1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "memcpyopt" 69 70 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 71 "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden, 72 cl::ZeroOrMore, 73 cl::desc("Enable memcpyopt even when libcalls are disabled")); 74 75 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 76 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 77 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 78 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 79 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 80 81 namespace { 82 83 /// Represents a range of memset'd bytes with the ByteVal value. 84 /// This allows us to analyze stores like: 85 /// store 0 -> P+1 86 /// store 0 -> P+0 87 /// store 0 -> P+3 88 /// store 0 -> P+2 89 /// which sometimes happens with stores to arrays of structs etc. When we see 90 /// the first store, we make a range [1, 2). The second store extends the range 91 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 92 /// two ranges into [0, 3) which is memset'able. 93 struct MemsetRange { 94 // Start/End - A semi range that describes the span that this range covers. 95 // The range is closed at the start and open at the end: [Start, End). 96 int64_t Start, End; 97 98 /// StartPtr - The getelementptr instruction that points to the start of the 99 /// range. 100 Value *StartPtr; 101 102 /// Alignment - The known alignment of the first store. 103 unsigned Alignment; 104 105 /// TheStores - The actual stores that make up this range. 106 SmallVector<Instruction*, 16> TheStores; 107 108 bool isProfitableToUseMemset(const DataLayout &DL) const; 109 }; 110 111 } // end anonymous namespace 112 113 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 114 // If we found more than 4 stores to merge or 16 bytes, use memset. 115 if (TheStores.size() >= 4 || End-Start >= 16) return true; 116 117 // If there is nothing to merge, don't do anything. 118 if (TheStores.size() < 2) return false; 119 120 // If any of the stores are a memset, then it is always good to extend the 121 // memset. 122 for (Instruction *SI : TheStores) 123 if (!isa<StoreInst>(SI)) 124 return true; 125 126 // Assume that the code generator is capable of merging pairs of stores 127 // together if it wants to. 128 if (TheStores.size() == 2) return false; 129 130 // If we have fewer than 8 stores, it can still be worthwhile to do this. 131 // For example, merging 4 i8 stores into an i32 store is useful almost always. 132 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 133 // memset will be split into 2 32-bit stores anyway) and doing so can 134 // pessimize the llvm optimizer. 135 // 136 // Since we don't have perfect knowledge here, make some assumptions: assume 137 // the maximum GPR width is the same size as the largest legal integer 138 // size. If so, check to see whether we will end up actually reducing the 139 // number of stores used. 140 unsigned Bytes = unsigned(End-Start); 141 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 142 if (MaxIntSize == 0) 143 MaxIntSize = 1; 144 unsigned NumPointerStores = Bytes / MaxIntSize; 145 146 // Assume the remaining bytes if any are done a byte at a time. 147 unsigned NumByteStores = Bytes % MaxIntSize; 148 149 // If we will reduce the # stores (according to this heuristic), do the 150 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 151 // etc. 152 return TheStores.size() > NumPointerStores+NumByteStores; 153 } 154 155 namespace { 156 157 class MemsetRanges { 158 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 159 160 /// A sorted list of the memset ranges. 161 SmallVector<MemsetRange, 8> Ranges; 162 163 const DataLayout &DL; 164 165 public: 166 MemsetRanges(const DataLayout &DL) : DL(DL) {} 167 168 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 169 170 const_iterator begin() const { return Ranges.begin(); } 171 const_iterator end() const { return Ranges.end(); } 172 bool empty() const { return Ranges.empty(); } 173 174 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 175 if (auto *SI = dyn_cast<StoreInst>(Inst)) 176 addStore(OffsetFromFirst, SI); 177 else 178 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 179 } 180 181 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 182 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 183 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 184 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 185 SI->getAlign().value(), SI); 186 } 187 188 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 189 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 190 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 191 } 192 193 void addRange(int64_t Start, int64_t Size, Value *Ptr, 194 unsigned Alignment, Instruction *Inst); 195 }; 196 197 } // end anonymous namespace 198 199 /// Add a new store to the MemsetRanges data structure. This adds a 200 /// new range for the specified store at the specified offset, merging into 201 /// existing ranges as appropriate. 202 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 203 unsigned Alignment, Instruction *Inst) { 204 int64_t End = Start+Size; 205 206 range_iterator I = partition_point( 207 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 208 209 // We now know that I == E, in which case we didn't find anything to merge 210 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 211 // to insert a new range. Handle this now. 212 if (I == Ranges.end() || End < I->Start) { 213 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 214 R.Start = Start; 215 R.End = End; 216 R.StartPtr = Ptr; 217 R.Alignment = Alignment; 218 R.TheStores.push_back(Inst); 219 return; 220 } 221 222 // This store overlaps with I, add it. 223 I->TheStores.push_back(Inst); 224 225 // At this point, we may have an interval that completely contains our store. 226 // If so, just add it to the interval and return. 227 if (I->Start <= Start && I->End >= End) 228 return; 229 230 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 231 // but is not entirely contained within the range. 232 233 // See if the range extends the start of the range. In this case, it couldn't 234 // possibly cause it to join the prior range, because otherwise we would have 235 // stopped on *it*. 236 if (Start < I->Start) { 237 I->Start = Start; 238 I->StartPtr = Ptr; 239 I->Alignment = Alignment; 240 } 241 242 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 243 // is in or right at the end of I), and that End >= I->Start. Extend I out to 244 // End. 245 if (End > I->End) { 246 I->End = End; 247 range_iterator NextI = I; 248 while (++NextI != Ranges.end() && End >= NextI->Start) { 249 // Merge the range in. 250 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 251 if (NextI->End > I->End) 252 I->End = NextI->End; 253 Ranges.erase(NextI); 254 NextI = I; 255 } 256 } 257 } 258 259 //===----------------------------------------------------------------------===// 260 // MemCpyOptLegacyPass Pass 261 //===----------------------------------------------------------------------===// 262 263 namespace { 264 265 class MemCpyOptLegacyPass : public FunctionPass { 266 MemCpyOptPass Impl; 267 268 public: 269 static char ID; // Pass identification, replacement for typeid 270 271 MemCpyOptLegacyPass() : FunctionPass(ID) { 272 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 273 } 274 275 bool runOnFunction(Function &F) override; 276 277 private: 278 // This transformation requires dominator postdominator info 279 void getAnalysisUsage(AnalysisUsage &AU) const override { 280 AU.setPreservesCFG(); 281 AU.addRequired<AssumptionCacheTracker>(); 282 AU.addRequired<DominatorTreeWrapperPass>(); 283 AU.addPreserved<DominatorTreeWrapperPass>(); 284 AU.addPreserved<GlobalsAAWrapperPass>(); 285 AU.addRequired<TargetLibraryInfoWrapperPass>(); 286 AU.addRequired<AAResultsWrapperPass>(); 287 AU.addPreserved<AAResultsWrapperPass>(); 288 AU.addRequired<MemorySSAWrapperPass>(); 289 AU.addPreserved<MemorySSAWrapperPass>(); 290 } 291 }; 292 293 } // end anonymous namespace 294 295 char MemCpyOptLegacyPass::ID = 0; 296 297 /// The public interface to this file... 298 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 299 300 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 301 false, false) 302 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 303 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 304 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 306 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 308 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 309 false, false) 310 311 // Check that V is either not accessible by the caller, or unwinding cannot 312 // occur between Start and End. 313 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 314 Instruction *End) { 315 assert(Start->getParent() == End->getParent() && "Must be in same block"); 316 // Function can't unwind, so it also can't be visible through unwinding. 317 if (Start->getFunction()->doesNotThrow()) 318 return false; 319 320 // Object is not visible on unwind. 321 // TODO: Support RequiresNoCaptureBeforeUnwind case. 322 bool RequiresNoCaptureBeforeUnwind; 323 if (isNotVisibleOnUnwind(getUnderlyingObject(V), 324 RequiresNoCaptureBeforeUnwind) && 325 !RequiresNoCaptureBeforeUnwind) 326 return false; 327 328 // Check whether there are any unwinding instructions in the range. 329 return any_of(make_range(Start->getIterator(), End->getIterator()), 330 [](const Instruction &I) { return I.mayThrow(); }); 331 } 332 333 void MemCpyOptPass::eraseInstruction(Instruction *I) { 334 MSSAU->removeMemoryAccess(I); 335 I->eraseFromParent(); 336 } 337 338 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 339 // Start and End must be in the same block 340 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 341 const MemoryUseOrDef *Start, 342 const MemoryUseOrDef *End) { 343 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 344 for (const MemoryAccess &MA : 345 make_range(++Start->getIterator(), End->getIterator())) { 346 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 347 Loc))) 348 return true; 349 } 350 return false; 351 } 352 353 // Check for mod of Loc between Start and End, excluding both boundaries. 354 // Start and End can be in different blocks. 355 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 356 const MemoryUseOrDef *Start, 357 const MemoryUseOrDef *End) { 358 // TODO: Only walk until we hit Start. 359 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 360 End->getDefiningAccess(), Loc); 361 return !MSSA->dominates(Clobber, Start); 362 } 363 364 /// When scanning forward over instructions, we look for some other patterns to 365 /// fold away. In particular, this looks for stores to neighboring locations of 366 /// memory. If it sees enough consecutive ones, it attempts to merge them 367 /// together into a memcpy/memset. 368 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 369 Value *StartPtr, 370 Value *ByteVal) { 371 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 372 373 // We can't track scalable types 374 if (auto *SI = dyn_cast<StoreInst>(StartInst)) 375 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 376 return nullptr; 377 378 // Okay, so we now have a single store that can be splatable. Scan to find 379 // all subsequent stores of the same value to offset from the same pointer. 380 // Join these together into ranges, so we can decide whether contiguous blocks 381 // are stored. 382 MemsetRanges Ranges(DL); 383 384 BasicBlock::iterator BI(StartInst); 385 386 // Keeps track of the last memory use or def before the insertion point for 387 // the new memset. The new MemoryDef for the inserted memsets will be inserted 388 // after MemInsertPoint. It points to either LastMemDef or to the last user 389 // before the insertion point of the memset, if there are any such users. 390 MemoryUseOrDef *MemInsertPoint = nullptr; 391 // Keeps track of the last MemoryDef between StartInst and the insertion point 392 // for the new memset. This will become the defining access of the inserted 393 // memsets. 394 MemoryDef *LastMemDef = nullptr; 395 for (++BI; !BI->isTerminator(); ++BI) { 396 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 397 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 398 if (CurrentAcc) { 399 MemInsertPoint = CurrentAcc; 400 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 401 LastMemDef = CurrentDef; 402 } 403 404 // Calls that only access inaccessible memory do not block merging 405 // accessible stores. 406 if (auto *CB = dyn_cast<CallBase>(BI)) { 407 if (CB->onlyAccessesInaccessibleMemory()) 408 continue; 409 } 410 411 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 412 // If the instruction is readnone, ignore it, otherwise bail out. We 413 // don't even allow readonly here because we don't want something like: 414 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 415 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 416 break; 417 continue; 418 } 419 420 if (auto *NextStore = dyn_cast<StoreInst>(BI)) { 421 // If this is a store, see if we can merge it in. 422 if (!NextStore->isSimple()) break; 423 424 Value *StoredVal = NextStore->getValueOperand(); 425 426 // Don't convert stores of non-integral pointer types to memsets (which 427 // stores integers). 428 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 429 break; 430 431 // We can't track ranges involving scalable types. 432 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 433 break; 434 435 // Check to see if this stored value is of the same byte-splattable value. 436 Value *StoredByte = isBytewiseValue(StoredVal, DL); 437 if (isa<UndefValue>(ByteVal) && StoredByte) 438 ByteVal = StoredByte; 439 if (ByteVal != StoredByte) 440 break; 441 442 // Check to see if this store is to a constant offset from the start ptr. 443 Optional<int64_t> Offset = 444 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 445 if (!Offset) 446 break; 447 448 Ranges.addStore(*Offset, NextStore); 449 } else { 450 auto *MSI = cast<MemSetInst>(BI); 451 452 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 453 !isa<ConstantInt>(MSI->getLength())) 454 break; 455 456 // Check to see if this store is to a constant offset from the start ptr. 457 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 458 if (!Offset) 459 break; 460 461 Ranges.addMemSet(*Offset, MSI); 462 } 463 } 464 465 // If we have no ranges, then we just had a single store with nothing that 466 // could be merged in. This is a very common case of course. 467 if (Ranges.empty()) 468 return nullptr; 469 470 // If we had at least one store that could be merged in, add the starting 471 // store as well. We try to avoid this unless there is at least something 472 // interesting as a small compile-time optimization. 473 Ranges.addInst(0, StartInst); 474 475 // If we create any memsets, we put it right before the first instruction that 476 // isn't part of the memset block. This ensure that the memset is dominated 477 // by any addressing instruction needed by the start of the block. 478 IRBuilder<> Builder(&*BI); 479 480 // Now that we have full information about ranges, loop over the ranges and 481 // emit memset's for anything big enough to be worthwhile. 482 Instruction *AMemSet = nullptr; 483 for (const MemsetRange &Range : Ranges) { 484 if (Range.TheStores.size() == 1) continue; 485 486 // If it is profitable to lower this range to memset, do so now. 487 if (!Range.isProfitableToUseMemset(DL)) 488 continue; 489 490 // Otherwise, we do want to transform this! Create a new memset. 491 // Get the starting pointer of the block. 492 StartPtr = Range.StartPtr; 493 494 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 495 MaybeAlign(Range.Alignment)); 496 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 497 : Range.TheStores) dbgs() 498 << *SI << '\n'; 499 dbgs() << "With: " << *AMemSet << '\n'); 500 if (!Range.TheStores.empty()) 501 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 502 503 assert(LastMemDef && MemInsertPoint && 504 "Both LastMemDef and MemInsertPoint need to be set"); 505 auto *NewDef = 506 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 507 ? MSSAU->createMemoryAccessBefore( 508 AMemSet, LastMemDef, MemInsertPoint) 509 : MSSAU->createMemoryAccessAfter( 510 AMemSet, LastMemDef, MemInsertPoint)); 511 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 512 LastMemDef = NewDef; 513 MemInsertPoint = NewDef; 514 515 // Zap all the stores. 516 for (Instruction *SI : Range.TheStores) 517 eraseInstruction(SI); 518 519 ++NumMemSetInfer; 520 } 521 522 return AMemSet; 523 } 524 525 // This method try to lift a store instruction before position P. 526 // It will lift the store and its argument + that anything that 527 // may alias with these. 528 // The method returns true if it was successful. 529 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 530 // If the store alias this position, early bail out. 531 MemoryLocation StoreLoc = MemoryLocation::get(SI); 532 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 533 return false; 534 535 // Keep track of the arguments of all instruction we plan to lift 536 // so we can make sure to lift them as well if appropriate. 537 DenseSet<Instruction*> Args; 538 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 539 if (Ptr->getParent() == SI->getParent()) 540 Args.insert(Ptr); 541 542 // Instruction to lift before P. 543 SmallVector<Instruction *, 8> ToLift{SI}; 544 545 // Memory locations of lifted instructions. 546 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 547 548 // Lifted calls. 549 SmallVector<const CallBase *, 8> Calls; 550 551 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 552 553 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 554 auto *C = &*I; 555 556 // Make sure hoisting does not perform a store that was not guaranteed to 557 // happen. 558 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 559 return false; 560 561 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 562 563 bool NeedLift = false; 564 if (Args.erase(C)) 565 NeedLift = true; 566 else if (MayAlias) { 567 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 568 return isModOrRefSet(AA->getModRefInfo(C, ML)); 569 }); 570 571 if (!NeedLift) 572 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 573 return isModOrRefSet(AA->getModRefInfo(C, Call)); 574 }); 575 } 576 577 if (!NeedLift) 578 continue; 579 580 if (MayAlias) { 581 // Since LI is implicitly moved downwards past the lifted instructions, 582 // none of them may modify its source. 583 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 584 return false; 585 else if (const auto *Call = dyn_cast<CallBase>(C)) { 586 // If we can't lift this before P, it's game over. 587 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 588 return false; 589 590 Calls.push_back(Call); 591 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 592 // If we can't lift this before P, it's game over. 593 auto ML = MemoryLocation::get(C); 594 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 595 return false; 596 597 MemLocs.push_back(ML); 598 } else 599 // We don't know how to lift this instruction. 600 return false; 601 } 602 603 ToLift.push_back(C); 604 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 605 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 606 if (A->getParent() == SI->getParent()) { 607 // Cannot hoist user of P above P 608 if(A == P) return false; 609 Args.insert(A); 610 } 611 } 612 } 613 614 // Find MSSA insertion point. Normally P will always have a corresponding 615 // memory access before which we can insert. However, with non-standard AA 616 // pipelines, there may be a mismatch between AA and MSSA, in which case we 617 // will scan for a memory access before P. In either case, we know for sure 618 // that at least the load will have a memory access. 619 // TODO: Simplify this once P will be determined by MSSA, in which case the 620 // discrepancy can no longer occur. 621 MemoryUseOrDef *MemInsertPoint = nullptr; 622 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 623 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 624 } else { 625 const Instruction *ConstP = P; 626 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 627 ++LI->getReverseIterator())) { 628 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 629 MemInsertPoint = MA; 630 break; 631 } 632 } 633 } 634 635 // We made it, we need to lift. 636 for (auto *I : llvm::reverse(ToLift)) { 637 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 638 I->moveBefore(P); 639 assert(MemInsertPoint && "Must have found insert point"); 640 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 641 MSSAU->moveAfter(MA, MemInsertPoint); 642 MemInsertPoint = MA; 643 } 644 } 645 646 return true; 647 } 648 649 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 650 if (!SI->isSimple()) return false; 651 652 // Avoid merging nontemporal stores since the resulting 653 // memcpy/memset would not be able to preserve the nontemporal hint. 654 // In theory we could teach how to propagate the !nontemporal metadata to 655 // memset calls. However, that change would force the backend to 656 // conservatively expand !nontemporal memset calls back to sequences of 657 // store instructions (effectively undoing the merging). 658 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 659 return false; 660 661 const DataLayout &DL = SI->getModule()->getDataLayout(); 662 663 Value *StoredVal = SI->getValueOperand(); 664 665 // Not all the transforms below are correct for non-integral pointers, bail 666 // until we've audited the individual pieces. 667 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 668 return false; 669 670 // Load to store forwarding can be interpreted as memcpy. 671 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) { 672 if (LI->isSimple() && LI->hasOneUse() && 673 LI->getParent() == SI->getParent()) { 674 675 auto *T = LI->getType(); 676 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 677 // the corresponding libcalls are not available. 678 // TODO: We should really distinguish between libcall availability and 679 // our ability to introduce intrinsics. 680 if (T->isAggregateType() && 681 (EnableMemCpyOptWithoutLibcalls || 682 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 683 MemoryLocation LoadLoc = MemoryLocation::get(LI); 684 685 // We use alias analysis to check if an instruction may store to 686 // the memory we load from in between the load and the store. If 687 // such an instruction is found, we try to promote there instead 688 // of at the store position. 689 // TODO: Can use MSSA for this. 690 Instruction *P = SI; 691 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 692 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 693 P = &I; 694 break; 695 } 696 } 697 698 // We found an instruction that may write to the loaded memory. 699 // We can try to promote at this position instead of the store 700 // position if nothing aliases the store memory after this and the store 701 // destination is not in the range. 702 if (P && P != SI) { 703 if (!moveUp(SI, P, LI)) 704 P = nullptr; 705 } 706 707 // If a valid insertion position is found, then we can promote 708 // the load/store pair to a memcpy. 709 if (P) { 710 // If we load from memory that may alias the memory we store to, 711 // memmove must be used to preserve semantic. If not, memcpy can 712 // be used. Also, if we load from constant memory, memcpy can be used 713 // as the constant memory won't be modified. 714 bool UseMemMove = false; 715 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 716 UseMemMove = true; 717 718 uint64_t Size = DL.getTypeStoreSize(T); 719 720 IRBuilder<> Builder(P); 721 Instruction *M; 722 if (UseMemMove) 723 M = Builder.CreateMemMove( 724 SI->getPointerOperand(), SI->getAlign(), 725 LI->getPointerOperand(), LI->getAlign(), Size); 726 else 727 M = Builder.CreateMemCpy( 728 SI->getPointerOperand(), SI->getAlign(), 729 LI->getPointerOperand(), LI->getAlign(), Size); 730 731 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 732 << *M << "\n"); 733 734 auto *LastDef = 735 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 736 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 737 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 738 739 eraseInstruction(SI); 740 eraseInstruction(LI); 741 ++NumMemCpyInstr; 742 743 // Make sure we do not invalidate the iterator. 744 BBI = M->getIterator(); 745 return true; 746 } 747 } 748 749 // Detect cases where we're performing call slot forwarding, but 750 // happen to be using a load-store pair to implement it, rather than 751 // a memcpy. 752 CallInst *C = nullptr; 753 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 754 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 755 // The load most post-dom the call. Limit to the same block for now. 756 // TODO: Support non-local call-slot optimization? 757 if (LoadClobber->getBlock() == SI->getParent()) 758 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 759 } 760 761 if (C) { 762 // Check that nothing touches the dest of the "copy" between 763 // the call and the store. 764 MemoryLocation StoreLoc = MemoryLocation::get(SI); 765 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 766 MSSA->getMemoryAccess(SI))) 767 C = nullptr; 768 } 769 770 if (C) { 771 bool changed = performCallSlotOptzn( 772 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 773 LI->getPointerOperand()->stripPointerCasts(), 774 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 775 commonAlignment(SI->getAlign(), LI->getAlign()), C); 776 if (changed) { 777 eraseInstruction(SI); 778 eraseInstruction(LI); 779 ++NumMemCpyInstr; 780 return true; 781 } 782 } 783 } 784 } 785 786 // The following code creates memset intrinsics out of thin air. Don't do 787 // this if the corresponding libfunc is not available. 788 // TODO: We should really distinguish between libcall availability and 789 // our ability to introduce intrinsics. 790 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 791 return false; 792 793 // There are two cases that are interesting for this code to handle: memcpy 794 // and memset. Right now we only handle memset. 795 796 // Ensure that the value being stored is something that can be memset'able a 797 // byte at a time like "0" or "-1" or any width, as well as things like 798 // 0xA0A0A0A0 and 0.0. 799 auto *V = SI->getOperand(0); 800 if (Value *ByteVal = isBytewiseValue(V, DL)) { 801 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 802 ByteVal)) { 803 BBI = I->getIterator(); // Don't invalidate iterator. 804 return true; 805 } 806 807 // If we have an aggregate, we try to promote it to memset regardless 808 // of opportunity for merging as it can expose optimization opportunities 809 // in subsequent passes. 810 auto *T = V->getType(); 811 if (T->isAggregateType()) { 812 uint64_t Size = DL.getTypeStoreSize(T); 813 IRBuilder<> Builder(SI); 814 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 815 SI->getAlign()); 816 817 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 818 819 // The newly inserted memset is immediately overwritten by the original 820 // store, so we do not need to rename uses. 821 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 822 auto *NewAccess = MSSAU->createMemoryAccessBefore( 823 M, StoreDef->getDefiningAccess(), StoreDef); 824 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 825 826 eraseInstruction(SI); 827 NumMemSetInfer++; 828 829 // Make sure we do not invalidate the iterator. 830 BBI = M->getIterator(); 831 return true; 832 } 833 } 834 835 return false; 836 } 837 838 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 839 // See if there is another memset or store neighboring this memset which 840 // allows us to widen out the memset to do a single larger store. 841 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 842 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 843 MSI->getValue())) { 844 BBI = I->getIterator(); // Don't invalidate iterator. 845 return true; 846 } 847 return false; 848 } 849 850 /// Takes a memcpy and a call that it depends on, 851 /// and checks for the possibility of a call slot optimization by having 852 /// the call write its result directly into the destination of the memcpy. 853 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 854 Instruction *cpyStore, Value *cpyDest, 855 Value *cpySrc, TypeSize cpySize, 856 Align cpyAlign, CallInst *C) { 857 // The general transformation to keep in mind is 858 // 859 // call @func(..., src, ...) 860 // memcpy(dest, src, ...) 861 // 862 // -> 863 // 864 // memcpy(dest, src, ...) 865 // call @func(..., dest, ...) 866 // 867 // Since moving the memcpy is technically awkward, we additionally check that 868 // src only holds uninitialized values at the moment of the call, meaning that 869 // the memcpy can be discarded rather than moved. 870 871 // We can't optimize scalable types. 872 if (cpySize.isScalable()) 873 return false; 874 875 // Lifetime marks shouldn't be operated on. 876 if (Function *F = C->getCalledFunction()) 877 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 878 return false; 879 880 // Require that src be an alloca. This simplifies the reasoning considerably. 881 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 882 if (!srcAlloca) 883 return false; 884 885 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 886 if (!srcArraySize) 887 return false; 888 889 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 890 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 891 srcArraySize->getZExtValue(); 892 893 if (cpySize < srcSize) 894 return false; 895 896 // Check that accessing the first srcSize bytes of dest will not cause a 897 // trap. Otherwise the transform is invalid since it might cause a trap 898 // to occur earlier than it otherwise would. 899 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 900 DL, C, DT)) { 901 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); 902 return false; 903 } 904 905 // Make sure that nothing can observe cpyDest being written early. There are 906 // a number of cases to consider: 907 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 908 // the transform. 909 // 2. C itself may not access cpyDest (prior to the transform). This is 910 // checked further below. 911 // 3. If cpyDest is accessible to the caller of this function (potentially 912 // captured and not based on an alloca), we need to ensure that we cannot 913 // unwind between C and cpyStore. This is checked here. 914 // 4. If cpyDest is potentially captured, there may be accesses to it from 915 // another thread. In this case, we need to check that cpyStore is 916 // guaranteed to be executed if C is. As it is a non-atomic access, it 917 // renders accesses from other threads undefined. 918 // TODO: This is currently not checked. 919 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { 920 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding"); 921 return false; 922 } 923 924 // Check that dest points to memory that is at least as aligned as src. 925 Align srcAlign = srcAlloca->getAlign(); 926 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 927 // If dest is not aligned enough and we can't increase its alignment then 928 // bail out. 929 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 930 return false; 931 932 // Check that src is not accessed except via the call and the memcpy. This 933 // guarantees that it holds only undefined values when passed in (so the final 934 // memcpy can be dropped), that it is not read or written between the call and 935 // the memcpy, and that writing beyond the end of it is undefined. 936 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 937 while (!srcUseList.empty()) { 938 User *U = srcUseList.pop_back_val(); 939 940 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 941 append_range(srcUseList, U->users()); 942 continue; 943 } 944 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { 945 if (!G->hasAllZeroIndices()) 946 return false; 947 948 append_range(srcUseList, U->users()); 949 continue; 950 } 951 if (const auto *IT = dyn_cast<IntrinsicInst>(U)) 952 if (IT->isLifetimeStartOrEnd()) 953 continue; 954 955 if (U != C && U != cpyLoad) 956 return false; 957 } 958 959 // Check whether src is captured by the called function, in which case there 960 // may be further indirect uses of src. 961 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { 962 return U->stripPointerCasts() == cpySrc && 963 !C->doesNotCapture(C->getArgOperandNo(&U)); 964 }); 965 966 // If src is captured, then check whether there are any potential uses of 967 // src through the captured pointer before the lifetime of src ends, either 968 // due to a lifetime.end or a return from the function. 969 if (SrcIsCaptured) { 970 // Check that dest is not captured before/at the call. We have already 971 // checked that src is not captured before it. If either had been captured, 972 // then the call might be comparing the argument against the captured dest 973 // or src pointer. 974 Value *DestObj = getUnderlyingObject(cpyDest); 975 if (!isIdentifiedFunctionLocal(DestObj) || 976 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, 977 /* StoreCaptures */ true, C, DT, 978 /* IncludeI */ true)) 979 return false; 980 981 MemoryLocation SrcLoc = 982 MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); 983 for (Instruction &I : 984 make_range(++C->getIterator(), C->getParent()->end())) { 985 // Lifetime of srcAlloca ends at lifetime.end. 986 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 987 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 988 II->getArgOperand(1)->stripPointerCasts() == srcAlloca && 989 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) 990 break; 991 } 992 993 // Lifetime of srcAlloca ends at return. 994 if (isa<ReturnInst>(&I)) 995 break; 996 997 // Ignore the direct read of src in the load. 998 if (&I == cpyLoad) 999 continue; 1000 1001 // Check whether this instruction may mod/ref src through the captured 1002 // pointer (we have already any direct mod/refs in the loop above). 1003 // Also bail if we hit a terminator, as we don't want to scan into other 1004 // blocks. 1005 if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator()) 1006 return false; 1007 } 1008 } 1009 1010 // Since we're changing the parameter to the callsite, we need to make sure 1011 // that what would be the new parameter dominates the callsite. 1012 if (!DT->dominates(cpyDest, C)) { 1013 // Support moving a constant index GEP before the call. 1014 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 1015 if (GEP && GEP->hasAllConstantIndices() && 1016 DT->dominates(GEP->getPointerOperand(), C)) 1017 GEP->moveBefore(C); 1018 else 1019 return false; 1020 } 1021 1022 // In addition to knowing that the call does not access src in some 1023 // unexpected manner, for example via a global, which we deduce from 1024 // the use analysis, we also need to know that it does not sneakily 1025 // access dest. We rely on AA to figure this out for us. 1026 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 1027 // If necessary, perform additional analysis. 1028 if (isModOrRefSet(MR)) 1029 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 1030 if (isModOrRefSet(MR)) 1031 return false; 1032 1033 // We can't create address space casts here because we don't know if they're 1034 // safe for the target. 1035 if (cpySrc->getType()->getPointerAddressSpace() != 1036 cpyDest->getType()->getPointerAddressSpace()) 1037 return false; 1038 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1039 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1040 cpySrc->getType()->getPointerAddressSpace() != 1041 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1042 return false; 1043 1044 // All the checks have passed, so do the transformation. 1045 bool changedArgument = false; 1046 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1047 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1048 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1049 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1050 cpyDest->getName(), C); 1051 changedArgument = true; 1052 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1053 C->setArgOperand(ArgI, Dest); 1054 else 1055 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1056 Dest, C->getArgOperand(ArgI)->getType(), 1057 Dest->getName(), C)); 1058 } 1059 1060 if (!changedArgument) 1061 return false; 1062 1063 // If the destination wasn't sufficiently aligned then increase its alignment. 1064 if (!isDestSufficientlyAligned) { 1065 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1066 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1067 } 1068 1069 // Update AA metadata 1070 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1071 // handled here, but combineMetadata doesn't support them yet 1072 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1073 LLVMContext::MD_noalias, 1074 LLVMContext::MD_invariant_group, 1075 LLVMContext::MD_access_group}; 1076 combineMetadata(C, cpyLoad, KnownIDs, true); 1077 if (cpyLoad != cpyStore) 1078 combineMetadata(C, cpyStore, KnownIDs, true); 1079 1080 ++NumCallSlot; 1081 return true; 1082 } 1083 1084 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1085 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1086 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1087 MemCpyInst *MDep) { 1088 // We can only transforms memcpy's where the dest of one is the source of the 1089 // other. 1090 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1091 return false; 1092 1093 // If dep instruction is reading from our current input, then it is a noop 1094 // transfer and substituting the input won't change this instruction. Just 1095 // ignore the input and let someone else zap MDep. This handles cases like: 1096 // memcpy(a <- a) 1097 // memcpy(b <- a) 1098 if (M->getSource() == MDep->getSource()) 1099 return false; 1100 1101 // Second, the length of the memcpy's must be the same, or the preceding one 1102 // must be larger than the following one. 1103 if (MDep->getLength() != M->getLength()) { 1104 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1105 auto *MLen = dyn_cast<ConstantInt>(M->getLength()); 1106 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1107 return false; 1108 } 1109 1110 // Verify that the copied-from memory doesn't change in between the two 1111 // transfers. For example, in: 1112 // memcpy(a <- b) 1113 // *b = 42; 1114 // memcpy(c <- a) 1115 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1116 // 1117 // TODO: If the code between M and MDep is transparent to the destination "c", 1118 // then we could still perform the xform by moving M up to the first memcpy. 1119 // TODO: It would be sufficient to check the MDep source up to the memcpy 1120 // size of M, rather than MDep. 1121 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1122 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1123 return false; 1124 1125 // If the dest of the second might alias the source of the first, then the 1126 // source and dest might overlap. In addition, if the source of the first 1127 // points to constant memory, they won't overlap by definition. Otherwise, we 1128 // still want to eliminate the intermediate value, but we have to generate a 1129 // memmove instead of memcpy. 1130 bool UseMemMove = false; 1131 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1132 UseMemMove = true; 1133 1134 // If all checks passed, then we can transform M. 1135 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1136 << *MDep << '\n' << *M << '\n'); 1137 1138 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1139 // example we could be moving from movaps -> movq on x86. 1140 IRBuilder<> Builder(M); 1141 Instruction *NewM; 1142 if (UseMemMove) 1143 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1144 MDep->getRawSource(), MDep->getSourceAlign(), 1145 M->getLength(), M->isVolatile()); 1146 else if (isa<MemCpyInlineInst>(M)) { 1147 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1148 // never allowed since that would allow the latter to be lowered as a call 1149 // to an external function. 1150 NewM = Builder.CreateMemCpyInline( 1151 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1152 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1153 } else 1154 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1155 MDep->getRawSource(), MDep->getSourceAlign(), 1156 M->getLength(), M->isVolatile()); 1157 1158 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1159 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1160 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1161 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1162 1163 // Remove the instruction we're replacing. 1164 eraseInstruction(M); 1165 ++NumMemCpyInstr; 1166 return true; 1167 } 1168 1169 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1170 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1171 /// weren't copied over by \p MemCpy. 1172 /// 1173 /// In other words, transform: 1174 /// \code 1175 /// memset(dst, c, dst_size); 1176 /// memcpy(dst, src, src_size); 1177 /// \endcode 1178 /// into: 1179 /// \code 1180 /// memcpy(dst, src, src_size); 1181 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1182 /// \endcode 1183 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1184 MemSetInst *MemSet) { 1185 // We can only transform memset/memcpy with the same destination. 1186 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1187 return false; 1188 1189 // Check that src and dst of the memcpy aren't the same. While memcpy 1190 // operands cannot partially overlap, exact equality is allowed. 1191 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1192 return false; 1193 1194 // We know that dst up to src_size is not written. We now need to make sure 1195 // that dst up to dst_size is not accessed. (If we did not move the memset, 1196 // checking for reads would be sufficient.) 1197 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1198 MSSA->getMemoryAccess(MemSet), 1199 MSSA->getMemoryAccess(MemCpy))) 1200 return false; 1201 1202 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1203 Value *Dest = MemCpy->getRawDest(); 1204 Value *DestSize = MemSet->getLength(); 1205 Value *SrcSize = MemCpy->getLength(); 1206 1207 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1208 return false; 1209 1210 // If the sizes are the same, simply drop the memset instead of generating 1211 // a replacement with zero size. 1212 if (DestSize == SrcSize) { 1213 eraseInstruction(MemSet); 1214 return true; 1215 } 1216 1217 // By default, create an unaligned memset. 1218 unsigned Align = 1; 1219 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1220 // of the sum. 1221 const unsigned DestAlign = 1222 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1223 if (DestAlign > 1) 1224 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1225 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1226 1227 IRBuilder<> Builder(MemCpy); 1228 1229 // If the sizes have different types, zext the smaller one. 1230 if (DestSize->getType() != SrcSize->getType()) { 1231 if (DestSize->getType()->getIntegerBitWidth() > 1232 SrcSize->getType()->getIntegerBitWidth()) 1233 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1234 else 1235 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1236 } 1237 1238 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1239 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1240 Value *MemsetLen = Builder.CreateSelect( 1241 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1242 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1243 Instruction *NewMemSet = Builder.CreateMemSet( 1244 Builder.CreateGEP(Builder.getInt8Ty(), 1245 Builder.CreatePointerCast(Dest, 1246 Builder.getInt8PtrTy(DestAS)), 1247 SrcSize), 1248 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1249 1250 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1251 "MemCpy must be a MemoryDef"); 1252 // The new memset is inserted after the memcpy, but it is known that its 1253 // defining access is the memset about to be removed which immediately 1254 // precedes the memcpy. 1255 auto *LastDef = 1256 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1257 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1258 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1259 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1260 1261 eraseInstruction(MemSet); 1262 return true; 1263 } 1264 1265 /// Determine whether the instruction has undefined content for the given Size, 1266 /// either because it was freshly alloca'd or started its lifetime. 1267 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1268 MemoryDef *Def, Value *Size) { 1269 if (MSSA->isLiveOnEntryDef(Def)) 1270 return isa<AllocaInst>(getUnderlyingObject(V)); 1271 1272 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1273 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1274 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1275 1276 if (auto *CSize = dyn_cast<ConstantInt>(Size)) { 1277 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1278 LTSize->getZExtValue() >= CSize->getZExtValue()) 1279 return true; 1280 } 1281 1282 // If the lifetime.start covers a whole alloca (as it almost always 1283 // does) and we're querying a pointer based on that alloca, then we know 1284 // the memory is definitely undef, regardless of how exactly we alias. 1285 // The size also doesn't matter, as an out-of-bounds access would be UB. 1286 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { 1287 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1288 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1289 if (Optional<TypeSize> AllocaSize = 1290 Alloca->getAllocationSizeInBits(DL)) 1291 if (*AllocaSize == LTSize->getValue() * 8) 1292 return true; 1293 } 1294 } 1295 } 1296 } 1297 1298 return false; 1299 } 1300 1301 /// Transform memcpy to memset when its source was just memset. 1302 /// In other words, turn: 1303 /// \code 1304 /// memset(dst1, c, dst1_size); 1305 /// memcpy(dst2, dst1, dst2_size); 1306 /// \endcode 1307 /// into: 1308 /// \code 1309 /// memset(dst1, c, dst1_size); 1310 /// memset(dst2, c, dst2_size); 1311 /// \endcode 1312 /// When dst2_size <= dst1_size. 1313 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1314 MemSetInst *MemSet) { 1315 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1316 // memcpying from the same address. Otherwise it is hard to reason about. 1317 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1318 return false; 1319 1320 Value *MemSetSize = MemSet->getLength(); 1321 Value *CopySize = MemCpy->getLength(); 1322 1323 if (MemSetSize != CopySize) { 1324 // Make sure the memcpy doesn't read any more than what the memset wrote. 1325 // Don't worry about sizes larger than i64. 1326 1327 // A known memset size is required. 1328 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1329 if (!CMemSetSize) 1330 return false; 1331 1332 // A known memcpy size is also required. 1333 auto *CCopySize = dyn_cast<ConstantInt>(CopySize); 1334 if (!CCopySize) 1335 return false; 1336 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1337 // If the memcpy is larger than the memset, but the memory was undef prior 1338 // to the memset, we can just ignore the tail. Technically we're only 1339 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1340 // easily represent this location, we use the full 0..CopySize range. 1341 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1342 bool CanReduceSize = false; 1343 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1344 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1345 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1346 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1347 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1348 CanReduceSize = true; 1349 1350 if (!CanReduceSize) 1351 return false; 1352 CopySize = MemSetSize; 1353 } 1354 } 1355 1356 IRBuilder<> Builder(MemCpy); 1357 Instruction *NewM = 1358 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1359 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1360 auto *LastDef = 1361 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1362 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1363 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1364 1365 return true; 1366 } 1367 1368 /// Perform simplification of memcpy's. If we have memcpy A 1369 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1370 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1371 /// circumstances). This allows later passes to remove the first memcpy 1372 /// altogether. 1373 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1374 // We can only optimize non-volatile memcpy's. 1375 if (M->isVolatile()) return false; 1376 1377 // If the source and destination of the memcpy are the same, then zap it. 1378 if (M->getSource() == M->getDest()) { 1379 ++BBI; 1380 eraseInstruction(M); 1381 return true; 1382 } 1383 1384 // If copying from a constant, try to turn the memcpy into a memset. 1385 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) 1386 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1387 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1388 M->getModule()->getDataLayout())) { 1389 IRBuilder<> Builder(M); 1390 Instruction *NewM = 1391 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1392 MaybeAlign(M->getDestAlignment()), false); 1393 auto *LastDef = 1394 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1395 auto *NewAccess = 1396 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1397 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1398 1399 eraseInstruction(M); 1400 ++NumCpyToSet; 1401 return true; 1402 } 1403 1404 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1405 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1406 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1407 const MemoryAccess *DestClobber = 1408 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1409 1410 // Try to turn a partially redundant memset + memcpy into 1411 // memcpy + smaller memset. We don't need the memcpy size for this. 1412 // The memcpy most post-dom the memset, so limit this to the same basic 1413 // block. A non-local generalization is likely not worthwhile. 1414 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1415 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1416 if (DestClobber->getBlock() == M->getParent()) 1417 if (processMemSetMemCpyDependence(M, MDep)) 1418 return true; 1419 1420 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1421 AnyClobber, MemoryLocation::getForSource(M)); 1422 1423 // There are four possible optimizations we can do for memcpy: 1424 // a) memcpy-memcpy xform which exposes redundance for DSE. 1425 // b) call-memcpy xform for return slot optimization. 1426 // c) memcpy from freshly alloca'd space or space that has just started 1427 // its lifetime copies undefined data, and we can therefore eliminate 1428 // the memcpy in favor of the data that was already at the destination. 1429 // d) memcpy from a just-memset'd source can be turned into memset. 1430 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1431 if (Instruction *MI = MD->getMemoryInst()) { 1432 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1433 if (auto *C = dyn_cast<CallInst>(MI)) { 1434 // The memcpy must post-dom the call. Limit to the same block for 1435 // now. Additionally, we need to ensure that there are no accesses 1436 // to dest between the call and the memcpy. Accesses to src will be 1437 // checked by performCallSlotOptzn(). 1438 // TODO: Support non-local call-slot optimization? 1439 if (C->getParent() == M->getParent() && 1440 !accessedBetween(*AA, DestLoc, MD, MA)) { 1441 // FIXME: Can we pass in either of dest/src alignment here instead 1442 // of conservatively taking the minimum? 1443 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1444 M->getSourceAlign().valueOrOne()); 1445 if (performCallSlotOptzn( 1446 M, M, M->getDest(), M->getSource(), 1447 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1448 C)) { 1449 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1450 << " call: " << *C << "\n" 1451 << " memcpy: " << *M << "\n"); 1452 eraseInstruction(M); 1453 ++NumMemCpyInstr; 1454 return true; 1455 } 1456 } 1457 } 1458 } 1459 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1460 return processMemCpyMemCpyDependence(M, MDep); 1461 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1462 if (performMemCpyToMemSetOptzn(M, MDep)) { 1463 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1464 eraseInstruction(M); 1465 ++NumCpyToSet; 1466 return true; 1467 } 1468 } 1469 } 1470 1471 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1472 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1473 eraseInstruction(M); 1474 ++NumMemCpyInstr; 1475 return true; 1476 } 1477 } 1478 1479 return false; 1480 } 1481 1482 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1483 /// not to alias. 1484 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1485 // See if the source could be modified by this memmove potentially. 1486 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1487 return false; 1488 1489 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1490 << "\n"); 1491 1492 // If not, then we know we can transform this. 1493 Type *ArgTys[3] = { M->getRawDest()->getType(), 1494 M->getRawSource()->getType(), 1495 M->getLength()->getType() }; 1496 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1497 Intrinsic::memcpy, ArgTys)); 1498 1499 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1500 // aliasing guarantees). 1501 1502 ++NumMoveToCpy; 1503 return true; 1504 } 1505 1506 /// This is called on every byval argument in call sites. 1507 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1508 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1509 // Find out what feeds this byval argument. 1510 Value *ByValArg = CB.getArgOperand(ArgNo); 1511 Type *ByValTy = CB.getParamByValType(ArgNo); 1512 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1513 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1514 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1515 if (!CallAccess) 1516 return false; 1517 MemCpyInst *MDep = nullptr; 1518 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1519 CallAccess->getDefiningAccess(), Loc); 1520 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1521 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1522 1523 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1524 // a memcpy, see if we can byval from the source of the memcpy instead of the 1525 // result. 1526 if (!MDep || MDep->isVolatile() || 1527 ByValArg->stripPointerCasts() != MDep->getDest()) 1528 return false; 1529 1530 // The length of the memcpy must be larger or equal to the size of the byval. 1531 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1532 if (!C1 || !TypeSize::isKnownGE( 1533 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1534 return false; 1535 1536 // Get the alignment of the byval. If the call doesn't specify the alignment, 1537 // then it is some target specific value that we can't know. 1538 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1539 if (!ByValAlign) return false; 1540 1541 // If it is greater than the memcpy, then we check to see if we can force the 1542 // source of the memcpy to the alignment we need. If we fail, we bail out. 1543 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1544 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1545 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1546 DT) < *ByValAlign) 1547 return false; 1548 1549 // The address space of the memcpy source must match the byval argument 1550 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1551 ByValArg->getType()->getPointerAddressSpace()) 1552 return false; 1553 1554 // Verify that the copied-from memory doesn't change in between the memcpy and 1555 // the byval call. 1556 // memcpy(a <- b) 1557 // *b = 42; 1558 // foo(*a) 1559 // It would be invalid to transform the second memcpy into foo(*b). 1560 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1561 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1562 return false; 1563 1564 Value *TmpCast = MDep->getSource(); 1565 if (MDep->getSource()->getType() != ByValArg->getType()) { 1566 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1567 "tmpcast", &CB); 1568 // Set the tmpcast's DebugLoc to MDep's 1569 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1570 TmpCast = TmpBitCast; 1571 } 1572 1573 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1574 << " " << *MDep << "\n" 1575 << " " << CB << "\n"); 1576 1577 // Otherwise we're good! Update the byval argument. 1578 CB.setArgOperand(ArgNo, TmpCast); 1579 ++NumMemCpyInstr; 1580 return true; 1581 } 1582 1583 /// Executes one iteration of MemCpyOptPass. 1584 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1585 bool MadeChange = false; 1586 1587 // Walk all instruction in the function. 1588 for (BasicBlock &BB : F) { 1589 // Skip unreachable blocks. For example processStore assumes that an 1590 // instruction in a BB can't be dominated by a later instruction in the 1591 // same BB (which is a scenario that can happen for an unreachable BB that 1592 // has itself as a predecessor). 1593 if (!DT->isReachableFromEntry(&BB)) 1594 continue; 1595 1596 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1597 // Avoid invalidating the iterator. 1598 Instruction *I = &*BI++; 1599 1600 bool RepeatInstruction = false; 1601 1602 if (auto *SI = dyn_cast<StoreInst>(I)) 1603 MadeChange |= processStore(SI, BI); 1604 else if (auto *M = dyn_cast<MemSetInst>(I)) 1605 RepeatInstruction = processMemSet(M, BI); 1606 else if (auto *M = dyn_cast<MemCpyInst>(I)) 1607 RepeatInstruction = processMemCpy(M, BI); 1608 else if (auto *M = dyn_cast<MemMoveInst>(I)) 1609 RepeatInstruction = processMemMove(M); 1610 else if (auto *CB = dyn_cast<CallBase>(I)) { 1611 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1612 if (CB->isByValArgument(i)) 1613 MadeChange |= processByValArgument(*CB, i); 1614 } 1615 1616 // Reprocess the instruction if desired. 1617 if (RepeatInstruction) { 1618 if (BI != BB.begin()) 1619 --BI; 1620 MadeChange = true; 1621 } 1622 } 1623 } 1624 1625 return MadeChange; 1626 } 1627 1628 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1629 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1630 auto *AA = &AM.getResult<AAManager>(F); 1631 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1632 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1633 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1634 1635 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1636 if (!MadeChange) 1637 return PreservedAnalyses::all(); 1638 1639 PreservedAnalyses PA; 1640 PA.preserveSet<CFGAnalyses>(); 1641 PA.preserve<MemorySSAAnalysis>(); 1642 return PA; 1643 } 1644 1645 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1646 AliasAnalysis *AA_, AssumptionCache *AC_, 1647 DominatorTree *DT_, MemorySSA *MSSA_) { 1648 bool MadeChange = false; 1649 TLI = TLI_; 1650 AA = AA_; 1651 AC = AC_; 1652 DT = DT_; 1653 MSSA = MSSA_; 1654 MemorySSAUpdater MSSAU_(MSSA_); 1655 MSSAU = &MSSAU_; 1656 1657 while (true) { 1658 if (!iterateOnFunction(F)) 1659 break; 1660 MadeChange = true; 1661 } 1662 1663 if (VerifyMemorySSA) 1664 MSSA_->verifyMemorySSA(); 1665 1666 return MadeChange; 1667 } 1668 1669 /// This is the main transformation entry point for a function. 1670 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1671 if (skipFunction(F)) 1672 return false; 1673 1674 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1675 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1676 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1677 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1678 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1679 1680 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1681 } 1682