ValueToClass.lookup(VE->getVariableValue()); 2347 } else if (isa<DeadExpression>(E)) { 2348 EClass = TOPClass; 2349 } 2350 if (!EClass) { 2351 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2352 2353 // If it's not in the value table, create a new congruence class. 2354 if (lookupResult.second) { 2355 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2356 auto place = lookupResult.first; 2357 place->second = NewClass; 2358 2359 // Constants and variables should always be made the leader. 2360 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2361 NewClass->setLeader(CE->getConstantValue()); 2362 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2363 StoreInst *SI = SE->getStoreInst(); 2364 NewClass->setLeader(SI); 2365 NewClass->setStoredValue(SE->getStoredValue()); 2366 // The RepMemoryAccess field will be filled in properly by the 2367 // moveValueToNewCongruenceClass call. 2368 } else { 2369 NewClass->setLeader(I); 2370 } 2371 assert(!isa<VariableExpression>(E) && 2372 "VariableExpression should have been handled already"); 2373 2374 EClass = NewClass; 2375 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2376 << " using expression " << *E << " at " 2377 << NewClass->getID() << " and leader " 2378 << *(NewClass->getLeader())); 2379 if (NewClass->getStoredValue()) 2380 LLVM_DEBUG(dbgs() << " and stored value " 2381 << *(NewClass->getStoredValue())); 2382 LLVM_DEBUG(dbgs() << "\n"); 2383 } else { 2384 EClass = lookupResult.first->second; 2385 if (isa<ConstantExpression>(E)) 2386 assert((isa<Constant>(EClass->getLeader()) || 2387 (EClass->getStoredValue() && 2388 isa<Constant>(EClass->getStoredValue()))) && 2389 "Any class with a constant expression should have a " 2390 "constant leader"); 2391 2392 assert(EClass && "Somehow don't have an eclass"); 2393 2394 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2395 } 2396 } 2397 bool ClassChanged = IClass != EClass; 2398 bool LeaderChanged = LeaderChanges.erase(I); 2399 if (ClassChanged || LeaderChanged) { 2400 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2401 << *E << "\n"); 2402 if (ClassChanged) { 2403 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2404 markPhiOfOpsChanged(E); 2405 } 2406 2407 markUsersTouched(I); 2408 if (MemoryAccess *MA = getMemoryAccess(I)) 2409 markMemoryUsersTouched(MA); 2410 if (auto *CI = dyn_cast<CmpInst>(I)) 2411 markPredicateUsersTouched(CI); 2412 } 2413 // If we changed the class of the store, we want to ensure nothing finds the 2414 // old store expression. In particular, loads do not compare against stored 2415 // value, so they will find old store expressions (and associated class 2416 // mappings) if we leave them in the table. 2417 if (ClassChanged && isa<StoreInst>(I)) { 2418 auto *OldE = ValueToExpression.lookup(I); 2419 // It could just be that the old class died. We don't want to erase it if we 2420 // just moved classes. 2421 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2422 // Erase this as an exact expression to ensure we don't erase expressions 2423 // equivalent to it. 2424 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2425 if (Iter != ExpressionToClass.end()) 2426 ExpressionToClass.erase(Iter); 2427 } 2428 } 2429 ValueToExpression[I] = E; 2430 } 2431 2432 // Process the fact that Edge (from, to) is reachable, including marking 2433 // any newly reachable blocks and instructions for processing. 2434 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2435 // Check if the Edge was reachable before. 2436 if (ReachableEdges.insert({From, To}).second) { 2437 // If this block wasn't reachable before, all instructions are touched. 2438 if (ReachableBlocks.insert(To).second) { 2439 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2440 << " marked reachable\n"); 2441 const auto &InstRange = BlockInstRange.lookup(To); 2442 TouchedInstructions.set(InstRange.first, InstRange.second); 2443 } else { 2444 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2445 << " was reachable, but new edge {" 2446 << getBlockName(From) << "," << getBlockName(To) 2447 << "} to it found\n"); 2448 2449 // We've made an edge reachable to an existing block, which may 2450 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2451 // they are the only thing that depend on new edges. Anything using their 2452 // values will get propagated to if necessary. 2453 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2454 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2455 2456 // FIXME: We should just add a union op on a Bitvector and 2457 // SparseBitVector. We can do it word by word faster than we are doing it 2458 // here. 2459 for (auto InstNum : RevisitOnReachabilityChange[To]) 2460 TouchedInstructions.set(InstNum); 2461 } 2462 } 2463 } 2464 2465 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2466 // see if we know some constant value for it already. 2467 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2468 auto Result = lookupOperandLeader(Cond); 2469 return isa<Constant>(Result) ? Result : nullptr; 2470 } 2471 2472 // Process the outgoing edges of a block for reachability. 2473 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2474 // Evaluate reachability of terminator instruction. 2475 Value *Cond; 2476 BasicBlock *TrueSucc, *FalseSucc; 2477 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2478 Value *CondEvaluated = findConditionEquivalence(Cond); 2479 if (!CondEvaluated) { 2480 if (auto *I = dyn_cast<Instruction>(Cond)) { 2481 SmallPtrSet<Value *, 4> Visited; 2482 auto Res = performSymbolicEvaluation(I, Visited); 2483 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2484 CondEvaluated = CE->getConstantValue(); 2485 addAdditionalUsers(Res, I); 2486 } else { 2487 // Did not use simplification result, no need to add the extra 2488 // dependency. 2489 Res.ExtraDep = nullptr; 2490 } 2491 } else if (isa<ConstantInt>(Cond)) { 2492 CondEvaluated = Cond; 2493 } 2494 } 2495 ConstantInt *CI; 2496 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2497 if (CI->isOne()) { 2498 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2499 << " evaluated to true\n"); 2500 updateReachableEdge(B, TrueSucc); 2501 } else if (CI->isZero()) { 2502 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2503 << " evaluated to false\n"); 2504 updateReachableEdge(B, FalseSucc); 2505 } 2506 } else { 2507 updateReachableEdge(B, TrueSucc); 2508 updateReachableEdge(B, FalseSucc); 2509 } 2510 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2511 // For switches, propagate the case values into the case 2512 // destinations. 2513 2514 Value *SwitchCond = SI->getCondition(); 2515 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2516 // See if we were able to turn this switch statement into a constant. 2517 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2518 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2519 // We should be able to get case value for this. 2520 auto Case = *SI->findCaseValue(CondVal); 2521 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2522 // We proved the value is outside of the range of the case. 2523 // We can't do anything other than mark the default dest as reachable, 2524 // and go home. 2525 updateReachableEdge(B, SI->getDefaultDest()); 2526 return; 2527 } 2528 // Now get where it goes and mark it reachable. 2529 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2530 updateReachableEdge(B, TargetBlock); 2531 } else { 2532 for (BasicBlock *TargetBlock : successors(SI->getParent())) 2533 updateReachableEdge(B, TargetBlock); 2534 } 2535 } else { 2536 // Otherwise this is either unconditional, or a type we have no 2537 // idea about. Just mark successors as reachable. 2538 for (BasicBlock *TargetBlock : successors(TI->getParent())) 2539 updateReachableEdge(B, TargetBlock); 2540 2541 // This also may be a memory defining terminator, in which case, set it 2542 // equivalent only to itself. 2543 // 2544 auto *MA = getMemoryAccess(TI); 2545 if (MA && !isa<MemoryUse>(MA)) { 2546 auto *CC = ensureLeaderOfMemoryClass(MA); 2547 if (setMemoryClass(MA, CC)) 2548 markMemoryUsersTouched(MA); 2549 } 2550 } 2551 } 2552 2553 // Remove the PHI of Ops PHI for I 2554 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2555 InstrDFS.erase(PHITemp); 2556 // It's still a temp instruction. We keep it in the array so it gets erased. 2557 // However, it's no longer used by I, or in the block 2558 TempToBlock.erase(PHITemp); 2559 RealToTemp.erase(I); 2560 // We don't remove the users from the phi node uses. This wastes a little 2561 // time, but such is life. We could use two sets to track which were there 2562 // are the start of NewGVN, and which were added, but right nowt he cost of 2563 // tracking is more than the cost of checking for more phi of ops. 2564 } 2565 2566 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2567 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2568 Instruction *ExistingValue) { 2569 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2570 AllTempInstructions.insert(Op); 2571 TempToBlock[Op] = BB; 2572 RealToTemp[ExistingValue] = Op; 2573 // Add all users to phi node use, as they are now uses of the phi of ops phis 2574 // and may themselves be phi of ops. 2575 for (auto *U : ExistingValue->users()) 2576 if (auto *UI = dyn_cast<Instruction>(U)) 2577 PHINodeUses.insert(UI); 2578 } 2579 2580 static bool okayForPHIOfOps(const Instruction *I) { 2581 if (!EnablePhiOfOps) 2582 return false; 2583 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2584 isa<LoadInst>(I); 2585 } 2586 2587 // Return true if this operand will be safe to use for phi of ops. 2588 // 2589 // The reason some operands are unsafe is that we are not trying to recursively 2590 // translate everything back through phi nodes. We actually expect some lookups 2591 // of expressions to fail. In particular, a lookup where the expression cannot 2592 // exist in the predecessor. This is true even if the expression, as shown, can 2593 // be determined to be constant. 2594 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2595 SmallPtrSetImpl<const Value *> &Visited) { 2596 SmallVector<Value *, 4> Worklist; 2597 Worklist.push_back(V); 2598 while (!Worklist.empty()) { 2599 auto *I = Worklist.pop_back_val(); 2600 if (!isa<Instruction>(I)) 2601 continue; 2602 2603 auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx}); 2604 if (OISIt != OpSafeForPHIOfOps.end()) 2605 return OISIt->second; 2606 2607 // Keep walking until we either dominate the phi block, or hit a phi, or run 2608 // out of things to check. 2609 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) { 2610 OpSafeForPHIOfOps.insert({{I, CacheIdx}, true}); 2611 continue; 2612 } 2613 // PHI in the same block. 2614 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) { 2615 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false}); 2616 return false; 2617 } 2618 2619 auto *OrigI = cast<Instruction>(I); 2620 // When we hit an instruction that reads memory (load, call, etc), we must 2621 // consider any store that may happen in the loop. For now, we assume the 2622 // worst: there is a store in the loop that alias with this read. 2623 // The case where the load is outside the loop is already covered by the 2624 // dominator check above. 2625 // TODO: relax this condition 2626 if (OrigI->mayReadFromMemory()) 2627 return false; 2628 2629 // Check the operands of the current instruction. 2630 for (auto *Op : OrigI->operand_values()) { 2631 if (!isa<Instruction>(Op)) 2632 continue; 2633 // Stop now if we find an unsafe operand. 2634 auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx}); 2635 if (OISIt != OpSafeForPHIOfOps.end()) { 2636 if (!OISIt->second) { 2637 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false}); 2638 return false; 2639 } 2640 continue; 2641 } 2642 if (!Visited.insert(Op).second) 2643 continue; 2644 Worklist.push_back(cast<Instruction>(Op)); 2645 } 2646 } 2647 OpSafeForPHIOfOps.insert({{V, CacheIdx}, true}); 2648 return true; 2649 } 2650 2651 // Try to find a leader for instruction TransInst, which is a phi translated 2652 // version of something in our original program. Visited is used to ensure we 2653 // don't infinite loop during translations of cycles. OrigInst is the 2654 // instruction in the original program, and PredBB is the predecessor we 2655 // translated it through. 2656 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2657 SmallPtrSetImpl<Value *> &Visited, 2658 MemoryAccess *MemAccess, Instruction *OrigInst, 2659 BasicBlock *PredBB) { 2660 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2661 // Make sure it's marked as a temporary instruction. 2662 AllTempInstructions.insert(TransInst); 2663 // and make sure anything that tries to add it's DFS number is 2664 // redirected to the instruction we are making a phi of ops 2665 // for. 2666 TempToBlock.insert({TransInst, PredBB}); 2667 InstrDFS.insert({TransInst, IDFSNum}); 2668 2669 auto Res = performSymbolicEvaluation(TransInst, Visited); 2670 const Expression *E = Res.Expr; 2671 addAdditionalUsers(Res, OrigInst); 2672 InstrDFS.erase(TransInst); 2673 AllTempInstructions.erase(TransInst); 2674 TempToBlock.erase(TransInst); 2675 if (MemAccess) 2676 TempToMemory.erase(TransInst); 2677 if (!E) 2678 return nullptr; 2679 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2680 if (!FoundVal) { 2681 ExpressionToPhiOfOps[E].insert(OrigInst); 2682 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2683 << " in block " << getBlockName(PredBB) << "\n"); 2684 return nullptr; 2685 } 2686 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2687 FoundVal = SI->getValueOperand(); 2688 return FoundVal; 2689 } 2690 2691 // When we see an instruction that is an op of phis, generate the equivalent phi 2692 // of ops form. 2693 const Expression * 2694 NewGVN::makePossiblePHIOfOps(Instruction *I, 2695 SmallPtrSetImpl<Value *> &Visited) { 2696 if (!okayForPHIOfOps(I)) 2697 return nullptr; 2698 2699 if (!Visited.insert(I).second) 2700 return nullptr; 2701 // For now, we require the instruction be cycle free because we don't 2702 // *always* create a phi of ops for instructions that could be done as phi 2703 // of ops, we only do it if we think it is useful. If we did do it all the 2704 // time, we could remove the cycle free check. 2705 if (!isCycleFree(I)) 2706 return nullptr; 2707 2708 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2709 // TODO: We don't do phi translation on memory accesses because it's 2710 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2711 // which we don't have a good way of doing ATM. 2712 auto *MemAccess = getMemoryAccess(I); 2713 // If the memory operation is defined by a memory operation this block that 2714 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2715 // can't help, as it would still be killed by that memory operation. 2716 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2717 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2718 return nullptr; 2719 2720 // Convert op of phis to phi of ops 2721 SmallPtrSet<const Value *, 10> VisitedOps; 2722 SmallVector<Value *, 4> Ops(I->operand_values()); 2723 BasicBlock *SamePHIBlock = nullptr; 2724 PHINode *OpPHI = nullptr; 2725 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2726 return nullptr; 2727 for (auto *Op : Ops) { 2728 if (!isa<PHINode>(Op)) { 2729 auto *ValuePHI = RealToTemp.lookup(Op); 2730 if (!ValuePHI) 2731 continue; 2732 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2733 Op = ValuePHI; 2734 } 2735 OpPHI = cast<PHINode>(Op); 2736 if (!SamePHIBlock) { 2737 SamePHIBlock = getBlockForValue(OpPHI); 2738 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2739 LLVM_DEBUG( 2740 dbgs() 2741 << "PHIs for operands are not all in the same block, aborting\n"); 2742 return nullptr; 2743 } 2744 // No point in doing this for one-operand phis. 2745 // Since all PHIs for operands must be in the same block, then they must 2746 // have the same number of operands so we can just abort. 2747 if (OpPHI->getNumOperands() == 1) 2748 return nullptr; 2749 } 2750 2751 if (!OpPHI) 2752 return nullptr; 2753 2754 SmallVector<ValPair, 4> PHIOps; 2755 SmallPtrSet<Value *, 4> Deps; 2756 auto *PHIBlock = getBlockForValue(OpPHI); 2757 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2758 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2759 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2760 Value *FoundVal = nullptr; 2761 SmallPtrSet<Value *, 4> CurrentDeps; 2762 // We could just skip unreachable edges entirely but it's tricky to do 2763 // with rewriting existing phi nodes. 2764 if (ReachableEdges.count({PredBB, PHIBlock})) { 2765 // Clone the instruction, create an expression from it that is 2766 // translated back into the predecessor, and see if we have a leader. 2767 Instruction *ValueOp = I->clone(); 2768 // Emit the temporal instruction in the predecessor basic block where the 2769 // corresponding value is defined. 2770 ValueOp->insertBefore(PredBB->getTerminator()); 2771 if (MemAccess) 2772 TempToMemory.insert({ValueOp, MemAccess}); 2773 bool SafeForPHIOfOps = true; 2774 VisitedOps.clear(); 2775 for (auto &Op : ValueOp->operands()) { 2776 auto *OrigOp = &*Op; 2777 // When these operand changes, it could change whether there is a 2778 // leader for us or not, so we have to add additional users. 2779 if (isa<PHINode>(Op)) { 2780 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2781 if (Op != OrigOp && Op != I) 2782 CurrentDeps.insert(Op); 2783 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2784 if (getBlockForValue(ValuePHI) == PHIBlock) 2785 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2786 } 2787 // If we phi-translated the op, it must be safe. 2788 SafeForPHIOfOps = 2789 SafeForPHIOfOps && 2790 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2791 } 2792 // FIXME: For those things that are not safe we could generate 2793 // expressions all the way down, and see if this comes out to a 2794 // constant. For anything where that is true, and unsafe, we should 2795 // have made a phi-of-ops (or value numbered it equivalent to something) 2796 // for the pieces already. 2797 FoundVal = !SafeForPHIOfOps ? nullptr 2798 : findLeaderForInst(ValueOp, Visited, 2799 MemAccess, I, PredBB); 2800 ValueOp->eraseFromParent(); 2801 if (!FoundVal) { 2802 // We failed to find a leader for the current ValueOp, but this might 2803 // change in case of the translated operands change. 2804 if (SafeForPHIOfOps) 2805 for (auto *Dep : CurrentDeps) 2806 addAdditionalUsers(Dep, I); 2807 2808 return nullptr; 2809 } 2810 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2811 } else { 2812 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2813 << getBlockName(PredBB) 2814 << " because the block is unreachable\n"); 2815 FoundVal = PoisonValue::get(I->getType()); 2816 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2817 } 2818 2819 PHIOps.push_back({FoundVal, PredBB}); 2820 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2821 << getBlockName(PredBB) << "\n"); 2822 } 2823 for (auto *Dep : Deps) 2824 addAdditionalUsers(Dep, I); 2825 sortPHIOps(PHIOps); 2826 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2827 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2828 LLVM_DEBUG( 2829 dbgs() 2830 << "Not creating real PHI of ops because it simplified to existing " 2831 "value or constant\n"); 2832 // We have leaders for all operands, but do not create a real PHI node with 2833 // those leaders as operands, so the link between the operands and the 2834 // PHI-of-ops is not materialized in the IR. If any of those leaders 2835 // changes, the PHI-of-op may change also, so we need to add the operands as 2836 // additional users. 2837 for (auto &O : PHIOps) 2838 addAdditionalUsers(O.first, I); 2839 2840 return E; 2841 } 2842 auto *ValuePHI = RealToTemp.lookup(I); 2843 bool NewPHI = false; 2844 if (!ValuePHI) { 2845 ValuePHI = 2846 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2847 addPhiOfOps(ValuePHI, PHIBlock, I); 2848 NewPHI = true; 2849 NumGVNPHIOfOpsCreated++; 2850 } 2851 if (NewPHI) { 2852 for (auto PHIOp : PHIOps) 2853 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2854 } else { 2855 TempToBlock[ValuePHI] = PHIBlock; 2856 unsigned int i = 0; 2857 for (auto PHIOp : PHIOps) { 2858 ValuePHI->setIncomingValue(i, PHIOp.first); 2859 ValuePHI->setIncomingBlock(i, PHIOp.second); 2860 ++i; 2861 } 2862 } 2863 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2864 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2865 << "\n"); 2866 2867 return E; 2868 } 2869 2870 // The algorithm initially places the values of the routine in the TOP 2871 // congruence class. The leader of TOP is the undetermined value `poison`. 2872 // When the algorithm has finished, values still in TOP are unreachable. 2873 void NewGVN::initializeCongruenceClasses(Function &F) { 2874 NextCongruenceNum = 0; 2875 2876 // Note that even though we use the live on entry def as a representative 2877 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2878 // have no real equivalent to poison for MemoryAccesses, and so we really 2879 // should be checking whether the MemoryAccess is top if we want to know if it 2880 // is equivalent to everything. Otherwise, what this really signifies is that 2881 // the access "it reaches all the way back to the beginning of the function" 2882 2883 // Initialize all other instructions to be in TOP class. 2884 TOPClass = createCongruenceClass(nullptr, nullptr); 2885 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2886 // The live on entry def gets put into it's own class 2887 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2888 createMemoryClass(MSSA->getLiveOnEntryDef()); 2889 2890 for (auto *DTN : nodes(DT)) { 2891 BasicBlock *BB = DTN->getBlock(); 2892 // All MemoryAccesses are equivalent to live on entry to start. They must 2893 // be initialized to something so that initial changes are noticed. For 2894 // the maximal answer, we initialize them all to be the same as 2895 // liveOnEntry. 2896 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2897 if (MemoryBlockDefs) 2898 for (const auto &Def : *MemoryBlockDefs) { 2899 MemoryAccessToClass[&Def] = TOPClass; 2900 auto *MD = dyn_cast<MemoryDef>(&Def); 2901 // Insert the memory phis into the member list. 2902 if (!MD) { 2903 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2904 TOPClass->memory_insert(MP); 2905 MemoryPhiState.insert({MP, MPS_TOP}); 2906 } 2907 2908 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2909 TOPClass->incStoreCount(); 2910 } 2911 2912 // FIXME: This is trying to discover which instructions are uses of phi 2913 // nodes. We should move this into one of the myriad of places that walk 2914 // all the operands already. 2915 for (auto &I : *BB) { 2916 if (isa<PHINode>(&I)) 2917 for (auto *U : I.users()) 2918 if (auto *UInst = dyn_cast<Instruction>(U)) 2919 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2920 PHINodeUses.insert(UInst); 2921 // Don't insert void terminators into the class. We don't value number 2922 // them, and they just end up sitting in TOP. 2923 if (I.isTerminator() && I.getType()->isVoidTy()) 2924 continue; 2925 TOPClass->insert(&I); 2926 ValueToClass[&I] = TOPClass; 2927 } 2928 } 2929 2930 // Initialize arguments to be in their own unique congruence classes 2931 for (auto &FA : F.args()) 2932 createSingletonCongruenceClass(&FA); 2933 } 2934 2935 void NewGVN::cleanupTables() { 2936 for (CongruenceClass *&CC : CongruenceClasses) { 2937 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has " 2938 << CC->size() << " members\n"); 2939 // Make sure we delete the congruence class (probably worth switching to 2940 // a unique_ptr at some point. 2941 delete CC; 2942 CC = nullptr; 2943 } 2944 2945 // Destroy the value expressions 2946 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2947 AllTempInstructions.end()); 2948 AllTempInstructions.clear(); 2949 2950 // We have to drop all references for everything first, so there are no uses 2951 // left as we delete them. 2952 for (auto *I : TempInst) { 2953 I->dropAllReferences(); 2954 } 2955 2956 while (!TempInst.empty()) { 2957 auto *I = TempInst.pop_back_val(); 2958 I->deleteValue(); 2959 } 2960 2961 ValueToClass.clear(); 2962 ArgRecycler.clear(ExpressionAllocator); 2963 ExpressionAllocator.Reset(); 2964 CongruenceClasses.clear(); 2965 ExpressionToClass.clear(); 2966 ValueToExpression.clear(); 2967 RealToTemp.clear(); 2968 AdditionalUsers.clear(); 2969 ExpressionToPhiOfOps.clear(); 2970 TempToBlock.clear(); 2971 TempToMemory.clear(); 2972 PHINodeUses.clear(); 2973 OpSafeForPHIOfOps.clear(); 2974 ReachableBlocks.clear(); 2975 ReachableEdges.clear(); 2976 #ifndef NDEBUG 2977 ProcessedCount.clear(); 2978 #endif 2979 InstrDFS.clear(); 2980 InstructionsToErase.clear(); 2981 DFSToInstr.clear(); 2982 BlockInstRange.clear(); 2983 TouchedInstructions.clear(); 2984 MemoryAccessToClass.clear(); 2985 PredicateToUsers.clear(); 2986 MemoryToUsers.clear(); 2987 RevisitOnReachabilityChange.clear(); 2988 IntrinsicInstPred.clear(); 2989 } 2990 2991 // Assign local DFS number mapping to instructions, and leave space for Value 2992 // PHI's. 2993 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2994 unsigned Start) { 2995 unsigned End = Start; 2996 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 2997 InstrDFS[MemPhi] = End++; 2998 DFSToInstr.emplace_back(MemPhi); 2999 } 3000 3001 // Then the real block goes next. 3002 for (auto &I : *B) { 3003 // There's no need to call isInstructionTriviallyDead more than once on 3004 // an instruction. Therefore, once we know that an instruction is dead 3005 // we change its DFS number so that it doesn't get value numbered. 3006 if (isInstructionTriviallyDead(&I, TLI)) { 3007 InstrDFS[&I] = 0; 3008 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 3009 markInstructionForDeletion(&I); 3010 continue; 3011 } 3012 if (isa<PHINode>(&I)) 3013 RevisitOnReachabilityChange[B].set(End); 3014 InstrDFS[&I] = End++; 3015 DFSToInstr.emplace_back(&I); 3016 } 3017 3018 // All of the range functions taken half-open ranges (open on the end side). 3019 // So we do not subtract one from count, because at this point it is one 3020 // greater than the last instruction. 3021 return std::make_pair(Start, End); 3022 } 3023 3024 void NewGVN::updateProcessedCount(const Value *V) { 3025 #ifndef NDEBUG 3026 if (ProcessedCount.count(V) == 0) { 3027 ProcessedCount.insert({V, 1}); 3028 } else { 3029 ++ProcessedCount[V]; 3030 assert(ProcessedCount[V] < 100 && 3031 "Seem to have processed the same Value a lot"); 3032 } 3033 #endif 3034 } 3035 3036 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3037 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3038 // If all the arguments are the same, the MemoryPhi has the same value as the 3039 // argument. Filter out unreachable blocks and self phis from our operands. 3040 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3041 // self-phi checking. 3042 const BasicBlock *PHIBlock = MP->getBlock(); 3043 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3044 return cast<MemoryAccess>(U) != MP && 3045 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3046 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3047 }); 3048 // If all that is left is nothing, our memoryphi is poison. We keep it as 3049 // InitialClass. Note: The only case this should happen is if we have at 3050 // least one self-argument. 3051 if (Filtered.begin() == Filtered.end()) { 3052 if (setMemoryClass(MP, TOPClass)) 3053 markMemoryUsersTouched(MP); 3054 return; 3055 } 3056 3057 // Transform the remaining operands into operand leaders. 3058 // FIXME: mapped_iterator should have a range version. 3059 auto LookupFunc = [&](const Use &U) { 3060 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3061 }; 3062 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3063 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3064 3065 // and now check if all the elements are equal. 3066 // Sadly, we can't use std::equals since these are random access iterators. 3067 const auto *AllSameValue = *MappedBegin; 3068 ++MappedBegin; 3069 bool AllEqual = std::all_of( 3070 MappedBegin, MappedEnd, 3071 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3072 3073 if (AllEqual) 3074 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3075 << "\n"); 3076 else 3077 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3078 // If it's equal to something, it's in that class. Otherwise, it has to be in 3079 // a class where it is the leader (other things may be equivalent to it, but 3080 // it needs to start off in its own class, which means it must have been the 3081 // leader, and it can't have stopped being the leader because it was never 3082 // removed). 3083 CongruenceClass *CC = 3084 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3085 auto OldState = MemoryPhiState.lookup(MP); 3086 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3087 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3088 MemoryPhiState[MP] = NewState; 3089 if (setMemoryClass(MP, CC) || OldState != NewState) 3090 markMemoryUsersTouched(MP); 3091 } 3092 3093 // Value number a single instruction, symbolically evaluating, performing 3094 // congruence finding, and updating mappings. 3095 void NewGVN::valueNumberInstruction(Instruction *I) { 3096 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3097 if (!I->isTerminator()) { 3098 const Expression *Symbolized = nullptr; 3099 SmallPtrSet<Value *, 2> Visited; 3100 if (DebugCounter::shouldExecute(VNCounter)) { 3101 auto Res = performSymbolicEvaluation(I, Visited); 3102 Symbolized = Res.Expr; 3103 addAdditionalUsers(Res, I); 3104 3105 // Make a phi of ops if necessary 3106 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3107 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3108 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3109 // If we created a phi of ops, use it. 3110 // If we couldn't create one, make sure we don't leave one lying around 3111 if (PHIE) { 3112 Symbolized = PHIE; 3113 } else if (auto *Op = RealToTemp.lookup(I)) { 3114 removePhiOfOps(I, Op); 3115 } 3116 } 3117 } else { 3118 // Mark the instruction as unused so we don't value number it again. 3119 InstrDFS[I] = 0; 3120 } 3121 // If we couldn't come up with a symbolic expression, use the unknown 3122 // expression 3123 if (Symbolized == nullptr) 3124 Symbolized = createUnknownExpression(I); 3125 performCongruenceFinding(I, Symbolized); 3126 } else { 3127 // Handle terminators that return values. All of them produce values we 3128 // don't currently understand. We don't place non-value producing 3129 // terminators in a class. 3130 if (!I->getType()->isVoidTy()) { 3131 auto *Symbolized = createUnknownExpression(I); 3132 performCongruenceFinding(I, Symbolized); 3133 } 3134 processOutgoingEdges(I, I->getParent()); 3135 } 3136 } 3137 3138 // Check if there is a path, using single or equal argument phi nodes, from 3139 // First to Second. 3140 bool NewGVN::singleReachablePHIPath( 3141 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3142 const MemoryAccess *Second) const { 3143 if (First == Second) 3144 return true; 3145 if (MSSA->isLiveOnEntryDef(First)) 3146 return false; 3147 3148 // This is not perfect, but as we're just verifying here, we can live with 3149 // the loss of precision. The real solution would be that of doing strongly 3150 // connected component finding in this routine, and it's probably not worth 3151 // the complexity for the time being. So, we just keep a set of visited 3152 // MemoryAccess and return true when we hit a cycle. 3153 if (!Visited.insert(First).second) 3154 return true; 3155 3156 const auto *EndDef = First; 3157 for (const auto *ChainDef : optimized_def_chain(First)) { 3158 if (ChainDef == Second) 3159 return true; 3160 if (MSSA->isLiveOnEntryDef(ChainDef)) 3161 return false; 3162 EndDef = ChainDef; 3163 } 3164 auto *MP = cast<MemoryPhi>(EndDef); 3165 auto ReachableOperandPred = [&](const Use &U) { 3166 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3167 }; 3168 auto FilteredPhiArgs = 3169 make_filter_range(MP->operands(), ReachableOperandPred); 3170 SmallVector<const Value *, 32> OperandList; 3171 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3172 bool Okay = all_equal(OperandList); 3173 if (Okay) 3174 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3175 Second); 3176 return false; 3177 } 3178 3179 // Verify the that the memory equivalence table makes sense relative to the 3180 // congruence classes. Note that this checking is not perfect, and is currently 3181 // subject to very rare false negatives. It is only useful for 3182 // testing/debugging. 3183 void NewGVN::verifyMemoryCongruency() const { 3184 #ifndef NDEBUG 3185 // Verify that the memory table equivalence and memory member set match 3186 for (const auto *CC : CongruenceClasses) { 3187 if (CC == TOPClass || CC->isDead()) 3188 continue; 3189 if (CC->getStoreCount() != 0) { 3190 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3191 "Any class with a store as a leader should have a " 3192 "representative stored value"); 3193 assert(CC->getMemoryLeader() && 3194 "Any congruence class with a store should have a " 3195 "representative access"); 3196 } 3197 3198 if (CC->getMemoryLeader()) 3199 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3200 "Representative MemoryAccess does not appear to be reverse " 3201 "mapped properly"); 3202 for (const auto *M : CC->memory()) 3203 assert(MemoryAccessToClass.lookup(M) == CC && 3204 "Memory member does not appear to be reverse mapped properly"); 3205 } 3206 3207 // Anything equivalent in the MemoryAccess table should be in the same 3208 // congruence class. 3209 3210 // Filter out the unreachable and trivially dead entries, because they may 3211 // never have been updated if the instructions were not processed. 3212 auto ReachableAccessPred = 3213 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3214 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3215 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3216 MemoryToDFSNum(Pair.first) == 0) 3217 return false; 3218 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3219 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3220 3221 // We could have phi nodes which operands are all trivially dead, 3222 // so we don't process them. 3223 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3224 for (const auto &U : MemPHI->incoming_values()) { 3225 if (auto *I = dyn_cast<Instruction>(&*U)) { 3226 if (!isInstructionTriviallyDead(I)) 3227 return true; 3228 } 3229 } 3230 return false; 3231 } 3232 3233 return true; 3234 }; 3235 3236 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3237 for (auto KV : Filtered) { 3238 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3239 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3240 if (FirstMUD && SecondMUD) { 3241 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3242 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3243 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3244 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3245 "The instructions for these memory operations should have " 3246 "been in the same congruence class or reachable through" 3247 "a single argument phi"); 3248 } 3249 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3250 // We can only sanely verify that MemoryDefs in the operand list all have 3251 // the same class. 3252 auto ReachableOperandPred = [&](const Use &U) { 3253 return ReachableEdges.count( 3254 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3255 isa<MemoryDef>(U); 3256 3257 }; 3258 // All arguments should in the same class, ignoring unreachable arguments 3259 auto FilteredPhiArgs = 3260 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3261 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3262 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3263 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3264 const MemoryDef *MD = cast<MemoryDef>(U); 3265 return ValueToClass.lookup(MD->getMemoryInst()); 3266 }); 3267 assert(all_equal(PhiOpClasses) && 3268 "All MemoryPhi arguments should be in the same class"); 3269 } 3270 } 3271 #endif 3272 } 3273 3274 // Verify that the sparse propagation we did actually found the maximal fixpoint 3275 // We do this by storing the value to class mapping, touching all instructions, 3276 // and redoing the iteration to see if anything changed. 3277 void NewGVN::verifyIterationSettled(Function &F) { 3278 #ifndef NDEBUG 3279 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3280 if (DebugCounter::isCounterSet(VNCounter)) 3281 DebugCounter::setCounterState(VNCounter, StartingVNCounter); 3282 3283 // Note that we have to store the actual classes, as we may change existing 3284 // classes during iteration. This is because our memory iteration propagation 3285 // is not perfect, and so may waste a little work. But it should generate 3286 // exactly the same congruence classes we have now, with different IDs. 3287 std::map<const Value *, CongruenceClass> BeforeIteration; 3288 3289 for (auto &KV : ValueToClass) { 3290 if (auto *I = dyn_cast<Instruction>(KV.first)) 3291 // Skip unused/dead instructions. 3292 if (InstrToDFSNum(I) == 0) 3293 continue; 3294 BeforeIteration.insert({KV.first, *KV.second}); 3295 } 3296 3297 TouchedInstructions.set(); 3298 TouchedInstructions.reset(0); 3299 OpSafeForPHIOfOps.clear(); 3300 CacheIdx = 0; 3301 iterateTouchedInstructions(); 3302 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3303 EqualClasses; 3304 for (const auto &KV : ValueToClass) { 3305 if (auto *I = dyn_cast<Instruction>(KV.first)) 3306 // Skip unused/dead instructions. 3307 if (InstrToDFSNum(I) == 0) 3308 continue; 3309 // We could sink these uses, but i think this adds a bit of clarity here as 3310 // to what we are comparing. 3311 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3312 auto *AfterCC = KV.second; 3313 // Note that the classes can't change at this point, so we memoize the set 3314 // that are equal. 3315 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3316 assert(BeforeCC->isEquivalentTo(AfterCC) && 3317 "Value number changed after main loop completed!"); 3318 EqualClasses.insert({BeforeCC, AfterCC}); 3319 } 3320 } 3321 #endif 3322 } 3323 3324 // Verify that for each store expression in the expression to class mapping, 3325 // only the latest appears, and multiple ones do not appear. 3326 // Because loads do not use the stored value when doing equality with stores, 3327 // if we don't erase the old store expressions from the table, a load can find 3328 // a no-longer valid StoreExpression. 3329 void NewGVN::verifyStoreExpressions() const { 3330 #ifndef NDEBUG 3331 // This is the only use of this, and it's not worth defining a complicated 3332 // densemapinfo hash/equality function for it. 3333 std::set< 3334 std::pair<const Value *, 3335 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3336 StoreExpressionSet; 3337 for (const auto &KV : ExpressionToClass) { 3338 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3339 // Make sure a version that will conflict with loads is not already there 3340 auto Res = StoreExpressionSet.insert( 3341 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3342 SE->getStoredValue())}); 3343 bool Okay = Res.second; 3344 // It's okay to have the same expression already in there if it is 3345 // identical in nature. 3346 // This can happen when the leader of the stored value changes over time. 3347 if (!Okay) 3348 Okay = (std::get<1>(Res.first->second) == KV.second) && 3349 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3350 lookupOperandLeader(SE->getStoredValue())); 3351 assert(Okay && "Stored expression conflict exists in expression table"); 3352 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3353 assert(ValueExpr && ValueExpr->equals(*SE) && 3354 "StoreExpression in ExpressionToClass is not latest " 3355 "StoreExpression for value"); 3356 } 3357 } 3358 #endif 3359 } 3360 3361 // This is the main value numbering loop, it iterates over the initial touched 3362 // instruction set, propagating value numbers, marking things touched, etc, 3363 // until the set of touched instructions is completely empty. 3364 void NewGVN::iterateTouchedInstructions() { 3365 uint64_t Iterations = 0; 3366 // Figure out where touchedinstructions starts 3367 int FirstInstr = TouchedInstructions.find_first(); 3368 // Nothing set, nothing to iterate, just return. 3369 if (FirstInstr == -1) 3370 return; 3371 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3372 while (TouchedInstructions.any()) { 3373 ++Iterations; 3374 // Walk through all the instructions in all the blocks in RPO. 3375 // TODO: As we hit a new block, we should push and pop equalities into a 3376 // table lookupOperandLeader can use, to catch things PredicateInfo 3377 // might miss, like edge-only equivalences. 3378 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3379 3380 // This instruction was found to be dead. We don't bother looking 3381 // at it again. 3382 if (InstrNum == 0) { 3383 TouchedInstructions.reset(InstrNum); 3384 continue; 3385 } 3386 3387 Value *V = InstrFromDFSNum(InstrNum); 3388 const BasicBlock *CurrBlock = getBlockForValue(V); 3389 3390 // If we hit a new block, do reachability processing. 3391 if (CurrBlock != LastBlock) { 3392 LastBlock = CurrBlock; 3393 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3394 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3395 3396 // If it's not reachable, erase any touched instructions and move on. 3397 if (!BlockReachable) { 3398 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3399 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3400 << getBlockName(CurrBlock) 3401 << " because it is unreachable\n"); 3402 continue; 3403 } 3404 // Use the appropriate cache for "OpIsSafeForPHIOfOps". 3405 CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1; 3406 updateProcessedCount(CurrBlock); 3407 } 3408 // Reset after processing (because we may mark ourselves as touched when 3409 // we propagate equalities). 3410 TouchedInstructions.reset(InstrNum); 3411 3412 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3413 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3414 valueNumberMemoryPhi(MP); 3415 } else if (auto *I = dyn_cast<Instruction>(V)) { 3416 valueNumberInstruction(I); 3417 } else { 3418 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3419 } 3420 updateProcessedCount(V); 3421 } 3422 } 3423 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3424 } 3425 3426 // This is the main transformation entry point. 3427 bool NewGVN::runGVN() { 3428 if (DebugCounter::isCounterSet(VNCounter)) 3429 StartingVNCounter = DebugCounter::getCounterState(VNCounter); 3430 bool Changed = false; 3431 NumFuncArgs = F.arg_size(); 3432 MSSAWalker = MSSA->getWalker(); 3433 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3434 3435 // Count number of instructions for sizing of hash tables, and come 3436 // up with a global dfs numbering for instructions. 3437 unsigned ICount = 1; 3438 // Add an empty instruction to account for the fact that we start at 1 3439 DFSToInstr.emplace_back(nullptr); 3440 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3441 // same as dominator tree order, particularly with regard whether backedges 3442 // get visited first or second, given a block with multiple successors. 3443 // If we visit in the wrong order, we will end up performing N times as many 3444 // iterations. 3445 // The dominator tree does guarantee that, for a given dom tree node, it's 3446 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3447 // the siblings. 3448 ReversePostOrderTraversal<Function *> RPOT(&F); 3449 unsigned Counter = 0; 3450 for (auto &B : RPOT) { 3451 auto *Node = DT->getNode(B); 3452 assert(Node && "RPO and Dominator tree should have same reachability"); 3453 RPOOrdering[Node] = ++Counter; 3454 } 3455 // Sort dominator tree children arrays into RPO. 3456 for (auto &B : RPOT) { 3457 auto *Node = DT->getNode(B); 3458 if (Node->getNumChildren() > 1) 3459 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3460 return RPOOrdering[A] < RPOOrdering[B]; 3461 }); 3462 } 3463 3464 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3465 for (auto *DTN : depth_first(DT->getRootNode())) { 3466 BasicBlock *B = DTN->getBlock(); 3467 const auto &BlockRange = assignDFSNumbers(B, ICount); 3468 BlockInstRange.insert({B, BlockRange}); 3469 ICount += BlockRange.second - BlockRange.first; 3470 } 3471 initializeCongruenceClasses(F); 3472 3473 TouchedInstructions.resize(ICount); 3474 // Ensure we don't end up resizing the expressionToClass map, as 3475 // that can be quite expensive. At most, we have one expression per 3476 // instruction. 3477 ExpressionToClass.reserve(ICount); 3478 3479 // Initialize the touched instructions to include the entry block. 3480 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3481 TouchedInstructions.set(InstRange.first, InstRange.second); 3482 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3483 << " marked reachable\n"); 3484 ReachableBlocks.insert(&F.getEntryBlock()); 3485 // Use index corresponding to entry block. 3486 CacheIdx = 0; 3487 3488 iterateTouchedInstructions(); 3489 verifyMemoryCongruency(); 3490 verifyIterationSettled(F); 3491 verifyStoreExpressions(); 3492 3493 Changed |= eliminateInstructions(F); 3494 3495 // Delete all instructions marked for deletion. 3496 for (Instruction *ToErase : InstructionsToErase) { 3497 if (!ToErase->use_empty()) 3498 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType())); 3499 3500 assert(ToErase->getParent() && 3501 "BB containing ToErase deleted unexpectedly!"); 3502 ToErase->eraseFromParent(); 3503 } 3504 Changed |= !InstructionsToErase.empty(); 3505 3506 // Delete all unreachable blocks. 3507 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3508 return !ReachableBlocks.count(&BB); 3509 }; 3510 3511 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3512 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3513 << " is unreachable\n"); 3514 deleteInstructionsInBlock(&BB); 3515 Changed = true; 3516 } 3517 3518 cleanupTables(); 3519 return Changed; 3520 } 3521 3522 struct NewGVN::ValueDFS { 3523 int DFSIn = 0; 3524 int DFSOut = 0; 3525 int LocalNum = 0; 3526 3527 // Only one of Def and U will be set. 3528 // The bool in the Def tells us whether the Def is the stored value of a 3529 // store. 3530 PointerIntPair<Value *, 1, bool> Def; 3531 Use *U = nullptr; 3532 3533 bool operator<(const ValueDFS &Other) const { 3534 // It's not enough that any given field be less than - we have sets 3535 // of fields that need to be evaluated together to give a proper ordering. 3536 // For example, if you have; 3537 // DFS (1, 3) 3538 // Val 0 3539 // DFS (1, 2) 3540 // Val 50 3541 // We want the second to be less than the first, but if we just go field 3542 // by field, we will get to Val 0 < Val 50 and say the first is less than 3543 // the second. We only want it to be less than if the DFS orders are equal. 3544 // 3545 // Each LLVM instruction only produces one value, and thus the lowest-level 3546 // differentiator that really matters for the stack (and what we use as a 3547 // replacement) is the local dfs number. 3548 // Everything else in the structure is instruction level, and only affects 3549 // the order in which we will replace operands of a given instruction. 3550 // 3551 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3552 // the order of replacement of uses does not matter. 3553 // IE given, 3554 // a = 5 3555 // b = a + a 3556 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3557 // localnum. 3558 // The .val will be the same as well. 3559 // The .u's will be different. 3560 // You will replace both, and it does not matter what order you replace them 3561 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3562 // operand 2). 3563 // Similarly for the case of same dfsin, dfsout, localnum, but different 3564 // .val's 3565 // a = 5 3566 // b = 6 3567 // c = a + b 3568 // in c, we will a valuedfs for a, and one for b,with everything the same 3569 // but .val and .u. 3570 // It does not matter what order we replace these operands in. 3571 // You will always end up with the same IR, and this is guaranteed. 3572 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3573 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3574 Other.U); 3575 } 3576 }; 3577 3578 // This function converts the set of members for a congruence class from values, 3579 // to sets of defs and uses with associated DFS info. The total number of 3580 // reachable uses for each value is stored in UseCount, and instructions that 3581 // seem 3582 // dead (have no non-dead uses) are stored in ProbablyDead. 3583 void NewGVN::convertClassToDFSOrdered( 3584 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3585 DenseMap<const Value *, unsigned int> &UseCounts, 3586 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3587 for (auto *D : Dense) { 3588 // First add the value. 3589 BasicBlock *BB = getBlockForValue(D); 3590 // Constants are handled prior to ever calling this function, so 3591 // we should only be left with instructions as members. 3592 assert(BB && "Should have figured out a basic block for value"); 3593 ValueDFS VDDef; 3594 DomTreeNode *DomNode = DT->getNode(BB); 3595 VDDef.DFSIn = DomNode->getDFSNumIn(); 3596 VDDef.DFSOut = DomNode->getDFSNumOut(); 3597 // If it's a store, use the leader of the value operand, if it's always 3598 // available, or the value operand. TODO: We could do dominance checks to 3599 // find a dominating leader, but not worth it ATM. 3600 if (auto *SI = dyn_cast<StoreInst>(D)) { 3601 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3602 if (alwaysAvailable(Leader)) { 3603 VDDef.Def.setPointer(Leader); 3604 } else { 3605 VDDef.Def.setPointer(SI->getValueOperand()); 3606 VDDef.Def.setInt(true); 3607 } 3608 } else { 3609 VDDef.Def.setPointer(D); 3610 } 3611 assert(isa<Instruction>(D) && 3612 "The dense set member should always be an instruction"); 3613 Instruction *Def = cast<Instruction>(D); 3614 VDDef.LocalNum = InstrToDFSNum(D); 3615 DFSOrderedSet.push_back(VDDef); 3616 // If there is a phi node equivalent, add it 3617 if (auto *PN = RealToTemp.lookup(Def)) { 3618 auto *PHIE = 3619 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3620 if (PHIE) { 3621 VDDef.Def.setInt(false); 3622 VDDef.Def.setPointer(PN); 3623 VDDef.LocalNum = 0; 3624 DFSOrderedSet.push_back(VDDef); 3625 } 3626 } 3627 3628 unsigned int UseCount = 0; 3629 // Now add the uses. 3630 for (auto &U : Def->uses()) { 3631 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3632 // Don't try to replace into dead uses 3633 if (InstructionsToErase.count(I)) 3634 continue; 3635 ValueDFS VDUse; 3636 // Put the phi node uses in the incoming block. 3637 BasicBlock *IBlock; 3638 if (auto *P = dyn_cast<PHINode>(I)) { 3639 IBlock = P->getIncomingBlock(U); 3640 // Make phi node users appear last in the incoming block 3641 // they are from. 3642 VDUse.LocalNum = InstrDFS.size() + 1; 3643 } else { 3644 IBlock = getBlockForValue(I); 3645 VDUse.LocalNum = InstrToDFSNum(I); 3646 } 3647 3648 // Skip uses in unreachable blocks, as we're going 3649 // to delete them. 3650 if (!ReachableBlocks.contains(IBlock)) 3651 continue; 3652 3653 DomTreeNode *DomNode = DT->getNode(IBlock); 3654 VDUse.DFSIn = DomNode->getDFSNumIn(); 3655 VDUse.DFSOut = DomNode->getDFSNumOut(); 3656 VDUse.U = &U; 3657 ++UseCount; 3658 DFSOrderedSet.emplace_back(VDUse); 3659 } 3660 } 3661 3662 // If there are no uses, it's probably dead (but it may have side-effects, 3663 // so not definitely dead. Otherwise, store the number of uses so we can 3664 // track if it becomes dead later). 3665 if (UseCount == 0) 3666 ProbablyDead.insert(Def); 3667 else 3668 UseCounts[Def] = UseCount; 3669 } 3670 } 3671 3672 // This function converts the set of members for a congruence class from values, 3673 // to the set of defs for loads and stores, with associated DFS info. 3674 void NewGVN::convertClassToLoadsAndStores( 3675 const CongruenceClass &Dense, 3676 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3677 for (auto *D : Dense) { 3678 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3679 continue; 3680 3681 BasicBlock *BB = getBlockForValue(D); 3682 ValueDFS VD; 3683 DomTreeNode *DomNode = DT->getNode(BB); 3684 VD.DFSIn = DomNode->getDFSNumIn(); 3685 VD.DFSOut = DomNode->getDFSNumOut(); 3686 VD.Def.setPointer(D); 3687 3688 // If it's an instruction, use the real local dfs number. 3689 if (auto *I = dyn_cast<Instruction>(D)) 3690 VD.LocalNum = InstrToDFSNum(I); 3691 else 3692 llvm_unreachable("Should have been an instruction"); 3693 3694 LoadsAndStores.emplace_back(VD); 3695 } 3696 } 3697 3698 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3699 patchReplacementInstruction(I, Repl); 3700 I->replaceAllUsesWith(Repl); 3701 } 3702 3703 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3704 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3705 ++NumGVNBlocksDeleted; 3706 3707 // Delete the instructions backwards, as it has a reduced likelihood of having 3708 // to update as many def-use and use-def chains. Start after the terminator. 3709 auto StartPoint = BB->rbegin(); 3710 ++StartPoint; 3711 // Note that we explicitly recalculate BB->rend() on each iteration, 3712 // as it may change when we remove the first instruction. 3713 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3714 Instruction &Inst = *I++; 3715 if (!Inst.use_empty()) 3716 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType())); 3717 if (isa<LandingPadInst>(Inst)) 3718 continue; 3719 salvageKnowledge(&Inst, AC); 3720 3721 Inst.eraseFromParent(); 3722 ++NumGVNInstrDeleted; 3723 } 3724 // Now insert something that simplifycfg will turn into an unreachable. 3725 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3726 new StoreInst( 3727 PoisonValue::get(Int8Ty), 3728 Constant::getNullValue(PointerType::getUnqual(BB->getContext())), 3729 BB->getTerminator()->getIterator()); 3730 } 3731 3732 void NewGVN::markInstructionForDeletion(Instruction *I) { 3733 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3734 InstructionsToErase.insert(I); 3735 } 3736 3737 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3738 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3739 patchAndReplaceAllUsesWith(I, V); 3740 // We save the actual erasing to avoid invalidating memory 3741 // dependencies until we are done with everything. 3742 markInstructionForDeletion(I); 3743 } 3744 3745 namespace { 3746 3747 // This is a stack that contains both the value and dfs info of where 3748 // that value is valid. 3749 class ValueDFSStack { 3750 public: 3751 Value *back() const { return ValueStack.back(); } 3752 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3753 3754 void push_back(Value *V, int DFSIn, int DFSOut) { 3755 ValueStack.emplace_back(V); 3756 DFSStack.emplace_back(DFSIn, DFSOut); 3757 } 3758 3759 bool empty() const { return DFSStack.empty(); } 3760 3761 bool isInScope(int DFSIn, int DFSOut) const { 3762 if (empty()) 3763 return false; 3764 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3765 } 3766 3767 void popUntilDFSScope(int DFSIn, int DFSOut) { 3768 3769 // These two should always be in sync at this point. 3770 assert(ValueStack.size() == DFSStack.size() && 3771 "Mismatch between ValueStack and DFSStack"); 3772 while ( 3773 !DFSStack.empty() && 3774 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3775 DFSStack.pop_back(); 3776 ValueStack.pop_back(); 3777 } 3778 } 3779 3780 private: 3781 SmallVector<Value *, 8> ValueStack; 3782 SmallVector<std::pair<int, int>, 8> DFSStack; 3783 }; 3784 3785 } // end anonymous namespace 3786 3787 // Given an expression, get the congruence class for it. 3788 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3789 if (auto *VE = dyn_cast<VariableExpression>(E)) 3790 return ValueToClass.lookup(VE->getVariableValue()); 3791 else if (isa<DeadExpression>(E)) 3792 return TOPClass; 3793 return ExpressionToClass.lookup(E); 3794 } 3795 3796 // Given a value and a basic block we are trying to see if it is available in, 3797 // see if the value has a leader available in that block. 3798 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3799 const Instruction *OrigInst, 3800 const BasicBlock *BB) const { 3801 // It would already be constant if we could make it constant 3802 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3803 return CE->getConstantValue(); 3804 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3805 auto *V = VE->getVariableValue(); 3806 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3807 return VE->getVariableValue(); 3808 } 3809 3810 auto *CC = getClassForExpression(E); 3811 if (!CC) 3812 return nullptr; 3813 if (alwaysAvailable(CC->getLeader())) 3814 return CC->getLeader(); 3815 3816 for (auto *Member : *CC) { 3817 auto *MemberInst = dyn_cast<Instruction>(Member); 3818 if (MemberInst == OrigInst) 3819 continue; 3820 // Anything that isn't an instruction is always available. 3821 if (!MemberInst) 3822 return Member; 3823 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3824 return Member; 3825 } 3826 return nullptr; 3827 } 3828 3829 bool NewGVN::eliminateInstructions(Function &F) { 3830 // This is a non-standard eliminator. The normal way to eliminate is 3831 // to walk the dominator tree in order, keeping track of available 3832 // values, and eliminating them. However, this is mildly 3833 // pointless. It requires doing lookups on every instruction, 3834 // regardless of whether we will ever eliminate it. For 3835 // instructions part of most singleton congruence classes, we know we 3836 // will never eliminate them. 3837 3838 // Instead, this eliminator looks at the congruence classes directly, sorts 3839 // them into a DFS ordering of the dominator tree, and then we just 3840 // perform elimination straight on the sets by walking the congruence 3841 // class member uses in order, and eliminate the ones dominated by the 3842 // last member. This is worst case O(E log E) where E = number of 3843 // instructions in a single congruence class. In theory, this is all 3844 // instructions. In practice, it is much faster, as most instructions are 3845 // either in singleton congruence classes or can't possibly be eliminated 3846 // anyway (if there are no overlapping DFS ranges in class). 3847 // When we find something not dominated, it becomes the new leader 3848 // for elimination purposes. 3849 // TODO: If we wanted to be faster, We could remove any members with no 3850 // overlapping ranges while sorting, as we will never eliminate anything 3851 // with those members, as they don't dominate anything else in our set. 3852 3853 bool AnythingReplaced = false; 3854 3855 // Since we are going to walk the domtree anyway, and we can't guarantee the 3856 // DFS numbers are updated, we compute some ourselves. 3857 DT->updateDFSNumbers(); 3858 3859 // Go through all of our phi nodes, and kill the arguments associated with 3860 // unreachable edges. 3861 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3862 for (auto &Operand : PHI->incoming_values()) 3863 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3864 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3865 << " for block " 3866 << getBlockName(PHI->getIncomingBlock(Operand)) 3867 << " with poison due to it being unreachable\n"); 3868 Operand.set(PoisonValue::get(PHI->getType())); 3869 } 3870 }; 3871 // Replace unreachable phi arguments. 3872 // At this point, RevisitOnReachabilityChange only contains: 3873 // 3874 // 1. PHIs 3875 // 2. Temporaries that will convert to PHIs 3876 // 3. Operations that are affected by an unreachable edge but do not fit into 3877 // 1 or 2 (rare). 3878 // So it is a slight overshoot of what we want. We could make it exact by 3879 // using two SparseBitVectors per block. 3880 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3881 for (auto &KV : ReachableEdges) 3882 ReachablePredCount[KV.getEnd()]++; 3883 for (auto &BBPair : RevisitOnReachabilityChange) { 3884 for (auto InstNum : BBPair.second) { 3885 auto *Inst = InstrFromDFSNum(InstNum); 3886 auto *PHI = dyn_cast<PHINode>(Inst); 3887 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3888 if (!PHI) 3889 continue; 3890 auto *BB = BBPair.first; 3891 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3892 ReplaceUnreachablePHIArgs(PHI, BB); 3893 } 3894 } 3895 3896 // Map to store the use counts 3897 DenseMap<const Value *, unsigned int> UseCounts; 3898 for (auto *CC : reverse(CongruenceClasses)) { 3899 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3900 << "\n"); 3901 // Track the equivalent store info so we can decide whether to try 3902 // dead store elimination. 3903 SmallVector<ValueDFS, 8> PossibleDeadStores; 3904 SmallPtrSet<Instruction *, 8> ProbablyDead; 3905 if (CC->isDead() || CC->empty()) 3906 continue; 3907 // Everything still in the TOP class is unreachable or dead. 3908 if (CC == TOPClass) { 3909 for (auto *M : *CC) { 3910 auto *VTE = ValueToExpression.lookup(M); 3911 if (VTE && isa<DeadExpression>(VTE)) 3912 markInstructionForDeletion(cast<Instruction>(M)); 3913 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3914 InstructionsToErase.count(cast<Instruction>(M))) && 3915 "Everything in TOP should be unreachable or dead at this " 3916 "point"); 3917 } 3918 continue; 3919 } 3920 3921 assert(CC->getLeader() && "We should have had a leader"); 3922 // If this is a leader that is always available, and it's a 3923 // constant or has no equivalences, just replace everything with 3924 // it. We then update the congruence class with whatever members 3925 // are left. 3926 Value *Leader = 3927 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3928 if (alwaysAvailable(Leader)) { 3929 CongruenceClass::MemberSet MembersLeft; 3930 for (auto *M : *CC) { 3931 Value *Member = M; 3932 // Void things have no uses we can replace. 3933 if (Member == Leader || !isa<Instruction>(Member) || 3934 Member->getType()->isVoidTy()) { 3935 MembersLeft.insert(Member); 3936 continue; 3937 } 3938 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3939 << *Member << "\n"); 3940 auto *I = cast<Instruction>(Member); 3941 assert(Leader != I && "About to accidentally remove our leader"); 3942 replaceInstruction(I, Leader); 3943 AnythingReplaced = true; 3944 } 3945 CC->swap(MembersLeft); 3946 } else { 3947 // If this is a singleton, we can skip it. 3948 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3949 // This is a stack because equality replacement/etc may place 3950 // constants in the middle of the member list, and we want to use 3951 // those constant values in preference to the current leader, over 3952 // the scope of those constants. 3953 ValueDFSStack EliminationStack; 3954 3955 // Convert the members to DFS ordered sets and then merge them. 3956 SmallVector<ValueDFS, 8> DFSOrderedSet; 3957 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3958 3959 // Sort the whole thing. 3960 llvm::sort(DFSOrderedSet); 3961 for (auto &VD : DFSOrderedSet) { 3962 int MemberDFSIn = VD.DFSIn; 3963 int MemberDFSOut = VD.DFSOut; 3964 Value *Def = VD.Def.getPointer(); 3965 bool FromStore = VD.Def.getInt(); 3966 Use *U = VD.U; 3967 // We ignore void things because we can't get a value from them. 3968 if (Def && Def->getType()->isVoidTy()) 3969 continue; 3970 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3971 if (DefInst && AllTempInstructions.count(DefInst)) { 3972 auto *PN = cast<PHINode>(DefInst); 3973 3974 // If this is a value phi and that's the expression we used, insert 3975 // it into the program 3976 // remove from temp instruction list. 3977 AllTempInstructions.erase(PN); 3978 auto *DefBlock = getBlockForValue(Def); 3979 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3980 << " into block " 3981 << getBlockName(getBlockForValue(Def)) << "\n"); 3982 PN->insertBefore(&DefBlock->front()); 3983 Def = PN; 3984 NumGVNPHIOfOpsEliminations++; 3985 } 3986 3987 if (EliminationStack.empty()) { 3988 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3989 } else { 3990 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3991 << EliminationStack.dfs_back().first << "," 3992 << EliminationStack.dfs_back().second << ")\n"); 3993 } 3994 3995 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3996 << MemberDFSOut << ")\n"); 3997 // First, we see if we are out of scope or empty. If so, 3998 // and there equivalences, we try to replace the top of 3999 // stack with equivalences (if it's on the stack, it must 4000 // not have been eliminated yet). 4001 // Then we synchronize to our current scope, by 4002 // popping until we are back within a DFS scope that 4003 // dominates the current member. 4004 // Then, what happens depends on a few factors 4005 // If the stack is now empty, we need to push 4006 // If we have a constant or a local equivalence we want to 4007 // start using, we also push. 4008 // Otherwise, we walk along, processing members who are 4009 // dominated by this scope, and eliminate them. 4010 bool ShouldPush = Def && EliminationStack.empty(); 4011 bool OutOfScope = 4012 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 4013 4014 if (OutOfScope || ShouldPush) { 4015 // Sync to our current scope. 4016 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4017 bool ShouldPush = Def && EliminationStack.empty(); 4018 if (ShouldPush) { 4019 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 4020 } 4021 } 4022 4023 // Skip the Def's, we only want to eliminate on their uses. But mark 4024 // dominated defs as dead. 4025 if (Def) { 4026 // For anything in this case, what and how we value number 4027 // guarantees that any side-effects that would have occurred (ie 4028 // throwing, etc) can be proven to either still occur (because it's 4029 // dominated by something that has the same side-effects), or never 4030 // occur. Otherwise, we would not have been able to prove it value 4031 // equivalent to something else. For these things, we can just mark 4032 // it all dead. Note that this is different from the "ProbablyDead" 4033 // set, which may not be dominated by anything, and thus, are only 4034 // easy to prove dead if they are also side-effect free. Note that 4035 // because stores are put in terms of the stored value, we skip 4036 // stored values here. If the stored value is really dead, it will 4037 // still be marked for deletion when we process it in its own class. 4038 auto *DefI = dyn_cast<Instruction>(Def); 4039 if (!EliminationStack.empty() && DefI && !FromStore) { 4040 Value *DominatingLeader = EliminationStack.back(); 4041 if (DominatingLeader != Def) { 4042 // Even if the instruction is removed, we still need to update 4043 // flags/metadata due to downstreams users of the leader. 4044 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>())) 4045 patchReplacementInstruction(DefI, DominatingLeader); 4046 4047 markInstructionForDeletion(DefI); 4048 } 4049 } 4050 continue; 4051 } 4052 // At this point, we know it is a Use we are trying to possibly 4053 // replace. 4054 4055 assert(isa<Instruction>(U->get()) && 4056 "Current def should have been an instruction"); 4057 assert(isa<Instruction>(U->getUser()) && 4058 "Current user should have been an instruction"); 4059 4060 // If the thing we are replacing into is already marked to be dead, 4061 // this use is dead. Note that this is true regardless of whether 4062 // we have anything dominating the use or not. We do this here 4063 // because we are already walking all the uses anyway. 4064 Instruction *InstUse = cast<Instruction>(U->getUser()); 4065 if (InstructionsToErase.count(InstUse)) { 4066 auto &UseCount = UseCounts[U->get()]; 4067 if (--UseCount == 0) { 4068 ProbablyDead.insert(cast<Instruction>(U->get())); 4069 } 4070 } 4071 4072 // If we get to this point, and the stack is empty we must have a use 4073 // with nothing we can use to eliminate this use, so just skip it. 4074 if (EliminationStack.empty()) 4075 continue; 4076 4077 Value *DominatingLeader = EliminationStack.back(); 4078 4079 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4080 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4081 if (isSSACopy) 4082 DominatingLeader = II->getOperand(0); 4083 4084 // Don't replace our existing users with ourselves. 4085 if (U->get() == DominatingLeader) 4086 continue; 4087 LLVM_DEBUG(dbgs() 4088 << "Found replacement " << *DominatingLeader << " for " 4089 << *U->get() << " in " << *(U->getUser()) << "\n"); 4090 4091 // If we replaced something in an instruction, handle the patching of 4092 // metadata. Skip this if we are replacing predicateinfo with its 4093 // original operand, as we already know we can just drop it. 4094 auto *ReplacedInst = cast<Instruction>(U->get()); 4095 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4096 if (!PI || DominatingLeader != PI->OriginalOp) 4097 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4098 U->set(DominatingLeader); 4099 // This is now a use of the dominating leader, which means if the 4100 // dominating leader was dead, it's now live! 4101 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4102 // It's about to be alive again. 4103 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4104 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4105 // For copy instructions, we use their operand as a leader, 4106 // which means we remove a user of the copy and it may become dead. 4107 if (isSSACopy) { 4108 auto It = UseCounts.find(II); 4109 if (It != UseCounts.end()) { 4110 unsigned &IIUseCount = It->second; 4111 if (--IIUseCount == 0) 4112 ProbablyDead.insert(II); 4113 } 4114 } 4115 ++LeaderUseCount; 4116 AnythingReplaced = true; 4117 } 4118 } 4119 } 4120 4121 // At this point, anything still in the ProbablyDead set is actually dead if 4122 // would be trivially dead. 4123 for (auto *I : ProbablyDead) 4124 if (wouldInstructionBeTriviallyDead(I)) 4125 markInstructionForDeletion(I); 4126 4127 // Cleanup the congruence class. 4128 CongruenceClass::MemberSet MembersLeft; 4129 for (auto *Member : *CC) 4130 if (!isa<Instruction>(Member) || 4131 !InstructionsToErase.count(cast<Instruction>(Member))) 4132 MembersLeft.insert(Member); 4133 CC->swap(MembersLeft); 4134 4135 // If we have possible dead stores to look at, try to eliminate them. 4136 if (CC->getStoreCount() > 0) { 4137 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4138 llvm::sort(PossibleDeadStores); 4139 ValueDFSStack EliminationStack; 4140 for (auto &VD : PossibleDeadStores) { 4141 int MemberDFSIn = VD.DFSIn; 4142 int MemberDFSOut = VD.DFSOut; 4143 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4144 if (EliminationStack.empty() || 4145 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4146 // Sync to our current scope. 4147 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4148 if (EliminationStack.empty()) { 4149 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4150 continue; 4151 } 4152 } 4153 // We already did load elimination, so nothing to do here. 4154 if (isa<LoadInst>(Member)) 4155 continue; 4156 assert(!EliminationStack.empty()); 4157 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4158 (void)Leader; 4159 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4160 // Member is dominater by Leader, and thus dead 4161 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4162 << " that is dominated by " << *Leader << "\n"); 4163 markInstructionForDeletion(Member); 4164 CC->erase(Member); 4165 ++NumGVNDeadStores; 4166 } 4167 } 4168 } 4169 return AnythingReplaced; 4170 } 4171 4172 // This function provides global ranking of operations so that we can place them 4173 // in a canonical order. Note that rank alone is not necessarily enough for a 4174 // complete ordering, as constants all have the same rank. However, generally, 4175 // we will simplify an operation with all constants so that it doesn't matter 4176 // what order they appear in. 4177 unsigned int NewGVN::getRank(const Value *V) const { 4178 // Prefer constants to undef to anything else 4179 // Undef is a constant, have to check it first. 4180 // Prefer poison to undef as it's less defined. 4181 // Prefer smaller constants to constantexprs 4182 // Note that the order here matters because of class inheritance 4183 if (isa<ConstantExpr>(V)) 4184 return 3; 4185 if (isa<PoisonValue>(V)) 4186 return 1; 4187 if (isa<UndefValue>(V)) 4188 return 2; 4189 if (isa<Constant>(V)) 4190 return 0; 4191 if (auto *A = dyn_cast<Argument>(V)) 4192 return 4 + A->getArgNo(); 4193 4194 // Need to shift the instruction DFS by number of arguments + 5 to account for 4195 // the constant and argument ranking above. 4196 unsigned Result = InstrToDFSNum(V); 4197 if (Result > 0) 4198 return 5 + NumFuncArgs + Result; 4199 // Unreachable or something else, just return a really large number. 4200 return ~0; 4201 } 4202 4203 // This is a function that says whether two commutative operations should 4204 // have their order swapped when canonicalizing. 4205 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4206 // Because we only care about a total ordering, and don't rewrite expressions 4207 // in this order, we order by rank, which will give a strict weak ordering to 4208 // everything but constants, and then we order by pointer address. 4209 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4210 } 4211 4212 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B, 4213 const IntrinsicInst *I) const { 4214 auto LookupResult = IntrinsicInstPred.find(I); 4215 if (shouldSwapOperands(A, B)) { 4216 if (LookupResult == IntrinsicInstPred.end()) 4217 IntrinsicInstPred.insert({I, B}); 4218 else 4219 LookupResult->second = B; 4220 return true; 4221 } 4222 4223 if (LookupResult != IntrinsicInstPred.end()) { 4224 auto *SeenPredicate = LookupResult->second; 4225 if (SeenPredicate) { 4226 if (SeenPredicate == B) 4227 return true; 4228 else 4229 LookupResult->second = nullptr; 4230 } 4231 } 4232 return false; 4233 } 4234 4235 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4236 // Apparently the order in which we get these results matter for 4237 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4238 // the same order here, just in case. 4239 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4240 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4241 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4242 auto &AA = AM.getResult<AAManager>(F); 4243 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4244 bool Changed = 4245 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout()) 4246 .runGVN(); 4247 if (!Changed) 4248 return PreservedAnalyses::all(); 4249 PreservedAnalyses PA; 4250 PA.preserve<DominatorTreeAnalysis>(); 4251 return PA; 4252 } 4253