1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass turns chains of integer comparisons into memcmp (the memcmp is 10 // later typically inlined as a chain of efficient hardware comparisons). This 11 // typically benefits c++ member or nonmember operator==(). 12 // 13 // The basic idea is to replace a longer chain of integer comparisons loaded 14 // from contiguous memory locations into a shorter chain of larger integer 15 // comparisons. Benefits are double: 16 // - There are less jumps, and therefore less opportunities for mispredictions 17 // and I-cache misses. 18 // - Code size is smaller, both because jumps are removed and because the 19 // encoding of a 2*n byte compare is smaller than that of two n-byte 20 // compares. 21 // 22 // Example: 23 // 24 // struct S { 25 // int a; 26 // char b; 27 // char c; 28 // uint16_t d; 29 // bool operator==(const S& o) const { 30 // return a == o.a && b == o.b && c == o.c && d == o.d; 31 // } 32 // }; 33 // 34 // Is optimized as : 35 // 36 // bool S::operator==(const S& o) const { 37 // return memcmp(this, &o, 8) == 0; 38 // } 39 // 40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar/MergeICmps.h" 45 #include "llvm/ADT/SmallString.h" 46 #include "llvm/Analysis/DomTreeUpdater.h" 47 #include "llvm/Analysis/GlobalsModRef.h" 48 #include "llvm/Analysis/Loads.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/BuildLibCalls.h" 60 #include <algorithm> 61 #include <numeric> 62 #include <utility> 63 #include <vector> 64 65 using namespace llvm; 66 67 namespace { 68 69 #define DEBUG_TYPE "mergeicmps" 70 71 // A BCE atom "Binary Compare Expression Atom" represents an integer load 72 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example 73 // at the top. 74 struct BCEAtom { 75 BCEAtom() = default; 76 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) 77 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} 78 79 BCEAtom(const BCEAtom &) = delete; 80 BCEAtom &operator=(const BCEAtom &) = delete; 81 82 BCEAtom(BCEAtom &&that) = default; 83 BCEAtom &operator=(BCEAtom &&that) { 84 if (this == &that) 85 return *this; 86 GEP = that.GEP; 87 LoadI = that.LoadI; 88 BaseId = that.BaseId; 89 Offset = std::move(that.Offset); 90 return *this; 91 } 92 93 // We want to order BCEAtoms by (Base, Offset). However we cannot use 94 // the pointer values for Base because these are non-deterministic. 95 // To make sure that the sort order is stable, we first assign to each atom 96 // base value an index based on its order of appearance in the chain of 97 // comparisons. We call this index `BaseOrdering`. For example, for: 98 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] 99 // | block 1 | | block 2 | | block 3 | 100 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, 101 // which is before block 2. 102 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. 103 bool operator<(const BCEAtom &O) const { 104 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); 105 } 106 107 GetElementPtrInst *GEP = nullptr; 108 LoadInst *LoadI = nullptr; 109 unsigned BaseId = 0; 110 APInt Offset; 111 }; 112 113 // A class that assigns increasing ids to values in the order in which they are 114 // seen. See comment in `BCEAtom::operator<()``. 115 class BaseIdentifier { 116 public: 117 // Returns the id for value `Base`, after assigning one if `Base` has not been 118 // seen before. 119 int getBaseId(const Value *Base) { 120 assert(Base && "invalid base"); 121 const auto Insertion = BaseToIndex.try_emplace(Base, Order); 122 if (Insertion.second) 123 ++Order; 124 return Insertion.first->second; 125 } 126 127 private: 128 unsigned Order = 1; 129 DenseMap<const Value*, int> BaseToIndex; 130 }; 131 132 // If this value is a load from a constant offset w.r.t. a base address, and 133 // there are no other users of the load or address, returns the base address and 134 // the offset. 135 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { 136 auto *const LoadI = dyn_cast<LoadInst>(Val); 137 if (!LoadI) 138 return {}; 139 LLVM_DEBUG(dbgs() << "load\n"); 140 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { 141 LLVM_DEBUG(dbgs() << "used outside of block\n"); 142 return {}; 143 } 144 // Do not optimize atomic loads to non-atomic memcmp 145 if (!LoadI->isSimple()) { 146 LLVM_DEBUG(dbgs() << "volatile or atomic\n"); 147 return {}; 148 } 149 Value *Addr = LoadI->getOperand(0); 150 if (Addr->getType()->getPointerAddressSpace() != 0) { 151 LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n"); 152 return {}; 153 } 154 const auto &DL = LoadI->getModule()->getDataLayout(); 155 if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) { 156 LLVM_DEBUG(dbgs() << "not dereferenceable\n"); 157 // We need to make sure that we can do comparison in any order, so we 158 // require memory to be unconditionally dereferenceable. 159 return {}; 160 } 161 162 APInt Offset = APInt(DL.getIndexTypeSizeInBits(Addr->getType()), 0); 163 Value *Base = Addr; 164 auto *GEP = dyn_cast<GetElementPtrInst>(Addr); 165 if (GEP) { 166 LLVM_DEBUG(dbgs() << "GEP\n"); 167 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { 168 LLVM_DEBUG(dbgs() << "used outside of block\n"); 169 return {}; 170 } 171 if (!GEP->accumulateConstantOffset(DL, Offset)) 172 return {}; 173 Base = GEP->getPointerOperand(); 174 } 175 return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset); 176 } 177 178 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the 179 // top. 180 // Note: the terminology is misleading: the comparison is symmetric, so there 181 // is no real {l/r}hs. What we want though is to have the same base on the 182 // left (resp. right), so that we can detect consecutive loads. To ensure this 183 // we put the smallest atom on the left. 184 struct BCECmp { 185 BCEAtom Lhs; 186 BCEAtom Rhs; 187 int SizeBits; 188 const ICmpInst *CmpI; 189 190 BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI) 191 : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) { 192 if (Rhs < Lhs) std::swap(Rhs, Lhs); 193 } 194 }; 195 196 // A basic block with a comparison between two BCE atoms. 197 // The block might do extra work besides the atom comparison, in which case 198 // doesOtherWork() returns true. Under some conditions, the block can be 199 // split into the atom comparison part and the "other work" part 200 // (see canSplit()). 201 class BCECmpBlock { 202 public: 203 typedef SmallDenseSet<const Instruction *, 8> InstructionSet; 204 205 BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts) 206 : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {} 207 208 const BCEAtom &Lhs() const { return Cmp.Lhs; } 209 const BCEAtom &Rhs() const { return Cmp.Rhs; } 210 int SizeBits() const { return Cmp.SizeBits; } 211 212 // Returns true if the block does other works besides comparison. 213 bool doesOtherWork() const; 214 215 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp 216 // instructions in the block. 217 bool canSplit(AliasAnalysis &AA) const; 218 219 // Return true if this all the relevant instructions in the BCE-cmp-block can 220 // be sunk below this instruction. By doing this, we know we can separate the 221 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the 222 // block. 223 bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const; 224 225 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block 226 // instructions. Split the old block and move all non-BCE-cmp-insts into the 227 // new parent block. 228 void split(BasicBlock *NewParent, AliasAnalysis &AA) const; 229 230 // The basic block where this comparison happens. 231 BasicBlock *BB; 232 // Instructions relating to the BCECmp and branch. 233 InstructionSet BlockInsts; 234 // The block requires splitting. 235 bool RequireSplit = false; 236 // Original order of this block in the chain. 237 unsigned OrigOrder = 0; 238 239 private: 240 BCECmp Cmp; 241 }; 242 243 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, 244 AliasAnalysis &AA) const { 245 // If this instruction may clobber the loads and is in middle of the BCE cmp 246 // block instructions, then bail for now. 247 if (Inst->mayWriteToMemory()) { 248 auto MayClobber = [&](LoadInst *LI) { 249 // If a potentially clobbering instruction comes before the load, 250 // we can still safely sink the load. 251 return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) && 252 isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI))); 253 }; 254 if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI)) 255 return false; 256 } 257 // Make sure this instruction does not use any of the BCE cmp block 258 // instructions as operand. 259 return llvm::none_of(Inst->operands(), [&](const Value *Op) { 260 const Instruction *OpI = dyn_cast<Instruction>(Op); 261 return OpI && BlockInsts.contains(OpI); 262 }); 263 } 264 265 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { 266 llvm::SmallVector<Instruction *, 4> OtherInsts; 267 for (Instruction &Inst : *BB) { 268 if (BlockInsts.count(&Inst)) 269 continue; 270 assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block"); 271 // This is a non-BCE-cmp-block instruction. And it can be separated 272 // from the BCE-cmp-block instruction. 273 OtherInsts.push_back(&Inst); 274 } 275 276 // Do the actual spliting. 277 for (Instruction *Inst : reverse(OtherInsts)) 278 Inst->moveBefore(*NewParent, NewParent->begin()); 279 } 280 281 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { 282 for (Instruction &Inst : *BB) { 283 if (!BlockInsts.count(&Inst)) { 284 if (!canSinkBCECmpInst(&Inst, AA)) 285 return false; 286 } 287 } 288 return true; 289 } 290 291 bool BCECmpBlock::doesOtherWork() const { 292 // TODO(courbet): Can we allow some other things ? This is very conservative. 293 // We might be able to get away with anything does not have any side 294 // effects outside of the basic block. 295 // Note: The GEPs and/or loads are not necessarily in the same block. 296 for (const Instruction &Inst : *BB) { 297 if (!BlockInsts.count(&Inst)) 298 return true; 299 } 300 return false; 301 } 302 303 // Visit the given comparison. If this is a comparison between two valid 304 // BCE atoms, returns the comparison. 305 std::optional<BCECmp> visitICmp(const ICmpInst *const CmpI, 306 const ICmpInst::Predicate ExpectedPredicate, 307 BaseIdentifier &BaseId) { 308 // The comparison can only be used once: 309 // - For intermediate blocks, as a branch condition. 310 // - For the final block, as an incoming value for the Phi. 311 // If there are any other uses of the comparison, we cannot merge it with 312 // other comparisons as we would create an orphan use of the value. 313 if (!CmpI->hasOneUse()) { 314 LLVM_DEBUG(dbgs() << "cmp has several uses\n"); 315 return std::nullopt; 316 } 317 if (CmpI->getPredicate() != ExpectedPredicate) 318 return std::nullopt; 319 LLVM_DEBUG(dbgs() << "cmp " 320 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") 321 << "\n"); 322 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); 323 if (!Lhs.BaseId) 324 return std::nullopt; 325 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); 326 if (!Rhs.BaseId) 327 return std::nullopt; 328 const auto &DL = CmpI->getModule()->getDataLayout(); 329 return BCECmp(std::move(Lhs), std::move(Rhs), 330 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI); 331 } 332 333 // Visit the given comparison block. If this is a comparison between two valid 334 // BCE atoms, returns the comparison. 335 std::optional<BCECmpBlock> visitCmpBlock(Value *const Val, 336 BasicBlock *const Block, 337 const BasicBlock *const PhiBlock, 338 BaseIdentifier &BaseId) { 339 if (Block->empty()) 340 return std::nullopt; 341 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); 342 if (!BranchI) 343 return std::nullopt; 344 LLVM_DEBUG(dbgs() << "branch\n"); 345 Value *Cond; 346 ICmpInst::Predicate ExpectedPredicate; 347 if (BranchI->isUnconditional()) { 348 // In this case, we expect an incoming value which is the result of the 349 // comparison. This is the last link in the chain of comparisons (note 350 // that this does not mean that this is the last incoming value, blocks 351 // can be reordered). 352 Cond = Val; 353 ExpectedPredicate = ICmpInst::ICMP_EQ; 354 } else { 355 // In this case, we expect a constant incoming value (the comparison is 356 // chained). 357 const auto *const Const = cast<ConstantInt>(Val); 358 LLVM_DEBUG(dbgs() << "const\n"); 359 if (!Const->isZero()) 360 return std::nullopt; 361 LLVM_DEBUG(dbgs() << "false\n"); 362 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); 363 BasicBlock *const FalseBlock = BranchI->getSuccessor(1); 364 Cond = BranchI->getCondition(); 365 ExpectedPredicate = 366 FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 367 } 368 369 auto *CmpI = dyn_cast<ICmpInst>(Cond); 370 if (!CmpI) 371 return std::nullopt; 372 LLVM_DEBUG(dbgs() << "icmp\n"); 373 374 std::optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId); 375 if (!Result) 376 return std::nullopt; 377 378 BCECmpBlock::InstructionSet BlockInsts( 379 {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI}); 380 if (Result->Lhs.GEP) 381 BlockInsts.insert(Result->Lhs.GEP); 382 if (Result->Rhs.GEP) 383 BlockInsts.insert(Result->Rhs.GEP); 384 return BCECmpBlock(std::move(*Result), Block, BlockInsts); 385 } 386 387 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, 388 BCECmpBlock &&Comparison) { 389 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() 390 << "': Found cmp of " << Comparison.SizeBits() 391 << " bits between " << Comparison.Lhs().BaseId << " + " 392 << Comparison.Lhs().Offset << " and " 393 << Comparison.Rhs().BaseId << " + " 394 << Comparison.Rhs().Offset << "\n"); 395 LLVM_DEBUG(dbgs() << "\n"); 396 Comparison.OrigOrder = Comparisons.size(); 397 Comparisons.push_back(std::move(Comparison)); 398 } 399 400 // A chain of comparisons. 401 class BCECmpChain { 402 public: 403 using ContiguousBlocks = std::vector<BCECmpBlock>; 404 405 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 406 AliasAnalysis &AA); 407 408 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 409 DomTreeUpdater &DTU); 410 411 bool atLeastOneMerged() const { 412 return any_of(MergedBlocks_, 413 [](const auto &Blocks) { return Blocks.size() > 1; }); 414 } 415 416 private: 417 PHINode &Phi_; 418 // The list of all blocks in the chain, grouped by contiguity. 419 std::vector<ContiguousBlocks> MergedBlocks_; 420 // The original entry block (before sorting); 421 BasicBlock *EntryBlock_; 422 }; 423 424 static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) { 425 return First.Lhs().BaseId == Second.Lhs().BaseId && 426 First.Rhs().BaseId == Second.Rhs().BaseId && 427 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && 428 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; 429 } 430 431 static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) { 432 unsigned MinOrigOrder = std::numeric_limits<unsigned>::max(); 433 for (const BCECmpBlock &Block : Blocks) 434 MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder); 435 return MinOrigOrder; 436 } 437 438 /// Given a chain of comparison blocks, groups the blocks into contiguous 439 /// ranges that can be merged together into a single comparison. 440 static std::vector<BCECmpChain::ContiguousBlocks> 441 mergeBlocks(std::vector<BCECmpBlock> &&Blocks) { 442 std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks; 443 444 // Sort to detect continuous offsets. 445 llvm::sort(Blocks, 446 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { 447 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < 448 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); 449 }); 450 451 BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr; 452 for (BCECmpBlock &Block : Blocks) { 453 if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) { 454 MergedBlocks.emplace_back(); 455 LastMergedBlock = &MergedBlocks.back(); 456 } else { 457 LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into " 458 << LastMergedBlock->back().BB->getName() << "\n"); 459 } 460 LastMergedBlock->push_back(std::move(Block)); 461 } 462 463 // While we allow reordering for merging, do not reorder unmerged comparisons. 464 // Doing so may introduce branch on poison. 465 llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks, 466 const BCECmpChain::ContiguousBlocks &RhsBlocks) { 467 return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks); 468 }); 469 470 return MergedBlocks; 471 } 472 473 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, 474 AliasAnalysis &AA) 475 : Phi_(Phi) { 476 assert(!Blocks.empty() && "a chain should have at least one block"); 477 // Now look inside blocks to check for BCE comparisons. 478 std::vector<BCECmpBlock> Comparisons; 479 BaseIdentifier BaseId; 480 for (BasicBlock *const Block : Blocks) { 481 assert(Block && "invalid block"); 482 std::optional<BCECmpBlock> Comparison = visitCmpBlock( 483 Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId); 484 if (!Comparison) { 485 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); 486 return; 487 } 488 if (Comparison->doesOtherWork()) { 489 LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName() 490 << "' does extra work besides compare\n"); 491 if (Comparisons.empty()) { 492 // This is the initial block in the chain, in case this block does other 493 // work, we can try to split the block and move the irrelevant 494 // instructions to the predecessor. 495 // 496 // If this is not the initial block in the chain, splitting it wont 497 // work. 498 // 499 // As once split, there will still be instructions before the BCE cmp 500 // instructions that do other work in program order, i.e. within the 501 // chain before sorting. Unless we can abort the chain at this point 502 // and start anew. 503 // 504 // NOTE: we only handle blocks a with single predecessor for now. 505 if (Comparison->canSplit(AA)) { 506 LLVM_DEBUG(dbgs() 507 << "Split initial block '" << Comparison->BB->getName() 508 << "' that does extra work besides compare\n"); 509 Comparison->RequireSplit = true; 510 enqueueBlock(Comparisons, std::move(*Comparison)); 511 } else { 512 LLVM_DEBUG(dbgs() 513 << "ignoring initial block '" << Comparison->BB->getName() 514 << "' that does extra work besides compare\n"); 515 } 516 continue; 517 } 518 // TODO(courbet): Right now we abort the whole chain. We could be 519 // merging only the blocks that don't do other work and resume the 520 // chain from there. For example: 521 // if (a[0] == b[0]) { // bb1 522 // if (a[1] == b[1]) { // bb2 523 // some_value = 3; //bb3 524 // if (a[2] == b[2]) { //bb3 525 // do a ton of stuff //bb4 526 // } 527 // } 528 // } 529 // 530 // This is: 531 // 532 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ 533 // \ \ \ \ 534 // ne ne ne \ 535 // \ \ \ v 536 // +------------+-----------+----------> bb_phi 537 // 538 // We can only merge the first two comparisons, because bb3* does 539 // "other work" (setting some_value to 3). 540 // We could still merge bb1 and bb2 though. 541 return; 542 } 543 enqueueBlock(Comparisons, std::move(*Comparison)); 544 } 545 546 // It is possible we have no suitable comparison to merge. 547 if (Comparisons.empty()) { 548 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); 549 return; 550 } 551 EntryBlock_ = Comparisons[0].BB; 552 MergedBlocks_ = mergeBlocks(std::move(Comparisons)); 553 } 554 555 namespace { 556 557 // A class to compute the name of a set of merged basic blocks. 558 // This is optimized for the common case of no block names. 559 class MergedBlockName { 560 // Storage for the uncommon case of several named blocks. 561 SmallString<16> Scratch; 562 563 public: 564 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) 565 : Name(makeName(Comparisons)) {} 566 const StringRef Name; 567 568 private: 569 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { 570 assert(!Comparisons.empty() && "no basic block"); 571 // Fast path: only one block, or no names at all. 572 if (Comparisons.size() == 1) 573 return Comparisons[0].BB->getName(); 574 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, 575 [](int i, const BCECmpBlock &Cmp) { 576 return i + Cmp.BB->getName().size(); 577 }); 578 if (size == 0) 579 return StringRef("", 0); 580 581 // Slow path: at least two blocks, at least one block with a name. 582 Scratch.clear(); 583 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for 584 // separators. 585 Scratch.reserve(size + Comparisons.size() - 1); 586 const auto append = [this](StringRef str) { 587 Scratch.append(str.begin(), str.end()); 588 }; 589 append(Comparisons[0].BB->getName()); 590 for (int I = 1, E = Comparisons.size(); I < E; ++I) { 591 const BasicBlock *const BB = Comparisons[I].BB; 592 if (!BB->getName().empty()) { 593 append("+"); 594 append(BB->getName()); 595 } 596 } 597 return Scratch.str(); 598 } 599 }; 600 } // namespace 601 602 // Merges the given contiguous comparison blocks into one memcmp block. 603 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, 604 BasicBlock *const InsertBefore, 605 BasicBlock *const NextCmpBlock, 606 PHINode &Phi, const TargetLibraryInfo &TLI, 607 AliasAnalysis &AA, DomTreeUpdater &DTU) { 608 assert(!Comparisons.empty() && "merging zero comparisons"); 609 LLVMContext &Context = NextCmpBlock->getContext(); 610 const BCECmpBlock &FirstCmp = Comparisons[0]; 611 612 // Create a new cmp block before next cmp block. 613 BasicBlock *const BB = 614 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, 615 NextCmpBlock->getParent(), InsertBefore); 616 IRBuilder<> Builder(BB); 617 // Add the GEPs from the first BCECmpBlock. 618 Value *Lhs, *Rhs; 619 if (FirstCmp.Lhs().GEP) 620 Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); 621 else 622 Lhs = FirstCmp.Lhs().LoadI->getPointerOperand(); 623 if (FirstCmp.Rhs().GEP) 624 Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); 625 else 626 Rhs = FirstCmp.Rhs().LoadI->getPointerOperand(); 627 628 Value *IsEqual = nullptr; 629 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " 630 << BB->getName() << "\n"); 631 632 // If there is one block that requires splitting, we do it now, i.e. 633 // just before we know we will collapse the chain. The instructions 634 // can be executed before any of the instructions in the chain. 635 const auto ToSplit = llvm::find_if( 636 Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; }); 637 if (ToSplit != Comparisons.end()) { 638 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); 639 ToSplit->split(BB, AA); 640 } 641 642 if (Comparisons.size() == 1) { 643 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); 644 // Use clone to keep the metadata 645 Instruction *const LhsLoad = Builder.Insert(FirstCmp.Lhs().LoadI->clone()); 646 Instruction *const RhsLoad = Builder.Insert(FirstCmp.Rhs().LoadI->clone()); 647 LhsLoad->replaceUsesOfWith(LhsLoad->getOperand(0), Lhs); 648 RhsLoad->replaceUsesOfWith(RhsLoad->getOperand(0), Rhs); 649 // There are no blocks to merge, just do the comparison. 650 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); 651 } else { 652 const unsigned TotalSizeBits = std::accumulate( 653 Comparisons.begin(), Comparisons.end(), 0u, 654 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); 655 656 // memcmp expects a 'size_t' argument and returns 'int'. 657 unsigned SizeTBits = TLI.getSizeTSize(*Phi.getModule()); 658 unsigned IntBits = TLI.getIntSize(); 659 660 // Create memcmp() == 0. 661 const auto &DL = Phi.getModule()->getDataLayout(); 662 Value *const MemCmpCall = emitMemCmp( 663 Lhs, Rhs, 664 ConstantInt::get(Builder.getIntNTy(SizeTBits), TotalSizeBits / 8), 665 Builder, DL, &TLI); 666 IsEqual = Builder.CreateICmpEQ( 667 MemCmpCall, ConstantInt::get(Builder.getIntNTy(IntBits), 0)); 668 } 669 670 BasicBlock *const PhiBB = Phi.getParent(); 671 // Add a branch to the next basic block in the chain. 672 if (NextCmpBlock == PhiBB) { 673 // Continue to phi, passing it the comparison result. 674 Builder.CreateBr(PhiBB); 675 Phi.addIncoming(IsEqual, BB); 676 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); 677 } else { 678 // Continue to next block if equal, exit to phi else. 679 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); 680 Phi.addIncoming(ConstantInt::getFalse(Context), BB); 681 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, 682 {DominatorTree::Insert, BB, PhiBB}}); 683 } 684 return BB; 685 } 686 687 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, 688 DomTreeUpdater &DTU) { 689 assert(atLeastOneMerged() && "simplifying trivial BCECmpChain"); 690 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " 691 << EntryBlock_->getName() << "\n"); 692 693 // Effectively merge blocks. We go in the reverse direction from the phi block 694 // so that the next block is always available to branch to. 695 BasicBlock *InsertBefore = EntryBlock_; 696 BasicBlock *NextCmpBlock = Phi_.getParent(); 697 for (const auto &Blocks : reverse(MergedBlocks_)) { 698 InsertBefore = NextCmpBlock = mergeComparisons( 699 Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU); 700 } 701 702 // Replace the original cmp chain with the new cmp chain by pointing all 703 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp 704 // blocks in the old chain unreachable. 705 while (!pred_empty(EntryBlock_)) { 706 BasicBlock* const Pred = *pred_begin(EntryBlock_); 707 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() 708 << "\n"); 709 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); 710 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, 711 {DominatorTree::Insert, Pred, NextCmpBlock}}); 712 } 713 714 // If the old cmp chain was the function entry, we need to update the function 715 // entry. 716 const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock(); 717 if (ChainEntryIsFnEntry && DTU.hasDomTree()) { 718 LLVM_DEBUG(dbgs() << "Changing function entry from " 719 << EntryBlock_->getName() << " to " 720 << NextCmpBlock->getName() << "\n"); 721 DTU.getDomTree().setNewRoot(NextCmpBlock); 722 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); 723 } 724 EntryBlock_ = nullptr; 725 726 // Delete merged blocks. This also removes incoming values in phi. 727 SmallVector<BasicBlock *, 16> DeadBlocks; 728 for (const auto &Blocks : MergedBlocks_) { 729 for (const BCECmpBlock &Block : Blocks) { 730 LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName() 731 << "\n"); 732 DeadBlocks.push_back(Block.BB); 733 } 734 } 735 DeleteDeadBlocks(DeadBlocks, &DTU); 736 737 MergedBlocks_.clear(); 738 return true; 739 } 740 741 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, 742 BasicBlock *const LastBlock, 743 int NumBlocks) { 744 // Walk up from the last block to find other blocks. 745 std::vector<BasicBlock *> Blocks(NumBlocks); 746 assert(LastBlock && "invalid last block"); 747 BasicBlock *CurBlock = LastBlock; 748 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { 749 if (CurBlock->hasAddressTaken()) { 750 // Somebody is jumping to the block through an address, all bets are 751 // off. 752 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 753 << " has its address taken\n"); 754 return {}; 755 } 756 Blocks[BlockIndex] = CurBlock; 757 auto *SinglePredecessor = CurBlock->getSinglePredecessor(); 758 if (!SinglePredecessor) { 759 // The block has two or more predecessors. 760 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 761 << " has two or more predecessors\n"); 762 return {}; 763 } 764 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { 765 // The block does not link back to the phi. 766 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex 767 << " does not link back to the phi\n"); 768 return {}; 769 } 770 CurBlock = SinglePredecessor; 771 } 772 Blocks[0] = CurBlock; 773 return Blocks; 774 } 775 776 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, 777 DomTreeUpdater &DTU) { 778 LLVM_DEBUG(dbgs() << "processPhi()\n"); 779 if (Phi.getNumIncomingValues() <= 1) { 780 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); 781 return false; 782 } 783 // We are looking for something that has the following structure: 784 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ 785 // \ \ \ \ 786 // ne ne ne \ 787 // \ \ \ v 788 // +------------+-----------+----------> bb_phi 789 // 790 // - The last basic block (bb4 here) must branch unconditionally to bb_phi. 791 // It's the only block that contributes a non-constant value to the Phi. 792 // - All other blocks (b1, b2, b3) must have exactly two successors, one of 793 // them being the phi block. 794 // - All intermediate blocks (bb2, bb3) must have only one predecessor. 795 // - Blocks cannot do other work besides the comparison, see doesOtherWork() 796 797 // The blocks are not necessarily ordered in the phi, so we start from the 798 // last block and reconstruct the order. 799 BasicBlock *LastBlock = nullptr; 800 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { 801 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; 802 if (LastBlock) { 803 // There are several non-constant values. 804 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); 805 return false; 806 } 807 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || 808 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != 809 Phi.getIncomingBlock(I)) { 810 // Non-constant incoming value is not from a cmp instruction or not 811 // produced by the last block. We could end up processing the value 812 // producing block more than once. 813 // 814 // This is an uncommon case, so we bail. 815 LLVM_DEBUG( 816 dbgs() 817 << "skip: non-constant value not from cmp or not from last block.\n"); 818 return false; 819 } 820 LastBlock = Phi.getIncomingBlock(I); 821 } 822 if (!LastBlock) { 823 // There is no non-constant block. 824 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); 825 return false; 826 } 827 if (LastBlock->getSingleSuccessor() != Phi.getParent()) { 828 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); 829 return false; 830 } 831 832 const auto Blocks = 833 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); 834 if (Blocks.empty()) return false; 835 BCECmpChain CmpChain(Blocks, Phi, AA); 836 837 if (!CmpChain.atLeastOneMerged()) { 838 LLVM_DEBUG(dbgs() << "skip: nothing merged\n"); 839 return false; 840 } 841 842 return CmpChain.simplify(TLI, AA, DTU); 843 } 844 845 static bool runImpl(Function &F, const TargetLibraryInfo &TLI, 846 const TargetTransformInfo &TTI, AliasAnalysis &AA, 847 DominatorTree *DT) { 848 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); 849 850 // We only try merging comparisons if the target wants to expand memcmp later. 851 // The rationale is to avoid turning small chains into memcmp calls. 852 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) 853 return false; 854 855 // If we don't have memcmp avaiable we can't emit calls to it. 856 if (!TLI.has(LibFunc_memcmp)) 857 return false; 858 859 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, 860 DomTreeUpdater::UpdateStrategy::Eager); 861 862 bool MadeChange = false; 863 864 for (BasicBlock &BB : llvm::drop_begin(F)) { 865 // A Phi operation is always first in a basic block. 866 if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin())) 867 MadeChange |= processPhi(*Phi, TLI, AA, DTU); 868 } 869 870 return MadeChange; 871 } 872 873 class MergeICmpsLegacyPass : public FunctionPass { 874 public: 875 static char ID; 876 877 MergeICmpsLegacyPass() : FunctionPass(ID) { 878 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); 879 } 880 881 bool runOnFunction(Function &F) override { 882 if (skipFunction(F)) return false; 883 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 884 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 885 // MergeICmps does not need the DominatorTree, but we update it if it's 886 // already available. 887 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 888 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 889 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); 890 } 891 892 private: 893 void getAnalysisUsage(AnalysisUsage &AU) const override { 894 AU.addRequired<TargetLibraryInfoWrapperPass>(); 895 AU.addRequired<TargetTransformInfoWrapperPass>(); 896 AU.addRequired<AAResultsWrapperPass>(); 897 AU.addPreserved<GlobalsAAWrapperPass>(); 898 AU.addPreserved<DominatorTreeWrapperPass>(); 899 } 900 }; 901 902 } // namespace 903 904 char MergeICmpsLegacyPass::ID = 0; 905 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", 906 "Merge contiguous icmps into a memcmp", false, false) 907 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 908 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 909 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 910 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", 911 "Merge contiguous icmps into a memcmp", false, false) 912 913 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } 914 915 PreservedAnalyses MergeICmpsPass::run(Function &F, 916 FunctionAnalysisManager &AM) { 917 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 918 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 919 auto &AA = AM.getResult<AAManager>(F); 920 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 921 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); 922 if (!MadeChanges) 923 return PreservedAnalyses::all(); 924 PreservedAnalyses PA; 925 PA.preserve<DominatorTreeAnalysis>(); 926 return PA; 927 } 928