xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MatrixBuilder.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Alignment.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/MatrixUtils.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 #define DEBUG_TYPE "lower-matrix-intrinsics"
53 
54 static cl::opt<bool>
55     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56                cl::desc("Enable/disable fusing matrix instructions."));
57 // TODO: Allow and use non-square tiles.
58 static cl::opt<unsigned> TileSize(
59     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60     cl::desc(
61         "Tile size for matrix instruction fusion using square-shaped tiles."));
62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63                                   cl::Hidden,
64                                   cl::desc("Generate loop nest for tiling."));
65 static cl::opt<bool> ForceFusion(
66     "force-fuse-matrix", cl::init(false), cl::Hidden,
67     cl::desc("Force matrix instruction fusion even if not profitable."));
68 static cl::opt<bool> AllowContractEnabled(
69     "matrix-allow-contract", cl::init(false), cl::Hidden,
70     cl::desc("Allow the use of FMAs if available and profitable. This may "
71              "result in different results, due to less rounding error."));
72 
73 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
74 
75 static cl::opt<MatrixLayoutTy> MatrixLayout(
76     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
77     cl::desc("Sets the default matrix layout"),
78     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
79                           "Use column-major layout"),
80                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
81                           "Use row-major layout")));
82 
83 /// Helper function to either return Scope, if it is a subprogram or the
84 /// attached subprogram for a local scope.
85 static DISubprogram *getSubprogram(DIScope *Scope) {
86   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87     return Subprogram;
88   return cast<DILocalScope>(Scope)->getSubprogram();
89 }
90 
91 namespace {
92 
93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
95 // assuming \p Stride elements between start two consecutive vectors.
96 // \p Stride must be >= \p NumElements.
97 // For column-major matrixes, the function computes the address of a column
98 // vectors and \p NumElements must be set to the number of elements in a column
99 // (= number of rows of the matrix). For row-major matrixes, the function
100 // computes the address of a row vector and \p NumElements must be set to the
101 // number of elements in a column (= number of columns of the matrix).
102 //
103 // Consider a 4x4 matrix in column-mjaor layout like below
104 //
105 //      0       1      2      3
106 // 0   v_0_0  v_0_1  v_0_2  v_0_3
107 // 1   v_1_0  v_1_1  v_1_2  v_1_3
108 // 2   v_2_0  v_2_1  v_2_2  v_2_3
109 // 3   v_3_0  v_3_1  v_3_2  v_3_3
110 
111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112 // we need a pointer to the first element of the submatrix as base pointer.
113 // Then we can use computeVectorAddr to compute the addresses for the columns
114 // of the sub-matrix.
115 //
116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117 //           -> just returns Base
118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119 //           -> returns Base + (1 * 4)
120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121 //           -> returns Base + (2 * 4)
122 //
123 // The graphic below illustrates the number of elements in a column (marked
124 // with |) and the number of skipped elements (marked with }).
125 //
126 //         v_0_0  v_0_1 {v_0_2 {v_0_3
127 //                Base   Col 1  Col 2
128 //                  |     |      |
129 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
130 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
131 //         v_3_0 {v_3_1 {v_3_2  v_3_3
132 //
133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
134                          unsigned NumElements, Type *EltType,
135                          IRBuilder<> &Builder) {
136 
137   assert((!isa<ConstantInt>(Stride) ||
138           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
139          "Stride must be >= the number of elements in the result vector.");
140   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141 
142   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
143   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144 
145   // Get pointer to the start of the selected vector. Skip GEP creation,
146   // if we select vector 0.
147   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
148     VecStart = BasePtr;
149   else
150     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151 
152   // Cast elementwise vector start pointer to a pointer to a vector
153   // (EltType x NumElements)*.
154   auto *VecType = FixedVectorType::get(EltType, NumElements);
155   Type *VecPtrType = PointerType::get(VecType, AS);
156   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157 }
158 
159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160 ///
161 /// Currently, the lowering for each matrix intrinsic is done as follows:
162 /// 1. Propagate the shape information from intrinsics to connected
163 /// instructions.
164 /// 2. Lower instructions with shape information (assuming column-major layout).
165 ///  The lowering works similarly using row-major layout.
166 ///  2.1. Get column vectors for each argument. If we already lowered the
167 ///       definition of an argument, use the produced column vectors directly.
168 ///       If not, split the operand vector containing an embedded matrix into
169 ///       a set of column vectors,
170 ///  2.2. Lower the instruction in terms of column major operations, which
171 ///       yields a set of column vectors containing result matrix. Note that we
172 ///       lower all instructions that have shape information. Besides the
173 ///       intrinsics, this includes stores for example.
174 ///  2.3. Update uses of the lowered instruction. If we have shape information
175 ///       for a user, there is nothing to do, as we will look up the result
176 ///       column matrix when lowering the user. For other uses, we embed the
177 ///       result matrix in a flat vector and update the use.
178 ///  2.4. Cache the result column matrix for the instruction we lowered
179 /// 3. After we lowered all instructions in a function, remove the now
180 ///    obsolete instructions.
181 ///
182 class LowerMatrixIntrinsics {
183   Function &Func;
184   const DataLayout &DL;
185   const TargetTransformInfo &TTI;
186   AliasAnalysis *AA;
187   DominatorTree *DT;
188   LoopInfo *LI;
189   OptimizationRemarkEmitter *ORE;
190 
191   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
192   struct OpInfoTy {
193     /// Number of stores emitted to generate this matrix.
194     unsigned NumStores = 0;
195     /// Number of loads emitted to generate this matrix.
196     unsigned NumLoads = 0;
197     /// Number of compute operations emitted to generate this matrix.
198     unsigned NumComputeOps = 0;
199     /// Most of the time transposes can be fused with matrix multiplies or can
200     /// be folded away via algebraic simplifications.  This is the number of
201     /// transposes that we failed to make "free" via such optimizations.
202     unsigned NumExposedTransposes = 0;
203 
204     OpInfoTy &operator+=(const OpInfoTy &RHS) {
205       NumStores += RHS.NumStores;
206       NumLoads += RHS.NumLoads;
207       NumComputeOps += RHS.NumComputeOps;
208       NumExposedTransposes += RHS.NumExposedTransposes;
209       return *this;
210     }
211   };
212 
213   /// Wrapper class representing a matrix as a set of vectors, either in row or
214   /// column major layout. All vectors must have the same vector type.
215   class MatrixTy {
216     SmallVector<Value *, 16> Vectors;
217 
218     OpInfoTy OpInfo;
219 
220     bool IsColumnMajor = true;
221 
222   public:
223     MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
224     MatrixTy(ArrayRef<Value *> Vectors)
225         : Vectors(Vectors.begin(), Vectors.end()),
226           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
227     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
228         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
229 
230       unsigned D = isColumnMajor() ? NumColumns : NumRows;
231       for (unsigned J = 0; J < D; ++J)
232         addVector(UndefValue::get(FixedVectorType::get(
233             EltTy, isColumnMajor() ? NumRows : NumColumns)));
234     }
235 
236     Value *getVector(unsigned i) const { return Vectors[i]; }
237     Value *getColumn(unsigned i) const {
238       assert(isColumnMajor() && "only supported for column-major matrixes");
239       return Vectors[i];
240     }
241     Value *getRow(unsigned i) const {
242       assert(!isColumnMajor() && "only supported for row-major matrixes");
243       return Vectors[i];
244     }
245 
246     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
247 
248     Type *getElementType() const { return getVectorTy()->getElementType(); }
249 
250     unsigned getNumVectors() const {
251       if (isColumnMajor())
252         return getNumColumns();
253       return getNumRows();
254     }
255 
256     unsigned getNumColumns() const {
257       if (isColumnMajor())
258         return Vectors.size();
259       else {
260         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
261         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
262       }
263     }
264     unsigned getNumRows() const {
265       if (isColumnMajor()) {
266         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
267         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
268       } else
269         return Vectors.size();
270     }
271 
272     void addVector(Value *V) { Vectors.push_back(V); }
273     VectorType *getColumnTy() {
274       assert(isColumnMajor() && "only supported for column-major matrixes");
275       return getVectorTy();
276     }
277 
278     VectorType *getVectorTy() const {
279       return cast<VectorType>(Vectors[0]->getType());
280     }
281 
282     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
283       assert(isColumnMajor() &&
284              "columns() only supported for column-major matrixes");
285       return make_range(Vectors.begin(), Vectors.end());
286     }
287 
288     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
289       return make_range(Vectors.begin(), Vectors.end());
290     }
291 
292     /// Embed the vectors of the matrix into a flat vector by concatenating
293     /// them.
294     Value *embedInVector(IRBuilder<> &Builder) const {
295       return Vectors.size() == 1 ? Vectors[0]
296                                  : concatenateVectors(Builder, Vectors);
297     }
298 
299     MatrixTy &addNumLoads(unsigned N) {
300       OpInfo.NumLoads += N;
301       return *this;
302     }
303 
304     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
305 
306     MatrixTy &addNumStores(unsigned N) {
307       OpInfo.NumStores += N;
308       return *this;
309     }
310 
311     MatrixTy &addNumExposedTransposes(unsigned N) {
312       OpInfo.NumExposedTransposes += N;
313       return *this;
314     }
315 
316     MatrixTy &addNumComputeOps(unsigned N) {
317       OpInfo.NumComputeOps += N;
318       return *this;
319     }
320 
321     unsigned getNumStores() const { return OpInfo.NumStores; }
322     unsigned getNumLoads() const { return OpInfo.NumLoads; }
323     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
324 
325     const OpInfoTy &getOpInfo() const { return OpInfo; }
326 
327     bool isColumnMajor() const { return IsColumnMajor; }
328 
329     unsigned getStride() const {
330       if (isColumnMajor())
331         return getNumRows();
332       return getNumColumns();
333     }
334 
335     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
336     /// matrix is column-major, the result vector is extracted from a column
337     /// vector, otherwise from a row vector.
338     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
339                          IRBuilder<> &Builder) const {
340       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
341       assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
342                  NumElts &&
343              "Extracted vector will contain poison values");
344       return Builder.CreateShuffleVector(
345           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
346           "block");
347     }
348   };
349 
350   struct ShapeInfo {
351     unsigned NumRows;
352     unsigned NumColumns;
353 
354     bool IsColumnMajor;
355 
356     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
357         : NumRows(NumRows), NumColumns(NumColumns),
358           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
359 
360     ShapeInfo(Value *NumRows, Value *NumColumns)
361         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
362                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
363 
364     bool operator==(const ShapeInfo &other) {
365       return NumRows == other.NumRows && NumColumns == other.NumColumns;
366     }
367     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
368 
369     /// Returns true if shape-information is defined, meaning both dimensions
370     /// are != 0.
371     operator bool() const {
372       assert(NumRows == 0 || NumColumns != 0);
373       return NumRows != 0;
374     }
375 
376     unsigned getStride() const {
377       if (IsColumnMajor)
378         return NumRows;
379       return NumColumns;
380     }
381 
382     unsigned getNumVectors() const {
383       if (IsColumnMajor)
384         return NumColumns;
385       return NumRows;
386     }
387   };
388 
389   /// Maps instructions to their shape information. The shape information
390   /// describes the shape to be used while lowering. This matches the shape of
391   /// the result value of the instruction, with the only exceptions being store
392   /// instructions and the matrix_column_major_store intrinsics. For those, the
393   /// shape information indicates that those instructions should be lowered
394   /// using shape information as well.  A ValueMap is used so that when
395   /// sub-passes like optimizeTransposes performs RAUW the map stays
396   /// up-to-date.
397   ValueMap<Value *, ShapeInfo> ShapeMap;
398 
399   /// List of instructions to remove. While lowering, we are not replacing all
400   /// users of a lowered instruction, if shape information is available and
401   /// those need to be removed after we finished lowering.
402   SmallVector<Instruction *, 16> ToRemove;
403 
404   /// Map from instructions to their produced column matrix.
405   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
406 
407 private:
408   static FastMathFlags getFastMathFlags(Instruction *Inst) {
409     FastMathFlags FMF;
410 
411     if (isa<FPMathOperator>(*Inst))
412       FMF = Inst->getFastMathFlags();
413 
414     FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
415 
416     return FMF;
417   }
418 
419 public:
420   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
421                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
422                         OptimizationRemarkEmitter *ORE)
423       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
424         LI(LI), ORE(ORE) {}
425 
426   unsigned getNumOps(Type *VT) {
427     assert(isa<VectorType>(VT) && "Expected vector type");
428     return getNumOps(VT->getScalarType(),
429                      cast<FixedVectorType>(VT)->getNumElements());
430   }
431 
432   /// Is this the minimal version executed in the backend pipelines.
433   bool isMinimal() const {
434     return !DT;
435   }
436 
437   /// Return the estimated number of vector ops required for an operation on
438   /// \p VT * N.
439   unsigned getNumOps(Type *ST, unsigned N) {
440     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
441                      double(TTI.getRegisterBitWidth(
442                                    TargetTransformInfo::RGK_FixedWidthVector)
443                                 .getFixedSize()));
444   }
445 
446   /// Return the set of vectors that a matrix value is lowered to.
447   ///
448   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
449   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
450   /// into vectors.
451   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
452                      IRBuilder<> &Builder) {
453     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
454     assert(VType && "MatrixVal must be a vector type");
455     assert(cast<FixedVectorType>(VType)->getNumElements() ==
456                SI.NumRows * SI.NumColumns &&
457            "The vector size must match the number of matrix elements");
458 
459     // Check if we lowered MatrixVal using shape information. In that case,
460     // return the existing matrix, if it matches the requested shape
461     // information. If there is a mis-match, embed the result in a flat
462     // vector and split it later.
463     auto Found = Inst2ColumnMatrix.find(MatrixVal);
464     if (Found != Inst2ColumnMatrix.end()) {
465       MatrixTy &M = Found->second;
466       // Return the found matrix, if its shape matches the requested shape
467       // information
468       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
469         return M;
470 
471       MatrixVal = M.embedInVector(Builder);
472     }
473 
474     // Otherwise split MatrixVal.
475     SmallVector<Value *, 16> SplitVecs;
476     for (unsigned MaskStart = 0;
477          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
478          MaskStart += SI.getStride()) {
479       Value *V = Builder.CreateShuffleVector(
480           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
481           "split");
482       SplitVecs.push_back(V);
483     }
484 
485     return {SplitVecs};
486   }
487 
488   /// If \p V already has a known shape return false.  Otherwise set the shape
489   /// for instructions that support it.
490   bool setShapeInfo(Value *V, ShapeInfo Shape) {
491     assert(Shape && "Shape not set");
492     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
493       return false;
494 
495     auto SIter = ShapeMap.find(V);
496     if (SIter != ShapeMap.end()) {
497       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
498                         << SIter->second.NumRows << " "
499                         << SIter->second.NumColumns << " for " << *V << "\n");
500       return false;
501     }
502 
503     ShapeMap.insert({V, Shape});
504     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
505                       << " for " << *V << "\n");
506     return true;
507   }
508 
509   bool isUniformShape(Value *V) {
510     Instruction *I = dyn_cast<Instruction>(V);
511     if (!I)
512       return true;
513 
514     switch (I->getOpcode()) {
515     case Instruction::FAdd:
516     case Instruction::FSub:
517     case Instruction::FMul: // Scalar multiply.
518     case Instruction::FNeg:
519     case Instruction::Add:
520     case Instruction::Mul:
521     case Instruction::Sub:
522       return true;
523     default:
524       return false;
525     }
526   }
527 
528   /// Returns true if shape information can be used for \p V. The supported
529   /// instructions must match the instructions that can be lowered by this pass.
530   bool supportsShapeInfo(Value *V) {
531     Instruction *Inst = dyn_cast<Instruction>(V);
532     if (!Inst)
533       return false;
534 
535     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
536     if (II)
537       switch (II->getIntrinsicID()) {
538       case Intrinsic::matrix_multiply:
539       case Intrinsic::matrix_transpose:
540       case Intrinsic::matrix_column_major_load:
541       case Intrinsic::matrix_column_major_store:
542         return true;
543       default:
544         return false;
545       }
546     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
547   }
548 
549   /// Propagate the shape information of instructions to their users.
550   /// The work list contains instructions for which we can compute the shape,
551   /// either based on the information provided by matrix intrinsics or known
552   /// shapes of operands.
553   SmallVector<Instruction *, 32>
554   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
555     SmallVector<Instruction *, 32> NewWorkList;
556     // Pop an element for which we guaranteed to have at least one of the
557     // operand shapes.  Add the shape for this and then add users to the work
558     // list.
559     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
560     while (!WorkList.empty()) {
561       Instruction *Inst = WorkList.pop_back_val();
562 
563       // New entry, set the value and insert operands
564       bool Propagate = false;
565 
566       Value *MatrixA;
567       Value *MatrixB;
568       Value *M;
569       Value *N;
570       Value *K;
571       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
572                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
573                           m_Value(N), m_Value(K)))) {
574         Propagate = setShapeInfo(Inst, {M, K});
575       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
576                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
577         // Flip dimensions.
578         Propagate = setShapeInfo(Inst, {N, M});
579       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
580                                  m_Value(MatrixA), m_Value(), m_Value(),
581                                  m_Value(), m_Value(M), m_Value(N)))) {
582         Propagate = setShapeInfo(Inst, {N, M});
583       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
584                                  m_Value(), m_Value(), m_Value(), m_Value(M),
585                                  m_Value(N)))) {
586         Propagate = setShapeInfo(Inst, {M, N});
587       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
588         auto OpShape = ShapeMap.find(MatrixA);
589         if (OpShape != ShapeMap.end())
590           setShapeInfo(Inst, OpShape->second);
591         continue;
592       } else if (isUniformShape(Inst)) {
593         // Find the first operand that has a known shape and use that.
594         for (auto &Op : Inst->operands()) {
595           auto OpShape = ShapeMap.find(Op.get());
596           if (OpShape != ShapeMap.end()) {
597             Propagate |= setShapeInfo(Inst, OpShape->second);
598             break;
599           }
600         }
601       }
602 
603       if (Propagate) {
604         NewWorkList.push_back(Inst);
605         for (auto *User : Inst->users())
606           if (ShapeMap.count(User) == 0)
607             WorkList.push_back(cast<Instruction>(User));
608       }
609     }
610 
611     return NewWorkList;
612   }
613 
614   /// Propagate the shape to operands of instructions with shape information.
615   /// \p Worklist contains the instruction for which we already know the shape.
616   SmallVector<Instruction *, 32>
617   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
618     SmallVector<Instruction *, 32> NewWorkList;
619 
620     auto pushInstruction = [](Value *V,
621                               SmallVectorImpl<Instruction *> &WorkList) {
622       Instruction *I = dyn_cast<Instruction>(V);
623       if (I)
624         WorkList.push_back(I);
625     };
626     // Pop an element with known shape.  Traverse the operands, if their shape
627     // derives from the result shape and is unknown, add it and add them to the
628     // worklist.
629     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
630     while (!WorkList.empty()) {
631       Value *V = WorkList.pop_back_val();
632 
633       size_t BeforeProcessingV = WorkList.size();
634       if (!isa<Instruction>(V))
635         continue;
636 
637       Value *MatrixA;
638       Value *MatrixB;
639       Value *M;
640       Value *N;
641       Value *K;
642       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
643                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
644                        m_Value(N), m_Value(K)))) {
645         if (setShapeInfo(MatrixA, {M, N}))
646           pushInstruction(MatrixA, WorkList);
647 
648         if (setShapeInfo(MatrixB, {N, K}))
649           pushInstruction(MatrixB, WorkList);
650 
651       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
652                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
653         // Flip dimensions.
654         if (setShapeInfo(MatrixA, {M, N}))
655           pushInstruction(MatrixA, WorkList);
656       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
657                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
658                               m_Value(M), m_Value(N)))) {
659         if (setShapeInfo(MatrixA, {M, N})) {
660           pushInstruction(MatrixA, WorkList);
661         }
662       } else if (isa<LoadInst>(V) ||
663                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
664         // Nothing to do, no matrix input.
665       } else if (isa<StoreInst>(V)) {
666         // Nothing to do.  We forward-propagated to this so we would just
667         // backward propagate to an instruction with an already known shape.
668       } else if (isUniformShape(V)) {
669         // Propagate to all operands.
670         ShapeInfo Shape = ShapeMap[V];
671         for (Use &U : cast<Instruction>(V)->operands()) {
672           if (setShapeInfo(U.get(), Shape))
673             pushInstruction(U.get(), WorkList);
674         }
675       }
676       // After we discovered new shape info for new instructions in the
677       // worklist, we use their users as seeds for the next round of forward
678       // propagation.
679       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
680         for (User *U : WorkList[I]->users())
681           if (isa<Instruction>(U) && V != U)
682             NewWorkList.push_back(cast<Instruction>(U));
683     }
684     return NewWorkList;
685   }
686 
687   /// Try moving transposes in order to fold them away or into multiplies.
688   void optimizeTransposes() {
689     auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) {
690       // We need to remove Old from the ShapeMap otherwise RAUW will replace it
691       // with New. We should only add New it it supportsShapeInfo so we insert
692       // it conditionally instead.
693       auto S = ShapeMap.find(&Old);
694       if (S != ShapeMap.end()) {
695         ShapeMap.erase(S);
696         if (supportsShapeInfo(New))
697           ShapeMap.insert({New, S->second});
698       }
699       Old.replaceAllUsesWith(New);
700     };
701 
702     // First sink all transposes inside matmuls, hoping that we end up with NN,
703     // NT or TN variants.
704     for (BasicBlock &BB : reverse(Func)) {
705       for (auto II = BB.rbegin(); II != BB.rend();) {
706         Instruction &I = *II;
707         // We may remove II.  By default continue on the next/prev instruction.
708         ++II;
709         // If we were to erase II, move again.
710         auto EraseFromParent = [&II, &BB](Value *V) {
711           auto *Inst = cast<Instruction>(V);
712           if (Inst->use_empty()) {
713             if (II != BB.rend() && Inst == &*II) {
714               ++II;
715             }
716             Inst->eraseFromParent();
717           }
718         };
719 
720         // If we're creating a new instruction, continue from there.
721         Instruction *NewInst = nullptr;
722 
723         IRBuilder<> IB(&I);
724         MatrixBuilder Builder(IB);
725 
726         Value *TA, *TAMA, *TAMB;
727         ConstantInt *R, *K, *C;
728         if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
729 
730           // Transpose of a transpose is a nop
731           Value *TATA;
732           if (match(TA,
733                     m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
734             ReplaceAllUsesWith(I, TATA);
735             EraseFromParent(&I);
736             EraseFromParent(TA);
737           }
738 
739           // (A * B)^t -> B^t * A^t
740           // RxK KxC      CxK   KxR
741           else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
742                                  m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
743                                  m_ConstantInt(K), m_ConstantInt(C)))) {
744             Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
745                                                       C->getZExtValue(),
746                                                       TAMB->getName() + "_t");
747             // We are being run after shape prop, add shape for newly created
748             // instructions so that we lower them later.
749             setShapeInfo(T0, {C, K});
750             Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
751                                                       K->getZExtValue(),
752                                                       TAMA->getName() + "_t");
753             setShapeInfo(T1, {K, R});
754             NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
755                                                    K->getZExtValue(),
756                                                    R->getZExtValue(), "mmul");
757             ReplaceAllUsesWith(I, NewInst);
758             EraseFromParent(&I);
759             EraseFromParent(TA);
760           }
761         }
762 
763         // If we replaced I with a new instruction, continue from there.
764         if (NewInst)
765           II = std::next(BasicBlock::reverse_iterator(NewInst));
766       }
767     }
768 
769     // If we have a TT matmul, lift the transpose.  We may be able to fold into
770     // consuming multiply.
771     for (BasicBlock &BB : Func) {
772       for (Instruction &I : llvm::make_early_inc_range(BB)) {
773         Value *A, *B, *AT, *BT;
774         ConstantInt *R, *K, *C;
775         // A^t * B ^t -> (B * A)^t
776         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>(
777                           m_Value(A), m_Value(B), m_ConstantInt(R),
778                           m_ConstantInt(K), m_ConstantInt(C))) &&
779             match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
780             match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
781           IRBuilder<> IB(&I);
782           MatrixBuilder Builder(IB);
783           Value *M = Builder.CreateMatrixMultiply(
784               BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
785           setShapeInfo(M, {C, R});
786           Instruction *NewInst = Builder.CreateMatrixTranspose(
787               M, C->getZExtValue(), R->getZExtValue());
788           ReplaceAllUsesWith(I, NewInst);
789           if (I.use_empty())
790             I.eraseFromParent();
791           if (A->use_empty())
792             cast<Instruction>(A)->eraseFromParent();
793           if (A != B && B->use_empty())
794             cast<Instruction>(B)->eraseFromParent();
795         }
796       }
797     }
798   }
799 
800   bool Visit() {
801     SmallVector<Instruction *, 32> WorkList;
802 
803     // Initially only the shape of matrix intrinsics is known.
804     // Initialize the work list with ops carrying shape information.
805     for (BasicBlock &BB : Func)
806       for (Instruction &Inst : BB) {
807         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
808         if (!II)
809           continue;
810 
811         switch (II->getIntrinsicID()) {
812         case Intrinsic::matrix_multiply:
813         case Intrinsic::matrix_transpose:
814         case Intrinsic::matrix_column_major_load:
815         case Intrinsic::matrix_column_major_store:
816           WorkList.push_back(&Inst);
817           break;
818         default:
819           break;
820         }
821       }
822 
823     // Avoid unnecessary work if there are no matrix intrinsics in the function.
824     if (WorkList.empty())
825       return false;
826 
827     // Propagate shapes until nothing changes any longer.
828     while (!WorkList.empty()) {
829       WorkList = propagateShapeForward(WorkList);
830       WorkList = propagateShapeBackward(WorkList);
831     }
832 
833     if (!isMinimal()) {
834       optimizeTransposes();
835       LLVM_DEBUG({
836         dbgs() << "Dump after matrix transpose optimization:\n";
837         Func.dump();
838       });
839     }
840 
841     bool Changed = false;
842     SmallVector<CallInst *, 16> MaybeFusableInsts;
843     SmallVector<Instruction *, 16> MatrixInsts;
844 
845     // First, collect all instructions with shape information and candidates for
846     // fusion (currently only matrix multiplies).
847     ReversePostOrderTraversal<Function *> RPOT(&Func);
848     for (auto *BB : RPOT)
849       for (Instruction &I : *BB) {
850         if (ShapeMap.find(&I) == ShapeMap.end())
851           continue;
852         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
853           MaybeFusableInsts.push_back(cast<CallInst>(&I));
854         MatrixInsts.push_back(&I);
855       }
856 
857     // Second, try to fuse candidates.
858     SmallPtrSet<Instruction *, 16> FusedInsts;
859     for (CallInst *CI : MaybeFusableInsts)
860       LowerMatrixMultiplyFused(CI, FusedInsts);
861     Changed = !FusedInsts.empty();
862 
863     // Third, lower remaining instructions with shape information.
864     for (Instruction *Inst : MatrixInsts) {
865       if (FusedInsts.count(Inst))
866         continue;
867 
868       IRBuilder<> Builder(Inst);
869 
870       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
871         Changed |= VisitCallInst(CInst);
872 
873       Value *Op1;
874       Value *Op2;
875       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
876         Changed |= VisitBinaryOperator(BinOp);
877       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
878         Changed |= VisitUnaryOperator(UnOp);
879       if (match(Inst, m_Load(m_Value(Op1))))
880         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
881       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
882         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
883     }
884 
885     if (ORE) {
886       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
887       RemarkGen.emitRemarks();
888     }
889 
890     // Delete the instructions backwards, as it has a reduced likelihood of
891     // having to update as many def-use and use-def chains.
892     //
893     // Because we add to ToRemove during fusion we can't guarantee that defs
894     // are before uses.  Change uses to poison temporarily as these should get
895     // removed as well.
896     //
897     // For verification, we keep track of where we changed uses to poison in
898     // PoisonedInsts and then check that we in fact remove them.
899     SmallSet<Instruction *, 16> PoisonedInsts;
900     for (auto *Inst : reverse(ToRemove)) {
901       for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
902         if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
903           PoisonedInsts.insert(Poisoned);
904         U.set(PoisonValue::get(Inst->getType()));
905       }
906       Inst->eraseFromParent();
907       PoisonedInsts.erase(Inst);
908     }
909     if (!PoisonedInsts.empty()) {
910       // If we didn't remove all poisoned instructions, it's a hard error.
911       dbgs() << "Poisoned but present instructions:\n";
912       for (auto *I : PoisonedInsts)
913         dbgs() << *I << "\n";
914       llvm_unreachable("Poisoned but instruction not removed");
915     }
916 
917     return Changed;
918   }
919 
920   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
921   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
922     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
923     Type *EltPtrType = PointerType::get(EltType, AS);
924     return Builder.CreatePointerCast(BasePtr, EltPtrType);
925   }
926 
927   /// Replace intrinsic calls
928   bool VisitCallInst(CallInst *Inst) {
929     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
930       return false;
931 
932     switch (Inst->getCalledFunction()->getIntrinsicID()) {
933     case Intrinsic::matrix_multiply:
934       LowerMultiply(Inst);
935       break;
936     case Intrinsic::matrix_transpose:
937       LowerTranspose(Inst);
938       break;
939     case Intrinsic::matrix_column_major_load:
940       LowerColumnMajorLoad(Inst);
941       break;
942     case Intrinsic::matrix_column_major_store:
943       LowerColumnMajorStore(Inst);
944       break;
945     default:
946       return false;
947     }
948     return true;
949   }
950 
951   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
952   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
953   /// ConstantInt, reduce the initial alignment based on the byte offset. For
954   /// non-ConstantInt strides, return the common alignment of the initial
955   /// alignment and the element size in bytes.
956   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
957                          MaybeAlign A) const {
958     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
959     if (Idx == 0)
960       return InitialAlign;
961 
962     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
963     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
964       uint64_t StrideInBytes =
965           ConstStride->getZExtValue() * ElementSizeInBits / 8;
966       return commonAlignment(InitialAlign, Idx * StrideInBytes);
967     }
968     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
969   }
970 
971   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
972   /// vectors.
973   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
974                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
975     auto *VType = cast<VectorType>(Ty);
976     Type *EltTy = VType->getElementType();
977     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
978     Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
979     MatrixTy Result;
980     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
981       Value *GEP = computeVectorAddr(
982           EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
983           Stride, Shape.getStride(), EltTy, Builder);
984       Value *Vector = Builder.CreateAlignedLoad(
985           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
986           IsVolatile, "col.load");
987 
988       Result.addVector(Vector);
989     }
990     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
991                               Result.getNumVectors());
992   }
993 
994   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
995   /// starting at \p MatrixPtr[I][J].
996   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
997                       ShapeInfo MatrixShape, Value *I, Value *J,
998                       ShapeInfo ResultShape, Type *EltTy,
999                       IRBuilder<> &Builder) {
1000 
1001     Value *Offset = Builder.CreateAdd(
1002         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1003 
1004     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1005     Value *EltPtr =
1006         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1007     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1008     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1009                                                    ResultShape.NumColumns);
1010     Type *TilePtrTy = PointerType::get(TileTy, AS);
1011     Value *TilePtr =
1012         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1013 
1014     return loadMatrix(TileTy, TilePtr, Align,
1015                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1016                       ResultShape, Builder);
1017   }
1018 
1019   /// Lower a load instruction with shape information.
1020   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
1021                  bool IsVolatile, ShapeInfo Shape) {
1022     IRBuilder<> Builder(Inst);
1023     finalizeLowering(Inst,
1024                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
1025                                 Shape, Builder),
1026                      Builder);
1027   }
1028 
1029   /// Lowers llvm.matrix.column.major.load.
1030   ///
1031   /// The intrinsic loads a matrix from memory using a stride between columns.
1032   void LowerColumnMajorLoad(CallInst *Inst) {
1033     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1034            "Intrinsic only supports column-major layout!");
1035     Value *Ptr = Inst->getArgOperand(0);
1036     Value *Stride = Inst->getArgOperand(1);
1037     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1038               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1039               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1040   }
1041 
1042   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1043   /// MatrixPtr[I][J].
1044   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1045                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1046                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1047     Value *Offset = Builder.CreateAdd(
1048         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1049 
1050     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1051     Value *EltPtr =
1052         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1053     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1054     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1055                                                    StoreVal.getNumColumns());
1056     Type *TilePtrTy = PointerType::get(TileTy, AS);
1057     Value *TilePtr =
1058         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1059 
1060     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1061                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1062   }
1063 
1064   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1065   /// vectors.
1066   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1067                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1068                        IRBuilder<> &Builder) {
1069     auto VType = cast<VectorType>(Ty);
1070     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
1071     for (auto Vec : enumerate(StoreVal.vectors())) {
1072       Value *GEP = computeVectorAddr(
1073           EltPtr,
1074           Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1075                           Vec.index()),
1076           Stride, StoreVal.getStride(), VType->getElementType(), Builder);
1077       Builder.CreateAlignedStore(Vec.value(), GEP,
1078                                  getAlignForIndex(Vec.index(), Stride,
1079                                                   VType->getElementType(),
1080                                                   MAlign),
1081                                  IsVolatile);
1082     }
1083     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1084                                    StoreVal.getNumVectors());
1085   }
1086 
1087   /// Lower a store instruction with shape information.
1088   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1089                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1090     IRBuilder<> Builder(Inst);
1091     auto StoreVal = getMatrix(Matrix, Shape, Builder);
1092     finalizeLowering(Inst,
1093                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1094                                  IsVolatile, Builder),
1095                      Builder);
1096   }
1097 
1098   /// Lowers llvm.matrix.column.major.store.
1099   ///
1100   /// The intrinsic store a matrix back memory using a stride between columns.
1101   void LowerColumnMajorStore(CallInst *Inst) {
1102     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1103            "Intrinsic only supports column-major layout!");
1104     Value *Matrix = Inst->getArgOperand(0);
1105     Value *Ptr = Inst->getArgOperand(1);
1106     Value *Stride = Inst->getArgOperand(2);
1107     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1108                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1109                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1110   }
1111 
1112   // Set elements I..I+NumElts-1 to Block
1113   Value *insertVector(Value *Col, unsigned I, Value *Block,
1114                       IRBuilder<> &Builder) {
1115 
1116     // First, bring Block to the same size as Col
1117     unsigned BlockNumElts =
1118         cast<FixedVectorType>(Block->getType())->getNumElements();
1119     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1120     assert(NumElts >= BlockNumElts && "Too few elements for current block");
1121 
1122     Block = Builder.CreateShuffleVector(
1123         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1124 
1125     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1126     // 8, 4, 5, 6
1127     SmallVector<int, 16> Mask;
1128     unsigned i;
1129     for (i = 0; i < I; i++)
1130       Mask.push_back(i);
1131 
1132     unsigned VecNumElts =
1133         cast<FixedVectorType>(Col->getType())->getNumElements();
1134     for (; i < I + BlockNumElts; i++)
1135       Mask.push_back(i - I + VecNumElts);
1136 
1137     for (; i < VecNumElts; i++)
1138       Mask.push_back(i);
1139 
1140     return Builder.CreateShuffleVector(Col, Block, Mask);
1141   }
1142 
1143   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1144                       IRBuilder<> &Builder, bool AllowContraction,
1145                       unsigned &NumComputeOps) {
1146     NumComputeOps += getNumOps(A->getType());
1147     if (!Sum)
1148       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1149 
1150     if (UseFPOp) {
1151       if (AllowContraction) {
1152         // Use fmuladd for floating point operations and let the backend decide
1153         // if that's profitable.
1154         Function *FMulAdd = Intrinsic::getDeclaration(
1155             Func.getParent(), Intrinsic::fmuladd, A->getType());
1156         return Builder.CreateCall(FMulAdd, {A, B, Sum});
1157       }
1158       NumComputeOps += getNumOps(A->getType());
1159       Value *Mul = Builder.CreateFMul(A, B);
1160       return Builder.CreateFAdd(Sum, Mul);
1161     }
1162 
1163     NumComputeOps += getNumOps(A->getType());
1164     Value *Mul = Builder.CreateMul(A, B);
1165     return Builder.CreateAdd(Sum, Mul);
1166   }
1167 
1168   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1169   /// users with shape information, there's nothing to do: they will use the
1170   /// cached value when they are lowered. For other users, \p Matrix is
1171   /// flattened and the uses are updated to use it. Also marks \p Inst for
1172   /// deletion.
1173   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1174                         IRBuilder<> &Builder) {
1175     auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1176     (void)inserted;
1177     assert(inserted.second && "multiple matrix lowering mapping");
1178 
1179     ToRemove.push_back(Inst);
1180     Value *Flattened = nullptr;
1181     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1182       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1183         if (!Flattened)
1184           Flattened = Matrix.embedInVector(Builder);
1185         U.set(Flattened);
1186       }
1187     }
1188   }
1189 
1190   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1191   /// addition.
1192   ///
1193   /// We can fold a transpose into the operand that is used to extract scalars.
1194   /// This is the first operands with row-major and the second with
1195   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1196   /// operand is transposed.
1197   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1198                           const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1199                           bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1200     const unsigned VF = std::max<unsigned>(
1201         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1202                 .getFixedSize() /
1203             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1204         1U);
1205     unsigned R = Result.getNumRows();
1206     unsigned C = Result.getNumColumns();
1207     unsigned M = A.getNumColumns();
1208 
1209     bool IsFP = Result.getElementType()->isFloatingPointTy();
1210     assert(A.isColumnMajor() == B.isColumnMajor() &&
1211            Result.isColumnMajor() == A.isColumnMajor() &&
1212            "operands must agree on matrix layout");
1213     unsigned NumComputeOps = 0;
1214 
1215     Builder.setFastMathFlags(FMF);
1216 
1217     if (A.isColumnMajor()) {
1218       // Multiply columns from the first operand with scalars from the second
1219       // operand. Then move along the K axes and accumulate the columns.  With
1220       // this the adds can be vectorized without reassociation.
1221       for (unsigned J = 0; J < C; ++J) {
1222         unsigned BlockSize = VF;
1223         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1224         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1225 
1226         for (unsigned I = 0; I < R; I += BlockSize) {
1227           // Gradually lower the vectorization factor to cover the remainder.
1228           while (I + BlockSize > R)
1229             BlockSize /= 2;
1230 
1231           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1232                                : nullptr;
1233           for (unsigned K = 0; K < M; ++K) {
1234             Value *L = A.extractVector(I, K, BlockSize, Builder);
1235             Value *RH = Builder.CreateExtractElement(
1236                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1237                 IsScalarMatrixTransposed ? J : K);
1238             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1239             Sum =
1240                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1241                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1242           }
1243           Result.setVector(J,
1244                            insertVector(Result.getVector(J), I, Sum, Builder));
1245         }
1246       }
1247     } else {
1248       // Multiply rows from the second operand with scalars from the first
1249       // operand. Then move along the K axes and accumulate the rows.  With this
1250       // the adds can be vectorized without reassociation.
1251       for (unsigned I = 0; I < R; ++I) {
1252         unsigned BlockSize = VF;
1253         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1254         for (unsigned J = 0; J < C; J += BlockSize) {
1255           // Gradually lower the vectorization factor to cover the remainder.
1256           while (J + BlockSize > C)
1257             BlockSize /= 2;
1258 
1259           Value *Sum = nullptr;
1260           for (unsigned K = 0; K < M; ++K) {
1261             Value *R = B.extractVector(K, J, BlockSize, Builder);
1262             Value *LH = Builder.CreateExtractElement(
1263                 A.getVector(IsScalarMatrixTransposed ? K : I),
1264                 IsScalarMatrixTransposed ? I : K);
1265             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1266             Sum =
1267                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1268                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1269           }
1270           Result.setVector(I,
1271                            insertVector(Result.getVector(I), J, Sum, Builder));
1272         }
1273       }
1274     }
1275     Result.addNumComputeOps(NumComputeOps);
1276   }
1277 
1278   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1279   /// copying it to a new location.  This new or otherwise the original location
1280   /// is returned.
1281   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1282                                CallInst *MatMul) {
1283     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1284     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1285 
1286     // If we can statically determine noalias we're good.
1287     if (AA->isNoAlias(LoadLoc, StoreLoc))
1288       return Load->getPointerOperand();
1289 
1290     // Create code to check if the memory locations of the Load and Store
1291     // overlap and if they do, copy Load's operand to a new buffer.
1292 
1293     // First, create  new blocks for 2n part of the check and the copy.
1294     BasicBlock *Check0 = MatMul->getParent();
1295     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1296     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1297     // as we adjust Check0 and Check1's branches.
1298     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1299     for (BasicBlock *Succ : successors(Check0))
1300       DTUpdates.push_back({DT->Delete, Check0, Succ});
1301 
1302     BasicBlock *Check1 =
1303         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1304                    nullptr, "alias_cont");
1305     BasicBlock *Copy =
1306         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1307                    nullptr, "copy");
1308     BasicBlock *Fusion =
1309         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1310                    nullptr, "no_alias");
1311 
1312     // Check if the loaded memory location begins before the end of the store
1313     // location. If the condition holds, they might overlap, otherwise they are
1314     // guaranteed to not overlap.
1315     IRBuilder<> Builder(MatMul);
1316     Check0->getTerminator()->eraseFromParent();
1317     Builder.SetInsertPoint(Check0);
1318     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1319     Value *StoreBegin = Builder.CreatePtrToInt(
1320         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1321     Value *StoreEnd = Builder.CreateAdd(
1322         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1323         "store.end", true, true);
1324     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1325                                               IntPtrTy, "load.begin");
1326     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1327                          Fusion);
1328 
1329     // Check if the store begins before the end of the load location. If the
1330     // condition holds, they alias, otherwise they are guaranteed to not
1331     // overlap.
1332     Check1->getTerminator()->eraseFromParent();
1333     Builder.SetInsertPoint(Check1, Check1->begin());
1334     Value *LoadEnd = Builder.CreateAdd(
1335         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1336         "load.end", true, true);
1337     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1338                          Fusion);
1339 
1340     // Copy load operand to new alloca.
1341     Builder.SetInsertPoint(Copy, Copy->begin());
1342     auto *VT = cast<FixedVectorType>(Load->getType());
1343     // Use an array type for the alloca, to avoid potentially huge alignment
1344     // requirements for large vector types.
1345     auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1346     AllocaInst *Alloca =
1347         Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1348     Value *BC = Builder.CreateBitCast(Alloca, VT->getPointerTo());
1349 
1350     Builder.CreateMemCpy(BC, Alloca->getAlign(), Load->getPointerOperand(),
1351                          Load->getAlign(), LoadLoc.Size.getValue());
1352     Builder.SetInsertPoint(Fusion, Fusion->begin());
1353     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1354     PHI->addIncoming(Load->getPointerOperand(), Check0);
1355     PHI->addIncoming(Load->getPointerOperand(), Check1);
1356     PHI->addIncoming(BC, Copy);
1357 
1358     // Adjust DT.
1359     DTUpdates.push_back({DT->Insert, Check0, Check1});
1360     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1361     DTUpdates.push_back({DT->Insert, Check1, Copy});
1362     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1363     DT->applyUpdates(DTUpdates);
1364     return PHI;
1365   }
1366 
1367   bool isFusionProfitable(CallInst *MatMul) {
1368     if (ForceFusion)
1369       return true;
1370 
1371     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1372     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1373 
1374     const unsigned R = LShape.NumRows;
1375     const unsigned C = RShape.NumColumns;
1376     const unsigned M = LShape.NumColumns;
1377     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1378 
1379     const unsigned VF = std::max<unsigned>(
1380         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1381                 .getFixedSize() /
1382             EltType->getPrimitiveSizeInBits().getFixedSize(),
1383         1U);
1384 
1385     // Cost model for tiling
1386     //
1387     // For tiling to be beneficial, we need reuse either along the R or
1388     // the C axis.  We vectorize along the R axis so that means at least
1389     // 3 elements.
1390     // TODO: Also consider cost of copying if operands alias.
1391     if (R <= VF && C == 1)
1392       return false;
1393     // Then we need enough elements to exceed the number of vector
1394     // registers we have.  Note that this is an oversimplification since
1395     // fusing also takes some extra loads which may exceed the number of
1396     // reloads necessary.
1397     unsigned Op0Regs = (R + VF - 1) / VF * M;
1398     unsigned Op1Regs = (M + VF - 1) / VF * C;
1399     return Op0Regs + Op1Regs >
1400            TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1401   }
1402 
1403   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1404     MatrixTy Res;
1405     auto *ColumType = FixedVectorType::get(EltType, R);
1406     for (unsigned I = 0; I < C; ++I)
1407       Res.addVector(ConstantAggregateZero::get(ColumType));
1408     return Res;
1409   }
1410 
1411   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1412                         Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1413     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1414 
1415     // Create the main tiling loop nest.
1416     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1417     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1418     Instruction *InsertI = cast<Instruction>(MatMul);
1419     BasicBlock *Start = InsertI->getParent();
1420     BasicBlock *End =
1421         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1422     IRBuilder<> Builder(MatMul);
1423     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1424 
1425     Type *TileVecTy =
1426         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1427     MatrixTy TileResult;
1428     // Insert in the inner loop header.
1429     Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
1430     // Create PHI nodes for the result columns to accumulate across iterations.
1431     SmallVector<PHINode *, 4> ColumnPhis;
1432     for (unsigned I = 0; I < TileSize; I++) {
1433       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1434       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1435                        TI.RowLoop.Header->getSingleSuccessor());
1436       TileResult.addVector(Phi);
1437       ColumnPhis.push_back(Phi);
1438     }
1439 
1440     // Insert in the inner loop body, which computes
1441     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1442     Builder.SetInsertPoint(InnerBody->getTerminator());
1443     // Load tiles of the operands.
1444     MatrixTy A =
1445         loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
1446                    {TileSize, TileSize}, EltType, Builder);
1447     MatrixTy B =
1448         loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
1449                    {TileSize, TileSize}, EltType, Builder);
1450     emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1451                        getFastMathFlags(MatMul));
1452     // Store result after the inner loop is done.
1453     Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
1454     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1455                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1456                 TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
1457 
1458     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1459       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
1460 
1461     // Force unrolling of a few iterations of the inner loop, to make sure there
1462     // is enough work per iteration.
1463     // FIXME: The unroller should make this decision directly instead, but
1464     // currently the cost-model is not up to the task.
1465     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1466     addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
1467                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1468   }
1469 
1470   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1471                       StoreInst *Store,
1472                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1473     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1474            "Tiling only supported for column-major matrixes at the moment!");
1475     if (!isFusionProfitable(MatMul))
1476       return;
1477 
1478     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1479     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1480 
1481     const unsigned R = LShape.NumRows;
1482     const unsigned C = RShape.NumColumns;
1483     const unsigned M = LShape.NumColumns;
1484     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1485 
1486     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1487     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1488     Value *CPtr = Store->getPointerOperand();
1489 
1490     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1491       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1492     else {
1493       IRBuilder<> Builder(Store);
1494       for (unsigned J = 0; J < C; J += TileSize)
1495         for (unsigned I = 0; I < R; I += TileSize) {
1496           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1497           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1498           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1499 
1500           for (unsigned K = 0; K < M; K += TileSize) {
1501             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1502             MatrixTy A =
1503                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1504                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1505                            {TileR, TileM}, EltType, Builder);
1506             MatrixTy B =
1507                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1508                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1509                            {TileM, TileC}, EltType, Builder);
1510             emitMatrixMultiply(Res, A, B, Builder, true, false,
1511                                getFastMathFlags(MatMul));
1512           }
1513           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1514                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1515                       Builder);
1516         }
1517     }
1518 
1519     // Mark eliminated instructions as fused and remove them.
1520     FusedInsts.insert(Store);
1521     FusedInsts.insert(MatMul);
1522     Store->eraseFromParent();
1523     MatMul->eraseFromParent();
1524     if (LoadOp0->hasNUses(0)) {
1525       FusedInsts.insert(LoadOp0);
1526       LoadOp0->eraseFromParent();
1527     }
1528     if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1529       FusedInsts.insert(LoadOp1);
1530       LoadOp1->eraseFromParent();
1531     }
1532   }
1533 
1534   /// Try to lower matrix multiply chains by fusing operations.
1535   ///
1536   /// Call finalizeLowering on lowered instructions.  Instructions that are
1537   /// completely eliminated by fusion are added to \p FusedInsts.
1538   void LowerMatrixMultiplyFused(CallInst *MatMul,
1539                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1540     if (!FuseMatrix || !DT)
1541       return;
1542 
1543     assert(AA && LI && "Analyses should be available");
1544 
1545     Value *A = MatMul->getArgOperand(0);
1546     Value *B = MatMul->getArgOperand(1);
1547 
1548     // We can fold the transpose into the operand that is used to fetch scalars.
1549     Value *T;
1550     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1551             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1552             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1553       IRBuilder<> Builder(MatMul);
1554       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1555       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1556       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1557       const unsigned R = LShape.NumRows;
1558       const unsigned M = LShape.NumColumns;
1559       const unsigned C = RShape.NumColumns;
1560 
1561       MatrixTy MA;
1562       MatrixTy MB;
1563 
1564       Value *Transpose;
1565       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1566         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1567         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1568         Transpose = B;
1569       } else {
1570         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1571         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1572         Transpose = A;
1573       }
1574 
1575       // Initialize the output
1576       MatrixTy Result(R, C, EltType);
1577 
1578       emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1579                          getFastMathFlags(MatMul));
1580 
1581       FusedInsts.insert(MatMul);
1582       if (Transpose->hasOneUse()) {
1583         FusedInsts.insert(cast<Instruction>(Transpose));
1584         ToRemove.push_back(cast<Instruction>(Transpose));
1585         // TODO: add a fake entry for the folded instruction so that this is
1586         // included in the expression in the remark.
1587         Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1588       }
1589       finalizeLowering(MatMul, Result, Builder);
1590       return;
1591     }
1592 
1593     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1594       return;
1595 
1596     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1597     // since the single store user will be lowered as part of this.
1598     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1599     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1600     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1601     if (LoadOp0 && LoadOp1 && Store) {
1602       // The store address must dominate the MatMul instruction, otherwise
1603       // we create invalid IR.
1604       SetVector<Value *> WorkList;
1605       WorkList.insert(Store->getOperand(1));
1606       SmallVector<Instruction *> ToHoist;
1607       for (unsigned I = 0; I != WorkList.size(); ++I) {
1608         Value *Current = WorkList[I];
1609         auto *CurrI = dyn_cast<Instruction>(Current);
1610         if (!CurrI)
1611           continue;
1612         if (isa<PHINode>(CurrI))
1613           return;
1614         if (DT->dominates(CurrI, MatMul))
1615           continue;
1616         if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
1617           return;
1618         ToHoist.push_back(CurrI);
1619         WorkList.insert(CurrI->op_begin(), CurrI->op_end());
1620       }
1621 
1622       sort(ToHoist, [this](Instruction *A, Instruction *B) {
1623         return DT->dominates(A, B);
1624       });
1625       for (Instruction *I : ToHoist)
1626         I->moveBefore(MatMul);
1627 
1628       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1629       return;
1630     }
1631   }
1632 
1633   /// Lowers llvm.matrix.multiply.
1634   void LowerMultiply(CallInst *MatMul) {
1635     IRBuilder<> Builder(MatMul);
1636     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1637     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1638     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1639 
1640     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1641     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1642     assert(Lhs.getElementType() == Rhs.getElementType() &&
1643            "Matrix multiply argument element types do not match.");
1644 
1645     const unsigned R = LShape.NumRows;
1646     const unsigned C = RShape.NumColumns;
1647     assert(LShape.NumColumns == RShape.NumRows);
1648 
1649     // Initialize the output
1650     MatrixTy Result(R, C, EltType);
1651     assert(Lhs.getElementType() == Result.getElementType() &&
1652            "Matrix multiply result element type does not match arguments.");
1653 
1654     emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
1655                        getFastMathFlags(MatMul));
1656     finalizeLowering(MatMul, Result, Builder);
1657   }
1658 
1659   /// Lowers llvm.matrix.transpose.
1660   void LowerTranspose(CallInst *Inst) {
1661     MatrixTy Result;
1662     IRBuilder<> Builder(Inst);
1663     Value *InputVal = Inst->getArgOperand(0);
1664     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1665     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1666     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1667 
1668     const unsigned NewNumVecs =
1669         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1670     const unsigned NewNumElts =
1671         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1672 
1673     for (unsigned I = 0; I < NewNumVecs; ++I) {
1674       // Build a single result vector. First initialize it.
1675       Value *ResultVector = PoisonValue::get(
1676           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1677       // Go through the old elements and insert it into the resulting vector.
1678       for (auto J : enumerate(InputMatrix.vectors())) {
1679         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1680         // Row and column indices are transposed.
1681         ResultVector =
1682             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1683       }
1684       Result.addVector(ResultVector);
1685     }
1686 
1687     // TODO: Improve estimate of operations needed for transposes. Currently we
1688     // just count the insertelement/extractelement instructions, but do not
1689     // account for later simplifications/combines.
1690     finalizeLowering(
1691         Inst,
1692         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1693             .addNumExposedTransposes(1),
1694         Builder);
1695   }
1696 
1697   /// Lower load instructions, if shape information is available.
1698   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1699     auto I = ShapeMap.find(Inst);
1700     if (I == ShapeMap.end())
1701       return false;
1702 
1703     LowerLoad(Inst, Ptr, Inst->getAlign(),
1704               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1705               I->second);
1706     return true;
1707   }
1708 
1709   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1710                   IRBuilder<> &Builder) {
1711     auto I = ShapeMap.find(StoredVal);
1712     if (I == ShapeMap.end())
1713       return false;
1714 
1715     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1716                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1717                I->second);
1718     return true;
1719   }
1720 
1721   /// Lower binary operators, if shape information is available.
1722   bool VisitBinaryOperator(BinaryOperator *Inst) {
1723     auto I = ShapeMap.find(Inst);
1724     if (I == ShapeMap.end())
1725       return false;
1726 
1727     Value *Lhs = Inst->getOperand(0);
1728     Value *Rhs = Inst->getOperand(1);
1729 
1730     IRBuilder<> Builder(Inst);
1731     ShapeInfo &Shape = I->second;
1732 
1733     MatrixTy Result;
1734     MatrixTy A = getMatrix(Lhs, Shape, Builder);
1735     MatrixTy B = getMatrix(Rhs, Shape, Builder);
1736     assert(A.isColumnMajor() == B.isColumnMajor() &&
1737            Result.isColumnMajor() == A.isColumnMajor() &&
1738            "operands must agree on matrix layout");
1739 
1740     Builder.setFastMathFlags(getFastMathFlags(Inst));
1741 
1742     // Helper to perform binary op on vectors.
1743     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1744       switch (Inst->getOpcode()) {
1745       case Instruction::Add:
1746         return Builder.CreateAdd(LHS, RHS);
1747       case Instruction::Mul:
1748         return Builder.CreateMul(LHS, RHS);
1749       case Instruction::Sub:
1750         return Builder.CreateSub(LHS, RHS);
1751       case Instruction::FAdd:
1752         return Builder.CreateFAdd(LHS, RHS);
1753       case Instruction::FMul:
1754         return Builder.CreateFMul(LHS, RHS);
1755       case Instruction::FSub:
1756         return Builder.CreateFSub(LHS, RHS);
1757       default:
1758         llvm_unreachable("Unsupported binary operator for matrix");
1759       }
1760     };
1761 
1762     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1763       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1764 
1765     finalizeLowering(Inst,
1766                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1767                                              Result.getNumVectors()),
1768                      Builder);
1769     return true;
1770   }
1771 
1772   /// Lower unary operators, if shape information is available.
1773   bool VisitUnaryOperator(UnaryOperator *Inst) {
1774     auto I = ShapeMap.find(Inst);
1775     if (I == ShapeMap.end())
1776       return false;
1777 
1778     Value *Op = Inst->getOperand(0);
1779 
1780     IRBuilder<> Builder(Inst);
1781     ShapeInfo &Shape = I->second;
1782 
1783     MatrixTy Result;
1784     MatrixTy M = getMatrix(Op, Shape, Builder);
1785 
1786     Builder.setFastMathFlags(getFastMathFlags(Inst));
1787 
1788     // Helper to perform unary op on vectors.
1789     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1790       switch (Inst->getOpcode()) {
1791       case Instruction::FNeg:
1792         return Builder.CreateFNeg(Op);
1793       default:
1794         llvm_unreachable("Unsupported unary operator for matrix");
1795       }
1796     };
1797 
1798     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1799       Result.addVector(BuildVectorOp(M.getVector(I)));
1800 
1801     finalizeLowering(Inst,
1802                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1803                                              Result.getNumVectors()),
1804                      Builder);
1805     return true;
1806   }
1807 
1808   /// Helper to linearize a matrix expression tree into a string. Currently
1809   /// matrix expressions are linarized by starting at an expression leaf and
1810   /// linearizing bottom up.
1811   struct ExprLinearizer {
1812     unsigned LengthToBreak = 100;
1813     std::string Str;
1814     raw_string_ostream Stream;
1815     unsigned LineLength = 0;
1816     const DataLayout &DL;
1817 
1818     /// Mapping from instructions to matrixes. It is used to identify
1819     /// matrix instructions.
1820     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1821 
1822     /// Mapping from values to the leaves of all expressions that the value is
1823     /// part of.
1824     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1825 
1826     /// Set of matrix expressions in the scope of a given DISubprogram.
1827     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1828 
1829     /// Leaf node of the expression to linearize.
1830     Value *Leaf;
1831 
1832     /// Used to keep track of sub-expressions that get reused while linearizing
1833     /// the expression. Re-used sub-expressions are marked as (reused).
1834     SmallPtrSet<Value *, 8> ReusedExprs;
1835 
1836     ExprLinearizer(const DataLayout &DL,
1837                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
1838                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1839                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1840                    Value *Leaf)
1841         : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1842           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1843 
1844     void indent(unsigned N) {
1845       LineLength += N;
1846       for (unsigned i = 0; i < N; i++)
1847         Stream << " ";
1848     }
1849 
1850     void lineBreak() {
1851       Stream << "\n";
1852       LineLength = 0;
1853     }
1854 
1855     void maybeIndent(unsigned Indent) {
1856       if (LineLength >= LengthToBreak)
1857         lineBreak();
1858 
1859       if (LineLength == 0)
1860         indent(Indent);
1861     }
1862 
1863     void write(StringRef S) {
1864       LineLength += S.size();
1865       Stream << S;
1866     }
1867 
1868     Value *getUnderlyingObjectThroughLoads(Value *V) {
1869       if (Value *Ptr = getPointerOperand(V))
1870         return getUnderlyingObjectThroughLoads(Ptr);
1871       else if (V->getType()->isPointerTy())
1872         return getUnderlyingObject(V);
1873       return V;
1874     }
1875 
1876     /// Returns true if \p V is a matrix value in the given subprogram.
1877     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1878 
1879     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1880     /// \p SS.
1881     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1882       auto M = Inst2Matrix.find(V);
1883       if (M == Inst2Matrix.end())
1884         SS << "unknown";
1885       else {
1886         SS << M->second.getNumRows();
1887         SS << "x";
1888         SS << M->second.getNumColumns();
1889       }
1890     }
1891 
1892     /// Write the called function name. Handles calls to llvm.matrix.*
1893     /// specially: we write the name, followed by the dimensions of the input
1894     /// matrixes, followed by the scalar type name.
1895     void writeFnName(CallInst *CI) {
1896       if (!CI->getCalledFunction())
1897         write("<no called fn>");
1898       else {
1899         StringRef Name = CI->getCalledFunction()->getName();
1900         if (!Name.startswith("llvm.matrix")) {
1901           write(Name);
1902           return;
1903         }
1904         auto *II = cast<IntrinsicInst>(CI);
1905         write(Intrinsic::getBaseName(II->getIntrinsicID())
1906                   .drop_front(StringRef("llvm.matrix.").size()));
1907         write(".");
1908         std::string Tmp;
1909         raw_string_ostream SS(Tmp);
1910 
1911         switch (II->getIntrinsicID()) {
1912         case Intrinsic::matrix_multiply:
1913           prettyPrintMatrixType(II->getOperand(0), SS);
1914           SS << ".";
1915           prettyPrintMatrixType(II->getOperand(1), SS);
1916           SS << "." << *II->getType()->getScalarType();
1917           break;
1918         case Intrinsic::matrix_transpose:
1919           prettyPrintMatrixType(II->getOperand(0), SS);
1920           SS << "." << *II->getType()->getScalarType();
1921           break;
1922         case Intrinsic::matrix_column_major_load:
1923           prettyPrintMatrixType(II, SS);
1924           SS << "." << *II->getType()->getScalarType();
1925           break;
1926         case Intrinsic::matrix_column_major_store:
1927           prettyPrintMatrixType(II->getOperand(0), SS);
1928           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1929           break;
1930         default:
1931           llvm_unreachable("Unhandled case");
1932         }
1933         SS.flush();
1934         write(Tmp);
1935       }
1936     }
1937 
1938     unsigned getNumShapeArgs(CallInst *CI) const {
1939       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1940         switch (II->getIntrinsicID()) {
1941         case Intrinsic::matrix_multiply:
1942           return 3;
1943         case Intrinsic::matrix_transpose:
1944           return 2;
1945         case Intrinsic::matrix_column_major_load:
1946         case Intrinsic::matrix_column_major_store:
1947           return 3;
1948         default:
1949           return 0;
1950         }
1951       }
1952       return 0;
1953     }
1954 
1955     /// Special printing for values: for pointers, we print if they refer to an
1956     /// (function) external address or a stack address, for other values we
1957     /// either print the constant or "scalar"/"matrix" for other values.
1958     void write(Value *V) {
1959       V = getUnderlyingObjectThroughLoads(V);
1960       if (V->getType()->isPointerTy()) {
1961         if (isa<AllocaInst>(V)) {
1962           Stream << "stack addr";
1963           LineLength += StringRef("stack addr").size();
1964         } else {
1965           Stream << "addr";
1966           LineLength += StringRef("addr").size();
1967         }
1968         if (!V->getName().empty()) {
1969           Stream << " %" << V->getName() << "";
1970           LineLength += V->getName().size() + 2;
1971         }
1972         return;
1973       }
1974 
1975       std::string Tmp;
1976       raw_string_ostream TmpStream(Tmp);
1977 
1978       if (auto *CI = dyn_cast<ConstantInt>(V))
1979         TmpStream << CI->getValue();
1980       else if (isa<Constant>(V))
1981         TmpStream << "constant";
1982       else {
1983         if (isMatrix(V))
1984           TmpStream << "matrix";
1985         else
1986           TmpStream << "scalar";
1987       }
1988       TmpStream.flush();
1989       Tmp = std::string(StringRef(Tmp).trim());
1990       LineLength += Tmp.size();
1991       Stream << Tmp;
1992     }
1993 
1994     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1995     /// Expressions that are re-used multiple times are prefixed with (reused)
1996     /// at the re-used root instruction.
1997     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1998                        bool ParentShared) {
1999       auto *I = cast<Instruction>(Expr);
2000       maybeIndent(Indent);
2001       SmallVector<Value *, 8> Ops;
2002 
2003       // Is Expr shared with other expression leaves?
2004       bool ExprShared = false;
2005 
2006       // Deal with shared subtrees. Mark them as shared, if required.
2007       if (!ParentShared) {
2008         auto SI = Shared.find(Expr);
2009         assert(SI != Shared.end() && SI->second.count(Leaf));
2010 
2011         for (Value *S : SI->second) {
2012           if (S == Leaf)
2013             continue;
2014           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
2015           write("shared with remark at line " + std::to_string(DL.getLine()) +
2016                 " column " + std::to_string(DL.getCol()) + " (");
2017         }
2018         ExprShared = SI->second.size() > 1;
2019       }
2020 
2021       bool Reused = !ReusedExprs.insert(Expr).second;
2022       if (Reused && !ParentReused)
2023         write("(reused) ");
2024 
2025       if (auto *CI = dyn_cast<CallInst>(I)) {
2026         writeFnName(CI);
2027 
2028         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2029       } else if (isa<BitCastInst>(Expr)) {
2030         // Special case bitcasts, which are used to materialize matrixes from
2031         // non-matrix ops.
2032         write("matrix");
2033         return;
2034       } else {
2035         Ops.append(I->value_op_begin(), I->value_op_end());
2036         write(std::string(I->getOpcodeName()));
2037       }
2038 
2039       write(std::string("("));
2040 
2041       unsigned NumOpsToBreak = 1;
2042       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2043         NumOpsToBreak = 2;
2044 
2045       for (Value *Op : Ops) {
2046         if (Ops.size() > NumOpsToBreak)
2047           lineBreak();
2048 
2049         maybeIndent(Indent + 1);
2050         if (isMatrix(Op))
2051           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2052         else
2053           write(Op);
2054         if (Op != Ops.back())
2055           write(", ");
2056       }
2057 
2058       write(")");
2059     }
2060 
2061     const std::string &getResult() {
2062       Stream.flush();
2063       return Str;
2064     }
2065   };
2066 
2067   /// Generate remarks for matrix operations in a function. To generate remarks
2068   /// for matrix expressions, the following approach is used:
2069   /// 1. Use the inlined-at debug information to group matrix operations to the
2070   ///    DISubprograms they are contained in.
2071   /// 2. Collect leaves of matrix expressions (done in
2072   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2073   //     mapping.  Leaves are lowered matrix instructions without other matrix
2074   //     users (like stores) in the current subprogram.
2075   /// 3. For each leaf, create a remark containing a linearizied version of the
2076   ///    matrix expression. The expression is linearized by a recursive
2077   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
2078   ///    that multiple leaves can share sub-expressions. Shared subexpressions
2079   ///    are explicitly marked as shared().
2080   struct RemarkGenerator {
2081     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2082     OptimizationRemarkEmitter &ORE;
2083     Function &Func;
2084     const DataLayout &DL;
2085 
2086     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2087                     OptimizationRemarkEmitter &ORE, Function &Func)
2088         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2089           DL(Func.getParent()->getDataLayout()) {}
2090 
2091     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2092     /// instructions in Inst2Matrix returning void or without any users in
2093     /// \p ExprsInSubprogram. Currently that should only include stores.
2094     SmallVector<Value *, 4>
2095     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2096       SmallVector<Value *, 4> Leaves;
2097       for (auto *Expr : ExprsInSubprogram)
2098         if (Expr->getType()->isVoidTy() ||
2099             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2100               return ExprsInSubprogram.count(U);
2101             }))
2102           Leaves.push_back(Expr);
2103       return Leaves;
2104     }
2105 
2106     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2107     /// to all visited expressions in \p Shared. Limit the matrix operations to
2108     /// the ones in \p ExprsInSubprogram.
2109     void collectSharedInfo(Value *Leaf, Value *V,
2110                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2111                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2112 
2113       if (!ExprsInSubprogram.count(V))
2114         return;
2115 
2116       auto I = Shared.insert({V, {}});
2117       I.first->second.insert(Leaf);
2118 
2119       for (Value *Op : cast<Instruction>(V)->operand_values())
2120         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2121     }
2122 
2123     /// Calculate the number of exclusive and shared op counts for expression
2124     /// starting at \p V. Expressions used multiple times are counted once.
2125     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2126     std::pair<OpInfoTy, OpInfoTy>
2127     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2128                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2129                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2130       if (!ExprsInSubprogram.count(Root))
2131         return {};
2132 
2133       // Already counted this expression. Stop.
2134       if (!ReusedExprs.insert(Root).second)
2135         return {};
2136 
2137       OpInfoTy SharedCount;
2138       OpInfoTy Count;
2139 
2140       auto I = Shared.find(Root);
2141       auto CM = Inst2Matrix.find(Root);
2142       if (I->second.size() == 1)
2143         Count = CM->second.getOpInfo();
2144       else
2145         SharedCount = CM->second.getOpInfo();
2146 
2147       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2148         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2149         Count += C.first;
2150         SharedCount += C.second;
2151       }
2152       return {Count, SharedCount};
2153     }
2154 
2155     void emitRemarks() {
2156       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2157         return;
2158 
2159       // Map matrix operations to their containting subprograms, by traversing
2160       // the inlinedAt chain. If the function does not have a DISubprogram, we
2161       // only map them to the containing function.
2162       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2163       for (auto &KV : Inst2Matrix) {
2164         if (Func.getSubprogram()) {
2165           auto *I = cast<Instruction>(KV.first);
2166           DILocation *Context = I->getDebugLoc();
2167           while (Context) {
2168             auto I =
2169                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2170             I.first->second.push_back(KV.first);
2171             Context = DebugLoc(Context).getInlinedAt();
2172           }
2173         } else {
2174           auto I = Subprog2Exprs.insert({nullptr, {}});
2175           I.first->second.push_back(KV.first);
2176         }
2177       }
2178       for (auto &KV : Subprog2Exprs) {
2179         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2180                                                       KV.second.end());
2181         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2182 
2183         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2184         for (Value *Leaf : Leaves)
2185           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2186 
2187         // Generate remarks for each leaf.
2188         for (auto *L : Leaves) {
2189 
2190           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2191           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2192           while (Context) {
2193             if (getSubprogram(Context->getScope()) == KV.first) {
2194               Loc = Context;
2195               break;
2196             }
2197             Context = DebugLoc(Context).getInlinedAt();
2198           }
2199 
2200           SmallPtrSet<Value *, 8> ReusedExprs;
2201           OpInfoTy Counts, SharedCounts;
2202           std::tie(Counts, SharedCounts) =
2203               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2204 
2205           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2206                                  cast<Instruction>(L)->getParent());
2207 
2208           Rem << "Lowered with ";
2209           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2210               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2211               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2212               << " compute ops, "
2213               << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2214               << " exposed transposes";
2215 
2216           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2217               SharedCounts.NumComputeOps > 0) {
2218             Rem << ",\nadditionally "
2219                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2220                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2221                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2222                 << " compute ops"
2223                 << " are shared with other expressions";
2224           }
2225 
2226           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2227           ORE.emit(Rem);
2228         }
2229       }
2230     }
2231 
2232     std::string
2233     linearize(Value *L,
2234               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2235               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2236               const DataLayout &DL) {
2237       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2238       Lin.linearizeExpr(L, 0, false, false);
2239       return Lin.getResult();
2240     }
2241   };
2242 };
2243 } // namespace
2244 
2245 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2246                                                  FunctionAnalysisManager &AM) {
2247   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2248   OptimizationRemarkEmitter *ORE = nullptr;
2249   AAResults *AA = nullptr;
2250   DominatorTree *DT = nullptr;
2251   LoopInfo *LI = nullptr;
2252 
2253   if (!Minimal) {
2254     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2255     AA = &AM.getResult<AAManager>(F);
2256     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2257     LI = &AM.getResult<LoopAnalysis>(F);
2258   }
2259 
2260   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2261   if (LMT.Visit()) {
2262     PreservedAnalyses PA;
2263     if (!Minimal) {
2264       PA.preserve<LoopAnalysis>();
2265       PA.preserve<DominatorTreeAnalysis>();
2266     }
2267     return PA;
2268   }
2269   return PreservedAnalyses::all();
2270 }
2271 
2272 void LowerMatrixIntrinsicsPass::printPipeline(
2273     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
2274   static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
2275       OS, MapClassName2PassName);
2276   OS << "<";
2277   if (Minimal)
2278     OS << "minimal";
2279   OS << ">";
2280 }
2281 
2282 namespace {
2283 
2284 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2285 public:
2286   static char ID;
2287 
2288   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2289     initializeLowerMatrixIntrinsicsLegacyPassPass(
2290         *PassRegistry::getPassRegistry());
2291   }
2292 
2293   bool runOnFunction(Function &F) override {
2294     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2295     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2296     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2297     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2298     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2299     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2300     bool C = LMT.Visit();
2301     return C;
2302   }
2303 
2304   void getAnalysisUsage(AnalysisUsage &AU) const override {
2305     AU.addRequired<TargetTransformInfoWrapperPass>();
2306     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2307     AU.addRequired<AAResultsWrapperPass>();
2308     AU.addRequired<DominatorTreeWrapperPass>();
2309     AU.addPreserved<DominatorTreeWrapperPass>();
2310     AU.addRequired<LoopInfoWrapperPass>();
2311     AU.addPreserved<LoopInfoWrapperPass>();
2312   }
2313 };
2314 } // namespace
2315 
2316 static const char pass_name[] = "Lower the matrix intrinsics";
2317 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
2318 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2319                       false, false)
2320 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2321 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2322 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2323 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2324 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2325                     false, false)
2326 
2327 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2328   return new LowerMatrixIntrinsicsLegacyPass();
2329 }
2330 
2331 namespace {
2332 
2333 /// A lightweight version of the matrix lowering pass that only requires TTI.
2334 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2335 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2336 /// example with -O0.
2337 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2338 public:
2339   static char ID;
2340 
2341   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2342     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2343         *PassRegistry::getPassRegistry());
2344   }
2345 
2346   bool runOnFunction(Function &F) override {
2347     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2348     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2349     bool C = LMT.Visit();
2350     return C;
2351   }
2352 
2353   void getAnalysisUsage(AnalysisUsage &AU) const override {
2354     AU.addRequired<TargetTransformInfoWrapperPass>();
2355     AU.setPreservesCFG();
2356   }
2357 };
2358 } // namespace
2359 
2360 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2361 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2362 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2363                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2364                       false, false)
2365 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2366                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2367                     false)
2368 
2369 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2370   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2371 }
2372