xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/PostDominators.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <optional>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memcpyopt"
66 
67 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
68     "enable-memcpyopt-without-libcalls", cl::Hidden,
69     cl::desc("Enable memcpyopt even when libcalls are disabled"));
70 
71 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
72 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
73 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
74 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
75 STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
76 STATISTIC(NumStackMove, "Number of stack-move optimizations performed");
77 
78 namespace {
79 
80 /// Represents a range of memset'd bytes with the ByteVal value.
81 /// This allows us to analyze stores like:
82 ///   store 0 -> P+1
83 ///   store 0 -> P+0
84 ///   store 0 -> P+3
85 ///   store 0 -> P+2
86 /// which sometimes happens with stores to arrays of structs etc.  When we see
87 /// the first store, we make a range [1, 2).  The second store extends the range
88 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
89 /// two ranges into [0, 3) which is memset'able.
90 struct MemsetRange {
91   // Start/End - A semi range that describes the span that this range covers.
92   // The range is closed at the start and open at the end: [Start, End).
93   int64_t Start, End;
94 
95   /// StartPtr - The getelementptr instruction that points to the start of the
96   /// range.
97   Value *StartPtr;
98 
99   /// Alignment - The known alignment of the first store.
100   MaybeAlign Alignment;
101 
102   /// TheStores - The actual stores that make up this range.
103   SmallVector<Instruction *, 16> TheStores;
104 
105   bool isProfitableToUseMemset(const DataLayout &DL) const;
106 };
107 
108 } // end anonymous namespace
109 
110 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
111   // If we found more than 4 stores to merge or 16 bytes, use memset.
112   if (TheStores.size() >= 4 || End - Start >= 16)
113     return true;
114 
115   // If there is nothing to merge, don't do anything.
116   if (TheStores.size() < 2)
117     return false;
118 
119   // If any of the stores are a memset, then it is always good to extend the
120   // memset.
121   for (Instruction *SI : TheStores)
122     if (!isa<StoreInst>(SI))
123       return true;
124 
125   // Assume that the code generator is capable of merging pairs of stores
126   // together if it wants to.
127   if (TheStores.size() == 2)
128     return false;
129 
130   // If we have fewer than 8 stores, it can still be worthwhile to do this.
131   // For example, merging 4 i8 stores into an i32 store is useful almost always.
132   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
133   // memset will be split into 2 32-bit stores anyway) and doing so can
134   // pessimize the llvm optimizer.
135   //
136   // Since we don't have perfect knowledge here, make some assumptions: assume
137   // the maximum GPR width is the same size as the largest legal integer
138   // size. If so, check to see whether we will end up actually reducing the
139   // number of stores used.
140   unsigned Bytes = unsigned(End - Start);
141   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
142   if (MaxIntSize == 0)
143     MaxIntSize = 1;
144   unsigned NumPointerStores = Bytes / MaxIntSize;
145 
146   // Assume the remaining bytes if any are done a byte at a time.
147   unsigned NumByteStores = Bytes % MaxIntSize;
148 
149   // If we will reduce the # stores (according to this heuristic), do the
150   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
151   // etc.
152   return TheStores.size() > NumPointerStores + NumByteStores;
153 }
154 
155 namespace {
156 
157 class MemsetRanges {
158   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
159 
160   /// A sorted list of the memset ranges.
161   SmallVector<MemsetRange, 8> Ranges;
162 
163   const DataLayout &DL;
164 
165 public:
166   MemsetRanges(const DataLayout &DL) : DL(DL) {}
167 
168   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
169 
170   const_iterator begin() const { return Ranges.begin(); }
171   const_iterator end() const { return Ranges.end(); }
172   bool empty() const { return Ranges.empty(); }
173 
174   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
175     if (auto *SI = dyn_cast<StoreInst>(Inst))
176       addStore(OffsetFromFirst, SI);
177     else
178       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
179   }
180 
181   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
182     TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
183     assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
184     addRange(OffsetFromFirst, StoreSize.getFixedValue(),
185              SI->getPointerOperand(), SI->getAlign(), SI);
186   }
187 
188   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
189     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
190     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
191   }
192 
193   void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
194                 Instruction *Inst);
195 };
196 
197 } // end anonymous namespace
198 
199 /// Add a new store to the MemsetRanges data structure.  This adds a
200 /// new range for the specified store at the specified offset, merging into
201 /// existing ranges as appropriate.
202 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
203                             MaybeAlign Alignment, Instruction *Inst) {
204   int64_t End = Start + Size;
205 
206   range_iterator I = partition_point(
207       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
208 
209   // We now know that I == E, in which case we didn't find anything to merge
210   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
211   // to insert a new range.  Handle this now.
212   if (I == Ranges.end() || End < I->Start) {
213     MemsetRange &R = *Ranges.insert(I, MemsetRange());
214     R.Start = Start;
215     R.End = End;
216     R.StartPtr = Ptr;
217     R.Alignment = Alignment;
218     R.TheStores.push_back(Inst);
219     return;
220   }
221 
222   // This store overlaps with I, add it.
223   I->TheStores.push_back(Inst);
224 
225   // At this point, we may have an interval that completely contains our store.
226   // If so, just add it to the interval and return.
227   if (I->Start <= Start && I->End >= End)
228     return;
229 
230   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
231   // but is not entirely contained within the range.
232 
233   // See if the range extends the start of the range.  In this case, it couldn't
234   // possibly cause it to join the prior range, because otherwise we would have
235   // stopped on *it*.
236   if (Start < I->Start) {
237     I->Start = Start;
238     I->StartPtr = Ptr;
239     I->Alignment = Alignment;
240   }
241 
242   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
243   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
244   // End.
245   if (End > I->End) {
246     I->End = End;
247     range_iterator NextI = I;
248     while (++NextI != Ranges.end() && End >= NextI->Start) {
249       // Merge the range in.
250       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
251       if (NextI->End > I->End)
252         I->End = NextI->End;
253       Ranges.erase(NextI);
254       NextI = I;
255     }
256   }
257 }
258 
259 //===----------------------------------------------------------------------===//
260 //                         MemCpyOptLegacyPass Pass
261 //===----------------------------------------------------------------------===//
262 
263 // Check that V is either not accessible by the caller, or unwinding cannot
264 // occur between Start and End.
265 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
266                                          Instruction *End) {
267   assert(Start->getParent() == End->getParent() && "Must be in same block");
268   // Function can't unwind, so it also can't be visible through unwinding.
269   if (Start->getFunction()->doesNotThrow())
270     return false;
271 
272   // Object is not visible on unwind.
273   // TODO: Support RequiresNoCaptureBeforeUnwind case.
274   bool RequiresNoCaptureBeforeUnwind;
275   if (isNotVisibleOnUnwind(getUnderlyingObject(V),
276                            RequiresNoCaptureBeforeUnwind) &&
277       !RequiresNoCaptureBeforeUnwind)
278     return false;
279 
280   // Check whether there are any unwinding instructions in the range.
281   return any_of(make_range(Start->getIterator(), End->getIterator()),
282                 [](const Instruction &I) { return I.mayThrow(); });
283 }
284 
285 void MemCpyOptPass::eraseInstruction(Instruction *I) {
286   MSSAU->removeMemoryAccess(I);
287   I->eraseFromParent();
288 }
289 
290 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
291 // Start and End must be in the same block.
292 // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
293 // intrinsic and store it inside SkippedLifetimeStart.
294 static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc,
295                             const MemoryUseOrDef *Start,
296                             const MemoryUseOrDef *End,
297                             Instruction **SkippedLifetimeStart = nullptr) {
298   assert(Start->getBlock() == End->getBlock() && "Only local supported");
299   for (const MemoryAccess &MA :
300        make_range(++Start->getIterator(), End->getIterator())) {
301     Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
302     if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
303       auto *II = dyn_cast<IntrinsicInst>(I);
304       if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
305           SkippedLifetimeStart && !*SkippedLifetimeStart) {
306         *SkippedLifetimeStart = I;
307         continue;
308       }
309 
310       return true;
311     }
312   }
313   return false;
314 }
315 
316 // Check for mod of Loc between Start and End, excluding both boundaries.
317 // Start and End can be in different blocks.
318 static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA,
319                            MemoryLocation Loc, const MemoryUseOrDef *Start,
320                            const MemoryUseOrDef *End) {
321   if (isa<MemoryUse>(End)) {
322     // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
323     // Manually check read accesses between Start and End, if they are in the
324     // same block, for clobbers. Otherwise assume Loc is clobbered.
325     return Start->getBlock() != End->getBlock() ||
326            any_of(
327                make_range(std::next(Start->getIterator()), End->getIterator()),
328                [&AA, Loc](const MemoryAccess &Acc) {
329                  if (isa<MemoryUse>(&Acc))
330                    return false;
331                  Instruction *AccInst =
332                      cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
333                  return isModSet(AA.getModRefInfo(AccInst, Loc));
334                });
335   }
336 
337   // TODO: Only walk until we hit Start.
338   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
339       End->getDefiningAccess(), Loc, AA);
340   return !MSSA->dominates(Clobber, Start);
341 }
342 
343 // Update AA metadata
344 static void combineAAMetadata(Instruction *ReplInst, Instruction *I) {
345   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
346   // handled here, but combineMetadata doesn't support them yet
347   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
348                          LLVMContext::MD_noalias,
349                          LLVMContext::MD_invariant_group,
350                          LLVMContext::MD_access_group};
351   combineMetadata(ReplInst, I, KnownIDs, true);
352 }
353 
354 /// When scanning forward over instructions, we look for some other patterns to
355 /// fold away. In particular, this looks for stores to neighboring locations of
356 /// memory. If it sees enough consecutive ones, it attempts to merge them
357 /// together into a memcpy/memset.
358 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
359                                                  Value *StartPtr,
360                                                  Value *ByteVal) {
361   const DataLayout &DL = StartInst->getDataLayout();
362 
363   // We can't track scalable types
364   if (auto *SI = dyn_cast<StoreInst>(StartInst))
365     if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
366       return nullptr;
367 
368   // Okay, so we now have a single store that can be splatable.  Scan to find
369   // all subsequent stores of the same value to offset from the same pointer.
370   // Join these together into ranges, so we can decide whether contiguous blocks
371   // are stored.
372   MemsetRanges Ranges(DL);
373 
374   BasicBlock::iterator BI(StartInst);
375 
376   // Keeps track of the last memory use or def before the insertion point for
377   // the new memset. The new MemoryDef for the inserted memsets will be inserted
378   // after MemInsertPoint.
379   MemoryUseOrDef *MemInsertPoint = nullptr;
380   for (++BI; !BI->isTerminator(); ++BI) {
381     auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
382         MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
383     if (CurrentAcc)
384       MemInsertPoint = CurrentAcc;
385 
386     // Calls that only access inaccessible memory do not block merging
387     // accessible stores.
388     if (auto *CB = dyn_cast<CallBase>(BI)) {
389       if (CB->onlyAccessesInaccessibleMemory())
390         continue;
391     }
392 
393     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
394       // If the instruction is readnone, ignore it, otherwise bail out.  We
395       // don't even allow readonly here because we don't want something like:
396       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
397       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
398         break;
399       continue;
400     }
401 
402     if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
403       // If this is a store, see if we can merge it in.
404       if (!NextStore->isSimple())
405         break;
406 
407       Value *StoredVal = NextStore->getValueOperand();
408 
409       // Don't convert stores of non-integral pointer types to memsets (which
410       // stores integers).
411       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
412         break;
413 
414       // We can't track ranges involving scalable types.
415       if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
416         break;
417 
418       // Check to see if this stored value is of the same byte-splattable value.
419       Value *StoredByte = isBytewiseValue(StoredVal, DL);
420       if (isa<UndefValue>(ByteVal) && StoredByte)
421         ByteVal = StoredByte;
422       if (ByteVal != StoredByte)
423         break;
424 
425       // Check to see if this store is to a constant offset from the start ptr.
426       std::optional<int64_t> Offset =
427           NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL);
428       if (!Offset)
429         break;
430 
431       Ranges.addStore(*Offset, NextStore);
432     } else {
433       auto *MSI = cast<MemSetInst>(BI);
434 
435       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
436           !isa<ConstantInt>(MSI->getLength()))
437         break;
438 
439       // Check to see if this store is to a constant offset from the start ptr.
440       std::optional<int64_t> Offset =
441           MSI->getDest()->getPointerOffsetFrom(StartPtr, DL);
442       if (!Offset)
443         break;
444 
445       Ranges.addMemSet(*Offset, MSI);
446     }
447   }
448 
449   // If we have no ranges, then we just had a single store with nothing that
450   // could be merged in.  This is a very common case of course.
451   if (Ranges.empty())
452     return nullptr;
453 
454   // If we had at least one store that could be merged in, add the starting
455   // store as well.  We try to avoid this unless there is at least something
456   // interesting as a small compile-time optimization.
457   Ranges.addInst(0, StartInst);
458 
459   // If we create any memsets, we put it right before the first instruction that
460   // isn't part of the memset block.  This ensure that the memset is dominated
461   // by any addressing instruction needed by the start of the block.
462   IRBuilder<> Builder(&*BI);
463 
464   // Now that we have full information about ranges, loop over the ranges and
465   // emit memset's for anything big enough to be worthwhile.
466   Instruction *AMemSet = nullptr;
467   for (const MemsetRange &Range : Ranges) {
468     if (Range.TheStores.size() == 1)
469       continue;
470 
471     // If it is profitable to lower this range to memset, do so now.
472     if (!Range.isProfitableToUseMemset(DL))
473       continue;
474 
475     // Otherwise, we do want to transform this!  Create a new memset.
476     // Get the starting pointer of the block.
477     StartPtr = Range.StartPtr;
478 
479     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
480                                    Range.Alignment);
481     AMemSet->mergeDIAssignID(Range.TheStores);
482 
483     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
484                                                    : Range.TheStores) dbgs()
485                                               << *SI << '\n';
486                dbgs() << "With: " << *AMemSet << '\n');
487     if (!Range.TheStores.empty())
488       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
489 
490     auto *NewDef = cast<MemoryDef>(
491         MemInsertPoint->getMemoryInst() == &*BI
492             ? MSSAU->createMemoryAccessBefore(AMemSet, nullptr, MemInsertPoint)
493             : MSSAU->createMemoryAccessAfter(AMemSet, nullptr, MemInsertPoint));
494     MSSAU->insertDef(NewDef, /*RenameUses=*/true);
495     MemInsertPoint = NewDef;
496 
497     // Zap all the stores.
498     for (Instruction *SI : Range.TheStores)
499       eraseInstruction(SI);
500 
501     ++NumMemSetInfer;
502   }
503 
504   return AMemSet;
505 }
506 
507 // This method try to lift a store instruction before position P.
508 // It will lift the store and its argument + that anything that
509 // may alias with these.
510 // The method returns true if it was successful.
511 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
512   // If the store alias this position, early bail out.
513   MemoryLocation StoreLoc = MemoryLocation::get(SI);
514   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
515     return false;
516 
517   // Keep track of the arguments of all instruction we plan to lift
518   // so we can make sure to lift them as well if appropriate.
519   DenseSet<Instruction *> Args;
520   auto AddArg = [&](Value *Arg) {
521     auto *I = dyn_cast<Instruction>(Arg);
522     if (I && I->getParent() == SI->getParent()) {
523       // Cannot hoist user of P above P
524       if (I == P)
525         return false;
526       Args.insert(I);
527     }
528     return true;
529   };
530   if (!AddArg(SI->getPointerOperand()))
531     return false;
532 
533   // Instruction to lift before P.
534   SmallVector<Instruction *, 8> ToLift{SI};
535 
536   // Memory locations of lifted instructions.
537   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
538 
539   // Lifted calls.
540   SmallVector<const CallBase *, 8> Calls;
541 
542   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
543 
544   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
545     auto *C = &*I;
546 
547     // Make sure hoisting does not perform a store that was not guaranteed to
548     // happen.
549     if (!isGuaranteedToTransferExecutionToSuccessor(C))
550       return false;
551 
552     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));
553 
554     bool NeedLift = false;
555     if (Args.erase(C))
556       NeedLift = true;
557     else if (MayAlias) {
558       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
559         return isModOrRefSet(AA->getModRefInfo(C, ML));
560       });
561 
562       if (!NeedLift)
563         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
564           return isModOrRefSet(AA->getModRefInfo(C, Call));
565         });
566     }
567 
568     if (!NeedLift)
569       continue;
570 
571     if (MayAlias) {
572       // Since LI is implicitly moved downwards past the lifted instructions,
573       // none of them may modify its source.
574       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
575         return false;
576       else if (const auto *Call = dyn_cast<CallBase>(C)) {
577         // If we can't lift this before P, it's game over.
578         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
579           return false;
580 
581         Calls.push_back(Call);
582       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
583         // If we can't lift this before P, it's game over.
584         auto ML = MemoryLocation::get(C);
585         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
586           return false;
587 
588         MemLocs.push_back(ML);
589       } else
590         // We don't know how to lift this instruction.
591         return false;
592     }
593 
594     ToLift.push_back(C);
595     for (Value *Op : C->operands())
596       if (!AddArg(Op))
597         return false;
598   }
599 
600   // Find MSSA insertion point. Normally P will always have a corresponding
601   // memory access before which we can insert. However, with non-standard AA
602   // pipelines, there may be a mismatch between AA and MSSA, in which case we
603   // will scan for a memory access before P. In either case, we know for sure
604   // that at least the load will have a memory access.
605   // TODO: Simplify this once P will be determined by MSSA, in which case the
606   // discrepancy can no longer occur.
607   MemoryUseOrDef *MemInsertPoint = nullptr;
608   if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
609     MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
610   } else {
611     const Instruction *ConstP = P;
612     for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
613                                            ++LI->getReverseIterator())) {
614       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
615         MemInsertPoint = MA;
616         break;
617       }
618     }
619   }
620 
621   // We made it, we need to lift.
622   for (auto *I : llvm::reverse(ToLift)) {
623     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
624     I->moveBefore(P);
625     assert(MemInsertPoint && "Must have found insert point");
626     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
627       MSSAU->moveAfter(MA, MemInsertPoint);
628       MemInsertPoint = MA;
629     }
630   }
631 
632   return true;
633 }
634 
635 bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
636                                        const DataLayout &DL,
637                                        BasicBlock::iterator &BBI) {
638   if (!LI->isSimple() || !LI->hasOneUse() || LI->getParent() != SI->getParent())
639     return false;
640 
641   auto *T = LI->getType();
642   // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
643   // the corresponding libcalls are not available.
644   // TODO: We should really distinguish between libcall availability and
645   // our ability to introduce intrinsics.
646   if (T->isAggregateType() &&
647       (EnableMemCpyOptWithoutLibcalls ||
648        (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
649     MemoryLocation LoadLoc = MemoryLocation::get(LI);
650 
651     // We use alias analysis to check if an instruction may store to
652     // the memory we load from in between the load and the store. If
653     // such an instruction is found, we try to promote there instead
654     // of at the store position.
655     // TODO: Can use MSSA for this.
656     Instruction *P = SI;
657     for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
658       if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
659         P = &I;
660         break;
661       }
662     }
663 
664     // We found an instruction that may write to the loaded memory.
665     // We can try to promote at this position instead of the store
666     // position if nothing aliases the store memory after this and the store
667     // destination is not in the range.
668     if (P && P != SI) {
669       if (!moveUp(SI, P, LI))
670         P = nullptr;
671     }
672 
673     // If a valid insertion position is found, then we can promote
674     // the load/store pair to a memcpy.
675     if (P) {
676       // If we load from memory that may alias the memory we store to,
677       // memmove must be used to preserve semantic. If not, memcpy can
678       // be used. Also, if we load from constant memory, memcpy can be used
679       // as the constant memory won't be modified.
680       bool UseMemMove = false;
681       if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
682         UseMemMove = true;
683 
684       IRBuilder<> Builder(P);
685       Value *Size =
686           Builder.CreateTypeSize(Builder.getInt64Ty(), DL.getTypeStoreSize(T));
687       Instruction *M;
688       if (UseMemMove)
689         M = Builder.CreateMemMove(SI->getPointerOperand(), SI->getAlign(),
690                                   LI->getPointerOperand(), LI->getAlign(),
691                                   Size);
692       else
693         M = Builder.CreateMemCpy(SI->getPointerOperand(), SI->getAlign(),
694                                  LI->getPointerOperand(), LI->getAlign(), Size);
695       M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
696 
697       LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " << *M
698                         << "\n");
699 
700       auto *LastDef =
701           cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
702       auto *NewAccess = MSSAU->createMemoryAccessAfter(M, nullptr, LastDef);
703       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
704 
705       eraseInstruction(SI);
706       eraseInstruction(LI);
707       ++NumMemCpyInstr;
708 
709       // Make sure we do not invalidate the iterator.
710       BBI = M->getIterator();
711       return true;
712     }
713   }
714 
715   // Detect cases where we're performing call slot forwarding, but
716   // happen to be using a load-store pair to implement it, rather than
717   // a memcpy.
718   BatchAAResults BAA(*AA);
719   auto GetCall = [&]() -> CallInst * {
720     // We defer this expensive clobber walk until the cheap checks
721     // have been done on the source inside performCallSlotOptzn.
722     if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
723             MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
724       return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
725     return nullptr;
726   };
727 
728   bool Changed = performCallSlotOptzn(
729       LI, SI, SI->getPointerOperand()->stripPointerCasts(),
730       LI->getPointerOperand()->stripPointerCasts(),
731       DL.getTypeStoreSize(SI->getOperand(0)->getType()),
732       std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
733   if (Changed) {
734     eraseInstruction(SI);
735     eraseInstruction(LI);
736     ++NumMemCpyInstr;
737     return true;
738   }
739 
740   // If this is a load-store pair from a stack slot to a stack slot, we
741   // might be able to perform the stack-move optimization just as we do for
742   // memcpys from an alloca to an alloca.
743   if (auto *DestAlloca = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
744     if (auto *SrcAlloca = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
745       if (performStackMoveOptzn(LI, SI, DestAlloca, SrcAlloca,
746                                 DL.getTypeStoreSize(T), BAA)) {
747         // Avoid invalidating the iterator.
748         BBI = SI->getNextNonDebugInstruction()->getIterator();
749         eraseInstruction(SI);
750         eraseInstruction(LI);
751         ++NumMemCpyInstr;
752         return true;
753       }
754     }
755   }
756 
757   return false;
758 }
759 
760 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
761   if (!SI->isSimple())
762     return false;
763 
764   // Avoid merging nontemporal stores since the resulting
765   // memcpy/memset would not be able to preserve the nontemporal hint.
766   // In theory we could teach how to propagate the !nontemporal metadata to
767   // memset calls. However, that change would force the backend to
768   // conservatively expand !nontemporal memset calls back to sequences of
769   // store instructions (effectively undoing the merging).
770   if (SI->getMetadata(LLVMContext::MD_nontemporal))
771     return false;
772 
773   const DataLayout &DL = SI->getDataLayout();
774 
775   Value *StoredVal = SI->getValueOperand();
776 
777   // Not all the transforms below are correct for non-integral pointers, bail
778   // until we've audited the individual pieces.
779   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
780     return false;
781 
782   // Load to store forwarding can be interpreted as memcpy.
783   if (auto *LI = dyn_cast<LoadInst>(StoredVal))
784     return processStoreOfLoad(SI, LI, DL, BBI);
785 
786   // The following code creates memset intrinsics out of thin air. Don't do
787   // this if the corresponding libfunc is not available.
788   // TODO: We should really distinguish between libcall availability and
789   // our ability to introduce intrinsics.
790   if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
791     return false;
792 
793   // There are two cases that are interesting for this code to handle: memcpy
794   // and memset.  Right now we only handle memset.
795 
796   // Ensure that the value being stored is something that can be memset'able a
797   // byte at a time like "0" or "-1" or any width, as well as things like
798   // 0xA0A0A0A0 and 0.0.
799   auto *V = SI->getOperand(0);
800   if (Value *ByteVal = isBytewiseValue(V, DL)) {
801     if (Instruction *I =
802             tryMergingIntoMemset(SI, SI->getPointerOperand(), ByteVal)) {
803       BBI = I->getIterator(); // Don't invalidate iterator.
804       return true;
805     }
806 
807     // If we have an aggregate, we try to promote it to memset regardless
808     // of opportunity for merging as it can expose optimization opportunities
809     // in subsequent passes.
810     auto *T = V->getType();
811     if (T->isAggregateType()) {
812       uint64_t Size = DL.getTypeStoreSize(T);
813       IRBuilder<> Builder(SI);
814       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
815                                      SI->getAlign());
816       M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
817 
818       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
819 
820       // The newly inserted memset is immediately overwritten by the original
821       // store, so we do not need to rename uses.
822       auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
823       auto *NewAccess = MSSAU->createMemoryAccessBefore(M, nullptr, StoreDef);
824       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
825 
826       eraseInstruction(SI);
827       NumMemSetInfer++;
828 
829       // Make sure we do not invalidate the iterator.
830       BBI = M->getIterator();
831       return true;
832     }
833   }
834 
835   return false;
836 }
837 
838 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
839   // See if there is another memset or store neighboring this memset which
840   // allows us to widen out the memset to do a single larger store.
841   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
842     if (Instruction *I =
843             tryMergingIntoMemset(MSI, MSI->getDest(), MSI->getValue())) {
844       BBI = I->getIterator(); // Don't invalidate iterator.
845       return true;
846     }
847   return false;
848 }
849 
850 /// Takes a memcpy and a call that it depends on,
851 /// and checks for the possibility of a call slot optimization by having
852 /// the call write its result directly into the destination of the memcpy.
853 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
854                                          Instruction *cpyStore, Value *cpyDest,
855                                          Value *cpySrc, TypeSize cpySize,
856                                          Align cpyDestAlign,
857                                          BatchAAResults &BAA,
858                                          std::function<CallInst *()> GetC) {
859   // The general transformation to keep in mind is
860   //
861   //   call @func(..., src, ...)
862   //   memcpy(dest, src, ...)
863   //
864   // ->
865   //
866   //   memcpy(dest, src, ...)
867   //   call @func(..., dest, ...)
868   //
869   // Since moving the memcpy is technically awkward, we additionally check that
870   // src only holds uninitialized values at the moment of the call, meaning that
871   // the memcpy can be discarded rather than moved.
872 
873   // We can't optimize scalable types.
874   if (cpySize.isScalable())
875     return false;
876 
877   // Require that src be an alloca.  This simplifies the reasoning considerably.
878   auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
879   if (!srcAlloca)
880     return false;
881 
882   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
883   if (!srcArraySize)
884     return false;
885 
886   const DataLayout &DL = cpyLoad->getDataLayout();
887   TypeSize SrcAllocaSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType());
888   // We can't optimize scalable types.
889   if (SrcAllocaSize.isScalable())
890     return false;
891   uint64_t srcSize = SrcAllocaSize * srcArraySize->getZExtValue();
892 
893   if (cpySize < srcSize)
894     return false;
895 
896   CallInst *C = GetC();
897   if (!C)
898     return false;
899 
900   // Lifetime marks shouldn't be operated on.
901   if (Function *F = C->getCalledFunction())
902     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
903       return false;
904 
905   if (C->getParent() != cpyStore->getParent()) {
906     LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
907     return false;
908   }
909 
910   MemoryLocation DestLoc =
911       isa<StoreInst>(cpyStore)
912           ? MemoryLocation::get(cpyStore)
913           : MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
914 
915   // Check that nothing touches the dest of the copy between
916   // the call and the store/memcpy.
917   Instruction *SkippedLifetimeStart = nullptr;
918   if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
919                       MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
920     LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
921     return false;
922   }
923 
924   // If we need to move a lifetime.start above the call, make sure that we can
925   // actually do so. If the argument is bitcasted for example, we would have to
926   // move the bitcast as well, which we don't handle.
927   if (SkippedLifetimeStart) {
928     auto *LifetimeArg =
929         dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1));
930     if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
931         C->comesBefore(LifetimeArg))
932       return false;
933   }
934 
935   // Check that storing to the first srcSize bytes of dest will not cause a
936   // trap or data race.
937   bool ExplicitlyDereferenceableOnly;
938   if (!isWritableObject(getUnderlyingObject(cpyDest),
939                         ExplicitlyDereferenceableOnly) ||
940       !isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
941                                           DL, C, AC, DT)) {
942     LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
943     return false;
944   }
945 
946   // Make sure that nothing can observe cpyDest being written early. There are
947   // a number of cases to consider:
948   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
949   //     the transform.
950   //  2. C itself may not access cpyDest (prior to the transform). This is
951   //     checked further below.
952   //  3. If cpyDest is accessible to the caller of this function (potentially
953   //     captured and not based on an alloca), we need to ensure that we cannot
954   //     unwind between C and cpyStore. This is checked here.
955   //  4. If cpyDest is potentially captured, there may be accesses to it from
956   //     another thread. In this case, we need to check that cpyStore is
957   //     guaranteed to be executed if C is. As it is a non-atomic access, it
958   //     renders accesses from other threads undefined.
959   //     TODO: This is currently not checked.
960   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
961     LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
962     return false;
963   }
964 
965   // Check that dest points to memory that is at least as aligned as src.
966   Align srcAlign = srcAlloca->getAlign();
967   bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
968   // If dest is not aligned enough and we can't increase its alignment then
969   // bail out.
970   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
971     LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
972     return false;
973   }
974 
975   // Check that src is not accessed except via the call and the memcpy.  This
976   // guarantees that it holds only undefined values when passed in (so the final
977   // memcpy can be dropped), that it is not read or written between the call and
978   // the memcpy, and that writing beyond the end of it is undefined.
979   SmallVector<User *, 8> srcUseList(srcAlloca->users());
980   while (!srcUseList.empty()) {
981     User *U = srcUseList.pop_back_val();
982 
983     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
984       append_range(srcUseList, U->users());
985       continue;
986     }
987     if (const auto *G = dyn_cast<GetElementPtrInst>(U);
988         G && G->hasAllZeroIndices()) {
989       append_range(srcUseList, U->users());
990       continue;
991     }
992     if (const auto *IT = dyn_cast<IntrinsicInst>(U))
993       if (IT->isLifetimeStartOrEnd())
994         continue;
995 
996     if (U != C && U != cpyLoad) {
997       LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U << "\n");
998       return false;
999     }
1000   }
1001 
1002   // Check whether src is captured by the called function, in which case there
1003   // may be further indirect uses of src.
1004   bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
1005     return U->stripPointerCasts() == cpySrc &&
1006            !C->doesNotCapture(C->getArgOperandNo(&U));
1007   });
1008 
1009   // If src is captured, then check whether there are any potential uses of
1010   // src through the captured pointer before the lifetime of src ends, either
1011   // due to a lifetime.end or a return from the function.
1012   if (SrcIsCaptured) {
1013     // Check that dest is not captured before/at the call. We have already
1014     // checked that src is not captured before it. If either had been captured,
1015     // then the call might be comparing the argument against the captured dest
1016     // or src pointer.
1017     Value *DestObj = getUnderlyingObject(cpyDest);
1018     if (!isIdentifiedFunctionLocal(DestObj) ||
1019         PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
1020                                    /* StoreCaptures */ true, C, DT,
1021                                    /* IncludeI */ true))
1022       return false;
1023 
1024     MemoryLocation SrcLoc =
1025         MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1026     for (Instruction &I :
1027          make_range(++C->getIterator(), C->getParent()->end())) {
1028       // Lifetime of srcAlloca ends at lifetime.end.
1029       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1030         if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1031             II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
1032             cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
1033           break;
1034       }
1035 
1036       // Lifetime of srcAlloca ends at return.
1037       if (isa<ReturnInst>(&I))
1038         break;
1039 
1040       // Ignore the direct read of src in the load.
1041       if (&I == cpyLoad)
1042         continue;
1043 
1044       // Check whether this instruction may mod/ref src through the captured
1045       // pointer (we have already any direct mod/refs in the loop above).
1046       // Also bail if we hit a terminator, as we don't want to scan into other
1047       // blocks.
1048       if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1049         return false;
1050     }
1051   }
1052 
1053   // Since we're changing the parameter to the callsite, we need to make sure
1054   // that what would be the new parameter dominates the callsite.
1055   bool NeedMoveGEP = false;
1056   if (!DT->dominates(cpyDest, C)) {
1057     // Support moving a constant index GEP before the call.
1058     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1059     if (GEP && GEP->hasAllConstantIndices() &&
1060         DT->dominates(GEP->getPointerOperand(), C))
1061       NeedMoveGEP = true;
1062     else
1063       return false;
1064   }
1065 
1066   // In addition to knowing that the call does not access src in some
1067   // unexpected manner, for example via a global, which we deduce from
1068   // the use analysis, we also need to know that it does not sneakily
1069   // access dest.  We rely on AA to figure this out for us.
1070   MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
1071   ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
1072   // If necessary, perform additional analysis.
1073   if (isModOrRefSet(MR))
1074     MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
1075   if (isModOrRefSet(MR))
1076     return false;
1077 
1078   // We can't create address space casts here because we don't know if they're
1079   // safe for the target.
1080   if (cpySrc->getType() != cpyDest->getType())
1081     return false;
1082   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1083     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1084         cpySrc->getType() != C->getArgOperand(ArgI)->getType())
1085       return false;
1086 
1087   // All the checks have passed, so do the transformation.
1088   bool changedArgument = false;
1089   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1090     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1091       changedArgument = true;
1092       C->setArgOperand(ArgI, cpyDest);
1093     }
1094 
1095   if (!changedArgument)
1096     return false;
1097 
1098   // If the destination wasn't sufficiently aligned then increase its alignment.
1099   if (!isDestSufficientlyAligned) {
1100     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1101     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1102   }
1103 
1104   if (NeedMoveGEP) {
1105     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1106     GEP->moveBefore(C);
1107   }
1108 
1109   if (SkippedLifetimeStart) {
1110     SkippedLifetimeStart->moveBefore(C);
1111     MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1112                       MSSA->getMemoryAccess(C));
1113   }
1114 
1115   combineAAMetadata(C, cpyLoad);
1116   if (cpyLoad != cpyStore)
1117     combineAAMetadata(C, cpyStore);
1118 
1119   ++NumCallSlot;
1120   return true;
1121 }
1122 
1123 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1124 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1125 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1126                                                   MemCpyInst *MDep,
1127                                                   BatchAAResults &BAA) {
1128   // If dep instruction is reading from our current input, then it is a noop
1129   // transfer and substituting the input won't change this instruction. Just
1130   // ignore the input and let someone else zap MDep. This handles cases like:
1131   //    memcpy(a <- a)
1132   //    memcpy(b <- a)
1133   if (M->getSource() == MDep->getSource())
1134     return false;
1135 
1136   // We can only optimize non-volatile memcpy's.
1137   if (MDep->isVolatile())
1138     return false;
1139 
1140   int64_t MForwardOffset = 0;
1141   const DataLayout &DL = M->getModule()->getDataLayout();
1142   // We can only transforms memcpy's where the dest of one is the source of the
1143   // other, or they have an offset in a range.
1144   if (M->getSource() != MDep->getDest()) {
1145     std::optional<int64_t> Offset =
1146         M->getSource()->getPointerOffsetFrom(MDep->getDest(), DL);
1147     if (!Offset || *Offset < 0)
1148       return false;
1149     MForwardOffset = *Offset;
1150   }
1151 
1152   // The length of the memcpy's must be the same, or the preceding one
1153   // must be larger than the following one.
1154   if (MForwardOffset != 0 || MDep->getLength() != M->getLength()) {
1155     auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1156     auto *MLen = dyn_cast<ConstantInt>(M->getLength());
1157     if (!MDepLen || !MLen ||
1158         MDepLen->getZExtValue() < MLen->getZExtValue() + MForwardOffset)
1159       return false;
1160   }
1161 
1162   IRBuilder<> Builder(M);
1163   auto *CopySource = MDep->getSource();
1164   Instruction *NewCopySource = nullptr;
1165   auto CleanupOnRet = llvm::make_scope_exit([&NewCopySource] {
1166     if (NewCopySource && NewCopySource->use_empty())
1167       // Safety: It's safe here because we will only allocate more instructions
1168       // after finishing all BatchAA queries, but we have to be careful if we
1169       // want to do something like this in another place. Then we'd probably
1170       // have to delay instruction removal until all transforms on an
1171       // instruction finished.
1172       NewCopySource->eraseFromParent();
1173   });
1174   MaybeAlign CopySourceAlign = MDep->getSourceAlign();
1175   // We just need to calculate the actual size of the copy.
1176   auto MCopyLoc = MemoryLocation::getForSource(MDep).getWithNewSize(
1177       MemoryLocation::getForSource(M).Size);
1178 
1179   // When the forwarding offset is greater than 0, we transform
1180   //    memcpy(d1 <- s1)
1181   //    memcpy(d2 <- d1+o)
1182   // to
1183   //    memcpy(d2 <- s1+o)
1184   if (MForwardOffset > 0) {
1185     // The copy destination of `M` maybe can serve as the source of copying.
1186     std::optional<int64_t> MDestOffset =
1187         M->getRawDest()->getPointerOffsetFrom(MDep->getRawSource(), DL);
1188     if (MDestOffset == MForwardOffset)
1189       CopySource = M->getDest();
1190     else {
1191       CopySource = Builder.CreateInBoundsPtrAdd(
1192           CopySource, Builder.getInt64(MForwardOffset));
1193       NewCopySource = dyn_cast<Instruction>(CopySource);
1194     }
1195     // We need to update `MCopyLoc` if an offset exists.
1196     MCopyLoc = MCopyLoc.getWithNewPtr(CopySource);
1197     if (CopySourceAlign)
1198       CopySourceAlign = commonAlignment(*CopySourceAlign, MForwardOffset);
1199   }
1200 
1201   // Verify that the copied-from memory doesn't change in between the two
1202   // transfers.  For example, in:
1203   //    memcpy(a <- b)
1204   //    *b = 42;
1205   //    memcpy(c <- a)
1206   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1207   //
1208   // TODO: If the code between M and MDep is transparent to the destination "c",
1209   // then we could still perform the xform by moving M up to the first memcpy.
1210   if (writtenBetween(MSSA, BAA, MCopyLoc, MSSA->getMemoryAccess(MDep),
1211                      MSSA->getMemoryAccess(M)))
1212     return false;
1213 
1214   // No need to create `memcpy(a <- a)`.
1215   if (BAA.isMustAlias(M->getDest(), CopySource)) {
1216     // Remove the instruction we're replacing.
1217     eraseInstruction(M);
1218     ++NumMemCpyInstr;
1219     return true;
1220   }
1221 
1222   // If the dest of the second might alias the source of the first, then the
1223   // source and dest might overlap. In addition, if the source of the first
1224   // points to constant memory, they won't overlap by definition. Otherwise, we
1225   // still want to eliminate the intermediate value, but we have to generate a
1226   // memmove instead of memcpy.
1227   bool UseMemMove = false;
1228   if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) {
1229     // Don't convert llvm.memcpy.inline into memmove because memmove can be
1230     // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
1231     // there is no inline version of llvm.memmove)
1232     if (isa<MemCpyInlineInst>(M))
1233       return false;
1234     UseMemMove = true;
1235   }
1236 
1237   // If all checks passed, then we can transform M.
1238   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1239                     << *MDep << '\n'
1240                     << *M << '\n');
1241 
1242   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1243   // example we could be moving from movaps -> movq on x86.
1244   Instruction *NewM;
1245   if (UseMemMove)
1246     NewM =
1247         Builder.CreateMemMove(M->getDest(), M->getDestAlign(), CopySource,
1248                               CopySourceAlign, M->getLength(), M->isVolatile());
1249   else if (isa<MemCpyInlineInst>(M)) {
1250     // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1251     // never allowed since that would allow the latter to be lowered as a call
1252     // to an external function.
1253     NewM = Builder.CreateMemCpyInline(M->getDest(), M->getDestAlign(),
1254                                       CopySource, CopySourceAlign,
1255                                       M->getLength(), M->isVolatile());
1256   } else
1257     NewM =
1258         Builder.CreateMemCpy(M->getDest(), M->getDestAlign(), CopySource,
1259                              CopySourceAlign, M->getLength(), M->isVolatile());
1260   NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);
1261 
1262   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1263   auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1264   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1265   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1266 
1267   // Remove the instruction we're replacing.
1268   eraseInstruction(M);
1269   ++NumMemCpyInstr;
1270   return true;
1271 }
1272 
1273 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1274 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1275 /// weren't copied over by \p MemCpy.
1276 ///
1277 /// In other words, transform:
1278 /// \code
1279 ///   memset(dst, c, dst_size);
1280 ///   ...
1281 ///   memcpy(dst, src, src_size);
1282 /// \endcode
1283 /// into:
1284 /// \code
1285 ///   ...
1286 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1287 ///   memcpy(dst, src, src_size);
1288 /// \endcode
1289 ///
1290 /// The memset is sunk to just before the memcpy to ensure that src_size is
1291 /// present when emitting the simplified memset.
1292 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1293                                                   MemSetInst *MemSet,
1294                                                   BatchAAResults &BAA) {
1295   // We can only transform memset/memcpy with the same destination.
1296   if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1297     return false;
1298 
1299   // Don't perform the transform if src_size may be zero. In that case, the
1300   // transform is essentially a complex no-op and may lead to an infinite
1301   // loop if BasicAA is smart enough to understand that dst and dst + src_size
1302   // are still MustAlias after the transform.
1303   Value *SrcSize = MemCpy->getLength();
1304   if (!isKnownNonZero(SrcSize,
1305                       SimplifyQuery(MemCpy->getDataLayout(), DT, AC, MemCpy)))
1306     return false;
1307 
1308   // Check that src and dst of the memcpy aren't the same. While memcpy
1309   // operands cannot partially overlap, exact equality is allowed.
1310   if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1311     return false;
1312 
1313   // We know that dst up to src_size is not written. We now need to make sure
1314   // that dst up to dst_size is not accessed. (If we did not move the memset,
1315   // checking for reads would be sufficient.)
1316   if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet),
1317                       MSSA->getMemoryAccess(MemSet),
1318                       MSSA->getMemoryAccess(MemCpy)))
1319     return false;
1320 
1321   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1322   Value *Dest = MemCpy->getRawDest();
1323   Value *DestSize = MemSet->getLength();
1324 
1325   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1326     return false;
1327 
1328   // If the sizes are the same, simply drop the memset instead of generating
1329   // a replacement with zero size.
1330   if (DestSize == SrcSize) {
1331     eraseInstruction(MemSet);
1332     return true;
1333   }
1334 
1335   // By default, create an unaligned memset.
1336   Align Alignment = Align(1);
1337   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1338   // of the sum.
1339   const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1340                                    MemCpy->getDestAlign().valueOrOne());
1341   if (DestAlign > 1)
1342     if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1343       Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1344 
1345   IRBuilder<> Builder(MemCpy);
1346 
1347   // Preserve the debug location of the old memset for the code emitted here
1348   // related to the new memset. This is correct according to the rules in
1349   // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
1350   // instruction location", given that we move the memset within the basic
1351   // block.
1352   assert(MemSet->getParent() == MemCpy->getParent() &&
1353          "Preserving debug location based on moving memset within BB.");
1354   Builder.SetCurrentDebugLocation(MemSet->getDebugLoc());
1355 
1356   // If the sizes have different types, zext the smaller one.
1357   if (DestSize->getType() != SrcSize->getType()) {
1358     if (DestSize->getType()->getIntegerBitWidth() >
1359         SrcSize->getType()->getIntegerBitWidth())
1360       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1361     else
1362       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1363   }
1364 
1365   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1366   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1367   Value *MemsetLen = Builder.CreateSelect(
1368       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1369   Instruction *NewMemSet =
1370       Builder.CreateMemSet(Builder.CreatePtrAdd(Dest, SrcSize),
1371                            MemSet->getOperand(1), MemsetLen, Alignment);
1372 
1373   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1374          "MemCpy must be a MemoryDef");
1375   // The new memset is inserted before the memcpy, and it is known that the
1376   // memcpy's defining access is the memset about to be removed.
1377   auto *LastDef =
1378       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1379   auto *NewAccess =
1380       MSSAU->createMemoryAccessBefore(NewMemSet, nullptr, LastDef);
1381   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1382 
1383   eraseInstruction(MemSet);
1384   return true;
1385 }
1386 
1387 /// Determine whether the instruction has undefined content for the given Size,
1388 /// either because it was freshly alloca'd or started its lifetime.
1389 static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V,
1390                              MemoryDef *Def, Value *Size) {
1391   if (MSSA->isLiveOnEntryDef(Def))
1392     return isa<AllocaInst>(getUnderlyingObject(V));
1393 
1394   if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1395     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1396       auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1397 
1398       if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
1399         if (AA.isMustAlias(V, II->getArgOperand(1)) &&
1400             LTSize->getZExtValue() >= CSize->getZExtValue())
1401           return true;
1402       }
1403 
1404       // If the lifetime.start covers a whole alloca (as it almost always
1405       // does) and we're querying a pointer based on that alloca, then we know
1406       // the memory is definitely undef, regardless of how exactly we alias.
1407       // The size also doesn't matter, as an out-of-bounds access would be UB.
1408       if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
1409         if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1410           const DataLayout &DL = Alloca->getDataLayout();
1411           if (std::optional<TypeSize> AllocaSize =
1412                   Alloca->getAllocationSize(DL))
1413             if (*AllocaSize == LTSize->getValue())
1414               return true;
1415         }
1416       }
1417     }
1418   }
1419 
1420   return false;
1421 }
1422 
1423 /// Transform memcpy to memset when its source was just memset.
1424 /// In other words, turn:
1425 /// \code
1426 ///   memset(dst1, c, dst1_size);
1427 ///   memcpy(dst2, dst1, dst2_size);
1428 /// \endcode
1429 /// into:
1430 /// \code
1431 ///   memset(dst1, c, dst1_size);
1432 ///   memset(dst2, c, dst2_size);
1433 /// \endcode
1434 /// When dst2_size <= dst1_size.
1435 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1436                                                MemSetInst *MemSet,
1437                                                BatchAAResults &BAA) {
1438   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1439   // memcpying from the same address. Otherwise it is hard to reason about.
1440   if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1441     return false;
1442 
1443   Value *MemSetSize = MemSet->getLength();
1444   Value *CopySize = MemCpy->getLength();
1445 
1446   if (MemSetSize != CopySize) {
1447     // Make sure the memcpy doesn't read any more than what the memset wrote.
1448     // Don't worry about sizes larger than i64.
1449 
1450     // A known memset size is required.
1451     auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1452     if (!CMemSetSize)
1453       return false;
1454 
1455     // A known memcpy size is also required.
1456     auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1457     if (!CCopySize)
1458       return false;
1459     if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1460       // If the memcpy is larger than the memset, but the memory was undef prior
1461       // to the memset, we can just ignore the tail. Technically we're only
1462       // interested in the bytes from MemSetSize..CopySize here, but as we can't
1463       // easily represent this location, we use the full 0..CopySize range.
1464       MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1465       bool CanReduceSize = false;
1466       MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1467       MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1468           MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA);
1469       if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1470         if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize))
1471           CanReduceSize = true;
1472 
1473       if (!CanReduceSize)
1474         return false;
1475       CopySize = MemSetSize;
1476     }
1477   }
1478 
1479   IRBuilder<> Builder(MemCpy);
1480   Instruction *NewM =
1481       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1482                            CopySize, MemCpy->getDestAlign());
1483   auto *LastDef =
1484       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1485   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1486   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1487 
1488   return true;
1489 }
1490 
1491 // Attempts to optimize the pattern whereby memory is copied from an alloca to
1492 // another alloca, where the two allocas don't have conflicting mod/ref. If
1493 // successful, the two allocas can be merged into one and the transfer can be
1494 // deleted. This pattern is generated frequently in Rust, due to the ubiquity of
1495 // move operations in that language.
1496 //
1497 // Once we determine that the optimization is safe to perform, we replace all
1498 // uses of the destination alloca with the source alloca. We also "shrink wrap"
1499 // the lifetime markers of the single merged alloca to before the first use
1500 // and after the last use. Note that the "shrink wrapping" procedure is a safe
1501 // transformation only because we restrict the scope of this optimization to
1502 // allocas that aren't captured.
1503 bool MemCpyOptPass::performStackMoveOptzn(Instruction *Load, Instruction *Store,
1504                                           AllocaInst *DestAlloca,
1505                                           AllocaInst *SrcAlloca, TypeSize Size,
1506                                           BatchAAResults &BAA) {
1507   LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n"
1508                     << *Store << "\n");
1509 
1510   // Make sure the two allocas are in the same address space.
1511   if (SrcAlloca->getAddressSpace() != DestAlloca->getAddressSpace()) {
1512     LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n");
1513     return false;
1514   }
1515 
1516   // Check that copy is full with static size.
1517   const DataLayout &DL = DestAlloca->getDataLayout();
1518   std::optional<TypeSize> SrcSize = SrcAlloca->getAllocationSize(DL);
1519   if (!SrcSize || Size != *SrcSize) {
1520     LLVM_DEBUG(dbgs() << "Stack Move: Source alloca size mismatch\n");
1521     return false;
1522   }
1523   std::optional<TypeSize> DestSize = DestAlloca->getAllocationSize(DL);
1524   if (!DestSize || Size != *DestSize) {
1525     LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n");
1526     return false;
1527   }
1528 
1529   if (!SrcAlloca->isStaticAlloca() || !DestAlloca->isStaticAlloca())
1530     return false;
1531 
1532   // Check that src and dest are never captured, unescaped allocas. Also
1533   // find the nearest common dominator and postdominator for all users in
1534   // order to shrink wrap the lifetimes, and instructions with noalias metadata
1535   // to remove them.
1536 
1537   SmallVector<Instruction *, 4> LifetimeMarkers;
1538   SmallSet<Instruction *, 4> NoAliasInstrs;
1539   bool SrcNotDom = false;
1540 
1541   // Recursively track the user and check whether modified alias exist.
1542   auto IsDereferenceableOrNull = [](Value *V, const DataLayout &DL) -> bool {
1543     bool CanBeNull, CanBeFreed;
1544     return V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
1545   };
1546 
1547   auto CaptureTrackingWithModRef =
1548       [&](Instruction *AI,
1549           function_ref<bool(Instruction *)> ModRefCallback) -> bool {
1550     SmallVector<Instruction *, 8> Worklist;
1551     Worklist.push_back(AI);
1552     unsigned MaxUsesToExplore = getDefaultMaxUsesToExploreForCaptureTracking();
1553     Worklist.reserve(MaxUsesToExplore);
1554     SmallSet<const Use *, 20> Visited;
1555     while (!Worklist.empty()) {
1556       Instruction *I = Worklist.back();
1557       Worklist.pop_back();
1558       for (const Use &U : I->uses()) {
1559         auto *UI = cast<Instruction>(U.getUser());
1560         // If any use that isn't dominated by SrcAlloca exists, we move src
1561         // alloca to the entry before the transformation.
1562         if (!DT->dominates(SrcAlloca, UI))
1563           SrcNotDom = true;
1564 
1565         if (Visited.size() >= MaxUsesToExplore) {
1566           LLVM_DEBUG(
1567               dbgs()
1568               << "Stack Move: Exceeded max uses to see ModRef, bailing\n");
1569           return false;
1570         }
1571         if (!Visited.insert(&U).second)
1572           continue;
1573         switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
1574         case UseCaptureKind::MAY_CAPTURE:
1575           return false;
1576         case UseCaptureKind::PASSTHROUGH:
1577           // Instructions cannot have non-instruction users.
1578           Worklist.push_back(UI);
1579           continue;
1580         case UseCaptureKind::NO_CAPTURE: {
1581           if (UI->isLifetimeStartOrEnd()) {
1582             // We note the locations of these intrinsic calls so that we can
1583             // delete them later if the optimization succeeds, this is safe
1584             // since both llvm.lifetime.start and llvm.lifetime.end intrinsics
1585             // practically fill all the bytes of the alloca with an undefined
1586             // value, although conceptually marked as alive/dead.
1587             int64_t Size = cast<ConstantInt>(UI->getOperand(0))->getSExtValue();
1588             if (Size < 0 || Size == DestSize) {
1589               LifetimeMarkers.push_back(UI);
1590               continue;
1591             }
1592           }
1593           if (UI->hasMetadata(LLVMContext::MD_noalias))
1594             NoAliasInstrs.insert(UI);
1595           if (!ModRefCallback(UI))
1596             return false;
1597         }
1598         }
1599       }
1600     }
1601     return true;
1602   };
1603 
1604   // Check that dest has no Mod/Ref, from the alloca to the Store, except full
1605   // size lifetime intrinsics. And collect modref inst for the reachability
1606   // check.
1607   ModRefInfo DestModRef = ModRefInfo::NoModRef;
1608   MemoryLocation DestLoc(DestAlloca, LocationSize::precise(Size));
1609   SmallVector<BasicBlock *, 8> ReachabilityWorklist;
1610   auto DestModRefCallback = [&](Instruction *UI) -> bool {
1611     // We don't care about the store itself.
1612     if (UI == Store)
1613       return true;
1614     ModRefInfo Res = BAA.getModRefInfo(UI, DestLoc);
1615     DestModRef |= Res;
1616     if (isModOrRefSet(Res)) {
1617       // Instructions reachability checks.
1618       // FIXME: adding the Instruction version isPotentiallyReachableFromMany on
1619       // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful.
1620       if (UI->getParent() == Store->getParent()) {
1621         // The same block case is special because it's the only time we're
1622         // looking within a single block to see which instruction comes first.
1623         // Once we start looking at multiple blocks, the first instruction of
1624         // the block is reachable, so we only need to determine reachability
1625         // between whole blocks.
1626         BasicBlock *BB = UI->getParent();
1627 
1628         // If A comes before B, then B is definitively reachable from A.
1629         if (UI->comesBefore(Store))
1630           return false;
1631 
1632         // If the user's parent block is entry, no predecessor exists.
1633         if (BB->isEntryBlock())
1634           return true;
1635 
1636         // Otherwise, continue doing the normal per-BB CFG walk.
1637         ReachabilityWorklist.append(succ_begin(BB), succ_end(BB));
1638       } else {
1639         ReachabilityWorklist.push_back(UI->getParent());
1640       }
1641     }
1642     return true;
1643   };
1644 
1645   if (!CaptureTrackingWithModRef(DestAlloca, DestModRefCallback))
1646     return false;
1647   // Bailout if Dest may have any ModRef before Store.
1648   if (!ReachabilityWorklist.empty() &&
1649       isPotentiallyReachableFromMany(ReachabilityWorklist, Store->getParent(),
1650                                      nullptr, DT, nullptr))
1651     return false;
1652 
1653   // Check that, from after the Load to the end of the BB,
1654   //   - if the dest has any Mod, src has no Ref, and
1655   //   - if the dest has any Ref, src has no Mod except full-sized lifetimes.
1656   MemoryLocation SrcLoc(SrcAlloca, LocationSize::precise(Size));
1657 
1658   auto SrcModRefCallback = [&](Instruction *UI) -> bool {
1659     // Any ModRef post-dominated by Load doesn't matter, also Load and Store
1660     // themselves can be ignored.
1661     if (PDT->dominates(Load, UI) || UI == Load || UI == Store)
1662       return true;
1663     ModRefInfo Res = BAA.getModRefInfo(UI, SrcLoc);
1664     if ((isModSet(DestModRef) && isRefSet(Res)) ||
1665         (isRefSet(DestModRef) && isModSet(Res)))
1666       return false;
1667 
1668     return true;
1669   };
1670 
1671   if (!CaptureTrackingWithModRef(SrcAlloca, SrcModRefCallback))
1672     return false;
1673 
1674   // We can do the transformation. First, move the SrcAlloca to the start of the
1675   // BB.
1676   if (SrcNotDom)
1677     SrcAlloca->moveBefore(*SrcAlloca->getParent(),
1678                           SrcAlloca->getParent()->getFirstInsertionPt());
1679   // Align the allocas appropriately.
1680   SrcAlloca->setAlignment(
1681       std::max(SrcAlloca->getAlign(), DestAlloca->getAlign()));
1682 
1683   // Merge the two allocas.
1684   DestAlloca->replaceAllUsesWith(SrcAlloca);
1685   eraseInstruction(DestAlloca);
1686 
1687   // Drop metadata on the source alloca.
1688   SrcAlloca->dropUnknownNonDebugMetadata();
1689 
1690   // TODO: Reconstruct merged lifetime markers.
1691   // Remove all other lifetime markers. if the original lifetime intrinsics
1692   // exists.
1693   if (!LifetimeMarkers.empty()) {
1694     for (Instruction *I : LifetimeMarkers)
1695       eraseInstruction(I);
1696   }
1697 
1698   // As this transformation can cause memory accesses that didn't previously
1699   // alias to begin to alias one another, we remove !noalias metadata from any
1700   // uses of either alloca. This is conservative, but more precision doesn't
1701   // seem worthwhile right now.
1702   for (Instruction *I : NoAliasInstrs)
1703     I->setMetadata(LLVMContext::MD_noalias, nullptr);
1704 
1705   LLVM_DEBUG(dbgs() << "Stack Move: Performed staack-move optimization\n");
1706   NumStackMove++;
1707   return true;
1708 }
1709 
1710 static bool isZeroSize(Value *Size) {
1711   if (auto *I = dyn_cast<Instruction>(Size))
1712     if (auto *Res = simplifyInstruction(I, I->getDataLayout()))
1713       Size = Res;
1714   // Treat undef/poison size like zero.
1715   if (auto *C = dyn_cast<Constant>(Size))
1716     return isa<UndefValue>(C) || C->isNullValue();
1717   return false;
1718 }
1719 
1720 /// Perform simplification of memcpy's.  If we have memcpy A
1721 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1722 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1723 /// circumstances). This allows later passes to remove the first memcpy
1724 /// altogether.
1725 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1726   // We can only optimize non-volatile memcpy's.
1727   if (M->isVolatile())
1728     return false;
1729 
1730   // If the source and destination of the memcpy are the same, then zap it.
1731   if (M->getSource() == M->getDest()) {
1732     ++BBI;
1733     eraseInstruction(M);
1734     return true;
1735   }
1736 
1737   // If the size is zero, remove the memcpy.
1738   if (isZeroSize(M->getLength())) {
1739     ++BBI;
1740     eraseInstruction(M);
1741     return true;
1742   }
1743 
1744   MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1745   if (!MA)
1746     // Degenerate case: memcpy marked as not accessing memory.
1747     return false;
1748 
1749   // If copying from a constant, try to turn the memcpy into a memset.
1750   if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1751     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1752       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1753                                            M->getDataLayout())) {
1754         IRBuilder<> Builder(M);
1755         Instruction *NewM = Builder.CreateMemSet(
1756             M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
1757         auto *LastDef = cast<MemoryDef>(MA);
1758         auto *NewAccess =
1759             MSSAU->createMemoryAccessAfter(NewM, nullptr, LastDef);
1760         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1761 
1762         eraseInstruction(M);
1763         ++NumCpyToSet;
1764         return true;
1765       }
1766 
1767   BatchAAResults BAA(*AA);
1768   // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1769   MemoryAccess *AnyClobber = MA->getDefiningAccess();
1770   MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1771   const MemoryAccess *DestClobber =
1772       MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1773 
1774   // Try to turn a partially redundant memset + memcpy into
1775   // smaller memset + memcpy.  We don't need the memcpy size for this.
1776   // The memcpy must post-dom the memset, so limit this to the same basic
1777   // block. A non-local generalization is likely not worthwhile.
1778   if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1779     if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1780       if (DestClobber->getBlock() == M->getParent())
1781         if (processMemSetMemCpyDependence(M, MDep, BAA))
1782           return true;
1783 
1784   MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1785       AnyClobber, MemoryLocation::getForSource(M), BAA);
1786 
1787   // There are five possible optimizations we can do for memcpy:
1788   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1789   //   b) call-memcpy xform for return slot optimization.
1790   //   c) memcpy from freshly alloca'd space or space that has just started
1791   //      its lifetime copies undefined data, and we can therefore eliminate
1792   //      the memcpy in favor of the data that was already at the destination.
1793   //   d) memcpy from a just-memset'd source can be turned into memset.
1794   //   e) elimination of memcpy via stack-move optimization.
1795   if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1796     if (Instruction *MI = MD->getMemoryInst()) {
1797       if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1798         if (auto *C = dyn_cast<CallInst>(MI)) {
1799           if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1800                                    TypeSize::getFixed(CopySize->getZExtValue()),
1801                                    M->getDestAlign().valueOrOne(), BAA,
1802                                    [C]() -> CallInst * { return C; })) {
1803             LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1804                               << "    call: " << *C << "\n"
1805                               << "    memcpy: " << *M << "\n");
1806             eraseInstruction(M);
1807             ++NumMemCpyInstr;
1808             return true;
1809           }
1810         }
1811       }
1812       if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1813         if (processMemCpyMemCpyDependence(M, MDep, BAA))
1814           return true;
1815       if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1816         if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1817           LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1818           eraseInstruction(M);
1819           ++NumCpyToSet;
1820           return true;
1821         }
1822       }
1823     }
1824 
1825     if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) {
1826       LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1827       eraseInstruction(M);
1828       ++NumMemCpyInstr;
1829       return true;
1830     }
1831   }
1832 
1833   // If the transfer is from a stack slot to a stack slot, then we may be able
1834   // to perform the stack-move optimization. See the comments in
1835   // performStackMoveOptzn() for more details.
1836   auto *DestAlloca = dyn_cast<AllocaInst>(M->getDest());
1837   if (!DestAlloca)
1838     return false;
1839   auto *SrcAlloca = dyn_cast<AllocaInst>(M->getSource());
1840   if (!SrcAlloca)
1841     return false;
1842   ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength());
1843   if (Len == nullptr)
1844     return false;
1845   if (performStackMoveOptzn(M, M, DestAlloca, SrcAlloca,
1846                             TypeSize::getFixed(Len->getZExtValue()), BAA)) {
1847     // Avoid invalidating the iterator.
1848     BBI = M->getNextNonDebugInstruction()->getIterator();
1849     eraseInstruction(M);
1850     ++NumMemCpyInstr;
1851     return true;
1852   }
1853 
1854   return false;
1855 }
1856 
1857 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1858 /// not to alias.
1859 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1860   // See if the source could be modified by this memmove potentially.
1861   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1862     return false;
1863 
1864   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1865                     << "\n");
1866 
1867   // If not, then we know we can transform this.
1868   Type *ArgTys[3] = {M->getRawDest()->getType(), M->getRawSource()->getType(),
1869                      M->getLength()->getType()};
1870   M->setCalledFunction(
1871       Intrinsic::getDeclaration(M->getModule(), Intrinsic::memcpy, ArgTys));
1872 
1873   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1874   // aliasing guarantees).
1875 
1876   ++NumMoveToCpy;
1877   return true;
1878 }
1879 
1880 /// This is called on every byval argument in call sites.
1881 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1882   const DataLayout &DL = CB.getDataLayout();
1883   // Find out what feeds this byval argument.
1884   Value *ByValArg = CB.getArgOperand(ArgNo);
1885   Type *ByValTy = CB.getParamByValType(ArgNo);
1886   TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1887   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1888   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1889   if (!CallAccess)
1890     return false;
1891   MemCpyInst *MDep = nullptr;
1892   BatchAAResults BAA(*AA);
1893   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1894       CallAccess->getDefiningAccess(), Loc, BAA);
1895   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1896     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1897 
1898   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1899   // a memcpy, see if we can byval from the source of the memcpy instead of the
1900   // result.
1901   if (!MDep || MDep->isVolatile() ||
1902       ByValArg->stripPointerCasts() != MDep->getDest())
1903     return false;
1904 
1905   // The length of the memcpy must be larger or equal to the size of the byval.
1906   auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1907   if (!C1 || !TypeSize::isKnownGE(
1908                  TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1909     return false;
1910 
1911   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1912   // then it is some target specific value that we can't know.
1913   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1914   if (!ByValAlign)
1915     return false;
1916 
1917   // If it is greater than the memcpy, then we check to see if we can force the
1918   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1919   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1920   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1921       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1922                                  DT) < *ByValAlign)
1923     return false;
1924 
1925   // The type of the memcpy source must match the byval argument
1926   if (MDep->getSource()->getType() != ByValArg->getType())
1927     return false;
1928 
1929   // Verify that the copied-from memory doesn't change in between the memcpy and
1930   // the byval call.
1931   //    memcpy(a <- b)
1932   //    *b = 42;
1933   //    foo(*a)
1934   // It would be invalid to transform the second memcpy into foo(*b).
1935   if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1936                      MSSA->getMemoryAccess(MDep), CallAccess))
1937     return false;
1938 
1939   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1940                     << "  " << *MDep << "\n"
1941                     << "  " << CB << "\n");
1942 
1943   // Otherwise we're good!  Update the byval argument.
1944   combineAAMetadata(&CB, MDep);
1945   CB.setArgOperand(ArgNo, MDep->getSource());
1946   ++NumMemCpyInstr;
1947   return true;
1948 }
1949 
1950 /// This is called on memcpy dest pointer arguments attributed as immutable
1951 /// during call. Try to use memcpy source directly if all of the following
1952 /// conditions are satisfied.
1953 /// 1. The memcpy dst is neither modified during the call nor captured by the
1954 /// call. (if readonly, noalias, nocapture attributes on call-site.)
1955 /// 2. The memcpy dst is an alloca with known alignment & size.
1956 ///     2-1. The memcpy length == the alloca size which ensures that the new
1957 ///     pointer is dereferenceable for the required range
1958 ///     2-2. The src pointer has alignment >= the alloca alignment or can be
1959 ///     enforced so.
1960 /// 3. The memcpy dst and src is not modified between the memcpy and the call.
1961 /// (if MSSA clobber check is safe.)
1962 /// 4. The memcpy src is not modified during the call. (ModRef check shows no
1963 /// Mod.)
1964 bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) {
1965   // 1. Ensure passed argument is immutable during call.
1966   if (!(CB.paramHasAttr(ArgNo, Attribute::NoAlias) &&
1967         CB.paramHasAttr(ArgNo, Attribute::NoCapture)))
1968     return false;
1969   const DataLayout &DL = CB.getDataLayout();
1970   Value *ImmutArg = CB.getArgOperand(ArgNo);
1971 
1972   // 2. Check that arg is alloca
1973   // TODO: Even if the arg gets back to branches, we can remove memcpy if all
1974   // the alloca alignments can be enforced to source alignment.
1975   auto *AI = dyn_cast<AllocaInst>(ImmutArg->stripPointerCasts());
1976   if (!AI)
1977     return false;
1978 
1979   std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
1980   // Can't handle unknown size alloca.
1981   // (e.g. Variable Length Array, Scalable Vector)
1982   if (!AllocaSize || AllocaSize->isScalable())
1983     return false;
1984   MemoryLocation Loc(ImmutArg, LocationSize::precise(*AllocaSize));
1985   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1986   if (!CallAccess)
1987     return false;
1988 
1989   MemCpyInst *MDep = nullptr;
1990   BatchAAResults BAA(*AA);
1991   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1992       CallAccess->getDefiningAccess(), Loc, BAA);
1993   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1994     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1995 
1996   // If the immut argument isn't fed by a memcpy, ignore it.  If it is fed by
1997   // a memcpy, check that the arg equals the memcpy dest.
1998   if (!MDep || MDep->isVolatile() || AI != MDep->getDest())
1999     return false;
2000 
2001   // The type of the memcpy source must match the immut argument
2002   if (MDep->getSource()->getType() != ImmutArg->getType())
2003     return false;
2004 
2005   // 2-1. The length of the memcpy must be equal to the size of the alloca.
2006   auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
2007   if (!MDepLen || AllocaSize != MDepLen->getValue())
2008     return false;
2009 
2010   // 2-2. the memcpy source align must be larger than or equal the alloca's
2011   // align. If not so, we check to see if we can force the source of the memcpy
2012   // to the alignment we need. If we fail, we bail out.
2013   Align MemDepAlign = MDep->getSourceAlign().valueOrOne();
2014   Align AllocaAlign = AI->getAlign();
2015   if (MemDepAlign < AllocaAlign &&
2016       getOrEnforceKnownAlignment(MDep->getSource(), AllocaAlign, DL, &CB, AC,
2017                                  DT) < AllocaAlign)
2018     return false;
2019 
2020   // 3. Verify that the source doesn't change in between the memcpy and
2021   // the call.
2022   //    memcpy(a <- b)
2023   //    *b = 42;
2024   //    foo(*a)
2025   // It would be invalid to transform the second memcpy into foo(*b).
2026   if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
2027                      MSSA->getMemoryAccess(MDep), CallAccess))
2028     return false;
2029 
2030   // 4. The memcpy src must not be modified during the call.
2031   if (isModSet(AA->getModRefInfo(&CB, MemoryLocation::getForSource(MDep))))
2032     return false;
2033 
2034   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2035                     << "  " << *MDep << "\n"
2036                     << "  " << CB << "\n");
2037 
2038   // Otherwise we're good!  Update the immut argument.
2039   combineAAMetadata(&CB, MDep);
2040   CB.setArgOperand(ArgNo, MDep->getSource());
2041   ++NumMemCpyInstr;
2042   return true;
2043 }
2044 
2045 /// Executes one iteration of MemCpyOptPass.
2046 bool MemCpyOptPass::iterateOnFunction(Function &F) {
2047   bool MadeChange = false;
2048 
2049   // Walk all instruction in the function.
2050   for (BasicBlock &BB : F) {
2051     // Skip unreachable blocks. For example processStore assumes that an
2052     // instruction in a BB can't be dominated by a later instruction in the
2053     // same BB (which is a scenario that can happen for an unreachable BB that
2054     // has itself as a predecessor).
2055     if (!DT->isReachableFromEntry(&BB))
2056       continue;
2057 
2058     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
2059       // Avoid invalidating the iterator.
2060       Instruction *I = &*BI++;
2061 
2062       bool RepeatInstruction = false;
2063 
2064       if (auto *SI = dyn_cast<StoreInst>(I))
2065         MadeChange |= processStore(SI, BI);
2066       else if (auto *M = dyn_cast<MemSetInst>(I))
2067         RepeatInstruction = processMemSet(M, BI);
2068       else if (auto *M = dyn_cast<MemCpyInst>(I))
2069         RepeatInstruction = processMemCpy(M, BI);
2070       else if (auto *M = dyn_cast<MemMoveInst>(I))
2071         RepeatInstruction = processMemMove(M);
2072       else if (auto *CB = dyn_cast<CallBase>(I)) {
2073         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) {
2074           if (CB->isByValArgument(i))
2075             MadeChange |= processByValArgument(*CB, i);
2076           else if (CB->onlyReadsMemory(i))
2077             MadeChange |= processImmutArgument(*CB, i);
2078         }
2079       }
2080 
2081       // Reprocess the instruction if desired.
2082       if (RepeatInstruction) {
2083         if (BI != BB.begin())
2084           --BI;
2085         MadeChange = true;
2086       }
2087     }
2088   }
2089 
2090   return MadeChange;
2091 }
2092 
2093 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
2094   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2095   auto *AA = &AM.getResult<AAManager>(F);
2096   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
2097   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
2098   auto *PDT = &AM.getResult<PostDominatorTreeAnalysis>(F);
2099   auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
2100 
2101   bool MadeChange = runImpl(F, &TLI, AA, AC, DT, PDT, &MSSA->getMSSA());
2102   if (!MadeChange)
2103     return PreservedAnalyses::all();
2104 
2105   PreservedAnalyses PA;
2106   PA.preserveSet<CFGAnalyses>();
2107   PA.preserve<MemorySSAAnalysis>();
2108   return PA;
2109 }
2110 
2111 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
2112                             AliasAnalysis *AA_, AssumptionCache *AC_,
2113                             DominatorTree *DT_, PostDominatorTree *PDT_,
2114                             MemorySSA *MSSA_) {
2115   bool MadeChange = false;
2116   TLI = TLI_;
2117   AA = AA_;
2118   AC = AC_;
2119   DT = DT_;
2120   PDT = PDT_;
2121   MSSA = MSSA_;
2122   MemorySSAUpdater MSSAU_(MSSA_);
2123   MSSAU = &MSSAU_;
2124 
2125   while (true) {
2126     if (!iterateOnFunction(F))
2127       break;
2128     MadeChange = true;
2129   }
2130 
2131   if (VerifyMemorySSA)
2132     MSSA_->verifyMemorySSA();
2133 
2134   return MadeChange;
2135 }
2136