1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memcpyopt" 66 67 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 68 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 69 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 70 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 71 72 namespace { 73 74 /// Represents a range of memset'd bytes with the ByteVal value. 75 /// This allows us to analyze stores like: 76 /// store 0 -> P+1 77 /// store 0 -> P+0 78 /// store 0 -> P+3 79 /// store 0 -> P+2 80 /// which sometimes happens with stores to arrays of structs etc. When we see 81 /// the first store, we make a range [1, 2). The second store extends the range 82 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 83 /// two ranges into [0, 3) which is memset'able. 84 struct MemsetRange { 85 // Start/End - A semi range that describes the span that this range covers. 86 // The range is closed at the start and open at the end: [Start, End). 87 int64_t Start, End; 88 89 /// StartPtr - The getelementptr instruction that points to the start of the 90 /// range. 91 Value *StartPtr; 92 93 /// Alignment - The known alignment of the first store. 94 unsigned Alignment; 95 96 /// TheStores - The actual stores that make up this range. 97 SmallVector<Instruction*, 16> TheStores; 98 99 bool isProfitableToUseMemset(const DataLayout &DL) const; 100 }; 101 102 } // end anonymous namespace 103 104 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 105 // If we found more than 4 stores to merge or 16 bytes, use memset. 106 if (TheStores.size() >= 4 || End-Start >= 16) return true; 107 108 // If there is nothing to merge, don't do anything. 109 if (TheStores.size() < 2) return false; 110 111 // If any of the stores are a memset, then it is always good to extend the 112 // memset. 113 for (Instruction *SI : TheStores) 114 if (!isa<StoreInst>(SI)) 115 return true; 116 117 // Assume that the code generator is capable of merging pairs of stores 118 // together if it wants to. 119 if (TheStores.size() == 2) return false; 120 121 // If we have fewer than 8 stores, it can still be worthwhile to do this. 122 // For example, merging 4 i8 stores into an i32 store is useful almost always. 123 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 124 // memset will be split into 2 32-bit stores anyway) and doing so can 125 // pessimize the llvm optimizer. 126 // 127 // Since we don't have perfect knowledge here, make some assumptions: assume 128 // the maximum GPR width is the same size as the largest legal integer 129 // size. If so, check to see whether we will end up actually reducing the 130 // number of stores used. 131 unsigned Bytes = unsigned(End-Start); 132 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 133 if (MaxIntSize == 0) 134 MaxIntSize = 1; 135 unsigned NumPointerStores = Bytes / MaxIntSize; 136 137 // Assume the remaining bytes if any are done a byte at a time. 138 unsigned NumByteStores = Bytes % MaxIntSize; 139 140 // If we will reduce the # stores (according to this heuristic), do the 141 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 142 // etc. 143 return TheStores.size() > NumPointerStores+NumByteStores; 144 } 145 146 namespace { 147 148 class MemsetRanges { 149 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 150 151 /// A sorted list of the memset ranges. 152 SmallVector<MemsetRange, 8> Ranges; 153 154 const DataLayout &DL; 155 156 public: 157 MemsetRanges(const DataLayout &DL) : DL(DL) {} 158 159 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 160 161 const_iterator begin() const { return Ranges.begin(); } 162 const_iterator end() const { return Ranges.end(); } 163 bool empty() const { return Ranges.empty(); } 164 165 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 166 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 167 addStore(OffsetFromFirst, SI); 168 else 169 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 170 } 171 172 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 173 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 174 175 addRange(OffsetFromFirst, StoreSize, 176 SI->getPointerOperand(), SI->getAlignment(), SI); 177 } 178 179 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 180 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 181 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 182 } 183 184 void addRange(int64_t Start, int64_t Size, Value *Ptr, 185 unsigned Alignment, Instruction *Inst); 186 }; 187 188 } // end anonymous namespace 189 190 /// Add a new store to the MemsetRanges data structure. This adds a 191 /// new range for the specified store at the specified offset, merging into 192 /// existing ranges as appropriate. 193 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 194 unsigned Alignment, Instruction *Inst) { 195 int64_t End = Start+Size; 196 197 range_iterator I = partition_point( 198 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 199 200 // We now know that I == E, in which case we didn't find anything to merge 201 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 202 // to insert a new range. Handle this now. 203 if (I == Ranges.end() || End < I->Start) { 204 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 205 R.Start = Start; 206 R.End = End; 207 R.StartPtr = Ptr; 208 R.Alignment = Alignment; 209 R.TheStores.push_back(Inst); 210 return; 211 } 212 213 // This store overlaps with I, add it. 214 I->TheStores.push_back(Inst); 215 216 // At this point, we may have an interval that completely contains our store. 217 // If so, just add it to the interval and return. 218 if (I->Start <= Start && I->End >= End) 219 return; 220 221 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 222 // but is not entirely contained within the range. 223 224 // See if the range extends the start of the range. In this case, it couldn't 225 // possibly cause it to join the prior range, because otherwise we would have 226 // stopped on *it*. 227 if (Start < I->Start) { 228 I->Start = Start; 229 I->StartPtr = Ptr; 230 I->Alignment = Alignment; 231 } 232 233 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 234 // is in or right at the end of I), and that End >= I->Start. Extend I out to 235 // End. 236 if (End > I->End) { 237 I->End = End; 238 range_iterator NextI = I; 239 while (++NextI != Ranges.end() && End >= NextI->Start) { 240 // Merge the range in. 241 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 242 if (NextI->End > I->End) 243 I->End = NextI->End; 244 Ranges.erase(NextI); 245 NextI = I; 246 } 247 } 248 } 249 250 //===----------------------------------------------------------------------===// 251 // MemCpyOptLegacyPass Pass 252 //===----------------------------------------------------------------------===// 253 254 namespace { 255 256 class MemCpyOptLegacyPass : public FunctionPass { 257 MemCpyOptPass Impl; 258 259 public: 260 static char ID; // Pass identification, replacement for typeid 261 262 MemCpyOptLegacyPass() : FunctionPass(ID) { 263 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 264 } 265 266 bool runOnFunction(Function &F) override; 267 268 private: 269 // This transformation requires dominator postdominator info 270 void getAnalysisUsage(AnalysisUsage &AU) const override { 271 AU.setPreservesCFG(); 272 AU.addRequired<AssumptionCacheTracker>(); 273 AU.addRequired<DominatorTreeWrapperPass>(); 274 AU.addRequired<MemoryDependenceWrapperPass>(); 275 AU.addRequired<AAResultsWrapperPass>(); 276 AU.addRequired<TargetLibraryInfoWrapperPass>(); 277 AU.addPreserved<GlobalsAAWrapperPass>(); 278 AU.addPreserved<MemoryDependenceWrapperPass>(); 279 } 280 }; 281 282 } // end anonymous namespace 283 284 char MemCpyOptLegacyPass::ID = 0; 285 286 /// The public interface to this file... 287 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 288 289 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 290 false, false) 291 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 293 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 294 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 296 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 297 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 298 false, false) 299 300 /// When scanning forward over instructions, we look for some other patterns to 301 /// fold away. In particular, this looks for stores to neighboring locations of 302 /// memory. If it sees enough consecutive ones, it attempts to merge them 303 /// together into a memcpy/memset. 304 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 305 Value *StartPtr, 306 Value *ByteVal) { 307 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 308 309 // Okay, so we now have a single store that can be splatable. Scan to find 310 // all subsequent stores of the same value to offset from the same pointer. 311 // Join these together into ranges, so we can decide whether contiguous blocks 312 // are stored. 313 MemsetRanges Ranges(DL); 314 315 BasicBlock::iterator BI(StartInst); 316 for (++BI; !BI->isTerminator(); ++BI) { 317 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 318 // If the instruction is readnone, ignore it, otherwise bail out. We 319 // don't even allow readonly here because we don't want something like: 320 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 321 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 322 break; 323 continue; 324 } 325 326 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 327 // If this is a store, see if we can merge it in. 328 if (!NextStore->isSimple()) break; 329 330 // Check to see if this stored value is of the same byte-splattable value. 331 Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL); 332 if (isa<UndefValue>(ByteVal) && StoredByte) 333 ByteVal = StoredByte; 334 if (ByteVal != StoredByte) 335 break; 336 337 // Check to see if this store is to a constant offset from the start ptr. 338 Optional<int64_t> Offset = 339 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 340 if (!Offset) 341 break; 342 343 Ranges.addStore(*Offset, NextStore); 344 } else { 345 MemSetInst *MSI = cast<MemSetInst>(BI); 346 347 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 348 !isa<ConstantInt>(MSI->getLength())) 349 break; 350 351 // Check to see if this store is to a constant offset from the start ptr. 352 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 353 if (!Offset) 354 break; 355 356 Ranges.addMemSet(*Offset, MSI); 357 } 358 } 359 360 // If we have no ranges, then we just had a single store with nothing that 361 // could be merged in. This is a very common case of course. 362 if (Ranges.empty()) 363 return nullptr; 364 365 // If we had at least one store that could be merged in, add the starting 366 // store as well. We try to avoid this unless there is at least something 367 // interesting as a small compile-time optimization. 368 Ranges.addInst(0, StartInst); 369 370 // If we create any memsets, we put it right before the first instruction that 371 // isn't part of the memset block. This ensure that the memset is dominated 372 // by any addressing instruction needed by the start of the block. 373 IRBuilder<> Builder(&*BI); 374 375 // Now that we have full information about ranges, loop over the ranges and 376 // emit memset's for anything big enough to be worthwhile. 377 Instruction *AMemSet = nullptr; 378 for (const MemsetRange &Range : Ranges) { 379 if (Range.TheStores.size() == 1) continue; 380 381 // If it is profitable to lower this range to memset, do so now. 382 if (!Range.isProfitableToUseMemset(DL)) 383 continue; 384 385 // Otherwise, we do want to transform this! Create a new memset. 386 // Get the starting pointer of the block. 387 StartPtr = Range.StartPtr; 388 389 // Determine alignment 390 unsigned Alignment = Range.Alignment; 391 if (Alignment == 0) { 392 Type *EltType = 393 cast<PointerType>(StartPtr->getType())->getElementType(); 394 Alignment = DL.getABITypeAlignment(EltType); 395 } 396 397 AMemSet = 398 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 399 400 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 401 : Range.TheStores) dbgs() 402 << *SI << '\n'; 403 dbgs() << "With: " << *AMemSet << '\n'); 404 405 if (!Range.TheStores.empty()) 406 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 407 408 // Zap all the stores. 409 for (Instruction *SI : Range.TheStores) { 410 MD->removeInstruction(SI); 411 SI->eraseFromParent(); 412 } 413 ++NumMemSetInfer; 414 } 415 416 return AMemSet; 417 } 418 419 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) { 420 unsigned StoreAlign = SI->getAlignment(); 421 if (!StoreAlign) 422 StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 423 return StoreAlign; 424 } 425 426 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) { 427 unsigned LoadAlign = LI->getAlignment(); 428 if (!LoadAlign) 429 LoadAlign = DL.getABITypeAlignment(LI->getType()); 430 return LoadAlign; 431 } 432 433 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, 434 const LoadInst *LI) { 435 unsigned StoreAlign = findStoreAlignment(DL, SI); 436 unsigned LoadAlign = findLoadAlignment(DL, LI); 437 return MinAlign(StoreAlign, LoadAlign); 438 } 439 440 // This method try to lift a store instruction before position P. 441 // It will lift the store and its argument + that anything that 442 // may alias with these. 443 // The method returns true if it was successful. 444 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, 445 const LoadInst *LI) { 446 // If the store alias this position, early bail out. 447 MemoryLocation StoreLoc = MemoryLocation::get(SI); 448 if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) 449 return false; 450 451 // Keep track of the arguments of all instruction we plan to lift 452 // so we can make sure to lift them as well if appropriate. 453 DenseSet<Instruction*> Args; 454 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 455 if (Ptr->getParent() == SI->getParent()) 456 Args.insert(Ptr); 457 458 // Instruction to lift before P. 459 SmallVector<Instruction*, 8> ToLift; 460 461 // Memory locations of lifted instructions. 462 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 463 464 // Lifted calls. 465 SmallVector<const CallBase *, 8> Calls; 466 467 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 468 469 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 470 auto *C = &*I; 471 472 bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); 473 474 bool NeedLift = false; 475 if (Args.erase(C)) 476 NeedLift = true; 477 else if (MayAlias) { 478 NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { 479 return isModOrRefSet(AA.getModRefInfo(C, ML)); 480 }); 481 482 if (!NeedLift) 483 NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) { 484 return isModOrRefSet(AA.getModRefInfo(C, Call)); 485 }); 486 } 487 488 if (!NeedLift) 489 continue; 490 491 if (MayAlias) { 492 // Since LI is implicitly moved downwards past the lifted instructions, 493 // none of them may modify its source. 494 if (isModSet(AA.getModRefInfo(C, LoadLoc))) 495 return false; 496 else if (const auto *Call = dyn_cast<CallBase>(C)) { 497 // If we can't lift this before P, it's game over. 498 if (isModOrRefSet(AA.getModRefInfo(P, Call))) 499 return false; 500 501 Calls.push_back(Call); 502 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 503 // If we can't lift this before P, it's game over. 504 auto ML = MemoryLocation::get(C); 505 if (isModOrRefSet(AA.getModRefInfo(P, ML))) 506 return false; 507 508 MemLocs.push_back(ML); 509 } else 510 // We don't know how to lift this instruction. 511 return false; 512 } 513 514 ToLift.push_back(C); 515 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 516 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 517 if (A->getParent() == SI->getParent()) { 518 // Cannot hoist user of P above P 519 if(A == P) return false; 520 Args.insert(A); 521 } 522 } 523 } 524 525 // We made it, we need to lift 526 for (auto *I : llvm::reverse(ToLift)) { 527 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 528 I->moveBefore(P); 529 } 530 531 return true; 532 } 533 534 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 535 if (!SI->isSimple()) return false; 536 537 // Avoid merging nontemporal stores since the resulting 538 // memcpy/memset would not be able to preserve the nontemporal hint. 539 // In theory we could teach how to propagate the !nontemporal metadata to 540 // memset calls. However, that change would force the backend to 541 // conservatively expand !nontemporal memset calls back to sequences of 542 // store instructions (effectively undoing the merging). 543 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 544 return false; 545 546 const DataLayout &DL = SI->getModule()->getDataLayout(); 547 548 // Load to store forwarding can be interpreted as memcpy. 549 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 550 if (LI->isSimple() && LI->hasOneUse() && 551 LI->getParent() == SI->getParent()) { 552 553 auto *T = LI->getType(); 554 if (T->isAggregateType()) { 555 AliasAnalysis &AA = LookupAliasAnalysis(); 556 MemoryLocation LoadLoc = MemoryLocation::get(LI); 557 558 // We use alias analysis to check if an instruction may store to 559 // the memory we load from in between the load and the store. If 560 // such an instruction is found, we try to promote there instead 561 // of at the store position. 562 Instruction *P = SI; 563 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 564 if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { 565 P = &I; 566 break; 567 } 568 } 569 570 // We found an instruction that may write to the loaded memory. 571 // We can try to promote at this position instead of the store 572 // position if nothing alias the store memory after this and the store 573 // destination is not in the range. 574 if (P && P != SI) { 575 if (!moveUp(AA, SI, P, LI)) 576 P = nullptr; 577 } 578 579 // If a valid insertion position is found, then we can promote 580 // the load/store pair to a memcpy. 581 if (P) { 582 // If we load from memory that may alias the memory we store to, 583 // memmove must be used to preserve semantic. If not, memcpy can 584 // be used. 585 bool UseMemMove = false; 586 if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) 587 UseMemMove = true; 588 589 uint64_t Size = DL.getTypeStoreSize(T); 590 591 IRBuilder<> Builder(P); 592 Instruction *M; 593 if (UseMemMove) 594 M = Builder.CreateMemMove( 595 SI->getPointerOperand(), findStoreAlignment(DL, SI), 596 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 597 else 598 M = Builder.CreateMemCpy( 599 SI->getPointerOperand(), findStoreAlignment(DL, SI), 600 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 601 602 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 603 << *M << "\n"); 604 605 MD->removeInstruction(SI); 606 SI->eraseFromParent(); 607 MD->removeInstruction(LI); 608 LI->eraseFromParent(); 609 ++NumMemCpyInstr; 610 611 // Make sure we do not invalidate the iterator. 612 BBI = M->getIterator(); 613 return true; 614 } 615 } 616 617 // Detect cases where we're performing call slot forwarding, but 618 // happen to be using a load-store pair to implement it, rather than 619 // a memcpy. 620 MemDepResult ldep = MD->getDependency(LI); 621 CallInst *C = nullptr; 622 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 623 C = dyn_cast<CallInst>(ldep.getInst()); 624 625 if (C) { 626 // Check that nothing touches the dest of the "copy" between 627 // the call and the store. 628 Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); 629 bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); 630 AliasAnalysis &AA = LookupAliasAnalysis(); 631 MemoryLocation StoreLoc = MemoryLocation::get(SI); 632 for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); 633 I != E; --I) { 634 if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { 635 C = nullptr; 636 break; 637 } 638 // The store to dest may never happen if an exception can be thrown 639 // between the load and the store. 640 if (I->mayThrow() && !CpyDestIsLocal) { 641 C = nullptr; 642 break; 643 } 644 } 645 } 646 647 if (C) { 648 bool changed = performCallSlotOptzn( 649 LI, SI->getPointerOperand()->stripPointerCasts(), 650 LI->getPointerOperand()->stripPointerCasts(), 651 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 652 findCommonAlignment(DL, SI, LI), C); 653 if (changed) { 654 MD->removeInstruction(SI); 655 SI->eraseFromParent(); 656 MD->removeInstruction(LI); 657 LI->eraseFromParent(); 658 ++NumMemCpyInstr; 659 return true; 660 } 661 } 662 } 663 } 664 665 // There are two cases that are interesting for this code to handle: memcpy 666 // and memset. Right now we only handle memset. 667 668 // Ensure that the value being stored is something that can be memset'able a 669 // byte at a time like "0" or "-1" or any width, as well as things like 670 // 0xA0A0A0A0 and 0.0. 671 auto *V = SI->getOperand(0); 672 if (Value *ByteVal = isBytewiseValue(V, DL)) { 673 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 674 ByteVal)) { 675 BBI = I->getIterator(); // Don't invalidate iterator. 676 return true; 677 } 678 679 // If we have an aggregate, we try to promote it to memset regardless 680 // of opportunity for merging as it can expose optimization opportunities 681 // in subsequent passes. 682 auto *T = V->getType(); 683 if (T->isAggregateType()) { 684 uint64_t Size = DL.getTypeStoreSize(T); 685 unsigned Align = SI->getAlignment(); 686 if (!Align) 687 Align = DL.getABITypeAlignment(T); 688 IRBuilder<> Builder(SI); 689 auto *M = 690 Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align); 691 692 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 693 694 MD->removeInstruction(SI); 695 SI->eraseFromParent(); 696 NumMemSetInfer++; 697 698 // Make sure we do not invalidate the iterator. 699 BBI = M->getIterator(); 700 return true; 701 } 702 } 703 704 return false; 705 } 706 707 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 708 // See if there is another memset or store neighboring this memset which 709 // allows us to widen out the memset to do a single larger store. 710 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 711 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 712 MSI->getValue())) { 713 BBI = I->getIterator(); // Don't invalidate iterator. 714 return true; 715 } 716 return false; 717 } 718 719 /// Takes a memcpy and a call that it depends on, 720 /// and checks for the possibility of a call slot optimization by having 721 /// the call write its result directly into the destination of the memcpy. 722 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, 723 Value *cpySrc, uint64_t cpyLen, 724 unsigned cpyAlign, CallInst *C) { 725 // The general transformation to keep in mind is 726 // 727 // call @func(..., src, ...) 728 // memcpy(dest, src, ...) 729 // 730 // -> 731 // 732 // memcpy(dest, src, ...) 733 // call @func(..., dest, ...) 734 // 735 // Since moving the memcpy is technically awkward, we additionally check that 736 // src only holds uninitialized values at the moment of the call, meaning that 737 // the memcpy can be discarded rather than moved. 738 739 // Lifetime marks shouldn't be operated on. 740 if (Function *F = C->getCalledFunction()) 741 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 742 return false; 743 744 // Deliberately get the source and destination with bitcasts stripped away, 745 // because we'll need to do type comparisons based on the underlying type. 746 CallSite CS(C); 747 748 // Require that src be an alloca. This simplifies the reasoning considerably. 749 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 750 if (!srcAlloca) 751 return false; 752 753 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 754 if (!srcArraySize) 755 return false; 756 757 const DataLayout &DL = cpy->getModule()->getDataLayout(); 758 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 759 srcArraySize->getZExtValue(); 760 761 if (cpyLen < srcSize) 762 return false; 763 764 // Check that accessing the first srcSize bytes of dest will not cause a 765 // trap. Otherwise the transform is invalid since it might cause a trap 766 // to occur earlier than it otherwise would. 767 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 768 // The destination is an alloca. Check it is larger than srcSize. 769 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 770 if (!destArraySize) 771 return false; 772 773 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 774 destArraySize->getZExtValue(); 775 776 if (destSize < srcSize) 777 return false; 778 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 779 // The store to dest may never happen if the call can throw. 780 if (C->mayThrow()) 781 return false; 782 783 if (A->getDereferenceableBytes() < srcSize) { 784 // If the destination is an sret parameter then only accesses that are 785 // outside of the returned struct type can trap. 786 if (!A->hasStructRetAttr()) 787 return false; 788 789 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 790 if (!StructTy->isSized()) { 791 // The call may never return and hence the copy-instruction may never 792 // be executed, and therefore it's not safe to say "the destination 793 // has at least <cpyLen> bytes, as implied by the copy-instruction", 794 return false; 795 } 796 797 uint64_t destSize = DL.getTypeAllocSize(StructTy); 798 if (destSize < srcSize) 799 return false; 800 } 801 } else { 802 return false; 803 } 804 805 // Check that dest points to memory that is at least as aligned as src. 806 unsigned srcAlign = srcAlloca->getAlignment(); 807 if (!srcAlign) 808 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 809 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 810 // If dest is not aligned enough and we can't increase its alignment then 811 // bail out. 812 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 813 return false; 814 815 // Check that src is not accessed except via the call and the memcpy. This 816 // guarantees that it holds only undefined values when passed in (so the final 817 // memcpy can be dropped), that it is not read or written between the call and 818 // the memcpy, and that writing beyond the end of it is undefined. 819 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 820 srcAlloca->user_end()); 821 while (!srcUseList.empty()) { 822 User *U = srcUseList.pop_back_val(); 823 824 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 825 for (User *UU : U->users()) 826 srcUseList.push_back(UU); 827 continue; 828 } 829 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 830 if (!G->hasAllZeroIndices()) 831 return false; 832 833 for (User *UU : U->users()) 834 srcUseList.push_back(UU); 835 continue; 836 } 837 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 838 if (IT->isLifetimeStartOrEnd()) 839 continue; 840 841 if (U != C && U != cpy) 842 return false; 843 } 844 845 // Check that src isn't captured by the called function since the 846 // transformation can cause aliasing issues in that case. 847 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 848 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 849 return false; 850 851 // Since we're changing the parameter to the callsite, we need to make sure 852 // that what would be the new parameter dominates the callsite. 853 DominatorTree &DT = LookupDomTree(); 854 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 855 if (!DT.dominates(cpyDestInst, C)) 856 return false; 857 858 // In addition to knowing that the call does not access src in some 859 // unexpected manner, for example via a global, which we deduce from 860 // the use analysis, we also need to know that it does not sneakily 861 // access dest. We rely on AA to figure this out for us. 862 AliasAnalysis &AA = LookupAliasAnalysis(); 863 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 864 // If necessary, perform additional analysis. 865 if (isModOrRefSet(MR)) 866 MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT); 867 if (isModOrRefSet(MR)) 868 return false; 869 870 // We can't create address space casts here because we don't know if they're 871 // safe for the target. 872 if (cpySrc->getType()->getPointerAddressSpace() != 873 cpyDest->getType()->getPointerAddressSpace()) 874 return false; 875 for (unsigned i = 0; i < CS.arg_size(); ++i) 876 if (CS.getArgument(i)->stripPointerCasts() == cpySrc && 877 cpySrc->getType()->getPointerAddressSpace() != 878 CS.getArgument(i)->getType()->getPointerAddressSpace()) 879 return false; 880 881 // All the checks have passed, so do the transformation. 882 bool changedArgument = false; 883 for (unsigned i = 0; i < CS.arg_size(); ++i) 884 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 885 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 886 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 887 cpyDest->getName(), C); 888 changedArgument = true; 889 if (CS.getArgument(i)->getType() == Dest->getType()) 890 CS.setArgument(i, Dest); 891 else 892 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 893 CS.getArgument(i)->getType(), Dest->getName(), C)); 894 } 895 896 if (!changedArgument) 897 return false; 898 899 // If the destination wasn't sufficiently aligned then increase its alignment. 900 if (!isDestSufficientlyAligned) { 901 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 902 cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign)); 903 } 904 905 // Drop any cached information about the call, because we may have changed 906 // its dependence information by changing its parameter. 907 MD->removeInstruction(C); 908 909 // Update AA metadata 910 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 911 // handled here, but combineMetadata doesn't support them yet 912 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 913 LLVMContext::MD_noalias, 914 LLVMContext::MD_invariant_group, 915 LLVMContext::MD_access_group}; 916 combineMetadata(C, cpy, KnownIDs, true); 917 918 // Remove the memcpy. 919 MD->removeInstruction(cpy); 920 ++NumMemCpyInstr; 921 922 return true; 923 } 924 925 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 926 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 927 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 928 MemCpyInst *MDep) { 929 // We can only transforms memcpy's where the dest of one is the source of the 930 // other. 931 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 932 return false; 933 934 // If dep instruction is reading from our current input, then it is a noop 935 // transfer and substituting the input won't change this instruction. Just 936 // ignore the input and let someone else zap MDep. This handles cases like: 937 // memcpy(a <- a) 938 // memcpy(b <- a) 939 if (M->getSource() == MDep->getSource()) 940 return false; 941 942 // Second, the length of the memcpy's must be the same, or the preceding one 943 // must be larger than the following one. 944 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 945 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 946 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 947 return false; 948 949 AliasAnalysis &AA = LookupAliasAnalysis(); 950 951 // Verify that the copied-from memory doesn't change in between the two 952 // transfers. For example, in: 953 // memcpy(a <- b) 954 // *b = 42; 955 // memcpy(c <- a) 956 // It would be invalid to transform the second memcpy into memcpy(c <- b). 957 // 958 // TODO: If the code between M and MDep is transparent to the destination "c", 959 // then we could still perform the xform by moving M up to the first memcpy. 960 // 961 // NOTE: This is conservative, it will stop on any read from the source loc, 962 // not just the defining memcpy. 963 MemDepResult SourceDep = 964 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 965 M->getIterator(), M->getParent()); 966 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 967 return false; 968 969 // If the dest of the second might alias the source of the first, then the 970 // source and dest might overlap. We still want to eliminate the intermediate 971 // value, but we have to generate a memmove instead of memcpy. 972 bool UseMemMove = false; 973 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 974 MemoryLocation::getForSource(MDep))) 975 UseMemMove = true; 976 977 // If all checks passed, then we can transform M. 978 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 979 << *MDep << '\n' << *M << '\n'); 980 981 // TODO: Is this worth it if we're creating a less aligned memcpy? For 982 // example we could be moving from movaps -> movq on x86. 983 IRBuilder<> Builder(M); 984 if (UseMemMove) 985 Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(), 986 MDep->getRawSource(), MDep->getSourceAlignment(), 987 M->getLength(), M->isVolatile()); 988 else 989 Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(), 990 MDep->getRawSource(), MDep->getSourceAlignment(), 991 M->getLength(), M->isVolatile()); 992 993 // Remove the instruction we're replacing. 994 MD->removeInstruction(M); 995 M->eraseFromParent(); 996 ++NumMemCpyInstr; 997 return true; 998 } 999 1000 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1001 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1002 /// weren't copied over by \p MemCpy. 1003 /// 1004 /// In other words, transform: 1005 /// \code 1006 /// memset(dst, c, dst_size); 1007 /// memcpy(dst, src, src_size); 1008 /// \endcode 1009 /// into: 1010 /// \code 1011 /// memcpy(dst, src, src_size); 1012 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1013 /// \endcode 1014 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1015 MemSetInst *MemSet) { 1016 // We can only transform memset/memcpy with the same destination. 1017 if (MemSet->getDest() != MemCpy->getDest()) 1018 return false; 1019 1020 // Check that there are no other dependencies on the memset destination. 1021 MemDepResult DstDepInfo = 1022 MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, 1023 MemCpy->getIterator(), MemCpy->getParent()); 1024 if (DstDepInfo.getInst() != MemSet) 1025 return false; 1026 1027 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1028 Value *Dest = MemCpy->getRawDest(); 1029 Value *DestSize = MemSet->getLength(); 1030 Value *SrcSize = MemCpy->getLength(); 1031 1032 // By default, create an unaligned memset. 1033 unsigned Align = 1; 1034 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1035 // of the sum. 1036 const unsigned DestAlign = 1037 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1038 if (DestAlign > 1) 1039 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1040 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1041 1042 IRBuilder<> Builder(MemCpy); 1043 1044 // If the sizes have different types, zext the smaller one. 1045 if (DestSize->getType() != SrcSize->getType()) { 1046 if (DestSize->getType()->getIntegerBitWidth() > 1047 SrcSize->getType()->getIntegerBitWidth()) 1048 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1049 else 1050 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1051 } 1052 1053 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1054 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1055 Value *MemsetLen = Builder.CreateSelect( 1056 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1057 Builder.CreateMemSet( 1058 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, 1059 SrcSize), 1060 MemSet->getOperand(1), MemsetLen, Align); 1061 1062 MD->removeInstruction(MemSet); 1063 MemSet->eraseFromParent(); 1064 return true; 1065 } 1066 1067 /// Determine whether the instruction has undefined content for the given Size, 1068 /// either because it was freshly alloca'd or started its lifetime. 1069 static bool hasUndefContents(Instruction *I, ConstantInt *Size) { 1070 if (isa<AllocaInst>(I)) 1071 return true; 1072 1073 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1074 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1075 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1076 if (LTSize->getZExtValue() >= Size->getZExtValue()) 1077 return true; 1078 1079 return false; 1080 } 1081 1082 /// Transform memcpy to memset when its source was just memset. 1083 /// In other words, turn: 1084 /// \code 1085 /// memset(dst1, c, dst1_size); 1086 /// memcpy(dst2, dst1, dst2_size); 1087 /// \endcode 1088 /// into: 1089 /// \code 1090 /// memset(dst1, c, dst1_size); 1091 /// memset(dst2, c, dst2_size); 1092 /// \endcode 1093 /// When dst2_size <= dst1_size. 1094 /// 1095 /// The \p MemCpy must have a Constant length. 1096 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1097 MemSetInst *MemSet) { 1098 AliasAnalysis &AA = LookupAliasAnalysis(); 1099 1100 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1101 // memcpying from the same address. Otherwise it is hard to reason about. 1102 if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1103 return false; 1104 1105 // A known memset size is required. 1106 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 1107 if (!MemSetSize) 1108 return false; 1109 1110 // Make sure the memcpy doesn't read any more than what the memset wrote. 1111 // Don't worry about sizes larger than i64. 1112 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 1113 if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) { 1114 // If the memcpy is larger than the memset, but the memory was undef prior 1115 // to the memset, we can just ignore the tail. Technically we're only 1116 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1117 // easily represent this location, we use the full 0..CopySize range. 1118 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1119 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1120 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1121 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1122 CopySize = MemSetSize; 1123 else 1124 return false; 1125 } 1126 1127 IRBuilder<> Builder(MemCpy); 1128 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1129 CopySize, MemCpy->getDestAlignment()); 1130 return true; 1131 } 1132 1133 /// Perform simplification of memcpy's. If we have memcpy A 1134 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1135 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1136 /// circumstances). This allows later passes to remove the first memcpy 1137 /// altogether. 1138 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { 1139 // We can only optimize non-volatile memcpy's. 1140 if (M->isVolatile()) return false; 1141 1142 // If the source and destination of the memcpy are the same, then zap it. 1143 if (M->getSource() == M->getDest()) { 1144 MD->removeInstruction(M); 1145 M->eraseFromParent(); 1146 return false; 1147 } 1148 1149 // If copying from a constant, try to turn the memcpy into a memset. 1150 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1151 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1152 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1153 M->getModule()->getDataLayout())) { 1154 IRBuilder<> Builder(M); 1155 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1156 M->getDestAlignment(), false); 1157 MD->removeInstruction(M); 1158 M->eraseFromParent(); 1159 ++NumCpyToSet; 1160 return true; 1161 } 1162 1163 MemDepResult DepInfo = MD->getDependency(M); 1164 1165 // Try to turn a partially redundant memset + memcpy into 1166 // memcpy + smaller memset. We don't need the memcpy size for this. 1167 if (DepInfo.isClobber()) 1168 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1169 if (processMemSetMemCpyDependence(M, MDep)) 1170 return true; 1171 1172 // The optimizations after this point require the memcpy size. 1173 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 1174 if (!CopySize) return false; 1175 1176 // There are four possible optimizations we can do for memcpy: 1177 // a) memcpy-memcpy xform which exposes redundance for DSE. 1178 // b) call-memcpy xform for return slot optimization. 1179 // c) memcpy from freshly alloca'd space or space that has just started its 1180 // lifetime copies undefined data, and we can therefore eliminate the 1181 // memcpy in favor of the data that was already at the destination. 1182 // d) memcpy from a just-memset'd source can be turned into memset. 1183 if (DepInfo.isClobber()) { 1184 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1185 // FIXME: Can we pass in either of dest/src alignment here instead 1186 // of conservatively taking the minimum? 1187 unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment()); 1188 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 1189 CopySize->getZExtValue(), Align, 1190 C)) { 1191 MD->removeInstruction(M); 1192 M->eraseFromParent(); 1193 return true; 1194 } 1195 } 1196 } 1197 1198 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1199 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1200 SrcLoc, true, M->getIterator(), M->getParent()); 1201 1202 if (SrcDepInfo.isClobber()) { 1203 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1204 return processMemCpyMemCpyDependence(M, MDep); 1205 } else if (SrcDepInfo.isDef()) { 1206 if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) { 1207 MD->removeInstruction(M); 1208 M->eraseFromParent(); 1209 ++NumMemCpyInstr; 1210 return true; 1211 } 1212 } 1213 1214 if (SrcDepInfo.isClobber()) 1215 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1216 if (performMemCpyToMemSetOptzn(M, MDep)) { 1217 MD->removeInstruction(M); 1218 M->eraseFromParent(); 1219 ++NumCpyToSet; 1220 return true; 1221 } 1222 1223 return false; 1224 } 1225 1226 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1227 /// not to alias. 1228 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1229 AliasAnalysis &AA = LookupAliasAnalysis(); 1230 1231 if (!TLI->has(LibFunc_memmove)) 1232 return false; 1233 1234 // See if the pointers alias. 1235 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1236 MemoryLocation::getForSource(M))) 1237 return false; 1238 1239 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1240 << "\n"); 1241 1242 // If not, then we know we can transform this. 1243 Type *ArgTys[3] = { M->getRawDest()->getType(), 1244 M->getRawSource()->getType(), 1245 M->getLength()->getType() }; 1246 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1247 Intrinsic::memcpy, ArgTys)); 1248 1249 // MemDep may have over conservative information about this instruction, just 1250 // conservatively flush it from the cache. 1251 MD->removeInstruction(M); 1252 1253 ++NumMoveToCpy; 1254 return true; 1255 } 1256 1257 /// This is called on every byval argument in call sites. 1258 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { 1259 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1260 // Find out what feeds this byval argument. 1261 Value *ByValArg = CS.getArgument(ArgNo); 1262 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1263 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1264 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1265 MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true, 1266 CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); 1267 if (!DepInfo.isClobber()) 1268 return false; 1269 1270 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1271 // a memcpy, see if we can byval from the source of the memcpy instead of the 1272 // result. 1273 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1274 if (!MDep || MDep->isVolatile() || 1275 ByValArg->stripPointerCasts() != MDep->getDest()) 1276 return false; 1277 1278 // The length of the memcpy must be larger or equal to the size of the byval. 1279 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1280 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1281 return false; 1282 1283 // Get the alignment of the byval. If the call doesn't specify the alignment, 1284 // then it is some target specific value that we can't know. 1285 unsigned ByValAlign = CS.getParamAlignment(ArgNo); 1286 if (ByValAlign == 0) return false; 1287 1288 // If it is greater than the memcpy, then we check to see if we can force the 1289 // source of the memcpy to the alignment we need. If we fail, we bail out. 1290 AssumptionCache &AC = LookupAssumptionCache(); 1291 DominatorTree &DT = LookupDomTree(); 1292 if (MDep->getSourceAlignment() < ByValAlign && 1293 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1294 CS.getInstruction(), &AC, &DT) < ByValAlign) 1295 return false; 1296 1297 // The address space of the memcpy source must match the byval argument 1298 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1299 ByValArg->getType()->getPointerAddressSpace()) 1300 return false; 1301 1302 // Verify that the copied-from memory doesn't change in between the memcpy and 1303 // the byval call. 1304 // memcpy(a <- b) 1305 // *b = 42; 1306 // foo(*a) 1307 // It would be invalid to transform the second memcpy into foo(*b). 1308 // 1309 // NOTE: This is conservative, it will stop on any read from the source loc, 1310 // not just the defining memcpy. 1311 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1312 MemoryLocation::getForSource(MDep), false, 1313 CS.getInstruction()->getIterator(), MDep->getParent()); 1314 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1315 return false; 1316 1317 Value *TmpCast = MDep->getSource(); 1318 if (MDep->getSource()->getType() != ByValArg->getType()) 1319 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1320 "tmpcast", CS.getInstruction()); 1321 1322 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1323 << " " << *MDep << "\n" 1324 << " " << *CS.getInstruction() << "\n"); 1325 1326 // Otherwise we're good! Update the byval argument. 1327 CS.setArgument(ArgNo, TmpCast); 1328 ++NumMemCpyInstr; 1329 return true; 1330 } 1331 1332 /// Executes one iteration of MemCpyOptPass. 1333 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1334 bool MadeChange = false; 1335 1336 DominatorTree &DT = LookupDomTree(); 1337 1338 // Walk all instruction in the function. 1339 for (BasicBlock &BB : F) { 1340 // Skip unreachable blocks. For example processStore assumes that an 1341 // instruction in a BB can't be dominated by a later instruction in the 1342 // same BB (which is a scenario that can happen for an unreachable BB that 1343 // has itself as a predecessor). 1344 if (!DT.isReachableFromEntry(&BB)) 1345 continue; 1346 1347 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1348 // Avoid invalidating the iterator. 1349 Instruction *I = &*BI++; 1350 1351 bool RepeatInstruction = false; 1352 1353 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1354 MadeChange |= processStore(SI, BI); 1355 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1356 RepeatInstruction = processMemSet(M, BI); 1357 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1358 RepeatInstruction = processMemCpy(M); 1359 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1360 RepeatInstruction = processMemMove(M); 1361 else if (auto CS = CallSite(I)) { 1362 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1363 if (CS.isByValArgument(i)) 1364 MadeChange |= processByValArgument(CS, i); 1365 } 1366 1367 // Reprocess the instruction if desired. 1368 if (RepeatInstruction) { 1369 if (BI != BB.begin()) 1370 --BI; 1371 MadeChange = true; 1372 } 1373 } 1374 } 1375 1376 return MadeChange; 1377 } 1378 1379 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1380 auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1381 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1382 1383 auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { 1384 return AM.getResult<AAManager>(F); 1385 }; 1386 auto LookupAssumptionCache = [&]() -> AssumptionCache & { 1387 return AM.getResult<AssumptionAnalysis>(F); 1388 }; 1389 auto LookupDomTree = [&]() -> DominatorTree & { 1390 return AM.getResult<DominatorTreeAnalysis>(F); 1391 }; 1392 1393 bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, 1394 LookupAssumptionCache, LookupDomTree); 1395 if (!MadeChange) 1396 return PreservedAnalyses::all(); 1397 1398 PreservedAnalyses PA; 1399 PA.preserveSet<CFGAnalyses>(); 1400 PA.preserve<GlobalsAA>(); 1401 PA.preserve<MemoryDependenceAnalysis>(); 1402 return PA; 1403 } 1404 1405 bool MemCpyOptPass::runImpl( 1406 Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, 1407 std::function<AliasAnalysis &()> LookupAliasAnalysis_, 1408 std::function<AssumptionCache &()> LookupAssumptionCache_, 1409 std::function<DominatorTree &()> LookupDomTree_) { 1410 bool MadeChange = false; 1411 MD = MD_; 1412 TLI = TLI_; 1413 LookupAliasAnalysis = std::move(LookupAliasAnalysis_); 1414 LookupAssumptionCache = std::move(LookupAssumptionCache_); 1415 LookupDomTree = std::move(LookupDomTree_); 1416 1417 // If we don't have at least memset and memcpy, there is little point of doing 1418 // anything here. These are required by a freestanding implementation, so if 1419 // even they are disabled, there is no point in trying hard. 1420 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1421 return false; 1422 1423 while (true) { 1424 if (!iterateOnFunction(F)) 1425 break; 1426 MadeChange = true; 1427 } 1428 1429 MD = nullptr; 1430 return MadeChange; 1431 } 1432 1433 /// This is the main transformation entry point for a function. 1434 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1435 if (skipFunction(F)) 1436 return false; 1437 1438 auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1439 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1440 1441 auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { 1442 return getAnalysis<AAResultsWrapperPass>().getAAResults(); 1443 }; 1444 auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { 1445 return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1446 }; 1447 auto LookupDomTree = [this]() -> DominatorTree & { 1448 return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1449 }; 1450 1451 return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, 1452 LookupDomTree); 1453 } 1454