xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
12 //
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 //  - There are less jumps, and therefore less opportunities for mispredictions
17 //    and I-cache misses.
18 //  - Code size is smaller, both because jumps are removed and because the
19 //    encoding of a 2*n byte compare is smaller than that of two n-byte
20 //    compares.
21 //
22 // Example:
23 //
24 //  struct S {
25 //    int a;
26 //    char b;
27 //    char c;
28 //    uint16_t d;
29 //    bool operator==(const S& o) const {
30 //      return a == o.a && b == o.b && c == o.c && d == o.d;
31 //    }
32 //  };
33 //
34 //  Is optimized as :
35 //
36 //    bool S::operator==(const S& o) const {
37 //      return memcmp(this, &o, 8) == 0;
38 //    }
39 //
40 //  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
58 #include <algorithm>
59 #include <numeric>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 #define DEBUG_TYPE "mergeicmps"
68 
69 // A BCE atom "Binary Compare Expression Atom" represents an integer load
70 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
71 // at the top.
72 struct BCEAtom {
73   BCEAtom() = default;
74   BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
75       : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
76 
77   BCEAtom(const BCEAtom &) = delete;
78   BCEAtom &operator=(const BCEAtom &) = delete;
79 
80   BCEAtom(BCEAtom &&that) = default;
81   BCEAtom &operator=(BCEAtom &&that) {
82     if (this == &that)
83       return *this;
84     GEP = that.GEP;
85     LoadI = that.LoadI;
86     BaseId = that.BaseId;
87     Offset = std::move(that.Offset);
88     return *this;
89   }
90 
91   // We want to order BCEAtoms by (Base, Offset). However we cannot use
92   // the pointer values for Base because these are non-deterministic.
93   // To make sure that the sort order is stable, we first assign to each atom
94   // base value an index based on its order of appearance in the chain of
95   // comparisons. We call this index `BaseOrdering`. For example, for:
96   //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
97   //    |  block 1 |    |  block 2 |    |  block 3 |
98   // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
99   // which is before block 2.
100   // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
101   bool operator<(const BCEAtom &O) const {
102     return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
103   }
104 
105   GetElementPtrInst *GEP = nullptr;
106   LoadInst *LoadI = nullptr;
107   unsigned BaseId = 0;
108   APInt Offset;
109 };
110 
111 // A class that assigns increasing ids to values in the order in which they are
112 // seen. See comment in `BCEAtom::operator<()``.
113 class BaseIdentifier {
114 public:
115   // Returns the id for value `Base`, after assigning one if `Base` has not been
116   // seen before.
117   int getBaseId(const Value *Base) {
118     assert(Base && "invalid base");
119     const auto Insertion = BaseToIndex.try_emplace(Base, Order);
120     if (Insertion.second)
121       ++Order;
122     return Insertion.first->second;
123   }
124 
125 private:
126   unsigned Order = 1;
127   DenseMap<const Value*, int> BaseToIndex;
128 };
129 
130 // If this value is a load from a constant offset w.r.t. a base address, and
131 // there are no other users of the load or address, returns the base address and
132 // the offset.
133 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
134   auto *const LoadI = dyn_cast<LoadInst>(Val);
135   if (!LoadI)
136     return {};
137   LLVM_DEBUG(dbgs() << "load\n");
138   if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
139     LLVM_DEBUG(dbgs() << "used outside of block\n");
140     return {};
141   }
142   // Do not optimize atomic loads to non-atomic memcmp
143   if (!LoadI->isSimple()) {
144     LLVM_DEBUG(dbgs() << "volatile or atomic\n");
145     return {};
146   }
147   Value *Addr = LoadI->getOperand(0);
148   if (Addr->getType()->getPointerAddressSpace() != 0) {
149     LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n");
150     return {};
151   }
152   const auto &DL = LoadI->getModule()->getDataLayout();
153   if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) {
154     LLVM_DEBUG(dbgs() << "not dereferenceable\n");
155     // We need to make sure that we can do comparison in any order, so we
156     // require memory to be unconditionally dereferenceable.
157     return {};
158   }
159 
160   APInt Offset = APInt(DL.getPointerTypeSizeInBits(Addr->getType()), 0);
161   Value *Base = Addr;
162   auto *GEP = dyn_cast<GetElementPtrInst>(Addr);
163   if (GEP) {
164     LLVM_DEBUG(dbgs() << "GEP\n");
165     if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
166       LLVM_DEBUG(dbgs() << "used outside of block\n");
167       return {};
168     }
169     if (!GEP->accumulateConstantOffset(DL, Offset))
170       return {};
171     Base = GEP->getPointerOperand();
172   }
173   return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset);
174 }
175 
176 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
177 // top.
178 // Note: the terminology is misleading: the comparison is symmetric, so there
179 // is no real {l/r}hs. What we want though is to have the same base on the
180 // left (resp. right), so that we can detect consecutive loads. To ensure this
181 // we put the smallest atom on the left.
182 struct BCECmp {
183   BCEAtom Lhs;
184   BCEAtom Rhs;
185   int SizeBits;
186   const ICmpInst *CmpI;
187 
188   BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
189       : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
190     if (Rhs < Lhs) std::swap(Rhs, Lhs);
191   }
192 };
193 
194 // A basic block with a comparison between two BCE atoms.
195 // The block might do extra work besides the atom comparison, in which case
196 // doesOtherWork() returns true. Under some conditions, the block can be
197 // split into the atom comparison part and the "other work" part
198 // (see canSplit()).
199 class BCECmpBlock {
200  public:
201   typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
202 
203   BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
204       : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
205 
206   const BCEAtom &Lhs() const { return Cmp.Lhs; }
207   const BCEAtom &Rhs() const { return Cmp.Rhs; }
208   int SizeBits() const { return Cmp.SizeBits; }
209 
210   // Returns true if the block does other works besides comparison.
211   bool doesOtherWork() const;
212 
213   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
214   // instructions in the block.
215   bool canSplit(AliasAnalysis &AA) const;
216 
217   // Return true if this all the relevant instructions in the BCE-cmp-block can
218   // be sunk below this instruction. By doing this, we know we can separate the
219   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
220   // block.
221   bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
222 
223   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
224   // instructions. Split the old block and move all non-BCE-cmp-insts into the
225   // new parent block.
226   void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
227 
228   // The basic block where this comparison happens.
229   BasicBlock *BB;
230   // Instructions relating to the BCECmp and branch.
231   InstructionSet BlockInsts;
232   // The block requires splitting.
233   bool RequireSplit = false;
234   // Original order of this block in the chain.
235   unsigned OrigOrder = 0;
236 
237 private:
238   BCECmp Cmp;
239 };
240 
241 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
242                                     AliasAnalysis &AA) const {
243   // If this instruction may clobber the loads and is in middle of the BCE cmp
244   // block instructions, then bail for now.
245   if (Inst->mayWriteToMemory()) {
246     auto MayClobber = [&](LoadInst *LI) {
247       // If a potentially clobbering instruction comes before the load,
248       // we can still safely sink the load.
249       return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) &&
250              isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI)));
251     };
252     if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI))
253       return false;
254   }
255   // Make sure this instruction does not use any of the BCE cmp block
256   // instructions as operand.
257   return llvm::none_of(Inst->operands(), [&](const Value *Op) {
258     const Instruction *OpI = dyn_cast<Instruction>(Op);
259     return OpI && BlockInsts.contains(OpI);
260   });
261 }
262 
263 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
264   llvm::SmallVector<Instruction *, 4> OtherInsts;
265   for (Instruction &Inst : *BB) {
266     if (BlockInsts.count(&Inst))
267       continue;
268     assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
269     // This is a non-BCE-cmp-block instruction. And it can be separated
270     // from the BCE-cmp-block instruction.
271     OtherInsts.push_back(&Inst);
272   }
273 
274   // Do the actual spliting.
275   for (Instruction *Inst : reverse(OtherInsts))
276     Inst->moveBefore(*NewParent, NewParent->begin());
277 }
278 
279 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
280   for (Instruction &Inst : *BB) {
281     if (!BlockInsts.count(&Inst)) {
282       if (!canSinkBCECmpInst(&Inst, AA))
283         return false;
284     }
285   }
286   return true;
287 }
288 
289 bool BCECmpBlock::doesOtherWork() const {
290   // TODO(courbet): Can we allow some other things ? This is very conservative.
291   // We might be able to get away with anything does not have any side
292   // effects outside of the basic block.
293   // Note: The GEPs and/or loads are not necessarily in the same block.
294   for (const Instruction &Inst : *BB) {
295     if (!BlockInsts.count(&Inst))
296       return true;
297   }
298   return false;
299 }
300 
301 // Visit the given comparison. If this is a comparison between two valid
302 // BCE atoms, returns the comparison.
303 std::optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
304                                 const ICmpInst::Predicate ExpectedPredicate,
305                                 BaseIdentifier &BaseId) {
306   // The comparison can only be used once:
307   //  - For intermediate blocks, as a branch condition.
308   //  - For the final block, as an incoming value for the Phi.
309   // If there are any other uses of the comparison, we cannot merge it with
310   // other comparisons as we would create an orphan use of the value.
311   if (!CmpI->hasOneUse()) {
312     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
313     return std::nullopt;
314   }
315   if (CmpI->getPredicate() != ExpectedPredicate)
316     return std::nullopt;
317   LLVM_DEBUG(dbgs() << "cmp "
318                     << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
319                     << "\n");
320   auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
321   if (!Lhs.BaseId)
322     return std::nullopt;
323   auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
324   if (!Rhs.BaseId)
325     return std::nullopt;
326   const auto &DL = CmpI->getModule()->getDataLayout();
327   return BCECmp(std::move(Lhs), std::move(Rhs),
328                 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
329 }
330 
331 // Visit the given comparison block. If this is a comparison between two valid
332 // BCE atoms, returns the comparison.
333 std::optional<BCECmpBlock> visitCmpBlock(Value *const Val,
334                                          BasicBlock *const Block,
335                                          const BasicBlock *const PhiBlock,
336                                          BaseIdentifier &BaseId) {
337   if (Block->empty())
338     return std::nullopt;
339   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
340   if (!BranchI)
341     return std::nullopt;
342   LLVM_DEBUG(dbgs() << "branch\n");
343   Value *Cond;
344   ICmpInst::Predicate ExpectedPredicate;
345   if (BranchI->isUnconditional()) {
346     // In this case, we expect an incoming value which is the result of the
347     // comparison. This is the last link in the chain of comparisons (note
348     // that this does not mean that this is the last incoming value, blocks
349     // can be reordered).
350     Cond = Val;
351     ExpectedPredicate = ICmpInst::ICMP_EQ;
352   } else {
353     // In this case, we expect a constant incoming value (the comparison is
354     // chained).
355     const auto *const Const = cast<ConstantInt>(Val);
356     LLVM_DEBUG(dbgs() << "const\n");
357     if (!Const->isZero())
358       return std::nullopt;
359     LLVM_DEBUG(dbgs() << "false\n");
360     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
361     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
362     Cond = BranchI->getCondition();
363     ExpectedPredicate =
364         FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
365   }
366 
367   auto *CmpI = dyn_cast<ICmpInst>(Cond);
368   if (!CmpI)
369     return std::nullopt;
370   LLVM_DEBUG(dbgs() << "icmp\n");
371 
372   std::optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
373   if (!Result)
374     return std::nullopt;
375 
376   BCECmpBlock::InstructionSet BlockInsts(
377       {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI});
378   if (Result->Lhs.GEP)
379     BlockInsts.insert(Result->Lhs.GEP);
380   if (Result->Rhs.GEP)
381     BlockInsts.insert(Result->Rhs.GEP);
382   return BCECmpBlock(std::move(*Result), Block, BlockInsts);
383 }
384 
385 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
386                                 BCECmpBlock &&Comparison) {
387   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
388                     << "': Found cmp of " << Comparison.SizeBits()
389                     << " bits between " << Comparison.Lhs().BaseId << " + "
390                     << Comparison.Lhs().Offset << " and "
391                     << Comparison.Rhs().BaseId << " + "
392                     << Comparison.Rhs().Offset << "\n");
393   LLVM_DEBUG(dbgs() << "\n");
394   Comparison.OrigOrder = Comparisons.size();
395   Comparisons.push_back(std::move(Comparison));
396 }
397 
398 // A chain of comparisons.
399 class BCECmpChain {
400 public:
401   using ContiguousBlocks = std::vector<BCECmpBlock>;
402 
403   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
404               AliasAnalysis &AA);
405 
406   bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
407                 DomTreeUpdater &DTU);
408 
409   bool atLeastOneMerged() const {
410     return any_of(MergedBlocks_,
411                   [](const auto &Blocks) { return Blocks.size() > 1; });
412   }
413 
414 private:
415   PHINode &Phi_;
416   // The list of all blocks in the chain, grouped by contiguity.
417   std::vector<ContiguousBlocks> MergedBlocks_;
418   // The original entry block (before sorting);
419   BasicBlock *EntryBlock_;
420 };
421 
422 static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) {
423   return First.Lhs().BaseId == Second.Lhs().BaseId &&
424          First.Rhs().BaseId == Second.Rhs().BaseId &&
425          First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
426          First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
427 }
428 
429 static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) {
430   unsigned MinOrigOrder = std::numeric_limits<unsigned>::max();
431   for (const BCECmpBlock &Block : Blocks)
432     MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder);
433   return MinOrigOrder;
434 }
435 
436 /// Given a chain of comparison blocks, groups the blocks into contiguous
437 /// ranges that can be merged together into a single comparison.
438 static std::vector<BCECmpChain::ContiguousBlocks>
439 mergeBlocks(std::vector<BCECmpBlock> &&Blocks) {
440   std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks;
441 
442   // Sort to detect continuous offsets.
443   llvm::sort(Blocks,
444              [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
445                return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
446                       std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
447              });
448 
449   BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr;
450   for (BCECmpBlock &Block : Blocks) {
451     if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) {
452       MergedBlocks.emplace_back();
453       LastMergedBlock = &MergedBlocks.back();
454     } else {
455       LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into "
456                         << LastMergedBlock->back().BB->getName() << "\n");
457     }
458     LastMergedBlock->push_back(std::move(Block));
459   }
460 
461   // While we allow reordering for merging, do not reorder unmerged comparisons.
462   // Doing so may introduce branch on poison.
463   llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks,
464                               const BCECmpChain::ContiguousBlocks &RhsBlocks) {
465     return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks);
466   });
467 
468   return MergedBlocks;
469 }
470 
471 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
472                          AliasAnalysis &AA)
473     : Phi_(Phi) {
474   assert(!Blocks.empty() && "a chain should have at least one block");
475   // Now look inside blocks to check for BCE comparisons.
476   std::vector<BCECmpBlock> Comparisons;
477   BaseIdentifier BaseId;
478   for (BasicBlock *const Block : Blocks) {
479     assert(Block && "invalid block");
480     std::optional<BCECmpBlock> Comparison = visitCmpBlock(
481         Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
482     if (!Comparison) {
483       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
484       return;
485     }
486     if (Comparison->doesOtherWork()) {
487       LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
488                         << "' does extra work besides compare\n");
489       if (Comparisons.empty()) {
490         // This is the initial block in the chain, in case this block does other
491         // work, we can try to split the block and move the irrelevant
492         // instructions to the predecessor.
493         //
494         // If this is not the initial block in the chain, splitting it wont
495         // work.
496         //
497         // As once split, there will still be instructions before the BCE cmp
498         // instructions that do other work in program order, i.e. within the
499         // chain before sorting. Unless we can abort the chain at this point
500         // and start anew.
501         //
502         // NOTE: we only handle blocks a with single predecessor for now.
503         if (Comparison->canSplit(AA)) {
504           LLVM_DEBUG(dbgs()
505                      << "Split initial block '" << Comparison->BB->getName()
506                      << "' that does extra work besides compare\n");
507           Comparison->RequireSplit = true;
508           enqueueBlock(Comparisons, std::move(*Comparison));
509         } else {
510           LLVM_DEBUG(dbgs()
511                      << "ignoring initial block '" << Comparison->BB->getName()
512                      << "' that does extra work besides compare\n");
513         }
514         continue;
515       }
516       // TODO(courbet): Right now we abort the whole chain. We could be
517       // merging only the blocks that don't do other work and resume the
518       // chain from there. For example:
519       //  if (a[0] == b[0]) {  // bb1
520       //    if (a[1] == b[1]) {  // bb2
521       //      some_value = 3; //bb3
522       //      if (a[2] == b[2]) { //bb3
523       //        do a ton of stuff  //bb4
524       //      }
525       //    }
526       //  }
527       //
528       // This is:
529       //
530       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
531       //  \            \           \               \
532       //   ne           ne          ne              \
533       //    \            \           \               v
534       //     +------------+-----------+----------> bb_phi
535       //
536       // We can only merge the first two comparisons, because bb3* does
537       // "other work" (setting some_value to 3).
538       // We could still merge bb1 and bb2 though.
539       return;
540     }
541     enqueueBlock(Comparisons, std::move(*Comparison));
542   }
543 
544   // It is possible we have no suitable comparison to merge.
545   if (Comparisons.empty()) {
546     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
547     return;
548   }
549   EntryBlock_ = Comparisons[0].BB;
550   MergedBlocks_ = mergeBlocks(std::move(Comparisons));
551 }
552 
553 namespace {
554 
555 // A class to compute the name of a set of merged basic blocks.
556 // This is optimized for the common case of no block names.
557 class MergedBlockName {
558   // Storage for the uncommon case of several named blocks.
559   SmallString<16> Scratch;
560 
561 public:
562   explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
563       : Name(makeName(Comparisons)) {}
564   const StringRef Name;
565 
566 private:
567   StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
568     assert(!Comparisons.empty() && "no basic block");
569     // Fast path: only one block, or no names at all.
570     if (Comparisons.size() == 1)
571       return Comparisons[0].BB->getName();
572     const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
573                                      [](int i, const BCECmpBlock &Cmp) {
574                                        return i + Cmp.BB->getName().size();
575                                      });
576     if (size == 0)
577       return StringRef("", 0);
578 
579     // Slow path: at least two blocks, at least one block with a name.
580     Scratch.clear();
581     // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
582     // separators.
583     Scratch.reserve(size + Comparisons.size() - 1);
584     const auto append = [this](StringRef str) {
585       Scratch.append(str.begin(), str.end());
586     };
587     append(Comparisons[0].BB->getName());
588     for (int I = 1, E = Comparisons.size(); I < E; ++I) {
589       const BasicBlock *const BB = Comparisons[I].BB;
590       if (!BB->getName().empty()) {
591         append("+");
592         append(BB->getName());
593       }
594     }
595     return Scratch.str();
596   }
597 };
598 } // namespace
599 
600 // Merges the given contiguous comparison blocks into one memcmp block.
601 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
602                                     BasicBlock *const InsertBefore,
603                                     BasicBlock *const NextCmpBlock,
604                                     PHINode &Phi, const TargetLibraryInfo &TLI,
605                                     AliasAnalysis &AA, DomTreeUpdater &DTU) {
606   assert(!Comparisons.empty() && "merging zero comparisons");
607   LLVMContext &Context = NextCmpBlock->getContext();
608   const BCECmpBlock &FirstCmp = Comparisons[0];
609 
610   // Create a new cmp block before next cmp block.
611   BasicBlock *const BB =
612       BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
613                          NextCmpBlock->getParent(), InsertBefore);
614   IRBuilder<> Builder(BB);
615   // Add the GEPs from the first BCECmpBlock.
616   Value *Lhs, *Rhs;
617   if (FirstCmp.Lhs().GEP)
618     Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
619   else
620     Lhs = FirstCmp.Lhs().LoadI->getPointerOperand();
621   if (FirstCmp.Rhs().GEP)
622     Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
623   else
624     Rhs = FirstCmp.Rhs().LoadI->getPointerOperand();
625 
626   Value *IsEqual = nullptr;
627   LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
628                     << BB->getName() << "\n");
629 
630   // If there is one block that requires splitting, we do it now, i.e.
631   // just before we know we will collapse the chain. The instructions
632   // can be executed before any of the instructions in the chain.
633   const auto ToSplit = llvm::find_if(
634       Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
635   if (ToSplit != Comparisons.end()) {
636     LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
637     ToSplit->split(BB, AA);
638   }
639 
640   if (Comparisons.size() == 1) {
641     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
642     Value *const LhsLoad =
643         Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
644     Value *const RhsLoad =
645         Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
646     // There are no blocks to merge, just do the comparison.
647     IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
648   } else {
649     const unsigned TotalSizeBits = std::accumulate(
650         Comparisons.begin(), Comparisons.end(), 0u,
651         [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
652 
653     // memcmp expects a 'size_t' argument and returns 'int'.
654     unsigned SizeTBits = TLI.getSizeTSize(*Phi.getModule());
655     unsigned IntBits = TLI.getIntSize();
656 
657     // Create memcmp() == 0.
658     const auto &DL = Phi.getModule()->getDataLayout();
659     Value *const MemCmpCall = emitMemCmp(
660         Lhs, Rhs,
661         ConstantInt::get(Builder.getIntNTy(SizeTBits), TotalSizeBits / 8),
662         Builder, DL, &TLI);
663     IsEqual = Builder.CreateICmpEQ(
664         MemCmpCall, ConstantInt::get(Builder.getIntNTy(IntBits), 0));
665   }
666 
667   BasicBlock *const PhiBB = Phi.getParent();
668   // Add a branch to the next basic block in the chain.
669   if (NextCmpBlock == PhiBB) {
670     // Continue to phi, passing it the comparison result.
671     Builder.CreateBr(PhiBB);
672     Phi.addIncoming(IsEqual, BB);
673     DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
674   } else {
675     // Continue to next block if equal, exit to phi else.
676     Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
677     Phi.addIncoming(ConstantInt::getFalse(Context), BB);
678     DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
679                       {DominatorTree::Insert, BB, PhiBB}});
680   }
681   return BB;
682 }
683 
684 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
685                            DomTreeUpdater &DTU) {
686   assert(atLeastOneMerged() && "simplifying trivial BCECmpChain");
687   LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
688                     << EntryBlock_->getName() << "\n");
689 
690   // Effectively merge blocks. We go in the reverse direction from the phi block
691   // so that the next block is always available to branch to.
692   BasicBlock *InsertBefore = EntryBlock_;
693   BasicBlock *NextCmpBlock = Phi_.getParent();
694   for (const auto &Blocks : reverse(MergedBlocks_)) {
695     InsertBefore = NextCmpBlock = mergeComparisons(
696         Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU);
697   }
698 
699   // Replace the original cmp chain with the new cmp chain by pointing all
700   // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
701   // blocks in the old chain unreachable.
702   while (!pred_empty(EntryBlock_)) {
703     BasicBlock* const Pred = *pred_begin(EntryBlock_);
704     LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
705                       << "\n");
706     Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
707     DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
708                       {DominatorTree::Insert, Pred, NextCmpBlock}});
709   }
710 
711   // If the old cmp chain was the function entry, we need to update the function
712   // entry.
713   const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
714   if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
715     LLVM_DEBUG(dbgs() << "Changing function entry from "
716                       << EntryBlock_->getName() << " to "
717                       << NextCmpBlock->getName() << "\n");
718     DTU.getDomTree().setNewRoot(NextCmpBlock);
719     DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
720   }
721   EntryBlock_ = nullptr;
722 
723   // Delete merged blocks. This also removes incoming values in phi.
724   SmallVector<BasicBlock *, 16> DeadBlocks;
725   for (const auto &Blocks : MergedBlocks_) {
726     for (const BCECmpBlock &Block : Blocks) {
727       LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName()
728                         << "\n");
729       DeadBlocks.push_back(Block.BB);
730     }
731   }
732   DeleteDeadBlocks(DeadBlocks, &DTU);
733 
734   MergedBlocks_.clear();
735   return true;
736 }
737 
738 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
739                                            BasicBlock *const LastBlock,
740                                            int NumBlocks) {
741   // Walk up from the last block to find other blocks.
742   std::vector<BasicBlock *> Blocks(NumBlocks);
743   assert(LastBlock && "invalid last block");
744   BasicBlock *CurBlock = LastBlock;
745   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
746     if (CurBlock->hasAddressTaken()) {
747       // Somebody is jumping to the block through an address, all bets are
748       // off.
749       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
750                         << " has its address taken\n");
751       return {};
752     }
753     Blocks[BlockIndex] = CurBlock;
754     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
755     if (!SinglePredecessor) {
756       // The block has two or more predecessors.
757       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
758                         << " has two or more predecessors\n");
759       return {};
760     }
761     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
762       // The block does not link back to the phi.
763       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
764                         << " does not link back to the phi\n");
765       return {};
766     }
767     CurBlock = SinglePredecessor;
768   }
769   Blocks[0] = CurBlock;
770   return Blocks;
771 }
772 
773 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
774                 DomTreeUpdater &DTU) {
775   LLVM_DEBUG(dbgs() << "processPhi()\n");
776   if (Phi.getNumIncomingValues() <= 1) {
777     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
778     return false;
779   }
780   // We are looking for something that has the following structure:
781   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
782   //     \            \           \               \
783   //      ne           ne          ne              \
784   //       \            \           \               v
785   //        +------------+-----------+----------> bb_phi
786   //
787   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
788   //    It's the only block that contributes a non-constant value to the Phi.
789   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
790   //    them being the phi block.
791   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
792   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
793 
794   // The blocks are not necessarily ordered in the phi, so we start from the
795   // last block and reconstruct the order.
796   BasicBlock *LastBlock = nullptr;
797   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
798     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
799     if (LastBlock) {
800       // There are several non-constant values.
801       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
802       return false;
803     }
804     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
805         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
806             Phi.getIncomingBlock(I)) {
807       // Non-constant incoming value is not from a cmp instruction or not
808       // produced by the last block. We could end up processing the value
809       // producing block more than once.
810       //
811       // This is an uncommon case, so we bail.
812       LLVM_DEBUG(
813           dbgs()
814           << "skip: non-constant value not from cmp or not from last block.\n");
815       return false;
816     }
817     LastBlock = Phi.getIncomingBlock(I);
818   }
819   if (!LastBlock) {
820     // There is no non-constant block.
821     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
822     return false;
823   }
824   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
825     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
826     return false;
827   }
828 
829   const auto Blocks =
830       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
831   if (Blocks.empty()) return false;
832   BCECmpChain CmpChain(Blocks, Phi, AA);
833 
834   if (!CmpChain.atLeastOneMerged()) {
835     LLVM_DEBUG(dbgs() << "skip: nothing merged\n");
836     return false;
837   }
838 
839   return CmpChain.simplify(TLI, AA, DTU);
840 }
841 
842 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
843                     const TargetTransformInfo &TTI, AliasAnalysis &AA,
844                     DominatorTree *DT) {
845   LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
846 
847   // We only try merging comparisons if the target wants to expand memcmp later.
848   // The rationale is to avoid turning small chains into memcmp calls.
849   if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
850     return false;
851 
852   // If we don't have memcmp avaiable we can't emit calls to it.
853   if (!TLI.has(LibFunc_memcmp))
854     return false;
855 
856   DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
857                      DomTreeUpdater::UpdateStrategy::Eager);
858 
859   bool MadeChange = false;
860 
861   for (BasicBlock &BB : llvm::drop_begin(F)) {
862     // A Phi operation is always first in a basic block.
863     if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin()))
864       MadeChange |= processPhi(*Phi, TLI, AA, DTU);
865   }
866 
867   return MadeChange;
868 }
869 
870 class MergeICmpsLegacyPass : public FunctionPass {
871 public:
872   static char ID;
873 
874   MergeICmpsLegacyPass() : FunctionPass(ID) {
875     initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
876   }
877 
878   bool runOnFunction(Function &F) override {
879     if (skipFunction(F)) return false;
880     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
881     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
882     // MergeICmps does not need the DominatorTree, but we update it if it's
883     // already available.
884     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
885     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
886     return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
887   }
888 
889  private:
890   void getAnalysisUsage(AnalysisUsage &AU) const override {
891     AU.addRequired<TargetLibraryInfoWrapperPass>();
892     AU.addRequired<TargetTransformInfoWrapperPass>();
893     AU.addRequired<AAResultsWrapperPass>();
894     AU.addPreserved<GlobalsAAWrapperPass>();
895     AU.addPreserved<DominatorTreeWrapperPass>();
896   }
897 };
898 
899 } // namespace
900 
901 char MergeICmpsLegacyPass::ID = 0;
902 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
903                       "Merge contiguous icmps into a memcmp", false, false)
904 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
905 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
906 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
907 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
908                     "Merge contiguous icmps into a memcmp", false, false)
909 
910 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
911 
912 PreservedAnalyses MergeICmpsPass::run(Function &F,
913                                       FunctionAnalysisManager &AM) {
914   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
915   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
916   auto &AA = AM.getResult<AAManager>(F);
917   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
918   const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
919   if (!MadeChanges)
920     return PreservedAnalyses::all();
921   PreservedAnalyses PA;
922   PA.preserve<DominatorTreeAnalysis>();
923   return PA;
924 }
925