xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MergeICmps.cpp (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
12 //
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 //  - There are less jumps, and therefore less opportunities for mispredictions
17 //    and I-cache misses.
18 //  - Code size is smaller, both because jumps are removed and because the
19 //    encoding of a 2*n byte compare is smaller than that of two n-byte
20 //    compares.
21 //
22 // Example:
23 //
24 //  struct S {
25 //    int a;
26 //    char b;
27 //    char c;
28 //    uint16_t d;
29 //    bool operator==(const S& o) const {
30 //      return a == o.a && b == o.b && c == o.c && d == o.d;
31 //    }
32 //  };
33 //
34 //  Is optimized as :
35 //
36 //    bool S::operator==(const S& o) const {
37 //      return memcmp(this, &o, 8) == 0;
38 //    }
39 //
40 //  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/Analysis/DomTreeUpdater.h"
47 #include "llvm/Analysis/GlobalsModRef.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/BuildLibCalls.h"
60 #include <algorithm>
61 #include <numeric>
62 #include <utility>
63 #include <vector>
64 
65 using namespace llvm;
66 
67 namespace {
68 
69 #define DEBUG_TYPE "mergeicmps"
70 
71 // A BCE atom "Binary Compare Expression Atom" represents an integer load
72 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
73 // at the top.
74 struct BCEAtom {
75   BCEAtom() = default;
76   BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
77       : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
78 
79   BCEAtom(const BCEAtom &) = delete;
80   BCEAtom &operator=(const BCEAtom &) = delete;
81 
82   BCEAtom(BCEAtom &&that) = default;
83   BCEAtom &operator=(BCEAtom &&that) {
84     if (this == &that)
85       return *this;
86     GEP = that.GEP;
87     LoadI = that.LoadI;
88     BaseId = that.BaseId;
89     Offset = std::move(that.Offset);
90     return *this;
91   }
92 
93   // We want to order BCEAtoms by (Base, Offset). However we cannot use
94   // the pointer values for Base because these are non-deterministic.
95   // To make sure that the sort order is stable, we first assign to each atom
96   // base value an index based on its order of appearance in the chain of
97   // comparisons. We call this index `BaseOrdering`. For example, for:
98   //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
99   //    |  block 1 |    |  block 2 |    |  block 3 |
100   // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
101   // which is before block 2.
102   // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
103   bool operator<(const BCEAtom &O) const {
104     return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
105   }
106 
107   GetElementPtrInst *GEP = nullptr;
108   LoadInst *LoadI = nullptr;
109   unsigned BaseId = 0;
110   APInt Offset;
111 };
112 
113 // A class that assigns increasing ids to values in the order in which they are
114 // seen. See comment in `BCEAtom::operator<()``.
115 class BaseIdentifier {
116 public:
117   // Returns the id for value `Base`, after assigning one if `Base` has not been
118   // seen before.
119   int getBaseId(const Value *Base) {
120     assert(Base && "invalid base");
121     const auto Insertion = BaseToIndex.try_emplace(Base, Order);
122     if (Insertion.second)
123       ++Order;
124     return Insertion.first->second;
125   }
126 
127 private:
128   unsigned Order = 1;
129   DenseMap<const Value*, int> BaseToIndex;
130 };
131 
132 // If this value is a load from a constant offset w.r.t. a base address, and
133 // there are no other users of the load or address, returns the base address and
134 // the offset.
135 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
136   auto *const LoadI = dyn_cast<LoadInst>(Val);
137   if (!LoadI)
138     return {};
139   LLVM_DEBUG(dbgs() << "load\n");
140   if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
141     LLVM_DEBUG(dbgs() << "used outside of block\n");
142     return {};
143   }
144   // Do not optimize atomic loads to non-atomic memcmp
145   if (!LoadI->isSimple()) {
146     LLVM_DEBUG(dbgs() << "volatile or atomic\n");
147     return {};
148   }
149   Value *Addr = LoadI->getOperand(0);
150   if (Addr->getType()->getPointerAddressSpace() != 0) {
151     LLVM_DEBUG(dbgs() << "from non-zero AddressSpace\n");
152     return {};
153   }
154   const auto &DL = LoadI->getModule()->getDataLayout();
155   if (!isDereferenceablePointer(Addr, LoadI->getType(), DL)) {
156     LLVM_DEBUG(dbgs() << "not dereferenceable\n");
157     // We need to make sure that we can do comparison in any order, so we
158     // require memory to be unconditionally dereferenceable.
159     return {};
160   }
161 
162   APInt Offset = APInt(DL.getIndexTypeSizeInBits(Addr->getType()), 0);
163   Value *Base = Addr;
164   auto *GEP = dyn_cast<GetElementPtrInst>(Addr);
165   if (GEP) {
166     LLVM_DEBUG(dbgs() << "GEP\n");
167     if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
168       LLVM_DEBUG(dbgs() << "used outside of block\n");
169       return {};
170     }
171     if (!GEP->accumulateConstantOffset(DL, Offset))
172       return {};
173     Base = GEP->getPointerOperand();
174   }
175   return BCEAtom(GEP, LoadI, BaseId.getBaseId(Base), Offset);
176 }
177 
178 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
179 // top.
180 // Note: the terminology is misleading: the comparison is symmetric, so there
181 // is no real {l/r}hs. What we want though is to have the same base on the
182 // left (resp. right), so that we can detect consecutive loads. To ensure this
183 // we put the smallest atom on the left.
184 struct BCECmp {
185   BCEAtom Lhs;
186   BCEAtom Rhs;
187   int SizeBits;
188   const ICmpInst *CmpI;
189 
190   BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
191       : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
192     if (Rhs < Lhs) std::swap(Rhs, Lhs);
193   }
194 };
195 
196 // A basic block with a comparison between two BCE atoms.
197 // The block might do extra work besides the atom comparison, in which case
198 // doesOtherWork() returns true. Under some conditions, the block can be
199 // split into the atom comparison part and the "other work" part
200 // (see canSplit()).
201 class BCECmpBlock {
202  public:
203   typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
204 
205   BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
206       : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
207 
208   const BCEAtom &Lhs() const { return Cmp.Lhs; }
209   const BCEAtom &Rhs() const { return Cmp.Rhs; }
210   int SizeBits() const { return Cmp.SizeBits; }
211 
212   // Returns true if the block does other works besides comparison.
213   bool doesOtherWork() const;
214 
215   // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
216   // instructions in the block.
217   bool canSplit(AliasAnalysis &AA) const;
218 
219   // Return true if this all the relevant instructions in the BCE-cmp-block can
220   // be sunk below this instruction. By doing this, we know we can separate the
221   // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
222   // block.
223   bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
224 
225   // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
226   // instructions. Split the old block and move all non-BCE-cmp-insts into the
227   // new parent block.
228   void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
229 
230   // The basic block where this comparison happens.
231   BasicBlock *BB;
232   // Instructions relating to the BCECmp and branch.
233   InstructionSet BlockInsts;
234   // The block requires splitting.
235   bool RequireSplit = false;
236   // Original order of this block in the chain.
237   unsigned OrigOrder = 0;
238 
239 private:
240   BCECmp Cmp;
241 };
242 
243 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
244                                     AliasAnalysis &AA) const {
245   // If this instruction may clobber the loads and is in middle of the BCE cmp
246   // block instructions, then bail for now.
247   if (Inst->mayWriteToMemory()) {
248     auto MayClobber = [&](LoadInst *LI) {
249       // If a potentially clobbering instruction comes before the load,
250       // we can still safely sink the load.
251       return (Inst->getParent() != LI->getParent() || !Inst->comesBefore(LI)) &&
252              isModSet(AA.getModRefInfo(Inst, MemoryLocation::get(LI)));
253     };
254     if (MayClobber(Cmp.Lhs.LoadI) || MayClobber(Cmp.Rhs.LoadI))
255       return false;
256   }
257   // Make sure this instruction does not use any of the BCE cmp block
258   // instructions as operand.
259   return llvm::none_of(Inst->operands(), [&](const Value *Op) {
260     const Instruction *OpI = dyn_cast<Instruction>(Op);
261     return OpI && BlockInsts.contains(OpI);
262   });
263 }
264 
265 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
266   llvm::SmallVector<Instruction *, 4> OtherInsts;
267   for (Instruction &Inst : *BB) {
268     if (BlockInsts.count(&Inst))
269       continue;
270     assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
271     // This is a non-BCE-cmp-block instruction. And it can be separated
272     // from the BCE-cmp-block instruction.
273     OtherInsts.push_back(&Inst);
274   }
275 
276   // Do the actual spliting.
277   for (Instruction *Inst : reverse(OtherInsts))
278     Inst->moveBefore(*NewParent, NewParent->begin());
279 }
280 
281 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
282   for (Instruction &Inst : *BB) {
283     if (!BlockInsts.count(&Inst)) {
284       if (!canSinkBCECmpInst(&Inst, AA))
285         return false;
286     }
287   }
288   return true;
289 }
290 
291 bool BCECmpBlock::doesOtherWork() const {
292   // TODO(courbet): Can we allow some other things ? This is very conservative.
293   // We might be able to get away with anything does not have any side
294   // effects outside of the basic block.
295   // Note: The GEPs and/or loads are not necessarily in the same block.
296   for (const Instruction &Inst : *BB) {
297     if (!BlockInsts.count(&Inst))
298       return true;
299   }
300   return false;
301 }
302 
303 // Visit the given comparison. If this is a comparison between two valid
304 // BCE atoms, returns the comparison.
305 std::optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
306                                 const ICmpInst::Predicate ExpectedPredicate,
307                                 BaseIdentifier &BaseId) {
308   // The comparison can only be used once:
309   //  - For intermediate blocks, as a branch condition.
310   //  - For the final block, as an incoming value for the Phi.
311   // If there are any other uses of the comparison, we cannot merge it with
312   // other comparisons as we would create an orphan use of the value.
313   if (!CmpI->hasOneUse()) {
314     LLVM_DEBUG(dbgs() << "cmp has several uses\n");
315     return std::nullopt;
316   }
317   if (CmpI->getPredicate() != ExpectedPredicate)
318     return std::nullopt;
319   LLVM_DEBUG(dbgs() << "cmp "
320                     << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
321                     << "\n");
322   auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
323   if (!Lhs.BaseId)
324     return std::nullopt;
325   auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
326   if (!Rhs.BaseId)
327     return std::nullopt;
328   const auto &DL = CmpI->getModule()->getDataLayout();
329   return BCECmp(std::move(Lhs), std::move(Rhs),
330                 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
331 }
332 
333 // Visit the given comparison block. If this is a comparison between two valid
334 // BCE atoms, returns the comparison.
335 std::optional<BCECmpBlock> visitCmpBlock(Value *const Val,
336                                          BasicBlock *const Block,
337                                          const BasicBlock *const PhiBlock,
338                                          BaseIdentifier &BaseId) {
339   if (Block->empty())
340     return std::nullopt;
341   auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
342   if (!BranchI)
343     return std::nullopt;
344   LLVM_DEBUG(dbgs() << "branch\n");
345   Value *Cond;
346   ICmpInst::Predicate ExpectedPredicate;
347   if (BranchI->isUnconditional()) {
348     // In this case, we expect an incoming value which is the result of the
349     // comparison. This is the last link in the chain of comparisons (note
350     // that this does not mean that this is the last incoming value, blocks
351     // can be reordered).
352     Cond = Val;
353     ExpectedPredicate = ICmpInst::ICMP_EQ;
354   } else {
355     // In this case, we expect a constant incoming value (the comparison is
356     // chained).
357     const auto *const Const = cast<ConstantInt>(Val);
358     LLVM_DEBUG(dbgs() << "const\n");
359     if (!Const->isZero())
360       return std::nullopt;
361     LLVM_DEBUG(dbgs() << "false\n");
362     assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
363     BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
364     Cond = BranchI->getCondition();
365     ExpectedPredicate =
366         FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
367   }
368 
369   auto *CmpI = dyn_cast<ICmpInst>(Cond);
370   if (!CmpI)
371     return std::nullopt;
372   LLVM_DEBUG(dbgs() << "icmp\n");
373 
374   std::optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
375   if (!Result)
376     return std::nullopt;
377 
378   BCECmpBlock::InstructionSet BlockInsts(
379       {Result->Lhs.LoadI, Result->Rhs.LoadI, Result->CmpI, BranchI});
380   if (Result->Lhs.GEP)
381     BlockInsts.insert(Result->Lhs.GEP);
382   if (Result->Rhs.GEP)
383     BlockInsts.insert(Result->Rhs.GEP);
384   return BCECmpBlock(std::move(*Result), Block, BlockInsts);
385 }
386 
387 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
388                                 BCECmpBlock &&Comparison) {
389   LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
390                     << "': Found cmp of " << Comparison.SizeBits()
391                     << " bits between " << Comparison.Lhs().BaseId << " + "
392                     << Comparison.Lhs().Offset << " and "
393                     << Comparison.Rhs().BaseId << " + "
394                     << Comparison.Rhs().Offset << "\n");
395   LLVM_DEBUG(dbgs() << "\n");
396   Comparison.OrigOrder = Comparisons.size();
397   Comparisons.push_back(std::move(Comparison));
398 }
399 
400 // A chain of comparisons.
401 class BCECmpChain {
402 public:
403   using ContiguousBlocks = std::vector<BCECmpBlock>;
404 
405   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
406               AliasAnalysis &AA);
407 
408   bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
409                 DomTreeUpdater &DTU);
410 
411   bool atLeastOneMerged() const {
412     return any_of(MergedBlocks_,
413                   [](const auto &Blocks) { return Blocks.size() > 1; });
414   }
415 
416 private:
417   PHINode &Phi_;
418   // The list of all blocks in the chain, grouped by contiguity.
419   std::vector<ContiguousBlocks> MergedBlocks_;
420   // The original entry block (before sorting);
421   BasicBlock *EntryBlock_;
422 };
423 
424 static bool areContiguous(const BCECmpBlock &First, const BCECmpBlock &Second) {
425   return First.Lhs().BaseId == Second.Lhs().BaseId &&
426          First.Rhs().BaseId == Second.Rhs().BaseId &&
427          First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
428          First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
429 }
430 
431 static unsigned getMinOrigOrder(const BCECmpChain::ContiguousBlocks &Blocks) {
432   unsigned MinOrigOrder = std::numeric_limits<unsigned>::max();
433   for (const BCECmpBlock &Block : Blocks)
434     MinOrigOrder = std::min(MinOrigOrder, Block.OrigOrder);
435   return MinOrigOrder;
436 }
437 
438 /// Given a chain of comparison blocks, groups the blocks into contiguous
439 /// ranges that can be merged together into a single comparison.
440 static std::vector<BCECmpChain::ContiguousBlocks>
441 mergeBlocks(std::vector<BCECmpBlock> &&Blocks) {
442   std::vector<BCECmpChain::ContiguousBlocks> MergedBlocks;
443 
444   // Sort to detect continuous offsets.
445   llvm::sort(Blocks,
446              [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
447                return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
448                       std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
449              });
450 
451   BCECmpChain::ContiguousBlocks *LastMergedBlock = nullptr;
452   for (BCECmpBlock &Block : Blocks) {
453     if (!LastMergedBlock || !areContiguous(LastMergedBlock->back(), Block)) {
454       MergedBlocks.emplace_back();
455       LastMergedBlock = &MergedBlocks.back();
456     } else {
457       LLVM_DEBUG(dbgs() << "Merging block " << Block.BB->getName() << " into "
458                         << LastMergedBlock->back().BB->getName() << "\n");
459     }
460     LastMergedBlock->push_back(std::move(Block));
461   }
462 
463   // While we allow reordering for merging, do not reorder unmerged comparisons.
464   // Doing so may introduce branch on poison.
465   llvm::sort(MergedBlocks, [](const BCECmpChain::ContiguousBlocks &LhsBlocks,
466                               const BCECmpChain::ContiguousBlocks &RhsBlocks) {
467     return getMinOrigOrder(LhsBlocks) < getMinOrigOrder(RhsBlocks);
468   });
469 
470   return MergedBlocks;
471 }
472 
473 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
474                          AliasAnalysis &AA)
475     : Phi_(Phi) {
476   assert(!Blocks.empty() && "a chain should have at least one block");
477   // Now look inside blocks to check for BCE comparisons.
478   std::vector<BCECmpBlock> Comparisons;
479   BaseIdentifier BaseId;
480   for (BasicBlock *const Block : Blocks) {
481     assert(Block && "invalid block");
482     std::optional<BCECmpBlock> Comparison = visitCmpBlock(
483         Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
484     if (!Comparison) {
485       LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
486       return;
487     }
488     if (Comparison->doesOtherWork()) {
489       LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
490                         << "' does extra work besides compare\n");
491       if (Comparisons.empty()) {
492         // This is the initial block in the chain, in case this block does other
493         // work, we can try to split the block and move the irrelevant
494         // instructions to the predecessor.
495         //
496         // If this is not the initial block in the chain, splitting it wont
497         // work.
498         //
499         // As once split, there will still be instructions before the BCE cmp
500         // instructions that do other work in program order, i.e. within the
501         // chain before sorting. Unless we can abort the chain at this point
502         // and start anew.
503         //
504         // NOTE: we only handle blocks a with single predecessor for now.
505         if (Comparison->canSplit(AA)) {
506           LLVM_DEBUG(dbgs()
507                      << "Split initial block '" << Comparison->BB->getName()
508                      << "' that does extra work besides compare\n");
509           Comparison->RequireSplit = true;
510           enqueueBlock(Comparisons, std::move(*Comparison));
511         } else {
512           LLVM_DEBUG(dbgs()
513                      << "ignoring initial block '" << Comparison->BB->getName()
514                      << "' that does extra work besides compare\n");
515         }
516         continue;
517       }
518       // TODO(courbet): Right now we abort the whole chain. We could be
519       // merging only the blocks that don't do other work and resume the
520       // chain from there. For example:
521       //  if (a[0] == b[0]) {  // bb1
522       //    if (a[1] == b[1]) {  // bb2
523       //      some_value = 3; //bb3
524       //      if (a[2] == b[2]) { //bb3
525       //        do a ton of stuff  //bb4
526       //      }
527       //    }
528       //  }
529       //
530       // This is:
531       //
532       // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
533       //  \            \           \               \
534       //   ne           ne          ne              \
535       //    \            \           \               v
536       //     +------------+-----------+----------> bb_phi
537       //
538       // We can only merge the first two comparisons, because bb3* does
539       // "other work" (setting some_value to 3).
540       // We could still merge bb1 and bb2 though.
541       return;
542     }
543     enqueueBlock(Comparisons, std::move(*Comparison));
544   }
545 
546   // It is possible we have no suitable comparison to merge.
547   if (Comparisons.empty()) {
548     LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
549     return;
550   }
551   EntryBlock_ = Comparisons[0].BB;
552   MergedBlocks_ = mergeBlocks(std::move(Comparisons));
553 }
554 
555 namespace {
556 
557 // A class to compute the name of a set of merged basic blocks.
558 // This is optimized for the common case of no block names.
559 class MergedBlockName {
560   // Storage for the uncommon case of several named blocks.
561   SmallString<16> Scratch;
562 
563 public:
564   explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
565       : Name(makeName(Comparisons)) {}
566   const StringRef Name;
567 
568 private:
569   StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
570     assert(!Comparisons.empty() && "no basic block");
571     // Fast path: only one block, or no names at all.
572     if (Comparisons.size() == 1)
573       return Comparisons[0].BB->getName();
574     const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
575                                      [](int i, const BCECmpBlock &Cmp) {
576                                        return i + Cmp.BB->getName().size();
577                                      });
578     if (size == 0)
579       return StringRef("", 0);
580 
581     // Slow path: at least two blocks, at least one block with a name.
582     Scratch.clear();
583     // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
584     // separators.
585     Scratch.reserve(size + Comparisons.size() - 1);
586     const auto append = [this](StringRef str) {
587       Scratch.append(str.begin(), str.end());
588     };
589     append(Comparisons[0].BB->getName());
590     for (int I = 1, E = Comparisons.size(); I < E; ++I) {
591       const BasicBlock *const BB = Comparisons[I].BB;
592       if (!BB->getName().empty()) {
593         append("+");
594         append(BB->getName());
595       }
596     }
597     return Scratch.str();
598   }
599 };
600 } // namespace
601 
602 // Merges the given contiguous comparison blocks into one memcmp block.
603 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
604                                     BasicBlock *const InsertBefore,
605                                     BasicBlock *const NextCmpBlock,
606                                     PHINode &Phi, const TargetLibraryInfo &TLI,
607                                     AliasAnalysis &AA, DomTreeUpdater &DTU) {
608   assert(!Comparisons.empty() && "merging zero comparisons");
609   LLVMContext &Context = NextCmpBlock->getContext();
610   const BCECmpBlock &FirstCmp = Comparisons[0];
611 
612   // Create a new cmp block before next cmp block.
613   BasicBlock *const BB =
614       BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
615                          NextCmpBlock->getParent(), InsertBefore);
616   IRBuilder<> Builder(BB);
617   // Add the GEPs from the first BCECmpBlock.
618   Value *Lhs, *Rhs;
619   if (FirstCmp.Lhs().GEP)
620     Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
621   else
622     Lhs = FirstCmp.Lhs().LoadI->getPointerOperand();
623   if (FirstCmp.Rhs().GEP)
624     Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
625   else
626     Rhs = FirstCmp.Rhs().LoadI->getPointerOperand();
627 
628   Value *IsEqual = nullptr;
629   LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
630                     << BB->getName() << "\n");
631 
632   // If there is one block that requires splitting, we do it now, i.e.
633   // just before we know we will collapse the chain. The instructions
634   // can be executed before any of the instructions in the chain.
635   const auto ToSplit = llvm::find_if(
636       Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
637   if (ToSplit != Comparisons.end()) {
638     LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
639     ToSplit->split(BB, AA);
640   }
641 
642   if (Comparisons.size() == 1) {
643     LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
644     // Use clone to keep the metadata
645     Instruction *const LhsLoad = Builder.Insert(FirstCmp.Lhs().LoadI->clone());
646     Instruction *const RhsLoad = Builder.Insert(FirstCmp.Rhs().LoadI->clone());
647     LhsLoad->replaceUsesOfWith(LhsLoad->getOperand(0), Lhs);
648     RhsLoad->replaceUsesOfWith(RhsLoad->getOperand(0), Rhs);
649     // There are no blocks to merge, just do the comparison.
650     IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
651   } else {
652     const unsigned TotalSizeBits = std::accumulate(
653         Comparisons.begin(), Comparisons.end(), 0u,
654         [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
655 
656     // memcmp expects a 'size_t' argument and returns 'int'.
657     unsigned SizeTBits = TLI.getSizeTSize(*Phi.getModule());
658     unsigned IntBits = TLI.getIntSize();
659 
660     // Create memcmp() == 0.
661     const auto &DL = Phi.getModule()->getDataLayout();
662     Value *const MemCmpCall = emitMemCmp(
663         Lhs, Rhs,
664         ConstantInt::get(Builder.getIntNTy(SizeTBits), TotalSizeBits / 8),
665         Builder, DL, &TLI);
666     IsEqual = Builder.CreateICmpEQ(
667         MemCmpCall, ConstantInt::get(Builder.getIntNTy(IntBits), 0));
668   }
669 
670   BasicBlock *const PhiBB = Phi.getParent();
671   // Add a branch to the next basic block in the chain.
672   if (NextCmpBlock == PhiBB) {
673     // Continue to phi, passing it the comparison result.
674     Builder.CreateBr(PhiBB);
675     Phi.addIncoming(IsEqual, BB);
676     DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
677   } else {
678     // Continue to next block if equal, exit to phi else.
679     Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
680     Phi.addIncoming(ConstantInt::getFalse(Context), BB);
681     DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
682                       {DominatorTree::Insert, BB, PhiBB}});
683   }
684   return BB;
685 }
686 
687 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
688                            DomTreeUpdater &DTU) {
689   assert(atLeastOneMerged() && "simplifying trivial BCECmpChain");
690   LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
691                     << EntryBlock_->getName() << "\n");
692 
693   // Effectively merge blocks. We go in the reverse direction from the phi block
694   // so that the next block is always available to branch to.
695   BasicBlock *InsertBefore = EntryBlock_;
696   BasicBlock *NextCmpBlock = Phi_.getParent();
697   for (const auto &Blocks : reverse(MergedBlocks_)) {
698     InsertBefore = NextCmpBlock = mergeComparisons(
699         Blocks, InsertBefore, NextCmpBlock, Phi_, TLI, AA, DTU);
700   }
701 
702   // Replace the original cmp chain with the new cmp chain by pointing all
703   // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
704   // blocks in the old chain unreachable.
705   while (!pred_empty(EntryBlock_)) {
706     BasicBlock* const Pred = *pred_begin(EntryBlock_);
707     LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
708                       << "\n");
709     Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
710     DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
711                       {DominatorTree::Insert, Pred, NextCmpBlock}});
712   }
713 
714   // If the old cmp chain was the function entry, we need to update the function
715   // entry.
716   const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
717   if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
718     LLVM_DEBUG(dbgs() << "Changing function entry from "
719                       << EntryBlock_->getName() << " to "
720                       << NextCmpBlock->getName() << "\n");
721     DTU.getDomTree().setNewRoot(NextCmpBlock);
722     DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
723   }
724   EntryBlock_ = nullptr;
725 
726   // Delete merged blocks. This also removes incoming values in phi.
727   SmallVector<BasicBlock *, 16> DeadBlocks;
728   for (const auto &Blocks : MergedBlocks_) {
729     for (const BCECmpBlock &Block : Blocks) {
730       LLVM_DEBUG(dbgs() << "Deleting merged block " << Block.BB->getName()
731                         << "\n");
732       DeadBlocks.push_back(Block.BB);
733     }
734   }
735   DeleteDeadBlocks(DeadBlocks, &DTU);
736 
737   MergedBlocks_.clear();
738   return true;
739 }
740 
741 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
742                                            BasicBlock *const LastBlock,
743                                            int NumBlocks) {
744   // Walk up from the last block to find other blocks.
745   std::vector<BasicBlock *> Blocks(NumBlocks);
746   assert(LastBlock && "invalid last block");
747   BasicBlock *CurBlock = LastBlock;
748   for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
749     if (CurBlock->hasAddressTaken()) {
750       // Somebody is jumping to the block through an address, all bets are
751       // off.
752       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
753                         << " has its address taken\n");
754       return {};
755     }
756     Blocks[BlockIndex] = CurBlock;
757     auto *SinglePredecessor = CurBlock->getSinglePredecessor();
758     if (!SinglePredecessor) {
759       // The block has two or more predecessors.
760       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
761                         << " has two or more predecessors\n");
762       return {};
763     }
764     if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
765       // The block does not link back to the phi.
766       LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
767                         << " does not link back to the phi\n");
768       return {};
769     }
770     CurBlock = SinglePredecessor;
771   }
772   Blocks[0] = CurBlock;
773   return Blocks;
774 }
775 
776 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
777                 DomTreeUpdater &DTU) {
778   LLVM_DEBUG(dbgs() << "processPhi()\n");
779   if (Phi.getNumIncomingValues() <= 1) {
780     LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
781     return false;
782   }
783   // We are looking for something that has the following structure:
784   //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
785   //     \            \           \               \
786   //      ne           ne          ne              \
787   //       \            \           \               v
788   //        +------------+-----------+----------> bb_phi
789   //
790   //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
791   //    It's the only block that contributes a non-constant value to the Phi.
792   //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
793   //    them being the phi block.
794   //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
795   //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
796 
797   // The blocks are not necessarily ordered in the phi, so we start from the
798   // last block and reconstruct the order.
799   BasicBlock *LastBlock = nullptr;
800   for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
801     if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
802     if (LastBlock) {
803       // There are several non-constant values.
804       LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
805       return false;
806     }
807     if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
808         cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
809             Phi.getIncomingBlock(I)) {
810       // Non-constant incoming value is not from a cmp instruction or not
811       // produced by the last block. We could end up processing the value
812       // producing block more than once.
813       //
814       // This is an uncommon case, so we bail.
815       LLVM_DEBUG(
816           dbgs()
817           << "skip: non-constant value not from cmp or not from last block.\n");
818       return false;
819     }
820     LastBlock = Phi.getIncomingBlock(I);
821   }
822   if (!LastBlock) {
823     // There is no non-constant block.
824     LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
825     return false;
826   }
827   if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
828     LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
829     return false;
830   }
831 
832   const auto Blocks =
833       getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
834   if (Blocks.empty()) return false;
835   BCECmpChain CmpChain(Blocks, Phi, AA);
836 
837   if (!CmpChain.atLeastOneMerged()) {
838     LLVM_DEBUG(dbgs() << "skip: nothing merged\n");
839     return false;
840   }
841 
842   return CmpChain.simplify(TLI, AA, DTU);
843 }
844 
845 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
846                     const TargetTransformInfo &TTI, AliasAnalysis &AA,
847                     DominatorTree *DT) {
848   LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
849 
850   // We only try merging comparisons if the target wants to expand memcmp later.
851   // The rationale is to avoid turning small chains into memcmp calls.
852   if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
853     return false;
854 
855   // If we don't have memcmp avaiable we can't emit calls to it.
856   if (!TLI.has(LibFunc_memcmp))
857     return false;
858 
859   DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
860                      DomTreeUpdater::UpdateStrategy::Eager);
861 
862   bool MadeChange = false;
863 
864   for (BasicBlock &BB : llvm::drop_begin(F)) {
865     // A Phi operation is always first in a basic block.
866     if (auto *const Phi = dyn_cast<PHINode>(&*BB.begin()))
867       MadeChange |= processPhi(*Phi, TLI, AA, DTU);
868   }
869 
870   return MadeChange;
871 }
872 
873 class MergeICmpsLegacyPass : public FunctionPass {
874 public:
875   static char ID;
876 
877   MergeICmpsLegacyPass() : FunctionPass(ID) {
878     initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
879   }
880 
881   bool runOnFunction(Function &F) override {
882     if (skipFunction(F)) return false;
883     const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
884     const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
885     // MergeICmps does not need the DominatorTree, but we update it if it's
886     // already available.
887     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
888     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
889     return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
890   }
891 
892  private:
893   void getAnalysisUsage(AnalysisUsage &AU) const override {
894     AU.addRequired<TargetLibraryInfoWrapperPass>();
895     AU.addRequired<TargetTransformInfoWrapperPass>();
896     AU.addRequired<AAResultsWrapperPass>();
897     AU.addPreserved<GlobalsAAWrapperPass>();
898     AU.addPreserved<DominatorTreeWrapperPass>();
899   }
900 };
901 
902 } // namespace
903 
904 char MergeICmpsLegacyPass::ID = 0;
905 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
906                       "Merge contiguous icmps into a memcmp", false, false)
907 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
908 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
909 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
910 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
911                     "Merge contiguous icmps into a memcmp", false, false)
912 
913 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
914 
915 PreservedAnalyses MergeICmpsPass::run(Function &F,
916                                       FunctionAnalysisManager &AM) {
917   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
918   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
919   auto &AA = AM.getResult<AAManager>(F);
920   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
921   const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
922   if (!MadeChanges)
923     return PreservedAnalyses::all();
924   PreservedAnalyses PA;
925   PA.preserve<DominatorTreeAnalysis>();
926   return PA;
927 }
928