1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar/MergeICmps.h" 45 #include "llvm/Analysis/DomTreeUpdater.h" 46 #include "llvm/Analysis/GlobalsModRef.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/Analysis/TargetTransformInfo.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/BuildLibCalls.h" 58 #include <algorithm> 59 #include <numeric> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 namespace { 66 67 #define DEBUG_TYPE "mergeicmps" 68 69 // A BCE atom "Binary Compare Expression Atom" represents an integer load 70 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 71 // at the top. 72 struct BCEAtom { 73 BCEAtom() = default; 74 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) 75 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} 76 77 BCEAtom(const BCEAtom &) = delete; 78 BCEAtom &operator=(const BCEAtom &) = delete; 79 80 BCEAtom(BCEAtom &&that) = default; 81 BCEAtom &operator=(BCEAtom &&that) { 82 if (this == &that) 83 return *this; 84 GEP = that.GEP; 85 LoadI = that.LoadI; 86 BaseId = that.BaseId; 87 Offset = std::move(that.Offset); 88 return *this; 89 } 90 91 // We want to order BCEAtoms by (Base, Offset). However we cannot use 92 // the pointer values for Base because these are non-deterministic. 93 // To make sure that the sort order is stable, we first assign to each atom 94 // base value an index based on its order of appearance in the chain of 95 // comparisons. We call this index `BaseOrdering`. For example, for: 96 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] 97 // | block 1 | | block 2 | | block 3 | 98 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, 99 // which is before block 2. 100 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. 101 bool operator<(const BCEAtom &O) const { 102 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); 103 } 104 105 GetElementPtrInst *GEP = nullptr; 106 LoadInst *LoadI = nullptr; 107 unsigned BaseId = 0; 108 APInt Offset; 109 }; 110 111 // A class that assigns increasing ids to values in the order in which they are 112 // seen. See comment in `BCEAtom::operator<()``. 113 class BaseIdentifier { 114 public: 115 // Returns the id for value `Base`, after assigning one if `Base` has not been 116 // seen before. 117 int getBaseId(const Value *Base) { 118 assert(Base && "invalid base"); 119 const auto Insertion = BaseToIndex.try_emplace(Base, Order); 120 if (Insertion.second) 121 ++Order; 122 return Insertion.first->second; 123 } 124 125 private: 126 unsigned Order = 1; 127 DenseMap<const Value*, int> BaseToIndex; 128 }; 129 130 // If this value is a load from a constant offset w.r.t. a base address, and 131 // there are no other users of the load or address, returns the base address and 132 // the offset. 133 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { 134 auto *const LoadI = dyn_cast<LoadInst>(Val); 135 if (!LoadI) 136 return {}; 137 LLVM_DEBUG(dbgs() << "load\n"); 138 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 139 LLVM_DEBUG(dbgs() << "used outside of block\n"); 140 return {}; 141 } 142 // Do not optimize atomic loads to non-atomic memcmp 143 if (!LoadI->isSimple()) { 144 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 145 return {}; 146 } 147 Value *Addr = LoadI->getOperand(0); 148 if (Addr->getType()->getPointerAddressSpace() != 0) { 149 LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n"); 150 return {}; 151 } 152 const auto &DL = LoadI->getModule()->getDataLayout(); 153 if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) { 154 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 155 // We need to make sure that we can do comparison in any order, so we 156 // require memory to be unconditionnally dereferencable. 157 return {}; 158 } 159 160 APInt Offset = APInt(DL.getPointerTypeSizeInBits(Addr->getType()), 0); 161 Value *Base = Addr; 162 auto *GEP = dyn_cast<GetElementPtrInst>(Addr); 163 if (GEP) { 164 LLVM_DEBUG(dbgs() << "GEP\n"); 165 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 166 LLVM_DEBUG(dbgs() << "used outside of block\n"); 167 return {}; 168 } 169 if (!GEP->accumulateConstantOffset(DL, Offset)) 170 return {}; 171 Base = GEP->getPointerOperand(); 172 } 173 return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset); 174 } 175 176 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the 177 // top. 178 // Note: the terminology is misleading: the comparison is symmetric, so there 179 // is no real {l/r}hs. What we want though is to have the same base on the 180 // left (resp. right), so that we can detect consecutive loads. To ensure this 181 // we put the smallest atom on the left. 182 struct BCECmp { 183 BCEAtom Lhs; 184 BCEAtom Rhs; 185 int SizeBits; 186 const ICmpInst *CmpI; 187 188 BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI) 189 : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) { 190 if (Rhs < Lhs) std::swap(Rhs, Lhs); 191 } 192 }; 193 194 // A basic block with a comparison between two BCE atoms. 195 // The block might do extra work besides the atom comparison, in which case 196 // doesOtherWork() returns true. Under some conditions, the block can be 197 // split into the atom comparison part and the "other work" part 198 // (see canSplit()). 199 class BCECmpBlock { 200 public: 201 typedef SmallDenseSet<const Instruction *, 8> InstructionSet; 202 203 BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts) 204 : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {} 205 206 const BCEAtom &Lhs() const { return Cmp.Lhs; } 207 const BCEAtom &Rhs() const { return Cmp.Rhs; } 208 int SizeBits() const { return Cmp.SizeBits; } 209 210 // Returns true if the block does other works besides comparison. 211 bool doesOtherWork() const; 212 213 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 214 // instructions in the block. 215 bool canSplit(AliasAnalysis &AA) const; 216 217 // Return true if this all the relevant instructions in the BCE-cmp-block can 218 // be sunk below this instruction. By doing this, we know we can separate the 219 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 220 // block. 221 bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const; 222 223 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 224 // instructions. Split the old block and move all non-BCE-cmp-insts into the 225 // new parent block. 226 void split(BasicBlock *NewParent, AliasAnalysis &AA) const; 227 228 // The basic block where this comparison happens. 229 BasicBlock *BB; 230 // Instructions relating to the BCECmp and branch. 231 InstructionSet BlockInsts; 232 // The block requires splitting. 233 bool RequireSplit = false; 234 // Original order of this block in the chain. 235 unsigned OrigOrder = 0; 236 237 private: 238 BCECmp Cmp; 239 }; 240 241 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 242 AliasAnalysis &AA) const { 243 // If this instruction may clobber the loads and is in middle of the BCE cmp 244 // block instructions, then bail for now. 245 if (Inst->mayWriteToMemory()) { 246 auto MayClobber = [&](LoadInst *LI) { 247 // If a potentially clobbering instruction comes before the load, 248 // we can still safely sink the load. 249 return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) && 250 isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI))); 251 }; 252 if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI)) 253 return false; 254 } 255 // Make sure this instruction does not use any of the BCE cmp block 256 // instructions as operand. 257 return llvm::none_of(Inst->operands(), [&](const Value *Op) { 258 const Instruction *OpI = dyn_cast<Instruction>(Op); 259 return OpI && BlockInsts.contains(OpI); 260 }); 261 } 262 263 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { 264 llvm::SmallVector<Instruction *, 4> OtherInsts; 265 for (Instruction &Inst : *BB) { 266 if (BlockInsts.count(&Inst)) 267 continue; 268 assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block"); 269 // This is a non-BCE-cmp-block instruction. And it can be separated 270 // from the BCE-cmp-block instruction. 271 OtherInsts.push_back(&Inst); 272 } 273 274 // Do the actual spliting. 275 for (Instruction *Inst : reverse(OtherInsts)) 276 Inst->moveBefore(*NewParent, NewParent->begin()); 277 } 278 279 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { 280 for (Instruction &Inst : *BB) { 281 if (!BlockInsts.count(&Inst)) { 282 if (!canSinkBCECmpInst(&Inst, AA)) 283 return false; 284 } 285 } 286 return true; 287 } 288 289 bool BCECmpBlock::doesOtherWork() const { 290 // TODO(courbet): Can we allow some other things ? This is very conservative. 291 // We might be able to get away with anything does not have any side 292 // effects outside of the basic block. 293 // Note: The GEPs and/or loads are not necessarily in the same block. 294 for (const Instruction &Inst : *BB) { 295 if (!BlockInsts.count(&Inst)) 296 return true; 297 } 298 return false; 299 } 300 301 // Visit the given comparison. If this is a comparison between two valid 302 // BCE atoms, returns the comparison. 303 Optional<BCECmp> visitICmp(const ICmpInst *const CmpI, 304 const ICmpInst::Predicate ExpectedPredicate, 305 BaseIdentifier &BaseId) { 306 // The comparison can only be used once: 307 // - For intermediate blocks, as a branch condition. 308 // - For the final block, as an incoming value for the Phi. 309 // If there are any other uses of the comparison, we cannot merge it with 310 // other comparisons as we would create an orphan use of the value. 311 if (!CmpI->hasOneUse()) { 312 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 313 return None; 314 } 315 if (CmpI->getPredicate() != ExpectedPredicate) 316 return None; 317 LLVM_DEBUG(dbgs() << "cmp " 318 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 319 << "\n"); 320 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); 321 if (!Lhs.BaseId) 322 return None; 323 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); 324 if (!Rhs.BaseId) 325 return None; 326 const auto &DL = CmpI->getModule()->getDataLayout(); 327 return BCECmp(std::move(Lhs), std::move(Rhs), 328 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI); 329 } 330 331 // Visit the given comparison block. If this is a comparison between two valid 332 // BCE atoms, returns the comparison. 333 Optional<BCECmpBlock> visitCmpBlock(Value *const Val, BasicBlock *const Block, 334 const BasicBlock *const PhiBlock, 335 BaseIdentifier &BaseId) { 336 if (Block->empty()) return None; 337 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 338 if (!BranchI) return None; 339 LLVM_DEBUG(dbgs() << "branch\n"); 340 Value *Cond; 341 ICmpInst::Predicate ExpectedPredicate; 342 if (BranchI->isUnconditional()) { 343 // In this case, we expect an incoming value which is the result of the 344 // comparison. This is the last link in the chain of comparisons (note 345 // that this does not mean that this is the last incoming value, blocks 346 // can be reordered). 347 Cond = Val; 348 ExpectedPredicate = ICmpInst::ICMP_EQ; 349 } else { 350 // In this case, we expect a constant incoming value (the comparison is 351 // chained). 352 const auto *const Const = cast<ConstantInt>(Val); 353 LLVM_DEBUG(dbgs() << "const\n"); 354 if (!Const->isZero()) return None; 355 LLVM_DEBUG(dbgs() << "false\n"); 356 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 357 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 358 Cond = BranchI->getCondition(); 359 ExpectedPredicate = 360 FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 361 } 362 363 auto *CmpI = dyn_cast<ICmpInst>(Cond); 364 if (!CmpI) return None; 365 LLVM_DEBUG(dbgs() << "icmp\n"); 366 367 Optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId); 368 if (!Result) 369 return None; 370 371 BCECmpBlock::InstructionSet BlockInsts( 372 {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI}); 373 if (Result->Lhs.GEP) 374 BlockInsts.insert(Result->Lhs.GEP); 375 if (Result->Rhs.GEP) 376 BlockInsts.insert(Result->Rhs.GEP); 377 return BCECmpBlock(std::move(*Result), Block, BlockInsts); 378 } 379 380 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 381 BCECmpBlock &&Comparison) { 382 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 383 << "': Found cmp of " << Comparison.SizeBits() 384 << " bits between " << Comparison.Lhs().BaseId << " + " 385 << Comparison.Lhs().Offset << " and " 386 << Comparison.Rhs().BaseId << " + " 387 << Comparison.Rhs().Offset << "\n"); 388 LLVM_DEBUG(dbgs() << "\n"); 389 Comparison.OrigOrder = Comparisons.size(); 390 Comparisons.push_back(std::move(Comparison)); 391 } 392 393 // A chain of comparisons. 394 class BCECmpChain { 395 public: 396 using ContiguousBlocks = std::vector<BCECmpBlock>; 397 398 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 399 AliasAnalysis &AA); 400 401 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 402 DomTreeUpdater &DTU); 403 404 bool atLeastOneMerged() const { 405 return any_of(MergedBlocks_, 406 [](const auto &Blocks) { return Blocks.size() > 1; }); 407 } 408 409 private: 410 PHINode &Phi_; 411 // The list of all blocks in the chain, grouped by contiguity. 412 std::vector<ContiguousBlocks> MergedBlocks_; 413 // The original entry block (before sorting); 414 BasicBlock *EntryBlock_; 415 }; 416 417 static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) { 418 return First.Lhs().BaseId == Second.Lhs().BaseId && 419 First.Rhs().BaseId == Second.Rhs().BaseId && 420 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 421 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 422 } 423 424 static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) { 425 unsigned MinOrigOrder = std::numeric_limits<unsigned>::max(); 426 for (const BCECmpBlock &Block : Blocks) 427 MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder); 428 return MinOrigOrder; 429 } 430 431 /// Given a chain of comparison blocks, groups the blocks into contiguous 432 /// ranges that can be merged together into a single comparison. 433 static std::vector<BCECmpChain::ContiguousBlocks> 434 mergeBlocks(std::vector<BCECmpBlock> &&Blocks) { 435 std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks; 436 437 // Sort to detect continuous offsets. 438 llvm::sort(Blocks, 439 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { 440 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < 441 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); 442 }); 443 444 BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr; 445 for (BCECmpBlock &Block : Blocks) { 446 if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) { 447 MergedBlocks.emplace_back(); 448 LastMergedBlock = &MergedBlocks.back(); 449 } else { 450 LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into " 451 << LastMergedBlock->back().BB->getName() << "\n"); 452 } 453 LastMergedBlock->push_back(std::move(Block)); 454 } 455 456 // While we allow reordering for merging, do not reorder unmerged comparisons. 457 // Doing so may introduce branch on poison. 458 llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks, 459 const BCECmpChain::ContiguousBlocks &RhsBlocks) { 460 return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks); 461 }); 462 463 return MergedBlocks; 464 } 465 466 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 467 AliasAnalysis &AA) 468 : Phi_(Phi) { 469 assert(!Blocks.empty() && "a chain should have at least one block"); 470 // Now look inside blocks to check for BCE comparisons. 471 std::vector<BCECmpBlock> Comparisons; 472 BaseIdentifier BaseId; 473 for (BasicBlock *const Block : Blocks) { 474 assert(Block && "invalid block"); 475 Optional<BCECmpBlock> Comparison = visitCmpBlock( 476 Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId); 477 if (!Comparison) { 478 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 479 return; 480 } 481 if (Comparison->doesOtherWork()) { 482 LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName() 483 << "' does extra work besides compare\n"); 484 if (Comparisons.empty()) { 485 // This is the initial block in the chain, in case this block does other 486 // work, we can try to split the block and move the irrelevant 487 // instructions to the predecessor. 488 // 489 // If this is not the initial block in the chain, splitting it wont 490 // work. 491 // 492 // As once split, there will still be instructions before the BCE cmp 493 // instructions that do other work in program order, i.e. within the 494 // chain before sorting. Unless we can abort the chain at this point 495 // and start anew. 496 // 497 // NOTE: we only handle blocks a with single predecessor for now. 498 if (Comparison->canSplit(AA)) { 499 LLVM_DEBUG(dbgs() 500 << "Split initial block '" << Comparison->BB->getName() 501 << "' that does extra work besides compare\n"); 502 Comparison->RequireSplit = true; 503 enqueueBlock(Comparisons, std::move(*Comparison)); 504 } else { 505 LLVM_DEBUG(dbgs() 506 << "ignoring initial block '" << Comparison->BB->getName() 507 << "' that does extra work besides compare\n"); 508 } 509 continue; 510 } 511 // TODO(courbet): Right now we abort the whole chain. We could be 512 // merging only the blocks that don't do other work and resume the 513 // chain from there. For example: 514 // if (a[0] == b[0]) { // bb1 515 // if (a[1] == b[1]) { // bb2 516 // some_value = 3; //bb3 517 // if (a[2] == b[2]) { //bb3 518 // do a ton of stuff //bb4 519 // } 520 // } 521 // } 522 // 523 // This is: 524 // 525 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 526 // \ \ \ \ 527 // ne ne ne \ 528 // \ \ \ v 529 // +------------+-----------+----------> bb_phi 530 // 531 // We can only merge the first two comparisons, because bb3* does 532 // "other work" (setting some_value to 3). 533 // We could still merge bb1 and bb2 though. 534 return; 535 } 536 enqueueBlock(Comparisons, std::move(*Comparison)); 537 } 538 539 // It is possible we have no suitable comparison to merge. 540 if (Comparisons.empty()) { 541 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 542 return; 543 } 544 EntryBlock_ = Comparisons[0].BB; 545 MergedBlocks_ = mergeBlocks(std::move(Comparisons)); 546 } 547 548 namespace { 549 550 // A class to compute the name of a set of merged basic blocks. 551 // This is optimized for the common case of no block names. 552 class MergedBlockName { 553 // Storage for the uncommon case of several named blocks. 554 SmallString<16> Scratch; 555 556 public: 557 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) 558 : Name(makeName(Comparisons)) {} 559 const StringRef Name; 560 561 private: 562 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { 563 assert(!Comparisons.empty() && "no basic block"); 564 // Fast path: only one block, or no names at all. 565 if (Comparisons.size() == 1) 566 return Comparisons[0].BB->getName(); 567 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 568 [](int i, const BCECmpBlock &Cmp) { 569 return i + Cmp.BB->getName().size(); 570 }); 571 if (size == 0) 572 return StringRef("", 0); 573 574 // Slow path: at least two blocks, at least one block with a name. 575 Scratch.clear(); 576 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for 577 // separators. 578 Scratch.reserve(size + Comparisons.size() - 1); 579 const auto append = [this](StringRef str) { 580 Scratch.append(str.begin(), str.end()); 581 }; 582 append(Comparisons[0].BB->getName()); 583 for (int I = 1, E = Comparisons.size(); I < E; ++I) { 584 const BasicBlock *const BB = Comparisons[I].BB; 585 if (!BB->getName().empty()) { 586 append("+"); 587 append(BB->getName()); 588 } 589 } 590 return Scratch.str(); 591 } 592 }; 593 } // namespace 594 595 // Merges the given contiguous comparison blocks into one memcmp block. 596 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 597 BasicBlock *const InsertBefore, 598 BasicBlock *const NextCmpBlock, 599 PHINode &Phi, const TargetLibraryInfo &TLI, 600 AliasAnalysis &AA, DomTreeUpdater &DTU) { 601 assert(!Comparisons.empty() && "merging zero comparisons"); 602 LLVMContext &Context = NextCmpBlock->getContext(); 603 const BCECmpBlock &FirstCmp = Comparisons[0]; 604 605 // Create a new cmp block before next cmp block. 606 BasicBlock *const BB = 607 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, 608 NextCmpBlock->getParent(), InsertBefore); 609 IRBuilder<> Builder(BB); 610 // Add the GEPs from the first BCECmpBlock. 611 Value *Lhs, *Rhs; 612 if (FirstCmp.Lhs().GEP) 613 Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); 614 else 615 Lhs = FirstCmp.Lhs().LoadI->getPointerOperand(); 616 if (FirstCmp.Rhs().GEP) 617 Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); 618 else 619 Rhs = FirstCmp.Rhs().LoadI->getPointerOperand(); 620 621 Value *IsEqual = nullptr; 622 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " 623 << BB->getName() << "\n"); 624 625 // If there is one block that requires splitting, we do it now, i.e. 626 // just before we know we will collapse the chain. The instructions 627 // can be executed before any of the instructions in the chain. 628 const auto ToSplit = llvm::find_if( 629 Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; }); 630 if (ToSplit != Comparisons.end()) { 631 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); 632 ToSplit->split(BB, AA); 633 } 634 635 if (Comparisons.size() == 1) { 636 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 637 Value *const LhsLoad = 638 Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs); 639 Value *const RhsLoad = 640 Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs); 641 // There are no blocks to merge, just do the comparison. 642 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); 643 } else { 644 const unsigned TotalSizeBits = std::accumulate( 645 Comparisons.begin(), Comparisons.end(), 0u, 646 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); 647 648 // Create memcmp() == 0. 649 const auto &DL = Phi.getModule()->getDataLayout(); 650 Value *const MemCmpCall = emitMemCmp( 651 Lhs, Rhs, 652 ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder, 653 DL, &TLI); 654 IsEqual = Builder.CreateICmpEQ( 655 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); 656 } 657 658 BasicBlock *const PhiBB = Phi.getParent(); 659 // Add a branch to the next basic block in the chain. 660 if (NextCmpBlock == PhiBB) { 661 // Continue to phi, passing it the comparison result. 662 Builder.CreateBr(PhiBB); 663 Phi.addIncoming(IsEqual, BB); 664 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); 665 } else { 666 // Continue to next block if equal, exit to phi else. 667 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); 668 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 669 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, 670 {DominatorTree::Insert, BB, PhiBB}}); 671 } 672 return BB; 673 } 674 675 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 676 DomTreeUpdater &DTU) { 677 assert(atLeastOneMerged() && "simplifying trivial BCECmpChain"); 678 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " 679 << EntryBlock_->getName() << "\n"); 680 681 // Effectively merge blocks. We go in the reverse direction from the phi block 682 // so that the next block is always available to branch to. 683 BasicBlock *InsertBefore = EntryBlock_; 684 BasicBlock *NextCmpBlock = Phi_.getParent(); 685 for (const auto &Blocks : reverse(MergedBlocks_)) { 686 InsertBefore = NextCmpBlock = mergeComparisons( 687 Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU); 688 } 689 690 // Replace the original cmp chain with the new cmp chain by pointing all 691 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp 692 // blocks in the old chain unreachable. 693 while (!pred_empty(EntryBlock_)) { 694 BasicBlock* const Pred = *pred_begin(EntryBlock_); 695 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() 696 << "\n"); 697 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); 698 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, 699 {DominatorTree::Insert, Pred, NextCmpBlock}}); 700 } 701 702 // If the old cmp chain was the function entry, we need to update the function 703 // entry. 704 const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock(); 705 if (ChainEntryIsFnEntry && DTU.hasDomTree()) { 706 LLVM_DEBUG(dbgs() << "Changing function entry from " 707 << EntryBlock_->getName() << " to " 708 << NextCmpBlock->getName() << "\n"); 709 DTU.getDomTree().setNewRoot(NextCmpBlock); 710 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); 711 } 712 EntryBlock_ = nullptr; 713 714 // Delete merged blocks. This also removes incoming values in phi. 715 SmallVector<BasicBlock *, 16> DeadBlocks; 716 for (const auto &Blocks : MergedBlocks_) { 717 for (const BCECmpBlock &Block : Blocks) { 718 LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName() 719 << "\n"); 720 DeadBlocks.push_back(Block.BB); 721 } 722 } 723 DeleteDeadBlocks(DeadBlocks, &DTU); 724 725 MergedBlocks_.clear(); 726 return true; 727 } 728 729 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 730 BasicBlock *const LastBlock, 731 int NumBlocks) { 732 // Walk up from the last block to find other blocks. 733 std::vector<BasicBlock *> Blocks(NumBlocks); 734 assert(LastBlock && "invalid last block"); 735 BasicBlock *CurBlock = LastBlock; 736 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 737 if (CurBlock->hasAddressTaken()) { 738 // Somebody is jumping to the block through an address, all bets are 739 // off. 740 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 741 << " has its address taken\n"); 742 return {}; 743 } 744 Blocks[BlockIndex] = CurBlock; 745 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 746 if (!SinglePredecessor) { 747 // The block has two or more predecessors. 748 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 749 << " has two or more predecessors\n"); 750 return {}; 751 } 752 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 753 // The block does not link back to the phi. 754 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 755 << " does not link back to the phi\n"); 756 return {}; 757 } 758 CurBlock = SinglePredecessor; 759 } 760 Blocks[0] = CurBlock; 761 return Blocks; 762 } 763 764 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, 765 DomTreeUpdater &DTU) { 766 LLVM_DEBUG(dbgs() << "processPhi()\n"); 767 if (Phi.getNumIncomingValues() <= 1) { 768 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 769 return false; 770 } 771 // We are looking for something that has the following structure: 772 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 773 // \ \ \ \ 774 // ne ne ne \ 775 // \ \ \ v 776 // +------------+-----------+----------> bb_phi 777 // 778 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 779 // It's the only block that contributes a non-constant value to the Phi. 780 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 781 // them being the phi block. 782 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 783 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 784 785 // The blocks are not necessarily ordered in the phi, so we start from the 786 // last block and reconstruct the order. 787 BasicBlock *LastBlock = nullptr; 788 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 789 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 790 if (LastBlock) { 791 // There are several non-constant values. 792 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 793 return false; 794 } 795 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 796 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 797 Phi.getIncomingBlock(I)) { 798 // Non-constant incoming value is not from a cmp instruction or not 799 // produced by the last block. We could end up processing the value 800 // producing block more than once. 801 // 802 // This is an uncommon case, so we bail. 803 LLVM_DEBUG( 804 dbgs() 805 << "skip: non-constant value not from cmp or not from last block.\n"); 806 return false; 807 } 808 LastBlock = Phi.getIncomingBlock(I); 809 } 810 if (!LastBlock) { 811 // There is no non-constant block. 812 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 813 return false; 814 } 815 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 816 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 817 return false; 818 } 819 820 const auto Blocks = 821 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 822 if (Blocks.empty()) return false; 823 BCECmpChain CmpChain(Blocks, Phi, AA); 824 825 if (!CmpChain.atLeastOneMerged()) { 826 LLVM_DEBUG(dbgs() << "skip: nothing merged\n"); 827 return false; 828 } 829 830 return CmpChain.simplify(TLI, AA, DTU); 831 } 832 833 static bool runImpl(Function &F, const TargetLibraryInfo &TLI, 834 const TargetTransformInfo &TTI, AliasAnalysis &AA, 835 DominatorTree *DT) { 836 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); 837 838 // We only try merging comparisons if the target wants to expand memcmp later. 839 // The rationale is to avoid turning small chains into memcmp calls. 840 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) 841 return false; 842 843 // If we don't have memcmp avaiable we can't emit calls to it. 844 if (!TLI.has(LibFunc_memcmp)) 845 return false; 846 847 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, 848 DomTreeUpdater::UpdateStrategy::Eager); 849 850 bool MadeChange = false; 851 852 for (BasicBlock &BB : llvm::drop_begin(F)) { 853 // A Phi operation is always first in a basic block. 854 if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin())) 855 MadeChange |= processPhi(*Phi, TLI, AA, DTU); 856 } 857 858 return MadeChange; 859 } 860 861 class MergeICmpsLegacyPass : public FunctionPass { 862 public: 863 static char ID; 864 865 MergeICmpsLegacyPass() : FunctionPass(ID) { 866 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); 867 } 868 869 bool runOnFunction(Function &F) override { 870 if (skipFunction(F)) return false; 871 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 872 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 873 // MergeICmps does not need the DominatorTree, but we update it if it's 874 // already available. 875 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 876 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 877 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); 878 } 879 880 private: 881 void getAnalysisUsage(AnalysisUsage &AU) const override { 882 AU.addRequired<TargetLibraryInfoWrapperPass>(); 883 AU.addRequired<TargetTransformInfoWrapperPass>(); 884 AU.addRequired<AAResultsWrapperPass>(); 885 AU.addPreserved<GlobalsAAWrapperPass>(); 886 AU.addPreserved<DominatorTreeWrapperPass>(); 887 } 888 }; 889 890 } // namespace 891 892 char MergeICmpsLegacyPass::ID = 0; 893 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", 894 "Merge contiguous icmps into a memcmp", false, false) 895 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 896 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 897 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 898 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", 899 "Merge contiguous icmps into a memcmp", false, false) 900 901 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } 902 903 PreservedAnalyses MergeICmpsPass::run(Function &F, 904 FunctionAnalysisManager &AM) { 905 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 906 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 907 auto &AA = AM.getResult<AAManager>(F); 908 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 909 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); 910 if (!MadeChanges) 911 return PreservedAnalyses::all(); 912 PreservedAnalyses PA; 913 PA.preserve<DominatorTreeAnalysis>(); 914 return PA; 915 } 916