xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/IR/Argument.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129 
130 #define DEBUG_TYPE "newgvn"
131 
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137           "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141           "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145           "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147               "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149               "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow.  This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154                                            cl::init(false), cl::Hidden);
155 
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158                                     cl::Hidden);
159 
160 //===----------------------------------------------------------------------===//
161 //                                GVN Pass
162 //===----------------------------------------------------------------------===//
163 
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167 
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175 
176 } // end namespace GVNExpression
177 } // end namespace llvm
178 
179 namespace {
180 
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
190   TarjanSCC() : Components(1) {}
191 
192   void Start(const Instruction *Start) {
193     if (Root.lookup(Start) == 0)
194       FindSCC(Start);
195   }
196 
197   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198     unsigned ComponentID = ValueToComponent.lookup(V);
199 
200     assert(ComponentID > 0 &&
201            "Asking for a component for a value we never processed");
202     return Components[ComponentID];
203   }
204 
205 private:
206   void FindSCC(const Instruction *I) {
207     Root[I] = ++DFSNum;
208     // Store the DFS Number we had before it possibly gets incremented.
209     unsigned int OurDFS = DFSNum;
210     for (auto &Op : I->operands()) {
211       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212         if (Root.lookup(Op) == 0)
213           FindSCC(InstOp);
214         if (!InComponent.count(Op))
215           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216       }
217     }
218     // See if we really were the root of a component, by seeing if we still have
219     // our DFSNumber.  If we do, we are the root of the component, and we have
220     // completed a component. If we do not, we are not the root of a component,
221     // and belong on the component stack.
222     if (Root.lookup(I) == OurDFS) {
223       unsigned ComponentID = Components.size();
224       Components.resize(Components.size() + 1);
225       auto &Component = Components.back();
226       Component.insert(I);
227       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228       InComponent.insert(I);
229       ValueToComponent[I] = ComponentID;
230       // Pop a component off the stack and label it.
231       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232         auto *Member = Stack.back();
233         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234         Component.insert(Member);
235         InComponent.insert(Member);
236         ValueToComponent[Member] = ComponentID;
237         Stack.pop_back();
238       }
239     } else {
240       // Part of a component, push to stack
241       Stack.push_back(I);
242     }
243   }
244 
245   unsigned int DFSNum = 1;
246   SmallPtrSet<const Value *, 8> InComponent;
247   DenseMap<const Value *, unsigned int> Root;
248   SmallVector<const Value *, 8> Stack;
249 
250   // Store the components as vector of ptr sets, because we need the topo order
251   // of SCC's, but not individual member order
252   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253 
254   DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256 
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization).  To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value.  Otherwise, the
272 // leader is the member of the value set with the smallest DFS number.  Each
273 // congruence class also has a defining expression, though the expression may be
274 // null.  If it exists, it can be used for forward propagation and reassociation
275 // of values.
276 
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something.  Unfortunately, this does not work
281 // easily.  The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression.  This
284 // leads to wasted propagation, and in some cases, missed optimization.  For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class.  This in turn will move at one
287 // of the memorydefs to a new memory congruence class.  Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number).  So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency.  While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297   using MemberType = Value;
298   using MemberSet = SmallPtrSet<MemberType *, 4>;
299   using MemoryMemberType = MemoryPhi;
300   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301 
302   explicit CongruenceClass(unsigned ID) : ID(ID) {}
303   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305 
306   unsigned getID() const { return ID; }
307 
308   // True if this class has no members left.  This is mainly used for assertion
309   // purposes, and for skipping empty classes.
310   bool isDead() const {
311     // If it's both dead from a value perspective, and dead from a memory
312     // perspective, it's really dead.
313     return empty() && memory_empty();
314   }
315 
316   // Leader functions
317   Value *getLeader() const { return RepLeader; }
318   void setLeader(Value *Leader) { RepLeader = Leader; }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < NextLeader.second)
325       NextLeader = LeaderPair;
326   }
327 
328   Value *getStoredValue() const { return RepStoredValue; }
329   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
330   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
331   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332 
333   // Forward propagation info
334   const Expression *getDefiningExpr() const { return DefiningExpr; }
335 
336   // Value member set
337   bool empty() const { return Members.empty(); }
338   unsigned size() const { return Members.size(); }
339   MemberSet::const_iterator begin() const { return Members.begin(); }
340   MemberSet::const_iterator end() const { return Members.end(); }
341   void insert(MemberType *M) { Members.insert(M); }
342   void erase(MemberType *M) { Members.erase(M); }
343   void swap(MemberSet &Other) { Members.swap(Other); }
344 
345   // Memory member set
346   bool memory_empty() const { return MemoryMembers.empty(); }
347   unsigned memory_size() const { return MemoryMembers.size(); }
348   MemoryMemberSet::const_iterator memory_begin() const {
349     return MemoryMembers.begin();
350   }
351   MemoryMemberSet::const_iterator memory_end() const {
352     return MemoryMembers.end();
353   }
354   iterator_range<MemoryMemberSet::const_iterator> memory() const {
355     return make_range(memory_begin(), memory_end());
356   }
357 
358   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
359   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360 
361   // Store count
362   unsigned getStoreCount() const { return StoreCount; }
363   void incStoreCount() { ++StoreCount; }
364   void decStoreCount() {
365     assert(StoreCount != 0 && "Store count went negative");
366     --StoreCount;
367   }
368 
369   // True if this class has no memory members.
370   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371 
372   // Return true if two congruence classes are equivalent to each other. This
373   // means that every field but the ID number and the dead field are equivalent.
374   bool isEquivalentTo(const CongruenceClass *Other) const {
375     if (!Other)
376       return false;
377     if (this == Other)
378       return true;
379 
380     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382                  Other->RepMemoryAccess))
383       return false;
384     if (DefiningExpr != Other->DefiningExpr)
385       if (!DefiningExpr || !Other->DefiningExpr ||
386           *DefiningExpr != *Other->DefiningExpr)
387         return false;
388 
389     if (Members.size() != Other->Members.size())
390       return false;
391 
392     return all_of(Members,
393                   [&](const Value *V) { return Other->Members.count(V); });
394   }
395 
396 private:
397   unsigned ID;
398 
399   // Representative leader.
400   Value *RepLeader = nullptr;
401 
402   // The most dominating leader after our current leader, because the member set
403   // is not sorted and is expensive to keep sorted all the time.
404   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
405 
406   // If this is represented by a store, the value of the store.
407   Value *RepStoredValue = nullptr;
408 
409   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
410   // access.
411   const MemoryAccess *RepMemoryAccess = nullptr;
412 
413   // Defining Expression.
414   const Expression *DefiningExpr = nullptr;
415 
416   // Actual members of this class.
417   MemberSet Members;
418 
419   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
420   // MemoryUses have real instructions representing them, so we only need to
421   // track MemoryPhis here.
422   MemoryMemberSet MemoryMembers;
423 
424   // Number of stores in this congruence class.
425   // This is used so we can detect store equivalence changes properly.
426   int StoreCount = 0;
427 };
428 
429 } // end anonymous namespace
430 
431 namespace llvm {
432 
433 struct ExactEqualsExpression {
434   const Expression &E;
435 
436   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
437 
438   hash_code getComputedHash() const { return E.getComputedHash(); }
439 
440   bool operator==(const Expression &Other) const {
441     return E.exactlyEquals(Other);
442   }
443 };
444 
445 template <> struct DenseMapInfo<const Expression *> {
446   static const Expression *getEmptyKey() {
447     auto Val = static_cast<uintptr_t>(-1);
448     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
449     return reinterpret_cast<const Expression *>(Val);
450   }
451 
452   static const Expression *getTombstoneKey() {
453     auto Val = static_cast<uintptr_t>(~1U);
454     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
455     return reinterpret_cast<const Expression *>(Val);
456   }
457 
458   static unsigned getHashValue(const Expression *E) {
459     return E->getComputedHash();
460   }
461 
462   static unsigned getHashValue(const ExactEqualsExpression &E) {
463     return E.getComputedHash();
464   }
465 
466   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
467     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
468       return false;
469     return LHS == *RHS;
470   }
471 
472   static bool isEqual(const Expression *LHS, const Expression *RHS) {
473     if (LHS == RHS)
474       return true;
475     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
476         LHS == getEmptyKey() || RHS == getEmptyKey())
477       return false;
478     // Compare hashes before equality.  This is *not* what the hashtable does,
479     // since it is computing it modulo the number of buckets, whereas we are
480     // using the full hash keyspace.  Since the hashes are precomputed, this
481     // check is *much* faster than equality.
482     if (LHS->getComputedHash() != RHS->getComputedHash())
483       return false;
484     return *LHS == *RHS;
485   }
486 };
487 
488 } // end namespace llvm
489 
490 namespace {
491 
492 class NewGVN {
493   Function &F;
494   DominatorTree *DT = nullptr;
495   const TargetLibraryInfo *TLI = nullptr;
496   AliasAnalysis *AA = nullptr;
497   MemorySSA *MSSA = nullptr;
498   MemorySSAWalker *MSSAWalker = nullptr;
499   AssumptionCache *AC = nullptr;
500   const DataLayout &DL;
501   std::unique_ptr<PredicateInfo> PredInfo;
502 
503   // These are the only two things the create* functions should have
504   // side-effects on due to allocating memory.
505   mutable BumpPtrAllocator ExpressionAllocator;
506   mutable ArrayRecycler<Value *> ArgRecycler;
507   mutable TarjanSCC SCCFinder;
508   const SimplifyQuery SQ;
509 
510   // Number of function arguments, used by ranking
511   unsigned int NumFuncArgs = 0;
512 
513   // RPOOrdering of basic blocks
514   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
515 
516   // Congruence class info.
517 
518   // This class is called INITIAL in the paper. It is the class everything
519   // startsout in, and represents any value. Being an optimistic analysis,
520   // anything in the TOP class has the value TOP, which is indeterminate and
521   // equivalent to everything.
522   CongruenceClass *TOPClass = nullptr;
523   std::vector<CongruenceClass *> CongruenceClasses;
524   unsigned NextCongruenceNum = 0;
525 
526   // Value Mappings.
527   DenseMap<Value *, CongruenceClass *> ValueToClass;
528   DenseMap<Value *, const Expression *> ValueToExpression;
529 
530   // Value PHI handling, used to make equivalence between phi(op, op) and
531   // op(phi, phi).
532   // These mappings just store various data that would normally be part of the
533   // IR.
534   SmallPtrSet<const Instruction *, 8> PHINodeUses;
535 
536   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
537 
538   // Map a temporary instruction we created to a parent block.
539   DenseMap<const Value *, BasicBlock *> TempToBlock;
540 
541   // Map between the already in-program instructions and the temporary phis we
542   // created that they are known equivalent to.
543   DenseMap<const Value *, PHINode *> RealToTemp;
544 
545   // In order to know when we should re-process instructions that have
546   // phi-of-ops, we track the set of expressions that they needed as
547   // leaders. When we discover new leaders for those expressions, we process the
548   // associated phi-of-op instructions again in case they have changed.  The
549   // other way they may change is if they had leaders, and those leaders
550   // disappear.  However, at the point they have leaders, there are uses of the
551   // relevant operands in the created phi node, and so they will get reprocessed
552   // through the normal user marking we perform.
553   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
554   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
555       ExpressionToPhiOfOps;
556 
557   // Map from temporary operation to MemoryAccess.
558   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
559 
560   // Set of all temporary instructions we created.
561   // Note: This will include instructions that were just created during value
562   // numbering.  The way to test if something is using them is to check
563   // RealToTemp.
564   DenseSet<Instruction *> AllTempInstructions;
565 
566   // This is the set of instructions to revisit on a reachability change.  At
567   // the end of the main iteration loop it will contain at least all the phi of
568   // ops instructions that will be changed to phis, as well as regular phis.
569   // During the iteration loop, it may contain other things, such as phi of ops
570   // instructions that used edge reachability to reach a result, and so need to
571   // be revisited when the edge changes, independent of whether the phi they
572   // depended on changes.
573   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
574 
575   // Mapping from predicate info we used to the instructions we used it with.
576   // In order to correctly ensure propagation, we must keep track of what
577   // comparisons we used, so that when the values of the comparisons change, we
578   // propagate the information to the places we used the comparison.
579   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
580       PredicateToUsers;
581 
582   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
583   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
584   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
585       MemoryToUsers;
586 
587   // A table storing which memorydefs/phis represent a memory state provably
588   // equivalent to another memory state.
589   // We could use the congruence class machinery, but the MemoryAccess's are
590   // abstract memory states, so they can only ever be equivalent to each other,
591   // and not to constants, etc.
592   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
593 
594   // We could, if we wanted, build MemoryPhiExpressions and
595   // MemoryVariableExpressions, etc, and value number them the same way we value
596   // number phi expressions.  For the moment, this seems like overkill.  They
597   // can only exist in one of three states: they can be TOP (equal to
598   // everything), Equivalent to something else, or unique.  Because we do not
599   // create expressions for them, we need to simulate leader change not just
600   // when they change class, but when they change state.  Note: We can do the
601   // same thing for phis, and avoid having phi expressions if we wanted, We
602   // should eventually unify in one direction or the other, so this is a little
603   // bit of an experiment in which turns out easier to maintain.
604   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
605   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
606 
607   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
608   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
609 
610   // Expression to class mapping.
611   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
612   ExpressionClassMap ExpressionToClass;
613 
614   // We have a single expression that represents currently DeadExpressions.
615   // For dead expressions we can prove will stay dead, we mark them with
616   // DFS number zero.  However, it's possible in the case of phi nodes
617   // for us to assume/prove all arguments are dead during fixpointing.
618   // We use DeadExpression for that case.
619   DeadExpression *SingletonDeadExpression = nullptr;
620 
621   // Which values have changed as a result of leader changes.
622   SmallPtrSet<Value *, 8> LeaderChanges;
623 
624   // Reachability info.
625   using BlockEdge = BasicBlockEdge;
626   DenseSet<BlockEdge> ReachableEdges;
627   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
628 
629   // This is a bitvector because, on larger functions, we may have
630   // thousands of touched instructions at once (entire blocks,
631   // instructions with hundreds of uses, etc).  Even with optimization
632   // for when we mark whole blocks as touched, when this was a
633   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
634   // the time in GVN just managing this list.  The bitvector, on the
635   // other hand, efficiently supports test/set/clear of both
636   // individual and ranges, as well as "find next element" This
637   // enables us to use it as a worklist with essentially 0 cost.
638   BitVector TouchedInstructions;
639 
640   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
641 
642 #ifndef NDEBUG
643   // Debugging for how many times each block and instruction got processed.
644   DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646 
647   // DFS info.
648   // This contains a mapping from Instructions to DFS numbers.
649   // The numbering starts at 1. An instruction with DFS number zero
650   // means that the instruction is dead.
651   DenseMap<const Value *, unsigned> InstrDFS;
652 
653   // This contains the mapping DFS numbers to instructions.
654   SmallVector<Value *, 32> DFSToInstr;
655 
656   // Deletion info.
657   SmallPtrSet<Instruction *, 8> InstructionsToErase;
658 
659 public:
660   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662          const DataLayout &DL)
663       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
666 
667   bool runGVN();
668 
669 private:
670   // Expression handling.
671   const Expression *createExpression(Instruction *) const;
672   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
673                                            Instruction *) const;
674 
675   // Our canonical form for phi arguments is a pair of incoming value, incoming
676   // basic block.
677   using ValPair = std::pair<Value *, BasicBlock *>;
678 
679   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
680                                      BasicBlock *, bool &HasBackEdge,
681                                      bool &OriginalOpsConstant) const;
682   const DeadExpression *createDeadExpression() const;
683   const VariableExpression *createVariableExpression(Value *) const;
684   const ConstantExpression *createConstantExpression(Constant *) const;
685   const Expression *createVariableOrConstant(Value *V) const;
686   const UnknownExpression *createUnknownExpression(Instruction *) const;
687   const StoreExpression *createStoreExpression(StoreInst *,
688                                                const MemoryAccess *) const;
689   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
690                                        const MemoryAccess *) const;
691   const CallExpression *createCallExpression(CallInst *,
692                                              const MemoryAccess *) const;
693   const AggregateValueExpression *
694   createAggregateValueExpression(Instruction *) const;
695   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
696 
697   // Congruence class handling.
698   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
699     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
700     CongruenceClasses.emplace_back(result);
701     return result;
702   }
703 
704   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
705     auto *CC = createCongruenceClass(nullptr, nullptr);
706     CC->setMemoryLeader(MA);
707     return CC;
708   }
709 
710   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
711     auto *CC = getMemoryClass(MA);
712     if (CC->getMemoryLeader() != MA)
713       CC = createMemoryClass(MA);
714     return CC;
715   }
716 
717   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
718     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
719     CClass->insert(Member);
720     ValueToClass[Member] = CClass;
721     return CClass;
722   }
723 
724   void initializeCongruenceClasses(Function &F);
725   const Expression *makePossiblePHIOfOps(Instruction *,
726                                          SmallPtrSetImpl<Value *> &);
727   Value *findLeaderForInst(Instruction *ValueOp,
728                            SmallPtrSetImpl<Value *> &Visited,
729                            MemoryAccess *MemAccess, Instruction *OrigInst,
730                            BasicBlock *PredBB);
731   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
732                                  SmallPtrSetImpl<const Value *> &Visited,
733                                  SmallVectorImpl<Instruction *> &Worklist);
734   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
735                            SmallPtrSetImpl<const Value *> &);
736   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
737   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
738 
739   // Value number an Instruction or MemoryPhi.
740   void valueNumberMemoryPhi(MemoryPhi *);
741   void valueNumberInstruction(Instruction *);
742 
743   // Symbolic evaluation.
744   const Expression *checkSimplificationResults(Expression *, Instruction *,
745                                                Value *) const;
746   const Expression *performSymbolicEvaluation(Value *,
747                                               SmallPtrSetImpl<Value *> &) const;
748   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
749                                                 Instruction *,
750                                                 MemoryAccess *) const;
751   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
752   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
753   const Expression *performSymbolicCallEvaluation(Instruction *) const;
754   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
755   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
756                                                  Instruction *I,
757                                                  BasicBlock *PHIBlock) const;
758   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
759   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
760   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
761 
762   // Congruence finding.
763   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
764   Value *lookupOperandLeader(Value *) const;
765   CongruenceClass *getClassForExpression(const Expression *E) const;
766   void performCongruenceFinding(Instruction *, const Expression *);
767   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
768                                      CongruenceClass *, CongruenceClass *);
769   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
770                                       CongruenceClass *, CongruenceClass *);
771   Value *getNextValueLeader(CongruenceClass *) const;
772   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
773   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
774   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
775   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
776   bool isMemoryAccessTOP(const MemoryAccess *) const;
777 
778   // Ranking
779   unsigned int getRank(const Value *) const;
780   bool shouldSwapOperands(const Value *, const Value *) const;
781 
782   // Reachability handling.
783   void updateReachableEdge(BasicBlock *, BasicBlock *);
784   void processOutgoingEdges(Instruction *, BasicBlock *);
785   Value *findConditionEquivalence(Value *) const;
786 
787   // Elimination.
788   struct ValueDFS;
789   void convertClassToDFSOrdered(const CongruenceClass &,
790                                 SmallVectorImpl<ValueDFS> &,
791                                 DenseMap<const Value *, unsigned int> &,
792                                 SmallPtrSetImpl<Instruction *> &) const;
793   void convertClassToLoadsAndStores(const CongruenceClass &,
794                                     SmallVectorImpl<ValueDFS> &) const;
795 
796   bool eliminateInstructions(Function &);
797   void replaceInstruction(Instruction *, Value *);
798   void markInstructionForDeletion(Instruction *);
799   void deleteInstructionsInBlock(BasicBlock *);
800   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
801                             const BasicBlock *) const;
802 
803   // New instruction creation.
804   void handleNewInstruction(Instruction *) {}
805 
806   // Various instruction touch utilities
807   template <typename Map, typename KeyType, typename Func>
808   void for_each_found(Map &, const KeyType &, Func);
809   template <typename Map, typename KeyType>
810   void touchAndErase(Map &, const KeyType &);
811   void markUsersTouched(Value *);
812   void markMemoryUsersTouched(const MemoryAccess *);
813   void markMemoryDefTouched(const MemoryAccess *);
814   void markPredicateUsersTouched(Instruction *);
815   void markValueLeaderChangeTouched(CongruenceClass *CC);
816   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
817   void markPhiOfOpsChanged(const Expression *E);
818   void addPredicateUsers(const PredicateBase *, Instruction *) const;
819   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
820   void addAdditionalUsers(Value *To, Value *User) const;
821 
822   // Main loop of value numbering
823   void iterateTouchedInstructions();
824 
825   // Utilities.
826   void cleanupTables();
827   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
828   void updateProcessedCount(const Value *V);
829   void verifyMemoryCongruency() const;
830   void verifyIterationSettled(Function &F);
831   void verifyStoreExpressions() const;
832   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
833                               const MemoryAccess *, const MemoryAccess *) const;
834   BasicBlock *getBlockForValue(Value *V) const;
835   void deleteExpression(const Expression *E) const;
836   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
837   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
838   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
839   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
840 
841   unsigned InstrToDFSNum(const Value *V) const {
842     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
843     return InstrDFS.lookup(V);
844   }
845 
846   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
847     return MemoryToDFSNum(MA);
848   }
849 
850   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
851 
852   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
853   // This deliberately takes a value so it can be used with Use's, which will
854   // auto-convert to Value's but not to MemoryAccess's.
855   unsigned MemoryToDFSNum(const Value *MA) const {
856     assert(isa<MemoryAccess>(MA) &&
857            "This should not be used with instructions");
858     return isa<MemoryUseOrDef>(MA)
859                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
860                : InstrDFS.lookup(MA);
861   }
862 
863   bool isCycleFree(const Instruction *) const;
864   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
865 
866   // Debug counter info.  When verifying, we have to reset the value numbering
867   // debug counter to the same state it started in to get the same results.
868   int64_t StartingVNCounter = 0;
869 };
870 
871 } // end anonymous namespace
872 
873 template <typename T>
874 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
875   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
876     return false;
877   return LHS.MemoryExpression::equals(RHS);
878 }
879 
880 bool LoadExpression::equals(const Expression &Other) const {
881   return equalsLoadStoreHelper(*this, Other);
882 }
883 
884 bool StoreExpression::equals(const Expression &Other) const {
885   if (!equalsLoadStoreHelper(*this, Other))
886     return false;
887   // Make sure that store vs store includes the value operand.
888   if (const auto *S = dyn_cast<StoreExpression>(&Other))
889     if (getStoredValue() != S->getStoredValue())
890       return false;
891   return true;
892 }
893 
894 // Determine if the edge From->To is a backedge
895 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
896   return From == To ||
897          RPOOrdering.lookup(DT->getNode(From)) >=
898              RPOOrdering.lookup(DT->getNode(To));
899 }
900 
901 #ifndef NDEBUG
902 static std::string getBlockName(const BasicBlock *B) {
903   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
904 }
905 #endif
906 
907 // Get a MemoryAccess for an instruction, fake or real.
908 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
909   auto *Result = MSSA->getMemoryAccess(I);
910   return Result ? Result : TempToMemory.lookup(I);
911 }
912 
913 // Get a MemoryPhi for a basic block. These are all real.
914 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
915   return MSSA->getMemoryAccess(BB);
916 }
917 
918 // Get the basic block from an instruction/memory value.
919 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
920   if (auto *I = dyn_cast<Instruction>(V)) {
921     auto *Parent = I->getParent();
922     if (Parent)
923       return Parent;
924     Parent = TempToBlock.lookup(V);
925     assert(Parent && "Every fake instruction should have a block");
926     return Parent;
927   }
928 
929   auto *MP = dyn_cast<MemoryPhi>(V);
930   assert(MP && "Should have been an instruction or a MemoryPhi");
931   return MP->getBlock();
932 }
933 
934 // Delete a definitely dead expression, so it can be reused by the expression
935 // allocator.  Some of these are not in creation functions, so we have to accept
936 // const versions.
937 void NewGVN::deleteExpression(const Expression *E) const {
938   assert(isa<BasicExpression>(E));
939   auto *BE = cast<BasicExpression>(E);
940   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
941   ExpressionAllocator.Deallocate(E);
942 }
943 
944 // If V is a predicateinfo copy, get the thing it is a copy of.
945 static Value *getCopyOf(const Value *V) {
946   if (auto *II = dyn_cast<IntrinsicInst>(V))
947     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
948       return II->getOperand(0);
949   return nullptr;
950 }
951 
952 // Return true if V is really PN, even accounting for predicateinfo copies.
953 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
954   return V == PN || getCopyOf(V) == PN;
955 }
956 
957 static bool isCopyOfAPHI(const Value *V) {
958   auto *CO = getCopyOf(V);
959   return CO && isa<PHINode>(CO);
960 }
961 
962 // Sort PHI Operands into a canonical order.  What we use here is an RPO
963 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
964 // blocks.
965 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
966   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
967     return BlockInstRange.lookup(P1.second).first <
968            BlockInstRange.lookup(P2.second).first;
969   });
970 }
971 
972 // Return true if V is a value that will always be available (IE can
973 // be placed anywhere) in the function.  We don't do globals here
974 // because they are often worse to put in place.
975 static bool alwaysAvailable(Value *V) {
976   return isa<Constant>(V) || isa<Argument>(V);
977 }
978 
979 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
980 // the original instruction we are creating a PHIExpression for (but may not be
981 // a phi node). We require, as an invariant, that all the PHIOperands in the
982 // same block are sorted the same way. sortPHIOps will sort them into a
983 // canonical order.
984 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
985                                            const Instruction *I,
986                                            BasicBlock *PHIBlock,
987                                            bool &HasBackedge,
988                                            bool &OriginalOpsConstant) const {
989   unsigned NumOps = PHIOperands.size();
990   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
991 
992   E->allocateOperands(ArgRecycler, ExpressionAllocator);
993   E->setType(PHIOperands.begin()->first->getType());
994   E->setOpcode(Instruction::PHI);
995 
996   // Filter out unreachable phi operands.
997   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
998     auto *BB = P.second;
999     if (auto *PHIOp = dyn_cast<PHINode>(I))
1000       if (isCopyOfPHI(P.first, PHIOp))
1001         return false;
1002     if (!ReachableEdges.count({BB, PHIBlock}))
1003       return false;
1004     // Things in TOPClass are equivalent to everything.
1005     if (ValueToClass.lookup(P.first) == TOPClass)
1006       return false;
1007     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1008     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1009     return lookupOperandLeader(P.first) != I;
1010   });
1011   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1012                  [&](const ValPair &P) -> Value * {
1013                    return lookupOperandLeader(P.first);
1014                  });
1015   return E;
1016 }
1017 
1018 // Set basic expression info (Arguments, type, opcode) for Expression
1019 // E from Instruction I in block B.
1020 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1021   bool AllConstant = true;
1022   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1023     E->setType(GEP->getSourceElementType());
1024   else
1025     E->setType(I->getType());
1026   E->setOpcode(I->getOpcode());
1027   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1028 
1029   // Transform the operand array into an operand leader array, and keep track of
1030   // whether all members are constant.
1031   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1032     auto Operand = lookupOperandLeader(O);
1033     AllConstant = AllConstant && isa<Constant>(Operand);
1034     return Operand;
1035   });
1036 
1037   return AllConstant;
1038 }
1039 
1040 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1041                                                  Value *Arg1, Value *Arg2,
1042                                                  Instruction *I) const {
1043   auto *E = new (ExpressionAllocator) BasicExpression(2);
1044 
1045   E->setType(T);
1046   E->setOpcode(Opcode);
1047   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1048   if (Instruction::isCommutative(Opcode)) {
1049     // Ensure that commutative instructions that only differ by a permutation
1050     // of their operands get the same value number by sorting the operand value
1051     // numbers.  Since all commutative instructions have two operands it is more
1052     // efficient to sort by hand rather than using, say, std::sort.
1053     if (shouldSwapOperands(Arg1, Arg2))
1054       std::swap(Arg1, Arg2);
1055   }
1056   E->op_push_back(lookupOperandLeader(Arg1));
1057   E->op_push_back(lookupOperandLeader(Arg2));
1058 
1059   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1060   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1061     return SimplifiedE;
1062   return E;
1063 }
1064 
1065 // Take a Value returned by simplification of Expression E/Instruction
1066 // I, and see if it resulted in a simpler expression. If so, return
1067 // that expression.
1068 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1069                                                      Instruction *I,
1070                                                      Value *V) const {
1071   if (!V)
1072     return nullptr;
1073   if (auto *C = dyn_cast<Constant>(V)) {
1074     if (I)
1075       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1076                         << " constant " << *C << "\n");
1077     NumGVNOpsSimplified++;
1078     assert(isa<BasicExpression>(E) &&
1079            "We should always have had a basic expression here");
1080     deleteExpression(E);
1081     return createConstantExpression(C);
1082   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1083     if (I)
1084       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1085                         << " variable " << *V << "\n");
1086     deleteExpression(E);
1087     return createVariableExpression(V);
1088   }
1089 
1090   CongruenceClass *CC = ValueToClass.lookup(V);
1091   if (CC) {
1092     if (CC->getLeader() && CC->getLeader() != I) {
1093       // If we simplified to something else, we need to communicate
1094       // that we're users of the value we simplified to.
1095       if (I != V) {
1096         // Don't add temporary instructions to the user lists.
1097         if (!AllTempInstructions.count(I))
1098           addAdditionalUsers(V, I);
1099       }
1100       return createVariableOrConstant(CC->getLeader());
1101     }
1102     if (CC->getDefiningExpr()) {
1103       // If we simplified to something else, we need to communicate
1104       // that we're users of the value we simplified to.
1105       if (I != V) {
1106         // Don't add temporary instructions to the user lists.
1107         if (!AllTempInstructions.count(I))
1108           addAdditionalUsers(V, I);
1109       }
1110 
1111       if (I)
1112         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1113                           << " expression " << *CC->getDefiningExpr() << "\n");
1114       NumGVNOpsSimplified++;
1115       deleteExpression(E);
1116       return CC->getDefiningExpr();
1117     }
1118   }
1119 
1120   return nullptr;
1121 }
1122 
1123 // Create a value expression from the instruction I, replacing operands with
1124 // their leaders.
1125 
1126 const Expression *NewGVN::createExpression(Instruction *I) const {
1127   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1128 
1129   bool AllConstant = setBasicExpressionInfo(I, E);
1130 
1131   if (I->isCommutative()) {
1132     // Ensure that commutative instructions that only differ by a permutation
1133     // of their operands get the same value number by sorting the operand value
1134     // numbers.  Since all commutative instructions have two operands it is more
1135     // efficient to sort by hand rather than using, say, std::sort.
1136     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1137     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1138       E->swapOperands(0, 1);
1139   }
1140   // Perform simplification.
1141   if (auto *CI = dyn_cast<CmpInst>(I)) {
1142     // Sort the operand value numbers so x<y and y>x get the same value
1143     // number.
1144     CmpInst::Predicate Predicate = CI->getPredicate();
1145     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1146       E->swapOperands(0, 1);
1147       Predicate = CmpInst::getSwappedPredicate(Predicate);
1148     }
1149     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1150     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1151     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1152            "Wrong types on cmp instruction");
1153     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1154             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1155     Value *V =
1156         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1157     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1158       return SimplifiedE;
1159   } else if (isa<SelectInst>(I)) {
1160     if (isa<Constant>(E->getOperand(0)) ||
1161         E->getOperand(1) == E->getOperand(2)) {
1162       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1163              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1164       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1165                                     E->getOperand(2), SQ);
1166       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1167         return SimplifiedE;
1168     }
1169   } else if (I->isBinaryOp()) {
1170     Value *V =
1171         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1172     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1173       return SimplifiedE;
1174   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1175     Value *V =
1176         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1177     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1178       return SimplifiedE;
1179   } else if (isa<GetElementPtrInst>(I)) {
1180     Value *V = SimplifyGEPInst(
1181         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1182     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1183       return SimplifiedE;
1184   } else if (AllConstant) {
1185     // We don't bother trying to simplify unless all of the operands
1186     // were constant.
1187     // TODO: There are a lot of Simplify*'s we could call here, if we
1188     // wanted to.  The original motivating case for this code was a
1189     // zext i1 false to i8, which we don't have an interface to
1190     // simplify (IE there is no SimplifyZExt).
1191 
1192     SmallVector<Constant *, 8> C;
1193     for (Value *Arg : E->operands())
1194       C.emplace_back(cast<Constant>(Arg));
1195 
1196     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1197       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1198         return SimplifiedE;
1199   }
1200   return E;
1201 }
1202 
1203 const AggregateValueExpression *
1204 NewGVN::createAggregateValueExpression(Instruction *I) const {
1205   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1206     auto *E = new (ExpressionAllocator)
1207         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1208     setBasicExpressionInfo(I, E);
1209     E->allocateIntOperands(ExpressionAllocator);
1210     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1211     return E;
1212   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1213     auto *E = new (ExpressionAllocator)
1214         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1215     setBasicExpressionInfo(EI, E);
1216     E->allocateIntOperands(ExpressionAllocator);
1217     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1218     return E;
1219   }
1220   llvm_unreachable("Unhandled type of aggregate value operation");
1221 }
1222 
1223 const DeadExpression *NewGVN::createDeadExpression() const {
1224   // DeadExpression has no arguments and all DeadExpression's are the same,
1225   // so we only need one of them.
1226   return SingletonDeadExpression;
1227 }
1228 
1229 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1230   auto *E = new (ExpressionAllocator) VariableExpression(V);
1231   E->setOpcode(V->getValueID());
1232   return E;
1233 }
1234 
1235 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1236   if (auto *C = dyn_cast<Constant>(V))
1237     return createConstantExpression(C);
1238   return createVariableExpression(V);
1239 }
1240 
1241 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1242   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1243   E->setOpcode(C->getValueID());
1244   return E;
1245 }
1246 
1247 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1248   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1249   E->setOpcode(I->getOpcode());
1250   return E;
1251 }
1252 
1253 const CallExpression *
1254 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1255   // FIXME: Add operand bundles for calls.
1256   auto *E =
1257       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1258   setBasicExpressionInfo(CI, E);
1259   return E;
1260 }
1261 
1262 // Return true if some equivalent of instruction Inst dominates instruction U.
1263 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1264                                      const Instruction *U) const {
1265   auto *CC = ValueToClass.lookup(Inst);
1266    // This must be an instruction because we are only called from phi nodes
1267   // in the case that the value it needs to check against is an instruction.
1268 
1269   // The most likely candidates for dominance are the leader and the next leader.
1270   // The leader or nextleader will dominate in all cases where there is an
1271   // equivalent that is higher up in the dom tree.
1272   // We can't *only* check them, however, because the
1273   // dominator tree could have an infinite number of non-dominating siblings
1274   // with instructions that are in the right congruence class.
1275   //       A
1276   // B C D E F G
1277   // |
1278   // H
1279   // Instruction U could be in H,  with equivalents in every other sibling.
1280   // Depending on the rpo order picked, the leader could be the equivalent in
1281   // any of these siblings.
1282   if (!CC)
1283     return false;
1284   if (alwaysAvailable(CC->getLeader()))
1285     return true;
1286   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1287     return true;
1288   if (CC->getNextLeader().first &&
1289       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1290     return true;
1291   return llvm::any_of(*CC, [&](const Value *Member) {
1292     return Member != CC->getLeader() &&
1293            DT->dominates(cast<Instruction>(Member), U);
1294   });
1295 }
1296 
1297 // See if we have a congruence class and leader for this operand, and if so,
1298 // return it. Otherwise, return the operand itself.
1299 Value *NewGVN::lookupOperandLeader(Value *V) const {
1300   CongruenceClass *CC = ValueToClass.lookup(V);
1301   if (CC) {
1302     // Everything in TOP is represented by undef, as it can be any value.
1303     // We do have to make sure we get the type right though, so we can't set the
1304     // RepLeader to undef.
1305     if (CC == TOPClass)
1306       return UndefValue::get(V->getType());
1307     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1308   }
1309 
1310   return V;
1311 }
1312 
1313 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1314   auto *CC = getMemoryClass(MA);
1315   assert(CC->getMemoryLeader() &&
1316          "Every MemoryAccess should be mapped to a congruence class with a "
1317          "representative memory access");
1318   return CC->getMemoryLeader();
1319 }
1320 
1321 // Return true if the MemoryAccess is really equivalent to everything. This is
1322 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1323 // state of all MemoryAccesses.
1324 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1325   return getMemoryClass(MA) == TOPClass;
1326 }
1327 
1328 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1329                                              LoadInst *LI,
1330                                              const MemoryAccess *MA) const {
1331   auto *E =
1332       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1333   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1334   E->setType(LoadType);
1335 
1336   // Give store and loads same opcode so they value number together.
1337   E->setOpcode(0);
1338   E->op_push_back(PointerOp);
1339 
1340   // TODO: Value number heap versions. We may be able to discover
1341   // things alias analysis can't on it's own (IE that a store and a
1342   // load have the same value, and thus, it isn't clobbering the load).
1343   return E;
1344 }
1345 
1346 const StoreExpression *
1347 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1348   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1349   auto *E = new (ExpressionAllocator)
1350       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1351   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1352   E->setType(SI->getValueOperand()->getType());
1353 
1354   // Give store and loads same opcode so they value number together.
1355   E->setOpcode(0);
1356   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1357 
1358   // TODO: Value number heap versions. We may be able to discover
1359   // things alias analysis can't on it's own (IE that a store and a
1360   // load have the same value, and thus, it isn't clobbering the load).
1361   return E;
1362 }
1363 
1364 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1365   // Unlike loads, we never try to eliminate stores, so we do not check if they
1366   // are simple and avoid value numbering them.
1367   auto *SI = cast<StoreInst>(I);
1368   auto *StoreAccess = getMemoryAccess(SI);
1369   // Get the expression, if any, for the RHS of the MemoryDef.
1370   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1371   if (EnableStoreRefinement)
1372     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1373   // If we bypassed the use-def chains, make sure we add a use.
1374   StoreRHS = lookupMemoryLeader(StoreRHS);
1375   if (StoreRHS != StoreAccess->getDefiningAccess())
1376     addMemoryUsers(StoreRHS, StoreAccess);
1377   // If we are defined by ourselves, use the live on entry def.
1378   if (StoreRHS == StoreAccess)
1379     StoreRHS = MSSA->getLiveOnEntryDef();
1380 
1381   if (SI->isSimple()) {
1382     // See if we are defined by a previous store expression, it already has a
1383     // value, and it's the same value as our current store. FIXME: Right now, we
1384     // only do this for simple stores, we should expand to cover memcpys, etc.
1385     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1386     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1387     // We really want to check whether the expression we matched was a store. No
1388     // easy way to do that. However, we can check that the class we found has a
1389     // store, which, assuming the value numbering state is not corrupt, is
1390     // sufficient, because we must also be equivalent to that store's expression
1391     // for it to be in the same class as the load.
1392     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1393       return LastStore;
1394     // Also check if our value operand is defined by a load of the same memory
1395     // location, and the memory state is the same as it was then (otherwise, it
1396     // could have been overwritten later. See test32 in
1397     // transforms/DeadStoreElimination/simple.ll).
1398     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1399       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1400            LastStore->getOperand(0)) &&
1401           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1402            StoreRHS))
1403         return LastStore;
1404     deleteExpression(LastStore);
1405   }
1406 
1407   // If the store is not equivalent to anything, value number it as a store that
1408   // produces a unique memory state (instead of using it's MemoryUse, we use
1409   // it's MemoryDef).
1410   return createStoreExpression(SI, StoreAccess);
1411 }
1412 
1413 // See if we can extract the value of a loaded pointer from a load, a store, or
1414 // a memory instruction.
1415 const Expression *
1416 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1417                                     LoadInst *LI, Instruction *DepInst,
1418                                     MemoryAccess *DefiningAccess) const {
1419   assert((!LI || LI->isSimple()) && "Not a simple load");
1420   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1421     // Can't forward from non-atomic to atomic without violating memory model.
1422     // Also don't need to coerce if they are the same type, we will just
1423     // propagate.
1424     if (LI->isAtomic() > DepSI->isAtomic() ||
1425         LoadType == DepSI->getValueOperand()->getType())
1426       return nullptr;
1427     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1428     if (Offset >= 0) {
1429       if (auto *C = dyn_cast<Constant>(
1430               lookupOperandLeader(DepSI->getValueOperand()))) {
1431         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1432                           << " to constant " << *C << "\n");
1433         return createConstantExpression(
1434             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1435       }
1436     }
1437   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1438     // Can't forward from non-atomic to atomic without violating memory model.
1439     if (LI->isAtomic() > DepLI->isAtomic())
1440       return nullptr;
1441     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1442     if (Offset >= 0) {
1443       // We can coerce a constant load into a load.
1444       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1445         if (auto *PossibleConstant =
1446                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1447           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1448                             << " to constant " << *PossibleConstant << "\n");
1449           return createConstantExpression(PossibleConstant);
1450         }
1451     }
1452   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1453     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1454     if (Offset >= 0) {
1455       if (auto *PossibleConstant =
1456               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1457         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1458                           << " to constant " << *PossibleConstant << "\n");
1459         return createConstantExpression(PossibleConstant);
1460       }
1461     }
1462   }
1463 
1464   // All of the below are only true if the loaded pointer is produced
1465   // by the dependent instruction.
1466   if (LoadPtr != lookupOperandLeader(DepInst) &&
1467       !AA->isMustAlias(LoadPtr, DepInst))
1468     return nullptr;
1469   // If this load really doesn't depend on anything, then we must be loading an
1470   // undef value.  This can happen when loading for a fresh allocation with no
1471   // intervening stores, for example.  Note that this is only true in the case
1472   // that the result of the allocation is pointer equal to the load ptr.
1473   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1474       isAlignedAllocLikeFn(DepInst, TLI)) {
1475     return createConstantExpression(UndefValue::get(LoadType));
1476   }
1477   // If this load occurs either right after a lifetime begin,
1478   // then the loaded value is undefined.
1479   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1480     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1481       return createConstantExpression(UndefValue::get(LoadType));
1482   }
1483   // If this load follows a calloc (which zero initializes memory),
1484   // then the loaded value is zero
1485   else if (isCallocLikeFn(DepInst, TLI)) {
1486     return createConstantExpression(Constant::getNullValue(LoadType));
1487   }
1488 
1489   return nullptr;
1490 }
1491 
1492 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1493   auto *LI = cast<LoadInst>(I);
1494 
1495   // We can eliminate in favor of non-simple loads, but we won't be able to
1496   // eliminate the loads themselves.
1497   if (!LI->isSimple())
1498     return nullptr;
1499 
1500   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1501   // Load of undef is undef.
1502   if (isa<UndefValue>(LoadAddressLeader))
1503     return createConstantExpression(UndefValue::get(LI->getType()));
1504   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1505   MemoryAccess *DefiningAccess =
1506       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1507 
1508   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1509     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1510       Instruction *DefiningInst = MD->getMemoryInst();
1511       // If the defining instruction is not reachable, replace with undef.
1512       if (!ReachableBlocks.count(DefiningInst->getParent()))
1513         return createConstantExpression(UndefValue::get(LI->getType()));
1514       // This will handle stores and memory insts.  We only do if it the
1515       // defining access has a different type, or it is a pointer produced by
1516       // certain memory operations that cause the memory to have a fixed value
1517       // (IE things like calloc).
1518       if (const auto *CoercionResult =
1519               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1520                                           DefiningInst, DefiningAccess))
1521         return CoercionResult;
1522     }
1523   }
1524 
1525   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1526                                         DefiningAccess);
1527   // If our MemoryLeader is not our defining access, add a use to the
1528   // MemoryLeader, so that we get reprocessed when it changes.
1529   if (LE->getMemoryLeader() != DefiningAccess)
1530     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1531   return LE;
1532 }
1533 
1534 const Expression *
1535 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1536   auto *PI = PredInfo->getPredicateInfoFor(I);
1537   if (!PI)
1538     return nullptr;
1539 
1540   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1541 
1542   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1543   if (!PWC)
1544     return nullptr;
1545 
1546   auto *CopyOf = I->getOperand(0);
1547   auto *Cond = PWC->Condition;
1548 
1549   // If this a copy of the condition, it must be either true or false depending
1550   // on the predicate info type and edge.
1551   if (CopyOf == Cond) {
1552     // We should not need to add predicate users because the predicate info is
1553     // already a use of this operand.
1554     if (isa<PredicateAssume>(PI))
1555       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1556     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1557       if (PBranch->TrueEdge)
1558         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1559       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1560     }
1561     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1562       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1563   }
1564 
1565   // Not a copy of the condition, so see what the predicates tell us about this
1566   // value.  First, though, we check to make sure the value is actually a copy
1567   // of one of the condition operands. It's possible, in certain cases, for it
1568   // to be a copy of a predicateinfo copy. In particular, if two branch
1569   // operations use the same condition, and one branch dominates the other, we
1570   // will end up with a copy of a copy.  This is currently a small deficiency in
1571   // predicateinfo.  What will end up happening here is that we will value
1572   // number both copies the same anyway.
1573 
1574   // Everything below relies on the condition being a comparison.
1575   auto *Cmp = dyn_cast<CmpInst>(Cond);
1576   if (!Cmp)
1577     return nullptr;
1578 
1579   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1580     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1581     return nullptr;
1582   }
1583   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1584   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1585   bool SwappedOps = false;
1586   // Sort the ops.
1587   if (shouldSwapOperands(FirstOp, SecondOp)) {
1588     std::swap(FirstOp, SecondOp);
1589     SwappedOps = true;
1590   }
1591   CmpInst::Predicate Predicate =
1592       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1593 
1594   if (isa<PredicateAssume>(PI)) {
1595     // If we assume the operands are equal, then they are equal.
1596     if (Predicate == CmpInst::ICMP_EQ) {
1597       addPredicateUsers(PI, I);
1598       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1599                          I);
1600       return createVariableOrConstant(FirstOp);
1601     }
1602   }
1603   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1604     // If we are *not* a copy of the comparison, we may equal to the other
1605     // operand when the predicate implies something about equality of
1606     // operations.  In particular, if the comparison is true/false when the
1607     // operands are equal, and we are on the right edge, we know this operation
1608     // is equal to something.
1609     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1610         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1611       addPredicateUsers(PI, I);
1612       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1613                          I);
1614       return createVariableOrConstant(FirstOp);
1615     }
1616     // Handle the special case of floating point.
1617     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1618          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1619         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1620       addPredicateUsers(PI, I);
1621       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1622                          I);
1623       return createConstantExpression(cast<Constant>(FirstOp));
1624     }
1625   }
1626   return nullptr;
1627 }
1628 
1629 // Evaluate read only and pure calls, and create an expression result.
1630 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1631   auto *CI = cast<CallInst>(I);
1632   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1633     // Intrinsics with the returned attribute are copies of arguments.
1634     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1635       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1636         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1637           return Result;
1638       return createVariableOrConstant(ReturnedValue);
1639     }
1640   }
1641   if (AA->doesNotAccessMemory(CI)) {
1642     return createCallExpression(CI, TOPClass->getMemoryLeader());
1643   } else if (AA->onlyReadsMemory(CI)) {
1644     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1645       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1646       return createCallExpression(CI, DefiningAccess);
1647     } else // MSSA determined that CI does not access memory.
1648       return createCallExpression(CI, TOPClass->getMemoryLeader());
1649   }
1650   return nullptr;
1651 }
1652 
1653 // Retrieve the memory class for a given MemoryAccess.
1654 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1655   auto *Result = MemoryAccessToClass.lookup(MA);
1656   assert(Result && "Should have found memory class");
1657   return Result;
1658 }
1659 
1660 // Update the MemoryAccess equivalence table to say that From is equal to To,
1661 // and return true if this is different from what already existed in the table.
1662 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1663                             CongruenceClass *NewClass) {
1664   assert(NewClass &&
1665          "Every MemoryAccess should be getting mapped to a non-null class");
1666   LLVM_DEBUG(dbgs() << "Setting " << *From);
1667   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1668   LLVM_DEBUG(dbgs() << NewClass->getID()
1669                     << " with current MemoryAccess leader ");
1670   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1671 
1672   auto LookupResult = MemoryAccessToClass.find(From);
1673   bool Changed = false;
1674   // If it's already in the table, see if the value changed.
1675   if (LookupResult != MemoryAccessToClass.end()) {
1676     auto *OldClass = LookupResult->second;
1677     if (OldClass != NewClass) {
1678       // If this is a phi, we have to handle memory member updates.
1679       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1680         OldClass->memory_erase(MP);
1681         NewClass->memory_insert(MP);
1682         // This may have killed the class if it had no non-memory members
1683         if (OldClass->getMemoryLeader() == From) {
1684           if (OldClass->definesNoMemory()) {
1685             OldClass->setMemoryLeader(nullptr);
1686           } else {
1687             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1688             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1689                               << OldClass->getID() << " to "
1690                               << *OldClass->getMemoryLeader()
1691                               << " due to removal of a memory member " << *From
1692                               << "\n");
1693             markMemoryLeaderChangeTouched(OldClass);
1694           }
1695         }
1696       }
1697       // It wasn't equivalent before, and now it is.
1698       LookupResult->second = NewClass;
1699       Changed = true;
1700     }
1701   }
1702 
1703   return Changed;
1704 }
1705 
1706 // Determine if a instruction is cycle-free.  That means the values in the
1707 // instruction don't depend on any expressions that can change value as a result
1708 // of the instruction.  For example, a non-cycle free instruction would be v =
1709 // phi(0, v+1).
1710 bool NewGVN::isCycleFree(const Instruction *I) const {
1711   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1712   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1713   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1714   // other members are all phi nodes (as they do not compute anything, they are
1715   // copies).
1716   auto ICS = InstCycleState.lookup(I);
1717   if (ICS == ICS_Unknown) {
1718     SCCFinder.Start(I);
1719     auto &SCC = SCCFinder.getComponentFor(I);
1720     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1721     if (SCC.size() == 1)
1722       InstCycleState.insert({I, ICS_CycleFree});
1723     else {
1724       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1725         return isa<PHINode>(V) || isCopyOfAPHI(V);
1726       });
1727       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1728       for (auto *Member : SCC)
1729         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1730           InstCycleState.insert({MemberPhi, ICS});
1731     }
1732   }
1733   if (ICS == ICS_Cycle)
1734     return false;
1735   return true;
1736 }
1737 
1738 // Evaluate PHI nodes symbolically and create an expression result.
1739 const Expression *
1740 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1741                                      Instruction *I,
1742                                      BasicBlock *PHIBlock) const {
1743   // True if one of the incoming phi edges is a backedge.
1744   bool HasBackedge = false;
1745   // All constant tracks the state of whether all the *original* phi operands
1746   // This is really shorthand for "this phi cannot cycle due to forward
1747   // change in value of the phi is guaranteed not to later change the value of
1748   // the phi. IE it can't be v = phi(undef, v+1)
1749   bool OriginalOpsConstant = true;
1750   auto *E = cast<PHIExpression>(createPHIExpression(
1751       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1752   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1753   // See if all arguments are the same.
1754   // We track if any were undef because they need special handling.
1755   bool HasUndef = false;
1756   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1757     if (isa<UndefValue>(Arg)) {
1758       HasUndef = true;
1759       return false;
1760     }
1761     return true;
1762   });
1763   // If we are left with no operands, it's dead.
1764   if (Filtered.empty()) {
1765     // If it has undef at this point, it means there are no-non-undef arguments,
1766     // and thus, the value of the phi node must be undef.
1767     if (HasUndef) {
1768       LLVM_DEBUG(
1769           dbgs() << "PHI Node " << *I
1770                  << " has no non-undef arguments, valuing it as undef\n");
1771       return createConstantExpression(UndefValue::get(I->getType()));
1772     }
1773 
1774     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1775     deleteExpression(E);
1776     return createDeadExpression();
1777   }
1778   Value *AllSameValue = *(Filtered.begin());
1779   ++Filtered.begin();
1780   // Can't use std::equal here, sadly, because filter.begin moves.
1781   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1782     // In LLVM's non-standard representation of phi nodes, it's possible to have
1783     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1784     // on the original phi node), especially in weird CFG's where some arguments
1785     // are unreachable, or uninitialized along certain paths.  This can cause
1786     // infinite loops during evaluation. We work around this by not trying to
1787     // really evaluate them independently, but instead using a variable
1788     // expression to say if one is equivalent to the other.
1789     // We also special case undef, so that if we have an undef, we can't use the
1790     // common value unless it dominates the phi block.
1791     if (HasUndef) {
1792       // If we have undef and at least one other value, this is really a
1793       // multivalued phi, and we need to know if it's cycle free in order to
1794       // evaluate whether we can ignore the undef.  The other parts of this are
1795       // just shortcuts.  If there is no backedge, or all operands are
1796       // constants, it also must be cycle free.
1797       if (HasBackedge && !OriginalOpsConstant &&
1798           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1799         return E;
1800 
1801       // Only have to check for instructions
1802       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1803         if (!someEquivalentDominates(AllSameInst, I))
1804           return E;
1805     }
1806     // Can't simplify to something that comes later in the iteration.
1807     // Otherwise, when and if it changes congruence class, we will never catch
1808     // up. We will always be a class behind it.
1809     if (isa<Instruction>(AllSameValue) &&
1810         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1811       return E;
1812     NumGVNPhisAllSame++;
1813     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1814                       << "\n");
1815     deleteExpression(E);
1816     return createVariableOrConstant(AllSameValue);
1817   }
1818   return E;
1819 }
1820 
1821 const Expression *
1822 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1823   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1824     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1825     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1826       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1827       // a semantically equivalent expression instead of an extract value
1828       // expression.
1829       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1830                                     WO->getLHS(), WO->getRHS(), I);
1831   }
1832 
1833   return createAggregateValueExpression(I);
1834 }
1835 
1836 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1837   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1838 
1839   auto *CI = cast<CmpInst>(I);
1840   // See if our operands are equal to those of a previous predicate, and if so,
1841   // if it implies true or false.
1842   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1843   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1844   auto OurPredicate = CI->getPredicate();
1845   if (shouldSwapOperands(Op0, Op1)) {
1846     std::swap(Op0, Op1);
1847     OurPredicate = CI->getSwappedPredicate();
1848   }
1849 
1850   // Avoid processing the same info twice.
1851   const PredicateBase *LastPredInfo = nullptr;
1852   // See if we know something about the comparison itself, like it is the target
1853   // of an assume.
1854   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1855   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1856     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1857 
1858   if (Op0 == Op1) {
1859     // This condition does not depend on predicates, no need to add users
1860     if (CI->isTrueWhenEqual())
1861       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1862     else if (CI->isFalseWhenEqual())
1863       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1864   }
1865 
1866   // NOTE: Because we are comparing both operands here and below, and using
1867   // previous comparisons, we rely on fact that predicateinfo knows to mark
1868   // comparisons that use renamed operands as users of the earlier comparisons.
1869   // It is *not* enough to just mark predicateinfo renamed operands as users of
1870   // the earlier comparisons, because the *other* operand may have changed in a
1871   // previous iteration.
1872   // Example:
1873   // icmp slt %a, %b
1874   // %b.0 = ssa.copy(%b)
1875   // false branch:
1876   // icmp slt %c, %b.0
1877 
1878   // %c and %a may start out equal, and thus, the code below will say the second
1879   // %icmp is false.  c may become equal to something else, and in that case the
1880   // %second icmp *must* be reexamined, but would not if only the renamed
1881   // %operands are considered users of the icmp.
1882 
1883   // *Currently* we only check one level of comparisons back, and only mark one
1884   // level back as touched when changes happen.  If you modify this code to look
1885   // back farther through comparisons, you *must* mark the appropriate
1886   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1887   // we know something just from the operands themselves
1888 
1889   // See if our operands have predicate info, so that we may be able to derive
1890   // something from a previous comparison.
1891   for (const auto &Op : CI->operands()) {
1892     auto *PI = PredInfo->getPredicateInfoFor(Op);
1893     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1894       if (PI == LastPredInfo)
1895         continue;
1896       LastPredInfo = PI;
1897       // In phi of ops cases, we may have predicate info that we are evaluating
1898       // in a different context.
1899       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1900         continue;
1901       // TODO: Along the false edge, we may know more things too, like
1902       // icmp of
1903       // same operands is false.
1904       // TODO: We only handle actual comparison conditions below, not
1905       // and/or.
1906       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1907       if (!BranchCond)
1908         continue;
1909       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1910       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1911       auto BranchPredicate = BranchCond->getPredicate();
1912       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1913         std::swap(BranchOp0, BranchOp1);
1914         BranchPredicate = BranchCond->getSwappedPredicate();
1915       }
1916       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1917         if (PBranch->TrueEdge) {
1918           // If we know the previous predicate is true and we are in the true
1919           // edge then we may be implied true or false.
1920           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1921                                                   OurPredicate)) {
1922             addPredicateUsers(PI, I);
1923             return createConstantExpression(
1924                 ConstantInt::getTrue(CI->getType()));
1925           }
1926 
1927           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1928                                                    OurPredicate)) {
1929             addPredicateUsers(PI, I);
1930             return createConstantExpression(
1931                 ConstantInt::getFalse(CI->getType()));
1932           }
1933         } else {
1934           // Just handle the ne and eq cases, where if we have the same
1935           // operands, we may know something.
1936           if (BranchPredicate == OurPredicate) {
1937             addPredicateUsers(PI, I);
1938             // Same predicate, same ops,we know it was false, so this is false.
1939             return createConstantExpression(
1940                 ConstantInt::getFalse(CI->getType()));
1941           } else if (BranchPredicate ==
1942                      CmpInst::getInversePredicate(OurPredicate)) {
1943             addPredicateUsers(PI, I);
1944             // Inverse predicate, we know the other was false, so this is true.
1945             return createConstantExpression(
1946                 ConstantInt::getTrue(CI->getType()));
1947           }
1948         }
1949       }
1950     }
1951   }
1952   // Create expression will take care of simplifyCmpInst
1953   return createExpression(I);
1954 }
1955 
1956 // Substitute and symbolize the value before value numbering.
1957 const Expression *
1958 NewGVN::performSymbolicEvaluation(Value *V,
1959                                   SmallPtrSetImpl<Value *> &Visited) const {
1960   const Expression *E = nullptr;
1961   if (auto *C = dyn_cast<Constant>(V))
1962     E = createConstantExpression(C);
1963   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1964     E = createVariableExpression(V);
1965   } else {
1966     // TODO: memory intrinsics.
1967     // TODO: Some day, we should do the forward propagation and reassociation
1968     // parts of the algorithm.
1969     auto *I = cast<Instruction>(V);
1970     switch (I->getOpcode()) {
1971     case Instruction::ExtractValue:
1972     case Instruction::InsertValue:
1973       E = performSymbolicAggrValueEvaluation(I);
1974       break;
1975     case Instruction::PHI: {
1976       SmallVector<ValPair, 3> Ops;
1977       auto *PN = cast<PHINode>(I);
1978       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1979         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1980       // Sort to ensure the invariant createPHIExpression requires is met.
1981       sortPHIOps(Ops);
1982       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1983     } break;
1984     case Instruction::Call:
1985       E = performSymbolicCallEvaluation(I);
1986       break;
1987     case Instruction::Store:
1988       E = performSymbolicStoreEvaluation(I);
1989       break;
1990     case Instruction::Load:
1991       E = performSymbolicLoadEvaluation(I);
1992       break;
1993     case Instruction::BitCast:
1994     case Instruction::AddrSpaceCast:
1995       E = createExpression(I);
1996       break;
1997     case Instruction::ICmp:
1998     case Instruction::FCmp:
1999       E = performSymbolicCmpEvaluation(I);
2000       break;
2001     case Instruction::FNeg:
2002     case Instruction::Add:
2003     case Instruction::FAdd:
2004     case Instruction::Sub:
2005     case Instruction::FSub:
2006     case Instruction::Mul:
2007     case Instruction::FMul:
2008     case Instruction::UDiv:
2009     case Instruction::SDiv:
2010     case Instruction::FDiv:
2011     case Instruction::URem:
2012     case Instruction::SRem:
2013     case Instruction::FRem:
2014     case Instruction::Shl:
2015     case Instruction::LShr:
2016     case Instruction::AShr:
2017     case Instruction::And:
2018     case Instruction::Or:
2019     case Instruction::Xor:
2020     case Instruction::Trunc:
2021     case Instruction::ZExt:
2022     case Instruction::SExt:
2023     case Instruction::FPToUI:
2024     case Instruction::FPToSI:
2025     case Instruction::UIToFP:
2026     case Instruction::SIToFP:
2027     case Instruction::FPTrunc:
2028     case Instruction::FPExt:
2029     case Instruction::PtrToInt:
2030     case Instruction::IntToPtr:
2031     case Instruction::Select:
2032     case Instruction::ExtractElement:
2033     case Instruction::InsertElement:
2034     case Instruction::GetElementPtr:
2035       E = createExpression(I);
2036       break;
2037     case Instruction::ShuffleVector:
2038       // FIXME: Add support for shufflevector to createExpression.
2039       return nullptr;
2040     default:
2041       return nullptr;
2042     }
2043   }
2044   return E;
2045 }
2046 
2047 // Look up a container in a map, and then call a function for each thing in the
2048 // found container.
2049 template <typename Map, typename KeyType, typename Func>
2050 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2051   const auto Result = M.find_as(Key);
2052   if (Result != M.end())
2053     for (typename Map::mapped_type::value_type Mapped : Result->second)
2054       F(Mapped);
2055 }
2056 
2057 // Look up a container of values/instructions in a map, and touch all the
2058 // instructions in the container.  Then erase value from the map.
2059 template <typename Map, typename KeyType>
2060 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2061   const auto Result = M.find_as(Key);
2062   if (Result != M.end()) {
2063     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2064       TouchedInstructions.set(InstrToDFSNum(Mapped));
2065     M.erase(Result);
2066   }
2067 }
2068 
2069 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2070   assert(User && To != User);
2071   if (isa<Instruction>(To))
2072     AdditionalUsers[To].insert(User);
2073 }
2074 
2075 void NewGVN::markUsersTouched(Value *V) {
2076   // Now mark the users as touched.
2077   for (auto *User : V->users()) {
2078     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2079     TouchedInstructions.set(InstrToDFSNum(User));
2080   }
2081   touchAndErase(AdditionalUsers, V);
2082 }
2083 
2084 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2085   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2086   MemoryToUsers[To].insert(U);
2087 }
2088 
2089 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2090   TouchedInstructions.set(MemoryToDFSNum(MA));
2091 }
2092 
2093 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2094   if (isa<MemoryUse>(MA))
2095     return;
2096   for (auto U : MA->users())
2097     TouchedInstructions.set(MemoryToDFSNum(U));
2098   touchAndErase(MemoryToUsers, MA);
2099 }
2100 
2101 // Add I to the set of users of a given predicate.
2102 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2103   // Don't add temporary instructions to the user lists.
2104   if (AllTempInstructions.count(I))
2105     return;
2106 
2107   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2108     PredicateToUsers[PBranch->Condition].insert(I);
2109   else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2110     PredicateToUsers[PAssume->Condition].insert(I);
2111 }
2112 
2113 // Touch all the predicates that depend on this instruction.
2114 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2115   touchAndErase(PredicateToUsers, I);
2116 }
2117 
2118 // Mark users affected by a memory leader change.
2119 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2120   for (auto M : CC->memory())
2121     markMemoryDefTouched(M);
2122 }
2123 
2124 // Touch the instructions that need to be updated after a congruence class has a
2125 // leader change, and mark changed values.
2126 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2127   for (auto M : *CC) {
2128     if (auto *I = dyn_cast<Instruction>(M))
2129       TouchedInstructions.set(InstrToDFSNum(I));
2130     LeaderChanges.insert(M);
2131   }
2132 }
2133 
2134 // Give a range of things that have instruction DFS numbers, this will return
2135 // the member of the range with the smallest dfs number.
2136 template <class T, class Range>
2137 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2138   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2139   for (const auto X : R) {
2140     auto DFSNum = InstrToDFSNum(X);
2141     if (DFSNum < MinDFS.second)
2142       MinDFS = {X, DFSNum};
2143   }
2144   return MinDFS.first;
2145 }
2146 
2147 // This function returns the MemoryAccess that should be the next leader of
2148 // congruence class CC, under the assumption that the current leader is going to
2149 // disappear.
2150 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2151   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2152   // do for regular leaders.
2153   // Make sure there will be a leader to find.
2154   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2155   if (CC->getStoreCount() > 0) {
2156     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2157       return getMemoryAccess(NL);
2158     // Find the store with the minimum DFS number.
2159     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2160         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2161     return getMemoryAccess(cast<StoreInst>(V));
2162   }
2163   assert(CC->getStoreCount() == 0);
2164 
2165   // Given our assertion, hitting this part must mean
2166   // !OldClass->memory_empty()
2167   if (CC->memory_size() == 1)
2168     return *CC->memory_begin();
2169   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2170 }
2171 
2172 // This function returns the next value leader of a congruence class, under the
2173 // assumption that the current leader is going away.  This should end up being
2174 // the next most dominating member.
2175 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2176   // We don't need to sort members if there is only 1, and we don't care about
2177   // sorting the TOP class because everything either gets out of it or is
2178   // unreachable.
2179 
2180   if (CC->size() == 1 || CC == TOPClass) {
2181     return *(CC->begin());
2182   } else if (CC->getNextLeader().first) {
2183     ++NumGVNAvoidedSortedLeaderChanges;
2184     return CC->getNextLeader().first;
2185   } else {
2186     ++NumGVNSortedLeaderChanges;
2187     // NOTE: If this ends up to slow, we can maintain a dual structure for
2188     // member testing/insertion, or keep things mostly sorted, and sort only
2189     // here, or use SparseBitVector or ....
2190     return getMinDFSOfRange<Value>(*CC);
2191   }
2192 }
2193 
2194 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2195 // the memory members, etc for the move.
2196 //
2197 // The invariants of this function are:
2198 //
2199 // - I must be moving to NewClass from OldClass
2200 // - The StoreCount of OldClass and NewClass is expected to have been updated
2201 //   for I already if it is a store.
2202 // - The OldClass memory leader has not been updated yet if I was the leader.
2203 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2204                                             MemoryAccess *InstMA,
2205                                             CongruenceClass *OldClass,
2206                                             CongruenceClass *NewClass) {
2207   // If the leader is I, and we had a representative MemoryAccess, it should
2208   // be the MemoryAccess of OldClass.
2209   assert((!InstMA || !OldClass->getMemoryLeader() ||
2210           OldClass->getLeader() != I ||
2211           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2212               MemoryAccessToClass.lookup(InstMA)) &&
2213          "Representative MemoryAccess mismatch");
2214   // First, see what happens to the new class
2215   if (!NewClass->getMemoryLeader()) {
2216     // Should be a new class, or a store becoming a leader of a new class.
2217     assert(NewClass->size() == 1 ||
2218            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2219     NewClass->setMemoryLeader(InstMA);
2220     // Mark it touched if we didn't just create a singleton
2221     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2222                       << NewClass->getID()
2223                       << " due to new memory instruction becoming leader\n");
2224     markMemoryLeaderChangeTouched(NewClass);
2225   }
2226   setMemoryClass(InstMA, NewClass);
2227   // Now, fixup the old class if necessary
2228   if (OldClass->getMemoryLeader() == InstMA) {
2229     if (!OldClass->definesNoMemory()) {
2230       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2231       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2232                         << OldClass->getID() << " to "
2233                         << *OldClass->getMemoryLeader()
2234                         << " due to removal of old leader " << *InstMA << "\n");
2235       markMemoryLeaderChangeTouched(OldClass);
2236     } else
2237       OldClass->setMemoryLeader(nullptr);
2238   }
2239 }
2240 
2241 // Move a value, currently in OldClass, to be part of NewClass
2242 // Update OldClass and NewClass for the move (including changing leaders, etc).
2243 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2244                                            CongruenceClass *OldClass,
2245                                            CongruenceClass *NewClass) {
2246   if (I == OldClass->getNextLeader().first)
2247     OldClass->resetNextLeader();
2248 
2249   OldClass->erase(I);
2250   NewClass->insert(I);
2251 
2252   if (NewClass->getLeader() != I)
2253     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2254   // Handle our special casing of stores.
2255   if (auto *SI = dyn_cast<StoreInst>(I)) {
2256     OldClass->decStoreCount();
2257     // Okay, so when do we want to make a store a leader of a class?
2258     // If we have a store defined by an earlier load, we want the earlier load
2259     // to lead the class.
2260     // If we have a store defined by something else, we want the store to lead
2261     // the class so everything else gets the "something else" as a value.
2262     // If we have a store as the single member of the class, we want the store
2263     // as the leader
2264     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2265       // If it's a store expression we are using, it means we are not equivalent
2266       // to something earlier.
2267       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2268         NewClass->setStoredValue(SE->getStoredValue());
2269         markValueLeaderChangeTouched(NewClass);
2270         // Shift the new class leader to be the store
2271         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2272                           << NewClass->getID() << " from "
2273                           << *NewClass->getLeader() << " to  " << *SI
2274                           << " because store joined class\n");
2275         // If we changed the leader, we have to mark it changed because we don't
2276         // know what it will do to symbolic evaluation.
2277         NewClass->setLeader(SI);
2278       }
2279       // We rely on the code below handling the MemoryAccess change.
2280     }
2281     NewClass->incStoreCount();
2282   }
2283   // True if there is no memory instructions left in a class that had memory
2284   // instructions before.
2285 
2286   // If it's not a memory use, set the MemoryAccess equivalence
2287   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2288   if (InstMA)
2289     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2290   ValueToClass[I] = NewClass;
2291   // See if we destroyed the class or need to swap leaders.
2292   if (OldClass->empty() && OldClass != TOPClass) {
2293     if (OldClass->getDefiningExpr()) {
2294       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2295                         << " from table\n");
2296       // We erase it as an exact expression to make sure we don't just erase an
2297       // equivalent one.
2298       auto Iter = ExpressionToClass.find_as(
2299           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2300       if (Iter != ExpressionToClass.end())
2301         ExpressionToClass.erase(Iter);
2302 #ifdef EXPENSIVE_CHECKS
2303       assert(
2304           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2305           "We erased the expression we just inserted, which should not happen");
2306 #endif
2307     }
2308   } else if (OldClass->getLeader() == I) {
2309     // When the leader changes, the value numbering of
2310     // everything may change due to symbolization changes, so we need to
2311     // reprocess.
2312     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2313                       << OldClass->getID() << "\n");
2314     ++NumGVNLeaderChanges;
2315     // Destroy the stored value if there are no more stores to represent it.
2316     // Note that this is basically clean up for the expression removal that
2317     // happens below.  If we remove stores from a class, we may leave it as a
2318     // class of equivalent memory phis.
2319     if (OldClass->getStoreCount() == 0) {
2320       if (OldClass->getStoredValue())
2321         OldClass->setStoredValue(nullptr);
2322     }
2323     OldClass->setLeader(getNextValueLeader(OldClass));
2324     OldClass->resetNextLeader();
2325     markValueLeaderChangeTouched(OldClass);
2326   }
2327 }
2328 
2329 // For a given expression, mark the phi of ops instructions that could have
2330 // changed as a result.
2331 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2332   touchAndErase(ExpressionToPhiOfOps, E);
2333 }
2334 
2335 // Perform congruence finding on a given value numbering expression.
2336 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2337   // This is guaranteed to return something, since it will at least find
2338   // TOP.
2339 
2340   CongruenceClass *IClass = ValueToClass.lookup(I);
2341   assert(IClass && "Should have found a IClass");
2342   // Dead classes should have been eliminated from the mapping.
2343   assert(!IClass->isDead() && "Found a dead class");
2344 
2345   CongruenceClass *EClass = nullptr;
2346   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2347     EClass = ValueToClass.lookup(VE->getVariableValue());
2348   } else if (isa<DeadExpression>(E)) {
2349     EClass = TOPClass;
2350   }
2351   if (!EClass) {
2352     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2353 
2354     // If it's not in the value table, create a new congruence class.
2355     if (lookupResult.second) {
2356       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2357       auto place = lookupResult.first;
2358       place->second = NewClass;
2359 
2360       // Constants and variables should always be made the leader.
2361       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2362         NewClass->setLeader(CE->getConstantValue());
2363       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2364         StoreInst *SI = SE->getStoreInst();
2365         NewClass->setLeader(SI);
2366         NewClass->setStoredValue(SE->getStoredValue());
2367         // The RepMemoryAccess field will be filled in properly by the
2368         // moveValueToNewCongruenceClass call.
2369       } else {
2370         NewClass->setLeader(I);
2371       }
2372       assert(!isa<VariableExpression>(E) &&
2373              "VariableExpression should have been handled already");
2374 
2375       EClass = NewClass;
2376       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2377                         << " using expression " << *E << " at "
2378                         << NewClass->getID() << " and leader "
2379                         << *(NewClass->getLeader()));
2380       if (NewClass->getStoredValue())
2381         LLVM_DEBUG(dbgs() << " and stored value "
2382                           << *(NewClass->getStoredValue()));
2383       LLVM_DEBUG(dbgs() << "\n");
2384     } else {
2385       EClass = lookupResult.first->second;
2386       if (isa<ConstantExpression>(E))
2387         assert((isa<Constant>(EClass->getLeader()) ||
2388                 (EClass->getStoredValue() &&
2389                  isa<Constant>(EClass->getStoredValue()))) &&
2390                "Any class with a constant expression should have a "
2391                "constant leader");
2392 
2393       assert(EClass && "Somehow don't have an eclass");
2394 
2395       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2396     }
2397   }
2398   bool ClassChanged = IClass != EClass;
2399   bool LeaderChanged = LeaderChanges.erase(I);
2400   if (ClassChanged || LeaderChanged) {
2401     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2402                       << *E << "\n");
2403     if (ClassChanged) {
2404       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2405       markPhiOfOpsChanged(E);
2406     }
2407 
2408     markUsersTouched(I);
2409     if (MemoryAccess *MA = getMemoryAccess(I))
2410       markMemoryUsersTouched(MA);
2411     if (auto *CI = dyn_cast<CmpInst>(I))
2412       markPredicateUsersTouched(CI);
2413   }
2414   // If we changed the class of the store, we want to ensure nothing finds the
2415   // old store expression.  In particular, loads do not compare against stored
2416   // value, so they will find old store expressions (and associated class
2417   // mappings) if we leave them in the table.
2418   if (ClassChanged && isa<StoreInst>(I)) {
2419     auto *OldE = ValueToExpression.lookup(I);
2420     // It could just be that the old class died. We don't want to erase it if we
2421     // just moved classes.
2422     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2423       // Erase this as an exact expression to ensure we don't erase expressions
2424       // equivalent to it.
2425       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2426       if (Iter != ExpressionToClass.end())
2427         ExpressionToClass.erase(Iter);
2428     }
2429   }
2430   ValueToExpression[I] = E;
2431 }
2432 
2433 // Process the fact that Edge (from, to) is reachable, including marking
2434 // any newly reachable blocks and instructions for processing.
2435 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2436   // Check if the Edge was reachable before.
2437   if (ReachableEdges.insert({From, To}).second) {
2438     // If this block wasn't reachable before, all instructions are touched.
2439     if (ReachableBlocks.insert(To).second) {
2440       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2441                         << " marked reachable\n");
2442       const auto &InstRange = BlockInstRange.lookup(To);
2443       TouchedInstructions.set(InstRange.first, InstRange.second);
2444     } else {
2445       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2446                         << " was reachable, but new edge {"
2447                         << getBlockName(From) << "," << getBlockName(To)
2448                         << "} to it found\n");
2449 
2450       // We've made an edge reachable to an existing block, which may
2451       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2452       // they are the only thing that depend on new edges. Anything using their
2453       // values will get propagated to if necessary.
2454       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2455         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2456 
2457       // FIXME: We should just add a union op on a Bitvector and
2458       // SparseBitVector.  We can do it word by word faster than we are doing it
2459       // here.
2460       for (auto InstNum : RevisitOnReachabilityChange[To])
2461         TouchedInstructions.set(InstNum);
2462     }
2463   }
2464 }
2465 
2466 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2467 // see if we know some constant value for it already.
2468 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2469   auto Result = lookupOperandLeader(Cond);
2470   return isa<Constant>(Result) ? Result : nullptr;
2471 }
2472 
2473 // Process the outgoing edges of a block for reachability.
2474 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2475   // Evaluate reachability of terminator instruction.
2476   Value *Cond;
2477   BasicBlock *TrueSucc, *FalseSucc;
2478   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2479     Value *CondEvaluated = findConditionEquivalence(Cond);
2480     if (!CondEvaluated) {
2481       if (auto *I = dyn_cast<Instruction>(Cond)) {
2482         const Expression *E = createExpression(I);
2483         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2484           CondEvaluated = CE->getConstantValue();
2485         }
2486       } else if (isa<ConstantInt>(Cond)) {
2487         CondEvaluated = Cond;
2488       }
2489     }
2490     ConstantInt *CI;
2491     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2492       if (CI->isOne()) {
2493         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2494                           << " evaluated to true\n");
2495         updateReachableEdge(B, TrueSucc);
2496       } else if (CI->isZero()) {
2497         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2498                           << " evaluated to false\n");
2499         updateReachableEdge(B, FalseSucc);
2500       }
2501     } else {
2502       updateReachableEdge(B, TrueSucc);
2503       updateReachableEdge(B, FalseSucc);
2504     }
2505   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2506     // For switches, propagate the case values into the case
2507     // destinations.
2508 
2509     Value *SwitchCond = SI->getCondition();
2510     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2511     // See if we were able to turn this switch statement into a constant.
2512     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2513       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2514       // We should be able to get case value for this.
2515       auto Case = *SI->findCaseValue(CondVal);
2516       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2517         // We proved the value is outside of the range of the case.
2518         // We can't do anything other than mark the default dest as reachable,
2519         // and go home.
2520         updateReachableEdge(B, SI->getDefaultDest());
2521         return;
2522       }
2523       // Now get where it goes and mark it reachable.
2524       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2525       updateReachableEdge(B, TargetBlock);
2526     } else {
2527       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2528         BasicBlock *TargetBlock = SI->getSuccessor(i);
2529         updateReachableEdge(B, TargetBlock);
2530       }
2531     }
2532   } else {
2533     // Otherwise this is either unconditional, or a type we have no
2534     // idea about. Just mark successors as reachable.
2535     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2536       BasicBlock *TargetBlock = TI->getSuccessor(i);
2537       updateReachableEdge(B, TargetBlock);
2538     }
2539 
2540     // This also may be a memory defining terminator, in which case, set it
2541     // equivalent only to itself.
2542     //
2543     auto *MA = getMemoryAccess(TI);
2544     if (MA && !isa<MemoryUse>(MA)) {
2545       auto *CC = ensureLeaderOfMemoryClass(MA);
2546       if (setMemoryClass(MA, CC))
2547         markMemoryUsersTouched(MA);
2548     }
2549   }
2550 }
2551 
2552 // Remove the PHI of Ops PHI for I
2553 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2554   InstrDFS.erase(PHITemp);
2555   // It's still a temp instruction. We keep it in the array so it gets erased.
2556   // However, it's no longer used by I, or in the block
2557   TempToBlock.erase(PHITemp);
2558   RealToTemp.erase(I);
2559   // We don't remove the users from the phi node uses. This wastes a little
2560   // time, but such is life.  We could use two sets to track which were there
2561   // are the start of NewGVN, and which were added, but right nowt he cost of
2562   // tracking is more than the cost of checking for more phi of ops.
2563 }
2564 
2565 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2566 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2567                          Instruction *ExistingValue) {
2568   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2569   AllTempInstructions.insert(Op);
2570   TempToBlock[Op] = BB;
2571   RealToTemp[ExistingValue] = Op;
2572   // Add all users to phi node use, as they are now uses of the phi of ops phis
2573   // and may themselves be phi of ops.
2574   for (auto *U : ExistingValue->users())
2575     if (auto *UI = dyn_cast<Instruction>(U))
2576       PHINodeUses.insert(UI);
2577 }
2578 
2579 static bool okayForPHIOfOps(const Instruction *I) {
2580   if (!EnablePhiOfOps)
2581     return false;
2582   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2583          isa<LoadInst>(I);
2584 }
2585 
2586 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2587     Value *V, const BasicBlock *PHIBlock,
2588     SmallPtrSetImpl<const Value *> &Visited,
2589     SmallVectorImpl<Instruction *> &Worklist) {
2590 
2591   if (!isa<Instruction>(V))
2592     return true;
2593   auto OISIt = OpSafeForPHIOfOps.find(V);
2594   if (OISIt != OpSafeForPHIOfOps.end())
2595     return OISIt->second;
2596 
2597   // Keep walking until we either dominate the phi block, or hit a phi, or run
2598   // out of things to check.
2599   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2600     OpSafeForPHIOfOps.insert({V, true});
2601     return true;
2602   }
2603   // PHI in the same block.
2604   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2605     OpSafeForPHIOfOps.insert({V, false});
2606     return false;
2607   }
2608 
2609   auto *OrigI = cast<Instruction>(V);
2610   for (auto *Op : OrigI->operand_values()) {
2611     if (!isa<Instruction>(Op))
2612       continue;
2613     // Stop now if we find an unsafe operand.
2614     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2615     if (OISIt != OpSafeForPHIOfOps.end()) {
2616       if (!OISIt->second) {
2617         OpSafeForPHIOfOps.insert({V, false});
2618         return false;
2619       }
2620       continue;
2621     }
2622     if (!Visited.insert(Op).second)
2623       continue;
2624     Worklist.push_back(cast<Instruction>(Op));
2625   }
2626   return true;
2627 }
2628 
2629 // Return true if this operand will be safe to use for phi of ops.
2630 //
2631 // The reason some operands are unsafe is that we are not trying to recursively
2632 // translate everything back through phi nodes.  We actually expect some lookups
2633 // of expressions to fail.  In particular, a lookup where the expression cannot
2634 // exist in the predecessor.  This is true even if the expression, as shown, can
2635 // be determined to be constant.
2636 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2637                                  SmallPtrSetImpl<const Value *> &Visited) {
2638   SmallVector<Instruction *, 4> Worklist;
2639   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2640     return false;
2641   while (!Worklist.empty()) {
2642     auto *I = Worklist.pop_back_val();
2643     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2644       return false;
2645   }
2646   OpSafeForPHIOfOps.insert({V, true});
2647   return true;
2648 }
2649 
2650 // Try to find a leader for instruction TransInst, which is a phi translated
2651 // version of something in our original program.  Visited is used to ensure we
2652 // don't infinite loop during translations of cycles.  OrigInst is the
2653 // instruction in the original program, and PredBB is the predecessor we
2654 // translated it through.
2655 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2656                                  SmallPtrSetImpl<Value *> &Visited,
2657                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2658                                  BasicBlock *PredBB) {
2659   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2660   // Make sure it's marked as a temporary instruction.
2661   AllTempInstructions.insert(TransInst);
2662   // and make sure anything that tries to add it's DFS number is
2663   // redirected to the instruction we are making a phi of ops
2664   // for.
2665   TempToBlock.insert({TransInst, PredBB});
2666   InstrDFS.insert({TransInst, IDFSNum});
2667 
2668   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2669   InstrDFS.erase(TransInst);
2670   AllTempInstructions.erase(TransInst);
2671   TempToBlock.erase(TransInst);
2672   if (MemAccess)
2673     TempToMemory.erase(TransInst);
2674   if (!E)
2675     return nullptr;
2676   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2677   if (!FoundVal) {
2678     ExpressionToPhiOfOps[E].insert(OrigInst);
2679     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2680                       << " in block " << getBlockName(PredBB) << "\n");
2681     return nullptr;
2682   }
2683   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2684     FoundVal = SI->getValueOperand();
2685   return FoundVal;
2686 }
2687 
2688 // When we see an instruction that is an op of phis, generate the equivalent phi
2689 // of ops form.
2690 const Expression *
2691 NewGVN::makePossiblePHIOfOps(Instruction *I,
2692                              SmallPtrSetImpl<Value *> &Visited) {
2693   if (!okayForPHIOfOps(I))
2694     return nullptr;
2695 
2696   if (!Visited.insert(I).second)
2697     return nullptr;
2698   // For now, we require the instruction be cycle free because we don't
2699   // *always* create a phi of ops for instructions that could be done as phi
2700   // of ops, we only do it if we think it is useful.  If we did do it all the
2701   // time, we could remove the cycle free check.
2702   if (!isCycleFree(I))
2703     return nullptr;
2704 
2705   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2706   // TODO: We don't do phi translation on memory accesses because it's
2707   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2708   // which we don't have a good way of doing ATM.
2709   auto *MemAccess = getMemoryAccess(I);
2710   // If the memory operation is defined by a memory operation this block that
2711   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2712   // can't help, as it would still be killed by that memory operation.
2713   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2714       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2715     return nullptr;
2716 
2717   // Convert op of phis to phi of ops
2718   SmallPtrSet<const Value *, 10> VisitedOps;
2719   SmallVector<Value *, 4> Ops(I->operand_values());
2720   BasicBlock *SamePHIBlock = nullptr;
2721   PHINode *OpPHI = nullptr;
2722   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2723     return nullptr;
2724   for (auto *Op : Ops) {
2725     if (!isa<PHINode>(Op)) {
2726       auto *ValuePHI = RealToTemp.lookup(Op);
2727       if (!ValuePHI)
2728         continue;
2729       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2730       Op = ValuePHI;
2731     }
2732     OpPHI = cast<PHINode>(Op);
2733     if (!SamePHIBlock) {
2734       SamePHIBlock = getBlockForValue(OpPHI);
2735     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2736       LLVM_DEBUG(
2737           dbgs()
2738           << "PHIs for operands are not all in the same block, aborting\n");
2739       return nullptr;
2740     }
2741     // No point in doing this for one-operand phis.
2742     if (OpPHI->getNumOperands() == 1) {
2743       OpPHI = nullptr;
2744       continue;
2745     }
2746   }
2747 
2748   if (!OpPHI)
2749     return nullptr;
2750 
2751   SmallVector<ValPair, 4> PHIOps;
2752   SmallPtrSet<Value *, 4> Deps;
2753   auto *PHIBlock = getBlockForValue(OpPHI);
2754   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2755   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2756     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2757     Value *FoundVal = nullptr;
2758     SmallPtrSet<Value *, 4> CurrentDeps;
2759     // We could just skip unreachable edges entirely but it's tricky to do
2760     // with rewriting existing phi nodes.
2761     if (ReachableEdges.count({PredBB, PHIBlock})) {
2762       // Clone the instruction, create an expression from it that is
2763       // translated back into the predecessor, and see if we have a leader.
2764       Instruction *ValueOp = I->clone();
2765       if (MemAccess)
2766         TempToMemory.insert({ValueOp, MemAccess});
2767       bool SafeForPHIOfOps = true;
2768       VisitedOps.clear();
2769       for (auto &Op : ValueOp->operands()) {
2770         auto *OrigOp = &*Op;
2771         // When these operand changes, it could change whether there is a
2772         // leader for us or not, so we have to add additional users.
2773         if (isa<PHINode>(Op)) {
2774           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2775           if (Op != OrigOp && Op != I)
2776             CurrentDeps.insert(Op);
2777         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2778           if (getBlockForValue(ValuePHI) == PHIBlock)
2779             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2780         }
2781         // If we phi-translated the op, it must be safe.
2782         SafeForPHIOfOps =
2783             SafeForPHIOfOps &&
2784             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2785       }
2786       // FIXME: For those things that are not safe we could generate
2787       // expressions all the way down, and see if this comes out to a
2788       // constant.  For anything where that is true, and unsafe, we should
2789       // have made a phi-of-ops (or value numbered it equivalent to something)
2790       // for the pieces already.
2791       FoundVal = !SafeForPHIOfOps ? nullptr
2792                                   : findLeaderForInst(ValueOp, Visited,
2793                                                       MemAccess, I, PredBB);
2794       ValueOp->deleteValue();
2795       if (!FoundVal) {
2796         // We failed to find a leader for the current ValueOp, but this might
2797         // change in case of the translated operands change.
2798         if (SafeForPHIOfOps)
2799           for (auto Dep : CurrentDeps)
2800             addAdditionalUsers(Dep, I);
2801 
2802         return nullptr;
2803       }
2804       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2805     } else {
2806       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2807                         << getBlockName(PredBB)
2808                         << " because the block is unreachable\n");
2809       FoundVal = UndefValue::get(I->getType());
2810       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2811     }
2812 
2813     PHIOps.push_back({FoundVal, PredBB});
2814     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2815                       << getBlockName(PredBB) << "\n");
2816   }
2817   for (auto Dep : Deps)
2818     addAdditionalUsers(Dep, I);
2819   sortPHIOps(PHIOps);
2820   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2821   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2822     LLVM_DEBUG(
2823         dbgs()
2824         << "Not creating real PHI of ops because it simplified to existing "
2825            "value or constant\n");
2826     return E;
2827   }
2828   auto *ValuePHI = RealToTemp.lookup(I);
2829   bool NewPHI = false;
2830   if (!ValuePHI) {
2831     ValuePHI =
2832         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2833     addPhiOfOps(ValuePHI, PHIBlock, I);
2834     NewPHI = true;
2835     NumGVNPHIOfOpsCreated++;
2836   }
2837   if (NewPHI) {
2838     for (auto PHIOp : PHIOps)
2839       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2840   } else {
2841     TempToBlock[ValuePHI] = PHIBlock;
2842     unsigned int i = 0;
2843     for (auto PHIOp : PHIOps) {
2844       ValuePHI->setIncomingValue(i, PHIOp.first);
2845       ValuePHI->setIncomingBlock(i, PHIOp.second);
2846       ++i;
2847     }
2848   }
2849   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2850   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2851                     << "\n");
2852 
2853   return E;
2854 }
2855 
2856 // The algorithm initially places the values of the routine in the TOP
2857 // congruence class. The leader of TOP is the undetermined value `undef`.
2858 // When the algorithm has finished, values still in TOP are unreachable.
2859 void NewGVN::initializeCongruenceClasses(Function &F) {
2860   NextCongruenceNum = 0;
2861 
2862   // Note that even though we use the live on entry def as a representative
2863   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2864   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2865   // should be checking whether the MemoryAccess is top if we want to know if it
2866   // is equivalent to everything.  Otherwise, what this really signifies is that
2867   // the access "it reaches all the way back to the beginning of the function"
2868 
2869   // Initialize all other instructions to be in TOP class.
2870   TOPClass = createCongruenceClass(nullptr, nullptr);
2871   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2872   //  The live on entry def gets put into it's own class
2873   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2874       createMemoryClass(MSSA->getLiveOnEntryDef());
2875 
2876   for (auto DTN : nodes(DT)) {
2877     BasicBlock *BB = DTN->getBlock();
2878     // All MemoryAccesses are equivalent to live on entry to start. They must
2879     // be initialized to something so that initial changes are noticed. For
2880     // the maximal answer, we initialize them all to be the same as
2881     // liveOnEntry.
2882     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2883     if (MemoryBlockDefs)
2884       for (const auto &Def : *MemoryBlockDefs) {
2885         MemoryAccessToClass[&Def] = TOPClass;
2886         auto *MD = dyn_cast<MemoryDef>(&Def);
2887         // Insert the memory phis into the member list.
2888         if (!MD) {
2889           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2890           TOPClass->memory_insert(MP);
2891           MemoryPhiState.insert({MP, MPS_TOP});
2892         }
2893 
2894         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2895           TOPClass->incStoreCount();
2896       }
2897 
2898     // FIXME: This is trying to discover which instructions are uses of phi
2899     // nodes.  We should move this into one of the myriad of places that walk
2900     // all the operands already.
2901     for (auto &I : *BB) {
2902       if (isa<PHINode>(&I))
2903         for (auto *U : I.users())
2904           if (auto *UInst = dyn_cast<Instruction>(U))
2905             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2906               PHINodeUses.insert(UInst);
2907       // Don't insert void terminators into the class. We don't value number
2908       // them, and they just end up sitting in TOP.
2909       if (I.isTerminator() && I.getType()->isVoidTy())
2910         continue;
2911       TOPClass->insert(&I);
2912       ValueToClass[&I] = TOPClass;
2913     }
2914   }
2915 
2916   // Initialize arguments to be in their own unique congruence classes
2917   for (auto &FA : F.args())
2918     createSingletonCongruenceClass(&FA);
2919 }
2920 
2921 void NewGVN::cleanupTables() {
2922   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2923     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2924                       << " has " << CongruenceClasses[i]->size()
2925                       << " members\n");
2926     // Make sure we delete the congruence class (probably worth switching to
2927     // a unique_ptr at some point.
2928     delete CongruenceClasses[i];
2929     CongruenceClasses[i] = nullptr;
2930   }
2931 
2932   // Destroy the value expressions
2933   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2934                                          AllTempInstructions.end());
2935   AllTempInstructions.clear();
2936 
2937   // We have to drop all references for everything first, so there are no uses
2938   // left as we delete them.
2939   for (auto *I : TempInst) {
2940     I->dropAllReferences();
2941   }
2942 
2943   while (!TempInst.empty()) {
2944     auto *I = TempInst.back();
2945     TempInst.pop_back();
2946     I->deleteValue();
2947   }
2948 
2949   ValueToClass.clear();
2950   ArgRecycler.clear(ExpressionAllocator);
2951   ExpressionAllocator.Reset();
2952   CongruenceClasses.clear();
2953   ExpressionToClass.clear();
2954   ValueToExpression.clear();
2955   RealToTemp.clear();
2956   AdditionalUsers.clear();
2957   ExpressionToPhiOfOps.clear();
2958   TempToBlock.clear();
2959   TempToMemory.clear();
2960   PHINodeUses.clear();
2961   OpSafeForPHIOfOps.clear();
2962   ReachableBlocks.clear();
2963   ReachableEdges.clear();
2964 #ifndef NDEBUG
2965   ProcessedCount.clear();
2966 #endif
2967   InstrDFS.clear();
2968   InstructionsToErase.clear();
2969   DFSToInstr.clear();
2970   BlockInstRange.clear();
2971   TouchedInstructions.clear();
2972   MemoryAccessToClass.clear();
2973   PredicateToUsers.clear();
2974   MemoryToUsers.clear();
2975   RevisitOnReachabilityChange.clear();
2976 }
2977 
2978 // Assign local DFS number mapping to instructions, and leave space for Value
2979 // PHI's.
2980 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2981                                                        unsigned Start) {
2982   unsigned End = Start;
2983   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2984     InstrDFS[MemPhi] = End++;
2985     DFSToInstr.emplace_back(MemPhi);
2986   }
2987 
2988   // Then the real block goes next.
2989   for (auto &I : *B) {
2990     // There's no need to call isInstructionTriviallyDead more than once on
2991     // an instruction. Therefore, once we know that an instruction is dead
2992     // we change its DFS number so that it doesn't get value numbered.
2993     if (isInstructionTriviallyDead(&I, TLI)) {
2994       InstrDFS[&I] = 0;
2995       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2996       markInstructionForDeletion(&I);
2997       continue;
2998     }
2999     if (isa<PHINode>(&I))
3000       RevisitOnReachabilityChange[B].set(End);
3001     InstrDFS[&I] = End++;
3002     DFSToInstr.emplace_back(&I);
3003   }
3004 
3005   // All of the range functions taken half-open ranges (open on the end side).
3006   // So we do not subtract one from count, because at this point it is one
3007   // greater than the last instruction.
3008   return std::make_pair(Start, End);
3009 }
3010 
3011 void NewGVN::updateProcessedCount(const Value *V) {
3012 #ifndef NDEBUG
3013   if (ProcessedCount.count(V) == 0) {
3014     ProcessedCount.insert({V, 1});
3015   } else {
3016     ++ProcessedCount[V];
3017     assert(ProcessedCount[V] < 100 &&
3018            "Seem to have processed the same Value a lot");
3019   }
3020 #endif
3021 }
3022 
3023 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3024 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3025   // If all the arguments are the same, the MemoryPhi has the same value as the
3026   // argument.  Filter out unreachable blocks and self phis from our operands.
3027   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3028   // self-phi checking.
3029   const BasicBlock *PHIBlock = MP->getBlock();
3030   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3031     return cast<MemoryAccess>(U) != MP &&
3032            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3033            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3034   });
3035   // If all that is left is nothing, our memoryphi is undef. We keep it as
3036   // InitialClass.  Note: The only case this should happen is if we have at
3037   // least one self-argument.
3038   if (Filtered.begin() == Filtered.end()) {
3039     if (setMemoryClass(MP, TOPClass))
3040       markMemoryUsersTouched(MP);
3041     return;
3042   }
3043 
3044   // Transform the remaining operands into operand leaders.
3045   // FIXME: mapped_iterator should have a range version.
3046   auto LookupFunc = [&](const Use &U) {
3047     return lookupMemoryLeader(cast<MemoryAccess>(U));
3048   };
3049   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3050   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3051 
3052   // and now check if all the elements are equal.
3053   // Sadly, we can't use std::equals since these are random access iterators.
3054   const auto *AllSameValue = *MappedBegin;
3055   ++MappedBegin;
3056   bool AllEqual = std::all_of(
3057       MappedBegin, MappedEnd,
3058       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3059 
3060   if (AllEqual)
3061     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3062                       << "\n");
3063   else
3064     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3065   // If it's equal to something, it's in that class. Otherwise, it has to be in
3066   // a class where it is the leader (other things may be equivalent to it, but
3067   // it needs to start off in its own class, which means it must have been the
3068   // leader, and it can't have stopped being the leader because it was never
3069   // removed).
3070   CongruenceClass *CC =
3071       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3072   auto OldState = MemoryPhiState.lookup(MP);
3073   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3074   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3075   MemoryPhiState[MP] = NewState;
3076   if (setMemoryClass(MP, CC) || OldState != NewState)
3077     markMemoryUsersTouched(MP);
3078 }
3079 
3080 // Value number a single instruction, symbolically evaluating, performing
3081 // congruence finding, and updating mappings.
3082 void NewGVN::valueNumberInstruction(Instruction *I) {
3083   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3084   if (!I->isTerminator()) {
3085     const Expression *Symbolized = nullptr;
3086     SmallPtrSet<Value *, 2> Visited;
3087     if (DebugCounter::shouldExecute(VNCounter)) {
3088       Symbolized = performSymbolicEvaluation(I, Visited);
3089       // Make a phi of ops if necessary
3090       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3091           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3092         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3093         // If we created a phi of ops, use it.
3094         // If we couldn't create one, make sure we don't leave one lying around
3095         if (PHIE) {
3096           Symbolized = PHIE;
3097         } else if (auto *Op = RealToTemp.lookup(I)) {
3098           removePhiOfOps(I, Op);
3099         }
3100       }
3101     } else {
3102       // Mark the instruction as unused so we don't value number it again.
3103       InstrDFS[I] = 0;
3104     }
3105     // If we couldn't come up with a symbolic expression, use the unknown
3106     // expression
3107     if (Symbolized == nullptr)
3108       Symbolized = createUnknownExpression(I);
3109     performCongruenceFinding(I, Symbolized);
3110   } else {
3111     // Handle terminators that return values. All of them produce values we
3112     // don't currently understand.  We don't place non-value producing
3113     // terminators in a class.
3114     if (!I->getType()->isVoidTy()) {
3115       auto *Symbolized = createUnknownExpression(I);
3116       performCongruenceFinding(I, Symbolized);
3117     }
3118     processOutgoingEdges(I, I->getParent());
3119   }
3120 }
3121 
3122 // Check if there is a path, using single or equal argument phi nodes, from
3123 // First to Second.
3124 bool NewGVN::singleReachablePHIPath(
3125     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3126     const MemoryAccess *Second) const {
3127   if (First == Second)
3128     return true;
3129   if (MSSA->isLiveOnEntryDef(First))
3130     return false;
3131 
3132   // This is not perfect, but as we're just verifying here, we can live with
3133   // the loss of precision. The real solution would be that of doing strongly
3134   // connected component finding in this routine, and it's probably not worth
3135   // the complexity for the time being. So, we just keep a set of visited
3136   // MemoryAccess and return true when we hit a cycle.
3137   if (Visited.count(First))
3138     return true;
3139   Visited.insert(First);
3140 
3141   const auto *EndDef = First;
3142   for (auto *ChainDef : optimized_def_chain(First)) {
3143     if (ChainDef == Second)
3144       return true;
3145     if (MSSA->isLiveOnEntryDef(ChainDef))
3146       return false;
3147     EndDef = ChainDef;
3148   }
3149   auto *MP = cast<MemoryPhi>(EndDef);
3150   auto ReachableOperandPred = [&](const Use &U) {
3151     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3152   };
3153   auto FilteredPhiArgs =
3154       make_filter_range(MP->operands(), ReachableOperandPred);
3155   SmallVector<const Value *, 32> OperandList;
3156   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3157   bool Okay = is_splat(OperandList);
3158   if (Okay)
3159     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3160                                   Second);
3161   return false;
3162 }
3163 
3164 // Verify the that the memory equivalence table makes sense relative to the
3165 // congruence classes.  Note that this checking is not perfect, and is currently
3166 // subject to very rare false negatives. It is only useful for
3167 // testing/debugging.
3168 void NewGVN::verifyMemoryCongruency() const {
3169 #ifndef NDEBUG
3170   // Verify that the memory table equivalence and memory member set match
3171   for (const auto *CC : CongruenceClasses) {
3172     if (CC == TOPClass || CC->isDead())
3173       continue;
3174     if (CC->getStoreCount() != 0) {
3175       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3176              "Any class with a store as a leader should have a "
3177              "representative stored value");
3178       assert(CC->getMemoryLeader() &&
3179              "Any congruence class with a store should have a "
3180              "representative access");
3181     }
3182 
3183     if (CC->getMemoryLeader())
3184       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3185              "Representative MemoryAccess does not appear to be reverse "
3186              "mapped properly");
3187     for (auto M : CC->memory())
3188       assert(MemoryAccessToClass.lookup(M) == CC &&
3189              "Memory member does not appear to be reverse mapped properly");
3190   }
3191 
3192   // Anything equivalent in the MemoryAccess table should be in the same
3193   // congruence class.
3194 
3195   // Filter out the unreachable and trivially dead entries, because they may
3196   // never have been updated if the instructions were not processed.
3197   auto ReachableAccessPred =
3198       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3199         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3200         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3201             MemoryToDFSNum(Pair.first) == 0)
3202           return false;
3203         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3204           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3205 
3206         // We could have phi nodes which operands are all trivially dead,
3207         // so we don't process them.
3208         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3209           for (auto &U : MemPHI->incoming_values()) {
3210             if (auto *I = dyn_cast<Instruction>(&*U)) {
3211               if (!isInstructionTriviallyDead(I))
3212                 return true;
3213             }
3214           }
3215           return false;
3216         }
3217 
3218         return true;
3219       };
3220 
3221   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3222   for (auto KV : Filtered) {
3223     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3224       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3225       if (FirstMUD && SecondMUD) {
3226         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3227         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3228                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3229                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3230                "The instructions for these memory operations should have "
3231                "been in the same congruence class or reachable through"
3232                "a single argument phi");
3233       }
3234     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3235       // We can only sanely verify that MemoryDefs in the operand list all have
3236       // the same class.
3237       auto ReachableOperandPred = [&](const Use &U) {
3238         return ReachableEdges.count(
3239                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3240                isa<MemoryDef>(U);
3241 
3242       };
3243       // All arguments should in the same class, ignoring unreachable arguments
3244       auto FilteredPhiArgs =
3245           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3246       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3247       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3248                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3249                        const MemoryDef *MD = cast<MemoryDef>(U);
3250                        return ValueToClass.lookup(MD->getMemoryInst());
3251                      });
3252       assert(is_splat(PhiOpClasses) &&
3253              "All MemoryPhi arguments should be in the same class");
3254     }
3255   }
3256 #endif
3257 }
3258 
3259 // Verify that the sparse propagation we did actually found the maximal fixpoint
3260 // We do this by storing the value to class mapping, touching all instructions,
3261 // and redoing the iteration to see if anything changed.
3262 void NewGVN::verifyIterationSettled(Function &F) {
3263 #ifndef NDEBUG
3264   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3265   if (DebugCounter::isCounterSet(VNCounter))
3266     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3267 
3268   // Note that we have to store the actual classes, as we may change existing
3269   // classes during iteration.  This is because our memory iteration propagation
3270   // is not perfect, and so may waste a little work.  But it should generate
3271   // exactly the same congruence classes we have now, with different IDs.
3272   std::map<const Value *, CongruenceClass> BeforeIteration;
3273 
3274   for (auto &KV : ValueToClass) {
3275     if (auto *I = dyn_cast<Instruction>(KV.first))
3276       // Skip unused/dead instructions.
3277       if (InstrToDFSNum(I) == 0)
3278         continue;
3279     BeforeIteration.insert({KV.first, *KV.second});
3280   }
3281 
3282   TouchedInstructions.set();
3283   TouchedInstructions.reset(0);
3284   iterateTouchedInstructions();
3285   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3286       EqualClasses;
3287   for (const auto &KV : ValueToClass) {
3288     if (auto *I = dyn_cast<Instruction>(KV.first))
3289       // Skip unused/dead instructions.
3290       if (InstrToDFSNum(I) == 0)
3291         continue;
3292     // We could sink these uses, but i think this adds a bit of clarity here as
3293     // to what we are comparing.
3294     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3295     auto *AfterCC = KV.second;
3296     // Note that the classes can't change at this point, so we memoize the set
3297     // that are equal.
3298     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3299       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3300              "Value number changed after main loop completed!");
3301       EqualClasses.insert({BeforeCC, AfterCC});
3302     }
3303   }
3304 #endif
3305 }
3306 
3307 // Verify that for each store expression in the expression to class mapping,
3308 // only the latest appears, and multiple ones do not appear.
3309 // Because loads do not use the stored value when doing equality with stores,
3310 // if we don't erase the old store expressions from the table, a load can find
3311 // a no-longer valid StoreExpression.
3312 void NewGVN::verifyStoreExpressions() const {
3313 #ifndef NDEBUG
3314   // This is the only use of this, and it's not worth defining a complicated
3315   // densemapinfo hash/equality function for it.
3316   std::set<
3317       std::pair<const Value *,
3318                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3319       StoreExpressionSet;
3320   for (const auto &KV : ExpressionToClass) {
3321     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3322       // Make sure a version that will conflict with loads is not already there
3323       auto Res = StoreExpressionSet.insert(
3324           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3325                                               SE->getStoredValue())});
3326       bool Okay = Res.second;
3327       // It's okay to have the same expression already in there if it is
3328       // identical in nature.
3329       // This can happen when the leader of the stored value changes over time.
3330       if (!Okay)
3331         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3332                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3333                 lookupOperandLeader(SE->getStoredValue()));
3334       assert(Okay && "Stored expression conflict exists in expression table");
3335       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3336       assert(ValueExpr && ValueExpr->equals(*SE) &&
3337              "StoreExpression in ExpressionToClass is not latest "
3338              "StoreExpression for value");
3339     }
3340   }
3341 #endif
3342 }
3343 
3344 // This is the main value numbering loop, it iterates over the initial touched
3345 // instruction set, propagating value numbers, marking things touched, etc,
3346 // until the set of touched instructions is completely empty.
3347 void NewGVN::iterateTouchedInstructions() {
3348   unsigned int Iterations = 0;
3349   // Figure out where touchedinstructions starts
3350   int FirstInstr = TouchedInstructions.find_first();
3351   // Nothing set, nothing to iterate, just return.
3352   if (FirstInstr == -1)
3353     return;
3354   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3355   while (TouchedInstructions.any()) {
3356     ++Iterations;
3357     // Walk through all the instructions in all the blocks in RPO.
3358     // TODO: As we hit a new block, we should push and pop equalities into a
3359     // table lookupOperandLeader can use, to catch things PredicateInfo
3360     // might miss, like edge-only equivalences.
3361     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3362 
3363       // This instruction was found to be dead. We don't bother looking
3364       // at it again.
3365       if (InstrNum == 0) {
3366         TouchedInstructions.reset(InstrNum);
3367         continue;
3368       }
3369 
3370       Value *V = InstrFromDFSNum(InstrNum);
3371       const BasicBlock *CurrBlock = getBlockForValue(V);
3372 
3373       // If we hit a new block, do reachability processing.
3374       if (CurrBlock != LastBlock) {
3375         LastBlock = CurrBlock;
3376         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3377         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3378 
3379         // If it's not reachable, erase any touched instructions and move on.
3380         if (!BlockReachable) {
3381           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3382           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3383                             << getBlockName(CurrBlock)
3384                             << " because it is unreachable\n");
3385           continue;
3386         }
3387         updateProcessedCount(CurrBlock);
3388       }
3389       // Reset after processing (because we may mark ourselves as touched when
3390       // we propagate equalities).
3391       TouchedInstructions.reset(InstrNum);
3392 
3393       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3394         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3395         valueNumberMemoryPhi(MP);
3396       } else if (auto *I = dyn_cast<Instruction>(V)) {
3397         valueNumberInstruction(I);
3398       } else {
3399         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3400       }
3401       updateProcessedCount(V);
3402     }
3403   }
3404   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3405 }
3406 
3407 // This is the main transformation entry point.
3408 bool NewGVN::runGVN() {
3409   if (DebugCounter::isCounterSet(VNCounter))
3410     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3411   bool Changed = false;
3412   NumFuncArgs = F.arg_size();
3413   MSSAWalker = MSSA->getWalker();
3414   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3415 
3416   // Count number of instructions for sizing of hash tables, and come
3417   // up with a global dfs numbering for instructions.
3418   unsigned ICount = 1;
3419   // Add an empty instruction to account for the fact that we start at 1
3420   DFSToInstr.emplace_back(nullptr);
3421   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3422   // same as dominator tree order, particularly with regard whether backedges
3423   // get visited first or second, given a block with multiple successors.
3424   // If we visit in the wrong order, we will end up performing N times as many
3425   // iterations.
3426   // The dominator tree does guarantee that, for a given dom tree node, it's
3427   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3428   // the siblings.
3429   ReversePostOrderTraversal<Function *> RPOT(&F);
3430   unsigned Counter = 0;
3431   for (auto &B : RPOT) {
3432     auto *Node = DT->getNode(B);
3433     assert(Node && "RPO and Dominator tree should have same reachability");
3434     RPOOrdering[Node] = ++Counter;
3435   }
3436   // Sort dominator tree children arrays into RPO.
3437   for (auto &B : RPOT) {
3438     auto *Node = DT->getNode(B);
3439     if (Node->getNumChildren() > 1)
3440       llvm::sort(Node->begin(), Node->end(),
3441                  [&](const DomTreeNode *A, const DomTreeNode *B) {
3442                    return RPOOrdering[A] < RPOOrdering[B];
3443                  });
3444   }
3445 
3446   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3447   for (auto DTN : depth_first(DT->getRootNode())) {
3448     BasicBlock *B = DTN->getBlock();
3449     const auto &BlockRange = assignDFSNumbers(B, ICount);
3450     BlockInstRange.insert({B, BlockRange});
3451     ICount += BlockRange.second - BlockRange.first;
3452   }
3453   initializeCongruenceClasses(F);
3454 
3455   TouchedInstructions.resize(ICount);
3456   // Ensure we don't end up resizing the expressionToClass map, as
3457   // that can be quite expensive. At most, we have one expression per
3458   // instruction.
3459   ExpressionToClass.reserve(ICount);
3460 
3461   // Initialize the touched instructions to include the entry block.
3462   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3463   TouchedInstructions.set(InstRange.first, InstRange.second);
3464   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3465                     << " marked reachable\n");
3466   ReachableBlocks.insert(&F.getEntryBlock());
3467 
3468   iterateTouchedInstructions();
3469   verifyMemoryCongruency();
3470   verifyIterationSettled(F);
3471   verifyStoreExpressions();
3472 
3473   Changed |= eliminateInstructions(F);
3474 
3475   // Delete all instructions marked for deletion.
3476   for (Instruction *ToErase : InstructionsToErase) {
3477     if (!ToErase->use_empty())
3478       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3479 
3480     assert(ToErase->getParent() &&
3481            "BB containing ToErase deleted unexpectedly!");
3482     ToErase->eraseFromParent();
3483   }
3484   Changed |= !InstructionsToErase.empty();
3485 
3486   // Delete all unreachable blocks.
3487   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3488     return !ReachableBlocks.count(&BB);
3489   };
3490 
3491   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3492     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3493                       << " is unreachable\n");
3494     deleteInstructionsInBlock(&BB);
3495     Changed = true;
3496   }
3497 
3498   cleanupTables();
3499   return Changed;
3500 }
3501 
3502 struct NewGVN::ValueDFS {
3503   int DFSIn = 0;
3504   int DFSOut = 0;
3505   int LocalNum = 0;
3506 
3507   // Only one of Def and U will be set.
3508   // The bool in the Def tells us whether the Def is the stored value of a
3509   // store.
3510   PointerIntPair<Value *, 1, bool> Def;
3511   Use *U = nullptr;
3512 
3513   bool operator<(const ValueDFS &Other) const {
3514     // It's not enough that any given field be less than - we have sets
3515     // of fields that need to be evaluated together to give a proper ordering.
3516     // For example, if you have;
3517     // DFS (1, 3)
3518     // Val 0
3519     // DFS (1, 2)
3520     // Val 50
3521     // We want the second to be less than the first, but if we just go field
3522     // by field, we will get to Val 0 < Val 50 and say the first is less than
3523     // the second. We only want it to be less than if the DFS orders are equal.
3524     //
3525     // Each LLVM instruction only produces one value, and thus the lowest-level
3526     // differentiator that really matters for the stack (and what we use as as a
3527     // replacement) is the local dfs number.
3528     // Everything else in the structure is instruction level, and only affects
3529     // the order in which we will replace operands of a given instruction.
3530     //
3531     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3532     // the order of replacement of uses does not matter.
3533     // IE given,
3534     //  a = 5
3535     //  b = a + a
3536     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3537     // localnum.
3538     // The .val will be the same as well.
3539     // The .u's will be different.
3540     // You will replace both, and it does not matter what order you replace them
3541     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3542     // operand 2).
3543     // Similarly for the case of same dfsin, dfsout, localnum, but different
3544     // .val's
3545     //  a = 5
3546     //  b  = 6
3547     //  c = a + b
3548     // in c, we will a valuedfs for a, and one for b,with everything the same
3549     // but .val  and .u.
3550     // It does not matter what order we replace these operands in.
3551     // You will always end up with the same IR, and this is guaranteed.
3552     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3553            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3554                     Other.U);
3555   }
3556 };
3557 
3558 // This function converts the set of members for a congruence class from values,
3559 // to sets of defs and uses with associated DFS info.  The total number of
3560 // reachable uses for each value is stored in UseCount, and instructions that
3561 // seem
3562 // dead (have no non-dead uses) are stored in ProbablyDead.
3563 void NewGVN::convertClassToDFSOrdered(
3564     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3565     DenseMap<const Value *, unsigned int> &UseCounts,
3566     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3567   for (auto D : Dense) {
3568     // First add the value.
3569     BasicBlock *BB = getBlockForValue(D);
3570     // Constants are handled prior to ever calling this function, so
3571     // we should only be left with instructions as members.
3572     assert(BB && "Should have figured out a basic block for value");
3573     ValueDFS VDDef;
3574     DomTreeNode *DomNode = DT->getNode(BB);
3575     VDDef.DFSIn = DomNode->getDFSNumIn();
3576     VDDef.DFSOut = DomNode->getDFSNumOut();
3577     // If it's a store, use the leader of the value operand, if it's always
3578     // available, or the value operand.  TODO: We could do dominance checks to
3579     // find a dominating leader, but not worth it ATM.
3580     if (auto *SI = dyn_cast<StoreInst>(D)) {
3581       auto Leader = lookupOperandLeader(SI->getValueOperand());
3582       if (alwaysAvailable(Leader)) {
3583         VDDef.Def.setPointer(Leader);
3584       } else {
3585         VDDef.Def.setPointer(SI->getValueOperand());
3586         VDDef.Def.setInt(true);
3587       }
3588     } else {
3589       VDDef.Def.setPointer(D);
3590     }
3591     assert(isa<Instruction>(D) &&
3592            "The dense set member should always be an instruction");
3593     Instruction *Def = cast<Instruction>(D);
3594     VDDef.LocalNum = InstrToDFSNum(D);
3595     DFSOrderedSet.push_back(VDDef);
3596     // If there is a phi node equivalent, add it
3597     if (auto *PN = RealToTemp.lookup(Def)) {
3598       auto *PHIE =
3599           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3600       if (PHIE) {
3601         VDDef.Def.setInt(false);
3602         VDDef.Def.setPointer(PN);
3603         VDDef.LocalNum = 0;
3604         DFSOrderedSet.push_back(VDDef);
3605       }
3606     }
3607 
3608     unsigned int UseCount = 0;
3609     // Now add the uses.
3610     for (auto &U : Def->uses()) {
3611       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3612         // Don't try to replace into dead uses
3613         if (InstructionsToErase.count(I))
3614           continue;
3615         ValueDFS VDUse;
3616         // Put the phi node uses in the incoming block.
3617         BasicBlock *IBlock;
3618         if (auto *P = dyn_cast<PHINode>(I)) {
3619           IBlock = P->getIncomingBlock(U);
3620           // Make phi node users appear last in the incoming block
3621           // they are from.
3622           VDUse.LocalNum = InstrDFS.size() + 1;
3623         } else {
3624           IBlock = getBlockForValue(I);
3625           VDUse.LocalNum = InstrToDFSNum(I);
3626         }
3627 
3628         // Skip uses in unreachable blocks, as we're going
3629         // to delete them.
3630         if (ReachableBlocks.count(IBlock) == 0)
3631           continue;
3632 
3633         DomTreeNode *DomNode = DT->getNode(IBlock);
3634         VDUse.DFSIn = DomNode->getDFSNumIn();
3635         VDUse.DFSOut = DomNode->getDFSNumOut();
3636         VDUse.U = &U;
3637         ++UseCount;
3638         DFSOrderedSet.emplace_back(VDUse);
3639       }
3640     }
3641 
3642     // If there are no uses, it's probably dead (but it may have side-effects,
3643     // so not definitely dead. Otherwise, store the number of uses so we can
3644     // track if it becomes dead later).
3645     if (UseCount == 0)
3646       ProbablyDead.insert(Def);
3647     else
3648       UseCounts[Def] = UseCount;
3649   }
3650 }
3651 
3652 // This function converts the set of members for a congruence class from values,
3653 // to the set of defs for loads and stores, with associated DFS info.
3654 void NewGVN::convertClassToLoadsAndStores(
3655     const CongruenceClass &Dense,
3656     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3657   for (auto D : Dense) {
3658     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3659       continue;
3660 
3661     BasicBlock *BB = getBlockForValue(D);
3662     ValueDFS VD;
3663     DomTreeNode *DomNode = DT->getNode(BB);
3664     VD.DFSIn = DomNode->getDFSNumIn();
3665     VD.DFSOut = DomNode->getDFSNumOut();
3666     VD.Def.setPointer(D);
3667 
3668     // If it's an instruction, use the real local dfs number.
3669     if (auto *I = dyn_cast<Instruction>(D))
3670       VD.LocalNum = InstrToDFSNum(I);
3671     else
3672       llvm_unreachable("Should have been an instruction");
3673 
3674     LoadsAndStores.emplace_back(VD);
3675   }
3676 }
3677 
3678 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3679   patchReplacementInstruction(I, Repl);
3680   I->replaceAllUsesWith(Repl);
3681 }
3682 
3683 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3684   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3685   ++NumGVNBlocksDeleted;
3686 
3687   // Delete the instructions backwards, as it has a reduced likelihood of having
3688   // to update as many def-use and use-def chains. Start after the terminator.
3689   auto StartPoint = BB->rbegin();
3690   ++StartPoint;
3691   // Note that we explicitly recalculate BB->rend() on each iteration,
3692   // as it may change when we remove the first instruction.
3693   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3694     Instruction &Inst = *I++;
3695     if (!Inst.use_empty())
3696       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3697     if (isa<LandingPadInst>(Inst))
3698       continue;
3699     salvageKnowledge(&Inst, AC);
3700 
3701     Inst.eraseFromParent();
3702     ++NumGVNInstrDeleted;
3703   }
3704   // Now insert something that simplifycfg will turn into an unreachable.
3705   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3706   new StoreInst(UndefValue::get(Int8Ty),
3707                 Constant::getNullValue(Int8Ty->getPointerTo()),
3708                 BB->getTerminator());
3709 }
3710 
3711 void NewGVN::markInstructionForDeletion(Instruction *I) {
3712   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3713   InstructionsToErase.insert(I);
3714 }
3715 
3716 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3717   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3718   patchAndReplaceAllUsesWith(I, V);
3719   // We save the actual erasing to avoid invalidating memory
3720   // dependencies until we are done with everything.
3721   markInstructionForDeletion(I);
3722 }
3723 
3724 namespace {
3725 
3726 // This is a stack that contains both the value and dfs info of where
3727 // that value is valid.
3728 class ValueDFSStack {
3729 public:
3730   Value *back() const { return ValueStack.back(); }
3731   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3732 
3733   void push_back(Value *V, int DFSIn, int DFSOut) {
3734     ValueStack.emplace_back(V);
3735     DFSStack.emplace_back(DFSIn, DFSOut);
3736   }
3737 
3738   bool empty() const { return DFSStack.empty(); }
3739 
3740   bool isInScope(int DFSIn, int DFSOut) const {
3741     if (empty())
3742       return false;
3743     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3744   }
3745 
3746   void popUntilDFSScope(int DFSIn, int DFSOut) {
3747 
3748     // These two should always be in sync at this point.
3749     assert(ValueStack.size() == DFSStack.size() &&
3750            "Mismatch between ValueStack and DFSStack");
3751     while (
3752         !DFSStack.empty() &&
3753         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3754       DFSStack.pop_back();
3755       ValueStack.pop_back();
3756     }
3757   }
3758 
3759 private:
3760   SmallVector<Value *, 8> ValueStack;
3761   SmallVector<std::pair<int, int>, 8> DFSStack;
3762 };
3763 
3764 } // end anonymous namespace
3765 
3766 // Given an expression, get the congruence class for it.
3767 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3768   if (auto *VE = dyn_cast<VariableExpression>(E))
3769     return ValueToClass.lookup(VE->getVariableValue());
3770   else if (isa<DeadExpression>(E))
3771     return TOPClass;
3772   return ExpressionToClass.lookup(E);
3773 }
3774 
3775 // Given a value and a basic block we are trying to see if it is available in,
3776 // see if the value has a leader available in that block.
3777 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3778                                   const Instruction *OrigInst,
3779                                   const BasicBlock *BB) const {
3780   // It would already be constant if we could make it constant
3781   if (auto *CE = dyn_cast<ConstantExpression>(E))
3782     return CE->getConstantValue();
3783   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3784     auto *V = VE->getVariableValue();
3785     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3786       return VE->getVariableValue();
3787   }
3788 
3789   auto *CC = getClassForExpression(E);
3790   if (!CC)
3791     return nullptr;
3792   if (alwaysAvailable(CC->getLeader()))
3793     return CC->getLeader();
3794 
3795   for (auto Member : *CC) {
3796     auto *MemberInst = dyn_cast<Instruction>(Member);
3797     if (MemberInst == OrigInst)
3798       continue;
3799     // Anything that isn't an instruction is always available.
3800     if (!MemberInst)
3801       return Member;
3802     if (DT->dominates(getBlockForValue(MemberInst), BB))
3803       return Member;
3804   }
3805   return nullptr;
3806 }
3807 
3808 bool NewGVN::eliminateInstructions(Function &F) {
3809   // This is a non-standard eliminator. The normal way to eliminate is
3810   // to walk the dominator tree in order, keeping track of available
3811   // values, and eliminating them.  However, this is mildly
3812   // pointless. It requires doing lookups on every instruction,
3813   // regardless of whether we will ever eliminate it.  For
3814   // instructions part of most singleton congruence classes, we know we
3815   // will never eliminate them.
3816 
3817   // Instead, this eliminator looks at the congruence classes directly, sorts
3818   // them into a DFS ordering of the dominator tree, and then we just
3819   // perform elimination straight on the sets by walking the congruence
3820   // class member uses in order, and eliminate the ones dominated by the
3821   // last member.   This is worst case O(E log E) where E = number of
3822   // instructions in a single congruence class.  In theory, this is all
3823   // instructions.   In practice, it is much faster, as most instructions are
3824   // either in singleton congruence classes or can't possibly be eliminated
3825   // anyway (if there are no overlapping DFS ranges in class).
3826   // When we find something not dominated, it becomes the new leader
3827   // for elimination purposes.
3828   // TODO: If we wanted to be faster, We could remove any members with no
3829   // overlapping ranges while sorting, as we will never eliminate anything
3830   // with those members, as they don't dominate anything else in our set.
3831 
3832   bool AnythingReplaced = false;
3833 
3834   // Since we are going to walk the domtree anyway, and we can't guarantee the
3835   // DFS numbers are updated, we compute some ourselves.
3836   DT->updateDFSNumbers();
3837 
3838   // Go through all of our phi nodes, and kill the arguments associated with
3839   // unreachable edges.
3840   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3841     for (auto &Operand : PHI->incoming_values())
3842       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3843         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3844                           << " for block "
3845                           << getBlockName(PHI->getIncomingBlock(Operand))
3846                           << " with undef due to it being unreachable\n");
3847         Operand.set(UndefValue::get(PHI->getType()));
3848       }
3849   };
3850   // Replace unreachable phi arguments.
3851   // At this point, RevisitOnReachabilityChange only contains:
3852   //
3853   // 1. PHIs
3854   // 2. Temporaries that will convert to PHIs
3855   // 3. Operations that are affected by an unreachable edge but do not fit into
3856   // 1 or 2 (rare).
3857   // So it is a slight overshoot of what we want. We could make it exact by
3858   // using two SparseBitVectors per block.
3859   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3860   for (auto &KV : ReachableEdges)
3861     ReachablePredCount[KV.getEnd()]++;
3862   for (auto &BBPair : RevisitOnReachabilityChange) {
3863     for (auto InstNum : BBPair.second) {
3864       auto *Inst = InstrFromDFSNum(InstNum);
3865       auto *PHI = dyn_cast<PHINode>(Inst);
3866       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3867       if (!PHI)
3868         continue;
3869       auto *BB = BBPair.first;
3870       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3871         ReplaceUnreachablePHIArgs(PHI, BB);
3872     }
3873   }
3874 
3875   // Map to store the use counts
3876   DenseMap<const Value *, unsigned int> UseCounts;
3877   for (auto *CC : reverse(CongruenceClasses)) {
3878     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3879                       << "\n");
3880     // Track the equivalent store info so we can decide whether to try
3881     // dead store elimination.
3882     SmallVector<ValueDFS, 8> PossibleDeadStores;
3883     SmallPtrSet<Instruction *, 8> ProbablyDead;
3884     if (CC->isDead() || CC->empty())
3885       continue;
3886     // Everything still in the TOP class is unreachable or dead.
3887     if (CC == TOPClass) {
3888       for (auto M : *CC) {
3889         auto *VTE = ValueToExpression.lookup(M);
3890         if (VTE && isa<DeadExpression>(VTE))
3891           markInstructionForDeletion(cast<Instruction>(M));
3892         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3893                 InstructionsToErase.count(cast<Instruction>(M))) &&
3894                "Everything in TOP should be unreachable or dead at this "
3895                "point");
3896       }
3897       continue;
3898     }
3899 
3900     assert(CC->getLeader() && "We should have had a leader");
3901     // If this is a leader that is always available, and it's a
3902     // constant or has no equivalences, just replace everything with
3903     // it. We then update the congruence class with whatever members
3904     // are left.
3905     Value *Leader =
3906         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3907     if (alwaysAvailable(Leader)) {
3908       CongruenceClass::MemberSet MembersLeft;
3909       for (auto M : *CC) {
3910         Value *Member = M;
3911         // Void things have no uses we can replace.
3912         if (Member == Leader || !isa<Instruction>(Member) ||
3913             Member->getType()->isVoidTy()) {
3914           MembersLeft.insert(Member);
3915           continue;
3916         }
3917         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3918                           << *Member << "\n");
3919         auto *I = cast<Instruction>(Member);
3920         assert(Leader != I && "About to accidentally remove our leader");
3921         replaceInstruction(I, Leader);
3922         AnythingReplaced = true;
3923       }
3924       CC->swap(MembersLeft);
3925     } else {
3926       // If this is a singleton, we can skip it.
3927       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3928         // This is a stack because equality replacement/etc may place
3929         // constants in the middle of the member list, and we want to use
3930         // those constant values in preference to the current leader, over
3931         // the scope of those constants.
3932         ValueDFSStack EliminationStack;
3933 
3934         // Convert the members to DFS ordered sets and then merge them.
3935         SmallVector<ValueDFS, 8> DFSOrderedSet;
3936         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3937 
3938         // Sort the whole thing.
3939         llvm::sort(DFSOrderedSet);
3940         for (auto &VD : DFSOrderedSet) {
3941           int MemberDFSIn = VD.DFSIn;
3942           int MemberDFSOut = VD.DFSOut;
3943           Value *Def = VD.Def.getPointer();
3944           bool FromStore = VD.Def.getInt();
3945           Use *U = VD.U;
3946           // We ignore void things because we can't get a value from them.
3947           if (Def && Def->getType()->isVoidTy())
3948             continue;
3949           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3950           if (DefInst && AllTempInstructions.count(DefInst)) {
3951             auto *PN = cast<PHINode>(DefInst);
3952 
3953             // If this is a value phi and that's the expression we used, insert
3954             // it into the program
3955             // remove from temp instruction list.
3956             AllTempInstructions.erase(PN);
3957             auto *DefBlock = getBlockForValue(Def);
3958             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3959                               << " into block "
3960                               << getBlockName(getBlockForValue(Def)) << "\n");
3961             PN->insertBefore(&DefBlock->front());
3962             Def = PN;
3963             NumGVNPHIOfOpsEliminations++;
3964           }
3965 
3966           if (EliminationStack.empty()) {
3967             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3968           } else {
3969             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3970                               << EliminationStack.dfs_back().first << ","
3971                               << EliminationStack.dfs_back().second << ")\n");
3972           }
3973 
3974           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3975                             << MemberDFSOut << ")\n");
3976           // First, we see if we are out of scope or empty.  If so,
3977           // and there equivalences, we try to replace the top of
3978           // stack with equivalences (if it's on the stack, it must
3979           // not have been eliminated yet).
3980           // Then we synchronize to our current scope, by
3981           // popping until we are back within a DFS scope that
3982           // dominates the current member.
3983           // Then, what happens depends on a few factors
3984           // If the stack is now empty, we need to push
3985           // If we have a constant or a local equivalence we want to
3986           // start using, we also push.
3987           // Otherwise, we walk along, processing members who are
3988           // dominated by this scope, and eliminate them.
3989           bool ShouldPush = Def && EliminationStack.empty();
3990           bool OutOfScope =
3991               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3992 
3993           if (OutOfScope || ShouldPush) {
3994             // Sync to our current scope.
3995             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3996             bool ShouldPush = Def && EliminationStack.empty();
3997             if (ShouldPush) {
3998               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3999             }
4000           }
4001 
4002           // Skip the Def's, we only want to eliminate on their uses.  But mark
4003           // dominated defs as dead.
4004           if (Def) {
4005             // For anything in this case, what and how we value number
4006             // guarantees that any side-effets that would have occurred (ie
4007             // throwing, etc) can be proven to either still occur (because it's
4008             // dominated by something that has the same side-effects), or never
4009             // occur.  Otherwise, we would not have been able to prove it value
4010             // equivalent to something else. For these things, we can just mark
4011             // it all dead.  Note that this is different from the "ProbablyDead"
4012             // set, which may not be dominated by anything, and thus, are only
4013             // easy to prove dead if they are also side-effect free. Note that
4014             // because stores are put in terms of the stored value, we skip
4015             // stored values here. If the stored value is really dead, it will
4016             // still be marked for deletion when we process it in its own class.
4017             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4018                 isa<Instruction>(Def) && !FromStore)
4019               markInstructionForDeletion(cast<Instruction>(Def));
4020             continue;
4021           }
4022           // At this point, we know it is a Use we are trying to possibly
4023           // replace.
4024 
4025           assert(isa<Instruction>(U->get()) &&
4026                  "Current def should have been an instruction");
4027           assert(isa<Instruction>(U->getUser()) &&
4028                  "Current user should have been an instruction");
4029 
4030           // If the thing we are replacing into is already marked to be dead,
4031           // this use is dead.  Note that this is true regardless of whether
4032           // we have anything dominating the use or not.  We do this here
4033           // because we are already walking all the uses anyway.
4034           Instruction *InstUse = cast<Instruction>(U->getUser());
4035           if (InstructionsToErase.count(InstUse)) {
4036             auto &UseCount = UseCounts[U->get()];
4037             if (--UseCount == 0) {
4038               ProbablyDead.insert(cast<Instruction>(U->get()));
4039             }
4040           }
4041 
4042           // If we get to this point, and the stack is empty we must have a use
4043           // with nothing we can use to eliminate this use, so just skip it.
4044           if (EliminationStack.empty())
4045             continue;
4046 
4047           Value *DominatingLeader = EliminationStack.back();
4048 
4049           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4050           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4051           if (isSSACopy)
4052             DominatingLeader = II->getOperand(0);
4053 
4054           // Don't replace our existing users with ourselves.
4055           if (U->get() == DominatingLeader)
4056             continue;
4057           LLVM_DEBUG(dbgs()
4058                      << "Found replacement " << *DominatingLeader << " for "
4059                      << *U->get() << " in " << *(U->getUser()) << "\n");
4060 
4061           // If we replaced something in an instruction, handle the patching of
4062           // metadata.  Skip this if we are replacing predicateinfo with its
4063           // original operand, as we already know we can just drop it.
4064           auto *ReplacedInst = cast<Instruction>(U->get());
4065           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4066           if (!PI || DominatingLeader != PI->OriginalOp)
4067             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4068           U->set(DominatingLeader);
4069           // This is now a use of the dominating leader, which means if the
4070           // dominating leader was dead, it's now live!
4071           auto &LeaderUseCount = UseCounts[DominatingLeader];
4072           // It's about to be alive again.
4073           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4074             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4075           // For copy instructions, we use their operand as a leader,
4076           // which means we remove a user of the copy and it may become dead.
4077           if (isSSACopy) {
4078             unsigned &IIUseCount = UseCounts[II];
4079             if (--IIUseCount == 0)
4080               ProbablyDead.insert(II);
4081           }
4082           ++LeaderUseCount;
4083           AnythingReplaced = true;
4084         }
4085       }
4086     }
4087 
4088     // At this point, anything still in the ProbablyDead set is actually dead if
4089     // would be trivially dead.
4090     for (auto *I : ProbablyDead)
4091       if (wouldInstructionBeTriviallyDead(I))
4092         markInstructionForDeletion(I);
4093 
4094     // Cleanup the congruence class.
4095     CongruenceClass::MemberSet MembersLeft;
4096     for (auto *Member : *CC)
4097       if (!isa<Instruction>(Member) ||
4098           !InstructionsToErase.count(cast<Instruction>(Member)))
4099         MembersLeft.insert(Member);
4100     CC->swap(MembersLeft);
4101 
4102     // If we have possible dead stores to look at, try to eliminate them.
4103     if (CC->getStoreCount() > 0) {
4104       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4105       llvm::sort(PossibleDeadStores);
4106       ValueDFSStack EliminationStack;
4107       for (auto &VD : PossibleDeadStores) {
4108         int MemberDFSIn = VD.DFSIn;
4109         int MemberDFSOut = VD.DFSOut;
4110         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4111         if (EliminationStack.empty() ||
4112             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4113           // Sync to our current scope.
4114           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4115           if (EliminationStack.empty()) {
4116             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4117             continue;
4118           }
4119         }
4120         // We already did load elimination, so nothing to do here.
4121         if (isa<LoadInst>(Member))
4122           continue;
4123         assert(!EliminationStack.empty());
4124         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4125         (void)Leader;
4126         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4127         // Member is dominater by Leader, and thus dead
4128         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4129                           << " that is dominated by " << *Leader << "\n");
4130         markInstructionForDeletion(Member);
4131         CC->erase(Member);
4132         ++NumGVNDeadStores;
4133       }
4134     }
4135   }
4136   return AnythingReplaced;
4137 }
4138 
4139 // This function provides global ranking of operations so that we can place them
4140 // in a canonical order.  Note that rank alone is not necessarily enough for a
4141 // complete ordering, as constants all have the same rank.  However, generally,
4142 // we will simplify an operation with all constants so that it doesn't matter
4143 // what order they appear in.
4144 unsigned int NewGVN::getRank(const Value *V) const {
4145   // Prefer constants to undef to anything else
4146   // Undef is a constant, have to check it first.
4147   // Prefer smaller constants to constantexprs
4148   if (isa<ConstantExpr>(V))
4149     return 2;
4150   if (isa<UndefValue>(V))
4151     return 1;
4152   if (isa<Constant>(V))
4153     return 0;
4154   else if (auto *A = dyn_cast<Argument>(V))
4155     return 3 + A->getArgNo();
4156 
4157   // Need to shift the instruction DFS by number of arguments + 3 to account for
4158   // the constant and argument ranking above.
4159   unsigned Result = InstrToDFSNum(V);
4160   if (Result > 0)
4161     return 4 + NumFuncArgs + Result;
4162   // Unreachable or something else, just return a really large number.
4163   return ~0;
4164 }
4165 
4166 // This is a function that says whether two commutative operations should
4167 // have their order swapped when canonicalizing.
4168 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4169   // Because we only care about a total ordering, and don't rewrite expressions
4170   // in this order, we order by rank, which will give a strict weak ordering to
4171   // everything but constants, and then we order by pointer address.
4172   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4173 }
4174 
4175 namespace {
4176 
4177 class NewGVNLegacyPass : public FunctionPass {
4178 public:
4179   // Pass identification, replacement for typeid.
4180   static char ID;
4181 
4182   NewGVNLegacyPass() : FunctionPass(ID) {
4183     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4184   }
4185 
4186   bool runOnFunction(Function &F) override;
4187 
4188 private:
4189   void getAnalysisUsage(AnalysisUsage &AU) const override {
4190     AU.addRequired<AssumptionCacheTracker>();
4191     AU.addRequired<DominatorTreeWrapperPass>();
4192     AU.addRequired<TargetLibraryInfoWrapperPass>();
4193     AU.addRequired<MemorySSAWrapperPass>();
4194     AU.addRequired<AAResultsWrapperPass>();
4195     AU.addPreserved<DominatorTreeWrapperPass>();
4196     AU.addPreserved<GlobalsAAWrapperPass>();
4197   }
4198 };
4199 
4200 } // end anonymous namespace
4201 
4202 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4203   if (skipFunction(F))
4204     return false;
4205   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4206                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4207                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4208                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4209                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4210                 F.getParent()->getDataLayout())
4211       .runGVN();
4212 }
4213 
4214 char NewGVNLegacyPass::ID = 0;
4215 
4216 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4217                       false, false)
4218 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4219 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4220 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4221 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4222 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4223 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4224 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4225                     false)
4226 
4227 // createGVNPass - The public interface to this file.
4228 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4229 
4230 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4231   // Apparently the order in which we get these results matter for
4232   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4233   // the same order here, just in case.
4234   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4235   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4236   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4237   auto &AA = AM.getResult<AAManager>(F);
4238   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4239   bool Changed =
4240       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4241           .runGVN();
4242   if (!Changed)
4243     return PreservedAnalyses::all();
4244   PreservedAnalyses PA;
4245   PA.preserve<DominatorTreeAnalysis>();
4246   PA.preserve<GlobalsAA>();
4247   return PA;
4248 }
4249