1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <optional> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "memcpyopt" 65 66 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 67 "enable-memcpyopt-without-libcalls", cl::Hidden, 68 cl::desc("Enable memcpyopt even when libcalls are disabled")); 69 70 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 71 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 72 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 73 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 74 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 75 76 namespace { 77 78 /// Represents a range of memset'd bytes with the ByteVal value. 79 /// This allows us to analyze stores like: 80 /// store 0 -> P+1 81 /// store 0 -> P+0 82 /// store 0 -> P+3 83 /// store 0 -> P+2 84 /// which sometimes happens with stores to arrays of structs etc. When we see 85 /// the first store, we make a range [1, 2). The second store extends the range 86 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 87 /// two ranges into [0, 3) which is memset'able. 88 struct MemsetRange { 89 // Start/End - A semi range that describes the span that this range covers. 90 // The range is closed at the start and open at the end: [Start, End). 91 int64_t Start, End; 92 93 /// StartPtr - The getelementptr instruction that points to the start of the 94 /// range. 95 Value *StartPtr; 96 97 /// Alignment - The known alignment of the first store. 98 MaybeAlign Alignment; 99 100 /// TheStores - The actual stores that make up this range. 101 SmallVector<Instruction*, 16> TheStores; 102 103 bool isProfitableToUseMemset(const DataLayout &DL) const; 104 }; 105 106 } // end anonymous namespace 107 108 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 109 // If we found more than 4 stores to merge or 16 bytes, use memset. 110 if (TheStores.size() >= 4 || End-Start >= 16) return true; 111 112 // If there is nothing to merge, don't do anything. 113 if (TheStores.size() < 2) return false; 114 115 // If any of the stores are a memset, then it is always good to extend the 116 // memset. 117 for (Instruction *SI : TheStores) 118 if (!isa<StoreInst>(SI)) 119 return true; 120 121 // Assume that the code generator is capable of merging pairs of stores 122 // together if it wants to. 123 if (TheStores.size() == 2) return false; 124 125 // If we have fewer than 8 stores, it can still be worthwhile to do this. 126 // For example, merging 4 i8 stores into an i32 store is useful almost always. 127 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 128 // memset will be split into 2 32-bit stores anyway) and doing so can 129 // pessimize the llvm optimizer. 130 // 131 // Since we don't have perfect knowledge here, make some assumptions: assume 132 // the maximum GPR width is the same size as the largest legal integer 133 // size. If so, check to see whether we will end up actually reducing the 134 // number of stores used. 135 unsigned Bytes = unsigned(End-Start); 136 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 137 if (MaxIntSize == 0) 138 MaxIntSize = 1; 139 unsigned NumPointerStores = Bytes / MaxIntSize; 140 141 // Assume the remaining bytes if any are done a byte at a time. 142 unsigned NumByteStores = Bytes % MaxIntSize; 143 144 // If we will reduce the # stores (according to this heuristic), do the 145 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 146 // etc. 147 return TheStores.size() > NumPointerStores+NumByteStores; 148 } 149 150 namespace { 151 152 class MemsetRanges { 153 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 154 155 /// A sorted list of the memset ranges. 156 SmallVector<MemsetRange, 8> Ranges; 157 158 const DataLayout &DL; 159 160 public: 161 MemsetRanges(const DataLayout &DL) : DL(DL) {} 162 163 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 164 165 const_iterator begin() const { return Ranges.begin(); } 166 const_iterator end() const { return Ranges.end(); } 167 bool empty() const { return Ranges.empty(); } 168 169 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 170 if (auto *SI = dyn_cast<StoreInst>(Inst)) 171 addStore(OffsetFromFirst, SI); 172 else 173 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 174 } 175 176 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 177 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 178 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 179 addRange(OffsetFromFirst, StoreSize.getFixedValue(), 180 SI->getPointerOperand(), SI->getAlign(), SI); 181 } 182 183 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 184 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 185 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI); 186 } 187 188 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment, 189 Instruction *Inst); 190 }; 191 192 } // end anonymous namespace 193 194 /// Add a new store to the MemsetRanges data structure. This adds a 195 /// new range for the specified store at the specified offset, merging into 196 /// existing ranges as appropriate. 197 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 198 MaybeAlign Alignment, Instruction *Inst) { 199 int64_t End = Start+Size; 200 201 range_iterator I = partition_point( 202 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 203 204 // We now know that I == E, in which case we didn't find anything to merge 205 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 206 // to insert a new range. Handle this now. 207 if (I == Ranges.end() || End < I->Start) { 208 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 209 R.Start = Start; 210 R.End = End; 211 R.StartPtr = Ptr; 212 R.Alignment = Alignment; 213 R.TheStores.push_back(Inst); 214 return; 215 } 216 217 // This store overlaps with I, add it. 218 I->TheStores.push_back(Inst); 219 220 // At this point, we may have an interval that completely contains our store. 221 // If so, just add it to the interval and return. 222 if (I->Start <= Start && I->End >= End) 223 return; 224 225 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 226 // but is not entirely contained within the range. 227 228 // See if the range extends the start of the range. In this case, it couldn't 229 // possibly cause it to join the prior range, because otherwise we would have 230 // stopped on *it*. 231 if (Start < I->Start) { 232 I->Start = Start; 233 I->StartPtr = Ptr; 234 I->Alignment = Alignment; 235 } 236 237 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 238 // is in or right at the end of I), and that End >= I->Start. Extend I out to 239 // End. 240 if (End > I->End) { 241 I->End = End; 242 range_iterator NextI = I; 243 while (++NextI != Ranges.end() && End >= NextI->Start) { 244 // Merge the range in. 245 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 246 if (NextI->End > I->End) 247 I->End = NextI->End; 248 Ranges.erase(NextI); 249 NextI = I; 250 } 251 } 252 } 253 254 //===----------------------------------------------------------------------===// 255 // MemCpyOptLegacyPass Pass 256 //===----------------------------------------------------------------------===// 257 258 namespace { 259 260 class MemCpyOptLegacyPass : public FunctionPass { 261 MemCpyOptPass Impl; 262 263 public: 264 static char ID; // Pass identification, replacement for typeid 265 266 MemCpyOptLegacyPass() : FunctionPass(ID) { 267 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 268 } 269 270 bool runOnFunction(Function &F) override; 271 272 private: 273 // This transformation requires dominator postdominator info 274 void getAnalysisUsage(AnalysisUsage &AU) const override { 275 AU.setPreservesCFG(); 276 AU.addRequired<AssumptionCacheTracker>(); 277 AU.addRequired<DominatorTreeWrapperPass>(); 278 AU.addPreserved<DominatorTreeWrapperPass>(); 279 AU.addPreserved<GlobalsAAWrapperPass>(); 280 AU.addRequired<TargetLibraryInfoWrapperPass>(); 281 AU.addRequired<AAResultsWrapperPass>(); 282 AU.addPreserved<AAResultsWrapperPass>(); 283 AU.addRequired<MemorySSAWrapperPass>(); 284 AU.addPreserved<MemorySSAWrapperPass>(); 285 } 286 }; 287 288 } // end anonymous namespace 289 290 char MemCpyOptLegacyPass::ID = 0; 291 292 /// The public interface to this file... 293 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 294 295 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 296 false, false) 297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 302 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 303 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 304 false, false) 305 306 // Check that V is either not accessible by the caller, or unwinding cannot 307 // occur between Start and End. 308 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 309 Instruction *End) { 310 assert(Start->getParent() == End->getParent() && "Must be in same block"); 311 // Function can't unwind, so it also can't be visible through unwinding. 312 if (Start->getFunction()->doesNotThrow()) 313 return false; 314 315 // Object is not visible on unwind. 316 // TODO: Support RequiresNoCaptureBeforeUnwind case. 317 bool RequiresNoCaptureBeforeUnwind; 318 if (isNotVisibleOnUnwind(getUnderlyingObject(V), 319 RequiresNoCaptureBeforeUnwind) && 320 !RequiresNoCaptureBeforeUnwind) 321 return false; 322 323 // Check whether there are any unwinding instructions in the range. 324 return any_of(make_range(Start->getIterator(), End->getIterator()), 325 [](const Instruction &I) { return I.mayThrow(); }); 326 } 327 328 void MemCpyOptPass::eraseInstruction(Instruction *I) { 329 MSSAU->removeMemoryAccess(I); 330 I->eraseFromParent(); 331 } 332 333 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 334 // Start and End must be in the same block. 335 // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start 336 // intrinsic and store it inside SkippedLifetimeStart. 337 static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc, 338 const MemoryUseOrDef *Start, 339 const MemoryUseOrDef *End, 340 Instruction **SkippedLifetimeStart = nullptr) { 341 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 342 for (const MemoryAccess &MA : 343 make_range(++Start->getIterator(), End->getIterator())) { 344 Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst(); 345 if (isModOrRefSet(AA.getModRefInfo(I, Loc))) { 346 auto *II = dyn_cast<IntrinsicInst>(I); 347 if (II && II->getIntrinsicID() == Intrinsic::lifetime_start && 348 SkippedLifetimeStart && !*SkippedLifetimeStart) { 349 *SkippedLifetimeStart = I; 350 continue; 351 } 352 353 return true; 354 } 355 } 356 return false; 357 } 358 359 // Check for mod of Loc between Start and End, excluding both boundaries. 360 // Start and End can be in different blocks. 361 static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA, 362 MemoryLocation Loc, const MemoryUseOrDef *Start, 363 const MemoryUseOrDef *End) { 364 if (isa<MemoryUse>(End)) { 365 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. 366 // Manually check read accesses between Start and End, if they are in the 367 // same block, for clobbers. Otherwise assume Loc is clobbered. 368 return Start->getBlock() != End->getBlock() || 369 any_of( 370 make_range(std::next(Start->getIterator()), End->getIterator()), 371 [&AA, Loc](const MemoryAccess &Acc) { 372 if (isa<MemoryUse>(&Acc)) 373 return false; 374 Instruction *AccInst = 375 cast<MemoryUseOrDef>(&Acc)->getMemoryInst(); 376 return isModSet(AA.getModRefInfo(AccInst, Loc)); 377 }); 378 } 379 380 // TODO: Only walk until we hit Start. 381 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 382 End->getDefiningAccess(), Loc, AA); 383 return !MSSA->dominates(Clobber, Start); 384 } 385 386 /// When scanning forward over instructions, we look for some other patterns to 387 /// fold away. In particular, this looks for stores to neighboring locations of 388 /// memory. If it sees enough consecutive ones, it attempts to merge them 389 /// together into a memcpy/memset. 390 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 391 Value *StartPtr, 392 Value *ByteVal) { 393 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 394 395 // We can't track scalable types 396 if (auto *SI = dyn_cast<StoreInst>(StartInst)) 397 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 398 return nullptr; 399 400 // Okay, so we now have a single store that can be splatable. Scan to find 401 // all subsequent stores of the same value to offset from the same pointer. 402 // Join these together into ranges, so we can decide whether contiguous blocks 403 // are stored. 404 MemsetRanges Ranges(DL); 405 406 BasicBlock::iterator BI(StartInst); 407 408 // Keeps track of the last memory use or def before the insertion point for 409 // the new memset. The new MemoryDef for the inserted memsets will be inserted 410 // after MemInsertPoint. It points to either LastMemDef or to the last user 411 // before the insertion point of the memset, if there are any such users. 412 MemoryUseOrDef *MemInsertPoint = nullptr; 413 // Keeps track of the last MemoryDef between StartInst and the insertion point 414 // for the new memset. This will become the defining access of the inserted 415 // memsets. 416 MemoryDef *LastMemDef = nullptr; 417 for (++BI; !BI->isTerminator(); ++BI) { 418 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 419 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 420 if (CurrentAcc) { 421 MemInsertPoint = CurrentAcc; 422 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 423 LastMemDef = CurrentDef; 424 } 425 426 // Calls that only access inaccessible memory do not block merging 427 // accessible stores. 428 if (auto *CB = dyn_cast<CallBase>(BI)) { 429 if (CB->onlyAccessesInaccessibleMemory()) 430 continue; 431 } 432 433 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 434 // If the instruction is readnone, ignore it, otherwise bail out. We 435 // don't even allow readonly here because we don't want something like: 436 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 437 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 438 break; 439 continue; 440 } 441 442 if (auto *NextStore = dyn_cast<StoreInst>(BI)) { 443 // If this is a store, see if we can merge it in. 444 if (!NextStore->isSimple()) break; 445 446 Value *StoredVal = NextStore->getValueOperand(); 447 448 // Don't convert stores of non-integral pointer types to memsets (which 449 // stores integers). 450 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 451 break; 452 453 // We can't track ranges involving scalable types. 454 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 455 break; 456 457 // Check to see if this stored value is of the same byte-splattable value. 458 Value *StoredByte = isBytewiseValue(StoredVal, DL); 459 if (isa<UndefValue>(ByteVal) && StoredByte) 460 ByteVal = StoredByte; 461 if (ByteVal != StoredByte) 462 break; 463 464 // Check to see if this store is to a constant offset from the start ptr. 465 std::optional<int64_t> Offset = 466 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 467 if (!Offset) 468 break; 469 470 Ranges.addStore(*Offset, NextStore); 471 } else { 472 auto *MSI = cast<MemSetInst>(BI); 473 474 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 475 !isa<ConstantInt>(MSI->getLength())) 476 break; 477 478 // Check to see if this store is to a constant offset from the start ptr. 479 std::optional<int64_t> Offset = 480 isPointerOffset(StartPtr, MSI->getDest(), DL); 481 if (!Offset) 482 break; 483 484 Ranges.addMemSet(*Offset, MSI); 485 } 486 } 487 488 // If we have no ranges, then we just had a single store with nothing that 489 // could be merged in. This is a very common case of course. 490 if (Ranges.empty()) 491 return nullptr; 492 493 // If we had at least one store that could be merged in, add the starting 494 // store as well. We try to avoid this unless there is at least something 495 // interesting as a small compile-time optimization. 496 Ranges.addInst(0, StartInst); 497 498 // If we create any memsets, we put it right before the first instruction that 499 // isn't part of the memset block. This ensure that the memset is dominated 500 // by any addressing instruction needed by the start of the block. 501 IRBuilder<> Builder(&*BI); 502 503 // Now that we have full information about ranges, loop over the ranges and 504 // emit memset's for anything big enough to be worthwhile. 505 Instruction *AMemSet = nullptr; 506 for (const MemsetRange &Range : Ranges) { 507 if (Range.TheStores.size() == 1) continue; 508 509 // If it is profitable to lower this range to memset, do so now. 510 if (!Range.isProfitableToUseMemset(DL)) 511 continue; 512 513 // Otherwise, we do want to transform this! Create a new memset. 514 // Get the starting pointer of the block. 515 StartPtr = Range.StartPtr; 516 517 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 518 Range.Alignment); 519 AMemSet->mergeDIAssignID(Range.TheStores); 520 521 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 522 : Range.TheStores) dbgs() 523 << *SI << '\n'; 524 dbgs() << "With: " << *AMemSet << '\n'); 525 if (!Range.TheStores.empty()) 526 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 527 528 assert(LastMemDef && MemInsertPoint && 529 "Both LastMemDef and MemInsertPoint need to be set"); 530 auto *NewDef = 531 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 532 ? MSSAU->createMemoryAccessBefore( 533 AMemSet, LastMemDef, MemInsertPoint) 534 : MSSAU->createMemoryAccessAfter( 535 AMemSet, LastMemDef, MemInsertPoint)); 536 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 537 LastMemDef = NewDef; 538 MemInsertPoint = NewDef; 539 540 // Zap all the stores. 541 for (Instruction *SI : Range.TheStores) 542 eraseInstruction(SI); 543 544 ++NumMemSetInfer; 545 } 546 547 return AMemSet; 548 } 549 550 // This method try to lift a store instruction before position P. 551 // It will lift the store and its argument + that anything that 552 // may alias with these. 553 // The method returns true if it was successful. 554 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 555 // If the store alias this position, early bail out. 556 MemoryLocation StoreLoc = MemoryLocation::get(SI); 557 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 558 return false; 559 560 // Keep track of the arguments of all instruction we plan to lift 561 // so we can make sure to lift them as well if appropriate. 562 DenseSet<Instruction*> Args; 563 auto AddArg = [&](Value *Arg) { 564 auto *I = dyn_cast<Instruction>(Arg); 565 if (I && I->getParent() == SI->getParent()) { 566 // Cannot hoist user of P above P 567 if (I == P) return false; 568 Args.insert(I); 569 } 570 return true; 571 }; 572 if (!AddArg(SI->getPointerOperand())) 573 return false; 574 575 // Instruction to lift before P. 576 SmallVector<Instruction *, 8> ToLift{SI}; 577 578 // Memory locations of lifted instructions. 579 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 580 581 // Lifted calls. 582 SmallVector<const CallBase *, 8> Calls; 583 584 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 585 586 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 587 auto *C = &*I; 588 589 // Make sure hoisting does not perform a store that was not guaranteed to 590 // happen. 591 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 592 return false; 593 594 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt)); 595 596 bool NeedLift = false; 597 if (Args.erase(C)) 598 NeedLift = true; 599 else if (MayAlias) { 600 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 601 return isModOrRefSet(AA->getModRefInfo(C, ML)); 602 }); 603 604 if (!NeedLift) 605 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 606 return isModOrRefSet(AA->getModRefInfo(C, Call)); 607 }); 608 } 609 610 if (!NeedLift) 611 continue; 612 613 if (MayAlias) { 614 // Since LI is implicitly moved downwards past the lifted instructions, 615 // none of them may modify its source. 616 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 617 return false; 618 else if (const auto *Call = dyn_cast<CallBase>(C)) { 619 // If we can't lift this before P, it's game over. 620 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 621 return false; 622 623 Calls.push_back(Call); 624 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 625 // If we can't lift this before P, it's game over. 626 auto ML = MemoryLocation::get(C); 627 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 628 return false; 629 630 MemLocs.push_back(ML); 631 } else 632 // We don't know how to lift this instruction. 633 return false; 634 } 635 636 ToLift.push_back(C); 637 for (Value *Op : C->operands()) 638 if (!AddArg(Op)) 639 return false; 640 } 641 642 // Find MSSA insertion point. Normally P will always have a corresponding 643 // memory access before which we can insert. However, with non-standard AA 644 // pipelines, there may be a mismatch between AA and MSSA, in which case we 645 // will scan for a memory access before P. In either case, we know for sure 646 // that at least the load will have a memory access. 647 // TODO: Simplify this once P will be determined by MSSA, in which case the 648 // discrepancy can no longer occur. 649 MemoryUseOrDef *MemInsertPoint = nullptr; 650 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 651 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 652 } else { 653 const Instruction *ConstP = P; 654 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 655 ++LI->getReverseIterator())) { 656 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 657 MemInsertPoint = MA; 658 break; 659 } 660 } 661 } 662 663 // We made it, we need to lift. 664 for (auto *I : llvm::reverse(ToLift)) { 665 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 666 I->moveBefore(P); 667 assert(MemInsertPoint && "Must have found insert point"); 668 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 669 MSSAU->moveAfter(MA, MemInsertPoint); 670 MemInsertPoint = MA; 671 } 672 } 673 674 return true; 675 } 676 677 bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI, 678 const DataLayout &DL, 679 BasicBlock::iterator &BBI) { 680 if (!LI->isSimple() || !LI->hasOneUse() || 681 LI->getParent() != SI->getParent()) 682 return false; 683 684 auto *T = LI->getType(); 685 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 686 // the corresponding libcalls are not available. 687 // TODO: We should really distinguish between libcall availability and 688 // our ability to introduce intrinsics. 689 if (T->isAggregateType() && 690 (EnableMemCpyOptWithoutLibcalls || 691 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 692 MemoryLocation LoadLoc = MemoryLocation::get(LI); 693 694 // We use alias analysis to check if an instruction may store to 695 // the memory we load from in between the load and the store. If 696 // such an instruction is found, we try to promote there instead 697 // of at the store position. 698 // TODO: Can use MSSA for this. 699 Instruction *P = SI; 700 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 701 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 702 P = &I; 703 break; 704 } 705 } 706 707 // We found an instruction that may write to the loaded memory. 708 // We can try to promote at this position instead of the store 709 // position if nothing aliases the store memory after this and the store 710 // destination is not in the range. 711 if (P && P != SI) { 712 if (!moveUp(SI, P, LI)) 713 P = nullptr; 714 } 715 716 // If a valid insertion position is found, then we can promote 717 // the load/store pair to a memcpy. 718 if (P) { 719 // If we load from memory that may alias the memory we store to, 720 // memmove must be used to preserve semantic. If not, memcpy can 721 // be used. Also, if we load from constant memory, memcpy can be used 722 // as the constant memory won't be modified. 723 bool UseMemMove = false; 724 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 725 UseMemMove = true; 726 727 uint64_t Size = DL.getTypeStoreSize(T); 728 729 IRBuilder<> Builder(P); 730 Instruction *M; 731 if (UseMemMove) 732 M = Builder.CreateMemMove( 733 SI->getPointerOperand(), SI->getAlign(), 734 LI->getPointerOperand(), LI->getAlign(), Size); 735 else 736 M = Builder.CreateMemCpy( 737 SI->getPointerOperand(), SI->getAlign(), 738 LI->getPointerOperand(), LI->getAlign(), Size); 739 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); 740 741 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 742 << *M << "\n"); 743 744 auto *LastDef = 745 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 746 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 747 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 748 749 eraseInstruction(SI); 750 eraseInstruction(LI); 751 ++NumMemCpyInstr; 752 753 // Make sure we do not invalidate the iterator. 754 BBI = M->getIterator(); 755 return true; 756 } 757 } 758 759 // Detect cases where we're performing call slot forwarding, but 760 // happen to be using a load-store pair to implement it, rather than 761 // a memcpy. 762 BatchAAResults BAA(*AA); 763 auto GetCall = [&]() -> CallInst * { 764 // We defer this expensive clobber walk until the cheap checks 765 // have been done on the source inside performCallSlotOptzn. 766 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 767 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA))) 768 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 769 return nullptr; 770 }; 771 772 bool Changed = performCallSlotOptzn( 773 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 774 LI->getPointerOperand()->stripPointerCasts(), 775 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 776 std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall); 777 if (Changed) { 778 eraseInstruction(SI); 779 eraseInstruction(LI); 780 ++NumMemCpyInstr; 781 return true; 782 } 783 784 return false; 785 } 786 787 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 788 if (!SI->isSimple()) return false; 789 790 // Avoid merging nontemporal stores since the resulting 791 // memcpy/memset would not be able to preserve the nontemporal hint. 792 // In theory we could teach how to propagate the !nontemporal metadata to 793 // memset calls. However, that change would force the backend to 794 // conservatively expand !nontemporal memset calls back to sequences of 795 // store instructions (effectively undoing the merging). 796 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 797 return false; 798 799 const DataLayout &DL = SI->getModule()->getDataLayout(); 800 801 Value *StoredVal = SI->getValueOperand(); 802 803 // Not all the transforms below are correct for non-integral pointers, bail 804 // until we've audited the individual pieces. 805 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 806 return false; 807 808 // Load to store forwarding can be interpreted as memcpy. 809 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) 810 return processStoreOfLoad(SI, LI, DL, BBI); 811 812 // The following code creates memset intrinsics out of thin air. Don't do 813 // this if the corresponding libfunc is not available. 814 // TODO: We should really distinguish between libcall availability and 815 // our ability to introduce intrinsics. 816 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 817 return false; 818 819 // There are two cases that are interesting for this code to handle: memcpy 820 // and memset. Right now we only handle memset. 821 822 // Ensure that the value being stored is something that can be memset'able a 823 // byte at a time like "0" or "-1" or any width, as well as things like 824 // 0xA0A0A0A0 and 0.0. 825 auto *V = SI->getOperand(0); 826 if (Value *ByteVal = isBytewiseValue(V, DL)) { 827 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 828 ByteVal)) { 829 BBI = I->getIterator(); // Don't invalidate iterator. 830 return true; 831 } 832 833 // If we have an aggregate, we try to promote it to memset regardless 834 // of opportunity for merging as it can expose optimization opportunities 835 // in subsequent passes. 836 auto *T = V->getType(); 837 if (T->isAggregateType()) { 838 uint64_t Size = DL.getTypeStoreSize(T); 839 IRBuilder<> Builder(SI); 840 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 841 SI->getAlign()); 842 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID); 843 844 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 845 846 // The newly inserted memset is immediately overwritten by the original 847 // store, so we do not need to rename uses. 848 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 849 auto *NewAccess = MSSAU->createMemoryAccessBefore( 850 M, StoreDef->getDefiningAccess(), StoreDef); 851 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 852 853 eraseInstruction(SI); 854 NumMemSetInfer++; 855 856 // Make sure we do not invalidate the iterator. 857 BBI = M->getIterator(); 858 return true; 859 } 860 } 861 862 return false; 863 } 864 865 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 866 // See if there is another memset or store neighboring this memset which 867 // allows us to widen out the memset to do a single larger store. 868 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 869 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 870 MSI->getValue())) { 871 BBI = I->getIterator(); // Don't invalidate iterator. 872 return true; 873 } 874 return false; 875 } 876 877 /// Takes a memcpy and a call that it depends on, 878 /// and checks for the possibility of a call slot optimization by having 879 /// the call write its result directly into the destination of the memcpy. 880 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 881 Instruction *cpyStore, Value *cpyDest, 882 Value *cpySrc, TypeSize cpySize, 883 Align cpyDestAlign, BatchAAResults &BAA, 884 std::function<CallInst *()> GetC) { 885 // The general transformation to keep in mind is 886 // 887 // call @func(..., src, ...) 888 // memcpy(dest, src, ...) 889 // 890 // -> 891 // 892 // memcpy(dest, src, ...) 893 // call @func(..., dest, ...) 894 // 895 // Since moving the memcpy is technically awkward, we additionally check that 896 // src only holds uninitialized values at the moment of the call, meaning that 897 // the memcpy can be discarded rather than moved. 898 899 // We can't optimize scalable types. 900 if (cpySize.isScalable()) 901 return false; 902 903 // Require that src be an alloca. This simplifies the reasoning considerably. 904 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 905 if (!srcAlloca) 906 return false; 907 908 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 909 if (!srcArraySize) 910 return false; 911 912 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 913 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 914 srcArraySize->getZExtValue(); 915 916 if (cpySize < srcSize) 917 return false; 918 919 CallInst *C = GetC(); 920 if (!C) 921 return false; 922 923 // Lifetime marks shouldn't be operated on. 924 if (Function *F = C->getCalledFunction()) 925 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 926 return false; 927 928 929 if (C->getParent() != cpyStore->getParent()) { 930 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n"); 931 return false; 932 } 933 934 MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ? 935 MemoryLocation::get(cpyStore) : 936 MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore)); 937 938 // Check that nothing touches the dest of the copy between 939 // the call and the store/memcpy. 940 Instruction *SkippedLifetimeStart = nullptr; 941 if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C), 942 MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) { 943 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n"); 944 return false; 945 } 946 947 // If we need to move a lifetime.start above the call, make sure that we can 948 // actually do so. If the argument is bitcasted for example, we would have to 949 // move the bitcast as well, which we don't handle. 950 if (SkippedLifetimeStart) { 951 auto *LifetimeArg = 952 dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1)); 953 if (LifetimeArg && LifetimeArg->getParent() == C->getParent() && 954 C->comesBefore(LifetimeArg)) 955 return false; 956 } 957 958 // Check that accessing the first srcSize bytes of dest will not cause a 959 // trap. Otherwise the transform is invalid since it might cause a trap 960 // to occur earlier than it otherwise would. 961 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 962 DL, C, AC, DT)) { 963 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); 964 return false; 965 } 966 967 // Make sure that nothing can observe cpyDest being written early. There are 968 // a number of cases to consider: 969 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 970 // the transform. 971 // 2. C itself may not access cpyDest (prior to the transform). This is 972 // checked further below. 973 // 3. If cpyDest is accessible to the caller of this function (potentially 974 // captured and not based on an alloca), we need to ensure that we cannot 975 // unwind between C and cpyStore. This is checked here. 976 // 4. If cpyDest is potentially captured, there may be accesses to it from 977 // another thread. In this case, we need to check that cpyStore is 978 // guaranteed to be executed if C is. As it is a non-atomic access, it 979 // renders accesses from other threads undefined. 980 // TODO: This is currently not checked. 981 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { 982 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n"); 983 return false; 984 } 985 986 // Check that dest points to memory that is at least as aligned as src. 987 Align srcAlign = srcAlloca->getAlign(); 988 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign; 989 // If dest is not aligned enough and we can't increase its alignment then 990 // bail out. 991 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) { 992 LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n"); 993 return false; 994 } 995 996 // Check that src is not accessed except via the call and the memcpy. This 997 // guarantees that it holds only undefined values when passed in (so the final 998 // memcpy can be dropped), that it is not read or written between the call and 999 // the memcpy, and that writing beyond the end of it is undefined. 1000 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 1001 while (!srcUseList.empty()) { 1002 User *U = srcUseList.pop_back_val(); 1003 1004 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 1005 append_range(srcUseList, U->users()); 1006 continue; 1007 } 1008 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { 1009 if (!G->hasAllZeroIndices()) 1010 return false; 1011 1012 append_range(srcUseList, U->users()); 1013 continue; 1014 } 1015 if (const auto *IT = dyn_cast<IntrinsicInst>(U)) 1016 if (IT->isLifetimeStartOrEnd()) 1017 continue; 1018 1019 if (U != C && U != cpyLoad) 1020 return false; 1021 } 1022 1023 // Check whether src is captured by the called function, in which case there 1024 // may be further indirect uses of src. 1025 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { 1026 return U->stripPointerCasts() == cpySrc && 1027 !C->doesNotCapture(C->getArgOperandNo(&U)); 1028 }); 1029 1030 // If src is captured, then check whether there are any potential uses of 1031 // src through the captured pointer before the lifetime of src ends, either 1032 // due to a lifetime.end or a return from the function. 1033 if (SrcIsCaptured) { 1034 // Check that dest is not captured before/at the call. We have already 1035 // checked that src is not captured before it. If either had been captured, 1036 // then the call might be comparing the argument against the captured dest 1037 // or src pointer. 1038 Value *DestObj = getUnderlyingObject(cpyDest); 1039 if (!isIdentifiedFunctionLocal(DestObj) || 1040 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, 1041 /* StoreCaptures */ true, C, DT, 1042 /* IncludeI */ true)) 1043 return false; 1044 1045 MemoryLocation SrcLoc = 1046 MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); 1047 for (Instruction &I : 1048 make_range(++C->getIterator(), C->getParent()->end())) { 1049 // Lifetime of srcAlloca ends at lifetime.end. 1050 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1051 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 1052 II->getArgOperand(1)->stripPointerCasts() == srcAlloca && 1053 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) 1054 break; 1055 } 1056 1057 // Lifetime of srcAlloca ends at return. 1058 if (isa<ReturnInst>(&I)) 1059 break; 1060 1061 // Ignore the direct read of src in the load. 1062 if (&I == cpyLoad) 1063 continue; 1064 1065 // Check whether this instruction may mod/ref src through the captured 1066 // pointer (we have already any direct mod/refs in the loop above). 1067 // Also bail if we hit a terminator, as we don't want to scan into other 1068 // blocks. 1069 if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator()) 1070 return false; 1071 } 1072 } 1073 1074 // Since we're changing the parameter to the callsite, we need to make sure 1075 // that what would be the new parameter dominates the callsite. 1076 if (!DT->dominates(cpyDest, C)) { 1077 // Support moving a constant index GEP before the call. 1078 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 1079 if (GEP && GEP->hasAllConstantIndices() && 1080 DT->dominates(GEP->getPointerOperand(), C)) 1081 GEP->moveBefore(C); 1082 else 1083 return false; 1084 } 1085 1086 // In addition to knowing that the call does not access src in some 1087 // unexpected manner, for example via a global, which we deduce from 1088 // the use analysis, we also need to know that it does not sneakily 1089 // access dest. We rely on AA to figure this out for us. 1090 MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize)); 1091 ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize); 1092 // If necessary, perform additional analysis. 1093 if (isModOrRefSet(MR)) 1094 MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT); 1095 if (isModOrRefSet(MR)) 1096 return false; 1097 1098 // We can't create address space casts here because we don't know if they're 1099 // safe for the target. 1100 if (cpySrc->getType()->getPointerAddressSpace() != 1101 cpyDest->getType()->getPointerAddressSpace()) 1102 return false; 1103 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1104 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1105 cpySrc->getType()->getPointerAddressSpace() != 1106 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1107 return false; 1108 1109 // All the checks have passed, so do the transformation. 1110 bool changedArgument = false; 1111 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1112 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1113 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1114 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1115 cpyDest->getName(), C); 1116 changedArgument = true; 1117 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1118 C->setArgOperand(ArgI, Dest); 1119 else 1120 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1121 Dest, C->getArgOperand(ArgI)->getType(), 1122 Dest->getName(), C)); 1123 } 1124 1125 if (!changedArgument) 1126 return false; 1127 1128 // If the destination wasn't sufficiently aligned then increase its alignment. 1129 if (!isDestSufficientlyAligned) { 1130 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1131 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1132 } 1133 1134 if (SkippedLifetimeStart) { 1135 SkippedLifetimeStart->moveBefore(C); 1136 MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart), 1137 MSSA->getMemoryAccess(C)); 1138 } 1139 1140 // Update AA metadata 1141 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1142 // handled here, but combineMetadata doesn't support them yet 1143 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1144 LLVMContext::MD_noalias, 1145 LLVMContext::MD_invariant_group, 1146 LLVMContext::MD_access_group}; 1147 combineMetadata(C, cpyLoad, KnownIDs, true); 1148 if (cpyLoad != cpyStore) 1149 combineMetadata(C, cpyStore, KnownIDs, true); 1150 1151 ++NumCallSlot; 1152 return true; 1153 } 1154 1155 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1156 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1157 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1158 MemCpyInst *MDep, 1159 BatchAAResults &BAA) { 1160 // We can only transforms memcpy's where the dest of one is the source of the 1161 // other. 1162 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1163 return false; 1164 1165 // If dep instruction is reading from our current input, then it is a noop 1166 // transfer and substituting the input won't change this instruction. Just 1167 // ignore the input and let someone else zap MDep. This handles cases like: 1168 // memcpy(a <- a) 1169 // memcpy(b <- a) 1170 if (M->getSource() == MDep->getSource()) 1171 return false; 1172 1173 // Second, the length of the memcpy's must be the same, or the preceding one 1174 // must be larger than the following one. 1175 if (MDep->getLength() != M->getLength()) { 1176 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1177 auto *MLen = dyn_cast<ConstantInt>(M->getLength()); 1178 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1179 return false; 1180 } 1181 1182 // Verify that the copied-from memory doesn't change in between the two 1183 // transfers. For example, in: 1184 // memcpy(a <- b) 1185 // *b = 42; 1186 // memcpy(c <- a) 1187 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1188 // 1189 // TODO: If the code between M and MDep is transparent to the destination "c", 1190 // then we could still perform the xform by moving M up to the first memcpy. 1191 // TODO: It would be sufficient to check the MDep source up to the memcpy 1192 // size of M, rather than MDep. 1193 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), 1194 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1195 return false; 1196 1197 // If the dest of the second might alias the source of the first, then the 1198 // source and dest might overlap. In addition, if the source of the first 1199 // points to constant memory, they won't overlap by definition. Otherwise, we 1200 // still want to eliminate the intermediate value, but we have to generate a 1201 // memmove instead of memcpy. 1202 bool UseMemMove = false; 1203 if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1204 UseMemMove = true; 1205 1206 // If all checks passed, then we can transform M. 1207 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1208 << *MDep << '\n' << *M << '\n'); 1209 1210 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1211 // example we could be moving from movaps -> movq on x86. 1212 IRBuilder<> Builder(M); 1213 Instruction *NewM; 1214 if (UseMemMove) 1215 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1216 MDep->getRawSource(), MDep->getSourceAlign(), 1217 M->getLength(), M->isVolatile()); 1218 else if (isa<MemCpyInlineInst>(M)) { 1219 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1220 // never allowed since that would allow the latter to be lowered as a call 1221 // to an external function. 1222 NewM = Builder.CreateMemCpyInline( 1223 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1224 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1225 } else 1226 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1227 MDep->getRawSource(), MDep->getSourceAlign(), 1228 M->getLength(), M->isVolatile()); 1229 NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID); 1230 1231 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1232 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1233 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1234 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1235 1236 // Remove the instruction we're replacing. 1237 eraseInstruction(M); 1238 ++NumMemCpyInstr; 1239 return true; 1240 } 1241 1242 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1243 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1244 /// weren't copied over by \p MemCpy. 1245 /// 1246 /// In other words, transform: 1247 /// \code 1248 /// memset(dst, c, dst_size); 1249 /// memcpy(dst, src, src_size); 1250 /// \endcode 1251 /// into: 1252 /// \code 1253 /// memcpy(dst, src, src_size); 1254 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1255 /// \endcode 1256 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1257 MemSetInst *MemSet, 1258 BatchAAResults &BAA) { 1259 // We can only transform memset/memcpy with the same destination. 1260 if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1261 return false; 1262 1263 // Check that src and dst of the memcpy aren't the same. While memcpy 1264 // operands cannot partially overlap, exact equality is allowed. 1265 if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1266 return false; 1267 1268 // We know that dst up to src_size is not written. We now need to make sure 1269 // that dst up to dst_size is not accessed. (If we did not move the memset, 1270 // checking for reads would be sufficient.) 1271 if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet), 1272 MSSA->getMemoryAccess(MemSet), 1273 MSSA->getMemoryAccess(MemCpy))) 1274 return false; 1275 1276 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1277 Value *Dest = MemCpy->getRawDest(); 1278 Value *DestSize = MemSet->getLength(); 1279 Value *SrcSize = MemCpy->getLength(); 1280 1281 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1282 return false; 1283 1284 // If the sizes are the same, simply drop the memset instead of generating 1285 // a replacement with zero size. 1286 if (DestSize == SrcSize) { 1287 eraseInstruction(MemSet); 1288 return true; 1289 } 1290 1291 // By default, create an unaligned memset. 1292 Align Alignment = Align(1); 1293 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1294 // of the sum. 1295 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(), 1296 MemCpy->getDestAlign().valueOrOne()); 1297 if (DestAlign > 1) 1298 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1299 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue()); 1300 1301 IRBuilder<> Builder(MemCpy); 1302 1303 // If the sizes have different types, zext the smaller one. 1304 if (DestSize->getType() != SrcSize->getType()) { 1305 if (DestSize->getType()->getIntegerBitWidth() > 1306 SrcSize->getType()->getIntegerBitWidth()) 1307 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1308 else 1309 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1310 } 1311 1312 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1313 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1314 Value *MemsetLen = Builder.CreateSelect( 1315 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1316 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1317 Instruction *NewMemSet = Builder.CreateMemSet( 1318 Builder.CreateGEP( 1319 Builder.getInt8Ty(), 1320 Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)), 1321 SrcSize), 1322 MemSet->getOperand(1), MemsetLen, Alignment); 1323 1324 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1325 "MemCpy must be a MemoryDef"); 1326 // The new memset is inserted after the memcpy, but it is known that its 1327 // defining access is the memset about to be removed which immediately 1328 // precedes the memcpy. 1329 auto *LastDef = 1330 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1331 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1332 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1333 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1334 1335 eraseInstruction(MemSet); 1336 return true; 1337 } 1338 1339 /// Determine whether the instruction has undefined content for the given Size, 1340 /// either because it was freshly alloca'd or started its lifetime. 1341 static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V, 1342 MemoryDef *Def, Value *Size) { 1343 if (MSSA->isLiveOnEntryDef(Def)) 1344 return isa<AllocaInst>(getUnderlyingObject(V)); 1345 1346 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1347 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1348 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1349 1350 if (auto *CSize = dyn_cast<ConstantInt>(Size)) { 1351 if (AA.isMustAlias(V, II->getArgOperand(1)) && 1352 LTSize->getZExtValue() >= CSize->getZExtValue()) 1353 return true; 1354 } 1355 1356 // If the lifetime.start covers a whole alloca (as it almost always 1357 // does) and we're querying a pointer based on that alloca, then we know 1358 // the memory is definitely undef, regardless of how exactly we alias. 1359 // The size also doesn't matter, as an out-of-bounds access would be UB. 1360 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { 1361 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1362 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1363 if (std::optional<TypeSize> AllocaSize = 1364 Alloca->getAllocationSize(DL)) 1365 if (*AllocaSize == LTSize->getValue()) 1366 return true; 1367 } 1368 } 1369 } 1370 } 1371 1372 return false; 1373 } 1374 1375 /// Transform memcpy to memset when its source was just memset. 1376 /// In other words, turn: 1377 /// \code 1378 /// memset(dst1, c, dst1_size); 1379 /// memcpy(dst2, dst1, dst2_size); 1380 /// \endcode 1381 /// into: 1382 /// \code 1383 /// memset(dst1, c, dst1_size); 1384 /// memset(dst2, c, dst2_size); 1385 /// \endcode 1386 /// When dst2_size <= dst1_size. 1387 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1388 MemSetInst *MemSet, 1389 BatchAAResults &BAA) { 1390 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1391 // memcpying from the same address. Otherwise it is hard to reason about. 1392 if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1393 return false; 1394 1395 Value *MemSetSize = MemSet->getLength(); 1396 Value *CopySize = MemCpy->getLength(); 1397 1398 if (MemSetSize != CopySize) { 1399 // Make sure the memcpy doesn't read any more than what the memset wrote. 1400 // Don't worry about sizes larger than i64. 1401 1402 // A known memset size is required. 1403 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1404 if (!CMemSetSize) 1405 return false; 1406 1407 // A known memcpy size is also required. 1408 auto *CCopySize = dyn_cast<ConstantInt>(CopySize); 1409 if (!CCopySize) 1410 return false; 1411 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1412 // If the memcpy is larger than the memset, but the memory was undef prior 1413 // to the memset, we can just ignore the tail. Technically we're only 1414 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1415 // easily represent this location, we use the full 0..CopySize range. 1416 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1417 bool CanReduceSize = false; 1418 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1419 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1420 MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA); 1421 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1422 if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize)) 1423 CanReduceSize = true; 1424 1425 if (!CanReduceSize) 1426 return false; 1427 CopySize = MemSetSize; 1428 } 1429 } 1430 1431 IRBuilder<> Builder(MemCpy); 1432 Instruction *NewM = 1433 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1434 CopySize, MemCpy->getDestAlign()); 1435 auto *LastDef = 1436 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1437 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1438 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1439 1440 return true; 1441 } 1442 1443 /// Perform simplification of memcpy's. If we have memcpy A 1444 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1445 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1446 /// circumstances). This allows later passes to remove the first memcpy 1447 /// altogether. 1448 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1449 // We can only optimize non-volatile memcpy's. 1450 if (M->isVolatile()) return false; 1451 1452 // If the source and destination of the memcpy are the same, then zap it. 1453 if (M->getSource() == M->getDest()) { 1454 ++BBI; 1455 eraseInstruction(M); 1456 return true; 1457 } 1458 1459 // If copying from a constant, try to turn the memcpy into a memset. 1460 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) 1461 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1462 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1463 M->getModule()->getDataLayout())) { 1464 IRBuilder<> Builder(M); 1465 Instruction *NewM = Builder.CreateMemSet( 1466 M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false); 1467 auto *LastDef = 1468 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1469 auto *NewAccess = 1470 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1471 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1472 1473 eraseInstruction(M); 1474 ++NumCpyToSet; 1475 return true; 1476 } 1477 1478 BatchAAResults BAA(*AA); 1479 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1480 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. 1481 MemoryAccess *AnyClobber = MA->getDefiningAccess(); 1482 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1483 const MemoryAccess *DestClobber = 1484 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA); 1485 1486 // Try to turn a partially redundant memset + memcpy into 1487 // memcpy + smaller memset. We don't need the memcpy size for this. 1488 // The memcpy most post-dom the memset, so limit this to the same basic 1489 // block. A non-local generalization is likely not worthwhile. 1490 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1491 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1492 if (DestClobber->getBlock() == M->getParent()) 1493 if (processMemSetMemCpyDependence(M, MDep, BAA)) 1494 return true; 1495 1496 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1497 AnyClobber, MemoryLocation::getForSource(M), BAA); 1498 1499 // There are four possible optimizations we can do for memcpy: 1500 // a) memcpy-memcpy xform which exposes redundance for DSE. 1501 // b) call-memcpy xform for return slot optimization. 1502 // c) memcpy from freshly alloca'd space or space that has just started 1503 // its lifetime copies undefined data, and we can therefore eliminate 1504 // the memcpy in favor of the data that was already at the destination. 1505 // d) memcpy from a just-memset'd source can be turned into memset. 1506 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1507 if (Instruction *MI = MD->getMemoryInst()) { 1508 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1509 if (auto *C = dyn_cast<CallInst>(MI)) { 1510 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1511 TypeSize::getFixed(CopySize->getZExtValue()), 1512 M->getDestAlign().valueOrOne(), BAA, 1513 [C]() -> CallInst * { return C; })) { 1514 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1515 << " call: " << *C << "\n" 1516 << " memcpy: " << *M << "\n"); 1517 eraseInstruction(M); 1518 ++NumMemCpyInstr; 1519 return true; 1520 } 1521 } 1522 } 1523 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1524 return processMemCpyMemCpyDependence(M, MDep, BAA); 1525 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1526 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) { 1527 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1528 eraseInstruction(M); 1529 ++NumCpyToSet; 1530 return true; 1531 } 1532 } 1533 } 1534 1535 if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) { 1536 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1537 eraseInstruction(M); 1538 ++NumMemCpyInstr; 1539 return true; 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1547 /// not to alias. 1548 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1549 // See if the source could be modified by this memmove potentially. 1550 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1551 return false; 1552 1553 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1554 << "\n"); 1555 1556 // If not, then we know we can transform this. 1557 Type *ArgTys[3] = { M->getRawDest()->getType(), 1558 M->getRawSource()->getType(), 1559 M->getLength()->getType() }; 1560 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1561 Intrinsic::memcpy, ArgTys)); 1562 1563 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1564 // aliasing guarantees). 1565 1566 ++NumMoveToCpy; 1567 return true; 1568 } 1569 1570 /// This is called on every byval argument in call sites. 1571 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1572 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1573 // Find out what feeds this byval argument. 1574 Value *ByValArg = CB.getArgOperand(ArgNo); 1575 Type *ByValTy = CB.getParamByValType(ArgNo); 1576 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1577 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1578 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1579 if (!CallAccess) 1580 return false; 1581 MemCpyInst *MDep = nullptr; 1582 BatchAAResults BAA(*AA); 1583 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1584 CallAccess->getDefiningAccess(), Loc, BAA); 1585 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1586 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1587 1588 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1589 // a memcpy, see if we can byval from the source of the memcpy instead of the 1590 // result. 1591 if (!MDep || MDep->isVolatile() || 1592 ByValArg->stripPointerCasts() != MDep->getDest()) 1593 return false; 1594 1595 // The length of the memcpy must be larger or equal to the size of the byval. 1596 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1597 if (!C1 || !TypeSize::isKnownGE( 1598 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1599 return false; 1600 1601 // Get the alignment of the byval. If the call doesn't specify the alignment, 1602 // then it is some target specific value that we can't know. 1603 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1604 if (!ByValAlign) return false; 1605 1606 // If it is greater than the memcpy, then we check to see if we can force the 1607 // source of the memcpy to the alignment we need. If we fail, we bail out. 1608 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1609 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1610 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1611 DT) < *ByValAlign) 1612 return false; 1613 1614 // The address space of the memcpy source must match the byval argument 1615 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1616 ByValArg->getType()->getPointerAddressSpace()) 1617 return false; 1618 1619 // Verify that the copied-from memory doesn't change in between the memcpy and 1620 // the byval call. 1621 // memcpy(a <- b) 1622 // *b = 42; 1623 // foo(*a) 1624 // It would be invalid to transform the second memcpy into foo(*b). 1625 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep), 1626 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1627 return false; 1628 1629 Value *TmpCast = MDep->getSource(); 1630 if (MDep->getSource()->getType() != ByValArg->getType()) { 1631 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1632 "tmpcast", &CB); 1633 // Set the tmpcast's DebugLoc to MDep's 1634 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1635 TmpCast = TmpBitCast; 1636 } 1637 1638 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1639 << " " << *MDep << "\n" 1640 << " " << CB << "\n"); 1641 1642 // Otherwise we're good! Update the byval argument. 1643 CB.setArgOperand(ArgNo, TmpCast); 1644 ++NumMemCpyInstr; 1645 return true; 1646 } 1647 1648 /// Executes one iteration of MemCpyOptPass. 1649 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1650 bool MadeChange = false; 1651 1652 // Walk all instruction in the function. 1653 for (BasicBlock &BB : F) { 1654 // Skip unreachable blocks. For example processStore assumes that an 1655 // instruction in a BB can't be dominated by a later instruction in the 1656 // same BB (which is a scenario that can happen for an unreachable BB that 1657 // has itself as a predecessor). 1658 if (!DT->isReachableFromEntry(&BB)) 1659 continue; 1660 1661 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1662 // Avoid invalidating the iterator. 1663 Instruction *I = &*BI++; 1664 1665 bool RepeatInstruction = false; 1666 1667 if (auto *SI = dyn_cast<StoreInst>(I)) 1668 MadeChange |= processStore(SI, BI); 1669 else if (auto *M = dyn_cast<MemSetInst>(I)) 1670 RepeatInstruction = processMemSet(M, BI); 1671 else if (auto *M = dyn_cast<MemCpyInst>(I)) 1672 RepeatInstruction = processMemCpy(M, BI); 1673 else if (auto *M = dyn_cast<MemMoveInst>(I)) 1674 RepeatInstruction = processMemMove(M); 1675 else if (auto *CB = dyn_cast<CallBase>(I)) { 1676 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1677 if (CB->isByValArgument(i)) 1678 MadeChange |= processByValArgument(*CB, i); 1679 } 1680 1681 // Reprocess the instruction if desired. 1682 if (RepeatInstruction) { 1683 if (BI != BB.begin()) 1684 --BI; 1685 MadeChange = true; 1686 } 1687 } 1688 } 1689 1690 return MadeChange; 1691 } 1692 1693 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1694 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1695 auto *AA = &AM.getResult<AAManager>(F); 1696 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1697 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1698 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1699 1700 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1701 if (!MadeChange) 1702 return PreservedAnalyses::all(); 1703 1704 PreservedAnalyses PA; 1705 PA.preserveSet<CFGAnalyses>(); 1706 PA.preserve<MemorySSAAnalysis>(); 1707 return PA; 1708 } 1709 1710 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1711 AliasAnalysis *AA_, AssumptionCache *AC_, 1712 DominatorTree *DT_, MemorySSA *MSSA_) { 1713 bool MadeChange = false; 1714 TLI = TLI_; 1715 AA = AA_; 1716 AC = AC_; 1717 DT = DT_; 1718 MSSA = MSSA_; 1719 MemorySSAUpdater MSSAU_(MSSA_); 1720 MSSAU = &MSSAU_; 1721 1722 while (true) { 1723 if (!iterateOnFunction(F)) 1724 break; 1725 MadeChange = true; 1726 } 1727 1728 if (VerifyMemorySSA) 1729 MSSA_->verifyMemorySSA(); 1730 1731 return MadeChange; 1732 } 1733 1734 /// This is the main transformation entry point for a function. 1735 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1736 if (skipFunction(F)) 1737 return false; 1738 1739 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1740 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1741 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1742 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1743 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1744 1745 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1746 } 1747