xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 //   void foo(int a, int b) {
15 //     bar(a + b);
16 //     bar((a + 2) + b);
17 //   }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 //   int t = a + b;
23 //   bar(t);
24 //   bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 //   (a + c) + d
47 //   ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 //   ac = a + c
61 //   ab = a + b
62 //   abc = ab + c
63 //   ab2 = ab + b
64 //   ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DataLayout.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/Function.h"
92 #include "llvm/IR/GetElementPtrTypeIterator.h"
93 #include "llvm/IR/IRBuilder.h"
94 #include "llvm/IR/InstrTypes.h"
95 #include "llvm/IR/Instruction.h"
96 #include "llvm/IR/Instructions.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/PatternMatch.h"
100 #include "llvm/IR/Type.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/Local.h"
109 #include <cassert>
110 #include <cstdint>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "nary-reassociate"
116 
117 namespace {
118 
119 class NaryReassociateLegacyPass : public FunctionPass {
120 public:
121   static char ID;
122 
123   NaryReassociateLegacyPass() : FunctionPass(ID) {
124     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
125   }
126 
127   bool doInitialization(Module &M) override {
128     return false;
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133   void getAnalysisUsage(AnalysisUsage &AU) const override {
134     AU.addPreserved<DominatorTreeWrapperPass>();
135     AU.addPreserved<ScalarEvolutionWrapperPass>();
136     AU.addPreserved<TargetLibraryInfoWrapperPass>();
137     AU.addRequired<AssumptionCacheTracker>();
138     AU.addRequired<DominatorTreeWrapperPass>();
139     AU.addRequired<ScalarEvolutionWrapperPass>();
140     AU.addRequired<TargetLibraryInfoWrapperPass>();
141     AU.addRequired<TargetTransformInfoWrapperPass>();
142     AU.setPreservesCFG();
143   }
144 
145 private:
146   NaryReassociatePass Impl;
147 };
148 
149 } // end anonymous namespace
150 
151 char NaryReassociateLegacyPass::ID = 0;
152 
153 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
154                       "Nary reassociation", false, false)
155 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
156 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
158 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
160 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
161                     "Nary reassociation", false, false)
162 
163 FunctionPass *llvm::createNaryReassociatePass() {
164   return new NaryReassociateLegacyPass();
165 }
166 
167 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
168   if (skipFunction(F))
169     return false;
170 
171   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
172   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
173   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
175   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
176 
177   return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
178 }
179 
180 PreservedAnalyses NaryReassociatePass::run(Function &F,
181                                            FunctionAnalysisManager &AM) {
182   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
183   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
184   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
185   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
186   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
187 
188   if (!runImpl(F, AC, DT, SE, TLI, TTI))
189     return PreservedAnalyses::all();
190 
191   PreservedAnalyses PA;
192   PA.preserveSet<CFGAnalyses>();
193   PA.preserve<ScalarEvolutionAnalysis>();
194   return PA;
195 }
196 
197 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
198                                   DominatorTree *DT_, ScalarEvolution *SE_,
199                                   TargetLibraryInfo *TLI_,
200                                   TargetTransformInfo *TTI_) {
201   AC = AC_;
202   DT = DT_;
203   SE = SE_;
204   TLI = TLI_;
205   TTI = TTI_;
206   DL = &F.getParent()->getDataLayout();
207 
208   bool Changed = false, ChangedInThisIteration;
209   do {
210     ChangedInThisIteration = doOneIteration(F);
211     Changed |= ChangedInThisIteration;
212   } while (ChangedInThisIteration);
213   return Changed;
214 }
215 
216 bool NaryReassociatePass::doOneIteration(Function &F) {
217   bool Changed = false;
218   SeenExprs.clear();
219   // Process the basic blocks in a depth first traversal of the dominator
220   // tree. This order ensures that all bases of a candidate are in Candidates
221   // when we process it.
222   SmallVector<WeakTrackingVH, 16> DeadInsts;
223   for (const auto Node : depth_first(DT)) {
224     BasicBlock *BB = Node->getBlock();
225     for (auto I = BB->begin(); I != BB->end(); ++I) {
226       Instruction *OrigI = &*I;
227       const SCEV *OrigSCEV = nullptr;
228       if (Instruction *NewI = tryReassociate(OrigI, OrigSCEV)) {
229         Changed = true;
230         OrigI->replaceAllUsesWith(NewI);
231 
232         // Add 'OrigI' to the list of dead instructions.
233         DeadInsts.push_back(WeakTrackingVH(OrigI));
234         // Add the rewritten instruction to SeenExprs; the original
235         // instruction is deleted.
236         const SCEV *NewSCEV = SE->getSCEV(NewI);
237         SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
238 
239         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
240         // is equivalent to I. However, ScalarEvolution::getSCEV may
241         // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
242         // suppose we reassociate
243         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
244         // to
245         //   NewI = &a[sext(i)] + sext(j).
246         //
247         // ScalarEvolution computes
248         //   getSCEV(I)    = a + 4 * sext(i + j)
249         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
250         // which are different SCEVs.
251         //
252         // To alleviate this issue of ScalarEvolution not always capturing
253         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
254         // map both SCEV before and after tryReassociate(I) to I.
255         //
256         // This improvement is exercised in @reassociate_gep_nsw in
257         // nary-gep.ll.
258         if (NewSCEV != OrigSCEV)
259           SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
260       } else if (OrigSCEV)
261         SeenExprs[OrigSCEV].push_back(WeakTrackingVH(OrigI));
262     }
263   }
264   // Delete all dead instructions from 'DeadInsts'.
265   // Please note ScalarEvolution is updated along the way.
266   RecursivelyDeleteTriviallyDeadInstructionsPermissive(
267       DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
268 
269   return Changed;
270 }
271 
272 Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
273                                                  const SCEV *&OrigSCEV) {
274 
275   if (!SE->isSCEVable(I->getType()))
276     return nullptr;
277 
278   switch (I->getOpcode()) {
279   case Instruction::Add:
280   case Instruction::Mul:
281     OrigSCEV = SE->getSCEV(I);
282     return tryReassociateBinaryOp(cast<BinaryOperator>(I));
283   case Instruction::GetElementPtr:
284     OrigSCEV = SE->getSCEV(I);
285     return tryReassociateGEP(cast<GetElementPtrInst>(I));
286   default:
287     return nullptr;
288   }
289 
290   llvm_unreachable("should not be reached");
291   return nullptr;
292 }
293 
294 static bool isGEPFoldable(GetElementPtrInst *GEP,
295                           const TargetTransformInfo *TTI) {
296   SmallVector<const Value *, 4> Indices(GEP->indices());
297   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
298                          Indices) == TargetTransformInfo::TCC_Free;
299 }
300 
301 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
302   // Not worth reassociating GEP if it is foldable.
303   if (isGEPFoldable(GEP, TTI))
304     return nullptr;
305 
306   gep_type_iterator GTI = gep_type_begin(*GEP);
307   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
308     if (GTI.isSequential()) {
309       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
310                                                   GTI.getIndexedType())) {
311         return NewGEP;
312       }
313     }
314   }
315   return nullptr;
316 }
317 
318 bool NaryReassociatePass::requiresSignExtension(Value *Index,
319                                                 GetElementPtrInst *GEP) {
320   unsigned PointerSizeInBits =
321       DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
322   return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
323 }
324 
325 GetElementPtrInst *
326 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
327                                               unsigned I, Type *IndexedType) {
328   Value *IndexToSplit = GEP->getOperand(I + 1);
329   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
330     IndexToSplit = SExt->getOperand(0);
331   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
332     // zext can be treated as sext if the source is non-negative.
333     if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
334       IndexToSplit = ZExt->getOperand(0);
335   }
336 
337   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
338     // If the I-th index needs sext and the underlying add is not equipped with
339     // nsw, we cannot split the add because
340     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
341     if (requiresSignExtension(IndexToSplit, GEP) &&
342         computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
343             OverflowResult::NeverOverflows)
344       return nullptr;
345 
346     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
347     // IndexToSplit = LHS + RHS.
348     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
349       return NewGEP;
350     // Symmetrically, try IndexToSplit = RHS + LHS.
351     if (LHS != RHS) {
352       if (auto *NewGEP =
353               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
354         return NewGEP;
355     }
356   }
357   return nullptr;
358 }
359 
360 GetElementPtrInst *
361 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
362                                               unsigned I, Value *LHS,
363                                               Value *RHS, Type *IndexedType) {
364   // Look for GEP's closest dominator that has the same SCEV as GEP except that
365   // the I-th index is replaced with LHS.
366   SmallVector<const SCEV *, 4> IndexExprs;
367   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
368     IndexExprs.push_back(SE->getSCEV(*Index));
369   // Replace the I-th index with LHS.
370   IndexExprs[I] = SE->getSCEV(LHS);
371   if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
372       DL->getTypeSizeInBits(LHS->getType()).getFixedSize() <
373           DL->getTypeSizeInBits(GEP->getOperand(I)->getType()).getFixedSize()) {
374     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
375     // zext if the source operand is proved non-negative. We should do that
376     // consistently so that CandidateExpr more likely appears before. See
377     // @reassociate_gep_assume for an example of this canonicalization.
378     IndexExprs[I] =
379         SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
380   }
381   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
382                                              IndexExprs);
383 
384   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
385   if (Candidate == nullptr)
386     return nullptr;
387 
388   IRBuilder<> Builder(GEP);
389   // Candidate does not necessarily have the same pointer type as GEP. Use
390   // bitcast or pointer cast to make sure they have the same type, so that the
391   // later RAUW doesn't complain.
392   Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
393   assert(Candidate->getType() == GEP->getType());
394 
395   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
396   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
397   Type *ElementType = GEP->getResultElementType();
398   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
399   // Another less rare case: because I is not necessarily the last index of the
400   // GEP, the size of the type at the I-th index (IndexedSize) is not
401   // necessarily divisible by ElementSize. For example,
402   //
403   // #pragma pack(1)
404   // struct S {
405   //   int a[3];
406   //   int64 b[8];
407   // };
408   // #pragma pack()
409   //
410   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
411   //
412   // TODO: bail out on this case for now. We could emit uglygep.
413   if (IndexedSize % ElementSize != 0)
414     return nullptr;
415 
416   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
417   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
418   if (RHS->getType() != IntPtrTy)
419     RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
420   if (IndexedSize != ElementSize) {
421     RHS = Builder.CreateMul(
422         RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
423   }
424   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
425       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
426   NewGEP->setIsInBounds(GEP->isInBounds());
427   NewGEP->takeName(GEP);
428   return NewGEP;
429 }
430 
431 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
432   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
433   // There is no need to reassociate 0.
434   if (SE->getSCEV(I)->isZero())
435     return nullptr;
436   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
437     return NewI;
438   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
439     return NewI;
440   return nullptr;
441 }
442 
443 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
444                                                          BinaryOperator *I) {
445   Value *A = nullptr, *B = nullptr;
446   // To be conservative, we reassociate I only when it is the only user of (A op
447   // B).
448   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
449     // I = (A op B) op RHS
450     //   = (A op RHS) op B or (B op RHS) op A
451     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
452     const SCEV *RHSExpr = SE->getSCEV(RHS);
453     if (BExpr != RHSExpr) {
454       if (auto *NewI =
455               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
456         return NewI;
457     }
458     if (AExpr != RHSExpr) {
459       if (auto *NewI =
460               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
461         return NewI;
462     }
463   }
464   return nullptr;
465 }
466 
467 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
468                                                           Value *RHS,
469                                                           BinaryOperator *I) {
470   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
471   // I with LHS op RHS.
472   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
473   if (LHS == nullptr)
474     return nullptr;
475 
476   Instruction *NewI = nullptr;
477   switch (I->getOpcode()) {
478   case Instruction::Add:
479     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
480     break;
481   case Instruction::Mul:
482     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
483     break;
484   default:
485     llvm_unreachable("Unexpected instruction.");
486   }
487   NewI->takeName(I);
488   return NewI;
489 }
490 
491 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
492                                          Value *&Op1, Value *&Op2) {
493   switch (I->getOpcode()) {
494   case Instruction::Add:
495     return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
496   case Instruction::Mul:
497     return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
498   default:
499     llvm_unreachable("Unexpected instruction.");
500   }
501   return false;
502 }
503 
504 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
505                                                const SCEV *LHS,
506                                                const SCEV *RHS) {
507   switch (I->getOpcode()) {
508   case Instruction::Add:
509     return SE->getAddExpr(LHS, RHS);
510   case Instruction::Mul:
511     return SE->getMulExpr(LHS, RHS);
512   default:
513     llvm_unreachable("Unexpected instruction.");
514   }
515   return nullptr;
516 }
517 
518 Instruction *
519 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
520                                                   Instruction *Dominatee) {
521   auto Pos = SeenExprs.find(CandidateExpr);
522   if (Pos == SeenExprs.end())
523     return nullptr;
524 
525   auto &Candidates = Pos->second;
526   // Because we process the basic blocks in pre-order of the dominator tree, a
527   // candidate that doesn't dominate the current instruction won't dominate any
528   // future instruction either. Therefore, we pop it out of the stack. This
529   // optimization makes the algorithm O(n).
530   while (!Candidates.empty()) {
531     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
532     // removed
533     // during rewriting.
534     if (Value *Candidate = Candidates.back()) {
535       Instruction *CandidateInstruction = cast<Instruction>(Candidate);
536       if (DT->dominates(CandidateInstruction, Dominatee))
537         return CandidateInstruction;
538     }
539     Candidates.pop_back();
540   }
541   return nullptr;
542 }
543