xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "memcpyopt"
69 
70 static cl::opt<bool>
71     EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden,
72                     cl::desc("Use MemorySSA-backed MemCpyOpt."));
73 
74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
75 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
76 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
77 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
78 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
79 
80 namespace {
81 
82 /// Represents a range of memset'd bytes with the ByteVal value.
83 /// This allows us to analyze stores like:
84 ///   store 0 -> P+1
85 ///   store 0 -> P+0
86 ///   store 0 -> P+3
87 ///   store 0 -> P+2
88 /// which sometimes happens with stores to arrays of structs etc.  When we see
89 /// the first store, we make a range [1, 2).  The second store extends the range
90 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
91 /// two ranges into [0, 3) which is memset'able.
92 struct MemsetRange {
93   // Start/End - A semi range that describes the span that this range covers.
94   // The range is closed at the start and open at the end: [Start, End).
95   int64_t Start, End;
96 
97   /// StartPtr - The getelementptr instruction that points to the start of the
98   /// range.
99   Value *StartPtr;
100 
101   /// Alignment - The known alignment of the first store.
102   unsigned Alignment;
103 
104   /// TheStores - The actual stores that make up this range.
105   SmallVector<Instruction*, 16> TheStores;
106 
107   bool isProfitableToUseMemset(const DataLayout &DL) const;
108 };
109 
110 } // end anonymous namespace
111 
112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113   // If we found more than 4 stores to merge or 16 bytes, use memset.
114   if (TheStores.size() >= 4 || End-Start >= 16) return true;
115 
116   // If there is nothing to merge, don't do anything.
117   if (TheStores.size() < 2) return false;
118 
119   // If any of the stores are a memset, then it is always good to extend the
120   // memset.
121   for (Instruction *SI : TheStores)
122     if (!isa<StoreInst>(SI))
123       return true;
124 
125   // Assume that the code generator is capable of merging pairs of stores
126   // together if it wants to.
127   if (TheStores.size() == 2) return false;
128 
129   // If we have fewer than 8 stores, it can still be worthwhile to do this.
130   // For example, merging 4 i8 stores into an i32 store is useful almost always.
131   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132   // memset will be split into 2 32-bit stores anyway) and doing so can
133   // pessimize the llvm optimizer.
134   //
135   // Since we don't have perfect knowledge here, make some assumptions: assume
136   // the maximum GPR width is the same size as the largest legal integer
137   // size. If so, check to see whether we will end up actually reducing the
138   // number of stores used.
139   unsigned Bytes = unsigned(End-Start);
140   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141   if (MaxIntSize == 0)
142     MaxIntSize = 1;
143   unsigned NumPointerStores = Bytes / MaxIntSize;
144 
145   // Assume the remaining bytes if any are done a byte at a time.
146   unsigned NumByteStores = Bytes % MaxIntSize;
147 
148   // If we will reduce the # stores (according to this heuristic), do the
149   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150   // etc.
151   return TheStores.size() > NumPointerStores+NumByteStores;
152 }
153 
154 namespace {
155 
156 class MemsetRanges {
157   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158 
159   /// A sorted list of the memset ranges.
160   SmallVector<MemsetRange, 8> Ranges;
161 
162   const DataLayout &DL;
163 
164 public:
165   MemsetRanges(const DataLayout &DL) : DL(DL) {}
166 
167   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168 
169   const_iterator begin() const { return Ranges.begin(); }
170   const_iterator end() const { return Ranges.end(); }
171   bool empty() const { return Ranges.empty(); }
172 
173   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175       addStore(OffsetFromFirst, SI);
176     else
177       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178   }
179 
180   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181     TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182     assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
183     addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
184              SI->getAlign().value(), SI);
185   }
186 
187   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190   }
191 
192   void addRange(int64_t Start, int64_t Size, Value *Ptr,
193                 unsigned Alignment, Instruction *Inst);
194 };
195 
196 } // end anonymous namespace
197 
198 /// Add a new store to the MemsetRanges data structure.  This adds a
199 /// new range for the specified store at the specified offset, merging into
200 /// existing ranges as appropriate.
201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202                             unsigned Alignment, Instruction *Inst) {
203   int64_t End = Start+Size;
204 
205   range_iterator I = partition_point(
206       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207 
208   // We now know that I == E, in which case we didn't find anything to merge
209   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
210   // to insert a new range.  Handle this now.
211   if (I == Ranges.end() || End < I->Start) {
212     MemsetRange &R = *Ranges.insert(I, MemsetRange());
213     R.Start        = Start;
214     R.End          = End;
215     R.StartPtr     = Ptr;
216     R.Alignment    = Alignment;
217     R.TheStores.push_back(Inst);
218     return;
219   }
220 
221   // This store overlaps with I, add it.
222   I->TheStores.push_back(Inst);
223 
224   // At this point, we may have an interval that completely contains our store.
225   // If so, just add it to the interval and return.
226   if (I->Start <= Start && I->End >= End)
227     return;
228 
229   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230   // but is not entirely contained within the range.
231 
232   // See if the range extends the start of the range.  In this case, it couldn't
233   // possibly cause it to join the prior range, because otherwise we would have
234   // stopped on *it*.
235   if (Start < I->Start) {
236     I->Start = Start;
237     I->StartPtr = Ptr;
238     I->Alignment = Alignment;
239   }
240 
241   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
243   // End.
244   if (End > I->End) {
245     I->End = End;
246     range_iterator NextI = I;
247     while (++NextI != Ranges.end() && End >= NextI->Start) {
248       // Merge the range in.
249       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250       if (NextI->End > I->End)
251         I->End = NextI->End;
252       Ranges.erase(NextI);
253       NextI = I;
254     }
255   }
256 }
257 
258 //===----------------------------------------------------------------------===//
259 //                         MemCpyOptLegacyPass Pass
260 //===----------------------------------------------------------------------===//
261 
262 namespace {
263 
264 class MemCpyOptLegacyPass : public FunctionPass {
265   MemCpyOptPass Impl;
266 
267 public:
268   static char ID; // Pass identification, replacement for typeid
269 
270   MemCpyOptLegacyPass() : FunctionPass(ID) {
271     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272   }
273 
274   bool runOnFunction(Function &F) override;
275 
276 private:
277   // This transformation requires dominator postdominator info
278   void getAnalysisUsage(AnalysisUsage &AU) const override {
279     AU.setPreservesCFG();
280     AU.addRequired<AssumptionCacheTracker>();
281     AU.addRequired<DominatorTreeWrapperPass>();
282     AU.addPreserved<DominatorTreeWrapperPass>();
283     AU.addPreserved<GlobalsAAWrapperPass>();
284     AU.addRequired<TargetLibraryInfoWrapperPass>();
285     if (!EnableMemorySSA)
286       AU.addRequired<MemoryDependenceWrapperPass>();
287     AU.addPreserved<MemoryDependenceWrapperPass>();
288     AU.addRequired<AAResultsWrapperPass>();
289     AU.addPreserved<AAResultsWrapperPass>();
290     if (EnableMemorySSA)
291       AU.addRequired<MemorySSAWrapperPass>();
292     AU.addPreserved<MemorySSAWrapperPass>();
293   }
294 };
295 
296 } // end anonymous namespace
297 
298 char MemCpyOptLegacyPass::ID = 0;
299 
300 /// The public interface to this file...
301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
302 
303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
304                       false, false)
305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
311 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
312 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
313                     false, false)
314 
315 // Check that V is either not accessible by the caller, or unwinding cannot
316 // occur between Start and End.
317 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
318                                          Instruction *End) {
319   assert(Start->getParent() == End->getParent() && "Must be in same block");
320   if (!Start->getFunction()->doesNotThrow() &&
321       !isa<AllocaInst>(getUnderlyingObject(V))) {
322     for (const Instruction &I :
323          make_range(Start->getIterator(), End->getIterator())) {
324       if (I.mayThrow())
325         return true;
326     }
327   }
328   return false;
329 }
330 
331 void MemCpyOptPass::eraseInstruction(Instruction *I) {
332   if (MSSAU)
333     MSSAU->removeMemoryAccess(I);
334   if (MD)
335     MD->removeInstruction(I);
336   I->eraseFromParent();
337 }
338 
339 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
340 // Start and End must be in the same block
341 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
342                             const MemoryUseOrDef *Start,
343                             const MemoryUseOrDef *End) {
344   assert(Start->getBlock() == End->getBlock() && "Only local supported");
345   for (const MemoryAccess &MA :
346        make_range(++Start->getIterator(), End->getIterator())) {
347     if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
348                                        Loc)))
349       return true;
350   }
351   return false;
352 }
353 
354 // Check for mod of Loc between Start and End, excluding both boundaries.
355 // Start and End can be in different blocks.
356 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
357                            const MemoryUseOrDef *Start,
358                            const MemoryUseOrDef *End) {
359   // TODO: Only walk until we hit Start.
360   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
361       End->getDefiningAccess(), Loc);
362   return !MSSA->dominates(Clobber, Start);
363 }
364 
365 /// When scanning forward over instructions, we look for some other patterns to
366 /// fold away. In particular, this looks for stores to neighboring locations of
367 /// memory. If it sees enough consecutive ones, it attempts to merge them
368 /// together into a memcpy/memset.
369 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
370                                                  Value *StartPtr,
371                                                  Value *ByteVal) {
372   const DataLayout &DL = StartInst->getModule()->getDataLayout();
373 
374   // We can't track scalable types
375   if (StoreInst *SI = dyn_cast<StoreInst>(StartInst))
376     if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
377       return nullptr;
378 
379   // Okay, so we now have a single store that can be splatable.  Scan to find
380   // all subsequent stores of the same value to offset from the same pointer.
381   // Join these together into ranges, so we can decide whether contiguous blocks
382   // are stored.
383   MemsetRanges Ranges(DL);
384 
385   BasicBlock::iterator BI(StartInst);
386 
387   // Keeps track of the last memory use or def before the insertion point for
388   // the new memset. The new MemoryDef for the inserted memsets will be inserted
389   // after MemInsertPoint. It points to either LastMemDef or to the last user
390   // before the insertion point of the memset, if there are any such users.
391   MemoryUseOrDef *MemInsertPoint = nullptr;
392   // Keeps track of the last MemoryDef between StartInst and the insertion point
393   // for the new memset. This will become the defining access of the inserted
394   // memsets.
395   MemoryDef *LastMemDef = nullptr;
396   for (++BI; !BI->isTerminator(); ++BI) {
397     if (MSSAU) {
398       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
399           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
400       if (CurrentAcc) {
401         MemInsertPoint = CurrentAcc;
402         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
403           LastMemDef = CurrentDef;
404       }
405     }
406 
407     // Calls that only access inaccessible memory do not block merging
408     // accessible stores.
409     if (auto *CB = dyn_cast<CallBase>(BI)) {
410       if (CB->onlyAccessesInaccessibleMemory())
411         continue;
412     }
413 
414     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
415       // If the instruction is readnone, ignore it, otherwise bail out.  We
416       // don't even allow readonly here because we don't want something like:
417       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
418       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
419         break;
420       continue;
421     }
422 
423     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
424       // If this is a store, see if we can merge it in.
425       if (!NextStore->isSimple()) break;
426 
427       Value *StoredVal = NextStore->getValueOperand();
428 
429       // Don't convert stores of non-integral pointer types to memsets (which
430       // stores integers).
431       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
432         break;
433 
434       // We can't track ranges involving scalable types.
435       if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
436         break;
437 
438       // Check to see if this stored value is of the same byte-splattable value.
439       Value *StoredByte = isBytewiseValue(StoredVal, DL);
440       if (isa<UndefValue>(ByteVal) && StoredByte)
441         ByteVal = StoredByte;
442       if (ByteVal != StoredByte)
443         break;
444 
445       // Check to see if this store is to a constant offset from the start ptr.
446       Optional<int64_t> Offset =
447           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
448       if (!Offset)
449         break;
450 
451       Ranges.addStore(*Offset, NextStore);
452     } else {
453       MemSetInst *MSI = cast<MemSetInst>(BI);
454 
455       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
456           !isa<ConstantInt>(MSI->getLength()))
457         break;
458 
459       // Check to see if this store is to a constant offset from the start ptr.
460       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
461       if (!Offset)
462         break;
463 
464       Ranges.addMemSet(*Offset, MSI);
465     }
466   }
467 
468   // If we have no ranges, then we just had a single store with nothing that
469   // could be merged in.  This is a very common case of course.
470   if (Ranges.empty())
471     return nullptr;
472 
473   // If we had at least one store that could be merged in, add the starting
474   // store as well.  We try to avoid this unless there is at least something
475   // interesting as a small compile-time optimization.
476   Ranges.addInst(0, StartInst);
477 
478   // If we create any memsets, we put it right before the first instruction that
479   // isn't part of the memset block.  This ensure that the memset is dominated
480   // by any addressing instruction needed by the start of the block.
481   IRBuilder<> Builder(&*BI);
482 
483   // Now that we have full information about ranges, loop over the ranges and
484   // emit memset's for anything big enough to be worthwhile.
485   Instruction *AMemSet = nullptr;
486   for (const MemsetRange &Range : Ranges) {
487     if (Range.TheStores.size() == 1) continue;
488 
489     // If it is profitable to lower this range to memset, do so now.
490     if (!Range.isProfitableToUseMemset(DL))
491       continue;
492 
493     // Otherwise, we do want to transform this!  Create a new memset.
494     // Get the starting pointer of the block.
495     StartPtr = Range.StartPtr;
496 
497     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
498                                    MaybeAlign(Range.Alignment));
499     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
500                                                    : Range.TheStores) dbgs()
501                                               << *SI << '\n';
502                dbgs() << "With: " << *AMemSet << '\n');
503     if (!Range.TheStores.empty())
504       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
505 
506     if (MSSAU) {
507       assert(LastMemDef && MemInsertPoint &&
508              "Both LastMemDef and MemInsertPoint need to be set");
509       auto *NewDef =
510           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
511                               ? MSSAU->createMemoryAccessBefore(
512                                     AMemSet, LastMemDef, MemInsertPoint)
513                               : MSSAU->createMemoryAccessAfter(
514                                     AMemSet, LastMemDef, MemInsertPoint));
515       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
516       LastMemDef = NewDef;
517       MemInsertPoint = NewDef;
518     }
519 
520     // Zap all the stores.
521     for (Instruction *SI : Range.TheStores)
522       eraseInstruction(SI);
523 
524     ++NumMemSetInfer;
525   }
526 
527   return AMemSet;
528 }
529 
530 // This method try to lift a store instruction before position P.
531 // It will lift the store and its argument + that anything that
532 // may alias with these.
533 // The method returns true if it was successful.
534 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
535   // If the store alias this position, early bail out.
536   MemoryLocation StoreLoc = MemoryLocation::get(SI);
537   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
538     return false;
539 
540   // Keep track of the arguments of all instruction we plan to lift
541   // so we can make sure to lift them as well if appropriate.
542   DenseSet<Instruction*> Args;
543   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
544     if (Ptr->getParent() == SI->getParent())
545       Args.insert(Ptr);
546 
547   // Instruction to lift before P.
548   SmallVector<Instruction *, 8> ToLift{SI};
549 
550   // Memory locations of lifted instructions.
551   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
552 
553   // Lifted calls.
554   SmallVector<const CallBase *, 8> Calls;
555 
556   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
557 
558   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
559     auto *C = &*I;
560 
561     // Make sure hoisting does not perform a store that was not guaranteed to
562     // happen.
563     if (!isGuaranteedToTransferExecutionToSuccessor(C))
564       return false;
565 
566     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
567 
568     bool NeedLift = false;
569     if (Args.erase(C))
570       NeedLift = true;
571     else if (MayAlias) {
572       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
573         return isModOrRefSet(AA->getModRefInfo(C, ML));
574       });
575 
576       if (!NeedLift)
577         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
578           return isModOrRefSet(AA->getModRefInfo(C, Call));
579         });
580     }
581 
582     if (!NeedLift)
583       continue;
584 
585     if (MayAlias) {
586       // Since LI is implicitly moved downwards past the lifted instructions,
587       // none of them may modify its source.
588       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
589         return false;
590       else if (const auto *Call = dyn_cast<CallBase>(C)) {
591         // If we can't lift this before P, it's game over.
592         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
593           return false;
594 
595         Calls.push_back(Call);
596       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
597         // If we can't lift this before P, it's game over.
598         auto ML = MemoryLocation::get(C);
599         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
600           return false;
601 
602         MemLocs.push_back(ML);
603       } else
604         // We don't know how to lift this instruction.
605         return false;
606     }
607 
608     ToLift.push_back(C);
609     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
610       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
611         if (A->getParent() == SI->getParent()) {
612           // Cannot hoist user of P above P
613           if(A == P) return false;
614           Args.insert(A);
615         }
616       }
617   }
618 
619   // Find MSSA insertion point. Normally P will always have a corresponding
620   // memory access before which we can insert. However, with non-standard AA
621   // pipelines, there may be a mismatch between AA and MSSA, in which case we
622   // will scan for a memory access before P. In either case, we know for sure
623   // that at least the load will have a memory access.
624   // TODO: Simplify this once P will be determined by MSSA, in which case the
625   // discrepancy can no longer occur.
626   MemoryUseOrDef *MemInsertPoint = nullptr;
627   if (MSSAU) {
628     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
629       MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
630     } else {
631       const Instruction *ConstP = P;
632       for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
633                                              ++LI->getReverseIterator())) {
634         if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
635           MemInsertPoint = MA;
636           break;
637         }
638       }
639     }
640   }
641 
642   // We made it, we need to lift.
643   for (auto *I : llvm::reverse(ToLift)) {
644     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
645     I->moveBefore(P);
646     if (MSSAU) {
647       assert(MemInsertPoint && "Must have found insert point");
648       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
649         MSSAU->moveAfter(MA, MemInsertPoint);
650         MemInsertPoint = MA;
651       }
652     }
653   }
654 
655   return true;
656 }
657 
658 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
659   if (!SI->isSimple()) return false;
660 
661   // Avoid merging nontemporal stores since the resulting
662   // memcpy/memset would not be able to preserve the nontemporal hint.
663   // In theory we could teach how to propagate the !nontemporal metadata to
664   // memset calls. However, that change would force the backend to
665   // conservatively expand !nontemporal memset calls back to sequences of
666   // store instructions (effectively undoing the merging).
667   if (SI->getMetadata(LLVMContext::MD_nontemporal))
668     return false;
669 
670   const DataLayout &DL = SI->getModule()->getDataLayout();
671 
672   Value *StoredVal = SI->getValueOperand();
673 
674   // Not all the transforms below are correct for non-integral pointers, bail
675   // until we've audited the individual pieces.
676   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
677     return false;
678 
679   // Load to store forwarding can be interpreted as memcpy.
680   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
681     if (LI->isSimple() && LI->hasOneUse() &&
682         LI->getParent() == SI->getParent()) {
683 
684       auto *T = LI->getType();
685       if (T->isAggregateType()) {
686         MemoryLocation LoadLoc = MemoryLocation::get(LI);
687 
688         // We use alias analysis to check if an instruction may store to
689         // the memory we load from in between the load and the store. If
690         // such an instruction is found, we try to promote there instead
691         // of at the store position.
692         // TODO: Can use MSSA for this.
693         Instruction *P = SI;
694         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
695           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
696             P = &I;
697             break;
698           }
699         }
700 
701         // We found an instruction that may write to the loaded memory.
702         // We can try to promote at this position instead of the store
703         // position if nothing aliases the store memory after this and the store
704         // destination is not in the range.
705         if (P && P != SI) {
706           if (!moveUp(SI, P, LI))
707             P = nullptr;
708         }
709 
710         // If a valid insertion position is found, then we can promote
711         // the load/store pair to a memcpy.
712         if (P) {
713           // If we load from memory that may alias the memory we store to,
714           // memmove must be used to preserve semantic. If not, memcpy can
715           // be used.
716           bool UseMemMove = false;
717           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
718             UseMemMove = true;
719 
720           uint64_t Size = DL.getTypeStoreSize(T);
721 
722           IRBuilder<> Builder(P);
723           Instruction *M;
724           if (UseMemMove)
725             M = Builder.CreateMemMove(
726                 SI->getPointerOperand(), SI->getAlign(),
727                 LI->getPointerOperand(), LI->getAlign(), Size);
728           else
729             M = Builder.CreateMemCpy(
730                 SI->getPointerOperand(), SI->getAlign(),
731                 LI->getPointerOperand(), LI->getAlign(), Size);
732 
733           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
734                             << *M << "\n");
735 
736           if (MSSAU) {
737             auto *LastDef =
738                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
739             auto *NewAccess =
740                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
741             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
742           }
743 
744           eraseInstruction(SI);
745           eraseInstruction(LI);
746           ++NumMemCpyInstr;
747 
748           // Make sure we do not invalidate the iterator.
749           BBI = M->getIterator();
750           return true;
751         }
752       }
753 
754       // Detect cases where we're performing call slot forwarding, but
755       // happen to be using a load-store pair to implement it, rather than
756       // a memcpy.
757       CallInst *C = nullptr;
758       if (EnableMemorySSA) {
759         if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
760                 MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
761           // The load most post-dom the call. Limit to the same block for now.
762           // TODO: Support non-local call-slot optimization?
763           if (LoadClobber->getBlock() == SI->getParent())
764             C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
765         }
766       } else {
767         MemDepResult ldep = MD->getDependency(LI);
768         if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
769           C = dyn_cast<CallInst>(ldep.getInst());
770       }
771 
772       if (C) {
773         // Check that nothing touches the dest of the "copy" between
774         // the call and the store.
775         MemoryLocation StoreLoc = MemoryLocation::get(SI);
776         if (EnableMemorySSA) {
777           if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
778                               MSSA->getMemoryAccess(SI)))
779             C = nullptr;
780         } else {
781           for (BasicBlock::iterator I = --SI->getIterator(),
782                                     E = C->getIterator();
783                I != E; --I) {
784             if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
785               C = nullptr;
786               break;
787             }
788           }
789         }
790       }
791 
792       if (C) {
793         bool changed = performCallSlotOptzn(
794             LI, SI, SI->getPointerOperand()->stripPointerCasts(),
795             LI->getPointerOperand()->stripPointerCasts(),
796             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
797             commonAlignment(SI->getAlign(), LI->getAlign()), C);
798         if (changed) {
799           eraseInstruction(SI);
800           eraseInstruction(LI);
801           ++NumMemCpyInstr;
802           return true;
803         }
804       }
805     }
806   }
807 
808   // There are two cases that are interesting for this code to handle: memcpy
809   // and memset.  Right now we only handle memset.
810 
811   // Ensure that the value being stored is something that can be memset'able a
812   // byte at a time like "0" or "-1" or any width, as well as things like
813   // 0xA0A0A0A0 and 0.0.
814   auto *V = SI->getOperand(0);
815   if (Value *ByteVal = isBytewiseValue(V, DL)) {
816     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
817                                               ByteVal)) {
818       BBI = I->getIterator(); // Don't invalidate iterator.
819       return true;
820     }
821 
822     // If we have an aggregate, we try to promote it to memset regardless
823     // of opportunity for merging as it can expose optimization opportunities
824     // in subsequent passes.
825     auto *T = V->getType();
826     if (T->isAggregateType()) {
827       uint64_t Size = DL.getTypeStoreSize(T);
828       IRBuilder<> Builder(SI);
829       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
830                                      SI->getAlign());
831 
832       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
833 
834       if (MSSAU) {
835         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
836         auto *LastDef =
837             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
838         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
839         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
840       }
841 
842       eraseInstruction(SI);
843       NumMemSetInfer++;
844 
845       // Make sure we do not invalidate the iterator.
846       BBI = M->getIterator();
847       return true;
848     }
849   }
850 
851   return false;
852 }
853 
854 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
855   // See if there is another memset or store neighboring this memset which
856   // allows us to widen out the memset to do a single larger store.
857   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
858     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
859                                               MSI->getValue())) {
860       BBI = I->getIterator(); // Don't invalidate iterator.
861       return true;
862     }
863   return false;
864 }
865 
866 /// Takes a memcpy and a call that it depends on,
867 /// and checks for the possibility of a call slot optimization by having
868 /// the call write its result directly into the destination of the memcpy.
869 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
870                                          Instruction *cpyStore, Value *cpyDest,
871                                          Value *cpySrc, TypeSize cpySize,
872                                          Align cpyAlign, CallInst *C) {
873   // The general transformation to keep in mind is
874   //
875   //   call @func(..., src, ...)
876   //   memcpy(dest, src, ...)
877   //
878   // ->
879   //
880   //   memcpy(dest, src, ...)
881   //   call @func(..., dest, ...)
882   //
883   // Since moving the memcpy is technically awkward, we additionally check that
884   // src only holds uninitialized values at the moment of the call, meaning that
885   // the memcpy can be discarded rather than moved.
886 
887   // We can't optimize scalable types.
888   if (cpySize.isScalable())
889     return false;
890 
891   // Lifetime marks shouldn't be operated on.
892   if (Function *F = C->getCalledFunction())
893     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
894       return false;
895 
896   // Require that src be an alloca.  This simplifies the reasoning considerably.
897   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
898   if (!srcAlloca)
899     return false;
900 
901   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
902   if (!srcArraySize)
903     return false;
904 
905   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
906   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
907                      srcArraySize->getZExtValue();
908 
909   if (cpySize < srcSize)
910     return false;
911 
912   // Check that accessing the first srcSize bytes of dest will not cause a
913   // trap.  Otherwise the transform is invalid since it might cause a trap
914   // to occur earlier than it otherwise would.
915   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
916                                           DL, C, DT))
917     return false;
918 
919   // Make sure that nothing can observe cpyDest being written early. There are
920   // a number of cases to consider:
921   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
922   //     the transform.
923   //  2. C itself may not access cpyDest (prior to the transform). This is
924   //     checked further below.
925   //  3. If cpyDest is accessible to the caller of this function (potentially
926   //     captured and not based on an alloca), we need to ensure that we cannot
927   //     unwind between C and cpyStore. This is checked here.
928   //  4. If cpyDest is potentially captured, there may be accesses to it from
929   //     another thread. In this case, we need to check that cpyStore is
930   //     guaranteed to be executed if C is. As it is a non-atomic access, it
931   //     renders accesses from other threads undefined.
932   //     TODO: This is currently not checked.
933   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
934     return false;
935 
936   // Check that dest points to memory that is at least as aligned as src.
937   Align srcAlign = srcAlloca->getAlign();
938   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
939   // If dest is not aligned enough and we can't increase its alignment then
940   // bail out.
941   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
942     return false;
943 
944   // Check that src is not accessed except via the call and the memcpy.  This
945   // guarantees that it holds only undefined values when passed in (so the final
946   // memcpy can be dropped), that it is not read or written between the call and
947   // the memcpy, and that writing beyond the end of it is undefined.
948   SmallVector<User *, 8> srcUseList(srcAlloca->users());
949   while (!srcUseList.empty()) {
950     User *U = srcUseList.pop_back_val();
951 
952     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
953       append_range(srcUseList, U->users());
954       continue;
955     }
956     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
957       if (!G->hasAllZeroIndices())
958         return false;
959 
960       append_range(srcUseList, U->users());
961       continue;
962     }
963     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
964       if (IT->isLifetimeStartOrEnd())
965         continue;
966 
967     if (U != C && U != cpyLoad)
968       return false;
969   }
970 
971   // Check that src isn't captured by the called function since the
972   // transformation can cause aliasing issues in that case.
973   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
974     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
975       return false;
976 
977   // Since we're changing the parameter to the callsite, we need to make sure
978   // that what would be the new parameter dominates the callsite.
979   if (!DT->dominates(cpyDest, C)) {
980     // Support moving a constant index GEP before the call.
981     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
982     if (GEP && GEP->hasAllConstantIndices() &&
983         DT->dominates(GEP->getPointerOperand(), C))
984       GEP->moveBefore(C);
985     else
986       return false;
987   }
988 
989   // In addition to knowing that the call does not access src in some
990   // unexpected manner, for example via a global, which we deduce from
991   // the use analysis, we also need to know that it does not sneakily
992   // access dest.  We rely on AA to figure this out for us.
993   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
994   // If necessary, perform additional analysis.
995   if (isModOrRefSet(MR))
996     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
997   if (isModOrRefSet(MR))
998     return false;
999 
1000   // We can't create address space casts here because we don't know if they're
1001   // safe for the target.
1002   if (cpySrc->getType()->getPointerAddressSpace() !=
1003       cpyDest->getType()->getPointerAddressSpace())
1004     return false;
1005   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1006     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1007         cpySrc->getType()->getPointerAddressSpace() !=
1008             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
1009       return false;
1010 
1011   // All the checks have passed, so do the transformation.
1012   bool changedArgument = false;
1013   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1014     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1015       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
1016         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
1017                                       cpyDest->getName(), C);
1018       changedArgument = true;
1019       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1020         C->setArgOperand(ArgI, Dest);
1021       else
1022         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1023                                    Dest, C->getArgOperand(ArgI)->getType(),
1024                                    Dest->getName(), C));
1025     }
1026 
1027   if (!changedArgument)
1028     return false;
1029 
1030   // If the destination wasn't sufficiently aligned then increase its alignment.
1031   if (!isDestSufficientlyAligned) {
1032     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1033     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1034   }
1035 
1036   // Drop any cached information about the call, because we may have changed
1037   // its dependence information by changing its parameter.
1038   if (MD)
1039     MD->removeInstruction(C);
1040 
1041   // Update AA metadata
1042   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1043   // handled here, but combineMetadata doesn't support them yet
1044   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1045                          LLVMContext::MD_noalias,
1046                          LLVMContext::MD_invariant_group,
1047                          LLVMContext::MD_access_group};
1048   combineMetadata(C, cpyLoad, KnownIDs, true);
1049 
1050   ++NumCallSlot;
1051   return true;
1052 }
1053 
1054 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1055 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1056 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1057                                                   MemCpyInst *MDep) {
1058   // We can only transforms memcpy's where the dest of one is the source of the
1059   // other.
1060   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1061     return false;
1062 
1063   // If dep instruction is reading from our current input, then it is a noop
1064   // transfer and substituting the input won't change this instruction.  Just
1065   // ignore the input and let someone else zap MDep.  This handles cases like:
1066   //    memcpy(a <- a)
1067   //    memcpy(b <- a)
1068   if (M->getSource() == MDep->getSource())
1069     return false;
1070 
1071   // Second, the length of the memcpy's must be the same, or the preceding one
1072   // must be larger than the following one.
1073   if (MDep->getLength() != M->getLength()) {
1074     ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1075     ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1076     if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1077       return false;
1078   }
1079 
1080   // Verify that the copied-from memory doesn't change in between the two
1081   // transfers.  For example, in:
1082   //    memcpy(a <- b)
1083   //    *b = 42;
1084   //    memcpy(c <- a)
1085   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1086   //
1087   // TODO: If the code between M and MDep is transparent to the destination "c",
1088   // then we could still perform the xform by moving M up to the first memcpy.
1089   if (EnableMemorySSA) {
1090     // TODO: It would be sufficient to check the MDep source up to the memcpy
1091     // size of M, rather than MDep.
1092     if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1093                        MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1094       return false;
1095   } else {
1096     // NOTE: This is conservative, it will stop on any read from the source loc,
1097     // not just the defining memcpy.
1098     MemDepResult SourceDep =
1099         MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1100                                      M->getIterator(), M->getParent());
1101     if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1102       return false;
1103   }
1104 
1105   // If the dest of the second might alias the source of the first, then the
1106   // source and dest might overlap.  We still want to eliminate the intermediate
1107   // value, but we have to generate a memmove instead of memcpy.
1108   bool UseMemMove = false;
1109   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1110                      MemoryLocation::getForSource(MDep)))
1111     UseMemMove = true;
1112 
1113   // If all checks passed, then we can transform M.
1114   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1115                     << *MDep << '\n' << *M << '\n');
1116 
1117   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1118   // example we could be moving from movaps -> movq on x86.
1119   IRBuilder<> Builder(M);
1120   Instruction *NewM;
1121   if (UseMemMove)
1122     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1123                                  MDep->getRawSource(), MDep->getSourceAlign(),
1124                                  M->getLength(), M->isVolatile());
1125   else if (isa<MemCpyInlineInst>(M)) {
1126     // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1127     // never allowed since that would allow the latter to be lowered as a call
1128     // to an external function.
1129     NewM = Builder.CreateMemCpyInline(
1130         M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1131         MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1132   } else
1133     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1134                                 MDep->getRawSource(), MDep->getSourceAlign(),
1135                                 M->getLength(), M->isVolatile());
1136 
1137   if (MSSAU) {
1138     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1139     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1140     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1141     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1142   }
1143 
1144   // Remove the instruction we're replacing.
1145   eraseInstruction(M);
1146   ++NumMemCpyInstr;
1147   return true;
1148 }
1149 
1150 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1151 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1152 /// weren't copied over by \p MemCpy.
1153 ///
1154 /// In other words, transform:
1155 /// \code
1156 ///   memset(dst, c, dst_size);
1157 ///   memcpy(dst, src, src_size);
1158 /// \endcode
1159 /// into:
1160 /// \code
1161 ///   memcpy(dst, src, src_size);
1162 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1163 /// \endcode
1164 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1165                                                   MemSetInst *MemSet) {
1166   // We can only transform memset/memcpy with the same destination.
1167   if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1168     return false;
1169 
1170   // Check that src and dst of the memcpy aren't the same. While memcpy
1171   // operands cannot partially overlap, exact equality is allowed.
1172   if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
1173                                     LocationSize::precise(1)),
1174                      MemoryLocation(MemCpy->getDest(),
1175                                     LocationSize::precise(1))))
1176     return false;
1177 
1178   if (EnableMemorySSA) {
1179     // We know that dst up to src_size is not written. We now need to make sure
1180     // that dst up to dst_size is not accessed. (If we did not move the memset,
1181     // checking for reads would be sufficient.)
1182     if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1183                         MSSA->getMemoryAccess(MemSet),
1184                         MSSA->getMemoryAccess(MemCpy))) {
1185       return false;
1186     }
1187   } else {
1188     // We have already checked that dst up to src_size is not accessed. We
1189     // need to make sure that there are no accesses up to dst_size either.
1190     MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
1191         MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(),
1192         MemCpy->getParent());
1193     if (DstDepInfo.getInst() != MemSet)
1194       return false;
1195   }
1196 
1197   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1198   Value *Dest = MemCpy->getRawDest();
1199   Value *DestSize = MemSet->getLength();
1200   Value *SrcSize = MemCpy->getLength();
1201 
1202   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1203     return false;
1204 
1205   // If the sizes are the same, simply drop the memset instead of generating
1206   // a replacement with zero size.
1207   if (DestSize == SrcSize) {
1208     eraseInstruction(MemSet);
1209     return true;
1210   }
1211 
1212   // By default, create an unaligned memset.
1213   unsigned Align = 1;
1214   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1215   // of the sum.
1216   const unsigned DestAlign =
1217       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1218   if (DestAlign > 1)
1219     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1220       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1221 
1222   IRBuilder<> Builder(MemCpy);
1223 
1224   // If the sizes have different types, zext the smaller one.
1225   if (DestSize->getType() != SrcSize->getType()) {
1226     if (DestSize->getType()->getIntegerBitWidth() >
1227         SrcSize->getType()->getIntegerBitWidth())
1228       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1229     else
1230       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1231   }
1232 
1233   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1234   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1235   Value *MemsetLen = Builder.CreateSelect(
1236       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1237   unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1238   Instruction *NewMemSet = Builder.CreateMemSet(
1239       Builder.CreateGEP(Builder.getInt8Ty(),
1240                         Builder.CreatePointerCast(Dest,
1241                                                   Builder.getInt8PtrTy(DestAS)),
1242                         SrcSize),
1243       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1244 
1245   if (MSSAU) {
1246     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1247            "MemCpy must be a MemoryDef");
1248     // The new memset is inserted after the memcpy, but it is known that its
1249     // defining access is the memset about to be removed which immediately
1250     // precedes the memcpy.
1251     auto *LastDef =
1252         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1253     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1254         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1255     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1256   }
1257 
1258   eraseInstruction(MemSet);
1259   return true;
1260 }
1261 
1262 /// Determine whether the instruction has undefined content for the given Size,
1263 /// either because it was freshly alloca'd or started its lifetime.
1264 static bool hasUndefContents(Instruction *I, Value *Size) {
1265   if (isa<AllocaInst>(I))
1266     return true;
1267 
1268   if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1269     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1270       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1271         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1272           if (LTSize->getZExtValue() >= CSize->getZExtValue())
1273             return true;
1274   }
1275 
1276   return false;
1277 }
1278 
1279 static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1280                                  MemoryDef *Def, Value *Size) {
1281   if (MSSA->isLiveOnEntryDef(Def))
1282     return isa<AllocaInst>(getUnderlyingObject(V));
1283 
1284   if (IntrinsicInst *II =
1285           dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1286     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1287       ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1288 
1289       if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1290         if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1291             LTSize->getZExtValue() >= CSize->getZExtValue())
1292           return true;
1293       }
1294 
1295       // If the lifetime.start covers a whole alloca (as it almost always
1296       // does) and we're querying a pointer based on that alloca, then we know
1297       // the memory is definitely undef, regardless of how exactly we alias.
1298       // The size also doesn't matter, as an out-of-bounds access would be UB.
1299       AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V));
1300       if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1301         const DataLayout &DL = Alloca->getModule()->getDataLayout();
1302         if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL))
1303           if (*AllocaSize == LTSize->getValue() * 8)
1304             return true;
1305       }
1306     }
1307   }
1308 
1309   return false;
1310 }
1311 
1312 /// Transform memcpy to memset when its source was just memset.
1313 /// In other words, turn:
1314 /// \code
1315 ///   memset(dst1, c, dst1_size);
1316 ///   memcpy(dst2, dst1, dst2_size);
1317 /// \endcode
1318 /// into:
1319 /// \code
1320 ///   memset(dst1, c, dst1_size);
1321 ///   memset(dst2, c, dst2_size);
1322 /// \endcode
1323 /// When dst2_size <= dst1_size.
1324 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1325                                                MemSetInst *MemSet) {
1326   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1327   // memcpying from the same address. Otherwise it is hard to reason about.
1328   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1329     return false;
1330 
1331   Value *MemSetSize = MemSet->getLength();
1332   Value *CopySize = MemCpy->getLength();
1333 
1334   if (MemSetSize != CopySize) {
1335     // Make sure the memcpy doesn't read any more than what the memset wrote.
1336     // Don't worry about sizes larger than i64.
1337 
1338     // A known memset size is required.
1339     ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1340     if (!CMemSetSize)
1341       return false;
1342 
1343     // A known memcpy size is also required.
1344     ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize);
1345     if (!CCopySize)
1346       return false;
1347     if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1348       // If the memcpy is larger than the memset, but the memory was undef prior
1349       // to the memset, we can just ignore the tail. Technically we're only
1350       // interested in the bytes from MemSetSize..CopySize here, but as we can't
1351       // easily represent this location, we use the full 0..CopySize range.
1352       MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1353       bool CanReduceSize = false;
1354       if (EnableMemorySSA) {
1355         MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1356         MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1357             MemSetAccess->getDefiningAccess(), MemCpyLoc);
1358         if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1359           if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1360             CanReduceSize = true;
1361       } else {
1362         MemDepResult DepInfo = MD->getPointerDependencyFrom(
1363             MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1364         if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1365           CanReduceSize = true;
1366       }
1367 
1368       if (!CanReduceSize)
1369         return false;
1370       CopySize = MemSetSize;
1371     }
1372   }
1373 
1374   IRBuilder<> Builder(MemCpy);
1375   Instruction *NewM =
1376       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1377                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1378   if (MSSAU) {
1379     auto *LastDef =
1380         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1381     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1382     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1383   }
1384 
1385   return true;
1386 }
1387 
1388 /// Perform simplification of memcpy's.  If we have memcpy A
1389 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1390 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1391 /// circumstances). This allows later passes to remove the first memcpy
1392 /// altogether.
1393 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1394   // We can only optimize non-volatile memcpy's.
1395   if (M->isVolatile()) return false;
1396 
1397   // If the source and destination of the memcpy are the same, then zap it.
1398   if (M->getSource() == M->getDest()) {
1399     ++BBI;
1400     eraseInstruction(M);
1401     return true;
1402   }
1403 
1404   // If copying from a constant, try to turn the memcpy into a memset.
1405   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1406     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1407       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1408                                            M->getModule()->getDataLayout())) {
1409         IRBuilder<> Builder(M);
1410         Instruction *NewM =
1411             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1412                                  MaybeAlign(M->getDestAlignment()), false);
1413         if (MSSAU) {
1414           auto *LastDef =
1415               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1416           auto *NewAccess =
1417               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1418           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1419         }
1420 
1421         eraseInstruction(M);
1422         ++NumCpyToSet;
1423         return true;
1424       }
1425 
1426   if (EnableMemorySSA) {
1427     MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1428     MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1429     MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1430     const MemoryAccess *DestClobber =
1431         MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1432 
1433     // Try to turn a partially redundant memset + memcpy into
1434     // memcpy + smaller memset.  We don't need the memcpy size for this.
1435     // The memcpy most post-dom the memset, so limit this to the same basic
1436     // block. A non-local generalization is likely not worthwhile.
1437     if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1438       if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1439         if (DestClobber->getBlock() == M->getParent())
1440           if (processMemSetMemCpyDependence(M, MDep))
1441             return true;
1442 
1443     MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1444         AnyClobber, MemoryLocation::getForSource(M));
1445 
1446     // There are four possible optimizations we can do for memcpy:
1447     //   a) memcpy-memcpy xform which exposes redundance for DSE.
1448     //   b) call-memcpy xform for return slot optimization.
1449     //   c) memcpy from freshly alloca'd space or space that has just started
1450     //      its lifetime copies undefined data, and we can therefore eliminate
1451     //      the memcpy in favor of the data that was already at the destination.
1452     //   d) memcpy from a just-memset'd source can be turned into memset.
1453     if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1454       if (Instruction *MI = MD->getMemoryInst()) {
1455         if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1456           if (auto *C = dyn_cast<CallInst>(MI)) {
1457             // The memcpy must post-dom the call. Limit to the same block for
1458             // now. Additionally, we need to ensure that there are no accesses
1459             // to dest between the call and the memcpy. Accesses to src will be
1460             // checked by performCallSlotOptzn().
1461             // TODO: Support non-local call-slot optimization?
1462             if (C->getParent() == M->getParent() &&
1463                 !accessedBetween(*AA, DestLoc, MD, MA)) {
1464               // FIXME: Can we pass in either of dest/src alignment here instead
1465               // of conservatively taking the minimum?
1466               Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1467                                          M->getSourceAlign().valueOrOne());
1468               if (performCallSlotOptzn(
1469                       M, M, M->getDest(), M->getSource(),
1470                       TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
1471                       C)) {
1472                 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1473                                   << "    call: " << *C << "\n"
1474                                   << "    memcpy: " << *M << "\n");
1475                 eraseInstruction(M);
1476                 ++NumMemCpyInstr;
1477                 return true;
1478               }
1479             }
1480           }
1481         }
1482         if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1483           return processMemCpyMemCpyDependence(M, MDep);
1484         if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1485           if (performMemCpyToMemSetOptzn(M, MDep)) {
1486             LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1487             eraseInstruction(M);
1488             ++NumCpyToSet;
1489             return true;
1490           }
1491         }
1492       }
1493 
1494       if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) {
1495         LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1496         eraseInstruction(M);
1497         ++NumMemCpyInstr;
1498         return true;
1499       }
1500     }
1501   } else {
1502     MemDepResult DepInfo = MD->getDependency(M);
1503 
1504     // Try to turn a partially redundant memset + memcpy into
1505     // memcpy + smaller memset.  We don't need the memcpy size for this.
1506     if (DepInfo.isClobber())
1507       if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1508         if (processMemSetMemCpyDependence(M, MDep))
1509           return true;
1510 
1511     // There are four possible optimizations we can do for memcpy:
1512     //   a) memcpy-memcpy xform which exposes redundance for DSE.
1513     //   b) call-memcpy xform for return slot optimization.
1514     //   c) memcpy from freshly alloca'd space or space that has just started
1515     //      its lifetime copies undefined data, and we can therefore eliminate
1516     //      the memcpy in favor of the data that was already at the destination.
1517     //   d) memcpy from a just-memset'd source can be turned into memset.
1518     if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1519       if (DepInfo.isClobber()) {
1520         if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1521           // FIXME: Can we pass in either of dest/src alignment here instead
1522           // of conservatively taking the minimum?
1523           Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1524                                      M->getSourceAlign().valueOrOne());
1525           if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1526                                    TypeSize::getFixed(CopySize->getZExtValue()),
1527                                    Alignment, C)) {
1528             eraseInstruction(M);
1529             ++NumMemCpyInstr;
1530             return true;
1531           }
1532         }
1533       }
1534     }
1535 
1536     MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1537     MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1538         SrcLoc, true, M->getIterator(), M->getParent());
1539 
1540     if (SrcDepInfo.isClobber()) {
1541       if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1542         return processMemCpyMemCpyDependence(M, MDep);
1543     } else if (SrcDepInfo.isDef()) {
1544       if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) {
1545         eraseInstruction(M);
1546         ++NumMemCpyInstr;
1547         return true;
1548       }
1549     }
1550 
1551     if (SrcDepInfo.isClobber())
1552       if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1553         if (performMemCpyToMemSetOptzn(M, MDep)) {
1554           eraseInstruction(M);
1555           ++NumCpyToSet;
1556           return true;
1557         }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1564 /// not to alias.
1565 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1566   if (!TLI->has(LibFunc_memmove))
1567     return false;
1568 
1569   // See if the pointers alias.
1570   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1571                      MemoryLocation::getForSource(M)))
1572     return false;
1573 
1574   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1575                     << "\n");
1576 
1577   // If not, then we know we can transform this.
1578   Type *ArgTys[3] = { M->getRawDest()->getType(),
1579                       M->getRawSource()->getType(),
1580                       M->getLength()->getType() };
1581   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1582                                                  Intrinsic::memcpy, ArgTys));
1583 
1584   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1585   // aliasing guarantees).
1586 
1587   // MemDep may have over conservative information about this instruction, just
1588   // conservatively flush it from the cache.
1589   if (MD)
1590     MD->removeInstruction(M);
1591 
1592   ++NumMoveToCpy;
1593   return true;
1594 }
1595 
1596 /// This is called on every byval argument in call sites.
1597 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1598   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1599   // Find out what feeds this byval argument.
1600   Value *ByValArg = CB.getArgOperand(ArgNo);
1601   Type *ByValTy = CB.getParamByValType(ArgNo);
1602   TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1603   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1604   MemCpyInst *MDep = nullptr;
1605   if (EnableMemorySSA) {
1606     MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1607     if (!CallAccess)
1608       return false;
1609     MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1610         CallAccess->getDefiningAccess(), Loc);
1611     if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1612       MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1613   } else {
1614     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1615         Loc, true, CB.getIterator(), CB.getParent());
1616     if (!DepInfo.isClobber())
1617       return false;
1618     MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1619   }
1620 
1621   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1622   // a memcpy, see if we can byval from the source of the memcpy instead of the
1623   // result.
1624   if (!MDep || MDep->isVolatile() ||
1625       ByValArg->stripPointerCasts() != MDep->getDest())
1626     return false;
1627 
1628   // The length of the memcpy must be larger or equal to the size of the byval.
1629   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1630   if (!C1 || !TypeSize::isKnownGE(
1631                  TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1632     return false;
1633 
1634   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1635   // then it is some target specific value that we can't know.
1636   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1637   if (!ByValAlign) return false;
1638 
1639   // If it is greater than the memcpy, then we check to see if we can force the
1640   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1641   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1642   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1643       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1644                                  DT) < *ByValAlign)
1645     return false;
1646 
1647   // The address space of the memcpy source must match the byval argument
1648   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1649       ByValArg->getType()->getPointerAddressSpace())
1650     return false;
1651 
1652   // Verify that the copied-from memory doesn't change in between the memcpy and
1653   // the byval call.
1654   //    memcpy(a <- b)
1655   //    *b = 42;
1656   //    foo(*a)
1657   // It would be invalid to transform the second memcpy into foo(*b).
1658   if (EnableMemorySSA) {
1659     if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1660                        MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1661       return false;
1662   } else {
1663     // NOTE: This is conservative, it will stop on any read from the source loc,
1664     // not just the defining memcpy.
1665     MemDepResult SourceDep = MD->getPointerDependencyFrom(
1666         MemoryLocation::getForSource(MDep), false,
1667         CB.getIterator(), MDep->getParent());
1668     if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1669       return false;
1670   }
1671 
1672   Value *TmpCast = MDep->getSource();
1673   if (MDep->getSource()->getType() != ByValArg->getType()) {
1674     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1675                                               "tmpcast", &CB);
1676     // Set the tmpcast's DebugLoc to MDep's
1677     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1678     TmpCast = TmpBitCast;
1679   }
1680 
1681   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1682                     << "  " << *MDep << "\n"
1683                     << "  " << CB << "\n");
1684 
1685   // Otherwise we're good!  Update the byval argument.
1686   CB.setArgOperand(ArgNo, TmpCast);
1687   ++NumMemCpyInstr;
1688   return true;
1689 }
1690 
1691 /// Executes one iteration of MemCpyOptPass.
1692 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1693   bool MadeChange = false;
1694 
1695   // Walk all instruction in the function.
1696   for (BasicBlock &BB : F) {
1697     // Skip unreachable blocks. For example processStore assumes that an
1698     // instruction in a BB can't be dominated by a later instruction in the
1699     // same BB (which is a scenario that can happen for an unreachable BB that
1700     // has itself as a predecessor).
1701     if (!DT->isReachableFromEntry(&BB))
1702       continue;
1703 
1704     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1705         // Avoid invalidating the iterator.
1706       Instruction *I = &*BI++;
1707 
1708       bool RepeatInstruction = false;
1709 
1710       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1711         MadeChange |= processStore(SI, BI);
1712       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1713         RepeatInstruction = processMemSet(M, BI);
1714       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1715         RepeatInstruction = processMemCpy(M, BI);
1716       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1717         RepeatInstruction = processMemMove(M);
1718       else if (auto *CB = dyn_cast<CallBase>(I)) {
1719         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1720           if (CB->isByValArgument(i))
1721             MadeChange |= processByValArgument(*CB, i);
1722       }
1723 
1724       // Reprocess the instruction if desired.
1725       if (RepeatInstruction) {
1726         if (BI != BB.begin())
1727           --BI;
1728         MadeChange = true;
1729       }
1730     }
1731   }
1732 
1733   return MadeChange;
1734 }
1735 
1736 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1737   auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F)
1738                               : AM.getCachedResult<MemoryDependenceAnalysis>(F);
1739   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1740   auto *AA = &AM.getResult<AAManager>(F);
1741   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1742   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1743   auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
1744                                : AM.getCachedResult<MemorySSAAnalysis>(F);
1745 
1746   bool MadeChange =
1747       runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1748   if (!MadeChange)
1749     return PreservedAnalyses::all();
1750 
1751   PreservedAnalyses PA;
1752   PA.preserveSet<CFGAnalyses>();
1753   if (MD)
1754     PA.preserve<MemoryDependenceAnalysis>();
1755   if (MSSA)
1756     PA.preserve<MemorySSAAnalysis>();
1757   return PA;
1758 }
1759 
1760 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1761                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1762                             AssumptionCache *AC_, DominatorTree *DT_,
1763                             MemorySSA *MSSA_) {
1764   bool MadeChange = false;
1765   MD = MD_;
1766   TLI = TLI_;
1767   AA = AA_;
1768   AC = AC_;
1769   DT = DT_;
1770   MSSA = MSSA_;
1771   MemorySSAUpdater MSSAU_(MSSA_);
1772   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1773   // If we don't have at least memset and memcpy, there is little point of doing
1774   // anything here.  These are required by a freestanding implementation, so if
1775   // even they are disabled, there is no point in trying hard.
1776   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1777     return false;
1778 
1779   while (true) {
1780     if (!iterateOnFunction(F))
1781       break;
1782     MadeChange = true;
1783   }
1784 
1785   if (MSSA_ && VerifyMemorySSA)
1786     MSSA_->verifyMemorySSA();
1787 
1788   MD = nullptr;
1789   return MadeChange;
1790 }
1791 
1792 /// This is the main transformation entry point for a function.
1793 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1794   if (skipFunction(F))
1795     return false;
1796 
1797   auto *MDWP = !EnableMemorySSA
1798       ? &getAnalysis<MemoryDependenceWrapperPass>()
1799       : getAnalysisIfAvailable<MemoryDependenceWrapperPass>();
1800   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1801   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1802   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1803   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1804   auto *MSSAWP = EnableMemorySSA
1805       ? &getAnalysis<MemorySSAWrapperPass>()
1806       : getAnalysisIfAvailable<MemorySSAWrapperPass>();
1807 
1808   return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT,
1809                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1810 }
1811