1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "memcpyopt" 65 66 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 67 "enable-memcpyopt-without-libcalls", cl::Hidden, 68 cl::desc("Enable memcpyopt even when libcalls are disabled")); 69 70 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 71 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 72 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 73 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 74 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 75 76 namespace { 77 78 /// Represents a range of memset'd bytes with the ByteVal value. 79 /// This allows us to analyze stores like: 80 /// store 0 -> P+1 81 /// store 0 -> P+0 82 /// store 0 -> P+3 83 /// store 0 -> P+2 84 /// which sometimes happens with stores to arrays of structs etc. When we see 85 /// the first store, we make a range [1, 2). The second store extends the range 86 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 87 /// two ranges into [0, 3) which is memset'able. 88 struct MemsetRange { 89 // Start/End - A semi range that describes the span that this range covers. 90 // The range is closed at the start and open at the end: [Start, End). 91 int64_t Start, End; 92 93 /// StartPtr - The getelementptr instruction that points to the start of the 94 /// range. 95 Value *StartPtr; 96 97 /// Alignment - The known alignment of the first store. 98 MaybeAlign Alignment; 99 100 /// TheStores - The actual stores that make up this range. 101 SmallVector<Instruction*, 16> TheStores; 102 103 bool isProfitableToUseMemset(const DataLayout &DL) const; 104 }; 105 106 } // end anonymous namespace 107 108 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 109 // If we found more than 4 stores to merge or 16 bytes, use memset. 110 if (TheStores.size() >= 4 || End-Start >= 16) return true; 111 112 // If there is nothing to merge, don't do anything. 113 if (TheStores.size() < 2) return false; 114 115 // If any of the stores are a memset, then it is always good to extend the 116 // memset. 117 for (Instruction *SI : TheStores) 118 if (!isa<StoreInst>(SI)) 119 return true; 120 121 // Assume that the code generator is capable of merging pairs of stores 122 // together if it wants to. 123 if (TheStores.size() == 2) return false; 124 125 // If we have fewer than 8 stores, it can still be worthwhile to do this. 126 // For example, merging 4 i8 stores into an i32 store is useful almost always. 127 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 128 // memset will be split into 2 32-bit stores anyway) and doing so can 129 // pessimize the llvm optimizer. 130 // 131 // Since we don't have perfect knowledge here, make some assumptions: assume 132 // the maximum GPR width is the same size as the largest legal integer 133 // size. If so, check to see whether we will end up actually reducing the 134 // number of stores used. 135 unsigned Bytes = unsigned(End-Start); 136 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 137 if (MaxIntSize == 0) 138 MaxIntSize = 1; 139 unsigned NumPointerStores = Bytes / MaxIntSize; 140 141 // Assume the remaining bytes if any are done a byte at a time. 142 unsigned NumByteStores = Bytes % MaxIntSize; 143 144 // If we will reduce the # stores (according to this heuristic), do the 145 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 146 // etc. 147 return TheStores.size() > NumPointerStores+NumByteStores; 148 } 149 150 namespace { 151 152 class MemsetRanges { 153 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 154 155 /// A sorted list of the memset ranges. 156 SmallVector<MemsetRange, 8> Ranges; 157 158 const DataLayout &DL; 159 160 public: 161 MemsetRanges(const DataLayout &DL) : DL(DL) {} 162 163 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 164 165 const_iterator begin() const { return Ranges.begin(); } 166 const_iterator end() const { return Ranges.end(); } 167 bool empty() const { return Ranges.empty(); } 168 169 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 170 if (auto *SI = dyn_cast<StoreInst>(Inst)) 171 addStore(OffsetFromFirst, SI); 172 else 173 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 174 } 175 176 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 177 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 178 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 179 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 180 SI->getAlign(), SI); 181 } 182 183 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 184 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 185 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI); 186 } 187 188 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, 189 Instruction *Inst); 190 }; 191 192 } // end anonymous namespace 193 194 /// Add a new store to the MemsetRanges data structure. This adds a 195 /// new range for the specified store at the specified offset, merging into 196 /// existing ranges as appropriate. 197 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 198 MaybeAlign Alignment, Instruction *Inst) { 199 int64_t End = Start+Size; 200 201 range_iterator I = partition_point( 202 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 203 204 // We now know that I == E, in which case we didn't find anything to merge 205 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 206 // to insert a new range. Handle this now. 207 if (I == Ranges.end() || End < I->Start) { 208 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 209 R.Start = Start; 210 R.End = End; 211 R.StartPtr = Ptr; 212 R.Alignment = Alignment; 213 R.TheStores.push_back(Inst); 214 return; 215 } 216 217 // This store overlaps with I, add it. 218 I->TheStores.push_back(Inst); 219 220 // At this point, we may have an interval that completely contains our store. 221 // If so, just add it to the interval and return. 222 if (I->Start <= Start && I->End >= End) 223 return; 224 225 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 226 // but is not entirely contained within the range. 227 228 // See if the range extends the start of the range. In this case, it couldn't 229 // possibly cause it to join the prior range, because otherwise we would have 230 // stopped on *it*. 231 if (Start < I->Start) { 232 I->Start = Start; 233 I->StartPtr = Ptr; 234 I->Alignment = Alignment; 235 } 236 237 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 238 // is in or right at the end of I), and that End >= I->Start. Extend I out to 239 // End. 240 if (End > I->End) { 241 I->End = End; 242 range_iterator NextI = I; 243 while (++NextI != Ranges.end() && End >= NextI->Start) { 244 // Merge the range in. 245 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 246 if (NextI->End > I->End) 247 I->End = NextI->End; 248 Ranges.erase(NextI); 249 NextI = I; 250 } 251 } 252 } 253 254 //===----------------------------------------------------------------------===// 255 // MemCpyOptLegacyPass Pass 256 //===----------------------------------------------------------------------===// 257 258 namespace { 259 260 class MemCpyOptLegacyPass : public FunctionPass { 261 MemCpyOptPass Impl; 262 263 public: 264 static char ID; // Pass identification, replacement for typeid 265 266 MemCpyOptLegacyPass() : FunctionPass(ID) { 267 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 268 } 269 270 bool runOnFunction(Function &F) override; 271 272 private: 273 // This transformation requires dominator postdominator info 274 void getAnalysisUsage(AnalysisUsage &AU) const override { 275 AU.setPreservesCFG(); 276 AU.addRequired<AssumptionCacheTracker>(); 277 AU.addRequired<DominatorTreeWrapperPass>(); 278 AU.addPreserved<DominatorTreeWrapperPass>(); 279 AU.addPreserved<GlobalsAAWrapperPass>(); 280 AU.addRequired<TargetLibraryInfoWrapperPass>(); 281 AU.addRequired<AAResultsWrapperPass>(); 282 AU.addPreserved<AAResultsWrapperPass>(); 283 AU.addRequired<MemorySSAWrapperPass>(); 284 AU.addPreserved<MemorySSAWrapperPass>(); 285 } 286 }; 287 288 } // end anonymous namespace 289 290 char MemCpyOptLegacyPass::ID = 0; 291 292 /// The public interface to this file... 293 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 294 295 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 296 false, false) 297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 302 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 303 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 304 false, false) 305 306 // Check that V is either not accessible by the caller, or unwinding cannot 307 // occur between Start and End. 308 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 309 Instruction *End) { 310 assert(Start->getParent() == End->getParent() && "Must be in same block"); 311 // Function can't unwind, so it also can't be visible through unwinding. 312 if (Start->getFunction()->doesNotThrow()) 313 return false; 314 315 // Object is not visible on unwind. 316 // TODO: Support RequiresNoCaptureBeforeUnwind case. 317 bool RequiresNoCaptureBeforeUnwind; 318 if (isNotVisibleOnUnwind(getUnderlyingObject(V), 319 RequiresNoCaptureBeforeUnwind) && 320 !RequiresNoCaptureBeforeUnwind) 321 return false; 322 323 // Check whether there are any unwinding instructions in the range. 324 return any_of(make_range(Start->getIterator(), End->getIterator()), 325 [](const Instruction &I) { return I.mayThrow(); }); 326 } 327 328 void MemCpyOptPass::eraseInstruction(Instruction *I) { 329 MSSAU->removeMemoryAccess(I); 330 I->eraseFromParent(); 331 } 332 333 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 334 // Start and End must be in the same block 335 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 336 const MemoryUseOrDef *Start, 337 const MemoryUseOrDef *End) { 338 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 339 for (const MemoryAccess &MA : 340 make_range(++Start->getIterator(), End->getIterator())) { 341 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 342 Loc))) 343 return true; 344 } 345 return false; 346 } 347 348 // Check for mod of Loc between Start and End, excluding both boundaries. 349 // Start and End can be in different blocks. 350 static bool writtenBetween(MemorySSA *MSSA, AliasAnalysis &AA, 351 MemoryLocation Loc, const MemoryUseOrDef *Start, 352 const MemoryUseOrDef *End) { 353 if (isa<MemoryUse>(End)) { 354 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. 355 // Manually check read accesses between Start and End, if they are in the 356 // same block, for clobbers. Otherwise assume Loc is clobbered. 357 return Start->getBlock() != End->getBlock() || 358 any_of( 359 make_range(std::next(Start->getIterator()), End->getIterator()), 360 [&AA, Loc](const MemoryAccess &Acc) { 361 if (isa<MemoryUse>(&Acc)) 362 return false; 363 Instruction *AccInst = 364 cast<MemoryUseOrDef>(&Acc)->getMemoryInst(); 365 return isModSet(AA.getModRefInfo(AccInst, Loc)); 366 }); 367 } 368 369 // TODO: Only walk until we hit Start. 370 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 371 End->getDefiningAccess(), Loc); 372 return !MSSA->dominates(Clobber, Start); 373 } 374 375 /// When scanning forward over instructions, we look for some other patterns to 376 /// fold away. In particular, this looks for stores to neighboring locations of 377 /// memory. If it sees enough consecutive ones, it attempts to merge them 378 /// together into a memcpy/memset. 379 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 380 Value *StartPtr, 381 Value *ByteVal) { 382 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 383 384 // We can't track scalable types 385 if (auto *SI = dyn_cast<StoreInst>(StartInst)) 386 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 387 return nullptr; 388 389 // Okay, so we now have a single store that can be splatable. Scan to find 390 // all subsequent stores of the same value to offset from the same pointer. 391 // Join these together into ranges, so we can decide whether contiguous blocks 392 // are stored. 393 MemsetRanges Ranges(DL); 394 395 BasicBlock::iterator BI(StartInst); 396 397 // Keeps track of the last memory use or def before the insertion point for 398 // the new memset. The new MemoryDef for the inserted memsets will be inserted 399 // after MemInsertPoint. It points to either LastMemDef or to the last user 400 // before the insertion point of the memset, if there are any such users. 401 MemoryUseOrDef *MemInsertPoint = nullptr; 402 // Keeps track of the last MemoryDef between StartInst and the insertion point 403 // for the new memset. This will become the defining access of the inserted 404 // memsets. 405 MemoryDef *LastMemDef = nullptr; 406 for (++BI; !BI->isTerminator(); ++BI) { 407 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 408 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 409 if (CurrentAcc) { 410 MemInsertPoint = CurrentAcc; 411 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 412 LastMemDef = CurrentDef; 413 } 414 415 // Calls that only access inaccessible memory do not block merging 416 // accessible stores. 417 if (auto *CB = dyn_cast<CallBase>(BI)) { 418 if (CB->onlyAccessesInaccessibleMemory()) 419 continue; 420 } 421 422 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 423 // If the instruction is readnone, ignore it, otherwise bail out. We 424 // don't even allow readonly here because we don't want something like: 425 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 426 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 427 break; 428 continue; 429 } 430 431 if (auto *NextStore = dyn_cast<StoreInst>(BI)) { 432 // If this is a store, see if we can merge it in. 433 if (!NextStore->isSimple()) break; 434 435 Value *StoredVal = NextStore->getValueOperand(); 436 437 // Don't convert stores of non-integral pointer types to memsets (which 438 // stores integers). 439 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 440 break; 441 442 // We can't track ranges involving scalable types. 443 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 444 break; 445 446 // Check to see if this stored value is of the same byte-splattable value. 447 Value *StoredByte = isBytewiseValue(StoredVal, DL); 448 if (isa<UndefValue>(ByteVal) && StoredByte) 449 ByteVal = StoredByte; 450 if (ByteVal != StoredByte) 451 break; 452 453 // Check to see if this store is to a constant offset from the start ptr. 454 Optional<int64_t> Offset = 455 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 456 if (!Offset) 457 break; 458 459 Ranges.addStore(*Offset, NextStore); 460 } else { 461 auto *MSI = cast<MemSetInst>(BI); 462 463 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 464 !isa<ConstantInt>(MSI->getLength())) 465 break; 466 467 // Check to see if this store is to a constant offset from the start ptr. 468 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 469 if (!Offset) 470 break; 471 472 Ranges.addMemSet(*Offset, MSI); 473 } 474 } 475 476 // If we have no ranges, then we just had a single store with nothing that 477 // could be merged in. This is a very common case of course. 478 if (Ranges.empty()) 479 return nullptr; 480 481 // If we had at least one store that could be merged in, add the starting 482 // store as well. We try to avoid this unless there is at least something 483 // interesting as a small compile-time optimization. 484 Ranges.addInst(0, StartInst); 485 486 // If we create any memsets, we put it right before the first instruction that 487 // isn't part of the memset block. This ensure that the memset is dominated 488 // by any addressing instruction needed by the start of the block. 489 IRBuilder<> Builder(&*BI); 490 491 // Now that we have full information about ranges, loop over the ranges and 492 // emit memset's for anything big enough to be worthwhile. 493 Instruction *AMemSet = nullptr; 494 for (const MemsetRange &Range : Ranges) { 495 if (Range.TheStores.size() == 1) continue; 496 497 // If it is profitable to lower this range to memset, do so now. 498 if (!Range.isProfitableToUseMemset(DL)) 499 continue; 500 501 // Otherwise, we do want to transform this! Create a new memset. 502 // Get the starting pointer of the block. 503 StartPtr = Range.StartPtr; 504 505 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 506 Range.Alignment); 507 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 508 : Range.TheStores) dbgs() 509 << *SI << '\n'; 510 dbgs() << "With: " << *AMemSet << '\n'); 511 if (!Range.TheStores.empty()) 512 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 513 514 assert(LastMemDef && MemInsertPoint && 515 "Both LastMemDef and MemInsertPoint need to be set"); 516 auto *NewDef = 517 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 518 ? MSSAU->createMemoryAccessBefore( 519 AMemSet, LastMemDef, MemInsertPoint) 520 : MSSAU->createMemoryAccessAfter( 521 AMemSet, LastMemDef, MemInsertPoint)); 522 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 523 LastMemDef = NewDef; 524 MemInsertPoint = NewDef; 525 526 // Zap all the stores. 527 for (Instruction *SI : Range.TheStores) 528 eraseInstruction(SI); 529 530 ++NumMemSetInfer; 531 } 532 533 return AMemSet; 534 } 535 536 // This method try to lift a store instruction before position P. 537 // It will lift the store and its argument + that anything that 538 // may alias with these. 539 // The method returns true if it was successful. 540 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 541 // If the store alias this position, early bail out. 542 MemoryLocation StoreLoc = MemoryLocation::get(SI); 543 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 544 return false; 545 546 // Keep track of the arguments of all instruction we plan to lift 547 // so we can make sure to lift them as well if appropriate. 548 DenseSet<Instruction*> Args; 549 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 550 if (Ptr->getParent() == SI->getParent()) 551 Args.insert(Ptr); 552 553 // Instruction to lift before P. 554 SmallVector<Instruction *, 8> ToLift{SI}; 555 556 // Memory locations of lifted instructions. 557 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 558 559 // Lifted calls. 560 SmallVector<const CallBase *, 8> Calls; 561 562 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 563 564 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 565 auto *C = &*I; 566 567 // Make sure hoisting does not perform a store that was not guaranteed to 568 // happen. 569 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 570 return false; 571 572 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 573 574 bool NeedLift = false; 575 if (Args.erase(C)) 576 NeedLift = true; 577 else if (MayAlias) { 578 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 579 return isModOrRefSet(AA->getModRefInfo(C, ML)); 580 }); 581 582 if (!NeedLift) 583 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 584 return isModOrRefSet(AA->getModRefInfo(C, Call)); 585 }); 586 } 587 588 if (!NeedLift) 589 continue; 590 591 if (MayAlias) { 592 // Since LI is implicitly moved downwards past the lifted instructions, 593 // none of them may modify its source. 594 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 595 return false; 596 else if (const auto *Call = dyn_cast<CallBase>(C)) { 597 // If we can't lift this before P, it's game over. 598 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 599 return false; 600 601 Calls.push_back(Call); 602 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 603 // If we can't lift this before P, it's game over. 604 auto ML = MemoryLocation::get(C); 605 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 606 return false; 607 608 MemLocs.push_back(ML); 609 } else 610 // We don't know how to lift this instruction. 611 return false; 612 } 613 614 ToLift.push_back(C); 615 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 616 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 617 if (A->getParent() == SI->getParent()) { 618 // Cannot hoist user of P above P 619 if(A == P) return false; 620 Args.insert(A); 621 } 622 } 623 } 624 625 // Find MSSA insertion point. Normally P will always have a corresponding 626 // memory access before which we can insert. However, with non-standard AA 627 // pipelines, there may be a mismatch between AA and MSSA, in which case we 628 // will scan for a memory access before P. In either case, we know for sure 629 // that at least the load will have a memory access. 630 // TODO: Simplify this once P will be determined by MSSA, in which case the 631 // discrepancy can no longer occur. 632 MemoryUseOrDef *MemInsertPoint = nullptr; 633 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 634 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 635 } else { 636 const Instruction *ConstP = P; 637 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 638 ++LI->getReverseIterator())) { 639 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 640 MemInsertPoint = MA; 641 break; 642 } 643 } 644 } 645 646 // We made it, we need to lift. 647 for (auto *I : llvm::reverse(ToLift)) { 648 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 649 I->moveBefore(P); 650 assert(MemInsertPoint && "Must have found insert point"); 651 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 652 MSSAU->moveAfter(MA, MemInsertPoint); 653 MemInsertPoint = MA; 654 } 655 } 656 657 return true; 658 } 659 660 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 661 if (!SI->isSimple()) return false; 662 663 // Avoid merging nontemporal stores since the resulting 664 // memcpy/memset would not be able to preserve the nontemporal hint. 665 // In theory we could teach how to propagate the !nontemporal metadata to 666 // memset calls. However, that change would force the backend to 667 // conservatively expand !nontemporal memset calls back to sequences of 668 // store instructions (effectively undoing the merging). 669 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 670 return false; 671 672 const DataLayout &DL = SI->getModule()->getDataLayout(); 673 674 Value *StoredVal = SI->getValueOperand(); 675 676 // Not all the transforms below are correct for non-integral pointers, bail 677 // until we've audited the individual pieces. 678 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 679 return false; 680 681 // Load to store forwarding can be interpreted as memcpy. 682 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) { 683 if (LI->isSimple() && LI->hasOneUse() && 684 LI->getParent() == SI->getParent()) { 685 686 auto *T = LI->getType(); 687 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 688 // the corresponding libcalls are not available. 689 // TODO: We should really distinguish between libcall availability and 690 // our ability to introduce intrinsics. 691 if (T->isAggregateType() && 692 (EnableMemCpyOptWithoutLibcalls || 693 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 694 MemoryLocation LoadLoc = MemoryLocation::get(LI); 695 696 // We use alias analysis to check if an instruction may store to 697 // the memory we load from in between the load and the store. If 698 // such an instruction is found, we try to promote there instead 699 // of at the store position. 700 // TODO: Can use MSSA for this. 701 Instruction *P = SI; 702 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 703 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 704 P = &I; 705 break; 706 } 707 } 708 709 // We found an instruction that may write to the loaded memory. 710 // We can try to promote at this position instead of the store 711 // position if nothing aliases the store memory after this and the store 712 // destination is not in the range. 713 if (P && P != SI) { 714 if (!moveUp(SI, P, LI)) 715 P = nullptr; 716 } 717 718 // If a valid insertion position is found, then we can promote 719 // the load/store pair to a memcpy. 720 if (P) { 721 // If we load from memory that may alias the memory we store to, 722 // memmove must be used to preserve semantic. If not, memcpy can 723 // be used. Also, if we load from constant memory, memcpy can be used 724 // as the constant memory won't be modified. 725 bool UseMemMove = false; 726 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 727 UseMemMove = true; 728 729 uint64_t Size = DL.getTypeStoreSize(T); 730 731 IRBuilder<> Builder(P); 732 Instruction *M; 733 if (UseMemMove) 734 M = Builder.CreateMemMove( 735 SI->getPointerOperand(), SI->getAlign(), 736 LI->getPointerOperand(), LI->getAlign(), Size); 737 else 738 M = Builder.CreateMemCpy( 739 SI->getPointerOperand(), SI->getAlign(), 740 LI->getPointerOperand(), LI->getAlign(), Size); 741 742 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 743 << *M << "\n"); 744 745 auto *LastDef = 746 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 747 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 748 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 749 750 eraseInstruction(SI); 751 eraseInstruction(LI); 752 ++NumMemCpyInstr; 753 754 // Make sure we do not invalidate the iterator. 755 BBI = M->getIterator(); 756 return true; 757 } 758 } 759 760 // Detect cases where we're performing call slot forwarding, but 761 // happen to be using a load-store pair to implement it, rather than 762 // a memcpy. 763 auto GetCall = [&]() -> CallInst * { 764 // We defer this expensive clobber walk until the cheap checks 765 // have been done on the source inside performCallSlotOptzn. 766 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 767 MSSA->getWalker()->getClobberingMemoryAccess(LI))) 768 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 769 return nullptr; 770 }; 771 772 bool changed = performCallSlotOptzn( 773 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 774 LI->getPointerOperand()->stripPointerCasts(), 775 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 776 std::min(SI->getAlign(), LI->getAlign()), GetCall); 777 if (changed) { 778 eraseInstruction(SI); 779 eraseInstruction(LI); 780 ++NumMemCpyInstr; 781 return true; 782 } 783 } 784 } 785 786 // The following code creates memset intrinsics out of thin air. Don't do 787 // this if the corresponding libfunc is not available. 788 // TODO: We should really distinguish between libcall availability and 789 // our ability to introduce intrinsics. 790 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 791 return false; 792 793 // There are two cases that are interesting for this code to handle: memcpy 794 // and memset. Right now we only handle memset. 795 796 // Ensure that the value being stored is something that can be memset'able a 797 // byte at a time like "0" or "-1" or any width, as well as things like 798 // 0xA0A0A0A0 and 0.0. 799 auto *V = SI->getOperand(0); 800 if (Value *ByteVal = isBytewiseValue(V, DL)) { 801 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 802 ByteVal)) { 803 BBI = I->getIterator(); // Don't invalidate iterator. 804 return true; 805 } 806 807 // If we have an aggregate, we try to promote it to memset regardless 808 // of opportunity for merging as it can expose optimization opportunities 809 // in subsequent passes. 810 auto *T = V->getType(); 811 if (T->isAggregateType()) { 812 uint64_t Size = DL.getTypeStoreSize(T); 813 IRBuilder<> Builder(SI); 814 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 815 SI->getAlign()); 816 817 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 818 819 // The newly inserted memset is immediately overwritten by the original 820 // store, so we do not need to rename uses. 821 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 822 auto *NewAccess = MSSAU->createMemoryAccessBefore( 823 M, StoreDef->getDefiningAccess(), StoreDef); 824 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 825 826 eraseInstruction(SI); 827 NumMemSetInfer++; 828 829 // Make sure we do not invalidate the iterator. 830 BBI = M->getIterator(); 831 return true; 832 } 833 } 834 835 return false; 836 } 837 838 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 839 // See if there is another memset or store neighboring this memset which 840 // allows us to widen out the memset to do a single larger store. 841 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 842 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 843 MSI->getValue())) { 844 BBI = I->getIterator(); // Don't invalidate iterator. 845 return true; 846 } 847 return false; 848 } 849 850 /// Takes a memcpy and a call that it depends on, 851 /// and checks for the possibility of a call slot optimization by having 852 /// the call write its result directly into the destination of the memcpy. 853 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 854 Instruction *cpyStore, Value *cpyDest, 855 Value *cpySrc, TypeSize cpySize, 856 Align cpyAlign, 857 std::function<CallInst *()> GetC) { 858 // The general transformation to keep in mind is 859 // 860 // call @func(..., src, ...) 861 // memcpy(dest, src, ...) 862 // 863 // -> 864 // 865 // memcpy(dest, src, ...) 866 // call @func(..., dest, ...) 867 // 868 // Since moving the memcpy is technically awkward, we additionally check that 869 // src only holds uninitialized values at the moment of the call, meaning that 870 // the memcpy can be discarded rather than moved. 871 872 // We can't optimize scalable types. 873 if (cpySize.isScalable()) 874 return false; 875 876 // Require that src be an alloca. This simplifies the reasoning considerably. 877 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 878 if (!srcAlloca) 879 return false; 880 881 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 882 if (!srcArraySize) 883 return false; 884 885 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 886 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 887 srcArraySize->getZExtValue(); 888 889 if (cpySize < srcSize) 890 return false; 891 892 CallInst *C = GetC(); 893 if (!C) 894 return false; 895 896 // Lifetime marks shouldn't be operated on. 897 if (Function *F = C->getCalledFunction()) 898 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 899 return false; 900 901 902 if (C->getParent() != cpyStore->getParent()) { 903 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n"); 904 return false; 905 } 906 907 MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ? 908 MemoryLocation::get(cpyStore) : 909 MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore)); 910 911 // Check that nothing touches the dest of the copy between 912 // the call and the store/memcpy. 913 if (accessedBetween(*AA, DestLoc, MSSA->getMemoryAccess(C), 914 MSSA->getMemoryAccess(cpyStore))) { 915 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n"); 916 return false; 917 } 918 919 // Check that accessing the first srcSize bytes of dest will not cause a 920 // trap. Otherwise the transform is invalid since it might cause a trap 921 // to occur earlier than it otherwise would. 922 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 923 DL, C, DT)) { 924 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); 925 return false; 926 } 927 928 929 // Make sure that nothing can observe cpyDest being written early. There are 930 // a number of cases to consider: 931 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 932 // the transform. 933 // 2. C itself may not access cpyDest (prior to the transform). This is 934 // checked further below. 935 // 3. If cpyDest is accessible to the caller of this function (potentially 936 // captured and not based on an alloca), we need to ensure that we cannot 937 // unwind between C and cpyStore. This is checked here. 938 // 4. If cpyDest is potentially captured, there may be accesses to it from 939 // another thread. In this case, we need to check that cpyStore is 940 // guaranteed to be executed if C is. As it is a non-atomic access, it 941 // renders accesses from other threads undefined. 942 // TODO: This is currently not checked. 943 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { 944 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding"); 945 return false; 946 } 947 948 // Check that dest points to memory that is at least as aligned as src. 949 Align srcAlign = srcAlloca->getAlign(); 950 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 951 // If dest is not aligned enough and we can't increase its alignment then 952 // bail out. 953 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 954 return false; 955 956 // Check that src is not accessed except via the call and the memcpy. This 957 // guarantees that it holds only undefined values when passed in (so the final 958 // memcpy can be dropped), that it is not read or written between the call and 959 // the memcpy, and that writing beyond the end of it is undefined. 960 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 961 while (!srcUseList.empty()) { 962 User *U = srcUseList.pop_back_val(); 963 964 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 965 append_range(srcUseList, U->users()); 966 continue; 967 } 968 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { 969 if (!G->hasAllZeroIndices()) 970 return false; 971 972 append_range(srcUseList, U->users()); 973 continue; 974 } 975 if (const auto *IT = dyn_cast<IntrinsicInst>(U)) 976 if (IT->isLifetimeStartOrEnd()) 977 continue; 978 979 if (U != C && U != cpyLoad) 980 return false; 981 } 982 983 // Check whether src is captured by the called function, in which case there 984 // may be further indirect uses of src. 985 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { 986 return U->stripPointerCasts() == cpySrc && 987 !C->doesNotCapture(C->getArgOperandNo(&U)); 988 }); 989 990 // If src is captured, then check whether there are any potential uses of 991 // src through the captured pointer before the lifetime of src ends, either 992 // due to a lifetime.end or a return from the function. 993 if (SrcIsCaptured) { 994 // Check that dest is not captured before/at the call. We have already 995 // checked that src is not captured before it. If either had been captured, 996 // then the call might be comparing the argument against the captured dest 997 // or src pointer. 998 Value *DestObj = getUnderlyingObject(cpyDest); 999 if (!isIdentifiedFunctionLocal(DestObj) || 1000 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, 1001 /* StoreCaptures */ true, C, DT, 1002 /* IncludeI */ true)) 1003 return false; 1004 1005 MemoryLocation SrcLoc = 1006 MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); 1007 for (Instruction &I : 1008 make_range(++C->getIterator(), C->getParent()->end())) { 1009 // Lifetime of srcAlloca ends at lifetime.end. 1010 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1011 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 1012 II->getArgOperand(1)->stripPointerCasts() == srcAlloca && 1013 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) 1014 break; 1015 } 1016 1017 // Lifetime of srcAlloca ends at return. 1018 if (isa<ReturnInst>(&I)) 1019 break; 1020 1021 // Ignore the direct read of src in the load. 1022 if (&I == cpyLoad) 1023 continue; 1024 1025 // Check whether this instruction may mod/ref src through the captured 1026 // pointer (we have already any direct mod/refs in the loop above). 1027 // Also bail if we hit a terminator, as we don't want to scan into other 1028 // blocks. 1029 if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator()) 1030 return false; 1031 } 1032 } 1033 1034 // Since we're changing the parameter to the callsite, we need to make sure 1035 // that what would be the new parameter dominates the callsite. 1036 if (!DT->dominates(cpyDest, C)) { 1037 // Support moving a constant index GEP before the call. 1038 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 1039 if (GEP && GEP->hasAllConstantIndices() && 1040 DT->dominates(GEP->getPointerOperand(), C)) 1041 GEP->moveBefore(C); 1042 else 1043 return false; 1044 } 1045 1046 // In addition to knowing that the call does not access src in some 1047 // unexpected manner, for example via a global, which we deduce from 1048 // the use analysis, we also need to know that it does not sneakily 1049 // access dest. We rely on AA to figure this out for us. 1050 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 1051 // If necessary, perform additional analysis. 1052 if (isModOrRefSet(MR)) 1053 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 1054 if (isModOrRefSet(MR)) 1055 return false; 1056 1057 // We can't create address space casts here because we don't know if they're 1058 // safe for the target. 1059 if (cpySrc->getType()->getPointerAddressSpace() != 1060 cpyDest->getType()->getPointerAddressSpace()) 1061 return false; 1062 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1063 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1064 cpySrc->getType()->getPointerAddressSpace() != 1065 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1066 return false; 1067 1068 // All the checks have passed, so do the transformation. 1069 bool changedArgument = false; 1070 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1071 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1072 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1073 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1074 cpyDest->getName(), C); 1075 changedArgument = true; 1076 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1077 C->setArgOperand(ArgI, Dest); 1078 else 1079 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1080 Dest, C->getArgOperand(ArgI)->getType(), 1081 Dest->getName(), C)); 1082 } 1083 1084 if (!changedArgument) 1085 return false; 1086 1087 // If the destination wasn't sufficiently aligned then increase its alignment. 1088 if (!isDestSufficientlyAligned) { 1089 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1090 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1091 } 1092 1093 // Update AA metadata 1094 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1095 // handled here, but combineMetadata doesn't support them yet 1096 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1097 LLVMContext::MD_noalias, 1098 LLVMContext::MD_invariant_group, 1099 LLVMContext::MD_access_group}; 1100 combineMetadata(C, cpyLoad, KnownIDs, true); 1101 if (cpyLoad != cpyStore) 1102 combineMetadata(C, cpyStore, KnownIDs, true); 1103 1104 ++NumCallSlot; 1105 return true; 1106 } 1107 1108 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1109 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1110 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1111 MemCpyInst *MDep) { 1112 // We can only transforms memcpy's where the dest of one is the source of the 1113 // other. 1114 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1115 return false; 1116 1117 // If dep instruction is reading from our current input, then it is a noop 1118 // transfer and substituting the input won't change this instruction. Just 1119 // ignore the input and let someone else zap MDep. This handles cases like: 1120 // memcpy(a <- a) 1121 // memcpy(b <- a) 1122 if (M->getSource() == MDep->getSource()) 1123 return false; 1124 1125 // Second, the length of the memcpy's must be the same, or the preceding one 1126 // must be larger than the following one. 1127 if (MDep->getLength() != M->getLength()) { 1128 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1129 auto *MLen = dyn_cast<ConstantInt>(M->getLength()); 1130 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1131 return false; 1132 } 1133 1134 // Verify that the copied-from memory doesn't change in between the two 1135 // transfers. For example, in: 1136 // memcpy(a <- b) 1137 // *b = 42; 1138 // memcpy(c <- a) 1139 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1140 // 1141 // TODO: If the code between M and MDep is transparent to the destination "c", 1142 // then we could still perform the xform by moving M up to the first memcpy. 1143 // TODO: It would be sufficient to check the MDep source up to the memcpy 1144 // size of M, rather than MDep. 1145 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep), 1146 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1147 return false; 1148 1149 // If the dest of the second might alias the source of the first, then the 1150 // source and dest might overlap. In addition, if the source of the first 1151 // points to constant memory, they won't overlap by definition. Otherwise, we 1152 // still want to eliminate the intermediate value, but we have to generate a 1153 // memmove instead of memcpy. 1154 bool UseMemMove = false; 1155 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1156 UseMemMove = true; 1157 1158 // If all checks passed, then we can transform M. 1159 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1160 << *MDep << '\n' << *M << '\n'); 1161 1162 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1163 // example we could be moving from movaps -> movq on x86. 1164 IRBuilder<> Builder(M); 1165 Instruction *NewM; 1166 if (UseMemMove) 1167 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1168 MDep->getRawSource(), MDep->getSourceAlign(), 1169 M->getLength(), M->isVolatile()); 1170 else if (isa<MemCpyInlineInst>(M)) { 1171 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1172 // never allowed since that would allow the latter to be lowered as a call 1173 // to an external function. 1174 NewM = Builder.CreateMemCpyInline( 1175 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1176 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1177 } else 1178 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1179 MDep->getRawSource(), MDep->getSourceAlign(), 1180 M->getLength(), M->isVolatile()); 1181 1182 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1183 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1184 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1185 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1186 1187 // Remove the instruction we're replacing. 1188 eraseInstruction(M); 1189 ++NumMemCpyInstr; 1190 return true; 1191 } 1192 1193 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1194 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1195 /// weren't copied over by \p MemCpy. 1196 /// 1197 /// In other words, transform: 1198 /// \code 1199 /// memset(dst, c, dst_size); 1200 /// memcpy(dst, src, src_size); 1201 /// \endcode 1202 /// into: 1203 /// \code 1204 /// memcpy(dst, src, src_size); 1205 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1206 /// \endcode 1207 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1208 MemSetInst *MemSet) { 1209 // We can only transform memset/memcpy with the same destination. 1210 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1211 return false; 1212 1213 // Check that src and dst of the memcpy aren't the same. While memcpy 1214 // operands cannot partially overlap, exact equality is allowed. 1215 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1216 return false; 1217 1218 // We know that dst up to src_size is not written. We now need to make sure 1219 // that dst up to dst_size is not accessed. (If we did not move the memset, 1220 // checking for reads would be sufficient.) 1221 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1222 MSSA->getMemoryAccess(MemSet), 1223 MSSA->getMemoryAccess(MemCpy))) 1224 return false; 1225 1226 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1227 Value *Dest = MemCpy->getRawDest(); 1228 Value *DestSize = MemSet->getLength(); 1229 Value *SrcSize = MemCpy->getLength(); 1230 1231 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1232 return false; 1233 1234 // If the sizes are the same, simply drop the memset instead of generating 1235 // a replacement with zero size. 1236 if (DestSize == SrcSize) { 1237 eraseInstruction(MemSet); 1238 return true; 1239 } 1240 1241 // By default, create an unaligned memset. 1242 Align Alignment = Align(1); 1243 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1244 // of the sum. 1245 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(), 1246 MemCpy->getDestAlign().valueOrOne()); 1247 if (DestAlign > 1) 1248 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1249 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue()); 1250 1251 IRBuilder<> Builder(MemCpy); 1252 1253 // If the sizes have different types, zext the smaller one. 1254 if (DestSize->getType() != SrcSize->getType()) { 1255 if (DestSize->getType()->getIntegerBitWidth() > 1256 SrcSize->getType()->getIntegerBitWidth()) 1257 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1258 else 1259 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1260 } 1261 1262 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1263 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1264 Value *MemsetLen = Builder.CreateSelect( 1265 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1266 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1267 Instruction *NewMemSet = Builder.CreateMemSet( 1268 Builder.CreateGEP( 1269 Builder.getInt8Ty(), 1270 Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)), 1271 SrcSize), 1272 MemSet->getOperand(1), MemsetLen, Alignment); 1273 1274 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1275 "MemCpy must be a MemoryDef"); 1276 // The new memset is inserted after the memcpy, but it is known that its 1277 // defining access is the memset about to be removed which immediately 1278 // precedes the memcpy. 1279 auto *LastDef = 1280 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1281 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1282 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1283 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1284 1285 eraseInstruction(MemSet); 1286 return true; 1287 } 1288 1289 /// Determine whether the instruction has undefined content for the given Size, 1290 /// either because it was freshly alloca'd or started its lifetime. 1291 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1292 MemoryDef *Def, Value *Size) { 1293 if (MSSA->isLiveOnEntryDef(Def)) 1294 return isa<AllocaInst>(getUnderlyingObject(V)); 1295 1296 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1297 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1298 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1299 1300 if (auto *CSize = dyn_cast<ConstantInt>(Size)) { 1301 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1302 LTSize->getZExtValue() >= CSize->getZExtValue()) 1303 return true; 1304 } 1305 1306 // If the lifetime.start covers a whole alloca (as it almost always 1307 // does) and we're querying a pointer based on that alloca, then we know 1308 // the memory is definitely undef, regardless of how exactly we alias. 1309 // The size also doesn't matter, as an out-of-bounds access would be UB. 1310 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { 1311 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1312 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1313 if (Optional<TypeSize> AllocaSize = 1314 Alloca->getAllocationSizeInBits(DL)) 1315 if (*AllocaSize == LTSize->getValue() * 8) 1316 return true; 1317 } 1318 } 1319 } 1320 } 1321 1322 return false; 1323 } 1324 1325 /// Transform memcpy to memset when its source was just memset. 1326 /// In other words, turn: 1327 /// \code 1328 /// memset(dst1, c, dst1_size); 1329 /// memcpy(dst2, dst1, dst2_size); 1330 /// \endcode 1331 /// into: 1332 /// \code 1333 /// memset(dst1, c, dst1_size); 1334 /// memset(dst2, c, dst2_size); 1335 /// \endcode 1336 /// When dst2_size <= dst1_size. 1337 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1338 MemSetInst *MemSet) { 1339 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1340 // memcpying from the same address. Otherwise it is hard to reason about. 1341 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1342 return false; 1343 1344 Value *MemSetSize = MemSet->getLength(); 1345 Value *CopySize = MemCpy->getLength(); 1346 1347 if (MemSetSize != CopySize) { 1348 // Make sure the memcpy doesn't read any more than what the memset wrote. 1349 // Don't worry about sizes larger than i64. 1350 1351 // A known memset size is required. 1352 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1353 if (!CMemSetSize) 1354 return false; 1355 1356 // A known memcpy size is also required. 1357 auto *CCopySize = dyn_cast<ConstantInt>(CopySize); 1358 if (!CCopySize) 1359 return false; 1360 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1361 // If the memcpy is larger than the memset, but the memory was undef prior 1362 // to the memset, we can just ignore the tail. Technically we're only 1363 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1364 // easily represent this location, we use the full 0..CopySize range. 1365 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1366 bool CanReduceSize = false; 1367 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1368 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1369 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1370 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1371 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1372 CanReduceSize = true; 1373 1374 if (!CanReduceSize) 1375 return false; 1376 CopySize = MemSetSize; 1377 } 1378 } 1379 1380 IRBuilder<> Builder(MemCpy); 1381 Instruction *NewM = 1382 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1383 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1384 auto *LastDef = 1385 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1386 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1387 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1388 1389 return true; 1390 } 1391 1392 /// Perform simplification of memcpy's. If we have memcpy A 1393 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1394 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1395 /// circumstances). This allows later passes to remove the first memcpy 1396 /// altogether. 1397 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1398 // We can only optimize non-volatile memcpy's. 1399 if (M->isVolatile()) return false; 1400 1401 // If the source and destination of the memcpy are the same, then zap it. 1402 if (M->getSource() == M->getDest()) { 1403 ++BBI; 1404 eraseInstruction(M); 1405 return true; 1406 } 1407 1408 // If copying from a constant, try to turn the memcpy into a memset. 1409 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) 1410 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1411 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1412 M->getModule()->getDataLayout())) { 1413 IRBuilder<> Builder(M); 1414 Instruction *NewM = 1415 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1416 MaybeAlign(M->getDestAlignment()), false); 1417 auto *LastDef = 1418 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1419 auto *NewAccess = 1420 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1421 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1422 1423 eraseInstruction(M); 1424 ++NumCpyToSet; 1425 return true; 1426 } 1427 1428 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1429 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. 1430 MemoryAccess *AnyClobber = MA->getDefiningAccess(); 1431 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1432 const MemoryAccess *DestClobber = 1433 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1434 1435 // Try to turn a partially redundant memset + memcpy into 1436 // memcpy + smaller memset. We don't need the memcpy size for this. 1437 // The memcpy most post-dom the memset, so limit this to the same basic 1438 // block. A non-local generalization is likely not worthwhile. 1439 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1440 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1441 if (DestClobber->getBlock() == M->getParent()) 1442 if (processMemSetMemCpyDependence(M, MDep)) 1443 return true; 1444 1445 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1446 AnyClobber, MemoryLocation::getForSource(M)); 1447 1448 // There are four possible optimizations we can do for memcpy: 1449 // a) memcpy-memcpy xform which exposes redundance for DSE. 1450 // b) call-memcpy xform for return slot optimization. 1451 // c) memcpy from freshly alloca'd space or space that has just started 1452 // its lifetime copies undefined data, and we can therefore eliminate 1453 // the memcpy in favor of the data that was already at the destination. 1454 // d) memcpy from a just-memset'd source can be turned into memset. 1455 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1456 if (Instruction *MI = MD->getMemoryInst()) { 1457 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1458 if (auto *C = dyn_cast<CallInst>(MI)) { 1459 // FIXME: Can we pass in either of dest/src alignment here instead 1460 // of conservatively taking the minimum? 1461 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1462 M->getSourceAlign().valueOrOne()); 1463 if (performCallSlotOptzn( 1464 M, M, M->getDest(), M->getSource(), 1465 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1466 [C]() -> CallInst * { return C; })) { 1467 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1468 << " call: " << *C << "\n" 1469 << " memcpy: " << *M << "\n"); 1470 eraseInstruction(M); 1471 ++NumMemCpyInstr; 1472 return true; 1473 } 1474 } 1475 } 1476 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1477 return processMemCpyMemCpyDependence(M, MDep); 1478 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1479 if (performMemCpyToMemSetOptzn(M, MDep)) { 1480 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1481 eraseInstruction(M); 1482 ++NumCpyToSet; 1483 return true; 1484 } 1485 } 1486 } 1487 1488 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1489 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1490 eraseInstruction(M); 1491 ++NumMemCpyInstr; 1492 return true; 1493 } 1494 } 1495 1496 return false; 1497 } 1498 1499 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1500 /// not to alias. 1501 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1502 // See if the source could be modified by this memmove potentially. 1503 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1504 return false; 1505 1506 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1507 << "\n"); 1508 1509 // If not, then we know we can transform this. 1510 Type *ArgTys[3] = { M->getRawDest()->getType(), 1511 M->getRawSource()->getType(), 1512 M->getLength()->getType() }; 1513 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1514 Intrinsic::memcpy, ArgTys)); 1515 1516 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1517 // aliasing guarantees). 1518 1519 ++NumMoveToCpy; 1520 return true; 1521 } 1522 1523 /// This is called on every byval argument in call sites. 1524 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1525 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1526 // Find out what feeds this byval argument. 1527 Value *ByValArg = CB.getArgOperand(ArgNo); 1528 Type *ByValTy = CB.getParamByValType(ArgNo); 1529 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1530 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1531 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1532 if (!CallAccess) 1533 return false; 1534 MemCpyInst *MDep = nullptr; 1535 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1536 CallAccess->getDefiningAccess(), Loc); 1537 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1538 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1539 1540 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1541 // a memcpy, see if we can byval from the source of the memcpy instead of the 1542 // result. 1543 if (!MDep || MDep->isVolatile() || 1544 ByValArg->stripPointerCasts() != MDep->getDest()) 1545 return false; 1546 1547 // The length of the memcpy must be larger or equal to the size of the byval. 1548 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1549 if (!C1 || !TypeSize::isKnownGE( 1550 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1551 return false; 1552 1553 // Get the alignment of the byval. If the call doesn't specify the alignment, 1554 // then it is some target specific value that we can't know. 1555 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1556 if (!ByValAlign) return false; 1557 1558 // If it is greater than the memcpy, then we check to see if we can force the 1559 // source of the memcpy to the alignment we need. If we fail, we bail out. 1560 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1561 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1562 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1563 DT) < *ByValAlign) 1564 return false; 1565 1566 // The address space of the memcpy source must match the byval argument 1567 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1568 ByValArg->getType()->getPointerAddressSpace()) 1569 return false; 1570 1571 // Verify that the copied-from memory doesn't change in between the memcpy and 1572 // the byval call. 1573 // memcpy(a <- b) 1574 // *b = 42; 1575 // foo(*a) 1576 // It would be invalid to transform the second memcpy into foo(*b). 1577 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep), 1578 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1579 return false; 1580 1581 Value *TmpCast = MDep->getSource(); 1582 if (MDep->getSource()->getType() != ByValArg->getType()) { 1583 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1584 "tmpcast", &CB); 1585 // Set the tmpcast's DebugLoc to MDep's 1586 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1587 TmpCast = TmpBitCast; 1588 } 1589 1590 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1591 << " " << *MDep << "\n" 1592 << " " << CB << "\n"); 1593 1594 // Otherwise we're good! Update the byval argument. 1595 CB.setArgOperand(ArgNo, TmpCast); 1596 ++NumMemCpyInstr; 1597 return true; 1598 } 1599 1600 /// Executes one iteration of MemCpyOptPass. 1601 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1602 bool MadeChange = false; 1603 1604 // Walk all instruction in the function. 1605 for (BasicBlock &BB : F) { 1606 // Skip unreachable blocks. For example processStore assumes that an 1607 // instruction in a BB can't be dominated by a later instruction in the 1608 // same BB (which is a scenario that can happen for an unreachable BB that 1609 // has itself as a predecessor). 1610 if (!DT->isReachableFromEntry(&BB)) 1611 continue; 1612 1613 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1614 // Avoid invalidating the iterator. 1615 Instruction *I = &*BI++; 1616 1617 bool RepeatInstruction = false; 1618 1619 if (auto *SI = dyn_cast<StoreInst>(I)) 1620 MadeChange |= processStore(SI, BI); 1621 else if (auto *M = dyn_cast<MemSetInst>(I)) 1622 RepeatInstruction = processMemSet(M, BI); 1623 else if (auto *M = dyn_cast<MemCpyInst>(I)) 1624 RepeatInstruction = processMemCpy(M, BI); 1625 else if (auto *M = dyn_cast<MemMoveInst>(I)) 1626 RepeatInstruction = processMemMove(M); 1627 else if (auto *CB = dyn_cast<CallBase>(I)) { 1628 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1629 if (CB->isByValArgument(i)) 1630 MadeChange |= processByValArgument(*CB, i); 1631 } 1632 1633 // Reprocess the instruction if desired. 1634 if (RepeatInstruction) { 1635 if (BI != BB.begin()) 1636 --BI; 1637 MadeChange = true; 1638 } 1639 } 1640 } 1641 1642 return MadeChange; 1643 } 1644 1645 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1646 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1647 auto *AA = &AM.getResult<AAManager>(F); 1648 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1649 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1650 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1651 1652 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1653 if (!MadeChange) 1654 return PreservedAnalyses::all(); 1655 1656 PreservedAnalyses PA; 1657 PA.preserveSet<CFGAnalyses>(); 1658 PA.preserve<MemorySSAAnalysis>(); 1659 return PA; 1660 } 1661 1662 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1663 AliasAnalysis *AA_, AssumptionCache *AC_, 1664 DominatorTree *DT_, MemorySSA *MSSA_) { 1665 bool MadeChange = false; 1666 TLI = TLI_; 1667 AA = AA_; 1668 AC = AC_; 1669 DT = DT_; 1670 MSSA = MSSA_; 1671 MemorySSAUpdater MSSAU_(MSSA_); 1672 MSSAU = &MSSAU_; 1673 1674 while (true) { 1675 if (!iterateOnFunction(F)) 1676 break; 1677 MadeChange = true; 1678 } 1679 1680 if (VerifyMemorySSA) 1681 MSSA_->verifyMemorySSA(); 1682 1683 return MadeChange; 1684 } 1685 1686 /// This is the main transformation entry point for a function. 1687 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1688 if (skipFunction(F)) 1689 return false; 1690 1691 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1692 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1693 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1694 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1695 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1696 1697 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1698 } 1699