xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <optional>
58 
59 using namespace llvm;
60 
61 #define DEBUG_TYPE "memcpyopt"
62 
63 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
64     "enable-memcpyopt-without-libcalls", cl::Hidden,
65     cl::desc("Enable memcpyopt even when libcalls are disabled"));
66 
67 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
68 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
69 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
70 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
71 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
72 
73 namespace {
74 
75 /// Represents a range of memset'd bytes with the ByteVal value.
76 /// This allows us to analyze stores like:
77 ///   store 0 -> P+1
78 ///   store 0 -> P+0
79 ///   store 0 -> P+3
80 ///   store 0 -> P+2
81 /// which sometimes happens with stores to arrays of structs etc.  When we see
82 /// the first store, we make a range [1, 2).  The second store extends the range
83 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
84 /// two ranges into [0, 3) which is memset'able.
85 struct MemsetRange {
86   // Start/End - A semi range that describes the span that this range covers.
87   // The range is closed at the start and open at the end: [Start, End).
88   int64_t Start, End;
89 
90   /// StartPtr - The getelementptr instruction that points to the start of the
91   /// range.
92   Value *StartPtr;
93 
94   /// Alignment - The known alignment of the first store.
95   MaybeAlign Alignment;
96 
97   /// TheStores - The actual stores that make up this range.
98   SmallVector<Instruction*, 16> TheStores;
99 
100   bool isProfitableToUseMemset(const DataLayout &DL) const;
101 };
102 
103 } // end anonymous namespace
104 
105 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
106   // If we found more than 4 stores to merge or 16 bytes, use memset.
107   if (TheStores.size() >= 4 || End-Start >= 16) return true;
108 
109   // If there is nothing to merge, don't do anything.
110   if (TheStores.size() < 2) return false;
111 
112   // If any of the stores are a memset, then it is always good to extend the
113   // memset.
114   for (Instruction *SI : TheStores)
115     if (!isa<StoreInst>(SI))
116       return true;
117 
118   // Assume that the code generator is capable of merging pairs of stores
119   // together if it wants to.
120   if (TheStores.size() == 2) return false;
121 
122   // If we have fewer than 8 stores, it can still be worthwhile to do this.
123   // For example, merging 4 i8 stores into an i32 store is useful almost always.
124   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
125   // memset will be split into 2 32-bit stores anyway) and doing so can
126   // pessimize the llvm optimizer.
127   //
128   // Since we don't have perfect knowledge here, make some assumptions: assume
129   // the maximum GPR width is the same size as the largest legal integer
130   // size. If so, check to see whether we will end up actually reducing the
131   // number of stores used.
132   unsigned Bytes = unsigned(End-Start);
133   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
134   if (MaxIntSize == 0)
135     MaxIntSize = 1;
136   unsigned NumPointerStores = Bytes / MaxIntSize;
137 
138   // Assume the remaining bytes if any are done a byte at a time.
139   unsigned NumByteStores = Bytes % MaxIntSize;
140 
141   // If we will reduce the # stores (according to this heuristic), do the
142   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
143   // etc.
144   return TheStores.size() > NumPointerStores+NumByteStores;
145 }
146 
147 namespace {
148 
149 class MemsetRanges {
150   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
151 
152   /// A sorted list of the memset ranges.
153   SmallVector<MemsetRange, 8> Ranges;
154 
155   const DataLayout &DL;
156 
157 public:
158   MemsetRanges(const DataLayout &DL) : DL(DL) {}
159 
160   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
161 
162   const_iterator begin() const { return Ranges.begin(); }
163   const_iterator end() const { return Ranges.end(); }
164   bool empty() const { return Ranges.empty(); }
165 
166   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
167     if (auto *SI = dyn_cast<StoreInst>(Inst))
168       addStore(OffsetFromFirst, SI);
169     else
170       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
171   }
172 
173   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
174     TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
175     assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
176     addRange(OffsetFromFirst, StoreSize.getFixedValue(),
177              SI->getPointerOperand(), SI->getAlign(), SI);
178   }
179 
180   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
181     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
182     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
183   }
184 
185   void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
186                 Instruction *Inst);
187 };
188 
189 } // end anonymous namespace
190 
191 /// Add a new store to the MemsetRanges data structure.  This adds a
192 /// new range for the specified store at the specified offset, merging into
193 /// existing ranges as appropriate.
194 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
195                             MaybeAlign Alignment, Instruction *Inst) {
196   int64_t End = Start+Size;
197 
198   range_iterator I = partition_point(
199       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
200 
201   // We now know that I == E, in which case we didn't find anything to merge
202   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
203   // to insert a new range.  Handle this now.
204   if (I == Ranges.end() || End < I->Start) {
205     MemsetRange &R = *Ranges.insert(I, MemsetRange());
206     R.Start        = Start;
207     R.End          = End;
208     R.StartPtr     = Ptr;
209     R.Alignment    = Alignment;
210     R.TheStores.push_back(Inst);
211     return;
212   }
213 
214   // This store overlaps with I, add it.
215   I->TheStores.push_back(Inst);
216 
217   // At this point, we may have an interval that completely contains our store.
218   // If so, just add it to the interval and return.
219   if (I->Start <= Start && I->End >= End)
220     return;
221 
222   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
223   // but is not entirely contained within the range.
224 
225   // See if the range extends the start of the range.  In this case, it couldn't
226   // possibly cause it to join the prior range, because otherwise we would have
227   // stopped on *it*.
228   if (Start < I->Start) {
229     I->Start = Start;
230     I->StartPtr = Ptr;
231     I->Alignment = Alignment;
232   }
233 
234   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
235   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
236   // End.
237   if (End > I->End) {
238     I->End = End;
239     range_iterator NextI = I;
240     while (++NextI != Ranges.end() && End >= NextI->Start) {
241       // Merge the range in.
242       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
243       if (NextI->End > I->End)
244         I->End = NextI->End;
245       Ranges.erase(NextI);
246       NextI = I;
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                         MemCpyOptLegacyPass Pass
253 //===----------------------------------------------------------------------===//
254 
255 // Check that V is either not accessible by the caller, or unwinding cannot
256 // occur between Start and End.
257 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
258                                          Instruction *End) {
259   assert(Start->getParent() == End->getParent() && "Must be in same block");
260   // Function can't unwind, so it also can't be visible through unwinding.
261   if (Start->getFunction()->doesNotThrow())
262     return false;
263 
264   // Object is not visible on unwind.
265   // TODO: Support RequiresNoCaptureBeforeUnwind case.
266   bool RequiresNoCaptureBeforeUnwind;
267   if (isNotVisibleOnUnwind(getUnderlyingObject(V),
268                            RequiresNoCaptureBeforeUnwind) &&
269       !RequiresNoCaptureBeforeUnwind)
270     return false;
271 
272   // Check whether there are any unwinding instructions in the range.
273   return any_of(make_range(Start->getIterator(), End->getIterator()),
274                 [](const Instruction &I) { return I.mayThrow(); });
275 }
276 
277 void MemCpyOptPass::eraseInstruction(Instruction *I) {
278   MSSAU->removeMemoryAccess(I);
279   I->eraseFromParent();
280 }
281 
282 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
283 // Start and End must be in the same block.
284 // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
285 // intrinsic and store it inside SkippedLifetimeStart.
286 static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc,
287                             const MemoryUseOrDef *Start,
288                             const MemoryUseOrDef *End,
289                             Instruction **SkippedLifetimeStart = nullptr) {
290   assert(Start->getBlock() == End->getBlock() && "Only local supported");
291   for (const MemoryAccess &MA :
292        make_range(++Start->getIterator(), End->getIterator())) {
293     Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
294     if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
295       auto *II = dyn_cast<IntrinsicInst>(I);
296       if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
297           SkippedLifetimeStart && !*SkippedLifetimeStart) {
298         *SkippedLifetimeStart = I;
299         continue;
300       }
301 
302       return true;
303     }
304   }
305   return false;
306 }
307 
308 // Check for mod of Loc between Start and End, excluding both boundaries.
309 // Start and End can be in different blocks.
310 static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA,
311                            MemoryLocation Loc, const MemoryUseOrDef *Start,
312                            const MemoryUseOrDef *End) {
313   if (isa<MemoryUse>(End)) {
314     // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
315     // Manually check read accesses between Start and End, if they are in the
316     // same block, for clobbers. Otherwise assume Loc is clobbered.
317     return Start->getBlock() != End->getBlock() ||
318            any_of(
319                make_range(std::next(Start->getIterator()), End->getIterator()),
320                [&AA, Loc](const MemoryAccess &Acc) {
321                  if (isa<MemoryUse>(&Acc))
322                    return false;
323                  Instruction *AccInst =
324                      cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
325                  return isModSet(AA.getModRefInfo(AccInst, Loc));
326                });
327   }
328 
329   // TODO: Only walk until we hit Start.
330   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
331       End->getDefiningAccess(), Loc, AA);
332   return !MSSA->dominates(Clobber, Start);
333 }
334 
335 // Update AA metadata
336 static void combineAAMetadata(Instruction *ReplInst, Instruction *I) {
337   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
338   // handled here, but combineMetadata doesn't support them yet
339   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
340                          LLVMContext::MD_noalias,
341                          LLVMContext::MD_invariant_group,
342                          LLVMContext::MD_access_group};
343   combineMetadata(ReplInst, I, KnownIDs, true);
344 }
345 
346 /// When scanning forward over instructions, we look for some other patterns to
347 /// fold away. In particular, this looks for stores to neighboring locations of
348 /// memory. If it sees enough consecutive ones, it attempts to merge them
349 /// together into a memcpy/memset.
350 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
351                                                  Value *StartPtr,
352                                                  Value *ByteVal) {
353   const DataLayout &DL = StartInst->getModule()->getDataLayout();
354 
355   // We can't track scalable types
356   if (auto *SI = dyn_cast<StoreInst>(StartInst))
357     if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
358       return nullptr;
359 
360   // Okay, so we now have a single store that can be splatable.  Scan to find
361   // all subsequent stores of the same value to offset from the same pointer.
362   // Join these together into ranges, so we can decide whether contiguous blocks
363   // are stored.
364   MemsetRanges Ranges(DL);
365 
366   BasicBlock::iterator BI(StartInst);
367 
368   // Keeps track of the last memory use or def before the insertion point for
369   // the new memset. The new MemoryDef for the inserted memsets will be inserted
370   // after MemInsertPoint. It points to either LastMemDef or to the last user
371   // before the insertion point of the memset, if there are any such users.
372   MemoryUseOrDef *MemInsertPoint = nullptr;
373   // Keeps track of the last MemoryDef between StartInst and the insertion point
374   // for the new memset. This will become the defining access of the inserted
375   // memsets.
376   MemoryDef *LastMemDef = nullptr;
377   for (++BI; !BI->isTerminator(); ++BI) {
378     auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
379         MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
380     if (CurrentAcc) {
381       MemInsertPoint = CurrentAcc;
382       if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
383         LastMemDef = CurrentDef;
384     }
385 
386     // Calls that only access inaccessible memory do not block merging
387     // accessible stores.
388     if (auto *CB = dyn_cast<CallBase>(BI)) {
389       if (CB->onlyAccessesInaccessibleMemory())
390         continue;
391     }
392 
393     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
394       // If the instruction is readnone, ignore it, otherwise bail out.  We
395       // don't even allow readonly here because we don't want something like:
396       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
397       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
398         break;
399       continue;
400     }
401 
402     if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
403       // If this is a store, see if we can merge it in.
404       if (!NextStore->isSimple()) break;
405 
406       Value *StoredVal = NextStore->getValueOperand();
407 
408       // Don't convert stores of non-integral pointer types to memsets (which
409       // stores integers).
410       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
411         break;
412 
413       // We can't track ranges involving scalable types.
414       if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
415         break;
416 
417       // Check to see if this stored value is of the same byte-splattable value.
418       Value *StoredByte = isBytewiseValue(StoredVal, DL);
419       if (isa<UndefValue>(ByteVal) && StoredByte)
420         ByteVal = StoredByte;
421       if (ByteVal != StoredByte)
422         break;
423 
424       // Check to see if this store is to a constant offset from the start ptr.
425       std::optional<int64_t> Offset =
426           NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, DL);
427       if (!Offset)
428         break;
429 
430       Ranges.addStore(*Offset, NextStore);
431     } else {
432       auto *MSI = cast<MemSetInst>(BI);
433 
434       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
435           !isa<ConstantInt>(MSI->getLength()))
436         break;
437 
438       // Check to see if this store is to a constant offset from the start ptr.
439       std::optional<int64_t> Offset =
440           MSI->getDest()->getPointerOffsetFrom(StartPtr, DL);
441       if (!Offset)
442         break;
443 
444       Ranges.addMemSet(*Offset, MSI);
445     }
446   }
447 
448   // If we have no ranges, then we just had a single store with nothing that
449   // could be merged in.  This is a very common case of course.
450   if (Ranges.empty())
451     return nullptr;
452 
453   // If we had at least one store that could be merged in, add the starting
454   // store as well.  We try to avoid this unless there is at least something
455   // interesting as a small compile-time optimization.
456   Ranges.addInst(0, StartInst);
457 
458   // If we create any memsets, we put it right before the first instruction that
459   // isn't part of the memset block.  This ensure that the memset is dominated
460   // by any addressing instruction needed by the start of the block.
461   IRBuilder<> Builder(&*BI);
462 
463   // Now that we have full information about ranges, loop over the ranges and
464   // emit memset's for anything big enough to be worthwhile.
465   Instruction *AMemSet = nullptr;
466   for (const MemsetRange &Range : Ranges) {
467     if (Range.TheStores.size() == 1) continue;
468 
469     // If it is profitable to lower this range to memset, do so now.
470     if (!Range.isProfitableToUseMemset(DL))
471       continue;
472 
473     // Otherwise, we do want to transform this!  Create a new memset.
474     // Get the starting pointer of the block.
475     StartPtr = Range.StartPtr;
476 
477     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
478                                    Range.Alignment);
479     AMemSet->mergeDIAssignID(Range.TheStores);
480 
481     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
482                                                    : Range.TheStores) dbgs()
483                                               << *SI << '\n';
484                dbgs() << "With: " << *AMemSet << '\n');
485     if (!Range.TheStores.empty())
486       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
487 
488     assert(LastMemDef && MemInsertPoint &&
489            "Both LastMemDef and MemInsertPoint need to be set");
490     auto *NewDef =
491         cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
492                             ? MSSAU->createMemoryAccessBefore(
493                                   AMemSet, LastMemDef, MemInsertPoint)
494                             : MSSAU->createMemoryAccessAfter(
495                                   AMemSet, LastMemDef, MemInsertPoint));
496     MSSAU->insertDef(NewDef, /*RenameUses=*/true);
497     LastMemDef = NewDef;
498     MemInsertPoint = NewDef;
499 
500     // Zap all the stores.
501     for (Instruction *SI : Range.TheStores)
502       eraseInstruction(SI);
503 
504     ++NumMemSetInfer;
505   }
506 
507   return AMemSet;
508 }
509 
510 // This method try to lift a store instruction before position P.
511 // It will lift the store and its argument + that anything that
512 // may alias with these.
513 // The method returns true if it was successful.
514 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
515   // If the store alias this position, early bail out.
516   MemoryLocation StoreLoc = MemoryLocation::get(SI);
517   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
518     return false;
519 
520   // Keep track of the arguments of all instruction we plan to lift
521   // so we can make sure to lift them as well if appropriate.
522   DenseSet<Instruction*> Args;
523   auto AddArg = [&](Value *Arg) {
524     auto *I = dyn_cast<Instruction>(Arg);
525     if (I && I->getParent() == SI->getParent()) {
526       // Cannot hoist user of P above P
527       if (I == P) return false;
528       Args.insert(I);
529     }
530     return true;
531   };
532   if (!AddArg(SI->getPointerOperand()))
533     return false;
534 
535   // Instruction to lift before P.
536   SmallVector<Instruction *, 8> ToLift{SI};
537 
538   // Memory locations of lifted instructions.
539   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
540 
541   // Lifted calls.
542   SmallVector<const CallBase *, 8> Calls;
543 
544   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
545 
546   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
547     auto *C = &*I;
548 
549     // Make sure hoisting does not perform a store that was not guaranteed to
550     // happen.
551     if (!isGuaranteedToTransferExecutionToSuccessor(C))
552       return false;
553 
554     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));
555 
556     bool NeedLift = false;
557     if (Args.erase(C))
558       NeedLift = true;
559     else if (MayAlias) {
560       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
561         return isModOrRefSet(AA->getModRefInfo(C, ML));
562       });
563 
564       if (!NeedLift)
565         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
566           return isModOrRefSet(AA->getModRefInfo(C, Call));
567         });
568     }
569 
570     if (!NeedLift)
571       continue;
572 
573     if (MayAlias) {
574       // Since LI is implicitly moved downwards past the lifted instructions,
575       // none of them may modify its source.
576       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
577         return false;
578       else if (const auto *Call = dyn_cast<CallBase>(C)) {
579         // If we can't lift this before P, it's game over.
580         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
581           return false;
582 
583         Calls.push_back(Call);
584       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
585         // If we can't lift this before P, it's game over.
586         auto ML = MemoryLocation::get(C);
587         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
588           return false;
589 
590         MemLocs.push_back(ML);
591       } else
592         // We don't know how to lift this instruction.
593         return false;
594     }
595 
596     ToLift.push_back(C);
597     for (Value *Op : C->operands())
598       if (!AddArg(Op))
599         return false;
600   }
601 
602   // Find MSSA insertion point. Normally P will always have a corresponding
603   // memory access before which we can insert. However, with non-standard AA
604   // pipelines, there may be a mismatch between AA and MSSA, in which case we
605   // will scan for a memory access before P. In either case, we know for sure
606   // that at least the load will have a memory access.
607   // TODO: Simplify this once P will be determined by MSSA, in which case the
608   // discrepancy can no longer occur.
609   MemoryUseOrDef *MemInsertPoint = nullptr;
610   if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
611     MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
612   } else {
613     const Instruction *ConstP = P;
614     for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
615                                            ++LI->getReverseIterator())) {
616       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
617         MemInsertPoint = MA;
618         break;
619       }
620     }
621   }
622 
623   // We made it, we need to lift.
624   for (auto *I : llvm::reverse(ToLift)) {
625     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
626     I->moveBefore(P);
627     assert(MemInsertPoint && "Must have found insert point");
628     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
629       MSSAU->moveAfter(MA, MemInsertPoint);
630       MemInsertPoint = MA;
631     }
632   }
633 
634   return true;
635 }
636 
637 bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
638                                        const DataLayout &DL,
639                                        BasicBlock::iterator &BBI) {
640   if (!LI->isSimple() || !LI->hasOneUse() ||
641       LI->getParent() != SI->getParent())
642     return false;
643 
644   auto *T = LI->getType();
645   // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
646   // the corresponding libcalls are not available.
647   // TODO: We should really distinguish between libcall availability and
648   // our ability to introduce intrinsics.
649   if (T->isAggregateType() &&
650       (EnableMemCpyOptWithoutLibcalls ||
651        (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
652     MemoryLocation LoadLoc = MemoryLocation::get(LI);
653 
654     // We use alias analysis to check if an instruction may store to
655     // the memory we load from in between the load and the store. If
656     // such an instruction is found, we try to promote there instead
657     // of at the store position.
658     // TODO: Can use MSSA for this.
659     Instruction *P = SI;
660     for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
661       if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
662         P = &I;
663         break;
664       }
665     }
666 
667     // We found an instruction that may write to the loaded memory.
668     // We can try to promote at this position instead of the store
669     // position if nothing aliases the store memory after this and the store
670     // destination is not in the range.
671     if (P && P != SI) {
672       if (!moveUp(SI, P, LI))
673         P = nullptr;
674     }
675 
676     // If a valid insertion position is found, then we can promote
677     // the load/store pair to a memcpy.
678     if (P) {
679       // If we load from memory that may alias the memory we store to,
680       // memmove must be used to preserve semantic. If not, memcpy can
681       // be used. Also, if we load from constant memory, memcpy can be used
682       // as the constant memory won't be modified.
683       bool UseMemMove = false;
684       if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
685         UseMemMove = true;
686 
687       uint64_t Size = DL.getTypeStoreSize(T);
688 
689       IRBuilder<> Builder(P);
690       Instruction *M;
691       if (UseMemMove)
692         M = Builder.CreateMemMove(
693             SI->getPointerOperand(), SI->getAlign(),
694             LI->getPointerOperand(), LI->getAlign(), Size);
695       else
696         M = Builder.CreateMemCpy(
697             SI->getPointerOperand(), SI->getAlign(),
698             LI->getPointerOperand(), LI->getAlign(), Size);
699       M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
700 
701       LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
702                         << *M << "\n");
703 
704       auto *LastDef =
705           cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
706       auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
707       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
708 
709       eraseInstruction(SI);
710       eraseInstruction(LI);
711       ++NumMemCpyInstr;
712 
713       // Make sure we do not invalidate the iterator.
714       BBI = M->getIterator();
715       return true;
716     }
717   }
718 
719   // Detect cases where we're performing call slot forwarding, but
720   // happen to be using a load-store pair to implement it, rather than
721   // a memcpy.
722   BatchAAResults BAA(*AA);
723   auto GetCall = [&]() -> CallInst * {
724     // We defer this expensive clobber walk until the cheap checks
725     // have been done on the source inside performCallSlotOptzn.
726     if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
727             MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
728       return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
729     return nullptr;
730   };
731 
732   bool Changed = performCallSlotOptzn(
733       LI, SI, SI->getPointerOperand()->stripPointerCasts(),
734       LI->getPointerOperand()->stripPointerCasts(),
735       DL.getTypeStoreSize(SI->getOperand(0)->getType()),
736       std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
737   if (Changed) {
738     eraseInstruction(SI);
739     eraseInstruction(LI);
740     ++NumMemCpyInstr;
741     return true;
742   }
743 
744   return false;
745 }
746 
747 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
748   if (!SI->isSimple()) return false;
749 
750   // Avoid merging nontemporal stores since the resulting
751   // memcpy/memset would not be able to preserve the nontemporal hint.
752   // In theory we could teach how to propagate the !nontemporal metadata to
753   // memset calls. However, that change would force the backend to
754   // conservatively expand !nontemporal memset calls back to sequences of
755   // store instructions (effectively undoing the merging).
756   if (SI->getMetadata(LLVMContext::MD_nontemporal))
757     return false;
758 
759   const DataLayout &DL = SI->getModule()->getDataLayout();
760 
761   Value *StoredVal = SI->getValueOperand();
762 
763   // Not all the transforms below are correct for non-integral pointers, bail
764   // until we've audited the individual pieces.
765   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
766     return false;
767 
768   // Load to store forwarding can be interpreted as memcpy.
769   if (auto *LI = dyn_cast<LoadInst>(StoredVal))
770     return processStoreOfLoad(SI, LI, DL, BBI);
771 
772   // The following code creates memset intrinsics out of thin air. Don't do
773   // this if the corresponding libfunc is not available.
774   // TODO: We should really distinguish between libcall availability and
775   // our ability to introduce intrinsics.
776   if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
777     return false;
778 
779   // There are two cases that are interesting for this code to handle: memcpy
780   // and memset.  Right now we only handle memset.
781 
782   // Ensure that the value being stored is something that can be memset'able a
783   // byte at a time like "0" or "-1" or any width, as well as things like
784   // 0xA0A0A0A0 and 0.0.
785   auto *V = SI->getOperand(0);
786   if (Value *ByteVal = isBytewiseValue(V, DL)) {
787     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
788                                               ByteVal)) {
789       BBI = I->getIterator(); // Don't invalidate iterator.
790       return true;
791     }
792 
793     // If we have an aggregate, we try to promote it to memset regardless
794     // of opportunity for merging as it can expose optimization opportunities
795     // in subsequent passes.
796     auto *T = V->getType();
797     if (T->isAggregateType()) {
798       uint64_t Size = DL.getTypeStoreSize(T);
799       IRBuilder<> Builder(SI);
800       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
801                                      SI->getAlign());
802       M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
803 
804       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
805 
806       // The newly inserted memset is immediately overwritten by the original
807       // store, so we do not need to rename uses.
808       auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
809       auto *NewAccess = MSSAU->createMemoryAccessBefore(
810           M, StoreDef->getDefiningAccess(), StoreDef);
811       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
812 
813       eraseInstruction(SI);
814       NumMemSetInfer++;
815 
816       // Make sure we do not invalidate the iterator.
817       BBI = M->getIterator();
818       return true;
819     }
820   }
821 
822   return false;
823 }
824 
825 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
826   // See if there is another memset or store neighboring this memset which
827   // allows us to widen out the memset to do a single larger store.
828   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
829     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
830                                               MSI->getValue())) {
831       BBI = I->getIterator(); // Don't invalidate iterator.
832       return true;
833     }
834   return false;
835 }
836 
837 /// Takes a memcpy and a call that it depends on,
838 /// and checks for the possibility of a call slot optimization by having
839 /// the call write its result directly into the destination of the memcpy.
840 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
841                                          Instruction *cpyStore, Value *cpyDest,
842                                          Value *cpySrc, TypeSize cpySize,
843                                          Align cpyDestAlign, BatchAAResults &BAA,
844                                          std::function<CallInst *()> GetC) {
845   // The general transformation to keep in mind is
846   //
847   //   call @func(..., src, ...)
848   //   memcpy(dest, src, ...)
849   //
850   // ->
851   //
852   //   memcpy(dest, src, ...)
853   //   call @func(..., dest, ...)
854   //
855   // Since moving the memcpy is technically awkward, we additionally check that
856   // src only holds uninitialized values at the moment of the call, meaning that
857   // the memcpy can be discarded rather than moved.
858 
859   // We can't optimize scalable types.
860   if (cpySize.isScalable())
861     return false;
862 
863   // Require that src be an alloca.  This simplifies the reasoning considerably.
864   auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
865   if (!srcAlloca)
866     return false;
867 
868   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
869   if (!srcArraySize)
870     return false;
871 
872   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
873   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
874                      srcArraySize->getZExtValue();
875 
876   if (cpySize < srcSize)
877     return false;
878 
879   CallInst *C = GetC();
880   if (!C)
881     return false;
882 
883   // Lifetime marks shouldn't be operated on.
884   if (Function *F = C->getCalledFunction())
885     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
886       return false;
887 
888 
889   if (C->getParent() != cpyStore->getParent()) {
890     LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
891     return false;
892   }
893 
894   MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ?
895     MemoryLocation::get(cpyStore) :
896     MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
897 
898   // Check that nothing touches the dest of the copy between
899   // the call and the store/memcpy.
900   Instruction *SkippedLifetimeStart = nullptr;
901   if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
902                       MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
903     LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
904     return false;
905   }
906 
907   // If we need to move a lifetime.start above the call, make sure that we can
908   // actually do so. If the argument is bitcasted for example, we would have to
909   // move the bitcast as well, which we don't handle.
910   if (SkippedLifetimeStart) {
911     auto *LifetimeArg =
912         dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1));
913     if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
914         C->comesBefore(LifetimeArg))
915       return false;
916   }
917 
918   // Check that accessing the first srcSize bytes of dest will not cause a
919   // trap.  Otherwise the transform is invalid since it might cause a trap
920   // to occur earlier than it otherwise would.
921   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
922                                           DL, C, AC, DT)) {
923     LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
924     return false;
925   }
926 
927   // Make sure that nothing can observe cpyDest being written early. There are
928   // a number of cases to consider:
929   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
930   //     the transform.
931   //  2. C itself may not access cpyDest (prior to the transform). This is
932   //     checked further below.
933   //  3. If cpyDest is accessible to the caller of this function (potentially
934   //     captured and not based on an alloca), we need to ensure that we cannot
935   //     unwind between C and cpyStore. This is checked here.
936   //  4. If cpyDest is potentially captured, there may be accesses to it from
937   //     another thread. In this case, we need to check that cpyStore is
938   //     guaranteed to be executed if C is. As it is a non-atomic access, it
939   //     renders accesses from other threads undefined.
940   //     TODO: This is currently not checked.
941   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
942     LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
943     return false;
944   }
945 
946   // Check that dest points to memory that is at least as aligned as src.
947   Align srcAlign = srcAlloca->getAlign();
948   bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
949   // If dest is not aligned enough and we can't increase its alignment then
950   // bail out.
951   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
952     LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
953     return false;
954   }
955 
956   // Check that src is not accessed except via the call and the memcpy.  This
957   // guarantees that it holds only undefined values when passed in (so the final
958   // memcpy can be dropped), that it is not read or written between the call and
959   // the memcpy, and that writing beyond the end of it is undefined.
960   SmallVector<User *, 8> srcUseList(srcAlloca->users());
961   while (!srcUseList.empty()) {
962     User *U = srcUseList.pop_back_val();
963 
964     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
965       append_range(srcUseList, U->users());
966       continue;
967     }
968     if (const auto *G = dyn_cast<GetElementPtrInst>(U)) {
969       if (!G->hasAllZeroIndices())
970         return false;
971 
972       append_range(srcUseList, U->users());
973       continue;
974     }
975     if (const auto *IT = dyn_cast<IntrinsicInst>(U))
976       if (IT->isLifetimeStartOrEnd())
977         continue;
978 
979     if (U != C && U != cpyLoad)
980       return false;
981   }
982 
983   // Check whether src is captured by the called function, in which case there
984   // may be further indirect uses of src.
985   bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
986     return U->stripPointerCasts() == cpySrc &&
987            !C->doesNotCapture(C->getArgOperandNo(&U));
988   });
989 
990   // If src is captured, then check whether there are any potential uses of
991   // src through the captured pointer before the lifetime of src ends, either
992   // due to a lifetime.end or a return from the function.
993   if (SrcIsCaptured) {
994     // Check that dest is not captured before/at the call. We have already
995     // checked that src is not captured before it. If either had been captured,
996     // then the call might be comparing the argument against the captured dest
997     // or src pointer.
998     Value *DestObj = getUnderlyingObject(cpyDest);
999     if (!isIdentifiedFunctionLocal(DestObj) ||
1000         PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
1001                                    /* StoreCaptures */ true, C, DT,
1002                                    /* IncludeI */ true))
1003       return false;
1004 
1005     MemoryLocation SrcLoc =
1006         MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1007     for (Instruction &I :
1008          make_range(++C->getIterator(), C->getParent()->end())) {
1009       // Lifetime of srcAlloca ends at lifetime.end.
1010       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1011         if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1012             II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
1013             cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
1014           break;
1015       }
1016 
1017       // Lifetime of srcAlloca ends at return.
1018       if (isa<ReturnInst>(&I))
1019         break;
1020 
1021       // Ignore the direct read of src in the load.
1022       if (&I == cpyLoad)
1023         continue;
1024 
1025       // Check whether this instruction may mod/ref src through the captured
1026       // pointer (we have already any direct mod/refs in the loop above).
1027       // Also bail if we hit a terminator, as we don't want to scan into other
1028       // blocks.
1029       if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1030         return false;
1031     }
1032   }
1033 
1034   // Since we're changing the parameter to the callsite, we need to make sure
1035   // that what would be the new parameter dominates the callsite.
1036   if (!DT->dominates(cpyDest, C)) {
1037     // Support moving a constant index GEP before the call.
1038     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1039     if (GEP && GEP->hasAllConstantIndices() &&
1040         DT->dominates(GEP->getPointerOperand(), C))
1041       GEP->moveBefore(C);
1042     else
1043       return false;
1044   }
1045 
1046   // In addition to knowing that the call does not access src in some
1047   // unexpected manner, for example via a global, which we deduce from
1048   // the use analysis, we also need to know that it does not sneakily
1049   // access dest.  We rely on AA to figure this out for us.
1050   MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
1051   ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
1052   // If necessary, perform additional analysis.
1053   if (isModOrRefSet(MR))
1054     MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
1055   if (isModOrRefSet(MR))
1056     return false;
1057 
1058   // We can't create address space casts here because we don't know if they're
1059   // safe for the target.
1060   if (cpySrc->getType()->getPointerAddressSpace() !=
1061       cpyDest->getType()->getPointerAddressSpace())
1062     return false;
1063   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1064     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1065         cpySrc->getType()->getPointerAddressSpace() !=
1066             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
1067       return false;
1068 
1069   // All the checks have passed, so do the transformation.
1070   bool changedArgument = false;
1071   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1072     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1073       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
1074         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
1075                                       cpyDest->getName(), C);
1076       changedArgument = true;
1077       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1078         C->setArgOperand(ArgI, Dest);
1079       else
1080         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1081                                    Dest, C->getArgOperand(ArgI)->getType(),
1082                                    Dest->getName(), C));
1083     }
1084 
1085   if (!changedArgument)
1086     return false;
1087 
1088   // If the destination wasn't sufficiently aligned then increase its alignment.
1089   if (!isDestSufficientlyAligned) {
1090     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1091     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1092   }
1093 
1094   if (SkippedLifetimeStart) {
1095     SkippedLifetimeStart->moveBefore(C);
1096     MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1097                       MSSA->getMemoryAccess(C));
1098   }
1099 
1100   combineAAMetadata(C, cpyLoad);
1101   if (cpyLoad != cpyStore)
1102     combineAAMetadata(C, cpyStore);
1103 
1104   ++NumCallSlot;
1105   return true;
1106 }
1107 
1108 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1109 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1110 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1111                                                   MemCpyInst *MDep,
1112                                                   BatchAAResults &BAA) {
1113   // We can only transforms memcpy's where the dest of one is the source of the
1114   // other.
1115   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1116     return false;
1117 
1118   // If dep instruction is reading from our current input, then it is a noop
1119   // transfer and substituting the input won't change this instruction.  Just
1120   // ignore the input and let someone else zap MDep.  This handles cases like:
1121   //    memcpy(a <- a)
1122   //    memcpy(b <- a)
1123   if (M->getSource() == MDep->getSource())
1124     return false;
1125 
1126   // Second, the length of the memcpy's must be the same, or the preceding one
1127   // must be larger than the following one.
1128   if (MDep->getLength() != M->getLength()) {
1129     auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1130     auto *MLen = dyn_cast<ConstantInt>(M->getLength());
1131     if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1132       return false;
1133   }
1134 
1135   // Verify that the copied-from memory doesn't change in between the two
1136   // transfers.  For example, in:
1137   //    memcpy(a <- b)
1138   //    *b = 42;
1139   //    memcpy(c <- a)
1140   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1141   //
1142   // TODO: If the code between M and MDep is transparent to the destination "c",
1143   // then we could still perform the xform by moving M up to the first memcpy.
1144   // TODO: It would be sufficient to check the MDep source up to the memcpy
1145   // size of M, rather than MDep.
1146   if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1147                      MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1148     return false;
1149 
1150   // If the dest of the second might alias the source of the first, then the
1151   // source and dest might overlap. In addition, if the source of the first
1152   // points to constant memory, they won't overlap by definition. Otherwise, we
1153   // still want to eliminate the intermediate value, but we have to generate a
1154   // memmove instead of memcpy.
1155   bool UseMemMove = false;
1156   if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep)))) {
1157     // Don't convert llvm.memcpy.inline into memmove because memmove can be
1158     // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
1159     // there is no inline version of llvm.memmove)
1160     if (isa<MemCpyInlineInst>(M))
1161       return false;
1162     UseMemMove = true;
1163   }
1164 
1165   // If all checks passed, then we can transform M.
1166   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1167                     << *MDep << '\n' << *M << '\n');
1168 
1169   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1170   // example we could be moving from movaps -> movq on x86.
1171   IRBuilder<> Builder(M);
1172   Instruction *NewM;
1173   if (UseMemMove)
1174     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1175                                  MDep->getRawSource(), MDep->getSourceAlign(),
1176                                  M->getLength(), M->isVolatile());
1177   else if (isa<MemCpyInlineInst>(M)) {
1178     // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1179     // never allowed since that would allow the latter to be lowered as a call
1180     // to an external function.
1181     NewM = Builder.CreateMemCpyInline(
1182         M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1183         MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1184   } else
1185     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1186                                 MDep->getRawSource(), MDep->getSourceAlign(),
1187                                 M->getLength(), M->isVolatile());
1188   NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);
1189 
1190   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1191   auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1192   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1193   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1194 
1195   // Remove the instruction we're replacing.
1196   eraseInstruction(M);
1197   ++NumMemCpyInstr;
1198   return true;
1199 }
1200 
1201 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1202 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1203 /// weren't copied over by \p MemCpy.
1204 ///
1205 /// In other words, transform:
1206 /// \code
1207 ///   memset(dst, c, dst_size);
1208 ///   ...
1209 ///   memcpy(dst, src, src_size);
1210 /// \endcode
1211 /// into:
1212 /// \code
1213 ///   ...
1214 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1215 ///   memcpy(dst, src, src_size);
1216 /// \endcode
1217 ///
1218 /// The memset is sunk to just before the memcpy to ensure that src_size is
1219 /// present when emitting the simplified memset.
1220 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1221                                                   MemSetInst *MemSet,
1222                                                   BatchAAResults &BAA) {
1223   // We can only transform memset/memcpy with the same destination.
1224   if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1225     return false;
1226 
1227   // Check that src and dst of the memcpy aren't the same. While memcpy
1228   // operands cannot partially overlap, exact equality is allowed.
1229   if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1230     return false;
1231 
1232   // We know that dst up to src_size is not written. We now need to make sure
1233   // that dst up to dst_size is not accessed. (If we did not move the memset,
1234   // checking for reads would be sufficient.)
1235   if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet),
1236                       MSSA->getMemoryAccess(MemSet),
1237                       MSSA->getMemoryAccess(MemCpy)))
1238     return false;
1239 
1240   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1241   Value *Dest = MemCpy->getRawDest();
1242   Value *DestSize = MemSet->getLength();
1243   Value *SrcSize = MemCpy->getLength();
1244 
1245   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1246     return false;
1247 
1248   // If the sizes are the same, simply drop the memset instead of generating
1249   // a replacement with zero size.
1250   if (DestSize == SrcSize) {
1251     eraseInstruction(MemSet);
1252     return true;
1253   }
1254 
1255   // By default, create an unaligned memset.
1256   Align Alignment = Align(1);
1257   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1258   // of the sum.
1259   const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1260                                    MemCpy->getDestAlign().valueOrOne());
1261   if (DestAlign > 1)
1262     if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1263       Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1264 
1265   IRBuilder<> Builder(MemCpy);
1266 
1267   // Preserve the debug location of the old memset for the code emitted here
1268   // related to the new memset. This is correct according to the rules in
1269   // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
1270   // instruction location", given that we move the memset within the basic
1271   // block.
1272   assert(MemSet->getParent() == MemCpy->getParent() &&
1273          "Preserving debug location based on moving memset within BB.");
1274   Builder.SetCurrentDebugLocation(MemSet->getDebugLoc());
1275 
1276   // If the sizes have different types, zext the smaller one.
1277   if (DestSize->getType() != SrcSize->getType()) {
1278     if (DestSize->getType()->getIntegerBitWidth() >
1279         SrcSize->getType()->getIntegerBitWidth())
1280       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1281     else
1282       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1283   }
1284 
1285   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1286   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1287   Value *MemsetLen = Builder.CreateSelect(
1288       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1289   unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1290   Instruction *NewMemSet = Builder.CreateMemSet(
1291       Builder.CreateGEP(
1292           Builder.getInt8Ty(),
1293           Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)),
1294           SrcSize),
1295       MemSet->getOperand(1), MemsetLen, Alignment);
1296 
1297   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1298          "MemCpy must be a MemoryDef");
1299   // The new memset is inserted before the memcpy, and it is known that the
1300   // memcpy's defining access is the memset about to be removed.
1301   auto *LastDef =
1302       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1303   auto *NewAccess = MSSAU->createMemoryAccessBefore(
1304       NewMemSet, LastDef->getDefiningAccess(), LastDef);
1305   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1306 
1307   eraseInstruction(MemSet);
1308   return true;
1309 }
1310 
1311 /// Determine whether the instruction has undefined content for the given Size,
1312 /// either because it was freshly alloca'd or started its lifetime.
1313 static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V,
1314                              MemoryDef *Def, Value *Size) {
1315   if (MSSA->isLiveOnEntryDef(Def))
1316     return isa<AllocaInst>(getUnderlyingObject(V));
1317 
1318   if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1319     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1320       auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1321 
1322       if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
1323         if (AA.isMustAlias(V, II->getArgOperand(1)) &&
1324             LTSize->getZExtValue() >= CSize->getZExtValue())
1325           return true;
1326       }
1327 
1328       // If the lifetime.start covers a whole alloca (as it almost always
1329       // does) and we're querying a pointer based on that alloca, then we know
1330       // the memory is definitely undef, regardless of how exactly we alias.
1331       // The size also doesn't matter, as an out-of-bounds access would be UB.
1332       if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
1333         if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1334           const DataLayout &DL = Alloca->getModule()->getDataLayout();
1335           if (std::optional<TypeSize> AllocaSize =
1336                   Alloca->getAllocationSize(DL))
1337             if (*AllocaSize == LTSize->getValue())
1338               return true;
1339         }
1340       }
1341     }
1342   }
1343 
1344   return false;
1345 }
1346 
1347 /// Transform memcpy to memset when its source was just memset.
1348 /// In other words, turn:
1349 /// \code
1350 ///   memset(dst1, c, dst1_size);
1351 ///   memcpy(dst2, dst1, dst2_size);
1352 /// \endcode
1353 /// into:
1354 /// \code
1355 ///   memset(dst1, c, dst1_size);
1356 ///   memset(dst2, c, dst2_size);
1357 /// \endcode
1358 /// When dst2_size <= dst1_size.
1359 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1360                                                MemSetInst *MemSet,
1361                                                BatchAAResults &BAA) {
1362   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1363   // memcpying from the same address. Otherwise it is hard to reason about.
1364   if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1365     return false;
1366 
1367   Value *MemSetSize = MemSet->getLength();
1368   Value *CopySize = MemCpy->getLength();
1369 
1370   if (MemSetSize != CopySize) {
1371     // Make sure the memcpy doesn't read any more than what the memset wrote.
1372     // Don't worry about sizes larger than i64.
1373 
1374     // A known memset size is required.
1375     auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1376     if (!CMemSetSize)
1377       return false;
1378 
1379     // A known memcpy size is also required.
1380     auto  *CCopySize = dyn_cast<ConstantInt>(CopySize);
1381     if (!CCopySize)
1382       return false;
1383     if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1384       // If the memcpy is larger than the memset, but the memory was undef prior
1385       // to the memset, we can just ignore the tail. Technically we're only
1386       // interested in the bytes from MemSetSize..CopySize here, but as we can't
1387       // easily represent this location, we use the full 0..CopySize range.
1388       MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1389       bool CanReduceSize = false;
1390       MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1391       MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1392           MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA);
1393       if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1394         if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize))
1395           CanReduceSize = true;
1396 
1397       if (!CanReduceSize)
1398         return false;
1399       CopySize = MemSetSize;
1400     }
1401   }
1402 
1403   IRBuilder<> Builder(MemCpy);
1404   Instruction *NewM =
1405       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1406                            CopySize, MemCpy->getDestAlign());
1407   auto *LastDef =
1408       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1409   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1410   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1411 
1412   return true;
1413 }
1414 
1415 /// Perform simplification of memcpy's.  If we have memcpy A
1416 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1417 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1418 /// circumstances). This allows later passes to remove the first memcpy
1419 /// altogether.
1420 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1421   // We can only optimize non-volatile memcpy's.
1422   if (M->isVolatile()) return false;
1423 
1424   // If the source and destination of the memcpy are the same, then zap it.
1425   if (M->getSource() == M->getDest()) {
1426     ++BBI;
1427     eraseInstruction(M);
1428     return true;
1429   }
1430 
1431   // If copying from a constant, try to turn the memcpy into a memset.
1432   if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1433     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1434       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1435                                            M->getModule()->getDataLayout())) {
1436         IRBuilder<> Builder(M);
1437         Instruction *NewM = Builder.CreateMemSet(
1438             M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
1439         auto *LastDef =
1440             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1441         auto *NewAccess =
1442             MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1443         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1444 
1445         eraseInstruction(M);
1446         ++NumCpyToSet;
1447         return true;
1448       }
1449 
1450   BatchAAResults BAA(*AA);
1451   MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1452   // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1453   MemoryAccess *AnyClobber = MA->getDefiningAccess();
1454   MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1455   const MemoryAccess *DestClobber =
1456       MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1457 
1458   // Try to turn a partially redundant memset + memcpy into
1459   // smaller memset + memcpy.  We don't need the memcpy size for this.
1460   // The memcpy must post-dom the memset, so limit this to the same basic
1461   // block. A non-local generalization is likely not worthwhile.
1462   if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1463     if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1464       if (DestClobber->getBlock() == M->getParent())
1465         if (processMemSetMemCpyDependence(M, MDep, BAA))
1466           return true;
1467 
1468   MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1469       AnyClobber, MemoryLocation::getForSource(M), BAA);
1470 
1471   // There are four possible optimizations we can do for memcpy:
1472   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1473   //   b) call-memcpy xform for return slot optimization.
1474   //   c) memcpy from freshly alloca'd space or space that has just started
1475   //      its lifetime copies undefined data, and we can therefore eliminate
1476   //      the memcpy in favor of the data that was already at the destination.
1477   //   d) memcpy from a just-memset'd source can be turned into memset.
1478   if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1479     if (Instruction *MI = MD->getMemoryInst()) {
1480       if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1481         if (auto *C = dyn_cast<CallInst>(MI)) {
1482           if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1483                                    TypeSize::getFixed(CopySize->getZExtValue()),
1484                                    M->getDestAlign().valueOrOne(), BAA,
1485                                    [C]() -> CallInst * { return C; })) {
1486             LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1487                               << "    call: " << *C << "\n"
1488                               << "    memcpy: " << *M << "\n");
1489             eraseInstruction(M);
1490             ++NumMemCpyInstr;
1491             return true;
1492           }
1493         }
1494       }
1495       if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1496         return processMemCpyMemCpyDependence(M, MDep, BAA);
1497       if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1498         if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1499           LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1500           eraseInstruction(M);
1501           ++NumCpyToSet;
1502           return true;
1503         }
1504       }
1505     }
1506 
1507     if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) {
1508       LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1509       eraseInstruction(M);
1510       ++NumMemCpyInstr;
1511       return true;
1512     }
1513   }
1514 
1515   return false;
1516 }
1517 
1518 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1519 /// not to alias.
1520 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1521   // See if the source could be modified by this memmove potentially.
1522   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1523     return false;
1524 
1525   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1526                     << "\n");
1527 
1528   // If not, then we know we can transform this.
1529   Type *ArgTys[3] = { M->getRawDest()->getType(),
1530                       M->getRawSource()->getType(),
1531                       M->getLength()->getType() };
1532   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1533                                                  Intrinsic::memcpy, ArgTys));
1534 
1535   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1536   // aliasing guarantees).
1537 
1538   ++NumMoveToCpy;
1539   return true;
1540 }
1541 
1542 /// This is called on every byval argument in call sites.
1543 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1544   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1545   // Find out what feeds this byval argument.
1546   Value *ByValArg = CB.getArgOperand(ArgNo);
1547   Type *ByValTy = CB.getParamByValType(ArgNo);
1548   TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1549   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1550   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1551   if (!CallAccess)
1552     return false;
1553   MemCpyInst *MDep = nullptr;
1554   BatchAAResults BAA(*AA);
1555   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1556       CallAccess->getDefiningAccess(), Loc, BAA);
1557   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1558     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1559 
1560   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1561   // a memcpy, see if we can byval from the source of the memcpy instead of the
1562   // result.
1563   if (!MDep || MDep->isVolatile() ||
1564       ByValArg->stripPointerCasts() != MDep->getDest())
1565     return false;
1566 
1567   // The length of the memcpy must be larger or equal to the size of the byval.
1568   auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1569   if (!C1 || !TypeSize::isKnownGE(
1570                  TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1571     return false;
1572 
1573   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1574   // then it is some target specific value that we can't know.
1575   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1576   if (!ByValAlign) return false;
1577 
1578   // If it is greater than the memcpy, then we check to see if we can force the
1579   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1580   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1581   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1582       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1583                                  DT) < *ByValAlign)
1584     return false;
1585 
1586   // The address space of the memcpy source must match the byval argument
1587   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1588       ByValArg->getType()->getPointerAddressSpace())
1589     return false;
1590 
1591   // Verify that the copied-from memory doesn't change in between the memcpy and
1592   // the byval call.
1593   //    memcpy(a <- b)
1594   //    *b = 42;
1595   //    foo(*a)
1596   // It would be invalid to transform the second memcpy into foo(*b).
1597   if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1598                      MSSA->getMemoryAccess(MDep), CallAccess))
1599     return false;
1600 
1601   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1602                     << "  " << *MDep << "\n"
1603                     << "  " << CB << "\n");
1604 
1605   // Otherwise we're good!  Update the byval argument.
1606   combineAAMetadata(&CB, MDep);
1607   CB.setArgOperand(ArgNo, MDep->getSource());
1608   ++NumMemCpyInstr;
1609   return true;
1610 }
1611 
1612 /// This is called on memcpy dest pointer arguments attributed as immutable
1613 /// during call. Try to use memcpy source directly if all of the following
1614 /// conditions are satisfied.
1615 /// 1. The memcpy dst is neither modified during the call nor captured by the
1616 /// call. (if readonly, noalias, nocapture attributes on call-site.)
1617 /// 2. The memcpy dst is an alloca with known alignment & size.
1618 ///     2-1. The memcpy length == the alloca size which ensures that the new
1619 ///     pointer is dereferenceable for the required range
1620 ///     2-2. The src pointer has alignment >= the alloca alignment or can be
1621 ///     enforced so.
1622 /// 3. The memcpy dst and src is not modified between the memcpy and the call.
1623 /// (if MSSA clobber check is safe.)
1624 /// 4. The memcpy src is not modified during the call. (ModRef check shows no
1625 /// Mod.)
1626 bool MemCpyOptPass::processImmutArgument(CallBase &CB, unsigned ArgNo) {
1627   // 1. Ensure passed argument is immutable during call.
1628   if (!(CB.paramHasAttr(ArgNo, Attribute::NoAlias) &&
1629         CB.paramHasAttr(ArgNo, Attribute::NoCapture)))
1630     return false;
1631   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1632   Value *ImmutArg = CB.getArgOperand(ArgNo);
1633 
1634   // 2. Check that arg is alloca
1635   // TODO: Even if the arg gets back to branches, we can remove memcpy if all
1636   // the alloca alignments can be enforced to source alignment.
1637   auto *AI = dyn_cast<AllocaInst>(ImmutArg->stripPointerCasts());
1638   if (!AI)
1639     return false;
1640 
1641   std::optional<TypeSize> AllocaSize = AI->getAllocationSize(DL);
1642   // Can't handle unknown size alloca.
1643   // (e.g. Variable Length Array, Scalable Vector)
1644   if (!AllocaSize || AllocaSize->isScalable())
1645     return false;
1646   MemoryLocation Loc(ImmutArg, LocationSize::precise(*AllocaSize));
1647   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1648   if (!CallAccess)
1649     return false;
1650 
1651   MemCpyInst *MDep = nullptr;
1652   BatchAAResults BAA(*AA);
1653   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1654       CallAccess->getDefiningAccess(), Loc, BAA);
1655   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1656     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1657 
1658   // If the immut argument isn't fed by a memcpy, ignore it.  If it is fed by
1659   // a memcpy, check that the arg equals the memcpy dest.
1660   if (!MDep || MDep->isVolatile() || AI != MDep->getDest())
1661     return false;
1662 
1663   // The address space of the memcpy source must match the immut argument
1664   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1665       ImmutArg->getType()->getPointerAddressSpace())
1666     return false;
1667 
1668   // 2-1. The length of the memcpy must be equal to the size of the alloca.
1669   auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1670   if (!MDepLen || AllocaSize != MDepLen->getValue())
1671     return false;
1672 
1673   // 2-2. the memcpy source align must be larger than or equal the alloca's
1674   // align. If not so, we check to see if we can force the source of the memcpy
1675   // to the alignment we need. If we fail, we bail out.
1676   Align MemDepAlign = MDep->getSourceAlign().valueOrOne();
1677   Align AllocaAlign = AI->getAlign();
1678   if (MemDepAlign < AllocaAlign &&
1679       getOrEnforceKnownAlignment(MDep->getSource(), AllocaAlign, DL, &CB, AC,
1680                                  DT) < AllocaAlign)
1681     return false;
1682 
1683   // 3. Verify that the source doesn't change in between the memcpy and
1684   // the call.
1685   //    memcpy(a <- b)
1686   //    *b = 42;
1687   //    foo(*a)
1688   // It would be invalid to transform the second memcpy into foo(*b).
1689   if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1690                      MSSA->getMemoryAccess(MDep), CallAccess))
1691     return false;
1692 
1693   // 4. The memcpy src must not be modified during the call.
1694   if (isModSet(AA->getModRefInfo(&CB, MemoryLocation::getForSource(MDep))))
1695     return false;
1696 
1697   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
1698                     << "  " << *MDep << "\n"
1699                     << "  " << CB << "\n");
1700 
1701   // Otherwise we're good!  Update the immut argument.
1702   combineAAMetadata(&CB, MDep);
1703   CB.setArgOperand(ArgNo, MDep->getSource());
1704   ++NumMemCpyInstr;
1705   return true;
1706 }
1707 
1708 /// Executes one iteration of MemCpyOptPass.
1709 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1710   bool MadeChange = false;
1711 
1712   // Walk all instruction in the function.
1713   for (BasicBlock &BB : F) {
1714     // Skip unreachable blocks. For example processStore assumes that an
1715     // instruction in a BB can't be dominated by a later instruction in the
1716     // same BB (which is a scenario that can happen for an unreachable BB that
1717     // has itself as a predecessor).
1718     if (!DT->isReachableFromEntry(&BB))
1719       continue;
1720 
1721     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1722         // Avoid invalidating the iterator.
1723       Instruction *I = &*BI++;
1724 
1725       bool RepeatInstruction = false;
1726 
1727       if (auto *SI = dyn_cast<StoreInst>(I))
1728         MadeChange |= processStore(SI, BI);
1729       else if (auto *M = dyn_cast<MemSetInst>(I))
1730         RepeatInstruction = processMemSet(M, BI);
1731       else if (auto *M = dyn_cast<MemCpyInst>(I))
1732         RepeatInstruction = processMemCpy(M, BI);
1733       else if (auto *M = dyn_cast<MemMoveInst>(I))
1734         RepeatInstruction = processMemMove(M);
1735       else if (auto *CB = dyn_cast<CallBase>(I)) {
1736         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) {
1737           if (CB->isByValArgument(i))
1738             MadeChange |= processByValArgument(*CB, i);
1739           else if (CB->onlyReadsMemory(i))
1740             MadeChange |= processImmutArgument(*CB, i);
1741         }
1742       }
1743 
1744       // Reprocess the instruction if desired.
1745       if (RepeatInstruction) {
1746         if (BI != BB.begin())
1747           --BI;
1748         MadeChange = true;
1749       }
1750     }
1751   }
1752 
1753   return MadeChange;
1754 }
1755 
1756 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1757   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1758   auto *AA = &AM.getResult<AAManager>(F);
1759   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1760   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1761   auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
1762 
1763   bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
1764   if (!MadeChange)
1765     return PreservedAnalyses::all();
1766 
1767   PreservedAnalyses PA;
1768   PA.preserveSet<CFGAnalyses>();
1769   PA.preserve<MemorySSAAnalysis>();
1770   return PA;
1771 }
1772 
1773 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
1774                             AliasAnalysis *AA_, AssumptionCache *AC_,
1775                             DominatorTree *DT_, MemorySSA *MSSA_) {
1776   bool MadeChange = false;
1777   TLI = TLI_;
1778   AA = AA_;
1779   AC = AC_;
1780   DT = DT_;
1781   MSSA = MSSA_;
1782   MemorySSAUpdater MSSAU_(MSSA_);
1783   MSSAU = &MSSAU_;
1784 
1785   while (true) {
1786     if (!iterateOnFunction(F))
1787       break;
1788     MadeChange = true;
1789   }
1790 
1791   if (VerifyMemorySSA)
1792     MSSA_->verifyMemorySSA();
1793 
1794   return MadeChange;
1795 }
1796