xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 093cf790569775b80662926efea6d9d3464bde94)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
12 //
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 //  - There are less jumps, and therefore less opportunities for mispredictions
17 //    and I-cache misses.
18 //  - Code size is smaller, both because jumps are removed and because the
19 //    encoding of a 2*n byte compare is smaller than that of two n-byte
20 //    compares.
21 //
22 // Example:
23 //
24 //  struct S {
25 //    int a;
26 //    char b;
27 //    char c;
28 //    uint16_t d;
29 //    bool operator==(const S& o) const {
30 //      return a == o.a && b == o.b && c == o.c && d == o.d;
31 //    }
32 //  };
33 //
34 //  Is optimized as :
35 //
36 //    bool S::operator==(const S& o) const {
37 //      return memcmp(this, &o, 8) == 0;
38 //    }
39 //
40 //  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
58 #include <algorithm>
59 #include <numeric>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 #define DEBUG_TYPE "mergeicmps"
68 
69 // Returns true if the instruction is a simple load or a simple store
70 static bool isSimpleLoadOrStore(const Instruction *I) {
71   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
72     return LI->isSimple();
73   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
74     return SI->isSimple();
75   return false;
76 }
77 
78 // A BCE atom "Binary Compare Expression Atom" represents an integer load
79 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
80 // at the top.
81 struct BCEAtom {
82   BCEAtom() = default;
83   BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
84       : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
85 
86   BCEAtom(const BCEAtom &) = delete;
87   BCEAtom &operator=(const BCEAtom &) = delete;
88 
89   BCEAtom(BCEAtom &&that) = default;
90   BCEAtom &operator=(BCEAtom &&that) {
91     if (this == &that)
92       return *this;
93     GEP = that.GEP;
94     LoadI = that.LoadI;
95     BaseId = that.BaseId;
96     Offset = std::move(that.Offset);
97     return *this;
98   }
99 
100   // We want to order BCEAtoms by (Base, Offset). However we cannot use
101   // the pointer values for Base because these are non-deterministic.
102   // To make sure that the sort order is stable, we first assign to each atom
103   // base value an index based on its order of appearance in the chain of
104   // comparisons. We call this index `BaseOrdering`. For example, for:
105   //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
106   //    |  block 1 |    |  block 2 |    |  block 3 |
107   // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
108   // which is before block 2.
109   // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
110   bool operator<(const BCEAtom &O) const {
111     return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
112   }
113 
114   GetElementPtrInst *GEP = nullptr;
115   LoadInst *LoadI = nullptr;
116   unsigned BaseId = 0;
117   APInt Offset;
118 };
119 
120 // A class that assigns increasing ids to values in the order in which they are
121 // seen. See comment in `BCEAtom::operator<()``.
122 class BaseIdentifier {
123 public:
124   // Returns the id for value `Base`, after assigning one if `Base` has not been
125   // seen before.
126   int getBaseId(const Value *Base) {
127     assert(Base && "invalid base");
128     const auto Insertion = BaseToIndex.try_emplace(Base, Order);
129     if (Insertion.second)
130       ++Order;
131     return Insertion.first->second;
132   }
133 
134 private:
135   unsigned Order = 1;
136   DenseMap<const Value*, int> BaseToIndex;
137 };
138 
139 // If this value is a load from a constant offset w.r.t. a base address, and
140 // there are no other users of the load or address, returns the base address and
141 // the offset.
142 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
143   auto *const LoadI = dyn_cast<LoadInst>(Val);
144   if (!LoadI)
145     return {};
146   LLVM_DEBUG(dbgs() << "load\n");
147   if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
148     LLVM_DEBUG(dbgs() << "used outside of block\n");
149     return {};
150   }
151   // Do not optimize atomic loads to non-atomic memcmp
152   if (!LoadI->isSimple()) {
153     LLVM_DEBUG(dbgs() << "volatile or atomic\n");
154     return {};
155   }
156   Value *const Addr = LoadI->getOperand(0);
157   auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
158   if (!GEP)
159     return {};
160   LLVM_DEBUG(dbgs() << "GEP\n");
161   if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
162     LLVM_DEBUG(dbgs() << "used outside of block\n");
163     return {};
164   }
165   const auto &DL = GEP->getModule()->getDataLayout();
166   if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
167     LLVM_DEBUG(dbgs() << "not dereferenceable\n");
168     // We need to make sure that we can do comparison in any order, so we
169     // require memory to be unconditionnally dereferencable.
170     return {};
171   }
172   APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
173   if (!GEP->accumulateConstantOffset(DL, Offset))
174     return {};
175   return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
176                  Offset);
177 }
178 
179 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
180 // top.
181 // Note: the terminology is misleading: the comparison is symmetric, so there
182 // is no real {l/r}hs. What we want though is to have the same base on the
183 // left (resp. right), so that we can detect consecutive loads. To ensure this
184 // we put the smallest atom on the left.
185 struct BCECmp {
186   BCEAtom Lhs;
187   BCEAtom Rhs;
188   int SizeBits;
189   const ICmpInst *CmpI;
190 
191   BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
192       : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
193     if (Rhs < Lhs) std::swap(Rhs, Lhs);
194   }
195 };
196 
197 // A basic block with a comparison between two BCE atoms.
198 // The block might do extra work besides the atom comparison, in which case
199 // doesOtherWork() returns true. Under some conditions, the block can be
200 // split into the atom comparison part and the "other work" part
201 // (see canSplit()).
202 class BCECmpBlock {
203  public:
204   typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
205 
206   BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
207       : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
208 
209   const BCEAtom &Lhs() const { return Cmp.Lhs; }
210   const BCEAtom &Rhs() const { return Cmp.Rhs; }
211   int SizeBits() const { return Cmp.SizeBits; }
212 
213   // Returns true if the block does other works besides comparison.
214   bool doesOtherWork() const;
215 
216   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217   // instructions in the block.
218   bool canSplit(AliasAnalysis &AA) const;
219 
220   // Return true if this all the relevant instructions in the BCE-cmp-block can
221   // be sunk below this instruction. By doing this, we know we can separate the
222   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
223   // block.
224   bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
225 
226   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
227   // instructions. Split the old block and move all non-BCE-cmp-insts into the
228   // new parent block.
229   void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
230 
231   // The basic block where this comparison happens.
232   BasicBlock *BB;
233   // Instructions relating to the BCECmp and branch.
234   InstructionSet BlockInsts;
235   // The block requires splitting.
236   bool RequireSplit = false;
237 
238 private:
239   BCECmp Cmp;
240 };
241 
242 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
243                                     AliasAnalysis &AA) const {
244   // If this instruction may clobber the loads and is in middle of the BCE cmp
245   // block instructions, then bail for now.
246   if (Inst->mayWriteToMemory()) {
247     // Bail if this is not a simple load or store
248     if (!isSimpleLoadOrStore(Inst))
249       return false;
250     // Disallow stores that might alias the BCE operands
251     MemoryLocation LLoc = MemoryLocation::get(Cmp.Lhs.LoadI);
252     MemoryLocation RLoc = MemoryLocation::get(Cmp.Rhs.LoadI);
253     if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
254         isModSet(AA.getModRefInfo(Inst, RLoc)))
255       return false;
256   }
257   // Make sure this instruction does not use any of the BCE cmp block
258   // instructions as operand.
259   return llvm::none_of(Inst->operands(), [&](const Value *Op) {
260     const Instruction *OpI = dyn_cast<Instruction>(Op);
261     return OpI && BlockInsts.contains(OpI);
262   });
263 }
264 
265 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
266   llvm::SmallVector<Instruction *, 4> OtherInsts;
267   for (Instruction &Inst : *BB) {
268     if (BlockInsts.count(&Inst))
269       continue;
270     assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
271     // This is a non-BCE-cmp-block instruction. And it can be separated
272     // from the BCE-cmp-block instruction.
273     OtherInsts.push_back(&Inst);
274   }
275 
276   // Do the actual spliting.
277   for (Instruction *Inst : reverse(OtherInsts)) {
278     Inst->moveBefore(&*NewParent->begin());
279   }
280 }
281 
282 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
283   for (Instruction &Inst : *BB) {
284     if (!BlockInsts.count(&Inst)) {
285       if (!canSinkBCECmpInst(&Inst, AA))
286         return false;
287     }
288   }
289   return true;
290 }
291 
292 bool BCECmpBlock::doesOtherWork() const {
293   // TODO(courbet): Can we allow some other things ? This is very conservative.
294   // We might be able to get away with anything does not have any side
295   // effects outside of the basic block.
296   // Note: The GEPs and/or loads are not necessarily in the same block.
297   for (const Instruction &Inst : *BB) {
298     if (!BlockInsts.count(&Inst))
299       return true;
300   }
301   return false;
302 }
303 
304 // Visit the given comparison. If this is a comparison between two valid
305 // BCE atoms, returns the comparison.
306 Optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
307                            const ICmpInst::Predicate ExpectedPredicate,
308                            BaseIdentifier &BaseId) {
309   // The comparison can only be used once:
310   //  - For intermediate blocks, as a branch condition.
311   //  - For the final block, as an incoming value for the Phi.
312   // If there are any other uses of the comparison, we cannot merge it with
313   // other comparisons as we would create an orphan use of the value.
314   if (!CmpI->hasOneUse()) {
315     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
316     return None;
317   }
318   if (CmpI->getPredicate() != ExpectedPredicate)
319     return None;
320   LLVM_DEBUG(dbgs() << "cmp "
321                     << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
322                     << "\n");
323   auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
324   if (!Lhs.BaseId)
325     return None;
326   auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
327   if (!Rhs.BaseId)
328     return None;
329   const auto &DL = CmpI->getModule()->getDataLayout();
330   return BCECmp(std::move(Lhs), std::move(Rhs),
331                 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
332 }
333 
334 // Visit the given comparison block. If this is a comparison between two valid
335 // BCE atoms, returns the comparison.
336 Optional<BCECmpBlock> visitCmpBlock(Value *const Val, BasicBlock *const Block,
337                                     const BasicBlock *const PhiBlock,
338                                     BaseIdentifier &BaseId) {
339   if (Block->empty()) return None;
340   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
341   if (!BranchI) return None;
342   LLVM_DEBUG(dbgs() << "branch\n");
343   Value *Cond;
344   ICmpInst::Predicate ExpectedPredicate;
345   if (BranchI->isUnconditional()) {
346     // In this case, we expect an incoming value which is the result of the
347     // comparison. This is the last link in the chain of comparisons (note
348     // that this does not mean that this is the last incoming value, blocks
349     // can be reordered).
350     Cond = Val;
351     ExpectedPredicate = ICmpInst::ICMP_EQ;
352   } else {
353     // In this case, we expect a constant incoming value (the comparison is
354     // chained).
355     const auto *const Const = cast<ConstantInt>(Val);
356     LLVM_DEBUG(dbgs() << "const\n");
357     if (!Const->isZero()) return None;
358     LLVM_DEBUG(dbgs() << "false\n");
359     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
360     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
361     Cond = BranchI->getCondition();
362     ExpectedPredicate =
363         FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
364   }
365 
366   auto *CmpI = dyn_cast<ICmpInst>(Cond);
367   if (!CmpI) return None;
368   LLVM_DEBUG(dbgs() << "icmp\n");
369 
370   Optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
371   if (!Result)
372     return None;
373 
374   BCECmpBlock::InstructionSet BlockInsts(
375       {Result->Lhs.GEP, Result->Rhs.GEP, Result->Lhs.LoadI, Result->Rhs.LoadI,
376        Result->CmpI, BranchI});
377   return BCECmpBlock(std::move(*Result), Block, BlockInsts);
378 }
379 
380 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
381                                 BCECmpBlock &&Comparison) {
382   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
383                     << "': Found cmp of " << Comparison.SizeBits()
384                     << " bits between " << Comparison.Lhs().BaseId << " + "
385                     << Comparison.Lhs().Offset << " and "
386                     << Comparison.Rhs().BaseId << " + "
387                     << Comparison.Rhs().Offset << "\n");
388   LLVM_DEBUG(dbgs() << "\n");
389   Comparisons.push_back(std::move(Comparison));
390 }
391 
392 // A chain of comparisons.
393 class BCECmpChain {
394  public:
395    BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
396                AliasAnalysis &AA);
397 
398    int size() const { return Comparisons_.size(); }
399 
400 #ifdef MERGEICMPS_DOT_ON
401   void dump() const;
402 #endif  // MERGEICMPS_DOT_ON
403 
404   bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
405                 DomTreeUpdater &DTU);
406 
407 private:
408   static bool IsContiguous(const BCECmpBlock &First,
409                            const BCECmpBlock &Second) {
410     return First.Lhs().BaseId == Second.Lhs().BaseId &&
411            First.Rhs().BaseId == Second.Rhs().BaseId &&
412            First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
413            First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
414   }
415 
416   PHINode &Phi_;
417   std::vector<BCECmpBlock> Comparisons_;
418   // The original entry block (before sorting);
419   BasicBlock *EntryBlock_;
420 };
421 
422 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
423                          AliasAnalysis &AA)
424     : Phi_(Phi) {
425   assert(!Blocks.empty() && "a chain should have at least one block");
426   // Now look inside blocks to check for BCE comparisons.
427   std::vector<BCECmpBlock> Comparisons;
428   BaseIdentifier BaseId;
429   for (BasicBlock *const Block : Blocks) {
430     assert(Block && "invalid block");
431     Optional<BCECmpBlock> Comparison = visitCmpBlock(
432         Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
433     if (!Comparison) {
434       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
435       return;
436     }
437     if (Comparison->doesOtherWork()) {
438       LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
439                         << "' does extra work besides compare\n");
440       if (Comparisons.empty()) {
441         // This is the initial block in the chain, in case this block does other
442         // work, we can try to split the block and move the irrelevant
443         // instructions to the predecessor.
444         //
445         // If this is not the initial block in the chain, splitting it wont
446         // work.
447         //
448         // As once split, there will still be instructions before the BCE cmp
449         // instructions that do other work in program order, i.e. within the
450         // chain before sorting. Unless we can abort the chain at this point
451         // and start anew.
452         //
453         // NOTE: we only handle blocks a with single predecessor for now.
454         if (Comparison->canSplit(AA)) {
455           LLVM_DEBUG(dbgs()
456                      << "Split initial block '" << Comparison->BB->getName()
457                      << "' that does extra work besides compare\n");
458           Comparison->RequireSplit = true;
459           enqueueBlock(Comparisons, std::move(*Comparison));
460         } else {
461           LLVM_DEBUG(dbgs()
462                      << "ignoring initial block '" << Comparison->BB->getName()
463                      << "' that does extra work besides compare\n");
464         }
465         continue;
466       }
467       // TODO(courbet): Right now we abort the whole chain. We could be
468       // merging only the blocks that don't do other work and resume the
469       // chain from there. For example:
470       //  if (a[0] == b[0]) {  // bb1
471       //    if (a[1] == b[1]) {  // bb2
472       //      some_value = 3; //bb3
473       //      if (a[2] == b[2]) { //bb3
474       //        do a ton of stuff  //bb4
475       //      }
476       //    }
477       //  }
478       //
479       // This is:
480       //
481       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
482       //  \            \           \               \
483       //   ne           ne          ne              \
484       //    \            \           \               v
485       //     +------------+-----------+----------> bb_phi
486       //
487       // We can only merge the first two comparisons, because bb3* does
488       // "other work" (setting some_value to 3).
489       // We could still merge bb1 and bb2 though.
490       return;
491     }
492     enqueueBlock(Comparisons, std::move(*Comparison));
493   }
494 
495   // It is possible we have no suitable comparison to merge.
496   if (Comparisons.empty()) {
497     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
498     return;
499   }
500   EntryBlock_ = Comparisons[0].BB;
501   Comparisons_ = std::move(Comparisons);
502 #ifdef MERGEICMPS_DOT_ON
503   errs() << "BEFORE REORDERING:\n\n";
504   dump();
505 #endif  // MERGEICMPS_DOT_ON
506   // Reorder blocks by LHS. We can do that without changing the
507   // semantics because we are only accessing dereferencable memory.
508   llvm::sort(Comparisons_,
509              [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
510                return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
511                       std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
512              });
513 #ifdef MERGEICMPS_DOT_ON
514   errs() << "AFTER REORDERING:\n\n";
515   dump();
516 #endif  // MERGEICMPS_DOT_ON
517 }
518 
519 #ifdef MERGEICMPS_DOT_ON
520 void BCECmpChain::dump() const {
521   errs() << "digraph dag {\n";
522   errs() << " graph [bgcolor=transparent];\n";
523   errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
524   errs() << " edge [color=black];\n";
525   for (size_t I = 0; I < Comparisons_.size(); ++I) {
526     const auto &Comparison = Comparisons_[I];
527     errs() << " \"" << I << "\" [label=\"%"
528            << Comparison.Lhs().Base()->getName() << " + "
529            << Comparison.Lhs().Offset << " == %"
530            << Comparison.Rhs().Base()->getName() << " + "
531            << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
532            << " bytes)\"];\n";
533     const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
534     if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
535     errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
536   }
537   errs() << " \"Phi\" [label=\"Phi\"];\n";
538   errs() << "}\n\n";
539 }
540 #endif  // MERGEICMPS_DOT_ON
541 
542 namespace {
543 
544 // A class to compute the name of a set of merged basic blocks.
545 // This is optimized for the common case of no block names.
546 class MergedBlockName {
547   // Storage for the uncommon case of several named blocks.
548   SmallString<16> Scratch;
549 
550 public:
551   explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
552       : Name(makeName(Comparisons)) {}
553   const StringRef Name;
554 
555 private:
556   StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
557     assert(!Comparisons.empty() && "no basic block");
558     // Fast path: only one block, or no names at all.
559     if (Comparisons.size() == 1)
560       return Comparisons[0].BB->getName();
561     const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
562                                      [](int i, const BCECmpBlock &Cmp) {
563                                        return i + Cmp.BB->getName().size();
564                                      });
565     if (size == 0)
566       return StringRef("", 0);
567 
568     // Slow path: at least two blocks, at least one block with a name.
569     Scratch.clear();
570     // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
571     // separators.
572     Scratch.reserve(size + Comparisons.size() - 1);
573     const auto append = [this](StringRef str) {
574       Scratch.append(str.begin(), str.end());
575     };
576     append(Comparisons[0].BB->getName());
577     for (int I = 1, E = Comparisons.size(); I < E; ++I) {
578       const BasicBlock *const BB = Comparisons[I].BB;
579       if (!BB->getName().empty()) {
580         append("+");
581         append(BB->getName());
582       }
583     }
584     return Scratch.str();
585   }
586 };
587 } // namespace
588 
589 // Merges the given contiguous comparison blocks into one memcmp block.
590 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
591                                     BasicBlock *const InsertBefore,
592                                     BasicBlock *const NextCmpBlock,
593                                     PHINode &Phi, const TargetLibraryInfo &TLI,
594                                     AliasAnalysis &AA, DomTreeUpdater &DTU) {
595   assert(!Comparisons.empty() && "merging zero comparisons");
596   LLVMContext &Context = NextCmpBlock->getContext();
597   const BCECmpBlock &FirstCmp = Comparisons[0];
598 
599   // Create a new cmp block before next cmp block.
600   BasicBlock *const BB =
601       BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
602                          NextCmpBlock->getParent(), InsertBefore);
603   IRBuilder<> Builder(BB);
604   // Add the GEPs from the first BCECmpBlock.
605   Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
606   Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
607 
608   Value *IsEqual = nullptr;
609   LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
610                     << BB->getName() << "\n");
611 
612   // If there is one block that requires splitting, we do it now, i.e.
613   // just before we know we will collapse the chain. The instructions
614   // can be executed before any of the instructions in the chain.
615   const auto ToSplit = llvm::find_if(
616       Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
617   if (ToSplit != Comparisons.end()) {
618     LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
619     ToSplit->split(BB, AA);
620   }
621 
622   if (Comparisons.size() == 1) {
623     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
624     Value *const LhsLoad =
625         Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
626     Value *const RhsLoad =
627         Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
628     // There are no blocks to merge, just do the comparison.
629     IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
630   } else {
631     const unsigned TotalSizeBits = std::accumulate(
632         Comparisons.begin(), Comparisons.end(), 0u,
633         [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
634 
635     // Create memcmp() == 0.
636     const auto &DL = Phi.getModule()->getDataLayout();
637     Value *const MemCmpCall = emitMemCmp(
638         Lhs, Rhs,
639         ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
640         DL, &TLI);
641     IsEqual = Builder.CreateICmpEQ(
642         MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
643   }
644 
645   BasicBlock *const PhiBB = Phi.getParent();
646   // Add a branch to the next basic block in the chain.
647   if (NextCmpBlock == PhiBB) {
648     // Continue to phi, passing it the comparison result.
649     Builder.CreateBr(PhiBB);
650     Phi.addIncoming(IsEqual, BB);
651     DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
652   } else {
653     // Continue to next block if equal, exit to phi else.
654     Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
655     Phi.addIncoming(ConstantInt::getFalse(Context), BB);
656     DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
657                       {DominatorTree::Insert, BB, PhiBB}});
658   }
659   return BB;
660 }
661 
662 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
663                            DomTreeUpdater &DTU) {
664   assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
665   // First pass to check if there is at least one merge. If not, we don't do
666   // anything and we keep analysis passes intact.
667   const auto AtLeastOneMerged = [this]() {
668     for (size_t I = 1; I < Comparisons_.size(); ++I) {
669       if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
670         return true;
671     }
672     return false;
673   };
674   if (!AtLeastOneMerged())
675     return false;
676 
677   LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
678                     << EntryBlock_->getName() << "\n");
679 
680   // Effectively merge blocks. We go in the reverse direction from the phi block
681   // so that the next block is always available to branch to.
682   const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
683                                                   BasicBlock *InsertBefore,
684                                                   BasicBlock *Next) {
685     return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
686                             InsertBefore, Next, Phi_, TLI, AA, DTU);
687   };
688   int NumMerged = 1;
689   BasicBlock *NextCmpBlock = Phi_.getParent();
690   for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
691     if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
692       LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
693                         << " into " << Comparisons_[I + 1].BB->getName()
694                         << "\n");
695       ++NumMerged;
696     } else {
697       NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
698       NumMerged = 1;
699     }
700   }
701   // Insert the entry block for the new chain before the old entry block.
702   // If the old entry block was the function entry, this ensures that the new
703   // entry can become the function entry.
704   NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
705 
706   // Replace the original cmp chain with the new cmp chain by pointing all
707   // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
708   // blocks in the old chain unreachable.
709   while (!pred_empty(EntryBlock_)) {
710     BasicBlock* const Pred = *pred_begin(EntryBlock_);
711     LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
712                       << "\n");
713     Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
714     DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
715                       {DominatorTree::Insert, Pred, NextCmpBlock}});
716   }
717 
718   // If the old cmp chain was the function entry, we need to update the function
719   // entry.
720   const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
721   if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
722     LLVM_DEBUG(dbgs() << "Changing function entry from "
723                       << EntryBlock_->getName() << " to "
724                       << NextCmpBlock->getName() << "\n");
725     DTU.getDomTree().setNewRoot(NextCmpBlock);
726     DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
727   }
728   EntryBlock_ = nullptr;
729 
730   // Delete merged blocks. This also removes incoming values in phi.
731   SmallVector<BasicBlock *, 16> DeadBlocks;
732   for (auto &Cmp : Comparisons_) {
733     LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
734     DeadBlocks.push_back(Cmp.BB);
735   }
736   DeleteDeadBlocks(DeadBlocks, &DTU);
737 
738   Comparisons_.clear();
739   return true;
740 }
741 
742 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
743                                            BasicBlock *const LastBlock,
744                                            int NumBlocks) {
745   // Walk up from the last block to find other blocks.
746   std::vector<BasicBlock *> Blocks(NumBlocks);
747   assert(LastBlock && "invalid last block");
748   BasicBlock *CurBlock = LastBlock;
749   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
750     if (CurBlock->hasAddressTaken()) {
751       // Somebody is jumping to the block through an address, all bets are
752       // off.
753       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
754                         << " has its address taken\n");
755       return {};
756     }
757     Blocks[BlockIndex] = CurBlock;
758     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
759     if (!SinglePredecessor) {
760       // The block has two or more predecessors.
761       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
762                         << " has two or more predecessors\n");
763       return {};
764     }
765     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
766       // The block does not link back to the phi.
767       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
768                         << " does not link back to the phi\n");
769       return {};
770     }
771     CurBlock = SinglePredecessor;
772   }
773   Blocks[0] = CurBlock;
774   return Blocks;
775 }
776 
777 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
778                 DomTreeUpdater &DTU) {
779   LLVM_DEBUG(dbgs() << "processPhi()\n");
780   if (Phi.getNumIncomingValues() <= 1) {
781     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
782     return false;
783   }
784   // We are looking for something that has the following structure:
785   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
786   //     \            \           \               \
787   //      ne           ne          ne              \
788   //       \            \           \               v
789   //        +------------+-----------+----------> bb_phi
790   //
791   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
792   //    It's the only block that contributes a non-constant value to the Phi.
793   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
794   //    them being the phi block.
795   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
796   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
797 
798   // The blocks are not necessarily ordered in the phi, so we start from the
799   // last block and reconstruct the order.
800   BasicBlock *LastBlock = nullptr;
801   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
802     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
803     if (LastBlock) {
804       // There are several non-constant values.
805       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
806       return false;
807     }
808     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
809         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
810             Phi.getIncomingBlock(I)) {
811       // Non-constant incoming value is not from a cmp instruction or not
812       // produced by the last block. We could end up processing the value
813       // producing block more than once.
814       //
815       // This is an uncommon case, so we bail.
816       LLVM_DEBUG(
817           dbgs()
818           << "skip: non-constant value not from cmp or not from last block.\n");
819       return false;
820     }
821     LastBlock = Phi.getIncomingBlock(I);
822   }
823   if (!LastBlock) {
824     // There is no non-constant block.
825     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
826     return false;
827   }
828   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
829     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
830     return false;
831   }
832 
833   const auto Blocks =
834       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
835   if (Blocks.empty()) return false;
836   BCECmpChain CmpChain(Blocks, Phi, AA);
837 
838   if (CmpChain.size() < 2) {
839     LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
840     return false;
841   }
842 
843   return CmpChain.simplify(TLI, AA, DTU);
844 }
845 
846 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
847                     const TargetTransformInfo &TTI, AliasAnalysis &AA,
848                     DominatorTree *DT) {
849   LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
850 
851   // We only try merging comparisons if the target wants to expand memcmp later.
852   // The rationale is to avoid turning small chains into memcmp calls.
853   if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
854     return false;
855 
856   // If we don't have memcmp avaiable we can't emit calls to it.
857   if (!TLI.has(LibFunc_memcmp))
858     return false;
859 
860   DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
861                      DomTreeUpdater::UpdateStrategy::Eager);
862 
863   bool MadeChange = false;
864 
865   for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
866     // A Phi operation is always first in a basic block.
867     if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
868       MadeChange |= processPhi(*Phi, TLI, AA, DTU);
869   }
870 
871   return MadeChange;
872 }
873 
874 class MergeICmpsLegacyPass : public FunctionPass {
875 public:
876   static char ID;
877 
878   MergeICmpsLegacyPass() : FunctionPass(ID) {
879     initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
880   }
881 
882   bool runOnFunction(Function &F) override {
883     if (skipFunction(F)) return false;
884     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
885     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
886     // MergeICmps does not need the DominatorTree, but we update it if it's
887     // already available.
888     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
889     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
890     return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
891   }
892 
893  private:
894   void getAnalysisUsage(AnalysisUsage &AU) const override {
895     AU.addRequired<TargetLibraryInfoWrapperPass>();
896     AU.addRequired<TargetTransformInfoWrapperPass>();
897     AU.addRequired<AAResultsWrapperPass>();
898     AU.addPreserved<GlobalsAAWrapperPass>();
899     AU.addPreserved<DominatorTreeWrapperPass>();
900   }
901 };
902 
903 } // namespace
904 
905 char MergeICmpsLegacyPass::ID = 0;
906 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
907                       "Merge contiguous icmps into a memcmp", false, false)
908 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
909 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
911 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
912                     "Merge contiguous icmps into a memcmp", false, false)
913 
914 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
915 
916 PreservedAnalyses MergeICmpsPass::run(Function &F,
917                                       FunctionAnalysisManager &AM) {
918   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
919   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
920   auto &AA = AM.getResult<AAManager>(F);
921   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
922   const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
923   if (!MadeChanges)
924     return PreservedAnalyses::all();
925   PreservedAnalyses PA;
926   PA.preserve<DominatorTreeAnalysis>();
927   return PA;
928 }
929