1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "memcpyopt" 69 70 static cl::opt<bool> 71 EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden, 72 cl::desc("Use MemorySSA-backed MemCpyOpt.")); 73 74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 75 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 76 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 77 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 78 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 79 80 namespace { 81 82 /// Represents a range of memset'd bytes with the ByteVal value. 83 /// This allows us to analyze stores like: 84 /// store 0 -> P+1 85 /// store 0 -> P+0 86 /// store 0 -> P+3 87 /// store 0 -> P+2 88 /// which sometimes happens with stores to arrays of structs etc. When we see 89 /// the first store, we make a range [1, 2). The second store extends the range 90 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 91 /// two ranges into [0, 3) which is memset'able. 92 struct MemsetRange { 93 // Start/End - A semi range that describes the span that this range covers. 94 // The range is closed at the start and open at the end: [Start, End). 95 int64_t Start, End; 96 97 /// StartPtr - The getelementptr instruction that points to the start of the 98 /// range. 99 Value *StartPtr; 100 101 /// Alignment - The known alignment of the first store. 102 unsigned Alignment; 103 104 /// TheStores - The actual stores that make up this range. 105 SmallVector<Instruction*, 16> TheStores; 106 107 bool isProfitableToUseMemset(const DataLayout &DL) const; 108 }; 109 110 } // end anonymous namespace 111 112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 113 // If we found more than 4 stores to merge or 16 bytes, use memset. 114 if (TheStores.size() >= 4 || End-Start >= 16) return true; 115 116 // If there is nothing to merge, don't do anything. 117 if (TheStores.size() < 2) return false; 118 119 // If any of the stores are a memset, then it is always good to extend the 120 // memset. 121 for (Instruction *SI : TheStores) 122 if (!isa<StoreInst>(SI)) 123 return true; 124 125 // Assume that the code generator is capable of merging pairs of stores 126 // together if it wants to. 127 if (TheStores.size() == 2) return false; 128 129 // If we have fewer than 8 stores, it can still be worthwhile to do this. 130 // For example, merging 4 i8 stores into an i32 store is useful almost always. 131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 132 // memset will be split into 2 32-bit stores anyway) and doing so can 133 // pessimize the llvm optimizer. 134 // 135 // Since we don't have perfect knowledge here, make some assumptions: assume 136 // the maximum GPR width is the same size as the largest legal integer 137 // size. If so, check to see whether we will end up actually reducing the 138 // number of stores used. 139 unsigned Bytes = unsigned(End-Start); 140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 141 if (MaxIntSize == 0) 142 MaxIntSize = 1; 143 unsigned NumPointerStores = Bytes / MaxIntSize; 144 145 // Assume the remaining bytes if any are done a byte at a time. 146 unsigned NumByteStores = Bytes % MaxIntSize; 147 148 // If we will reduce the # stores (according to this heuristic), do the 149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 150 // etc. 151 return TheStores.size() > NumPointerStores+NumByteStores; 152 } 153 154 namespace { 155 156 class MemsetRanges { 157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 158 159 /// A sorted list of the memset ranges. 160 SmallVector<MemsetRange, 8> Ranges; 161 162 const DataLayout &DL; 163 164 public: 165 MemsetRanges(const DataLayout &DL) : DL(DL) {} 166 167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 168 169 const_iterator begin() const { return Ranges.begin(); } 170 const_iterator end() const { return Ranges.end(); } 171 bool empty() const { return Ranges.empty(); } 172 173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 175 addStore(OffsetFromFirst, SI); 176 else 177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 178 } 179 180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 181 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 182 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 183 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 184 SI->getAlign().value(), SI); 185 } 186 187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 190 } 191 192 void addRange(int64_t Start, int64_t Size, Value *Ptr, 193 unsigned Alignment, Instruction *Inst); 194 }; 195 196 } // end anonymous namespace 197 198 /// Add a new store to the MemsetRanges data structure. This adds a 199 /// new range for the specified store at the specified offset, merging into 200 /// existing ranges as appropriate. 201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 202 unsigned Alignment, Instruction *Inst) { 203 int64_t End = Start+Size; 204 205 range_iterator I = partition_point( 206 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 207 208 // We now know that I == E, in which case we didn't find anything to merge 209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 210 // to insert a new range. Handle this now. 211 if (I == Ranges.end() || End < I->Start) { 212 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 213 R.Start = Start; 214 R.End = End; 215 R.StartPtr = Ptr; 216 R.Alignment = Alignment; 217 R.TheStores.push_back(Inst); 218 return; 219 } 220 221 // This store overlaps with I, add it. 222 I->TheStores.push_back(Inst); 223 224 // At this point, we may have an interval that completely contains our store. 225 // If so, just add it to the interval and return. 226 if (I->Start <= Start && I->End >= End) 227 return; 228 229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 230 // but is not entirely contained within the range. 231 232 // See if the range extends the start of the range. In this case, it couldn't 233 // possibly cause it to join the prior range, because otherwise we would have 234 // stopped on *it*. 235 if (Start < I->Start) { 236 I->Start = Start; 237 I->StartPtr = Ptr; 238 I->Alignment = Alignment; 239 } 240 241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 242 // is in or right at the end of I), and that End >= I->Start. Extend I out to 243 // End. 244 if (End > I->End) { 245 I->End = End; 246 range_iterator NextI = I; 247 while (++NextI != Ranges.end() && End >= NextI->Start) { 248 // Merge the range in. 249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 250 if (NextI->End > I->End) 251 I->End = NextI->End; 252 Ranges.erase(NextI); 253 NextI = I; 254 } 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // MemCpyOptLegacyPass Pass 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 264 class MemCpyOptLegacyPass : public FunctionPass { 265 MemCpyOptPass Impl; 266 267 public: 268 static char ID; // Pass identification, replacement for typeid 269 270 MemCpyOptLegacyPass() : FunctionPass(ID) { 271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 272 } 273 274 bool runOnFunction(Function &F) override; 275 276 private: 277 // This transformation requires dominator postdominator info 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesCFG(); 280 AU.addRequired<AssumptionCacheTracker>(); 281 AU.addRequired<DominatorTreeWrapperPass>(); 282 AU.addPreserved<DominatorTreeWrapperPass>(); 283 AU.addPreserved<GlobalsAAWrapperPass>(); 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 if (!EnableMemorySSA) 286 AU.addRequired<MemoryDependenceWrapperPass>(); 287 AU.addPreserved<MemoryDependenceWrapperPass>(); 288 AU.addRequired<AAResultsWrapperPass>(); 289 AU.addPreserved<AAResultsWrapperPass>(); 290 if (EnableMemorySSA) 291 AU.addRequired<MemorySSAWrapperPass>(); 292 AU.addPreserved<MemorySSAWrapperPass>(); 293 } 294 }; 295 296 } // end anonymous namespace 297 298 char MemCpyOptLegacyPass::ID = 0; 299 300 /// The public interface to this file... 301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 302 303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 304 false, false) 305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 312 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 313 false, false) 314 315 // Check that V is either not accessible by the caller, or unwinding cannot 316 // occur between Start and End. 317 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 318 Instruction *End) { 319 assert(Start->getParent() == End->getParent() && "Must be in same block"); 320 if (!Start->getFunction()->doesNotThrow() && 321 !isa<AllocaInst>(getUnderlyingObject(V))) { 322 for (const Instruction &I : 323 make_range(Start->getIterator(), End->getIterator())) { 324 if (I.mayThrow()) 325 return true; 326 } 327 } 328 return false; 329 } 330 331 void MemCpyOptPass::eraseInstruction(Instruction *I) { 332 if (MSSAU) 333 MSSAU->removeMemoryAccess(I); 334 if (MD) 335 MD->removeInstruction(I); 336 I->eraseFromParent(); 337 } 338 339 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 340 // Start and End must be in the same block 341 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 342 const MemoryUseOrDef *Start, 343 const MemoryUseOrDef *End) { 344 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 345 for (const MemoryAccess &MA : 346 make_range(++Start->getIterator(), End->getIterator())) { 347 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 348 Loc))) 349 return true; 350 } 351 return false; 352 } 353 354 // Check for mod of Loc between Start and End, excluding both boundaries. 355 // Start and End can be in different blocks. 356 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 357 const MemoryUseOrDef *Start, 358 const MemoryUseOrDef *End) { 359 // TODO: Only walk until we hit Start. 360 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 361 End->getDefiningAccess(), Loc); 362 return !MSSA->dominates(Clobber, Start); 363 } 364 365 /// When scanning forward over instructions, we look for some other patterns to 366 /// fold away. In particular, this looks for stores to neighboring locations of 367 /// memory. If it sees enough consecutive ones, it attempts to merge them 368 /// together into a memcpy/memset. 369 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 370 Value *StartPtr, 371 Value *ByteVal) { 372 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 373 374 // We can't track scalable types 375 if (StoreInst *SI = dyn_cast<StoreInst>(StartInst)) 376 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 377 return nullptr; 378 379 // Okay, so we now have a single store that can be splatable. Scan to find 380 // all subsequent stores of the same value to offset from the same pointer. 381 // Join these together into ranges, so we can decide whether contiguous blocks 382 // are stored. 383 MemsetRanges Ranges(DL); 384 385 BasicBlock::iterator BI(StartInst); 386 387 // Keeps track of the last memory use or def before the insertion point for 388 // the new memset. The new MemoryDef for the inserted memsets will be inserted 389 // after MemInsertPoint. It points to either LastMemDef or to the last user 390 // before the insertion point of the memset, if there are any such users. 391 MemoryUseOrDef *MemInsertPoint = nullptr; 392 // Keeps track of the last MemoryDef between StartInst and the insertion point 393 // for the new memset. This will become the defining access of the inserted 394 // memsets. 395 MemoryDef *LastMemDef = nullptr; 396 for (++BI; !BI->isTerminator(); ++BI) { 397 if (MSSAU) { 398 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 399 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 400 if (CurrentAcc) { 401 MemInsertPoint = CurrentAcc; 402 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 403 LastMemDef = CurrentDef; 404 } 405 } 406 407 // Calls that only access inaccessible memory do not block merging 408 // accessible stores. 409 if (auto *CB = dyn_cast<CallBase>(BI)) { 410 if (CB->onlyAccessesInaccessibleMemory()) 411 continue; 412 } 413 414 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 415 // If the instruction is readnone, ignore it, otherwise bail out. We 416 // don't even allow readonly here because we don't want something like: 417 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 418 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 419 break; 420 continue; 421 } 422 423 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 424 // If this is a store, see if we can merge it in. 425 if (!NextStore->isSimple()) break; 426 427 Value *StoredVal = NextStore->getValueOperand(); 428 429 // Don't convert stores of non-integral pointer types to memsets (which 430 // stores integers). 431 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 432 break; 433 434 // We can't track ranges involving scalable types. 435 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 436 break; 437 438 // Check to see if this stored value is of the same byte-splattable value. 439 Value *StoredByte = isBytewiseValue(StoredVal, DL); 440 if (isa<UndefValue>(ByteVal) && StoredByte) 441 ByteVal = StoredByte; 442 if (ByteVal != StoredByte) 443 break; 444 445 // Check to see if this store is to a constant offset from the start ptr. 446 Optional<int64_t> Offset = 447 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 448 if (!Offset) 449 break; 450 451 Ranges.addStore(*Offset, NextStore); 452 } else { 453 MemSetInst *MSI = cast<MemSetInst>(BI); 454 455 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 456 !isa<ConstantInt>(MSI->getLength())) 457 break; 458 459 // Check to see if this store is to a constant offset from the start ptr. 460 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 461 if (!Offset) 462 break; 463 464 Ranges.addMemSet(*Offset, MSI); 465 } 466 } 467 468 // If we have no ranges, then we just had a single store with nothing that 469 // could be merged in. This is a very common case of course. 470 if (Ranges.empty()) 471 return nullptr; 472 473 // If we had at least one store that could be merged in, add the starting 474 // store as well. We try to avoid this unless there is at least something 475 // interesting as a small compile-time optimization. 476 Ranges.addInst(0, StartInst); 477 478 // If we create any memsets, we put it right before the first instruction that 479 // isn't part of the memset block. This ensure that the memset is dominated 480 // by any addressing instruction needed by the start of the block. 481 IRBuilder<> Builder(&*BI); 482 483 // Now that we have full information about ranges, loop over the ranges and 484 // emit memset's for anything big enough to be worthwhile. 485 Instruction *AMemSet = nullptr; 486 for (const MemsetRange &Range : Ranges) { 487 if (Range.TheStores.size() == 1) continue; 488 489 // If it is profitable to lower this range to memset, do so now. 490 if (!Range.isProfitableToUseMemset(DL)) 491 continue; 492 493 // Otherwise, we do want to transform this! Create a new memset. 494 // Get the starting pointer of the block. 495 StartPtr = Range.StartPtr; 496 497 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 498 MaybeAlign(Range.Alignment)); 499 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 500 : Range.TheStores) dbgs() 501 << *SI << '\n'; 502 dbgs() << "With: " << *AMemSet << '\n'); 503 if (!Range.TheStores.empty()) 504 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 505 506 if (MSSAU) { 507 assert(LastMemDef && MemInsertPoint && 508 "Both LastMemDef and MemInsertPoint need to be set"); 509 auto *NewDef = 510 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 511 ? MSSAU->createMemoryAccessBefore( 512 AMemSet, LastMemDef, MemInsertPoint) 513 : MSSAU->createMemoryAccessAfter( 514 AMemSet, LastMemDef, MemInsertPoint)); 515 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 516 LastMemDef = NewDef; 517 MemInsertPoint = NewDef; 518 } 519 520 // Zap all the stores. 521 for (Instruction *SI : Range.TheStores) 522 eraseInstruction(SI); 523 524 ++NumMemSetInfer; 525 } 526 527 return AMemSet; 528 } 529 530 // This method try to lift a store instruction before position P. 531 // It will lift the store and its argument + that anything that 532 // may alias with these. 533 // The method returns true if it was successful. 534 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 535 // If the store alias this position, early bail out. 536 MemoryLocation StoreLoc = MemoryLocation::get(SI); 537 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 538 return false; 539 540 // Keep track of the arguments of all instruction we plan to lift 541 // so we can make sure to lift them as well if appropriate. 542 DenseSet<Instruction*> Args; 543 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 544 if (Ptr->getParent() == SI->getParent()) 545 Args.insert(Ptr); 546 547 // Instruction to lift before P. 548 SmallVector<Instruction *, 8> ToLift{SI}; 549 550 // Memory locations of lifted instructions. 551 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 552 553 // Lifted calls. 554 SmallVector<const CallBase *, 8> Calls; 555 556 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 557 558 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 559 auto *C = &*I; 560 561 // Make sure hoisting does not perform a store that was not guaranteed to 562 // happen. 563 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 564 return false; 565 566 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 567 568 bool NeedLift = false; 569 if (Args.erase(C)) 570 NeedLift = true; 571 else if (MayAlias) { 572 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 573 return isModOrRefSet(AA->getModRefInfo(C, ML)); 574 }); 575 576 if (!NeedLift) 577 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 578 return isModOrRefSet(AA->getModRefInfo(C, Call)); 579 }); 580 } 581 582 if (!NeedLift) 583 continue; 584 585 if (MayAlias) { 586 // Since LI is implicitly moved downwards past the lifted instructions, 587 // none of them may modify its source. 588 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 589 return false; 590 else if (const auto *Call = dyn_cast<CallBase>(C)) { 591 // If we can't lift this before P, it's game over. 592 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 593 return false; 594 595 Calls.push_back(Call); 596 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 597 // If we can't lift this before P, it's game over. 598 auto ML = MemoryLocation::get(C); 599 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 600 return false; 601 602 MemLocs.push_back(ML); 603 } else 604 // We don't know how to lift this instruction. 605 return false; 606 } 607 608 ToLift.push_back(C); 609 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 610 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 611 if (A->getParent() == SI->getParent()) { 612 // Cannot hoist user of P above P 613 if(A == P) return false; 614 Args.insert(A); 615 } 616 } 617 } 618 619 // Find MSSA insertion point. Normally P will always have a corresponding 620 // memory access before which we can insert. However, with non-standard AA 621 // pipelines, there may be a mismatch between AA and MSSA, in which case we 622 // will scan for a memory access before P. In either case, we know for sure 623 // that at least the load will have a memory access. 624 // TODO: Simplify this once P will be determined by MSSA, in which case the 625 // discrepancy can no longer occur. 626 MemoryUseOrDef *MemInsertPoint = nullptr; 627 if (MSSAU) { 628 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 629 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 630 } else { 631 const Instruction *ConstP = P; 632 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 633 ++LI->getReverseIterator())) { 634 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 635 MemInsertPoint = MA; 636 break; 637 } 638 } 639 } 640 } 641 642 // We made it, we need to lift. 643 for (auto *I : llvm::reverse(ToLift)) { 644 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 645 I->moveBefore(P); 646 if (MSSAU) { 647 assert(MemInsertPoint && "Must have found insert point"); 648 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 649 MSSAU->moveAfter(MA, MemInsertPoint); 650 MemInsertPoint = MA; 651 } 652 } 653 } 654 655 return true; 656 } 657 658 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 659 if (!SI->isSimple()) return false; 660 661 // Avoid merging nontemporal stores since the resulting 662 // memcpy/memset would not be able to preserve the nontemporal hint. 663 // In theory we could teach how to propagate the !nontemporal metadata to 664 // memset calls. However, that change would force the backend to 665 // conservatively expand !nontemporal memset calls back to sequences of 666 // store instructions (effectively undoing the merging). 667 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 668 return false; 669 670 const DataLayout &DL = SI->getModule()->getDataLayout(); 671 672 Value *StoredVal = SI->getValueOperand(); 673 674 // Not all the transforms below are correct for non-integral pointers, bail 675 // until we've audited the individual pieces. 676 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 677 return false; 678 679 // Load to store forwarding can be interpreted as memcpy. 680 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 681 if (LI->isSimple() && LI->hasOneUse() && 682 LI->getParent() == SI->getParent()) { 683 684 auto *T = LI->getType(); 685 if (T->isAggregateType()) { 686 MemoryLocation LoadLoc = MemoryLocation::get(LI); 687 688 // We use alias analysis to check if an instruction may store to 689 // the memory we load from in between the load and the store. If 690 // such an instruction is found, we try to promote there instead 691 // of at the store position. 692 // TODO: Can use MSSA for this. 693 Instruction *P = SI; 694 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 695 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 696 P = &I; 697 break; 698 } 699 } 700 701 // We found an instruction that may write to the loaded memory. 702 // We can try to promote at this position instead of the store 703 // position if nothing aliases the store memory after this and the store 704 // destination is not in the range. 705 if (P && P != SI) { 706 if (!moveUp(SI, P, LI)) 707 P = nullptr; 708 } 709 710 // If a valid insertion position is found, then we can promote 711 // the load/store pair to a memcpy. 712 if (P) { 713 // If we load from memory that may alias the memory we store to, 714 // memmove must be used to preserve semantic. If not, memcpy can 715 // be used. 716 bool UseMemMove = false; 717 if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc)) 718 UseMemMove = true; 719 720 uint64_t Size = DL.getTypeStoreSize(T); 721 722 IRBuilder<> Builder(P); 723 Instruction *M; 724 if (UseMemMove) 725 M = Builder.CreateMemMove( 726 SI->getPointerOperand(), SI->getAlign(), 727 LI->getPointerOperand(), LI->getAlign(), Size); 728 else 729 M = Builder.CreateMemCpy( 730 SI->getPointerOperand(), SI->getAlign(), 731 LI->getPointerOperand(), LI->getAlign(), Size); 732 733 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 734 << *M << "\n"); 735 736 if (MSSAU) { 737 auto *LastDef = 738 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 739 auto *NewAccess = 740 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 741 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 742 } 743 744 eraseInstruction(SI); 745 eraseInstruction(LI); 746 ++NumMemCpyInstr; 747 748 // Make sure we do not invalidate the iterator. 749 BBI = M->getIterator(); 750 return true; 751 } 752 } 753 754 // Detect cases where we're performing call slot forwarding, but 755 // happen to be using a load-store pair to implement it, rather than 756 // a memcpy. 757 CallInst *C = nullptr; 758 if (EnableMemorySSA) { 759 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 760 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 761 // The load most post-dom the call. Limit to the same block for now. 762 // TODO: Support non-local call-slot optimization? 763 if (LoadClobber->getBlock() == SI->getParent()) 764 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 765 } 766 } else { 767 MemDepResult ldep = MD->getDependency(LI); 768 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 769 C = dyn_cast<CallInst>(ldep.getInst()); 770 } 771 772 if (C) { 773 // Check that nothing touches the dest of the "copy" between 774 // the call and the store. 775 MemoryLocation StoreLoc = MemoryLocation::get(SI); 776 if (EnableMemorySSA) { 777 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 778 MSSA->getMemoryAccess(SI))) 779 C = nullptr; 780 } else { 781 for (BasicBlock::iterator I = --SI->getIterator(), 782 E = C->getIterator(); 783 I != E; --I) { 784 if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) { 785 C = nullptr; 786 break; 787 } 788 } 789 } 790 } 791 792 if (C) { 793 bool changed = performCallSlotOptzn( 794 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 795 LI->getPointerOperand()->stripPointerCasts(), 796 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 797 commonAlignment(SI->getAlign(), LI->getAlign()), C); 798 if (changed) { 799 eraseInstruction(SI); 800 eraseInstruction(LI); 801 ++NumMemCpyInstr; 802 return true; 803 } 804 } 805 } 806 } 807 808 // There are two cases that are interesting for this code to handle: memcpy 809 // and memset. Right now we only handle memset. 810 811 // Ensure that the value being stored is something that can be memset'able a 812 // byte at a time like "0" or "-1" or any width, as well as things like 813 // 0xA0A0A0A0 and 0.0. 814 auto *V = SI->getOperand(0); 815 if (Value *ByteVal = isBytewiseValue(V, DL)) { 816 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 817 ByteVal)) { 818 BBI = I->getIterator(); // Don't invalidate iterator. 819 return true; 820 } 821 822 // If we have an aggregate, we try to promote it to memset regardless 823 // of opportunity for merging as it can expose optimization opportunities 824 // in subsequent passes. 825 auto *T = V->getType(); 826 if (T->isAggregateType()) { 827 uint64_t Size = DL.getTypeStoreSize(T); 828 IRBuilder<> Builder(SI); 829 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 830 SI->getAlign()); 831 832 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 833 834 if (MSSAU) { 835 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI))); 836 auto *LastDef = 837 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 838 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 839 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 840 } 841 842 eraseInstruction(SI); 843 NumMemSetInfer++; 844 845 // Make sure we do not invalidate the iterator. 846 BBI = M->getIterator(); 847 return true; 848 } 849 } 850 851 return false; 852 } 853 854 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 855 // See if there is another memset or store neighboring this memset which 856 // allows us to widen out the memset to do a single larger store. 857 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 858 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 859 MSI->getValue())) { 860 BBI = I->getIterator(); // Don't invalidate iterator. 861 return true; 862 } 863 return false; 864 } 865 866 /// Takes a memcpy and a call that it depends on, 867 /// and checks for the possibility of a call slot optimization by having 868 /// the call write its result directly into the destination of the memcpy. 869 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 870 Instruction *cpyStore, Value *cpyDest, 871 Value *cpySrc, TypeSize cpySize, 872 Align cpyAlign, CallInst *C) { 873 // The general transformation to keep in mind is 874 // 875 // call @func(..., src, ...) 876 // memcpy(dest, src, ...) 877 // 878 // -> 879 // 880 // memcpy(dest, src, ...) 881 // call @func(..., dest, ...) 882 // 883 // Since moving the memcpy is technically awkward, we additionally check that 884 // src only holds uninitialized values at the moment of the call, meaning that 885 // the memcpy can be discarded rather than moved. 886 887 // We can't optimize scalable types. 888 if (cpySize.isScalable()) 889 return false; 890 891 // Lifetime marks shouldn't be operated on. 892 if (Function *F = C->getCalledFunction()) 893 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 894 return false; 895 896 // Require that src be an alloca. This simplifies the reasoning considerably. 897 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 898 if (!srcAlloca) 899 return false; 900 901 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 902 if (!srcArraySize) 903 return false; 904 905 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 906 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 907 srcArraySize->getZExtValue(); 908 909 if (cpySize < srcSize) 910 return false; 911 912 // Check that accessing the first srcSize bytes of dest will not cause a 913 // trap. Otherwise the transform is invalid since it might cause a trap 914 // to occur earlier than it otherwise would. 915 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 916 DL, C, DT)) 917 return false; 918 919 // Make sure that nothing can observe cpyDest being written early. There are 920 // a number of cases to consider: 921 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 922 // the transform. 923 // 2. C itself may not access cpyDest (prior to the transform). This is 924 // checked further below. 925 // 3. If cpyDest is accessible to the caller of this function (potentially 926 // captured and not based on an alloca), we need to ensure that we cannot 927 // unwind between C and cpyStore. This is checked here. 928 // 4. If cpyDest is potentially captured, there may be accesses to it from 929 // another thread. In this case, we need to check that cpyStore is 930 // guaranteed to be executed if C is. As it is a non-atomic access, it 931 // renders accesses from other threads undefined. 932 // TODO: This is currently not checked. 933 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 934 return false; 935 936 // Check that dest points to memory that is at least as aligned as src. 937 Align srcAlign = srcAlloca->getAlign(); 938 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 939 // If dest is not aligned enough and we can't increase its alignment then 940 // bail out. 941 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 942 return false; 943 944 // Check that src is not accessed except via the call and the memcpy. This 945 // guarantees that it holds only undefined values when passed in (so the final 946 // memcpy can be dropped), that it is not read or written between the call and 947 // the memcpy, and that writing beyond the end of it is undefined. 948 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 949 while (!srcUseList.empty()) { 950 User *U = srcUseList.pop_back_val(); 951 952 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 953 append_range(srcUseList, U->users()); 954 continue; 955 } 956 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 957 if (!G->hasAllZeroIndices()) 958 return false; 959 960 append_range(srcUseList, U->users()); 961 continue; 962 } 963 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 964 if (IT->isLifetimeStartOrEnd()) 965 continue; 966 967 if (U != C && U != cpyLoad) 968 return false; 969 } 970 971 // Check that src isn't captured by the called function since the 972 // transformation can cause aliasing issues in that case. 973 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) 974 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) 975 return false; 976 977 // Since we're changing the parameter to the callsite, we need to make sure 978 // that what would be the new parameter dominates the callsite. 979 if (!DT->dominates(cpyDest, C)) { 980 // Support moving a constant index GEP before the call. 981 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 982 if (GEP && GEP->hasAllConstantIndices() && 983 DT->dominates(GEP->getPointerOperand(), C)) 984 GEP->moveBefore(C); 985 else 986 return false; 987 } 988 989 // In addition to knowing that the call does not access src in some 990 // unexpected manner, for example via a global, which we deduce from 991 // the use analysis, we also need to know that it does not sneakily 992 // access dest. We rely on AA to figure this out for us. 993 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 994 // If necessary, perform additional analysis. 995 if (isModOrRefSet(MR)) 996 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 997 if (isModOrRefSet(MR)) 998 return false; 999 1000 // We can't create address space casts here because we don't know if they're 1001 // safe for the target. 1002 if (cpySrc->getType()->getPointerAddressSpace() != 1003 cpyDest->getType()->getPointerAddressSpace()) 1004 return false; 1005 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1006 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1007 cpySrc->getType()->getPointerAddressSpace() != 1008 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1009 return false; 1010 1011 // All the checks have passed, so do the transformation. 1012 bool changedArgument = false; 1013 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1014 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1015 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1016 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1017 cpyDest->getName(), C); 1018 changedArgument = true; 1019 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1020 C->setArgOperand(ArgI, Dest); 1021 else 1022 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1023 Dest, C->getArgOperand(ArgI)->getType(), 1024 Dest->getName(), C)); 1025 } 1026 1027 if (!changedArgument) 1028 return false; 1029 1030 // If the destination wasn't sufficiently aligned then increase its alignment. 1031 if (!isDestSufficientlyAligned) { 1032 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1033 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1034 } 1035 1036 // Drop any cached information about the call, because we may have changed 1037 // its dependence information by changing its parameter. 1038 if (MD) 1039 MD->removeInstruction(C); 1040 1041 // Update AA metadata 1042 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1043 // handled here, but combineMetadata doesn't support them yet 1044 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1045 LLVMContext::MD_noalias, 1046 LLVMContext::MD_invariant_group, 1047 LLVMContext::MD_access_group}; 1048 combineMetadata(C, cpyLoad, KnownIDs, true); 1049 1050 ++NumCallSlot; 1051 return true; 1052 } 1053 1054 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1055 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1056 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1057 MemCpyInst *MDep) { 1058 // We can only transforms memcpy's where the dest of one is the source of the 1059 // other. 1060 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1061 return false; 1062 1063 // If dep instruction is reading from our current input, then it is a noop 1064 // transfer and substituting the input won't change this instruction. Just 1065 // ignore the input and let someone else zap MDep. This handles cases like: 1066 // memcpy(a <- a) 1067 // memcpy(b <- a) 1068 if (M->getSource() == MDep->getSource()) 1069 return false; 1070 1071 // Second, the length of the memcpy's must be the same, or the preceding one 1072 // must be larger than the following one. 1073 if (MDep->getLength() != M->getLength()) { 1074 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1075 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 1076 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1077 return false; 1078 } 1079 1080 // Verify that the copied-from memory doesn't change in between the two 1081 // transfers. For example, in: 1082 // memcpy(a <- b) 1083 // *b = 42; 1084 // memcpy(c <- a) 1085 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1086 // 1087 // TODO: If the code between M and MDep is transparent to the destination "c", 1088 // then we could still perform the xform by moving M up to the first memcpy. 1089 if (EnableMemorySSA) { 1090 // TODO: It would be sufficient to check the MDep source up to the memcpy 1091 // size of M, rather than MDep. 1092 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1093 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1094 return false; 1095 } else { 1096 // NOTE: This is conservative, it will stop on any read from the source loc, 1097 // not just the defining memcpy. 1098 MemDepResult SourceDep = 1099 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 1100 M->getIterator(), M->getParent()); 1101 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1102 return false; 1103 } 1104 1105 // If the dest of the second might alias the source of the first, then the 1106 // source and dest might overlap. We still want to eliminate the intermediate 1107 // value, but we have to generate a memmove instead of memcpy. 1108 bool UseMemMove = false; 1109 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1110 MemoryLocation::getForSource(MDep))) 1111 UseMemMove = true; 1112 1113 // If all checks passed, then we can transform M. 1114 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1115 << *MDep << '\n' << *M << '\n'); 1116 1117 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1118 // example we could be moving from movaps -> movq on x86. 1119 IRBuilder<> Builder(M); 1120 Instruction *NewM; 1121 if (UseMemMove) 1122 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1123 MDep->getRawSource(), MDep->getSourceAlign(), 1124 M->getLength(), M->isVolatile()); 1125 else if (isa<MemCpyInlineInst>(M)) { 1126 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1127 // never allowed since that would allow the latter to be lowered as a call 1128 // to an external function. 1129 NewM = Builder.CreateMemCpyInline( 1130 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1131 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1132 } else 1133 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1134 MDep->getRawSource(), MDep->getSourceAlign(), 1135 M->getLength(), M->isVolatile()); 1136 1137 if (MSSAU) { 1138 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1139 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1140 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1141 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1142 } 1143 1144 // Remove the instruction we're replacing. 1145 eraseInstruction(M); 1146 ++NumMemCpyInstr; 1147 return true; 1148 } 1149 1150 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1151 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1152 /// weren't copied over by \p MemCpy. 1153 /// 1154 /// In other words, transform: 1155 /// \code 1156 /// memset(dst, c, dst_size); 1157 /// memcpy(dst, src, src_size); 1158 /// \endcode 1159 /// into: 1160 /// \code 1161 /// memcpy(dst, src, src_size); 1162 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1163 /// \endcode 1164 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1165 MemSetInst *MemSet) { 1166 // We can only transform memset/memcpy with the same destination. 1167 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1168 return false; 1169 1170 // Check that src and dst of the memcpy aren't the same. While memcpy 1171 // operands cannot partially overlap, exact equality is allowed. 1172 if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(), 1173 LocationSize::precise(1)), 1174 MemoryLocation(MemCpy->getDest(), 1175 LocationSize::precise(1)))) 1176 return false; 1177 1178 if (EnableMemorySSA) { 1179 // We know that dst up to src_size is not written. We now need to make sure 1180 // that dst up to dst_size is not accessed. (If we did not move the memset, 1181 // checking for reads would be sufficient.) 1182 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1183 MSSA->getMemoryAccess(MemSet), 1184 MSSA->getMemoryAccess(MemCpy))) { 1185 return false; 1186 } 1187 } else { 1188 // We have already checked that dst up to src_size is not accessed. We 1189 // need to make sure that there are no accesses up to dst_size either. 1190 MemDepResult DstDepInfo = MD->getPointerDependencyFrom( 1191 MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), 1192 MemCpy->getParent()); 1193 if (DstDepInfo.getInst() != MemSet) 1194 return false; 1195 } 1196 1197 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1198 Value *Dest = MemCpy->getRawDest(); 1199 Value *DestSize = MemSet->getLength(); 1200 Value *SrcSize = MemCpy->getLength(); 1201 1202 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1203 return false; 1204 1205 // If the sizes are the same, simply drop the memset instead of generating 1206 // a replacement with zero size. 1207 if (DestSize == SrcSize) { 1208 eraseInstruction(MemSet); 1209 return true; 1210 } 1211 1212 // By default, create an unaligned memset. 1213 unsigned Align = 1; 1214 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1215 // of the sum. 1216 const unsigned DestAlign = 1217 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1218 if (DestAlign > 1) 1219 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1220 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1221 1222 IRBuilder<> Builder(MemCpy); 1223 1224 // If the sizes have different types, zext the smaller one. 1225 if (DestSize->getType() != SrcSize->getType()) { 1226 if (DestSize->getType()->getIntegerBitWidth() > 1227 SrcSize->getType()->getIntegerBitWidth()) 1228 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1229 else 1230 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1231 } 1232 1233 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1234 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1235 Value *MemsetLen = Builder.CreateSelect( 1236 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1237 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1238 Instruction *NewMemSet = Builder.CreateMemSet( 1239 Builder.CreateGEP(Builder.getInt8Ty(), 1240 Builder.CreatePointerCast(Dest, 1241 Builder.getInt8PtrTy(DestAS)), 1242 SrcSize), 1243 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1244 1245 if (MSSAU) { 1246 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1247 "MemCpy must be a MemoryDef"); 1248 // The new memset is inserted after the memcpy, but it is known that its 1249 // defining access is the memset about to be removed which immediately 1250 // precedes the memcpy. 1251 auto *LastDef = 1252 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1253 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1254 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1255 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1256 } 1257 1258 eraseInstruction(MemSet); 1259 return true; 1260 } 1261 1262 /// Determine whether the instruction has undefined content for the given Size, 1263 /// either because it was freshly alloca'd or started its lifetime. 1264 static bool hasUndefContents(Instruction *I, Value *Size) { 1265 if (isa<AllocaInst>(I)) 1266 return true; 1267 1268 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1269 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1270 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1271 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1272 if (LTSize->getZExtValue() >= CSize->getZExtValue()) 1273 return true; 1274 } 1275 1276 return false; 1277 } 1278 1279 static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1280 MemoryDef *Def, Value *Size) { 1281 if (MSSA->isLiveOnEntryDef(Def)) 1282 return isa<AllocaInst>(getUnderlyingObject(V)); 1283 1284 if (IntrinsicInst *II = 1285 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1286 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1287 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1288 1289 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1290 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1291 LTSize->getZExtValue() >= CSize->getZExtValue()) 1292 return true; 1293 } 1294 1295 // If the lifetime.start covers a whole alloca (as it almost always 1296 // does) and we're querying a pointer based on that alloca, then we know 1297 // the memory is definitely undef, regardless of how exactly we alias. 1298 // The size also doesn't matter, as an out-of-bounds access would be UB. 1299 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); 1300 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1301 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1302 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) 1303 if (*AllocaSize == LTSize->getValue() * 8) 1304 return true; 1305 } 1306 } 1307 } 1308 1309 return false; 1310 } 1311 1312 /// Transform memcpy to memset when its source was just memset. 1313 /// In other words, turn: 1314 /// \code 1315 /// memset(dst1, c, dst1_size); 1316 /// memcpy(dst2, dst1, dst2_size); 1317 /// \endcode 1318 /// into: 1319 /// \code 1320 /// memset(dst1, c, dst1_size); 1321 /// memset(dst2, c, dst2_size); 1322 /// \endcode 1323 /// When dst2_size <= dst1_size. 1324 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1325 MemSetInst *MemSet) { 1326 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1327 // memcpying from the same address. Otherwise it is hard to reason about. 1328 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1329 return false; 1330 1331 Value *MemSetSize = MemSet->getLength(); 1332 Value *CopySize = MemCpy->getLength(); 1333 1334 if (MemSetSize != CopySize) { 1335 // Make sure the memcpy doesn't read any more than what the memset wrote. 1336 // Don't worry about sizes larger than i64. 1337 1338 // A known memset size is required. 1339 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1340 if (!CMemSetSize) 1341 return false; 1342 1343 // A known memcpy size is also required. 1344 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); 1345 if (!CCopySize) 1346 return false; 1347 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1348 // If the memcpy is larger than the memset, but the memory was undef prior 1349 // to the memset, we can just ignore the tail. Technically we're only 1350 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1351 // easily represent this location, we use the full 0..CopySize range. 1352 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1353 bool CanReduceSize = false; 1354 if (EnableMemorySSA) { 1355 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1356 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1357 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1358 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1359 if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1360 CanReduceSize = true; 1361 } else { 1362 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1363 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1364 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1365 CanReduceSize = true; 1366 } 1367 1368 if (!CanReduceSize) 1369 return false; 1370 CopySize = MemSetSize; 1371 } 1372 } 1373 1374 IRBuilder<> Builder(MemCpy); 1375 Instruction *NewM = 1376 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1377 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1378 if (MSSAU) { 1379 auto *LastDef = 1380 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1381 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1382 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1383 } 1384 1385 return true; 1386 } 1387 1388 /// Perform simplification of memcpy's. If we have memcpy A 1389 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1390 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1391 /// circumstances). This allows later passes to remove the first memcpy 1392 /// altogether. 1393 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1394 // We can only optimize non-volatile memcpy's. 1395 if (M->isVolatile()) return false; 1396 1397 // If the source and destination of the memcpy are the same, then zap it. 1398 if (M->getSource() == M->getDest()) { 1399 ++BBI; 1400 eraseInstruction(M); 1401 return true; 1402 } 1403 1404 // If copying from a constant, try to turn the memcpy into a memset. 1405 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1406 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1407 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1408 M->getModule()->getDataLayout())) { 1409 IRBuilder<> Builder(M); 1410 Instruction *NewM = 1411 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1412 MaybeAlign(M->getDestAlignment()), false); 1413 if (MSSAU) { 1414 auto *LastDef = 1415 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1416 auto *NewAccess = 1417 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1418 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1419 } 1420 1421 eraseInstruction(M); 1422 ++NumCpyToSet; 1423 return true; 1424 } 1425 1426 if (EnableMemorySSA) { 1427 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1428 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1429 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1430 const MemoryAccess *DestClobber = 1431 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1432 1433 // Try to turn a partially redundant memset + memcpy into 1434 // memcpy + smaller memset. We don't need the memcpy size for this. 1435 // The memcpy most post-dom the memset, so limit this to the same basic 1436 // block. A non-local generalization is likely not worthwhile. 1437 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1438 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1439 if (DestClobber->getBlock() == M->getParent()) 1440 if (processMemSetMemCpyDependence(M, MDep)) 1441 return true; 1442 1443 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1444 AnyClobber, MemoryLocation::getForSource(M)); 1445 1446 // There are four possible optimizations we can do for memcpy: 1447 // a) memcpy-memcpy xform which exposes redundance for DSE. 1448 // b) call-memcpy xform for return slot optimization. 1449 // c) memcpy from freshly alloca'd space or space that has just started 1450 // its lifetime copies undefined data, and we can therefore eliminate 1451 // the memcpy in favor of the data that was already at the destination. 1452 // d) memcpy from a just-memset'd source can be turned into memset. 1453 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1454 if (Instruction *MI = MD->getMemoryInst()) { 1455 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1456 if (auto *C = dyn_cast<CallInst>(MI)) { 1457 // The memcpy must post-dom the call. Limit to the same block for 1458 // now. Additionally, we need to ensure that there are no accesses 1459 // to dest between the call and the memcpy. Accesses to src will be 1460 // checked by performCallSlotOptzn(). 1461 // TODO: Support non-local call-slot optimization? 1462 if (C->getParent() == M->getParent() && 1463 !accessedBetween(*AA, DestLoc, MD, MA)) { 1464 // FIXME: Can we pass in either of dest/src alignment here instead 1465 // of conservatively taking the minimum? 1466 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1467 M->getSourceAlign().valueOrOne()); 1468 if (performCallSlotOptzn( 1469 M, M, M->getDest(), M->getSource(), 1470 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1471 C)) { 1472 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1473 << " call: " << *C << "\n" 1474 << " memcpy: " << *M << "\n"); 1475 eraseInstruction(M); 1476 ++NumMemCpyInstr; 1477 return true; 1478 } 1479 } 1480 } 1481 } 1482 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1483 return processMemCpyMemCpyDependence(M, MDep); 1484 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1485 if (performMemCpyToMemSetOptzn(M, MDep)) { 1486 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1487 eraseInstruction(M); 1488 ++NumCpyToSet; 1489 return true; 1490 } 1491 } 1492 } 1493 1494 if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) { 1495 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1496 eraseInstruction(M); 1497 ++NumMemCpyInstr; 1498 return true; 1499 } 1500 } 1501 } else { 1502 MemDepResult DepInfo = MD->getDependency(M); 1503 1504 // Try to turn a partially redundant memset + memcpy into 1505 // memcpy + smaller memset. We don't need the memcpy size for this. 1506 if (DepInfo.isClobber()) 1507 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1508 if (processMemSetMemCpyDependence(M, MDep)) 1509 return true; 1510 1511 // There are four possible optimizations we can do for memcpy: 1512 // a) memcpy-memcpy xform which exposes redundance for DSE. 1513 // b) call-memcpy xform for return slot optimization. 1514 // c) memcpy from freshly alloca'd space or space that has just started 1515 // its lifetime copies undefined data, and we can therefore eliminate 1516 // the memcpy in favor of the data that was already at the destination. 1517 // d) memcpy from a just-memset'd source can be turned into memset. 1518 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1519 if (DepInfo.isClobber()) { 1520 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1521 // FIXME: Can we pass in either of dest/src alignment here instead 1522 // of conservatively taking the minimum? 1523 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1524 M->getSourceAlign().valueOrOne()); 1525 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1526 TypeSize::getFixed(CopySize->getZExtValue()), 1527 Alignment, C)) { 1528 eraseInstruction(M); 1529 ++NumMemCpyInstr; 1530 return true; 1531 } 1532 } 1533 } 1534 } 1535 1536 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1537 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1538 SrcLoc, true, M->getIterator(), M->getParent()); 1539 1540 if (SrcDepInfo.isClobber()) { 1541 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1542 return processMemCpyMemCpyDependence(M, MDep); 1543 } else if (SrcDepInfo.isDef()) { 1544 if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) { 1545 eraseInstruction(M); 1546 ++NumMemCpyInstr; 1547 return true; 1548 } 1549 } 1550 1551 if (SrcDepInfo.isClobber()) 1552 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1553 if (performMemCpyToMemSetOptzn(M, MDep)) { 1554 eraseInstruction(M); 1555 ++NumCpyToSet; 1556 return true; 1557 } 1558 } 1559 1560 return false; 1561 } 1562 1563 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1564 /// not to alias. 1565 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1566 if (!TLI->has(LibFunc_memmove)) 1567 return false; 1568 1569 // See if the pointers alias. 1570 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1571 MemoryLocation::getForSource(M))) 1572 return false; 1573 1574 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1575 << "\n"); 1576 1577 // If not, then we know we can transform this. 1578 Type *ArgTys[3] = { M->getRawDest()->getType(), 1579 M->getRawSource()->getType(), 1580 M->getLength()->getType() }; 1581 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1582 Intrinsic::memcpy, ArgTys)); 1583 1584 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1585 // aliasing guarantees). 1586 1587 // MemDep may have over conservative information about this instruction, just 1588 // conservatively flush it from the cache. 1589 if (MD) 1590 MD->removeInstruction(M); 1591 1592 ++NumMoveToCpy; 1593 return true; 1594 } 1595 1596 /// This is called on every byval argument in call sites. 1597 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1598 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1599 // Find out what feeds this byval argument. 1600 Value *ByValArg = CB.getArgOperand(ArgNo); 1601 Type *ByValTy = CB.getParamByValType(ArgNo); 1602 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1603 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1604 MemCpyInst *MDep = nullptr; 1605 if (EnableMemorySSA) { 1606 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1607 if (!CallAccess) 1608 return false; 1609 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1610 CallAccess->getDefiningAccess(), Loc); 1611 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1612 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1613 } else { 1614 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1615 Loc, true, CB.getIterator(), CB.getParent()); 1616 if (!DepInfo.isClobber()) 1617 return false; 1618 MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1619 } 1620 1621 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1622 // a memcpy, see if we can byval from the source of the memcpy instead of the 1623 // result. 1624 if (!MDep || MDep->isVolatile() || 1625 ByValArg->stripPointerCasts() != MDep->getDest()) 1626 return false; 1627 1628 // The length of the memcpy must be larger or equal to the size of the byval. 1629 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1630 if (!C1 || !TypeSize::isKnownGE( 1631 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1632 return false; 1633 1634 // Get the alignment of the byval. If the call doesn't specify the alignment, 1635 // then it is some target specific value that we can't know. 1636 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1637 if (!ByValAlign) return false; 1638 1639 // If it is greater than the memcpy, then we check to see if we can force the 1640 // source of the memcpy to the alignment we need. If we fail, we bail out. 1641 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1642 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1643 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1644 DT) < *ByValAlign) 1645 return false; 1646 1647 // The address space of the memcpy source must match the byval argument 1648 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1649 ByValArg->getType()->getPointerAddressSpace()) 1650 return false; 1651 1652 // Verify that the copied-from memory doesn't change in between the memcpy and 1653 // the byval call. 1654 // memcpy(a <- b) 1655 // *b = 42; 1656 // foo(*a) 1657 // It would be invalid to transform the second memcpy into foo(*b). 1658 if (EnableMemorySSA) { 1659 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1660 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1661 return false; 1662 } else { 1663 // NOTE: This is conservative, it will stop on any read from the source loc, 1664 // not just the defining memcpy. 1665 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1666 MemoryLocation::getForSource(MDep), false, 1667 CB.getIterator(), MDep->getParent()); 1668 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1669 return false; 1670 } 1671 1672 Value *TmpCast = MDep->getSource(); 1673 if (MDep->getSource()->getType() != ByValArg->getType()) { 1674 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1675 "tmpcast", &CB); 1676 // Set the tmpcast's DebugLoc to MDep's 1677 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1678 TmpCast = TmpBitCast; 1679 } 1680 1681 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1682 << " " << *MDep << "\n" 1683 << " " << CB << "\n"); 1684 1685 // Otherwise we're good! Update the byval argument. 1686 CB.setArgOperand(ArgNo, TmpCast); 1687 ++NumMemCpyInstr; 1688 return true; 1689 } 1690 1691 /// Executes one iteration of MemCpyOptPass. 1692 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1693 bool MadeChange = false; 1694 1695 // Walk all instruction in the function. 1696 for (BasicBlock &BB : F) { 1697 // Skip unreachable blocks. For example processStore assumes that an 1698 // instruction in a BB can't be dominated by a later instruction in the 1699 // same BB (which is a scenario that can happen for an unreachable BB that 1700 // has itself as a predecessor). 1701 if (!DT->isReachableFromEntry(&BB)) 1702 continue; 1703 1704 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1705 // Avoid invalidating the iterator. 1706 Instruction *I = &*BI++; 1707 1708 bool RepeatInstruction = false; 1709 1710 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1711 MadeChange |= processStore(SI, BI); 1712 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1713 RepeatInstruction = processMemSet(M, BI); 1714 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1715 RepeatInstruction = processMemCpy(M, BI); 1716 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1717 RepeatInstruction = processMemMove(M); 1718 else if (auto *CB = dyn_cast<CallBase>(I)) { 1719 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1720 if (CB->isByValArgument(i)) 1721 MadeChange |= processByValArgument(*CB, i); 1722 } 1723 1724 // Reprocess the instruction if desired. 1725 if (RepeatInstruction) { 1726 if (BI != BB.begin()) 1727 --BI; 1728 MadeChange = true; 1729 } 1730 } 1731 } 1732 1733 return MadeChange; 1734 } 1735 1736 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1737 auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F) 1738 : AM.getCachedResult<MemoryDependenceAnalysis>(F); 1739 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1740 auto *AA = &AM.getResult<AAManager>(F); 1741 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1742 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1743 auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F) 1744 : AM.getCachedResult<MemorySSAAnalysis>(F); 1745 1746 bool MadeChange = 1747 runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr); 1748 if (!MadeChange) 1749 return PreservedAnalyses::all(); 1750 1751 PreservedAnalyses PA; 1752 PA.preserveSet<CFGAnalyses>(); 1753 if (MD) 1754 PA.preserve<MemoryDependenceAnalysis>(); 1755 if (MSSA) 1756 PA.preserve<MemorySSAAnalysis>(); 1757 return PA; 1758 } 1759 1760 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_, 1761 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 1762 AssumptionCache *AC_, DominatorTree *DT_, 1763 MemorySSA *MSSA_) { 1764 bool MadeChange = false; 1765 MD = MD_; 1766 TLI = TLI_; 1767 AA = AA_; 1768 AC = AC_; 1769 DT = DT_; 1770 MSSA = MSSA_; 1771 MemorySSAUpdater MSSAU_(MSSA_); 1772 MSSAU = MSSA_ ? &MSSAU_ : nullptr; 1773 // If we don't have at least memset and memcpy, there is little point of doing 1774 // anything here. These are required by a freestanding implementation, so if 1775 // even they are disabled, there is no point in trying hard. 1776 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1777 return false; 1778 1779 while (true) { 1780 if (!iterateOnFunction(F)) 1781 break; 1782 MadeChange = true; 1783 } 1784 1785 if (MSSA_ && VerifyMemorySSA) 1786 MSSA_->verifyMemorySSA(); 1787 1788 MD = nullptr; 1789 return MadeChange; 1790 } 1791 1792 /// This is the main transformation entry point for a function. 1793 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1794 if (skipFunction(F)) 1795 return false; 1796 1797 auto *MDWP = !EnableMemorySSA 1798 ? &getAnalysis<MemoryDependenceWrapperPass>() 1799 : getAnalysisIfAvailable<MemoryDependenceWrapperPass>(); 1800 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1801 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1802 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1803 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1804 auto *MSSAWP = EnableMemorySSA 1805 ? &getAnalysis<MemorySSAWrapperPass>() 1806 : getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1807 1808 return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT, 1809 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 1810 } 1811