xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/ScopeExit.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/MatrixBuilder.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/Support/Alignment.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include "llvm/Transforms/Utils/MatrixUtils.h"
47 
48 #include <cmath>
49 
50 using namespace llvm;
51 using namespace PatternMatch;
52 
53 #define DEBUG_TYPE "lower-matrix-intrinsics"
54 
55 static cl::opt<bool>
56     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
57                cl::desc("Enable/disable fusing matrix instructions."));
58 // TODO: Allow and use non-square tiles.
59 static cl::opt<unsigned> TileSize(
60     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
61     cl::desc(
62         "Tile size for matrix instruction fusion using square-shaped tiles."));
63 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
64                                   cl::Hidden,
65                                   cl::desc("Generate loop nest for tiling."));
66 static cl::opt<bool> ForceFusion(
67     "force-fuse-matrix", cl::init(false), cl::Hidden,
68     cl::desc("Force matrix instruction fusion even if not profitable."));
69 static cl::opt<bool> AllowContractEnabled(
70     "matrix-allow-contract", cl::init(false), cl::Hidden,
71     cl::desc("Allow the use of FMAs if available and profitable. This may "
72              "result in different results, due to less rounding error."));
73 
74 static cl::opt<bool>
75     VerifyShapeInfo("verify-matrix-shapes", cl::Hidden,
76                     cl::desc("Enable/disable matrix shape verification."),
77                     cl::init(false));
78 
79 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
80 
81 static cl::opt<MatrixLayoutTy> MatrixLayout(
82     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
83     cl::desc("Sets the default matrix layout"),
84     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
85                           "Use column-major layout"),
86                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
87                           "Use row-major layout")));
88 
89 static cl::opt<bool> PrintAfterTransposeOpt("matrix-print-after-transpose-opt",
90                                             cl::init(false));
91 
92 /// Helper function to either return Scope, if it is a subprogram or the
93 /// attached subprogram for a local scope.
94 static DISubprogram *getSubprogram(DIScope *Scope) {
95   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
96     return Subprogram;
97   return cast<DILocalScope>(Scope)->getSubprogram();
98 }
99 
100 /// Erase \p V from \p BB and move \II forward to avoid invalidating
101 /// iterators.
102 static void eraseFromParentAndMove(Value *V, BasicBlock::reverse_iterator &II,
103                                    BasicBlock &BB) {
104   auto *Inst = cast<Instruction>(V);
105   // Still used, don't erase.
106   if (!Inst->use_empty())
107     return;
108   if (II != BB.rend() && Inst == &*II)
109     ++II;
110   Inst->eraseFromParent();
111 }
112 
113 /// Return true if V is a splat of a value (which is used when multiplying a
114 /// matrix with a scalar).
115 static bool isSplat(Value *V) {
116   if (auto *SV = dyn_cast<ShuffleVectorInst>(V))
117     return SV->isZeroEltSplat();
118   return false;
119 }
120 
121 /// Match any mul operation (fp or integer).
122 template <typename LTy, typename RTy>
123 auto m_AnyMul(const LTy &L, const RTy &R) {
124   return m_CombineOr(m_Mul(L, R), m_FMul(L, R));
125 }
126 
127 /// Match any add operation (fp or integer).
128 template <typename LTy, typename RTy>
129 auto m_AnyAdd(const LTy &L, const RTy &R) {
130   return m_CombineOr(m_Add(L, R), m_FAdd(L, R));
131 }
132 
133 namespace {
134 
135 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
136 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
137 // assuming \p Stride elements between start two consecutive vectors.
138 // \p Stride must be >= \p NumElements.
139 // For column-major matrixes, the function computes the address of a column
140 // vectors and \p NumElements must be set to the number of elements in a column
141 // (= number of rows of the matrix). For row-major matrixes, the function
142 // computes the address of a row vector and \p NumElements must be set to the
143 // number of elements in a column (= number of columns of the matrix).
144 //
145 // Consider a 4x4 matrix in column-mjaor layout like below
146 //
147 //      0       1      2      3
148 // 0   v_0_0  v_0_1  v_0_2  v_0_3
149 // 1   v_1_0  v_1_1  v_1_2  v_1_3
150 // 2   v_2_0  v_2_1  v_2_2  v_2_3
151 // 3   v_3_0  v_3_1  v_3_2  v_3_3
152 
153 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
154 // we need a pointer to the first element of the submatrix as base pointer.
155 // Then we can use computeVectorAddr to compute the addresses for the columns
156 // of the sub-matrix.
157 //
158 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
159 //           -> just returns Base
160 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
161 //           -> returns Base + (1 * 4)
162 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
163 //           -> returns Base + (2 * 4)
164 //
165 // The graphic below illustrates the number of elements in a column (marked
166 // with |) and the number of skipped elements (marked with }).
167 //
168 //         v_0_0  v_0_1 {v_0_2 {v_0_3
169 //                Base   Col 1  Col 2
170 //                  |     |      |
171 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
172 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
173 //         v_3_0 {v_3_1 {v_3_2  v_3_3
174 //
175 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
176                          unsigned NumElements, Type *EltType,
177                          IRBuilder<> &Builder) {
178 
179   assert((!isa<ConstantInt>(Stride) ||
180           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
181          "Stride must be >= the number of elements in the result vector.");
182 
183   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
184   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
185 
186   // Get pointer to the start of the selected vector. Skip GEP creation,
187   // if we select vector 0.
188   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
189     VecStart = BasePtr;
190   else
191     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
192 
193   return VecStart;
194 }
195 
196 namespace {
197 struct ShapeInfo {
198   unsigned NumRows;
199   unsigned NumColumns;
200 
201   bool IsColumnMajor;
202 
203   ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
204       : NumRows(NumRows), NumColumns(NumColumns),
205         IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
206 
207   ShapeInfo(Value *NumRows, Value *NumColumns)
208       : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
209                   cast<ConstantInt>(NumColumns)->getZExtValue()) {}
210 
211   bool operator==(const ShapeInfo &other) {
212     return NumRows == other.NumRows && NumColumns == other.NumColumns;
213   }
214   bool operator!=(const ShapeInfo &other) { return !(*this == other); }
215 
216   /// Returns true if shape-information is defined, meaning both dimensions
217   /// are != 0.
218   operator bool() const {
219     assert(NumRows == 0 || NumColumns != 0);
220     return NumRows != 0;
221   }
222 
223   unsigned getStride() const {
224     if (IsColumnMajor)
225       return NumRows;
226     return NumColumns;
227   }
228 
229   unsigned getNumVectors() const {
230     if (IsColumnMajor)
231       return NumColumns;
232     return NumRows;
233   }
234 
235   /// Returns the transposed shape.
236   ShapeInfo t() const { return ShapeInfo(NumColumns, NumRows); }
237 };
238 } // namespace
239 
240 static bool isUniformShape(Value *V) {
241   Instruction *I = dyn_cast<Instruction>(V);
242   if (!I)
243     return true;
244 
245   switch (I->getOpcode()) {
246   case Instruction::FAdd:
247   case Instruction::FSub:
248   case Instruction::FMul: // Scalar multiply.
249   case Instruction::FNeg:
250   case Instruction::Add:
251   case Instruction::Mul:
252   case Instruction::Sub:
253     return true;
254   default:
255     return false;
256   }
257 }
258 
259 /// Return the ShapeInfo for the result of \p I, it it can be determined.
260 static std::optional<ShapeInfo>
261 computeShapeInfoForInst(Instruction *I,
262                         const ValueMap<Value *, ShapeInfo> &ShapeMap) {
263   Value *M;
264   Value *N;
265   Value *K;
266   if (match(I, m_Intrinsic<Intrinsic::matrix_multiply>(
267                    m_Value(), m_Value(), m_Value(M), m_Value(N), m_Value(K))))
268     return ShapeInfo(M, K);
269   if (match(I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(), m_Value(M),
270                                                         m_Value(N)))) {
271     // Flip dimensions.
272     return ShapeInfo(N, M);
273   }
274   if (match(I, m_Intrinsic<Intrinsic::matrix_column_major_store>(
275                    m_Value(), m_Value(), m_Value(), m_Value(), m_Value(M),
276                    m_Value(N))))
277     return ShapeInfo(N, M);
278   if (match(I, m_Intrinsic<Intrinsic::matrix_column_major_load>(
279                    m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N))))
280     return ShapeInfo(M, N);
281   Value *MatrixA;
282   if (match(I, m_Store(m_Value(MatrixA), m_Value()))) {
283     auto OpShape = ShapeMap.find(MatrixA);
284     if (OpShape != ShapeMap.end())
285       return OpShape->second;
286   }
287 
288   if (isUniformShape(I)) {
289     // Find the first operand that has a known shape and use that.
290     for (auto &Op : I->operands()) {
291       auto OpShape = ShapeMap.find(Op.get());
292       if (OpShape != ShapeMap.end())
293         return OpShape->second;
294     }
295   }
296   return std::nullopt;
297 }
298 
299 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
300 ///
301 /// Currently, the lowering for each matrix intrinsic is done as follows:
302 /// 1. Propagate the shape information from intrinsics to connected
303 /// instructions.
304 /// 2. Lower instructions with shape information (assuming column-major layout).
305 ///  The lowering works similarly using row-major layout.
306 ///  2.1. Get column vectors for each argument. If we already lowered the
307 ///       definition of an argument, use the produced column vectors directly.
308 ///       If not, split the operand vector containing an embedded matrix into
309 ///       a set of column vectors,
310 ///  2.2. Lower the instruction in terms of column major operations, which
311 ///       yields a set of column vectors containing result matrix. Note that we
312 ///       lower all instructions that have shape information. Besides the
313 ///       intrinsics, this includes stores for example.
314 ///  2.3. Update uses of the lowered instruction. If we have shape information
315 ///       for a user, there is nothing to do, as we will look up the result
316 ///       column matrix when lowering the user. For other uses, we embed the
317 ///       result matrix in a flat vector and update the use.
318 ///  2.4. Cache the result column matrix for the instruction we lowered
319 /// 3. After we lowered all instructions in a function, remove the now
320 ///    obsolete instructions.
321 ///
322 class LowerMatrixIntrinsics {
323   Function &Func;
324   const DataLayout &DL;
325   const TargetTransformInfo &TTI;
326   AliasAnalysis *AA;
327   DominatorTree *DT;
328   LoopInfo *LI;
329   OptimizationRemarkEmitter *ORE;
330 
331   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
332   struct OpInfoTy {
333     /// Number of stores emitted to generate this matrix.
334     unsigned NumStores = 0;
335     /// Number of loads emitted to generate this matrix.
336     unsigned NumLoads = 0;
337     /// Number of compute operations emitted to generate this matrix.
338     unsigned NumComputeOps = 0;
339     /// Most of the time transposes can be fused with matrix multiplies or can
340     /// be folded away via algebraic simplifications.  This is the number of
341     /// transposes that we failed to make "free" via such optimizations.
342     unsigned NumExposedTransposes = 0;
343 
344     OpInfoTy &operator+=(const OpInfoTy &RHS) {
345       NumStores += RHS.NumStores;
346       NumLoads += RHS.NumLoads;
347       NumComputeOps += RHS.NumComputeOps;
348       NumExposedTransposes += RHS.NumExposedTransposes;
349       return *this;
350     }
351   };
352 
353   /// Wrapper class representing a matrix as a set of vectors, either in row or
354   /// column major layout. All vectors must have the same vector type.
355   class MatrixTy {
356     SmallVector<Value *, 16> Vectors;
357 
358     OpInfoTy OpInfo;
359 
360     bool IsColumnMajor = true;
361 
362   public:
363     MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
364     MatrixTy(ArrayRef<Value *> Vectors)
365         : Vectors(Vectors.begin(), Vectors.end()),
366           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
367     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
368         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
369 
370       unsigned D = isColumnMajor() ? NumColumns : NumRows;
371       for (unsigned J = 0; J < D; ++J)
372         addVector(PoisonValue::get(FixedVectorType::get(
373             EltTy, isColumnMajor() ? NumRows : NumColumns)));
374     }
375 
376     Value *getVector(unsigned i) const { return Vectors[i]; }
377     Value *getColumn(unsigned i) const {
378       assert(isColumnMajor() && "only supported for column-major matrixes");
379       return Vectors[i];
380     }
381     Value *getRow(unsigned i) const {
382       assert(!isColumnMajor() && "only supported for row-major matrixes");
383       return Vectors[i];
384     }
385 
386     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
387 
388     Type *getElementType() const { return getVectorTy()->getElementType(); }
389 
390     unsigned getNumVectors() const {
391       if (isColumnMajor())
392         return getNumColumns();
393       return getNumRows();
394     }
395 
396     unsigned getNumColumns() const {
397       if (isColumnMajor())
398         return Vectors.size();
399       else {
400         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
401         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
402       }
403     }
404     unsigned getNumRows() const {
405       if (isColumnMajor()) {
406         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
407         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
408       } else
409         return Vectors.size();
410     }
411 
412     void addVector(Value *V) { Vectors.push_back(V); }
413     VectorType *getColumnTy() {
414       assert(isColumnMajor() && "only supported for column-major matrixes");
415       return getVectorTy();
416     }
417 
418     VectorType *getVectorTy() const {
419       return cast<VectorType>(Vectors[0]->getType());
420     }
421 
422     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
423       assert(isColumnMajor() &&
424              "columns() only supported for column-major matrixes");
425       return make_range(Vectors.begin(), Vectors.end());
426     }
427 
428     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
429       return make_range(Vectors.begin(), Vectors.end());
430     }
431 
432     /// Embed the vectors of the matrix into a flat vector by concatenating
433     /// them.
434     Value *embedInVector(IRBuilder<> &Builder) const {
435       return Vectors.size() == 1 ? Vectors[0]
436                                  : concatenateVectors(Builder, Vectors);
437     }
438 
439     MatrixTy &addNumLoads(unsigned N) {
440       OpInfo.NumLoads += N;
441       return *this;
442     }
443 
444     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
445 
446     MatrixTy &addNumStores(unsigned N) {
447       OpInfo.NumStores += N;
448       return *this;
449     }
450 
451     MatrixTy &addNumExposedTransposes(unsigned N) {
452       OpInfo.NumExposedTransposes += N;
453       return *this;
454     }
455 
456     MatrixTy &addNumComputeOps(unsigned N) {
457       OpInfo.NumComputeOps += N;
458       return *this;
459     }
460 
461     unsigned getNumStores() const { return OpInfo.NumStores; }
462     unsigned getNumLoads() const { return OpInfo.NumLoads; }
463     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
464 
465     const OpInfoTy &getOpInfo() const { return OpInfo; }
466 
467     bool isColumnMajor() const { return IsColumnMajor; }
468 
469     unsigned getStride() const {
470       if (isColumnMajor())
471         return getNumRows();
472       return getNumColumns();
473     }
474 
475     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
476     /// matrix is column-major, the result vector is extracted from a column
477     /// vector, otherwise from a row vector.
478     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
479                          IRBuilder<> &Builder) const {
480       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
481       assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
482                  NumElts &&
483              "Extracted vector will contain poison values");
484       return Builder.CreateShuffleVector(
485           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
486           "block");
487     }
488   };
489 
490   /// Maps instructions to their shape information. The shape information
491   /// describes the shape to be used while lowering. This matches the shape of
492   /// the result value of the instruction, with the only exceptions being store
493   /// instructions and the matrix_column_major_store intrinsics. For those, the
494   /// shape information indicates that those instructions should be lowered
495   /// using shape information as well.  A ValueMap is used so that when
496   /// sub-passes like optimizeTransposes performs RAUW the map stays
497   /// up-to-date.
498   ValueMap<Value *, ShapeInfo> ShapeMap;
499 
500   /// List of instructions to remove. While lowering, we are not replacing all
501   /// users of a lowered instruction, if shape information is available and
502   /// those need to be removed after we finished lowering.
503   SmallVector<Instruction *, 16> ToRemove;
504 
505   /// Map from instructions to their produced column matrix.
506   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
507 
508 private:
509   static FastMathFlags getFastMathFlags(Instruction *Inst) {
510     FastMathFlags FMF;
511 
512     if (isa<FPMathOperator>(*Inst))
513       FMF = Inst->getFastMathFlags();
514 
515     FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
516 
517     return FMF;
518   }
519 
520 public:
521   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
522                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
523                         OptimizationRemarkEmitter *ORE)
524       : Func(F), DL(F.getDataLayout()), TTI(TTI), AA(AA), DT(DT),
525         LI(LI), ORE(ORE) {}
526 
527   unsigned getNumOps(Type *VT) {
528     assert(isa<VectorType>(VT) && "Expected vector type");
529     return getNumOps(VT->getScalarType(),
530                      cast<FixedVectorType>(VT)->getNumElements());
531   }
532 
533   /// Is this the minimal version executed in the backend pipelines.
534   bool isMinimal() const {
535     return !DT;
536   }
537 
538   /// Return the estimated number of vector ops required for an operation on
539   /// \p VT * N.
540   unsigned getNumOps(Type *ST, unsigned N) {
541     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedValue() /
542                      double(TTI.getRegisterBitWidth(
543                                    TargetTransformInfo::RGK_FixedWidthVector)
544                                 .getFixedValue()));
545   }
546 
547   /// Return the set of vectors that a matrix value is lowered to.
548   ///
549   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
550   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
551   /// into vectors.
552   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
553                      IRBuilder<> &Builder) {
554     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
555     assert(VType && "MatrixVal must be a vector type");
556     assert(cast<FixedVectorType>(VType)->getNumElements() ==
557                SI.NumRows * SI.NumColumns &&
558            "The vector size must match the number of matrix elements");
559 
560     // Check if we lowered MatrixVal using shape information. In that case,
561     // return the existing matrix, if it matches the requested shape
562     // information. If there is a mis-match, embed the result in a flat
563     // vector and split it later.
564     auto Found = Inst2ColumnMatrix.find(MatrixVal);
565     if (Found != Inst2ColumnMatrix.end()) {
566       MatrixTy &M = Found->second;
567       // Return the found matrix, if its shape matches the requested shape
568       // information
569       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
570         return M;
571 
572       MatrixVal = M.embedInVector(Builder);
573     }
574 
575     // Otherwise split MatrixVal.
576     SmallVector<Value *, 16> SplitVecs;
577     for (unsigned MaskStart = 0;
578          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
579          MaskStart += SI.getStride()) {
580       Value *V = Builder.CreateShuffleVector(
581           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
582           "split");
583       SplitVecs.push_back(V);
584     }
585 
586     return {SplitVecs};
587   }
588 
589   /// If \p V already has a known shape return false.  Otherwise set the shape
590   /// for instructions that support it.
591   bool setShapeInfo(Value *V, ShapeInfo Shape) {
592     assert(Shape && "Shape not set");
593     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
594       return false;
595 
596     auto SIter = ShapeMap.find(V);
597     if (SIter != ShapeMap.end()) {
598       if (VerifyShapeInfo && (SIter->second.NumRows != Shape.NumRows ||
599                               SIter->second.NumColumns != Shape.NumColumns)) {
600         errs() << "Conflicting shapes (" << SIter->second.NumRows << "x"
601                << SIter->second.NumColumns << " vs " << Shape.NumRows << "x"
602                << Shape.NumColumns << ") for " << *V << "\n";
603         report_fatal_error(
604             "Matrix shape verification failed, compilation aborted!");
605       }
606 
607       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
608                         << SIter->second.NumRows << " "
609                         << SIter->second.NumColumns << " for " << *V << "\n");
610       return false;
611     }
612 
613     ShapeMap.insert({V, Shape});
614     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
615                       << " for " << *V << "\n");
616     return true;
617   }
618 
619   /// Returns true if shape information can be used for \p V. The supported
620   /// instructions must match the instructions that can be lowered by this pass.
621   bool supportsShapeInfo(Value *V) {
622     Instruction *Inst = dyn_cast<Instruction>(V);
623     if (!Inst)
624       return false;
625 
626     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
627     if (II)
628       switch (II->getIntrinsicID()) {
629       case Intrinsic::matrix_multiply:
630       case Intrinsic::matrix_transpose:
631       case Intrinsic::matrix_column_major_load:
632       case Intrinsic::matrix_column_major_store:
633         return true;
634       default:
635         return false;
636       }
637     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
638   }
639 
640   /// Propagate the shape information of instructions to their users.
641   /// The work list contains instructions for which we can compute the shape,
642   /// either based on the information provided by matrix intrinsics or known
643   /// shapes of operands.
644   SmallVector<Instruction *, 32>
645   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
646     SmallVector<Instruction *, 32> NewWorkList;
647     // Pop an element for which we guaranteed to have at least one of the
648     // operand shapes.  Add the shape for this and then add users to the work
649     // list.
650     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
651     while (!WorkList.empty()) {
652       Instruction *Inst = WorkList.pop_back_val();
653 
654       // New entry, set the value and insert operands
655       bool Propagate = false;
656       if (auto SI = computeShapeInfoForInst(Inst, ShapeMap))
657         Propagate = setShapeInfo(Inst, *SI);
658 
659       if (Propagate) {
660         NewWorkList.push_back(Inst);
661         for (auto *User : Inst->users())
662           if (ShapeMap.count(User) == 0)
663             WorkList.push_back(cast<Instruction>(User));
664       }
665     }
666 
667     return NewWorkList;
668   }
669 
670   /// Propagate the shape to operands of instructions with shape information.
671   /// \p Worklist contains the instruction for which we already know the shape.
672   SmallVector<Instruction *, 32>
673   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
674     SmallVector<Instruction *, 32> NewWorkList;
675 
676     auto pushInstruction = [](Value *V,
677                               SmallVectorImpl<Instruction *> &WorkList) {
678       Instruction *I = dyn_cast<Instruction>(V);
679       if (I)
680         WorkList.push_back(I);
681     };
682     // Pop an element with known shape.  Traverse the operands, if their shape
683     // derives from the result shape and is unknown, add it and add them to the
684     // worklist.
685     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
686     while (!WorkList.empty()) {
687       Value *V = WorkList.pop_back_val();
688 
689       size_t BeforeProcessingV = WorkList.size();
690       if (!isa<Instruction>(V))
691         continue;
692 
693       Value *MatrixA;
694       Value *MatrixB;
695       Value *M;
696       Value *N;
697       Value *K;
698       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
699                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
700                        m_Value(N), m_Value(K)))) {
701         if (setShapeInfo(MatrixA, {M, N}))
702           pushInstruction(MatrixA, WorkList);
703 
704         if (setShapeInfo(MatrixB, {N, K}))
705           pushInstruction(MatrixB, WorkList);
706 
707       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
708                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
709         // Flip dimensions.
710         if (setShapeInfo(MatrixA, {M, N}))
711           pushInstruction(MatrixA, WorkList);
712       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
713                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
714                               m_Value(M), m_Value(N)))) {
715         if (setShapeInfo(MatrixA, {M, N})) {
716           pushInstruction(MatrixA, WorkList);
717         }
718       } else if (isa<LoadInst>(V) ||
719                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
720         // Nothing to do, no matrix input.
721       } else if (isa<StoreInst>(V)) {
722         // Nothing to do.  We forward-propagated to this so we would just
723         // backward propagate to an instruction with an already known shape.
724       } else if (isUniformShape(V)) {
725         // Propagate to all operands.
726         ShapeInfo Shape = ShapeMap[V];
727         for (Use &U : cast<Instruction>(V)->operands()) {
728           if (setShapeInfo(U.get(), Shape))
729             pushInstruction(U.get(), WorkList);
730         }
731       }
732       // After we discovered new shape info for new instructions in the
733       // worklist, we use their users as seeds for the next round of forward
734       // propagation.
735       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
736         for (User *U : WorkList[I]->users())
737           if (isa<Instruction>(U) && V != U)
738             NewWorkList.push_back(cast<Instruction>(U));
739     }
740     return NewWorkList;
741   }
742 
743   /// (Op0 op Op1)^T -> Op0^T op Op1^T
744   /// Transpose \p Op0 and \p Op1 of shape \p Shape0 and \p Shape1, then use
745   /// them on both sides of \p Operation.
746   Instruction *distributeTransposes(
747       Value *Op0, ShapeInfo Shape0, Value *Op1, ShapeInfo Shape1,
748       MatrixBuilder &Builder,
749       function_ref<Instruction *(Value *, ShapeInfo, Value *, ShapeInfo)>
750           Operation) {
751     Value *T0 = Builder.CreateMatrixTranspose(
752         Op0, Shape0.NumRows, Shape0.NumColumns, Op0->getName() + "_t");
753     // We are being run after shape prop, add shape for newly created
754     // instructions so that we lower them later.
755     setShapeInfo(T0, Shape0.t());
756     Value *T1 = Builder.CreateMatrixTranspose(
757         Op1, Shape1.NumRows, Shape1.NumColumns, Op1->getName() + "_t");
758     setShapeInfo(T1, Shape1.t());
759     return Operation(T0, Shape0.t(), T1, Shape1.t());
760   }
761 
762   void updateShapeAndReplaceAllUsesWith(Instruction &Old, Value *New) {
763     // We need to remove Old from the ShapeMap otherwise RAUW will replace it
764     // with New. We should only add New it it supportsShapeInfo so we insert
765     // it conditionally instead.
766     auto S = ShapeMap.find(&Old);
767     if (S != ShapeMap.end()) {
768       ShapeMap.erase(S);
769       if (supportsShapeInfo(New))
770         ShapeMap.insert({New, S->second});
771     }
772     Old.replaceAllUsesWith(New);
773   }
774 
775   /// Sink a top-level transpose inside matmuls and adds.
776   /// This creates and erases instructions as needed, and returns the newly
777   /// created instruction while updating the iterator to avoid invalidation. If
778   /// this returns nullptr, no new instruction was created.
779   Instruction *sinkTranspose(Instruction &I, BasicBlock::reverse_iterator &II) {
780     BasicBlock &BB = *I.getParent();
781     IRBuilder<> IB(&I);
782     MatrixBuilder Builder(IB);
783 
784     Value *TA, *TAMA, *TAMB;
785     ConstantInt *R, *K, *C;
786     if (!match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(
787                        m_Value(TA), m_ConstantInt(R), m_ConstantInt(C))))
788       return nullptr;
789 
790     // Transpose of a transpose is a nop
791     Value *TATA;
792     if (match(TA, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
793       updateShapeAndReplaceAllUsesWith(I, TATA);
794       eraseFromParentAndMove(&I, II, BB);
795       eraseFromParentAndMove(TA, II, BB);
796       return nullptr;
797     }
798 
799     // k^T -> k
800     if (isSplat(TA)) {
801       updateShapeAndReplaceAllUsesWith(I, TA);
802       eraseFromParentAndMove(&I, II, BB);
803       return nullptr;
804     }
805 
806     // (A * B)^t -> B^t * A^t
807     // RxK KxC      CxK   KxR
808     if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
809                       m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
810                       m_ConstantInt(K), m_ConstantInt(C)))) {
811       auto NewInst = distributeTransposes(
812           TAMB, {K, C}, TAMA, {R, K}, Builder,
813           [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
814             return Builder.CreateMatrixMultiply(T0, T1, Shape0.NumRows,
815                                                 Shape0.NumColumns,
816                                                 Shape1.NumColumns, "mmul");
817           });
818       updateShapeAndReplaceAllUsesWith(I, NewInst);
819       eraseFromParentAndMove(&I, II, BB);
820       eraseFromParentAndMove(TA, II, BB);
821       return NewInst;
822     }
823 
824     // Same as above, but with a mul, which occurs when multiplied
825     // with a scalar.
826     // (A * k)^t -> A^t * k
827     //  R  x  C     RxC
828     if (match(TA, m_AnyMul(m_Value(TAMA), m_Value(TAMB))) &&
829         (isSplat(TAMA) || isSplat(TAMB))) {
830       IRBuilder<> LocalBuilder(&I);
831       // We know that the transposed operand is of shape RxC.
832       // An when multiplied with a scalar, the shape is preserved.
833       auto NewInst = distributeTransposes(
834           TAMA, {R, C}, TAMB, {R, C}, Builder,
835           [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
836             bool IsFP = I.getType()->isFPOrFPVectorTy();
837             auto *Mul = IsFP ? LocalBuilder.CreateFMul(T0, T1, "mmul")
838                              : LocalBuilder.CreateMul(T0, T1, "mmul");
839             auto *Result = cast<Instruction>(Mul);
840             setShapeInfo(Result, Shape0);
841             return Result;
842           });
843       updateShapeAndReplaceAllUsesWith(I, NewInst);
844       eraseFromParentAndMove(&I, II, BB);
845       eraseFromParentAndMove(TA, II, BB);
846       return NewInst;
847     }
848 
849     // (A + B)^t -> A^t + B^t
850     // RxC RxC      CxR   CxR
851     if (match(TA, m_AnyAdd(m_Value(TAMA), m_Value(TAMB)))) {
852       IRBuilder<> LocalBuilder(&I);
853       auto NewInst = distributeTransposes(
854           TAMA, {R, C}, TAMB, {R, C}, Builder,
855           [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
856             bool IsFP = I.getType()->isFPOrFPVectorTy();
857             auto *Add = IsFP ? LocalBuilder.CreateFAdd(T0, T1, "madd")
858                              : LocalBuilder.CreateAdd(T0, T1, "madd");
859 
860             auto *Result = cast<Instruction>(Add);
861             setShapeInfo(Result, Shape0);
862             return Result;
863           });
864       updateShapeAndReplaceAllUsesWith(I, NewInst);
865       eraseFromParentAndMove(&I, II, BB);
866       eraseFromParentAndMove(TA, II, BB);
867       return NewInst;
868     }
869 
870     return nullptr;
871   }
872 
873   void liftTranspose(Instruction &I) {
874     // Erase dead Instructions after lifting transposes from binops.
875     auto CleanupBinOp = [](Instruction &T, Value *A, Value *B) {
876       if (T.use_empty())
877         T.eraseFromParent();
878       if (A->use_empty())
879         cast<Instruction>(A)->eraseFromParent();
880       if (A != B && B->use_empty())
881         cast<Instruction>(B)->eraseFromParent();
882     };
883 
884     Value *A, *B, *AT, *BT;
885     ConstantInt *R, *K, *C;
886     // A^t * B ^t -> (B * A)^t
887     if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>(
888                       m_Value(A), m_Value(B), m_ConstantInt(R),
889                       m_ConstantInt(K), m_ConstantInt(C))) &&
890         match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
891         match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
892       IRBuilder<> IB(&I);
893       MatrixBuilder Builder(IB);
894       Value *M = Builder.CreateMatrixMultiply(
895           BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
896       setShapeInfo(M, {C, R});
897       Instruction *NewInst = Builder.CreateMatrixTranspose(M, C->getZExtValue(),
898                                                            R->getZExtValue());
899       updateShapeAndReplaceAllUsesWith(I, NewInst);
900       CleanupBinOp(I, A, B);
901     }
902     // A^t + B ^t -> (A + B)^t. Pick rows and columns from first transpose. If
903     // the shape of the second transpose is different, there's a shape conflict
904     // which gets resolved by picking the shape of the first operand.
905     else if (match(&I, m_FAdd(m_Value(A), m_Value(B))) &&
906              match(A, m_Intrinsic<Intrinsic::matrix_transpose>(
907                           m_Value(AT), m_ConstantInt(R), m_ConstantInt(C))) &&
908              match(B, m_Intrinsic<Intrinsic::matrix_transpose>(
909                           m_Value(BT), m_ConstantInt(), m_ConstantInt()))) {
910       IRBuilder<> Builder(&I);
911       auto *Add = cast<Instruction>(Builder.CreateFAdd(AT, BT, "mfadd"));
912       setShapeInfo(Add, {R, C});
913       MatrixBuilder MBuilder(Builder);
914       Instruction *NewInst = MBuilder.CreateMatrixTranspose(
915           Add, R->getZExtValue(), C->getZExtValue(), "mfadd_t");
916       updateShapeAndReplaceAllUsesWith(I, NewInst);
917       assert(computeShapeInfoForInst(NewInst, ShapeMap) ==
918                  computeShapeInfoForInst(&I, ShapeMap) &&
919              "Shape of new instruction doesn't match original shape.");
920       CleanupBinOp(I, A, B);
921       assert(computeShapeInfoForInst(Add, ShapeMap).value_or(ShapeMap[Add]) ==
922                  ShapeMap[Add] &&
923              "Shape of updated addition doesn't match cached shape.");
924     }
925   }
926 
927   /// Try moving transposes in order to fold them away or into multiplies.
928   void optimizeTransposes() {
929     // First sink all transposes inside matmuls and adds, hoping that we end up
930     // with NN, NT or TN variants.
931     for (BasicBlock &BB : reverse(Func)) {
932       for (auto II = BB.rbegin(); II != BB.rend();) {
933         Instruction &I = *II;
934         // We may remove II.  By default continue on the next/prev instruction.
935         ++II;
936         if (Instruction *NewInst = sinkTranspose(I, II))
937           II = std::next(BasicBlock::reverse_iterator(NewInst));
938       }
939     }
940 
941     // If we have a TT matmul or a TT add, lift the transpose. We may be able
942     // to fold into consuming multiply or add.
943     for (BasicBlock &BB : Func) {
944       for (Instruction &I : llvm::make_early_inc_range(BB)) {
945         liftTranspose(I);
946       }
947     }
948   }
949 
950   bool Visit() {
951     SmallVector<Instruction *, 32> WorkList;
952 
953     // Initially only the shape of matrix intrinsics is known.
954     // Initialize the work list with ops carrying shape information.
955     for (BasicBlock &BB : Func)
956       for (Instruction &Inst : BB) {
957         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
958         if (!II)
959           continue;
960 
961         switch (II->getIntrinsicID()) {
962         case Intrinsic::matrix_multiply:
963         case Intrinsic::matrix_transpose:
964         case Intrinsic::matrix_column_major_load:
965         case Intrinsic::matrix_column_major_store:
966           WorkList.push_back(&Inst);
967           break;
968         default:
969           break;
970         }
971       }
972 
973     // Avoid unnecessary work if there are no matrix intrinsics in the function.
974     if (WorkList.empty())
975       return false;
976 
977     // Propagate shapes until nothing changes any longer.
978     while (!WorkList.empty()) {
979       WorkList = propagateShapeForward(WorkList);
980       WorkList = propagateShapeBackward(WorkList);
981     }
982 
983     if (!isMinimal()) {
984       optimizeTransposes();
985       if (PrintAfterTransposeOpt) {
986         dbgs() << "Dump after matrix transpose optimization:\n";
987         Func.print(dbgs());
988       }
989     }
990 
991     bool Changed = false;
992     SmallVector<CallInst *, 16> MaybeFusableInsts;
993     SmallVector<Instruction *, 16> MatrixInsts;
994     SmallVector<IntrinsicInst *, 16> LifetimeEnds;
995 
996     // First, collect all instructions with shape information and candidates for
997     // fusion (currently only matrix multiplies).
998     ReversePostOrderTraversal<Function *> RPOT(&Func);
999     for (auto *BB : RPOT)
1000       for (Instruction &I : *BB) {
1001         if (match(&I, m_Intrinsic<Intrinsic::lifetime_end>()))
1002           LifetimeEnds.push_back(cast<IntrinsicInst>(&I));
1003         if (ShapeMap.find(&I) == ShapeMap.end())
1004           continue;
1005         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
1006           MaybeFusableInsts.push_back(cast<CallInst>(&I));
1007         MatrixInsts.push_back(&I);
1008       }
1009 
1010     // Second, try to lower any dot products
1011     SmallPtrSet<Instruction *, 16> FusedInsts;
1012     for (CallInst *CI : MaybeFusableInsts)
1013       lowerDotProduct(CI, FusedInsts, getFastMathFlags(CI));
1014 
1015     // Third, try to fuse candidates.
1016     for (CallInst *CI : MaybeFusableInsts)
1017       LowerMatrixMultiplyFused(CI, FusedInsts, LifetimeEnds);
1018 
1019     Changed = !FusedInsts.empty();
1020 
1021     // Fourth, lower remaining instructions with shape information.
1022     for (Instruction *Inst : MatrixInsts) {
1023       if (FusedInsts.count(Inst))
1024         continue;
1025 
1026       IRBuilder<> Builder(Inst);
1027 
1028       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
1029         Changed |= VisitCallInst(CInst);
1030 
1031       Value *Op1;
1032       Value *Op2;
1033       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
1034         Changed |= VisitBinaryOperator(BinOp);
1035       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
1036         Changed |= VisitUnaryOperator(UnOp);
1037       if (match(Inst, m_Load(m_Value(Op1))))
1038         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
1039       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
1040         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
1041     }
1042 
1043     if (ORE) {
1044       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
1045       RemarkGen.emitRemarks();
1046     }
1047 
1048     // Delete the instructions backwards, as it has a reduced likelihood of
1049     // having to update as many def-use and use-def chains.
1050     //
1051     // Because we add to ToRemove during fusion we can't guarantee that defs
1052     // are before uses.  Change uses to poison temporarily as these should get
1053     // removed as well.
1054     //
1055     // For verification, we keep track of where we changed uses to poison in
1056     // PoisonedInsts and then check that we in fact remove them.
1057     SmallSet<Instruction *, 16> PoisonedInsts;
1058     for (auto *Inst : reverse(ToRemove)) {
1059       for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1060         if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
1061           PoisonedInsts.insert(Poisoned);
1062         U.set(PoisonValue::get(Inst->getType()));
1063       }
1064       Inst->eraseFromParent();
1065       PoisonedInsts.erase(Inst);
1066     }
1067     if (!PoisonedInsts.empty()) {
1068       // If we didn't remove all poisoned instructions, it's a hard error.
1069       dbgs() << "Poisoned but present instructions:\n";
1070       for (auto *I : PoisonedInsts)
1071         dbgs() << *I << "\n";
1072       llvm_unreachable("Poisoned but instruction not removed");
1073     }
1074 
1075     return Changed;
1076   }
1077 
1078   /// Replace intrinsic calls
1079   bool VisitCallInst(CallInst *Inst) {
1080     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
1081       return false;
1082 
1083     switch (Inst->getCalledFunction()->getIntrinsicID()) {
1084     case Intrinsic::matrix_multiply:
1085       LowerMultiply(Inst);
1086       break;
1087     case Intrinsic::matrix_transpose:
1088       LowerTranspose(Inst);
1089       break;
1090     case Intrinsic::matrix_column_major_load:
1091       LowerColumnMajorLoad(Inst);
1092       break;
1093     case Intrinsic::matrix_column_major_store:
1094       LowerColumnMajorStore(Inst);
1095       break;
1096     default:
1097       return false;
1098     }
1099     return true;
1100   }
1101 
1102   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
1103   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
1104   /// ConstantInt, reduce the initial alignment based on the byte offset. For
1105   /// non-ConstantInt strides, return the common alignment of the initial
1106   /// alignment and the element size in bytes.
1107   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
1108                          MaybeAlign A) const {
1109     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
1110     if (Idx == 0)
1111       return InitialAlign;
1112 
1113     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
1114     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
1115       uint64_t StrideInBytes =
1116           ConstStride->getZExtValue() * ElementSizeInBits / 8;
1117       return commonAlignment(InitialAlign, Idx * StrideInBytes);
1118     }
1119     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
1120   }
1121 
1122   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
1123   /// vectors.
1124   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
1125                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
1126     auto *VType = cast<VectorType>(Ty);
1127     Type *EltTy = VType->getElementType();
1128     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
1129     Value *EltPtr = Ptr;
1130     MatrixTy Result;
1131     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
1132       Value *GEP = computeVectorAddr(
1133           EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
1134           Stride, Shape.getStride(), EltTy, Builder);
1135       Value *Vector = Builder.CreateAlignedLoad(
1136           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
1137           IsVolatile, "col.load");
1138 
1139       Result.addVector(Vector);
1140     }
1141     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
1142                               Result.getNumVectors());
1143   }
1144 
1145   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
1146   /// starting at \p MatrixPtr[I][J].
1147   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
1148                       ShapeInfo MatrixShape, Value *I, Value *J,
1149                       ShapeInfo ResultShape, Type *EltTy,
1150                       IRBuilder<> &Builder) {
1151 
1152     Value *Offset = Builder.CreateAdd(
1153         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1154 
1155     Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset);
1156     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1157                                                    ResultShape.NumColumns);
1158 
1159     return loadMatrix(TileTy, TileStart, Align,
1160                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1161                       ResultShape, Builder);
1162   }
1163 
1164   /// Lower a load instruction with shape information.
1165   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
1166                  bool IsVolatile, ShapeInfo Shape) {
1167     IRBuilder<> Builder(Inst);
1168     finalizeLowering(Inst,
1169                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
1170                                 Shape, Builder),
1171                      Builder);
1172   }
1173 
1174   /// Lowers llvm.matrix.column.major.load.
1175   ///
1176   /// The intrinsic loads a matrix from memory using a stride between columns.
1177   void LowerColumnMajorLoad(CallInst *Inst) {
1178     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1179            "Intrinsic only supports column-major layout!");
1180     Value *Ptr = Inst->getArgOperand(0);
1181     Value *Stride = Inst->getArgOperand(1);
1182     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1183               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1184               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1185   }
1186 
1187   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1188   /// MatrixPtr[I][J].
1189   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1190                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1191                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1192     Value *Offset = Builder.CreateAdd(
1193         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1194 
1195     Value *TileStart = Builder.CreateGEP(EltTy, MatrixPtr, Offset);
1196     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1197                                                    StoreVal.getNumColumns());
1198 
1199     storeMatrix(TileTy, StoreVal, TileStart, MAlign,
1200                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1201   }
1202 
1203   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1204   /// vectors.
1205   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1206                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1207                        IRBuilder<> &Builder) {
1208     auto VType = cast<VectorType>(Ty);
1209     Value *EltPtr = Ptr;
1210     for (auto Vec : enumerate(StoreVal.vectors())) {
1211       Value *GEP = computeVectorAddr(
1212           EltPtr,
1213           Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1214                           Vec.index()),
1215           Stride, StoreVal.getStride(), VType->getElementType(), Builder);
1216       Builder.CreateAlignedStore(Vec.value(), GEP,
1217                                  getAlignForIndex(Vec.index(), Stride,
1218                                                   VType->getElementType(),
1219                                                   MAlign),
1220                                  IsVolatile);
1221     }
1222     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1223                                    StoreVal.getNumVectors());
1224   }
1225 
1226   /// Lower a store instruction with shape information.
1227   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1228                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1229     IRBuilder<> Builder(Inst);
1230     auto StoreVal = getMatrix(Matrix, Shape, Builder);
1231     finalizeLowering(Inst,
1232                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1233                                  IsVolatile, Builder),
1234                      Builder);
1235   }
1236 
1237   /// Lowers llvm.matrix.column.major.store.
1238   ///
1239   /// The intrinsic store a matrix back memory using a stride between columns.
1240   void LowerColumnMajorStore(CallInst *Inst) {
1241     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1242            "Intrinsic only supports column-major layout!");
1243     Value *Matrix = Inst->getArgOperand(0);
1244     Value *Ptr = Inst->getArgOperand(1);
1245     Value *Stride = Inst->getArgOperand(2);
1246     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1247                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1248                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1249   }
1250 
1251   // Set elements I..I+NumElts-1 to Block
1252   Value *insertVector(Value *Col, unsigned I, Value *Block,
1253                       IRBuilder<> &Builder) {
1254 
1255     // First, bring Block to the same size as Col
1256     unsigned BlockNumElts =
1257         cast<FixedVectorType>(Block->getType())->getNumElements();
1258     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1259     assert(NumElts >= BlockNumElts && "Too few elements for current block");
1260 
1261     Block = Builder.CreateShuffleVector(
1262         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1263 
1264     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1265     // 8, 4, 5, 6
1266     SmallVector<int, 16> Mask;
1267     unsigned i;
1268     for (i = 0; i < I; i++)
1269       Mask.push_back(i);
1270 
1271     unsigned VecNumElts =
1272         cast<FixedVectorType>(Col->getType())->getNumElements();
1273     for (; i < I + BlockNumElts; i++)
1274       Mask.push_back(i - I + VecNumElts);
1275 
1276     for (; i < VecNumElts; i++)
1277       Mask.push_back(i);
1278 
1279     return Builder.CreateShuffleVector(Col, Block, Mask);
1280   }
1281 
1282   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1283                       IRBuilder<> &Builder, bool AllowContraction,
1284                       unsigned &NumComputeOps) {
1285     NumComputeOps += getNumOps(A->getType());
1286     if (!Sum)
1287       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1288 
1289     if (UseFPOp) {
1290       if (AllowContraction) {
1291         // Use fmuladd for floating point operations and let the backend decide
1292         // if that's profitable.
1293         Function *FMulAdd = Intrinsic::getDeclaration(
1294             Func.getParent(), Intrinsic::fmuladd, A->getType());
1295         return Builder.CreateCall(FMulAdd, {A, B, Sum});
1296       }
1297       NumComputeOps += getNumOps(A->getType());
1298       Value *Mul = Builder.CreateFMul(A, B);
1299       return Builder.CreateFAdd(Sum, Mul);
1300     }
1301 
1302     NumComputeOps += getNumOps(A->getType());
1303     Value *Mul = Builder.CreateMul(A, B);
1304     return Builder.CreateAdd(Sum, Mul);
1305   }
1306 
1307   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1308   /// users with shape information, there's nothing to do: they will use the
1309   /// cached value when they are lowered. For other users, \p Matrix is
1310   /// flattened and the uses are updated to use it. Also marks \p Inst for
1311   /// deletion.
1312   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1313                         IRBuilder<> &Builder) {
1314     auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1315     (void)inserted;
1316     assert(inserted.second && "multiple matrix lowering mapping");
1317 
1318     ToRemove.push_back(Inst);
1319     Value *Flattened = nullptr;
1320     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1321       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1322         if (!Flattened)
1323           Flattened = Matrix.embedInVector(Builder);
1324         U.set(Flattened);
1325       }
1326     }
1327   }
1328 
1329   /// Special case for MatMul lowering. Prevents scalar loads of row-major
1330   /// vectors Lowers to vector reduction add instead of sequential add if
1331   /// reassocation is enabled.
1332   void lowerDotProduct(CallInst *MatMul,
1333                        SmallPtrSet<Instruction *, 16> &FusedInsts,
1334                        FastMathFlags FMF) {
1335     if (FusedInsts.contains(MatMul) ||
1336         MatrixLayout != MatrixLayoutTy::ColumnMajor)
1337       return;
1338     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1339     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1340 
1341     if (LShape.NumRows != 1 || RShape.NumColumns != 1) // not a dot product
1342       return;
1343 
1344     Value *LHS = MatMul->getArgOperand(0);
1345     Value *RHS = MatMul->getArgOperand(1);
1346 
1347     Type *ElementType = cast<VectorType>(LHS->getType())->getElementType();
1348     bool IsIntVec = ElementType->isIntegerTy();
1349 
1350     // Floating point reductions require reassocation.
1351     if (!IsIntVec && !FMF.allowReassoc())
1352       return;
1353 
1354     auto CanBeFlattened = [](Value *Op) {
1355       if (match(Op, m_BinOp()))
1356         return true;
1357       return match(
1358           Op, m_OneUse(m_CombineOr(
1359                   m_Load(m_Value()),
1360                   m_CombineOr(m_Intrinsic<Intrinsic::matrix_transpose>(),
1361                               m_Intrinsic<Intrinsic::matrix_column_major_load>(
1362                                   m_Value(), m_SpecificInt(1))))));
1363     };
1364     // Returns the cost benefit of using \p Op with the dot product lowering. If
1365     // the returned cost is < 0, the argument is cheaper to use in the
1366     // dot-product lowering.
1367     auto GetCostForArg = [this, &CanBeFlattened](Value *Op, unsigned N) {
1368       if (ShapeMap.find(Op) == ShapeMap.end())
1369         return InstructionCost::getInvalid();
1370 
1371       if (!isa<Instruction>(Op))
1372         return InstructionCost(0);
1373 
1374       FixedVectorType *VecTy = cast<FixedVectorType>(Op->getType());
1375       Type *EltTy = VecTy->getElementType();
1376 
1377       if (!CanBeFlattened(Op)) {
1378         InstructionCost EmbedCost(0);
1379         // Roughly estimate the cost for embedding the columns into a vector.
1380         for (unsigned I = 1; I < N; ++I)
1381           EmbedCost +=
1382               TTI.getShuffleCost(TTI::SK_Splice, FixedVectorType::get(EltTy, 1),
1383                                  std::nullopt, TTI::TCK_RecipThroughput);
1384         return EmbedCost;
1385       }
1386 
1387       if (match(Op, m_BinOp()) && ShapeMap.find(Op) != ShapeMap.end()) {
1388         InstructionCost OriginalCost =
1389             TTI.getArithmeticInstrCost(cast<Instruction>(Op)->getOpcode(),
1390                                        EltTy) *
1391             N;
1392         InstructionCost NewCost = TTI.getArithmeticInstrCost(
1393             cast<Instruction>(Op)->getOpcode(), VecTy);
1394         return NewCost - OriginalCost;
1395       }
1396 
1397       if (match(Op, m_Intrinsic<Intrinsic::matrix_transpose>())) {
1398         // The transpose can be skipped for the dot product lowering, roughly
1399         // estimate the savings as the cost of embedding the columns in a
1400         // vector.
1401         InstructionCost EmbedCost(0);
1402         for (unsigned I = 1; I < N; ++I)
1403           EmbedCost -=
1404               TTI.getShuffleCost(TTI::SK_Splice, FixedVectorType::get(EltTy, 1),
1405                                  std::nullopt, TTI::TCK_RecipThroughput);
1406         return EmbedCost;
1407       }
1408 
1409       // Costs for loads.
1410       if (N == 1)
1411         return InstructionCost(0);
1412 
1413       return TTI.getMemoryOpCost(Instruction::Load, VecTy, Align(1), 0) -
1414              N * TTI.getMemoryOpCost(Instruction::Load, EltTy, Align(1), 0);
1415     };
1416 
1417     // Iterate over LHS and operations feeding LHS and check if it is profitable
1418     // to flatten the visited ops.  For each op, we compute the difference
1419     // between the flattened and matrix versions.
1420     SmallPtrSet<Value *, 4> Seen;
1421     SmallVector<Value *> WorkList;
1422     SmallVector<Value *> ToFlatten;
1423     WorkList.push_back(LHS);
1424     InstructionCost LHSCost(0);
1425     while (!WorkList.empty()) {
1426       Value *Op = WorkList.pop_back_val();
1427       if (!Seen.insert(Op).second)
1428         continue;
1429 
1430       InstructionCost OpCost = GetCostForArg(Op, LShape.NumColumns);
1431       if (OpCost + LHSCost >= LHSCost)
1432         continue;
1433 
1434       LHSCost += OpCost;
1435       ToFlatten.push_back(Op);
1436       if (auto *I = dyn_cast<Instruction>(Op))
1437         WorkList.append(I->op_begin(), I->op_end());
1438     }
1439 
1440     // We compare the costs of a vector.reduce.add to sequential add.
1441     int AddOpCode = IsIntVec ? Instruction::Add : Instruction::FAdd;
1442     int MulOpCode = IsIntVec ? Instruction::Mul : Instruction::FMul;
1443     InstructionCost ReductionCost =
1444         TTI.getArithmeticReductionCost(
1445             AddOpCode, cast<VectorType>(LHS->getType()),
1446             IsIntVec ? std::nullopt : std::optional(FMF)) +
1447         TTI.getArithmeticInstrCost(MulOpCode, LHS->getType());
1448     InstructionCost SequentialAddCost =
1449         TTI.getArithmeticInstrCost(AddOpCode, ElementType) *
1450             (LShape.NumColumns - 1) +
1451         TTI.getArithmeticInstrCost(MulOpCode, ElementType) *
1452             (LShape.NumColumns);
1453     if ((LHSCost + ReductionCost - SequentialAddCost) > InstructionCost(0))
1454       return;
1455 
1456     FusedInsts.insert(MatMul);
1457     IRBuilder<> Builder(MatMul);
1458     auto FlattenArg = [&Builder, &FusedInsts, &CanBeFlattened,
1459                        this](Value *Op) {
1460       // Matmul must be the only user of loads because we don't use LowerLoad
1461       // for row vectors (LowerLoad results in scalar loads and shufflevectors
1462       // instead of single vector load).
1463       if (!CanBeFlattened(Op))
1464         return;
1465 
1466       if (match(Op, m_BinOp()) && ShapeMap.find(Op) != ShapeMap.end()) {
1467         ShapeMap[Op] = ShapeMap[Op].t();
1468         return;
1469       }
1470 
1471       FusedInsts.insert(cast<Instruction>(Op));
1472       // If vector uses the builtin load, lower to a LoadInst
1473       Value *Arg;
1474       if (match(Op, m_Intrinsic<Intrinsic::matrix_column_major_load>(
1475                         m_Value(Arg)))) {
1476         auto *NewLoad = Builder.CreateLoad(Op->getType(), Arg);
1477         Op->replaceAllUsesWith(NewLoad);
1478         cast<Instruction>(Op)->eraseFromParent();
1479         return;
1480       } else if (match(Op, m_Intrinsic<Intrinsic::matrix_transpose>(
1481                                m_Value(Arg)))) {
1482         ToRemove.push_back(cast<Instruction>(Op));
1483         Op->replaceAllUsesWith(Arg);
1484         return;
1485       }
1486     };
1487 
1488     for (auto *V : ToFlatten)
1489       FlattenArg(V);
1490 
1491     LHS = MatMul->getArgOperand(0);
1492 
1493     // Insert mul/fmul and llvm.vector.reduce.fadd
1494     Value *Mul =
1495         IsIntVec ? Builder.CreateMul(LHS, RHS) : Builder.CreateFMul(LHS, RHS);
1496 
1497     Value *Result;
1498     if (IsIntVec)
1499       Result = Builder.CreateAddReduce(Mul);
1500     else {
1501       Result = Builder.CreateFAddReduce(
1502           ConstantFP::get(cast<VectorType>(LHS->getType())->getElementType(),
1503                           0.0),
1504           Mul);
1505       cast<Instruction>(Result)->setFastMathFlags(FMF);
1506     }
1507 
1508     // pack scalar back into a matrix and then replace matmul inst
1509     Result = Builder.CreateInsertElement(PoisonValue::get(MatMul->getType()),
1510                                          Result, uint64_t(0));
1511     MatMul->replaceAllUsesWith(Result);
1512     FusedInsts.insert(MatMul);
1513     ToRemove.push_back(MatMul);
1514   }
1515 
1516   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1517   /// addition.
1518   ///
1519   /// We can fold a transpose into the operand that is used to extract scalars.
1520   /// This is the first operands with row-major and the second with
1521   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1522   /// operand is transposed.
1523   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1524                           const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1525                           bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1526     const unsigned VF = std::max<unsigned>(
1527         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1528                 .getFixedValue() /
1529             Result.getElementType()->getPrimitiveSizeInBits().getFixedValue(),
1530         1U);
1531     unsigned R = Result.getNumRows();
1532     unsigned C = Result.getNumColumns();
1533     unsigned M = A.getNumColumns();
1534 
1535     bool IsFP = Result.getElementType()->isFloatingPointTy();
1536     assert(A.isColumnMajor() == B.isColumnMajor() &&
1537            Result.isColumnMajor() == A.isColumnMajor() &&
1538            "operands must agree on matrix layout");
1539     unsigned NumComputeOps = 0;
1540 
1541     Builder.setFastMathFlags(FMF);
1542 
1543     if (A.isColumnMajor()) {
1544       // Multiply columns from the first operand with scalars from the second
1545       // operand. Then move along the K axes and accumulate the columns.  With
1546       // this the adds can be vectorized without reassociation.
1547       for (unsigned J = 0; J < C; ++J) {
1548         unsigned BlockSize = VF;
1549         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1550         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1551 
1552         for (unsigned I = 0; I < R; I += BlockSize) {
1553           // Gradually lower the vectorization factor to cover the remainder.
1554           while (I + BlockSize > R)
1555             BlockSize /= 2;
1556 
1557           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1558                                : nullptr;
1559           for (unsigned K = 0; K < M; ++K) {
1560             Value *L = A.extractVector(I, K, BlockSize, Builder);
1561             Value *RH = Builder.CreateExtractElement(
1562                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1563                 IsScalarMatrixTransposed ? J : K);
1564             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1565             Sum =
1566                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1567                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1568           }
1569           Result.setVector(J,
1570                            insertVector(Result.getVector(J), I, Sum, Builder));
1571         }
1572       }
1573     } else {
1574       // Multiply rows from the second operand with scalars from the first
1575       // operand. Then move along the K axes and accumulate the rows.  With this
1576       // the adds can be vectorized without reassociation.
1577       for (unsigned I = 0; I < R; ++I) {
1578         unsigned BlockSize = VF;
1579         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1580         for (unsigned J = 0; J < C; J += BlockSize) {
1581           // Gradually lower the vectorization factor to cover the remainder.
1582           while (J + BlockSize > C)
1583             BlockSize /= 2;
1584 
1585           Value *Sum = nullptr;
1586           for (unsigned K = 0; K < M; ++K) {
1587             Value *R = B.extractVector(K, J, BlockSize, Builder);
1588             Value *LH = Builder.CreateExtractElement(
1589                 A.getVector(IsScalarMatrixTransposed ? K : I),
1590                 IsScalarMatrixTransposed ? I : K);
1591             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1592             Sum =
1593                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1594                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1595           }
1596           Result.setVector(I,
1597                            insertVector(Result.getVector(I), J, Sum, Builder));
1598         }
1599       }
1600     }
1601     Result.addNumComputeOps(NumComputeOps);
1602   }
1603 
1604   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1605   /// copying it to a new location.  This new or otherwise the original location
1606   /// is returned.
1607   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1608                                CallInst *MatMul) {
1609     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1610     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1611 
1612     // If we can statically determine noalias we're good.
1613     if (AA->isNoAlias(LoadLoc, StoreLoc))
1614       return Load->getPointerOperand();
1615 
1616     // Create code to check if the memory locations of the Load and Store
1617     // overlap and if they do, copy Load's operand to a new buffer.
1618 
1619     // First, create  new blocks for 2n part of the check and the copy.
1620     BasicBlock *Check0 = MatMul->getParent();
1621     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1622     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1623     // as we adjust Check0 and Check1's branches.
1624     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1625     for (BasicBlock *Succ : successors(Check0))
1626       DTUpdates.push_back({DT->Delete, Check0, Succ});
1627 
1628     BasicBlock *Check1 =
1629         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1630                    nullptr, "alias_cont");
1631     BasicBlock *Copy =
1632         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1633                    nullptr, "copy");
1634     BasicBlock *Fusion =
1635         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1636                    nullptr, "no_alias");
1637 
1638     // Check if the loaded memory location begins before the end of the store
1639     // location. If the condition holds, they might overlap, otherwise they are
1640     // guaranteed to not overlap.
1641     IRBuilder<> Builder(MatMul);
1642     Check0->getTerminator()->eraseFromParent();
1643     Builder.SetInsertPoint(Check0);
1644     Type *IntPtrTy = Builder.getIntPtrTy(Load->getDataLayout());
1645     Value *StoreBegin = Builder.CreatePtrToInt(
1646         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1647     Value *StoreEnd = Builder.CreateAdd(
1648         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1649         "store.end", true, true);
1650     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1651                                               IntPtrTy, "load.begin");
1652     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1653                          Fusion);
1654 
1655     // Check if the store begins before the end of the load location. If the
1656     // condition holds, they alias, otherwise they are guaranteed to not
1657     // overlap.
1658     Check1->getTerminator()->eraseFromParent();
1659     Builder.SetInsertPoint(Check1, Check1->begin());
1660     Value *LoadEnd = Builder.CreateAdd(
1661         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1662         "load.end", true, true);
1663     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1664                          Fusion);
1665 
1666     // Copy load operand to new alloca.
1667     Builder.SetInsertPoint(Copy, Copy->begin());
1668     auto *VT = cast<FixedVectorType>(Load->getType());
1669     // Use an array type for the alloca, to avoid potentially huge alignment
1670     // requirements for large vector types.
1671     auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1672     AllocaInst *Alloca =
1673         Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1674 
1675     Builder.CreateMemCpy(Alloca, Alloca->getAlign(), Load->getPointerOperand(),
1676                          Load->getAlign(), LoadLoc.Size.getValue());
1677     Builder.SetInsertPoint(Fusion, Fusion->begin());
1678     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1679     PHI->addIncoming(Load->getPointerOperand(), Check0);
1680     PHI->addIncoming(Load->getPointerOperand(), Check1);
1681     PHI->addIncoming(Alloca, Copy);
1682 
1683     // Adjust DT.
1684     DTUpdates.push_back({DT->Insert, Check0, Check1});
1685     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1686     DTUpdates.push_back({DT->Insert, Check1, Copy});
1687     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1688     DT->applyUpdates(DTUpdates);
1689     return PHI;
1690   }
1691 
1692   bool isFusionProfitable(CallInst *MatMul) {
1693     if (ForceFusion)
1694       return true;
1695 
1696     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1697     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1698 
1699     const unsigned R = LShape.NumRows;
1700     const unsigned C = RShape.NumColumns;
1701     const unsigned M = LShape.NumColumns;
1702     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1703 
1704     const unsigned VF = std::max<unsigned>(
1705         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1706                 .getFixedValue() /
1707             EltType->getPrimitiveSizeInBits().getFixedValue(),
1708         1U);
1709 
1710     // Cost model for tiling
1711     //
1712     // For tiling to be beneficial, we need reuse either along the R or
1713     // the C axis.  We vectorize along the R axis so that means at least
1714     // 3 elements.
1715     // TODO: Also consider cost of copying if operands alias.
1716     if (R <= VF && C == 1)
1717       return false;
1718     // Then we need enough elements to exceed the number of vector
1719     // registers we have.  Note that this is an oversimplification since
1720     // fusing also takes some extra loads which may exceed the number of
1721     // reloads necessary.
1722     unsigned Op0Regs = (R + VF - 1) / VF * M;
1723     unsigned Op1Regs = (M + VF - 1) / VF * C;
1724     return Op0Regs + Op1Regs >
1725            TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1726   }
1727 
1728   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1729     MatrixTy Res;
1730     auto *ColumType = FixedVectorType::get(EltType, R);
1731     for (unsigned I = 0; I < C; ++I)
1732       Res.addVector(ConstantAggregateZero::get(ColumType));
1733     return Res;
1734   }
1735 
1736   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1737                         Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1738     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1739 
1740     // Create the main tiling loop nest.
1741     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1742     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1743     Instruction *InsertI = cast<Instruction>(MatMul);
1744     BasicBlock *Start = InsertI->getParent();
1745     BasicBlock *End =
1746         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1747     IRBuilder<> Builder(MatMul);
1748     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1749 
1750     Type *TileVecTy =
1751         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1752     MatrixTy TileResult;
1753     // Insert in the inner loop header.
1754     Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
1755     // Create PHI nodes for the result columns to accumulate across iterations.
1756     SmallVector<PHINode *, 4> ColumnPhis;
1757     for (unsigned I = 0; I < TileSize; I++) {
1758       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1759       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1760                        TI.RowLoop.Header->getSingleSuccessor());
1761       TileResult.addVector(Phi);
1762       ColumnPhis.push_back(Phi);
1763     }
1764 
1765     // Insert in the inner loop body, which computes
1766     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1767     Builder.SetInsertPoint(InnerBody->getTerminator());
1768     // Load tiles of the operands.
1769     MatrixTy A =
1770         loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
1771                    {TileSize, TileSize}, EltType, Builder);
1772     MatrixTy B =
1773         loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
1774                    {TileSize, TileSize}, EltType, Builder);
1775     emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1776                        getFastMathFlags(MatMul));
1777     // Store result after the inner loop is done.
1778     Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
1779     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1780                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1781                 TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
1782 
1783     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1784       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
1785 
1786     // Force unrolling of a few iterations of the inner loop, to make sure there
1787     // is enough work per iteration.
1788     // FIXME: The unroller should make this decision directly instead, but
1789     // currently the cost-model is not up to the task.
1790     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1791     addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
1792                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1793   }
1794 
1795   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1796                       StoreInst *Store,
1797                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1798     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1799            "Tiling only supported for column-major matrixes at the moment!");
1800     if (!isFusionProfitable(MatMul))
1801       return;
1802 
1803     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1804     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1805 
1806     const unsigned R = LShape.NumRows;
1807     const unsigned C = RShape.NumColumns;
1808     const unsigned M = LShape.NumColumns;
1809     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1810 
1811     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1812     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1813     Value *CPtr = Store->getPointerOperand();
1814 
1815     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1816       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1817     else {
1818       IRBuilder<> Builder(Store);
1819       for (unsigned J = 0; J < C; J += TileSize)
1820         for (unsigned I = 0; I < R; I += TileSize) {
1821           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1822           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1823           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1824 
1825           for (unsigned K = 0; K < M; K += TileSize) {
1826             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1827             MatrixTy A =
1828                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1829                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1830                            {TileR, TileM}, EltType, Builder);
1831             MatrixTy B =
1832                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1833                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1834                            {TileM, TileC}, EltType, Builder);
1835             emitMatrixMultiply(Res, A, B, Builder, true, false,
1836                                getFastMathFlags(MatMul));
1837           }
1838           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1839                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1840                       Builder);
1841         }
1842     }
1843 
1844     // Mark eliminated instructions as fused and remove them.
1845     FusedInsts.insert(Store);
1846     FusedInsts.insert(MatMul);
1847     Store->eraseFromParent();
1848     MatMul->eraseFromParent();
1849     if (LoadOp0->hasNUses(0)) {
1850       FusedInsts.insert(LoadOp0);
1851       LoadOp0->eraseFromParent();
1852     }
1853     if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1854       FusedInsts.insert(LoadOp1);
1855       LoadOp1->eraseFromParent();
1856     }
1857   }
1858 
1859   /// Try to lower matrix multiply chains by fusing operations.
1860   ///
1861   /// Call finalizeLowering on lowered instructions.  Instructions that are
1862   /// completely eliminated by fusion are added to \p FusedInsts.
1863   void
1864   LowerMatrixMultiplyFused(CallInst *MatMul,
1865                            SmallPtrSetImpl<Instruction *> &FusedInsts,
1866                            SmallVector<IntrinsicInst *, 16> &LifetimeEnds) {
1867     if (!FuseMatrix || !DT)
1868       return;
1869 
1870     assert(AA && LI && "Analyses should be available");
1871 
1872     Value *A = MatMul->getArgOperand(0);
1873     Value *B = MatMul->getArgOperand(1);
1874 
1875     // We can fold the transpose into the operand that is used to fetch scalars.
1876     Value *T;
1877     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1878             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1879             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1880       IRBuilder<> Builder(MatMul);
1881       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1882       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1883       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1884       const unsigned R = LShape.NumRows;
1885       const unsigned M = LShape.NumColumns;
1886       const unsigned C = RShape.NumColumns;
1887 
1888       MatrixTy MA;
1889       MatrixTy MB;
1890 
1891       Value *Transpose;
1892       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1893         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1894         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1895         Transpose = B;
1896       } else {
1897         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1898         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1899         Transpose = A;
1900       }
1901 
1902       // Initialize the output
1903       MatrixTy Result(R, C, EltType);
1904 
1905       emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1906                          getFastMathFlags(MatMul));
1907 
1908       FusedInsts.insert(MatMul);
1909       if (Transpose->hasOneUse()) {
1910         FusedInsts.insert(cast<Instruction>(Transpose));
1911         ToRemove.push_back(cast<Instruction>(Transpose));
1912         // TODO: add a fake entry for the folded instruction so that this is
1913         // included in the expression in the remark.
1914         Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1915       }
1916       finalizeLowering(MatMul, Result, Builder);
1917       return;
1918     }
1919 
1920     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1921       return;
1922 
1923     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1924     // since the single store user will be lowered as part of this.
1925     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1926     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1927     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1928     if (LoadOp0 && LoadOp1 && Store) {
1929       // The store address must dominate the MatMul instruction, otherwise
1930       // we create invalid IR.
1931       SetVector<Value *> WorkList;
1932       WorkList.insert(Store->getOperand(1));
1933       SmallVector<Instruction *> ToHoist;
1934       for (unsigned I = 0; I != WorkList.size(); ++I) {
1935         Value *Current = WorkList[I];
1936         auto *CurrI = dyn_cast<Instruction>(Current);
1937         if (!CurrI)
1938           continue;
1939         if (isa<PHINode>(CurrI))
1940           return;
1941         if (DT->dominates(CurrI, MatMul))
1942           continue;
1943         if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
1944           return;
1945         ToHoist.push_back(CurrI);
1946         WorkList.insert(CurrI->op_begin(), CurrI->op_end());
1947       }
1948 
1949       sort(ToHoist, [this](Instruction *A, Instruction *B) {
1950         return DT->dominates(A, B);
1951       });
1952       for (Instruction *I : ToHoist)
1953         I->moveBefore(MatMul);
1954 
1955       // Deal with lifetime.end calls that might be between Load0/Load1 and the
1956       // store. To avoid introducing loads to dead objects (i.e. after the
1957       // lifetime has been termined by @llvm.lifetime.end), either sink them
1958       // after the store if in the same block, or remove the lifetime.end marker
1959       // otherwise. This might pessimize further optimizations, by extending the
1960       // lifetime of the object until the function returns, but should be
1961       // conservatively correct.
1962       MemoryLocation Load0Loc = MemoryLocation::get(LoadOp0);
1963       MemoryLocation Load1Loc = MemoryLocation::get(LoadOp1);
1964       BasicBlock *StoreParent = Store->getParent();
1965       bool FusableOpsInSameBlock = LoadOp0->getParent() == StoreParent &&
1966                                    LoadOp1->getParent() == StoreParent;
1967       for (unsigned Idx = 0; Idx != LifetimeEnds.size();) {
1968         IntrinsicInst *End = LifetimeEnds[Idx];
1969         auto Inc = make_scope_exit([&Idx]() { Idx++; });
1970         // If the lifetime.end is guaranteed to be before the loads or after the
1971         // store, it won't interfere with fusion.
1972         if (DT->dominates(End, LoadOp0) && DT->dominates(End, LoadOp1))
1973           continue;
1974         if (DT->dominates(Store, End))
1975           continue;
1976         // If all fusable ops are in the same block and the lifetime.end is in a
1977         // different block, it won't interfere with fusion.
1978         if (FusableOpsInSameBlock && End->getParent() != StoreParent)
1979           continue;
1980 
1981         // If the loads don't alias the lifetime.end, it won't interfere with
1982         // fusion.
1983         MemoryLocation EndLoc = MemoryLocation::getForArgument(End, 1, nullptr);
1984         if (!EndLoc.Ptr)
1985           continue;
1986         if (AA->isNoAlias(Load0Loc, EndLoc) && AA->isNoAlias(Load1Loc, EndLoc))
1987           continue;
1988 
1989         // If both lifetime.end and the store are in the same block, extend the
1990         // lifetime until after the store, so the new lifetime covers the loads
1991         // we introduce later.
1992         if (End->getParent() == StoreParent) {
1993           End->moveAfter(Store);
1994           continue;
1995         }
1996 
1997         // Otherwise remove the conflicting lifetime.end marker.
1998         ToRemove.push_back(End);
1999         std::swap(LifetimeEnds[Idx], LifetimeEnds.back());
2000         LifetimeEnds.pop_back();
2001         Inc.release();
2002       }
2003 
2004       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
2005       return;
2006     }
2007   }
2008 
2009   /// Lowers llvm.matrix.multiply.
2010   void LowerMultiply(CallInst *MatMul) {
2011     IRBuilder<> Builder(MatMul);
2012     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
2013     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
2014     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
2015 
2016     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
2017     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
2018     assert(Lhs.getElementType() == Rhs.getElementType() &&
2019            "Matrix multiply argument element types do not match.");
2020 
2021     const unsigned R = LShape.NumRows;
2022     const unsigned C = RShape.NumColumns;
2023     assert(LShape.NumColumns == RShape.NumRows);
2024 
2025     // Initialize the output
2026     MatrixTy Result(R, C, EltType);
2027     assert(Lhs.getElementType() == Result.getElementType() &&
2028            "Matrix multiply result element type does not match arguments.");
2029 
2030     emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
2031                        getFastMathFlags(MatMul));
2032     finalizeLowering(MatMul, Result, Builder);
2033   }
2034 
2035   /// Lowers llvm.matrix.transpose.
2036   void LowerTranspose(CallInst *Inst) {
2037     MatrixTy Result;
2038     IRBuilder<> Builder(Inst);
2039     Value *InputVal = Inst->getArgOperand(0);
2040     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
2041     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
2042     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
2043 
2044     const unsigned NewNumVecs =
2045         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
2046     const unsigned NewNumElts =
2047         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
2048 
2049     for (unsigned I = 0; I < NewNumVecs; ++I) {
2050       // Build a single result vector. First initialize it.
2051       Value *ResultVector = PoisonValue::get(
2052           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
2053       // Go through the old elements and insert it into the resulting vector.
2054       for (auto J : enumerate(InputMatrix.vectors())) {
2055         Value *Elt = Builder.CreateExtractElement(J.value(), I);
2056         // Row and column indices are transposed.
2057         ResultVector =
2058             Builder.CreateInsertElement(ResultVector, Elt, J.index());
2059       }
2060       Result.addVector(ResultVector);
2061     }
2062 
2063     // TODO: Improve estimate of operations needed for transposes. Currently we
2064     // just count the insertelement/extractelement instructions, but do not
2065     // account for later simplifications/combines.
2066     finalizeLowering(
2067         Inst,
2068         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
2069             .addNumExposedTransposes(1),
2070         Builder);
2071   }
2072 
2073   /// Lower load instructions, if shape information is available.
2074   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
2075     auto I = ShapeMap.find(Inst);
2076     if (I == ShapeMap.end())
2077       return false;
2078 
2079     LowerLoad(Inst, Ptr, Inst->getAlign(),
2080               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
2081               I->second);
2082     return true;
2083   }
2084 
2085   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
2086                   IRBuilder<> &Builder) {
2087     auto I = ShapeMap.find(StoredVal);
2088     if (I == ShapeMap.end())
2089       return false;
2090 
2091     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
2092                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
2093                I->second);
2094     return true;
2095   }
2096 
2097   /// Lower binary operators, if shape information is available.
2098   bool VisitBinaryOperator(BinaryOperator *Inst) {
2099     auto I = ShapeMap.find(Inst);
2100     if (I == ShapeMap.end())
2101       return false;
2102 
2103     Value *Lhs = Inst->getOperand(0);
2104     Value *Rhs = Inst->getOperand(1);
2105 
2106     IRBuilder<> Builder(Inst);
2107     ShapeInfo &Shape = I->second;
2108 
2109     MatrixTy Result;
2110     MatrixTy A = getMatrix(Lhs, Shape, Builder);
2111     MatrixTy B = getMatrix(Rhs, Shape, Builder);
2112     assert(A.isColumnMajor() == B.isColumnMajor() &&
2113            Result.isColumnMajor() == A.isColumnMajor() &&
2114            "operands must agree on matrix layout");
2115 
2116     Builder.setFastMathFlags(getFastMathFlags(Inst));
2117 
2118     // Helper to perform binary op on vectors.
2119     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
2120       switch (Inst->getOpcode()) {
2121       case Instruction::Add:
2122         return Builder.CreateAdd(LHS, RHS);
2123       case Instruction::Mul:
2124         return Builder.CreateMul(LHS, RHS);
2125       case Instruction::Sub:
2126         return Builder.CreateSub(LHS, RHS);
2127       case Instruction::FAdd:
2128         return Builder.CreateFAdd(LHS, RHS);
2129       case Instruction::FMul:
2130         return Builder.CreateFMul(LHS, RHS);
2131       case Instruction::FSub:
2132         return Builder.CreateFSub(LHS, RHS);
2133       default:
2134         llvm_unreachable("Unsupported binary operator for matrix");
2135       }
2136     };
2137 
2138     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
2139       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
2140 
2141     finalizeLowering(Inst,
2142                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2143                                              Result.getNumVectors()),
2144                      Builder);
2145     return true;
2146   }
2147 
2148   /// Lower unary operators, if shape information is available.
2149   bool VisitUnaryOperator(UnaryOperator *Inst) {
2150     auto I = ShapeMap.find(Inst);
2151     if (I == ShapeMap.end())
2152       return false;
2153 
2154     Value *Op = Inst->getOperand(0);
2155 
2156     IRBuilder<> Builder(Inst);
2157     ShapeInfo &Shape = I->second;
2158 
2159     MatrixTy Result;
2160     MatrixTy M = getMatrix(Op, Shape, Builder);
2161 
2162     Builder.setFastMathFlags(getFastMathFlags(Inst));
2163 
2164     // Helper to perform unary op on vectors.
2165     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
2166       switch (Inst->getOpcode()) {
2167       case Instruction::FNeg:
2168         return Builder.CreateFNeg(Op);
2169       default:
2170         llvm_unreachable("Unsupported unary operator for matrix");
2171       }
2172     };
2173 
2174     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
2175       Result.addVector(BuildVectorOp(M.getVector(I)));
2176 
2177     finalizeLowering(Inst,
2178                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
2179                                              Result.getNumVectors()),
2180                      Builder);
2181     return true;
2182   }
2183 
2184   /// Helper to linearize a matrix expression tree into a string. Currently
2185   /// matrix expressions are linarized by starting at an expression leaf and
2186   /// linearizing bottom up.
2187   struct ExprLinearizer {
2188     unsigned LengthToBreak = 100;
2189     std::string Str;
2190     raw_string_ostream Stream;
2191     unsigned LineLength = 0;
2192     const DataLayout &DL;
2193 
2194     /// Mapping from instructions to matrixes. It is used to identify
2195     /// matrix instructions.
2196     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2197 
2198     /// Mapping from values to the leaves of all expressions that the value is
2199     /// part of.
2200     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
2201 
2202     /// Set of matrix expressions in the scope of a given DISubprogram.
2203     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
2204 
2205     /// Leaf node of the expression to linearize.
2206     Value *Leaf;
2207 
2208     /// Used to keep track of sub-expressions that get reused while linearizing
2209     /// the expression. Re-used sub-expressions are marked as (reused).
2210     SmallPtrSet<Value *, 8> ReusedExprs;
2211 
2212     ExprLinearizer(const DataLayout &DL,
2213                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
2214                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2215                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2216                    Value *Leaf)
2217         : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
2218           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
2219 
2220     void indent(unsigned N) {
2221       LineLength += N;
2222       for (unsigned i = 0; i < N; i++)
2223         Stream << " ";
2224     }
2225 
2226     void lineBreak() {
2227       Stream << "\n";
2228       LineLength = 0;
2229     }
2230 
2231     void maybeIndent(unsigned Indent) {
2232       if (LineLength >= LengthToBreak)
2233         lineBreak();
2234 
2235       if (LineLength == 0)
2236         indent(Indent);
2237     }
2238 
2239     void write(StringRef S) {
2240       LineLength += S.size();
2241       Stream << S;
2242     }
2243 
2244     Value *getUnderlyingObjectThroughLoads(Value *V) {
2245       if (Value *Ptr = getPointerOperand(V))
2246         return getUnderlyingObjectThroughLoads(Ptr);
2247       else if (V->getType()->isPointerTy())
2248         return getUnderlyingObject(V);
2249       return V;
2250     }
2251 
2252     /// Returns true if \p V is a matrix value in the given subprogram.
2253     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
2254 
2255     /// If \p V is a matrix value, print its shape as NumRows x NumColumns to
2256     /// \p SS.
2257     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
2258       auto M = Inst2Matrix.find(V);
2259       if (M == Inst2Matrix.end())
2260         SS << "unknown";
2261       else {
2262         SS << M->second.getNumRows();
2263         SS << "x";
2264         SS << M->second.getNumColumns();
2265       }
2266     }
2267 
2268     /// Write the called function name. Handles calls to llvm.matrix.*
2269     /// specially: we write the name, followed by the dimensions of the input
2270     /// matrixes, followed by the scalar type name.
2271     void writeFnName(CallInst *CI) {
2272       if (!CI->getCalledFunction())
2273         write("<no called fn>");
2274       else {
2275         StringRef Name = CI->getCalledFunction()->getName();
2276         if (!Name.starts_with("llvm.matrix")) {
2277           write(Name);
2278           return;
2279         }
2280         auto *II = cast<IntrinsicInst>(CI);
2281         write(Intrinsic::getBaseName(II->getIntrinsicID())
2282                   .drop_front(StringRef("llvm.matrix.").size()));
2283         write(".");
2284         std::string Tmp;
2285         raw_string_ostream SS(Tmp);
2286 
2287         switch (II->getIntrinsicID()) {
2288         case Intrinsic::matrix_multiply:
2289           prettyPrintMatrixType(II->getOperand(0), SS);
2290           SS << ".";
2291           prettyPrintMatrixType(II->getOperand(1), SS);
2292           SS << "." << *II->getType()->getScalarType();
2293           break;
2294         case Intrinsic::matrix_transpose:
2295           prettyPrintMatrixType(II->getOperand(0), SS);
2296           SS << "." << *II->getType()->getScalarType();
2297           break;
2298         case Intrinsic::matrix_column_major_load:
2299           prettyPrintMatrixType(II, SS);
2300           SS << "." << *II->getType()->getScalarType();
2301           break;
2302         case Intrinsic::matrix_column_major_store:
2303           prettyPrintMatrixType(II->getOperand(0), SS);
2304           SS << "." << *II->getOperand(0)->getType()->getScalarType();
2305           break;
2306         default:
2307           llvm_unreachable("Unhandled case");
2308         }
2309         SS.flush();
2310         write(Tmp);
2311       }
2312     }
2313 
2314     unsigned getNumShapeArgs(CallInst *CI) const {
2315       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2316         switch (II->getIntrinsicID()) {
2317         case Intrinsic::matrix_multiply:
2318           return 3;
2319         case Intrinsic::matrix_transpose:
2320           return 2;
2321         case Intrinsic::matrix_column_major_load:
2322         case Intrinsic::matrix_column_major_store:
2323           return 3;
2324         default:
2325           return 0;
2326         }
2327       }
2328       return 0;
2329     }
2330 
2331     /// Special printing for values: for pointers, we print if they refer to an
2332     /// (function) external address or a stack address, for other values we
2333     /// either print the constant or "scalar"/"matrix" for other values.
2334     void write(Value *V) {
2335       V = getUnderlyingObjectThroughLoads(V);
2336       if (V->getType()->isPointerTy()) {
2337         if (isa<AllocaInst>(V)) {
2338           Stream << "stack addr";
2339           LineLength += StringRef("stack addr").size();
2340         } else {
2341           Stream << "addr";
2342           LineLength += StringRef("addr").size();
2343         }
2344         if (!V->getName().empty()) {
2345           Stream << " %" << V->getName() << "";
2346           LineLength += V->getName().size() + 2;
2347         }
2348         return;
2349       }
2350 
2351       std::string Tmp;
2352       raw_string_ostream TmpStream(Tmp);
2353 
2354       if (auto *CI = dyn_cast<ConstantInt>(V))
2355         TmpStream << CI->getValue();
2356       else if (isa<Constant>(V))
2357         TmpStream << "constant";
2358       else {
2359         if (isMatrix(V))
2360           TmpStream << "matrix";
2361         else
2362           TmpStream << "scalar";
2363       }
2364       TmpStream.flush();
2365       Tmp = std::string(StringRef(Tmp).trim());
2366       LineLength += Tmp.size();
2367       Stream << Tmp;
2368     }
2369 
2370     /// Linearize expression \p Expr starting at an indentation of \p Indent.
2371     /// Expressions that are re-used multiple times are prefixed with (reused)
2372     /// at the re-used root instruction.
2373     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
2374                        bool ParentShared) {
2375       auto *I = cast<Instruction>(Expr);
2376       maybeIndent(Indent);
2377       SmallVector<Value *, 8> Ops;
2378 
2379       // Is Expr shared with other expression leaves?
2380       bool ExprShared = false;
2381 
2382       // Deal with shared subtrees. Mark them as shared, if required.
2383       if (!ParentShared) {
2384         auto SI = Shared.find(Expr);
2385         assert(SI != Shared.end() && SI->second.count(Leaf));
2386 
2387         for (Value *S : SI->second) {
2388           if (S == Leaf)
2389             continue;
2390           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
2391           write("shared with remark at line " + std::to_string(DL.getLine()) +
2392                 " column " + std::to_string(DL.getCol()) + " (");
2393         }
2394         ExprShared = SI->second.size() > 1;
2395       }
2396 
2397       bool Reused = !ReusedExprs.insert(Expr).second;
2398       if (Reused && !ParentReused)
2399         write("(reused) ");
2400 
2401       if (auto *CI = dyn_cast<CallInst>(I)) {
2402         writeFnName(CI);
2403 
2404         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2405       } else if (isa<BitCastInst>(Expr)) {
2406         // Special case bitcasts, which are used to materialize matrixes from
2407         // non-matrix ops.
2408         write("matrix");
2409         return;
2410       } else {
2411         Ops.append(I->value_op_begin(), I->value_op_end());
2412         write(std::string(I->getOpcodeName()));
2413       }
2414 
2415       write(std::string("("));
2416 
2417       unsigned NumOpsToBreak = 1;
2418       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2419         NumOpsToBreak = 2;
2420 
2421       for (Value *Op : Ops) {
2422         if (Ops.size() > NumOpsToBreak)
2423           lineBreak();
2424 
2425         maybeIndent(Indent + 1);
2426         if (isMatrix(Op))
2427           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2428         else
2429           write(Op);
2430         if (Op != Ops.back())
2431           write(", ");
2432       }
2433 
2434       write(")");
2435     }
2436 
2437     const std::string &getResult() {
2438       Stream.flush();
2439       return Str;
2440     }
2441   };
2442 
2443   /// Generate remarks for matrix operations in a function. To generate remarks
2444   /// for matrix expressions, the following approach is used:
2445   /// 1. Use the inlined-at debug information to group matrix operations to the
2446   ///    DISubprograms they are contained in.
2447   /// 2. Collect leaves of matrix expressions (done in
2448   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2449   //     mapping.  Leaves are lowered matrix instructions without other matrix
2450   //     users (like stores) in the current subprogram.
2451   /// 3. For each leaf, create a remark containing a linearizied version of the
2452   ///    matrix expression. The expression is linearized by a recursive
2453   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
2454   ///    that multiple leaves can share sub-expressions. Shared subexpressions
2455   ///    are explicitly marked as shared().
2456   struct RemarkGenerator {
2457     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2458     OptimizationRemarkEmitter &ORE;
2459     Function &Func;
2460     const DataLayout &DL;
2461 
2462     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2463                     OptimizationRemarkEmitter &ORE, Function &Func)
2464         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2465           DL(Func.getDataLayout()) {}
2466 
2467     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2468     /// instructions in Inst2Matrix returning void or without any users in
2469     /// \p ExprsInSubprogram. Currently that should only include stores.
2470     SmallVector<Value *, 4>
2471     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2472       SmallVector<Value *, 4> Leaves;
2473       for (auto *Expr : ExprsInSubprogram)
2474         if (Expr->getType()->isVoidTy() ||
2475             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2476               return ExprsInSubprogram.count(U);
2477             }))
2478           Leaves.push_back(Expr);
2479       return Leaves;
2480     }
2481 
2482     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2483     /// to all visited expressions in \p Shared. Limit the matrix operations to
2484     /// the ones in \p ExprsInSubprogram.
2485     void collectSharedInfo(Value *Leaf, Value *V,
2486                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2487                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2488 
2489       if (!ExprsInSubprogram.count(V))
2490         return;
2491 
2492       auto I = Shared.insert({V, {}});
2493       I.first->second.insert(Leaf);
2494 
2495       for (Value *Op : cast<Instruction>(V)->operand_values())
2496         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2497     }
2498 
2499     /// Calculate the number of exclusive and shared op counts for expression
2500     /// starting at \p V. Expressions used multiple times are counted once.
2501     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2502     std::pair<OpInfoTy, OpInfoTy>
2503     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2504                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2505                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2506       if (!ExprsInSubprogram.count(Root))
2507         return {};
2508 
2509       // Already counted this expression. Stop.
2510       if (!ReusedExprs.insert(Root).second)
2511         return {};
2512 
2513       OpInfoTy SharedCount;
2514       OpInfoTy Count;
2515 
2516       auto I = Shared.find(Root);
2517       auto CM = Inst2Matrix.find(Root);
2518       if (I->second.size() == 1)
2519         Count = CM->second.getOpInfo();
2520       else
2521         SharedCount = CM->second.getOpInfo();
2522 
2523       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2524         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2525         Count += C.first;
2526         SharedCount += C.second;
2527       }
2528       return {Count, SharedCount};
2529     }
2530 
2531     void emitRemarks() {
2532       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2533         return;
2534 
2535       // Map matrix operations to their containting subprograms, by traversing
2536       // the inlinedAt chain. If the function does not have a DISubprogram, we
2537       // only map them to the containing function.
2538       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2539       for (const auto &KV : Inst2Matrix) {
2540         if (Func.getSubprogram()) {
2541           auto *I = cast<Instruction>(KV.first);
2542           DILocation *Context = I->getDebugLoc();
2543           while (Context) {
2544             auto I =
2545                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2546             I.first->second.push_back(KV.first);
2547             Context = DebugLoc(Context).getInlinedAt();
2548           }
2549         } else {
2550           auto I = Subprog2Exprs.insert({nullptr, {}});
2551           I.first->second.push_back(KV.first);
2552         }
2553       }
2554       for (auto &KV : Subprog2Exprs) {
2555         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2556                                                       KV.second.end());
2557         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2558 
2559         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2560         for (Value *Leaf : Leaves)
2561           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2562 
2563         // Generate remarks for each leaf.
2564         for (auto *L : Leaves) {
2565 
2566           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2567           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2568           while (Context) {
2569             if (getSubprogram(Context->getScope()) == KV.first) {
2570               Loc = Context;
2571               break;
2572             }
2573             Context = DebugLoc(Context).getInlinedAt();
2574           }
2575 
2576           SmallPtrSet<Value *, 8> ReusedExprs;
2577           OpInfoTy Counts, SharedCounts;
2578           std::tie(Counts, SharedCounts) =
2579               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2580 
2581           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2582                                  cast<Instruction>(L)->getParent());
2583 
2584           Rem << "Lowered with ";
2585           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2586               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2587               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2588               << " compute ops, "
2589               << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2590               << " exposed transposes";
2591 
2592           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2593               SharedCounts.NumComputeOps > 0) {
2594             Rem << ",\nadditionally "
2595                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2596                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2597                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2598                 << " compute ops"
2599                 << " are shared with other expressions";
2600           }
2601 
2602           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2603           ORE.emit(Rem);
2604         }
2605       }
2606     }
2607 
2608     std::string
2609     linearize(Value *L,
2610               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2611               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2612               const DataLayout &DL) {
2613       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2614       Lin.linearizeExpr(L, 0, false, false);
2615       return Lin.getResult();
2616     }
2617   };
2618 };
2619 } // namespace
2620 
2621 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2622                                                  FunctionAnalysisManager &AM) {
2623   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2624   OptimizationRemarkEmitter *ORE = nullptr;
2625   AAResults *AA = nullptr;
2626   DominatorTree *DT = nullptr;
2627   LoopInfo *LI = nullptr;
2628 
2629   if (!Minimal) {
2630     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2631     AA = &AM.getResult<AAManager>(F);
2632     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2633     LI = &AM.getResult<LoopAnalysis>(F);
2634   }
2635 
2636   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2637   if (LMT.Visit()) {
2638     PreservedAnalyses PA;
2639     if (!Minimal) {
2640       PA.preserve<LoopAnalysis>();
2641       PA.preserve<DominatorTreeAnalysis>();
2642     }
2643     return PA;
2644   }
2645   return PreservedAnalyses::all();
2646 }
2647 
2648 void LowerMatrixIntrinsicsPass::printPipeline(
2649     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
2650   static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
2651       OS, MapClassName2PassName);
2652   OS << '<';
2653   if (Minimal)
2654     OS << "minimal";
2655   OS << '>';
2656 }
2657