xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memcpyopt"
66 
67 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
68 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
69 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
70 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
71 
72 namespace {
73 
74 /// Represents a range of memset'd bytes with the ByteVal value.
75 /// This allows us to analyze stores like:
76 ///   store 0 -> P+1
77 ///   store 0 -> P+0
78 ///   store 0 -> P+3
79 ///   store 0 -> P+2
80 /// which sometimes happens with stores to arrays of structs etc.  When we see
81 /// the first store, we make a range [1, 2).  The second store extends the range
82 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
83 /// two ranges into [0, 3) which is memset'able.
84 struct MemsetRange {
85   // Start/End - A semi range that describes the span that this range covers.
86   // The range is closed at the start and open at the end: [Start, End).
87   int64_t Start, End;
88 
89   /// StartPtr - The getelementptr instruction that points to the start of the
90   /// range.
91   Value *StartPtr;
92 
93   /// Alignment - The known alignment of the first store.
94   unsigned Alignment;
95 
96   /// TheStores - The actual stores that make up this range.
97   SmallVector<Instruction*, 16> TheStores;
98 
99   bool isProfitableToUseMemset(const DataLayout &DL) const;
100 };
101 
102 } // end anonymous namespace
103 
104 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
105   // If we found more than 4 stores to merge or 16 bytes, use memset.
106   if (TheStores.size() >= 4 || End-Start >= 16) return true;
107 
108   // If there is nothing to merge, don't do anything.
109   if (TheStores.size() < 2) return false;
110 
111   // If any of the stores are a memset, then it is always good to extend the
112   // memset.
113   for (Instruction *SI : TheStores)
114     if (!isa<StoreInst>(SI))
115       return true;
116 
117   // Assume that the code generator is capable of merging pairs of stores
118   // together if it wants to.
119   if (TheStores.size() == 2) return false;
120 
121   // If we have fewer than 8 stores, it can still be worthwhile to do this.
122   // For example, merging 4 i8 stores into an i32 store is useful almost always.
123   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
124   // memset will be split into 2 32-bit stores anyway) and doing so can
125   // pessimize the llvm optimizer.
126   //
127   // Since we don't have perfect knowledge here, make some assumptions: assume
128   // the maximum GPR width is the same size as the largest legal integer
129   // size. If so, check to see whether we will end up actually reducing the
130   // number of stores used.
131   unsigned Bytes = unsigned(End-Start);
132   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
133   if (MaxIntSize == 0)
134     MaxIntSize = 1;
135   unsigned NumPointerStores = Bytes / MaxIntSize;
136 
137   // Assume the remaining bytes if any are done a byte at a time.
138   unsigned NumByteStores = Bytes % MaxIntSize;
139 
140   // If we will reduce the # stores (according to this heuristic), do the
141   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
142   // etc.
143   return TheStores.size() > NumPointerStores+NumByteStores;
144 }
145 
146 namespace {
147 
148 class MemsetRanges {
149   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
150 
151   /// A sorted list of the memset ranges.
152   SmallVector<MemsetRange, 8> Ranges;
153 
154   const DataLayout &DL;
155 
156 public:
157   MemsetRanges(const DataLayout &DL) : DL(DL) {}
158 
159   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
160 
161   const_iterator begin() const { return Ranges.begin(); }
162   const_iterator end() const { return Ranges.end(); }
163   bool empty() const { return Ranges.empty(); }
164 
165   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
166     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
167       addStore(OffsetFromFirst, SI);
168     else
169       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
170   }
171 
172   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
173     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
174 
175     addRange(OffsetFromFirst, StoreSize,
176              SI->getPointerOperand(), SI->getAlignment(), SI);
177   }
178 
179   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
180     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
181     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
182   }
183 
184   void addRange(int64_t Start, int64_t Size, Value *Ptr,
185                 unsigned Alignment, Instruction *Inst);
186 };
187 
188 } // end anonymous namespace
189 
190 /// Add a new store to the MemsetRanges data structure.  This adds a
191 /// new range for the specified store at the specified offset, merging into
192 /// existing ranges as appropriate.
193 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
194                             unsigned Alignment, Instruction *Inst) {
195   int64_t End = Start+Size;
196 
197   range_iterator I = partition_point(
198       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
199 
200   // We now know that I == E, in which case we didn't find anything to merge
201   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
202   // to insert a new range.  Handle this now.
203   if (I == Ranges.end() || End < I->Start) {
204     MemsetRange &R = *Ranges.insert(I, MemsetRange());
205     R.Start        = Start;
206     R.End          = End;
207     R.StartPtr     = Ptr;
208     R.Alignment    = Alignment;
209     R.TheStores.push_back(Inst);
210     return;
211   }
212 
213   // This store overlaps with I, add it.
214   I->TheStores.push_back(Inst);
215 
216   // At this point, we may have an interval that completely contains our store.
217   // If so, just add it to the interval and return.
218   if (I->Start <= Start && I->End >= End)
219     return;
220 
221   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
222   // but is not entirely contained within the range.
223 
224   // See if the range extends the start of the range.  In this case, it couldn't
225   // possibly cause it to join the prior range, because otherwise we would have
226   // stopped on *it*.
227   if (Start < I->Start) {
228     I->Start = Start;
229     I->StartPtr = Ptr;
230     I->Alignment = Alignment;
231   }
232 
233   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
234   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
235   // End.
236   if (End > I->End) {
237     I->End = End;
238     range_iterator NextI = I;
239     while (++NextI != Ranges.end() && End >= NextI->Start) {
240       // Merge the range in.
241       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
242       if (NextI->End > I->End)
243         I->End = NextI->End;
244       Ranges.erase(NextI);
245       NextI = I;
246     }
247   }
248 }
249 
250 //===----------------------------------------------------------------------===//
251 //                         MemCpyOptLegacyPass Pass
252 //===----------------------------------------------------------------------===//
253 
254 namespace {
255 
256 class MemCpyOptLegacyPass : public FunctionPass {
257   MemCpyOptPass Impl;
258 
259 public:
260   static char ID; // Pass identification, replacement for typeid
261 
262   MemCpyOptLegacyPass() : FunctionPass(ID) {
263     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
264   }
265 
266   bool runOnFunction(Function &F) override;
267 
268 private:
269   // This transformation requires dominator postdominator info
270   void getAnalysisUsage(AnalysisUsage &AU) const override {
271     AU.setPreservesCFG();
272     AU.addRequired<AssumptionCacheTracker>();
273     AU.addRequired<DominatorTreeWrapperPass>();
274     AU.addRequired<MemoryDependenceWrapperPass>();
275     AU.addRequired<AAResultsWrapperPass>();
276     AU.addRequired<TargetLibraryInfoWrapperPass>();
277     AU.addPreserved<GlobalsAAWrapperPass>();
278     AU.addPreserved<MemoryDependenceWrapperPass>();
279   }
280 };
281 
282 } // end anonymous namespace
283 
284 char MemCpyOptLegacyPass::ID = 0;
285 
286 /// The public interface to this file...
287 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
288 
289 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
290                       false, false)
291 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
293 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
294 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
296 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
297 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
298                     false, false)
299 
300 /// When scanning forward over instructions, we look for some other patterns to
301 /// fold away. In particular, this looks for stores to neighboring locations of
302 /// memory. If it sees enough consecutive ones, it attempts to merge them
303 /// together into a memcpy/memset.
304 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
305                                                  Value *StartPtr,
306                                                  Value *ByteVal) {
307   const DataLayout &DL = StartInst->getModule()->getDataLayout();
308 
309   // Okay, so we now have a single store that can be splatable.  Scan to find
310   // all subsequent stores of the same value to offset from the same pointer.
311   // Join these together into ranges, so we can decide whether contiguous blocks
312   // are stored.
313   MemsetRanges Ranges(DL);
314 
315   BasicBlock::iterator BI(StartInst);
316   for (++BI; !BI->isTerminator(); ++BI) {
317     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
318       // If the instruction is readnone, ignore it, otherwise bail out.  We
319       // don't even allow readonly here because we don't want something like:
320       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
321       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
322         break;
323       continue;
324     }
325 
326     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
327       // If this is a store, see if we can merge it in.
328       if (!NextStore->isSimple()) break;
329 
330       // Check to see if this stored value is of the same byte-splattable value.
331       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
332       if (isa<UndefValue>(ByteVal) && StoredByte)
333         ByteVal = StoredByte;
334       if (ByteVal != StoredByte)
335         break;
336 
337       // Check to see if this store is to a constant offset from the start ptr.
338       Optional<int64_t> Offset =
339           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
340       if (!Offset)
341         break;
342 
343       Ranges.addStore(*Offset, NextStore);
344     } else {
345       MemSetInst *MSI = cast<MemSetInst>(BI);
346 
347       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
348           !isa<ConstantInt>(MSI->getLength()))
349         break;
350 
351       // Check to see if this store is to a constant offset from the start ptr.
352       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
353       if (!Offset)
354         break;
355 
356       Ranges.addMemSet(*Offset, MSI);
357     }
358   }
359 
360   // If we have no ranges, then we just had a single store with nothing that
361   // could be merged in.  This is a very common case of course.
362   if (Ranges.empty())
363     return nullptr;
364 
365   // If we had at least one store that could be merged in, add the starting
366   // store as well.  We try to avoid this unless there is at least something
367   // interesting as a small compile-time optimization.
368   Ranges.addInst(0, StartInst);
369 
370   // If we create any memsets, we put it right before the first instruction that
371   // isn't part of the memset block.  This ensure that the memset is dominated
372   // by any addressing instruction needed by the start of the block.
373   IRBuilder<> Builder(&*BI);
374 
375   // Now that we have full information about ranges, loop over the ranges and
376   // emit memset's for anything big enough to be worthwhile.
377   Instruction *AMemSet = nullptr;
378   for (const MemsetRange &Range : Ranges) {
379     if (Range.TheStores.size() == 1) continue;
380 
381     // If it is profitable to lower this range to memset, do so now.
382     if (!Range.isProfitableToUseMemset(DL))
383       continue;
384 
385     // Otherwise, we do want to transform this!  Create a new memset.
386     // Get the starting pointer of the block.
387     StartPtr = Range.StartPtr;
388 
389     // Determine alignment
390     unsigned Alignment = Range.Alignment;
391     if (Alignment == 0) {
392       Type *EltType =
393         cast<PointerType>(StartPtr->getType())->getElementType();
394       Alignment = DL.getABITypeAlignment(EltType);
395     }
396 
397     AMemSet =
398       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
399 
400     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
401                                                    : Range.TheStores) dbgs()
402                                               << *SI << '\n';
403                dbgs() << "With: " << *AMemSet << '\n');
404 
405     if (!Range.TheStores.empty())
406       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
407 
408     // Zap all the stores.
409     for (Instruction *SI : Range.TheStores) {
410       MD->removeInstruction(SI);
411       SI->eraseFromParent();
412     }
413     ++NumMemSetInfer;
414   }
415 
416   return AMemSet;
417 }
418 
419 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
420   unsigned StoreAlign = SI->getAlignment();
421   if (!StoreAlign)
422     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
423   return StoreAlign;
424 }
425 
426 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
427   unsigned LoadAlign = LI->getAlignment();
428   if (!LoadAlign)
429     LoadAlign = DL.getABITypeAlignment(LI->getType());
430   return LoadAlign;
431 }
432 
433 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
434                                      const LoadInst *LI) {
435   unsigned StoreAlign = findStoreAlignment(DL, SI);
436   unsigned LoadAlign = findLoadAlignment(DL, LI);
437   return MinAlign(StoreAlign, LoadAlign);
438 }
439 
440 // This method try to lift a store instruction before position P.
441 // It will lift the store and its argument + that anything that
442 // may alias with these.
443 // The method returns true if it was successful.
444 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
445                    const LoadInst *LI) {
446   // If the store alias this position, early bail out.
447   MemoryLocation StoreLoc = MemoryLocation::get(SI);
448   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
449     return false;
450 
451   // Keep track of the arguments of all instruction we plan to lift
452   // so we can make sure to lift them as well if appropriate.
453   DenseSet<Instruction*> Args;
454   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
455     if (Ptr->getParent() == SI->getParent())
456       Args.insert(Ptr);
457 
458   // Instruction to lift before P.
459   SmallVector<Instruction*, 8> ToLift;
460 
461   // Memory locations of lifted instructions.
462   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
463 
464   // Lifted calls.
465   SmallVector<const CallBase *, 8> Calls;
466 
467   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
468 
469   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
470     auto *C = &*I;
471 
472     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
473 
474     bool NeedLift = false;
475     if (Args.erase(C))
476       NeedLift = true;
477     else if (MayAlias) {
478       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
479         return isModOrRefSet(AA.getModRefInfo(C, ML));
480       });
481 
482       if (!NeedLift)
483         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
484           return isModOrRefSet(AA.getModRefInfo(C, Call));
485         });
486     }
487 
488     if (!NeedLift)
489       continue;
490 
491     if (MayAlias) {
492       // Since LI is implicitly moved downwards past the lifted instructions,
493       // none of them may modify its source.
494       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
495         return false;
496       else if (const auto *Call = dyn_cast<CallBase>(C)) {
497         // If we can't lift this before P, it's game over.
498         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
499           return false;
500 
501         Calls.push_back(Call);
502       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
503         // If we can't lift this before P, it's game over.
504         auto ML = MemoryLocation::get(C);
505         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
506           return false;
507 
508         MemLocs.push_back(ML);
509       } else
510         // We don't know how to lift this instruction.
511         return false;
512     }
513 
514     ToLift.push_back(C);
515     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
516       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
517         if (A->getParent() == SI->getParent()) {
518           // Cannot hoist user of P above P
519           if(A == P) return false;
520           Args.insert(A);
521         }
522       }
523   }
524 
525   // We made it, we need to lift
526   for (auto *I : llvm::reverse(ToLift)) {
527     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
528     I->moveBefore(P);
529   }
530 
531   return true;
532 }
533 
534 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
535   if (!SI->isSimple()) return false;
536 
537   // Avoid merging nontemporal stores since the resulting
538   // memcpy/memset would not be able to preserve the nontemporal hint.
539   // In theory we could teach how to propagate the !nontemporal metadata to
540   // memset calls. However, that change would force the backend to
541   // conservatively expand !nontemporal memset calls back to sequences of
542   // store instructions (effectively undoing the merging).
543   if (SI->getMetadata(LLVMContext::MD_nontemporal))
544     return false;
545 
546   const DataLayout &DL = SI->getModule()->getDataLayout();
547 
548   // Load to store forwarding can be interpreted as memcpy.
549   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
550     if (LI->isSimple() && LI->hasOneUse() &&
551         LI->getParent() == SI->getParent()) {
552 
553       auto *T = LI->getType();
554       if (T->isAggregateType()) {
555         AliasAnalysis &AA = LookupAliasAnalysis();
556         MemoryLocation LoadLoc = MemoryLocation::get(LI);
557 
558         // We use alias analysis to check if an instruction may store to
559         // the memory we load from in between the load and the store. If
560         // such an instruction is found, we try to promote there instead
561         // of at the store position.
562         Instruction *P = SI;
563         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
564           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
565             P = &I;
566             break;
567           }
568         }
569 
570         // We found an instruction that may write to the loaded memory.
571         // We can try to promote at this position instead of the store
572         // position if nothing alias the store memory after this and the store
573         // destination is not in the range.
574         if (P && P != SI) {
575           if (!moveUp(AA, SI, P, LI))
576             P = nullptr;
577         }
578 
579         // If a valid insertion position is found, then we can promote
580         // the load/store pair to a memcpy.
581         if (P) {
582           // If we load from memory that may alias the memory we store to,
583           // memmove must be used to preserve semantic. If not, memcpy can
584           // be used.
585           bool UseMemMove = false;
586           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
587             UseMemMove = true;
588 
589           uint64_t Size = DL.getTypeStoreSize(T);
590 
591           IRBuilder<> Builder(P);
592           Instruction *M;
593           if (UseMemMove)
594             M = Builder.CreateMemMove(
595                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
596                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
597           else
598             M = Builder.CreateMemCpy(
599                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
600                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
601 
602           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
603                             << *M << "\n");
604 
605           MD->removeInstruction(SI);
606           SI->eraseFromParent();
607           MD->removeInstruction(LI);
608           LI->eraseFromParent();
609           ++NumMemCpyInstr;
610 
611           // Make sure we do not invalidate the iterator.
612           BBI = M->getIterator();
613           return true;
614         }
615       }
616 
617       // Detect cases where we're performing call slot forwarding, but
618       // happen to be using a load-store pair to implement it, rather than
619       // a memcpy.
620       MemDepResult ldep = MD->getDependency(LI);
621       CallInst *C = nullptr;
622       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
623         C = dyn_cast<CallInst>(ldep.getInst());
624 
625       if (C) {
626         // Check that nothing touches the dest of the "copy" between
627         // the call and the store.
628         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
629         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
630         AliasAnalysis &AA = LookupAliasAnalysis();
631         MemoryLocation StoreLoc = MemoryLocation::get(SI);
632         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
633              I != E; --I) {
634           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
635             C = nullptr;
636             break;
637           }
638           // The store to dest may never happen if an exception can be thrown
639           // between the load and the store.
640           if (I->mayThrow() && !CpyDestIsLocal) {
641             C = nullptr;
642             break;
643           }
644         }
645       }
646 
647       if (C) {
648         bool changed = performCallSlotOptzn(
649             LI, SI->getPointerOperand()->stripPointerCasts(),
650             LI->getPointerOperand()->stripPointerCasts(),
651             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
652             findCommonAlignment(DL, SI, LI), C);
653         if (changed) {
654           MD->removeInstruction(SI);
655           SI->eraseFromParent();
656           MD->removeInstruction(LI);
657           LI->eraseFromParent();
658           ++NumMemCpyInstr;
659           return true;
660         }
661       }
662     }
663   }
664 
665   // There are two cases that are interesting for this code to handle: memcpy
666   // and memset.  Right now we only handle memset.
667 
668   // Ensure that the value being stored is something that can be memset'able a
669   // byte at a time like "0" or "-1" or any width, as well as things like
670   // 0xA0A0A0A0 and 0.0.
671   auto *V = SI->getOperand(0);
672   if (Value *ByteVal = isBytewiseValue(V, DL)) {
673     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
674                                               ByteVal)) {
675       BBI = I->getIterator(); // Don't invalidate iterator.
676       return true;
677     }
678 
679     // If we have an aggregate, we try to promote it to memset regardless
680     // of opportunity for merging as it can expose optimization opportunities
681     // in subsequent passes.
682     auto *T = V->getType();
683     if (T->isAggregateType()) {
684       uint64_t Size = DL.getTypeStoreSize(T);
685       unsigned Align = SI->getAlignment();
686       if (!Align)
687         Align = DL.getABITypeAlignment(T);
688       IRBuilder<> Builder(SI);
689       auto *M =
690           Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align);
691 
692       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
693 
694       MD->removeInstruction(SI);
695       SI->eraseFromParent();
696       NumMemSetInfer++;
697 
698       // Make sure we do not invalidate the iterator.
699       BBI = M->getIterator();
700       return true;
701     }
702   }
703 
704   return false;
705 }
706 
707 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
708   // See if there is another memset or store neighboring this memset which
709   // allows us to widen out the memset to do a single larger store.
710   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
711     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
712                                               MSI->getValue())) {
713       BBI = I->getIterator(); // Don't invalidate iterator.
714       return true;
715     }
716   return false;
717 }
718 
719 /// Takes a memcpy and a call that it depends on,
720 /// and checks for the possibility of a call slot optimization by having
721 /// the call write its result directly into the destination of the memcpy.
722 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
723                                          Value *cpySrc, uint64_t cpyLen,
724                                          unsigned cpyAlign, CallInst *C) {
725   // The general transformation to keep in mind is
726   //
727   //   call @func(..., src, ...)
728   //   memcpy(dest, src, ...)
729   //
730   // ->
731   //
732   //   memcpy(dest, src, ...)
733   //   call @func(..., dest, ...)
734   //
735   // Since moving the memcpy is technically awkward, we additionally check that
736   // src only holds uninitialized values at the moment of the call, meaning that
737   // the memcpy can be discarded rather than moved.
738 
739   // Lifetime marks shouldn't be operated on.
740   if (Function *F = C->getCalledFunction())
741     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
742       return false;
743 
744   // Deliberately get the source and destination with bitcasts stripped away,
745   // because we'll need to do type comparisons based on the underlying type.
746   CallSite CS(C);
747 
748   // Require that src be an alloca.  This simplifies the reasoning considerably.
749   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
750   if (!srcAlloca)
751     return false;
752 
753   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
754   if (!srcArraySize)
755     return false;
756 
757   const DataLayout &DL = cpy->getModule()->getDataLayout();
758   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
759                      srcArraySize->getZExtValue();
760 
761   if (cpyLen < srcSize)
762     return false;
763 
764   // Check that accessing the first srcSize bytes of dest will not cause a
765   // trap.  Otherwise the transform is invalid since it might cause a trap
766   // to occur earlier than it otherwise would.
767   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
768     // The destination is an alloca.  Check it is larger than srcSize.
769     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
770     if (!destArraySize)
771       return false;
772 
773     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
774                         destArraySize->getZExtValue();
775 
776     if (destSize < srcSize)
777       return false;
778   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
779     // The store to dest may never happen if the call can throw.
780     if (C->mayThrow())
781       return false;
782 
783     if (A->getDereferenceableBytes() < srcSize) {
784       // If the destination is an sret parameter then only accesses that are
785       // outside of the returned struct type can trap.
786       if (!A->hasStructRetAttr())
787         return false;
788 
789       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
790       if (!StructTy->isSized()) {
791         // The call may never return and hence the copy-instruction may never
792         // be executed, and therefore it's not safe to say "the destination
793         // has at least <cpyLen> bytes, as implied by the copy-instruction",
794         return false;
795       }
796 
797       uint64_t destSize = DL.getTypeAllocSize(StructTy);
798       if (destSize < srcSize)
799         return false;
800     }
801   } else {
802     return false;
803   }
804 
805   // Check that dest points to memory that is at least as aligned as src.
806   unsigned srcAlign = srcAlloca->getAlignment();
807   if (!srcAlign)
808     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
809   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
810   // If dest is not aligned enough and we can't increase its alignment then
811   // bail out.
812   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
813     return false;
814 
815   // Check that src is not accessed except via the call and the memcpy.  This
816   // guarantees that it holds only undefined values when passed in (so the final
817   // memcpy can be dropped), that it is not read or written between the call and
818   // the memcpy, and that writing beyond the end of it is undefined.
819   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
820                                    srcAlloca->user_end());
821   while (!srcUseList.empty()) {
822     User *U = srcUseList.pop_back_val();
823 
824     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
825       for (User *UU : U->users())
826         srcUseList.push_back(UU);
827       continue;
828     }
829     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
830       if (!G->hasAllZeroIndices())
831         return false;
832 
833       for (User *UU : U->users())
834         srcUseList.push_back(UU);
835       continue;
836     }
837     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
838       if (IT->isLifetimeStartOrEnd())
839         continue;
840 
841     if (U != C && U != cpy)
842       return false;
843   }
844 
845   // Check that src isn't captured by the called function since the
846   // transformation can cause aliasing issues in that case.
847   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
848     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
849       return false;
850 
851   // Since we're changing the parameter to the callsite, we need to make sure
852   // that what would be the new parameter dominates the callsite.
853   DominatorTree &DT = LookupDomTree();
854   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
855     if (!DT.dominates(cpyDestInst, C))
856       return false;
857 
858   // In addition to knowing that the call does not access src in some
859   // unexpected manner, for example via a global, which we deduce from
860   // the use analysis, we also need to know that it does not sneakily
861   // access dest.  We rely on AA to figure this out for us.
862   AliasAnalysis &AA = LookupAliasAnalysis();
863   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
864   // If necessary, perform additional analysis.
865   if (isModOrRefSet(MR))
866     MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
867   if (isModOrRefSet(MR))
868     return false;
869 
870   // We can't create address space casts here because we don't know if they're
871   // safe for the target.
872   if (cpySrc->getType()->getPointerAddressSpace() !=
873       cpyDest->getType()->getPointerAddressSpace())
874     return false;
875   for (unsigned i = 0; i < CS.arg_size(); ++i)
876     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
877         cpySrc->getType()->getPointerAddressSpace() !=
878         CS.getArgument(i)->getType()->getPointerAddressSpace())
879       return false;
880 
881   // All the checks have passed, so do the transformation.
882   bool changedArgument = false;
883   for (unsigned i = 0; i < CS.arg_size(); ++i)
884     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
885       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
886         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
887                                       cpyDest->getName(), C);
888       changedArgument = true;
889       if (CS.getArgument(i)->getType() == Dest->getType())
890         CS.setArgument(i, Dest);
891       else
892         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
893                           CS.getArgument(i)->getType(), Dest->getName(), C));
894     }
895 
896   if (!changedArgument)
897     return false;
898 
899   // If the destination wasn't sufficiently aligned then increase its alignment.
900   if (!isDestSufficientlyAligned) {
901     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
902     cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign));
903   }
904 
905   // Drop any cached information about the call, because we may have changed
906   // its dependence information by changing its parameter.
907   MD->removeInstruction(C);
908 
909   // Update AA metadata
910   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
911   // handled here, but combineMetadata doesn't support them yet
912   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
913                          LLVMContext::MD_noalias,
914                          LLVMContext::MD_invariant_group,
915                          LLVMContext::MD_access_group};
916   combineMetadata(C, cpy, KnownIDs, true);
917 
918   // Remove the memcpy.
919   MD->removeInstruction(cpy);
920   ++NumMemCpyInstr;
921 
922   return true;
923 }
924 
925 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
926 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
927 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
928                                                   MemCpyInst *MDep) {
929   // We can only transforms memcpy's where the dest of one is the source of the
930   // other.
931   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
932     return false;
933 
934   // If dep instruction is reading from our current input, then it is a noop
935   // transfer and substituting the input won't change this instruction.  Just
936   // ignore the input and let someone else zap MDep.  This handles cases like:
937   //    memcpy(a <- a)
938   //    memcpy(b <- a)
939   if (M->getSource() == MDep->getSource())
940     return false;
941 
942   // Second, the length of the memcpy's must be the same, or the preceding one
943   // must be larger than the following one.
944   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
945   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
946   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
947     return false;
948 
949   AliasAnalysis &AA = LookupAliasAnalysis();
950 
951   // Verify that the copied-from memory doesn't change in between the two
952   // transfers.  For example, in:
953   //    memcpy(a <- b)
954   //    *b = 42;
955   //    memcpy(c <- a)
956   // It would be invalid to transform the second memcpy into memcpy(c <- b).
957   //
958   // TODO: If the code between M and MDep is transparent to the destination "c",
959   // then we could still perform the xform by moving M up to the first memcpy.
960   //
961   // NOTE: This is conservative, it will stop on any read from the source loc,
962   // not just the defining memcpy.
963   MemDepResult SourceDep =
964       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
965                                    M->getIterator(), M->getParent());
966   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
967     return false;
968 
969   // If the dest of the second might alias the source of the first, then the
970   // source and dest might overlap.  We still want to eliminate the intermediate
971   // value, but we have to generate a memmove instead of memcpy.
972   bool UseMemMove = false;
973   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
974                     MemoryLocation::getForSource(MDep)))
975     UseMemMove = true;
976 
977   // If all checks passed, then we can transform M.
978   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
979                     << *MDep << '\n' << *M << '\n');
980 
981   // TODO: Is this worth it if we're creating a less aligned memcpy? For
982   // example we could be moving from movaps -> movq on x86.
983   IRBuilder<> Builder(M);
984   if (UseMemMove)
985     Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
986                           MDep->getRawSource(), MDep->getSourceAlignment(),
987                           M->getLength(), M->isVolatile());
988   else
989     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
990                          MDep->getRawSource(), MDep->getSourceAlignment(),
991                          M->getLength(), M->isVolatile());
992 
993   // Remove the instruction we're replacing.
994   MD->removeInstruction(M);
995   M->eraseFromParent();
996   ++NumMemCpyInstr;
997   return true;
998 }
999 
1000 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1001 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1002 /// weren't copied over by \p MemCpy.
1003 ///
1004 /// In other words, transform:
1005 /// \code
1006 ///   memset(dst, c, dst_size);
1007 ///   memcpy(dst, src, src_size);
1008 /// \endcode
1009 /// into:
1010 /// \code
1011 ///   memcpy(dst, src, src_size);
1012 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1013 /// \endcode
1014 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1015                                                   MemSetInst *MemSet) {
1016   // We can only transform memset/memcpy with the same destination.
1017   if (MemSet->getDest() != MemCpy->getDest())
1018     return false;
1019 
1020   // Check that there are no other dependencies on the memset destination.
1021   MemDepResult DstDepInfo =
1022       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1023                                    MemCpy->getIterator(), MemCpy->getParent());
1024   if (DstDepInfo.getInst() != MemSet)
1025     return false;
1026 
1027   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1028   Value *Dest = MemCpy->getRawDest();
1029   Value *DestSize = MemSet->getLength();
1030   Value *SrcSize = MemCpy->getLength();
1031 
1032   // By default, create an unaligned memset.
1033   unsigned Align = 1;
1034   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1035   // of the sum.
1036   const unsigned DestAlign =
1037       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1038   if (DestAlign > 1)
1039     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1040       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1041 
1042   IRBuilder<> Builder(MemCpy);
1043 
1044   // If the sizes have different types, zext the smaller one.
1045   if (DestSize->getType() != SrcSize->getType()) {
1046     if (DestSize->getType()->getIntegerBitWidth() >
1047         SrcSize->getType()->getIntegerBitWidth())
1048       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1049     else
1050       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1051   }
1052 
1053   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1054   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1055   Value *MemsetLen = Builder.CreateSelect(
1056       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1057   Builder.CreateMemSet(
1058       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1059                         SrcSize),
1060       MemSet->getOperand(1), MemsetLen, Align);
1061 
1062   MD->removeInstruction(MemSet);
1063   MemSet->eraseFromParent();
1064   return true;
1065 }
1066 
1067 /// Determine whether the instruction has undefined content for the given Size,
1068 /// either because it was freshly alloca'd or started its lifetime.
1069 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1070   if (isa<AllocaInst>(I))
1071     return true;
1072 
1073   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1074     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1075       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1076         if (LTSize->getZExtValue() >= Size->getZExtValue())
1077           return true;
1078 
1079   return false;
1080 }
1081 
1082 /// Transform memcpy to memset when its source was just memset.
1083 /// In other words, turn:
1084 /// \code
1085 ///   memset(dst1, c, dst1_size);
1086 ///   memcpy(dst2, dst1, dst2_size);
1087 /// \endcode
1088 /// into:
1089 /// \code
1090 ///   memset(dst1, c, dst1_size);
1091 ///   memset(dst2, c, dst2_size);
1092 /// \endcode
1093 /// When dst2_size <= dst1_size.
1094 ///
1095 /// The \p MemCpy must have a Constant length.
1096 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1097                                                MemSetInst *MemSet) {
1098   AliasAnalysis &AA = LookupAliasAnalysis();
1099 
1100   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1101   // memcpying from the same address. Otherwise it is hard to reason about.
1102   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1103     return false;
1104 
1105   // A known memset size is required.
1106   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1107   if (!MemSetSize)
1108     return false;
1109 
1110   // Make sure the memcpy doesn't read any more than what the memset wrote.
1111   // Don't worry about sizes larger than i64.
1112   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1113   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1114     // If the memcpy is larger than the memset, but the memory was undef prior
1115     // to the memset, we can just ignore the tail. Technically we're only
1116     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1117     // easily represent this location, we use the full 0..CopySize range.
1118     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1119     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1120         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1121     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1122       CopySize = MemSetSize;
1123     else
1124       return false;
1125   }
1126 
1127   IRBuilder<> Builder(MemCpy);
1128   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1129                        CopySize, MemCpy->getDestAlignment());
1130   return true;
1131 }
1132 
1133 /// Perform simplification of memcpy's.  If we have memcpy A
1134 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1135 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1136 /// circumstances). This allows later passes to remove the first memcpy
1137 /// altogether.
1138 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1139   // We can only optimize non-volatile memcpy's.
1140   if (M->isVolatile()) return false;
1141 
1142   // If the source and destination of the memcpy are the same, then zap it.
1143   if (M->getSource() == M->getDest()) {
1144     MD->removeInstruction(M);
1145     M->eraseFromParent();
1146     return false;
1147   }
1148 
1149   // If copying from a constant, try to turn the memcpy into a memset.
1150   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1151     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1152       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1153                                            M->getModule()->getDataLayout())) {
1154         IRBuilder<> Builder(M);
1155         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1156                              M->getDestAlignment(), false);
1157         MD->removeInstruction(M);
1158         M->eraseFromParent();
1159         ++NumCpyToSet;
1160         return true;
1161       }
1162 
1163   MemDepResult DepInfo = MD->getDependency(M);
1164 
1165   // Try to turn a partially redundant memset + memcpy into
1166   // memcpy + smaller memset.  We don't need the memcpy size for this.
1167   if (DepInfo.isClobber())
1168     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1169       if (processMemSetMemCpyDependence(M, MDep))
1170         return true;
1171 
1172   // The optimizations after this point require the memcpy size.
1173   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1174   if (!CopySize) return false;
1175 
1176   // There are four possible optimizations we can do for memcpy:
1177   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1178   //   b) call-memcpy xform for return slot optimization.
1179   //   c) memcpy from freshly alloca'd space or space that has just started its
1180   //      lifetime copies undefined data, and we can therefore eliminate the
1181   //      memcpy in favor of the data that was already at the destination.
1182   //   d) memcpy from a just-memset'd source can be turned into memset.
1183   if (DepInfo.isClobber()) {
1184     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1185       // FIXME: Can we pass in either of dest/src alignment here instead
1186       // of conservatively taking the minimum?
1187       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1188       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1189                                CopySize->getZExtValue(), Align,
1190                                C)) {
1191         MD->removeInstruction(M);
1192         M->eraseFromParent();
1193         return true;
1194       }
1195     }
1196   }
1197 
1198   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1199   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1200       SrcLoc, true, M->getIterator(), M->getParent());
1201 
1202   if (SrcDepInfo.isClobber()) {
1203     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1204       return processMemCpyMemCpyDependence(M, MDep);
1205   } else if (SrcDepInfo.isDef()) {
1206     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1207       MD->removeInstruction(M);
1208       M->eraseFromParent();
1209       ++NumMemCpyInstr;
1210       return true;
1211     }
1212   }
1213 
1214   if (SrcDepInfo.isClobber())
1215     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1216       if (performMemCpyToMemSetOptzn(M, MDep)) {
1217         MD->removeInstruction(M);
1218         M->eraseFromParent();
1219         ++NumCpyToSet;
1220         return true;
1221       }
1222 
1223   return false;
1224 }
1225 
1226 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1227 /// not to alias.
1228 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1229   AliasAnalysis &AA = LookupAliasAnalysis();
1230 
1231   if (!TLI->has(LibFunc_memmove))
1232     return false;
1233 
1234   // See if the pointers alias.
1235   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1236                     MemoryLocation::getForSource(M)))
1237     return false;
1238 
1239   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1240                     << "\n");
1241 
1242   // If not, then we know we can transform this.
1243   Type *ArgTys[3] = { M->getRawDest()->getType(),
1244                       M->getRawSource()->getType(),
1245                       M->getLength()->getType() };
1246   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1247                                                  Intrinsic::memcpy, ArgTys));
1248 
1249   // MemDep may have over conservative information about this instruction, just
1250   // conservatively flush it from the cache.
1251   MD->removeInstruction(M);
1252 
1253   ++NumMoveToCpy;
1254   return true;
1255 }
1256 
1257 /// This is called on every byval argument in call sites.
1258 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1259   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1260   // Find out what feeds this byval argument.
1261   Value *ByValArg = CS.getArgument(ArgNo);
1262   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1263   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1264   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1265       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1266       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1267   if (!DepInfo.isClobber())
1268     return false;
1269 
1270   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1271   // a memcpy, see if we can byval from the source of the memcpy instead of the
1272   // result.
1273   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1274   if (!MDep || MDep->isVolatile() ||
1275       ByValArg->stripPointerCasts() != MDep->getDest())
1276     return false;
1277 
1278   // The length of the memcpy must be larger or equal to the size of the byval.
1279   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1280   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1281     return false;
1282 
1283   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1284   // then it is some target specific value that we can't know.
1285   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1286   if (ByValAlign == 0) return false;
1287 
1288   // If it is greater than the memcpy, then we check to see if we can force the
1289   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1290   AssumptionCache &AC = LookupAssumptionCache();
1291   DominatorTree &DT = LookupDomTree();
1292   if (MDep->getSourceAlignment() < ByValAlign &&
1293       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1294                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1295     return false;
1296 
1297   // The address space of the memcpy source must match the byval argument
1298   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1299       ByValArg->getType()->getPointerAddressSpace())
1300     return false;
1301 
1302   // Verify that the copied-from memory doesn't change in between the memcpy and
1303   // the byval call.
1304   //    memcpy(a <- b)
1305   //    *b = 42;
1306   //    foo(*a)
1307   // It would be invalid to transform the second memcpy into foo(*b).
1308   //
1309   // NOTE: This is conservative, it will stop on any read from the source loc,
1310   // not just the defining memcpy.
1311   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1312       MemoryLocation::getForSource(MDep), false,
1313       CS.getInstruction()->getIterator(), MDep->getParent());
1314   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1315     return false;
1316 
1317   Value *TmpCast = MDep->getSource();
1318   if (MDep->getSource()->getType() != ByValArg->getType())
1319     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1320                               "tmpcast", CS.getInstruction());
1321 
1322   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1323                     << "  " << *MDep << "\n"
1324                     << "  " << *CS.getInstruction() << "\n");
1325 
1326   // Otherwise we're good!  Update the byval argument.
1327   CS.setArgument(ArgNo, TmpCast);
1328   ++NumMemCpyInstr;
1329   return true;
1330 }
1331 
1332 /// Executes one iteration of MemCpyOptPass.
1333 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1334   bool MadeChange = false;
1335 
1336   DominatorTree &DT = LookupDomTree();
1337 
1338   // Walk all instruction in the function.
1339   for (BasicBlock &BB : F) {
1340     // Skip unreachable blocks. For example processStore assumes that an
1341     // instruction in a BB can't be dominated by a later instruction in the
1342     // same BB (which is a scenario that can happen for an unreachable BB that
1343     // has itself as a predecessor).
1344     if (!DT.isReachableFromEntry(&BB))
1345       continue;
1346 
1347     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1348         // Avoid invalidating the iterator.
1349       Instruction *I = &*BI++;
1350 
1351       bool RepeatInstruction = false;
1352 
1353       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1354         MadeChange |= processStore(SI, BI);
1355       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1356         RepeatInstruction = processMemSet(M, BI);
1357       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1358         RepeatInstruction = processMemCpy(M);
1359       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1360         RepeatInstruction = processMemMove(M);
1361       else if (auto CS = CallSite(I)) {
1362         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1363           if (CS.isByValArgument(i))
1364             MadeChange |= processByValArgument(CS, i);
1365       }
1366 
1367       // Reprocess the instruction if desired.
1368       if (RepeatInstruction) {
1369         if (BI != BB.begin())
1370           --BI;
1371         MadeChange = true;
1372       }
1373     }
1374   }
1375 
1376   return MadeChange;
1377 }
1378 
1379 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1380   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1381   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1382 
1383   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1384     return AM.getResult<AAManager>(F);
1385   };
1386   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1387     return AM.getResult<AssumptionAnalysis>(F);
1388   };
1389   auto LookupDomTree = [&]() -> DominatorTree & {
1390     return AM.getResult<DominatorTreeAnalysis>(F);
1391   };
1392 
1393   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1394                             LookupAssumptionCache, LookupDomTree);
1395   if (!MadeChange)
1396     return PreservedAnalyses::all();
1397 
1398   PreservedAnalyses PA;
1399   PA.preserveSet<CFGAnalyses>();
1400   PA.preserve<GlobalsAA>();
1401   PA.preserve<MemoryDependenceAnalysis>();
1402   return PA;
1403 }
1404 
1405 bool MemCpyOptPass::runImpl(
1406     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1407     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1408     std::function<AssumptionCache &()> LookupAssumptionCache_,
1409     std::function<DominatorTree &()> LookupDomTree_) {
1410   bool MadeChange = false;
1411   MD = MD_;
1412   TLI = TLI_;
1413   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1414   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1415   LookupDomTree = std::move(LookupDomTree_);
1416 
1417   // If we don't have at least memset and memcpy, there is little point of doing
1418   // anything here.  These are required by a freestanding implementation, so if
1419   // even they are disabled, there is no point in trying hard.
1420   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1421     return false;
1422 
1423   while (true) {
1424     if (!iterateOnFunction(F))
1425       break;
1426     MadeChange = true;
1427   }
1428 
1429   MD = nullptr;
1430   return MadeChange;
1431 }
1432 
1433 /// This is the main transformation entry point for a function.
1434 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1435   if (skipFunction(F))
1436     return false;
1437 
1438   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1439   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1440 
1441   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1442     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1443   };
1444   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1445     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1446   };
1447   auto LookupDomTree = [this]() -> DominatorTree & {
1448     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1449   };
1450 
1451   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1452                       LookupDomTree);
1453 }
1454