xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NaryReassociate.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
11 //
12 // A motivating example:
13 //
14 //   void foo(int a, int b) {
15 //     bar(a + b);
16 //     bar((a + 2) + b);
17 //   }
18 //
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
21 //
22 //   int t = a + b;
23 //   bar(t);
24 //   bar(t + 2);
25 //
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
29 //
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
34 //
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
41 //
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
45 //
46 //   (a + c) + d
47 //   ((a + b) + c) + d
48 //
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
51 //
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
59 //
60 //   ac = a + c
61 //   ab = a + b
62 //   abc = ab + c
63 //   ab2 = ab + b
64 //   ab2c = ab2 + c
65 //
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
70 //
71 // Limitations and TODO items:
72 //
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
75 //
76 //===----------------------------------------------------------------------===//
77 
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/TargetTransformInfo.h"
86 #include "llvm/Analysis/ValueTracking.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/Constants.h"
89 #include "llvm/IR/DataLayout.h"
90 #include "llvm/IR/DerivedTypes.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Function.h"
93 #include "llvm/IR/GetElementPtrTypeIterator.h"
94 #include "llvm/IR/IRBuilder.h"
95 #include "llvm/IR/InstrTypes.h"
96 #include "llvm/IR/Instruction.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Operator.h"
100 #include "llvm/IR/PatternMatch.h"
101 #include "llvm/IR/Type.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
111 #include <cassert>
112 #include <cstdint>
113 
114 using namespace llvm;
115 using namespace PatternMatch;
116 
117 #define DEBUG_TYPE "nary-reassociate"
118 
119 namespace {
120 
121 class NaryReassociateLegacyPass : public FunctionPass {
122 public:
123   static char ID;
124 
125   NaryReassociateLegacyPass() : FunctionPass(ID) {
126     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
127   }
128 
129   bool doInitialization(Module &M) override {
130     return false;
131   }
132 
133   bool runOnFunction(Function &F) override;
134 
135   void getAnalysisUsage(AnalysisUsage &AU) const override {
136     AU.addPreserved<DominatorTreeWrapperPass>();
137     AU.addPreserved<ScalarEvolutionWrapperPass>();
138     AU.addPreserved<TargetLibraryInfoWrapperPass>();
139     AU.addRequired<AssumptionCacheTracker>();
140     AU.addRequired<DominatorTreeWrapperPass>();
141     AU.addRequired<ScalarEvolutionWrapperPass>();
142     AU.addRequired<TargetLibraryInfoWrapperPass>();
143     AU.addRequired<TargetTransformInfoWrapperPass>();
144     AU.setPreservesCFG();
145   }
146 
147 private:
148   NaryReassociatePass Impl;
149 };
150 
151 } // end anonymous namespace
152 
153 char NaryReassociateLegacyPass::ID = 0;
154 
155 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
156                       "Nary reassociation", false, false)
157 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
162 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
163                     "Nary reassociation", false, false)
164 
165 FunctionPass *llvm::createNaryReassociatePass() {
166   return new NaryReassociateLegacyPass();
167 }
168 
169 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
170   if (skipFunction(F))
171     return false;
172 
173   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
174   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
176   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
177   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
178 
179   return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
180 }
181 
182 PreservedAnalyses NaryReassociatePass::run(Function &F,
183                                            FunctionAnalysisManager &AM) {
184   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
185   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
186   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
187   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
188   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
189 
190   if (!runImpl(F, AC, DT, SE, TLI, TTI))
191     return PreservedAnalyses::all();
192 
193   PreservedAnalyses PA;
194   PA.preserveSet<CFGAnalyses>();
195   PA.preserve<ScalarEvolutionAnalysis>();
196   return PA;
197 }
198 
199 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
200                                   DominatorTree *DT_, ScalarEvolution *SE_,
201                                   TargetLibraryInfo *TLI_,
202                                   TargetTransformInfo *TTI_) {
203   AC = AC_;
204   DT = DT_;
205   SE = SE_;
206   TLI = TLI_;
207   TTI = TTI_;
208   DL = &F.getParent()->getDataLayout();
209 
210   bool Changed = false, ChangedInThisIteration;
211   do {
212     ChangedInThisIteration = doOneIteration(F);
213     Changed |= ChangedInThisIteration;
214   } while (ChangedInThisIteration);
215   return Changed;
216 }
217 
218 bool NaryReassociatePass::doOneIteration(Function &F) {
219   bool Changed = false;
220   SeenExprs.clear();
221   // Process the basic blocks in a depth first traversal of the dominator
222   // tree. This order ensures that all bases of a candidate are in Candidates
223   // when we process it.
224   SmallVector<WeakTrackingVH, 16> DeadInsts;
225   for (const auto Node : depth_first(DT)) {
226     BasicBlock *BB = Node->getBlock();
227     for (Instruction &OrigI : *BB) {
228       const SCEV *OrigSCEV = nullptr;
229       if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
230         Changed = true;
231         OrigI.replaceAllUsesWith(NewI);
232 
233         // Add 'OrigI' to the list of dead instructions.
234         DeadInsts.push_back(WeakTrackingVH(&OrigI));
235         // Add the rewritten instruction to SeenExprs; the original
236         // instruction is deleted.
237         const SCEV *NewSCEV = SE->getSCEV(NewI);
238         SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
239 
240         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
241         // is equivalent to I. However, ScalarEvolution::getSCEV may
242         // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
243         // suppose we reassociate
244         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
245         // to
246         //   NewI = &a[sext(i)] + sext(j).
247         //
248         // ScalarEvolution computes
249         //   getSCEV(I)    = a + 4 * sext(i + j)
250         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
251         // which are different SCEVs.
252         //
253         // To alleviate this issue of ScalarEvolution not always capturing
254         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
255         // map both SCEV before and after tryReassociate(I) to I.
256         //
257         // This improvement is exercised in @reassociate_gep_nsw in
258         // nary-gep.ll.
259         if (NewSCEV != OrigSCEV)
260           SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
261       } else if (OrigSCEV)
262         SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
263     }
264   }
265   // Delete all dead instructions from 'DeadInsts'.
266   // Please note ScalarEvolution is updated along the way.
267   RecursivelyDeleteTriviallyDeadInstructionsPermissive(
268       DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
269 
270   return Changed;
271 }
272 
273 template <typename PredT>
274 Instruction *
275 NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
276                                                  const SCEV *&OrigSCEV) {
277   Value *LHS = nullptr;
278   Value *RHS = nullptr;
279 
280   auto MinMaxMatcher =
281       MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
282           m_Value(LHS), m_Value(RHS));
283   if (match(I, MinMaxMatcher)) {
284     OrigSCEV = SE->getSCEV(I);
285     if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
286             tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS)))
287       return NewMinMax;
288     if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
289             tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS)))
290       return NewMinMax;
291   }
292   return nullptr;
293 }
294 
295 Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
296                                                  const SCEV *&OrigSCEV) {
297 
298   if (!SE->isSCEVable(I->getType()))
299     return nullptr;
300 
301   switch (I->getOpcode()) {
302   case Instruction::Add:
303   case Instruction::Mul:
304     OrigSCEV = SE->getSCEV(I);
305     return tryReassociateBinaryOp(cast<BinaryOperator>(I));
306   case Instruction::GetElementPtr:
307     OrigSCEV = SE->getSCEV(I);
308     return tryReassociateGEP(cast<GetElementPtrInst>(I));
309   default:
310     break;
311   }
312 
313   // Try to match signed/unsigned Min/Max.
314   Instruction *ResI = nullptr;
315   // TODO: Currently min/max reassociation is restricted to integer types only
316   // due to use of SCEVExpander which my introduce incompatible forms of min/max
317   // for pointer types.
318   if (I->getType()->isIntegerTy())
319     if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
320         (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
321         (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
322         (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
323       return ResI;
324 
325   return nullptr;
326 }
327 
328 static bool isGEPFoldable(GetElementPtrInst *GEP,
329                           const TargetTransformInfo *TTI) {
330   SmallVector<const Value *, 4> Indices(GEP->indices());
331   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
332                          Indices) == TargetTransformInfo::TCC_Free;
333 }
334 
335 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
336   // Not worth reassociating GEP if it is foldable.
337   if (isGEPFoldable(GEP, TTI))
338     return nullptr;
339 
340   gep_type_iterator GTI = gep_type_begin(*GEP);
341   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
342     if (GTI.isSequential()) {
343       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
344                                                   GTI.getIndexedType())) {
345         return NewGEP;
346       }
347     }
348   }
349   return nullptr;
350 }
351 
352 bool NaryReassociatePass::requiresSignExtension(Value *Index,
353                                                 GetElementPtrInst *GEP) {
354   unsigned IndexSizeInBits =
355       DL->getIndexSizeInBits(GEP->getType()->getPointerAddressSpace());
356   return cast<IntegerType>(Index->getType())->getBitWidth() < IndexSizeInBits;
357 }
358 
359 GetElementPtrInst *
360 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
361                                               unsigned I, Type *IndexedType) {
362   Value *IndexToSplit = GEP->getOperand(I + 1);
363   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
364     IndexToSplit = SExt->getOperand(0);
365   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
366     // zext can be treated as sext if the source is non-negative.
367     if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
368       IndexToSplit = ZExt->getOperand(0);
369   }
370 
371   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
372     // If the I-th index needs sext and the underlying add is not equipped with
373     // nsw, we cannot split the add because
374     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
375     if (requiresSignExtension(IndexToSplit, GEP) &&
376         computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
377             OverflowResult::NeverOverflows)
378       return nullptr;
379 
380     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
381     // IndexToSplit = LHS + RHS.
382     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
383       return NewGEP;
384     // Symmetrically, try IndexToSplit = RHS + LHS.
385     if (LHS != RHS) {
386       if (auto *NewGEP =
387               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
388         return NewGEP;
389     }
390   }
391   return nullptr;
392 }
393 
394 GetElementPtrInst *
395 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
396                                               unsigned I, Value *LHS,
397                                               Value *RHS, Type *IndexedType) {
398   // Look for GEP's closest dominator that has the same SCEV as GEP except that
399   // the I-th index is replaced with LHS.
400   SmallVector<const SCEV *, 4> IndexExprs;
401   for (Use &Index : GEP->indices())
402     IndexExprs.push_back(SE->getSCEV(Index));
403   // Replace the I-th index with LHS.
404   IndexExprs[I] = SE->getSCEV(LHS);
405   if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
406       DL->getTypeSizeInBits(LHS->getType()).getFixedValue() <
407           DL->getTypeSizeInBits(GEP->getOperand(I)->getType())
408               .getFixedValue()) {
409     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
410     // zext if the source operand is proved non-negative. We should do that
411     // consistently so that CandidateExpr more likely appears before. See
412     // @reassociate_gep_assume for an example of this canonicalization.
413     IndexExprs[I] =
414         SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
415   }
416   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
417                                              IndexExprs);
418 
419   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
420   if (Candidate == nullptr)
421     return nullptr;
422 
423   IRBuilder<> Builder(GEP);
424   // Candidate does not necessarily have the same pointer type as GEP. Use
425   // bitcast or pointer cast to make sure they have the same type, so that the
426   // later RAUW doesn't complain.
427   Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
428   assert(Candidate->getType() == GEP->getType());
429 
430   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
431   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
432   Type *ElementType = GEP->getResultElementType();
433   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
434   // Another less rare case: because I is not necessarily the last index of the
435   // GEP, the size of the type at the I-th index (IndexedSize) is not
436   // necessarily divisible by ElementSize. For example,
437   //
438   // #pragma pack(1)
439   // struct S {
440   //   int a[3];
441   //   int64 b[8];
442   // };
443   // #pragma pack()
444   //
445   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
446   //
447   // TODO: bail out on this case for now. We could emit uglygep.
448   if (IndexedSize % ElementSize != 0)
449     return nullptr;
450 
451   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
452   Type *PtrIdxTy = DL->getIndexType(GEP->getType());
453   if (RHS->getType() != PtrIdxTy)
454     RHS = Builder.CreateSExtOrTrunc(RHS, PtrIdxTy);
455   if (IndexedSize != ElementSize) {
456     RHS = Builder.CreateMul(
457         RHS, ConstantInt::get(PtrIdxTy, IndexedSize / ElementSize));
458   }
459   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
460       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
461   NewGEP->setIsInBounds(GEP->isInBounds());
462   NewGEP->takeName(GEP);
463   return NewGEP;
464 }
465 
466 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
467   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
468   // There is no need to reassociate 0.
469   if (SE->getSCEV(I)->isZero())
470     return nullptr;
471   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
472     return NewI;
473   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
474     return NewI;
475   return nullptr;
476 }
477 
478 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
479                                                          BinaryOperator *I) {
480   Value *A = nullptr, *B = nullptr;
481   // To be conservative, we reassociate I only when it is the only user of (A op
482   // B).
483   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
484     // I = (A op B) op RHS
485     //   = (A op RHS) op B or (B op RHS) op A
486     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
487     const SCEV *RHSExpr = SE->getSCEV(RHS);
488     if (BExpr != RHSExpr) {
489       if (auto *NewI =
490               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
491         return NewI;
492     }
493     if (AExpr != RHSExpr) {
494       if (auto *NewI =
495               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
496         return NewI;
497     }
498   }
499   return nullptr;
500 }
501 
502 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
503                                                           Value *RHS,
504                                                           BinaryOperator *I) {
505   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
506   // I with LHS op RHS.
507   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
508   if (LHS == nullptr)
509     return nullptr;
510 
511   Instruction *NewI = nullptr;
512   switch (I->getOpcode()) {
513   case Instruction::Add:
514     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
515     break;
516   case Instruction::Mul:
517     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
518     break;
519   default:
520     llvm_unreachable("Unexpected instruction.");
521   }
522   NewI->takeName(I);
523   return NewI;
524 }
525 
526 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
527                                          Value *&Op1, Value *&Op2) {
528   switch (I->getOpcode()) {
529   case Instruction::Add:
530     return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
531   case Instruction::Mul:
532     return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
533   default:
534     llvm_unreachable("Unexpected instruction.");
535   }
536   return false;
537 }
538 
539 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
540                                                const SCEV *LHS,
541                                                const SCEV *RHS) {
542   switch (I->getOpcode()) {
543   case Instruction::Add:
544     return SE->getAddExpr(LHS, RHS);
545   case Instruction::Mul:
546     return SE->getMulExpr(LHS, RHS);
547   default:
548     llvm_unreachable("Unexpected instruction.");
549   }
550   return nullptr;
551 }
552 
553 Instruction *
554 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
555                                                   Instruction *Dominatee) {
556   auto Pos = SeenExprs.find(CandidateExpr);
557   if (Pos == SeenExprs.end())
558     return nullptr;
559 
560   auto &Candidates = Pos->second;
561   // Because we process the basic blocks in pre-order of the dominator tree, a
562   // candidate that doesn't dominate the current instruction won't dominate any
563   // future instruction either. Therefore, we pop it out of the stack. This
564   // optimization makes the algorithm O(n).
565   while (!Candidates.empty()) {
566     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
567     // removed
568     // during rewriting.
569     if (Value *Candidate = Candidates.back()) {
570       Instruction *CandidateInstruction = cast<Instruction>(Candidate);
571       if (DT->dominates(CandidateInstruction, Dominatee))
572         return CandidateInstruction;
573     }
574     Candidates.pop_back();
575   }
576   return nullptr;
577 }
578 
579 template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
580   if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>)
581     return scSMaxExpr;
582   else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>)
583     return scUMaxExpr;
584   else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>)
585     return scSMinExpr;
586   else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>)
587     return scUMinExpr;
588 
589   llvm_unreachable("Can't convert MinMax pattern to SCEV type");
590   return scUnknown;
591 }
592 
593 // Parameters:
594 //  I - instruction matched by MaxMinMatch matcher
595 //  MaxMinMatch - min/max idiom matcher
596 //  LHS - first operand of I
597 //  RHS - second operand of I
598 template <typename MaxMinT>
599 Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
600                                                    MaxMinT MaxMinMatch,
601                                                    Value *LHS, Value *RHS) {
602   Value *A = nullptr, *B = nullptr;
603   MaxMinT m_MaxMin(m_Value(A), m_Value(B));
604 
605   if (LHS->hasNUsesOrMore(3) ||
606       // The optimization is profitable only if LHS can be removed in the end.
607       // In other words LHS should be used (directly or indirectly) by I only.
608       llvm::any_of(LHS->users(),
609                     [&](auto *U) {
610                       return U != I &&
611                              !(U->hasOneUser() && *U->users().begin() == I);
612                     }) ||
613       !match(LHS, m_MaxMin))
614     return nullptr;
615 
616   auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B,
617                             const SCEV *BExpr, Value *C,
618                             const SCEV *CExpr) -> Value * {
619     SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr};
620     const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
621     const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
622 
623     Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
624 
625     if (!R1MinMax)
626       return nullptr;
627 
628     LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n");
629 
630     SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C),
631                                       SE->getUnknown(R1MinMax)};
632     const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
633 
634     SCEVExpander Expander(*SE, *DL, "nary-reassociate");
635     Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
636     NewMinMax->setName(Twine(I->getName()).concat(".nary"));
637 
638     LLVM_DEBUG(dbgs() << "NARY: Deleting:  " << *I << "\n"
639                       << "NARY: Inserting: " << *NewMinMax << "\n");
640     return NewMinMax;
641   };
642 
643   const SCEV *AExpr = SE->getSCEV(A);
644   const SCEV *BExpr = SE->getSCEV(B);
645   const SCEV *RHSExpr = SE->getSCEV(RHS);
646 
647   if (BExpr != RHSExpr) {
648     // Try (A op RHS) op B
649     if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr))
650       return NewMinMax;
651   }
652 
653   if (AExpr != RHSExpr) {
654     // Try (RHS op B) op A
655     if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr))
656       return NewMinMax;
657   }
658 
659   return nullptr;
660 }
661