1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is somtimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> UnrollPartialThreshold( 85 "unroll-partial-threshold", cl::Hidden, 86 cl::desc("The cost threshold for partial loop unrolling")); 87 88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 91 "to the threshold when aggressively unrolling a loop due to the " 92 "dynamic cost savings. If completely unrolling a loop will reduce " 93 "the total runtime from X to Y, we boost the loop unroll " 94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 95 "X/Y). This limit avoids excessive code bloat.")); 96 97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 99 cl::desc("Don't allow loop unrolling to simulate more than this number of" 100 "iterations when checking full unroll profitability")); 101 102 static cl::opt<unsigned> UnrollCount( 103 "unroll-count", cl::Hidden, 104 cl::desc("Use this unroll count for all loops including those with " 105 "unroll_count pragma values, for testing purposes")); 106 107 static cl::opt<unsigned> UnrollMaxCount( 108 "unroll-max-count", cl::Hidden, 109 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 110 "testing purposes")); 111 112 static cl::opt<unsigned> UnrollFullMaxCount( 113 "unroll-full-max-count", cl::Hidden, 114 cl::desc( 115 "Set the max unroll count for full unrolling, for testing purposes")); 116 117 static cl::opt<unsigned> UnrollPeelCount( 118 "unroll-peel-count", cl::Hidden, 119 cl::desc("Set the unroll peeling count, for testing purposes")); 120 121 static cl::opt<bool> 122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 123 cl::desc("Allows loops to be partially unrolled until " 124 "-unroll-threshold loop size is reached.")); 125 126 static cl::opt<bool> UnrollAllowRemainder( 127 "unroll-allow-remainder", cl::Hidden, 128 cl::desc("Allow generation of a loop remainder (extra iterations) " 129 "when unrolling a loop.")); 130 131 static cl::opt<bool> 132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 133 cl::desc("Unroll loops with run-time trip counts")); 134 135 static cl::opt<unsigned> UnrollMaxUpperBound( 136 "unroll-max-upperbound", cl::init(8), cl::Hidden, 137 cl::desc( 138 "The max of trip count upper bound that is considered in unrolling")); 139 140 static cl::opt<unsigned> PragmaUnrollThreshold( 141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 142 cl::desc("Unrolled size limit for loops with an unroll(full) or " 143 "unroll_count pragma.")); 144 145 static cl::opt<unsigned> FlatLoopTripCountThreshold( 146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 147 cl::desc("If the runtime tripcount for the loop is lower than the " 148 "threshold, the loop is considered as flat and will be less " 149 "aggressively unrolled.")); 150 151 static cl::opt<bool> 152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 153 cl::desc("Allows loops to be peeled when the dynamic " 154 "trip count is known to be low.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 /// A magic value for use with the Threshold parameter to indicate 170 /// that the loop unroll should be performed regardless of how much 171 /// code expansion would result. 172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 173 174 /// Gather the various unrolling parameters based on the defaults, compiler 175 /// flags, TTI overrides and user specified parameters. 176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling, 182 Optional<bool> UserAllowProfileBasedPeeling, 183 Optional<unsigned> UserFullUnrollMaxCount) { 184 TargetTransformInfo::UnrollingPreferences UP; 185 186 // Set up the defaults 187 UP.Threshold = OptLevel > 2 ? 300 : 150; 188 UP.MaxPercentThresholdBoost = 400; 189 UP.OptSizeThreshold = 0; 190 UP.PartialThreshold = 150; 191 UP.PartialOptSizeThreshold = 0; 192 UP.Count = 0; 193 UP.PeelCount = 0; 194 UP.DefaultUnrollRuntimeCount = 8; 195 UP.MaxCount = std::numeric_limits<unsigned>::max(); 196 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 197 UP.BEInsns = 2; 198 UP.Partial = false; 199 UP.Runtime = false; 200 UP.AllowRemainder = true; 201 UP.UnrollRemainder = false; 202 UP.AllowExpensiveTripCount = false; 203 UP.Force = false; 204 UP.UpperBound = false; 205 UP.AllowPeeling = true; 206 UP.UnrollAndJam = false; 207 UP.PeelProfiledIterations = true; 208 UP.UnrollAndJamInnerLoopThreshold = 60; 209 210 // Override with any target specific settings 211 TTI.getUnrollingPreferences(L, SE, UP); 212 213 // Apply size attributes 214 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 215 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 216 if (OptForSize) { 217 UP.Threshold = UP.OptSizeThreshold; 218 UP.PartialThreshold = UP.PartialOptSizeThreshold; 219 UP.MaxPercentThresholdBoost = 100; 220 } 221 222 // Apply any user values specified by cl::opt 223 if (UnrollThreshold.getNumOccurrences() > 0) 224 UP.Threshold = UnrollThreshold; 225 if (UnrollPartialThreshold.getNumOccurrences() > 0) 226 UP.PartialThreshold = UnrollPartialThreshold; 227 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 228 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 229 if (UnrollMaxCount.getNumOccurrences() > 0) 230 UP.MaxCount = UnrollMaxCount; 231 if (UnrollFullMaxCount.getNumOccurrences() > 0) 232 UP.FullUnrollMaxCount = UnrollFullMaxCount; 233 if (UnrollPeelCount.getNumOccurrences() > 0) 234 UP.PeelCount = UnrollPeelCount; 235 if (UnrollAllowPartial.getNumOccurrences() > 0) 236 UP.Partial = UnrollAllowPartial; 237 if (UnrollAllowRemainder.getNumOccurrences() > 0) 238 UP.AllowRemainder = UnrollAllowRemainder; 239 if (UnrollRuntime.getNumOccurrences() > 0) 240 UP.Runtime = UnrollRuntime; 241 if (UnrollMaxUpperBound == 0) 242 UP.UpperBound = false; 243 if (UnrollAllowPeeling.getNumOccurrences() > 0) 244 UP.AllowPeeling = UnrollAllowPeeling; 245 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 246 UP.UnrollRemainder = UnrollUnrollRemainder; 247 248 // Apply user values provided by argument 249 if (UserThreshold.hasValue()) { 250 UP.Threshold = *UserThreshold; 251 UP.PartialThreshold = *UserThreshold; 252 } 253 if (UserCount.hasValue()) 254 UP.Count = *UserCount; 255 if (UserAllowPartial.hasValue()) 256 UP.Partial = *UserAllowPartial; 257 if (UserRuntime.hasValue()) 258 UP.Runtime = *UserRuntime; 259 if (UserUpperBound.hasValue()) 260 UP.UpperBound = *UserUpperBound; 261 if (UserAllowPeeling.hasValue()) 262 UP.AllowPeeling = *UserAllowPeeling; 263 if (UserAllowProfileBasedPeeling.hasValue()) 264 UP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 265 if (UserFullUnrollMaxCount.hasValue()) 266 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 267 268 return UP; 269 } 270 271 namespace { 272 273 /// A struct to densely store the state of an instruction after unrolling at 274 /// each iteration. 275 /// 276 /// This is designed to work like a tuple of <Instruction *, int> for the 277 /// purposes of hashing and lookup, but to be able to associate two boolean 278 /// states with each key. 279 struct UnrolledInstState { 280 Instruction *I; 281 int Iteration : 30; 282 unsigned IsFree : 1; 283 unsigned IsCounted : 1; 284 }; 285 286 /// Hashing and equality testing for a set of the instruction states. 287 struct UnrolledInstStateKeyInfo { 288 using PtrInfo = DenseMapInfo<Instruction *>; 289 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 290 291 static inline UnrolledInstState getEmptyKey() { 292 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 293 } 294 295 static inline UnrolledInstState getTombstoneKey() { 296 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 297 } 298 299 static inline unsigned getHashValue(const UnrolledInstState &S) { 300 return PairInfo::getHashValue({S.I, S.Iteration}); 301 } 302 303 static inline bool isEqual(const UnrolledInstState &LHS, 304 const UnrolledInstState &RHS) { 305 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 306 } 307 }; 308 309 struct EstimatedUnrollCost { 310 /// The estimated cost after unrolling. 311 unsigned UnrolledCost; 312 313 /// The estimated dynamic cost of executing the instructions in the 314 /// rolled form. 315 unsigned RolledDynamicCost; 316 }; 317 318 } // end anonymous namespace 319 320 /// Figure out if the loop is worth full unrolling. 321 /// 322 /// Complete loop unrolling can make some loads constant, and we need to know 323 /// if that would expose any further optimization opportunities. This routine 324 /// estimates this optimization. It computes cost of unrolled loop 325 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 326 /// dynamic cost we mean that we won't count costs of blocks that are known not 327 /// to be executed (i.e. if we have a branch in the loop and we know that at the 328 /// given iteration its condition would be resolved to true, we won't add up the 329 /// cost of the 'false'-block). 330 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 331 /// the analysis failed (no benefits expected from the unrolling, or the loop is 332 /// too big to analyze), the returned value is None. 333 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 334 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 335 const SmallPtrSetImpl<const Value *> &EphValues, 336 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 337 // We want to be able to scale offsets by the trip count and add more offsets 338 // to them without checking for overflows, and we already don't want to 339 // analyze *massive* trip counts, so we force the max to be reasonably small. 340 assert(UnrollMaxIterationsCountToAnalyze < 341 (unsigned)(std::numeric_limits<int>::max() / 2) && 342 "The unroll iterations max is too large!"); 343 344 // Only analyze inner loops. We can't properly estimate cost of nested loops 345 // and we won't visit inner loops again anyway. 346 if (!L->empty()) 347 return None; 348 349 // Don't simulate loops with a big or unknown tripcount 350 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 351 TripCount > UnrollMaxIterationsCountToAnalyze) 352 return None; 353 354 SmallSetVector<BasicBlock *, 16> BBWorklist; 355 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 356 DenseMap<Value *, Constant *> SimplifiedValues; 357 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 358 359 // The estimated cost of the unrolled form of the loop. We try to estimate 360 // this by simplifying as much as we can while computing the estimate. 361 unsigned UnrolledCost = 0; 362 363 // We also track the estimated dynamic (that is, actually executed) cost in 364 // the rolled form. This helps identify cases when the savings from unrolling 365 // aren't just exposing dead control flows, but actual reduced dynamic 366 // instructions due to the simplifications which we expect to occur after 367 // unrolling. 368 unsigned RolledDynamicCost = 0; 369 370 // We track the simplification of each instruction in each iteration. We use 371 // this to recursively merge costs into the unrolled cost on-demand so that 372 // we don't count the cost of any dead code. This is essentially a map from 373 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 374 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 375 376 // A small worklist used to accumulate cost of instructions from each 377 // observable and reached root in the loop. 378 SmallVector<Instruction *, 16> CostWorklist; 379 380 // PHI-used worklist used between iterations while accumulating cost. 381 SmallVector<Instruction *, 4> PHIUsedList; 382 383 // Helper function to accumulate cost for instructions in the loop. 384 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 385 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 386 assert(CostWorklist.empty() && "Must start with an empty cost list"); 387 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 388 CostWorklist.push_back(&RootI); 389 for (;; --Iteration) { 390 do { 391 Instruction *I = CostWorklist.pop_back_val(); 392 393 // InstCostMap only uses I and Iteration as a key, the other two values 394 // don't matter here. 395 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 396 if (CostIter == InstCostMap.end()) 397 // If an input to a PHI node comes from a dead path through the loop 398 // we may have no cost data for it here. What that actually means is 399 // that it is free. 400 continue; 401 auto &Cost = *CostIter; 402 if (Cost.IsCounted) 403 // Already counted this instruction. 404 continue; 405 406 // Mark that we are counting the cost of this instruction now. 407 Cost.IsCounted = true; 408 409 // If this is a PHI node in the loop header, just add it to the PHI set. 410 if (auto *PhiI = dyn_cast<PHINode>(I)) 411 if (PhiI->getParent() == L->getHeader()) { 412 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 413 "inherently simplify during unrolling."); 414 if (Iteration == 0) 415 continue; 416 417 // Push the incoming value from the backedge into the PHI used list 418 // if it is an in-loop instruction. We'll use this to populate the 419 // cost worklist for the next iteration (as we count backwards). 420 if (auto *OpI = dyn_cast<Instruction>( 421 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 422 if (L->contains(OpI)) 423 PHIUsedList.push_back(OpI); 424 continue; 425 } 426 427 // First accumulate the cost of this instruction. 428 if (!Cost.IsFree) { 429 UnrolledCost += TTI.getUserCost(I); 430 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 431 << Iteration << "): "); 432 LLVM_DEBUG(I->dump()); 433 } 434 435 // We must count the cost of every operand which is not free, 436 // recursively. If we reach a loop PHI node, simply add it to the set 437 // to be considered on the next iteration (backwards!). 438 for (Value *Op : I->operands()) { 439 // Check whether this operand is free due to being a constant or 440 // outside the loop. 441 auto *OpI = dyn_cast<Instruction>(Op); 442 if (!OpI || !L->contains(OpI)) 443 continue; 444 445 // Otherwise accumulate its cost. 446 CostWorklist.push_back(OpI); 447 } 448 } while (!CostWorklist.empty()); 449 450 if (PHIUsedList.empty()) 451 // We've exhausted the search. 452 break; 453 454 assert(Iteration > 0 && 455 "Cannot track PHI-used values past the first iteration!"); 456 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 457 PHIUsedList.clear(); 458 } 459 }; 460 461 // Ensure that we don't violate the loop structure invariants relied on by 462 // this analysis. 463 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 464 assert(L->isLCSSAForm(DT) && 465 "Must have loops in LCSSA form to track live-out values."); 466 467 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 468 469 // Simulate execution of each iteration of the loop counting instructions, 470 // which would be simplified. 471 // Since the same load will take different values on different iterations, 472 // we literally have to go through all loop's iterations. 473 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 474 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 475 476 // Prepare for the iteration by collecting any simplified entry or backedge 477 // inputs. 478 for (Instruction &I : *L->getHeader()) { 479 auto *PHI = dyn_cast<PHINode>(&I); 480 if (!PHI) 481 break; 482 483 // The loop header PHI nodes must have exactly two input: one from the 484 // loop preheader and one from the loop latch. 485 assert( 486 PHI->getNumIncomingValues() == 2 && 487 "Must have an incoming value only for the preheader and the latch."); 488 489 Value *V = PHI->getIncomingValueForBlock( 490 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 491 Constant *C = dyn_cast<Constant>(V); 492 if (Iteration != 0 && !C) 493 C = SimplifiedValues.lookup(V); 494 if (C) 495 SimplifiedInputValues.push_back({PHI, C}); 496 } 497 498 // Now clear and re-populate the map for the next iteration. 499 SimplifiedValues.clear(); 500 while (!SimplifiedInputValues.empty()) 501 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 502 503 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 504 505 BBWorklist.clear(); 506 BBWorklist.insert(L->getHeader()); 507 // Note that we *must not* cache the size, this loop grows the worklist. 508 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 509 BasicBlock *BB = BBWorklist[Idx]; 510 511 // Visit all instructions in the given basic block and try to simplify 512 // it. We don't change the actual IR, just count optimization 513 // opportunities. 514 for (Instruction &I : *BB) { 515 // These won't get into the final code - don't even try calculating the 516 // cost for them. 517 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 518 continue; 519 520 // Track this instruction's expected baseline cost when executing the 521 // rolled loop form. 522 RolledDynamicCost += TTI.getUserCost(&I); 523 524 // Visit the instruction to analyze its loop cost after unrolling, 525 // and if the visitor returns true, mark the instruction as free after 526 // unrolling and continue. 527 bool IsFree = Analyzer.visit(I); 528 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 529 (unsigned)IsFree, 530 /*IsCounted*/ false}).second; 531 (void)Inserted; 532 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 533 534 if (IsFree) 535 continue; 536 537 // Can't properly model a cost of a call. 538 // FIXME: With a proper cost model we should be able to do it. 539 if (auto *CI = dyn_cast<CallInst>(&I)) { 540 const Function *Callee = CI->getCalledFunction(); 541 if (!Callee || TTI.isLoweredToCall(Callee)) { 542 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 543 return None; 544 } 545 } 546 547 // If the instruction might have a side-effect recursively account for 548 // the cost of it and all the instructions leading up to it. 549 if (I.mayHaveSideEffects()) 550 AddCostRecursively(I, Iteration); 551 552 // If unrolled body turns out to be too big, bail out. 553 if (UnrolledCost > MaxUnrolledLoopSize) { 554 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 555 << " UnrolledCost: " << UnrolledCost 556 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 557 << "\n"); 558 return None; 559 } 560 } 561 562 Instruction *TI = BB->getTerminator(); 563 564 // Add in the live successors by first checking whether we have terminator 565 // that may be simplified based on the values simplified by this call. 566 BasicBlock *KnownSucc = nullptr; 567 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 568 if (BI->isConditional()) { 569 if (Constant *SimpleCond = 570 SimplifiedValues.lookup(BI->getCondition())) { 571 // Just take the first successor if condition is undef 572 if (isa<UndefValue>(SimpleCond)) 573 KnownSucc = BI->getSuccessor(0); 574 else if (ConstantInt *SimpleCondVal = 575 dyn_cast<ConstantInt>(SimpleCond)) 576 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 577 } 578 } 579 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 580 if (Constant *SimpleCond = 581 SimplifiedValues.lookup(SI->getCondition())) { 582 // Just take the first successor if condition is undef 583 if (isa<UndefValue>(SimpleCond)) 584 KnownSucc = SI->getSuccessor(0); 585 else if (ConstantInt *SimpleCondVal = 586 dyn_cast<ConstantInt>(SimpleCond)) 587 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 588 } 589 } 590 if (KnownSucc) { 591 if (L->contains(KnownSucc)) 592 BBWorklist.insert(KnownSucc); 593 else 594 ExitWorklist.insert({BB, KnownSucc}); 595 continue; 596 } 597 598 // Add BB's successors to the worklist. 599 for (BasicBlock *Succ : successors(BB)) 600 if (L->contains(Succ)) 601 BBWorklist.insert(Succ); 602 else 603 ExitWorklist.insert({BB, Succ}); 604 AddCostRecursively(*TI, Iteration); 605 } 606 607 // If we found no optimization opportunities on the first iteration, we 608 // won't find them on later ones too. 609 if (UnrolledCost == RolledDynamicCost) { 610 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 611 << " UnrolledCost: " << UnrolledCost << "\n"); 612 return None; 613 } 614 } 615 616 while (!ExitWorklist.empty()) { 617 BasicBlock *ExitingBB, *ExitBB; 618 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 619 620 for (Instruction &I : *ExitBB) { 621 auto *PN = dyn_cast<PHINode>(&I); 622 if (!PN) 623 break; 624 625 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 626 if (auto *OpI = dyn_cast<Instruction>(Op)) 627 if (L->contains(OpI)) 628 AddCostRecursively(*OpI, TripCount - 1); 629 } 630 } 631 632 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 633 << "UnrolledCost: " << UnrolledCost << ", " 634 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 635 return {{UnrolledCost, RolledDynamicCost}}; 636 } 637 638 /// ApproximateLoopSize - Approximate the size of the loop. 639 unsigned llvm::ApproximateLoopSize( 640 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 641 const TargetTransformInfo &TTI, 642 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 643 CodeMetrics Metrics; 644 for (BasicBlock *BB : L->blocks()) 645 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 646 NumCalls = Metrics.NumInlineCandidates; 647 NotDuplicatable = Metrics.notDuplicatable; 648 Convergent = Metrics.convergent; 649 650 unsigned LoopSize = Metrics.NumInsts; 651 652 // Don't allow an estimate of size zero. This would allows unrolling of loops 653 // with huge iteration counts, which is a compile time problem even if it's 654 // not a problem for code quality. Also, the code using this size may assume 655 // that each loop has at least three instructions (likely a conditional 656 // branch, a comparison feeding that branch, and some kind of loop increment 657 // feeding that comparison instruction). 658 LoopSize = std::max(LoopSize, BEInsns + 1); 659 660 return LoopSize; 661 } 662 663 // Returns the loop hint metadata node with the given name (for example, 664 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 665 // returned. 666 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 667 if (MDNode *LoopID = L->getLoopID()) 668 return GetUnrollMetadata(LoopID, Name); 669 return nullptr; 670 } 671 672 // Returns true if the loop has an unroll(full) pragma. 673 static bool HasUnrollFullPragma(const Loop *L) { 674 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 675 } 676 677 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 678 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 679 static bool HasUnrollEnablePragma(const Loop *L) { 680 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 681 } 682 683 // Returns true if the loop has an runtime unroll(disable) pragma. 684 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 685 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 686 } 687 688 // If loop has an unroll_count pragma return the (necessarily 689 // positive) value from the pragma. Otherwise return 0. 690 static unsigned UnrollCountPragmaValue(const Loop *L) { 691 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 692 if (MD) { 693 assert(MD->getNumOperands() == 2 && 694 "Unroll count hint metadata should have two operands."); 695 unsigned Count = 696 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 697 assert(Count >= 1 && "Unroll count must be positive."); 698 return Count; 699 } 700 return 0; 701 } 702 703 // Computes the boosting factor for complete unrolling. 704 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 705 // be beneficial to fully unroll the loop even if unrolledcost is large. We 706 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 707 // the unroll threshold. 708 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 709 unsigned MaxPercentThresholdBoost) { 710 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 711 return 100; 712 else if (Cost.UnrolledCost != 0) 713 // The boosting factor is RolledDynamicCost / UnrolledCost 714 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 715 MaxPercentThresholdBoost); 716 else 717 return MaxPercentThresholdBoost; 718 } 719 720 // Returns loop size estimation for unrolled loop. 721 static uint64_t getUnrolledLoopSize( 722 unsigned LoopSize, 723 TargetTransformInfo::UnrollingPreferences &UP) { 724 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 725 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 726 } 727 728 // Returns true if unroll count was set explicitly. 729 // Calculates unroll count and writes it to UP.Count. 730 // Unless IgnoreUser is true, will also use metadata and command-line options 731 // that are specific to to the LoopUnroll pass (which, for instance, are 732 // irrelevant for the LoopUnrollAndJam pass). 733 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 734 // many LoopUnroll-specific options. The shared functionality should be 735 // refactored into it own function. 736 bool llvm::computeUnrollCount( 737 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 738 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 739 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 740 bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize, 741 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 742 743 // Check for explicit Count. 744 // 1st priority is unroll count set by "unroll-count" option. 745 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 746 if (UserUnrollCount) { 747 UP.Count = UnrollCount; 748 UP.AllowExpensiveTripCount = true; 749 UP.Force = true; 750 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 751 return true; 752 } 753 754 // 2nd priority is unroll count set by pragma. 755 unsigned PragmaCount = UnrollCountPragmaValue(L); 756 if (PragmaCount > 0) { 757 UP.Count = PragmaCount; 758 UP.Runtime = true; 759 UP.AllowExpensiveTripCount = true; 760 UP.Force = true; 761 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 762 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 763 return true; 764 } 765 bool PragmaFullUnroll = HasUnrollFullPragma(L); 766 if (PragmaFullUnroll && TripCount != 0) { 767 UP.Count = TripCount; 768 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 769 return false; 770 } 771 772 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 773 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 774 PragmaEnableUnroll || UserUnrollCount; 775 776 if (ExplicitUnroll && TripCount != 0) { 777 // If the loop has an unrolling pragma, we want to be more aggressive with 778 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 779 // value which is larger than the default limits. 780 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 781 UP.PartialThreshold = 782 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 783 } 784 785 // 3rd priority is full unroll count. 786 // Full unroll makes sense only when TripCount or its upper bound could be 787 // statically calculated. 788 // Also we need to check if we exceed FullUnrollMaxCount. 789 // If using the upper bound to unroll, TripMultiple should be set to 1 because 790 // we do not know when loop may exit. 791 792 // We can unroll by the upper bound amount if it's generally allowed or if 793 // we know that the loop is executed either the upper bound or zero times. 794 // (MaxOrZero unrolling keeps only the first loop test, so the number of 795 // loop tests remains the same compared to the non-unrolled version, whereas 796 // the generic upper bound unrolling keeps all but the last loop test so the 797 // number of loop tests goes up which may end up being worse on targets with 798 // constrained branch predictor resources so is controlled by an option.) 799 // In addition we only unroll small upper bounds. 800 unsigned FullUnrollMaxTripCount = MaxTripCount; 801 if (!(UP.UpperBound || MaxOrZero) || 802 FullUnrollMaxTripCount > UnrollMaxUpperBound) 803 FullUnrollMaxTripCount = 0; 804 805 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only 806 // compute the former when the latter is zero. 807 unsigned ExactTripCount = TripCount; 808 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) && 809 "ExtractTripCount and UnrollByMaxCount cannot both be non zero."); 810 811 unsigned FullUnrollTripCount = 812 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount; 813 UP.Count = FullUnrollTripCount; 814 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 815 // When computing the unrolled size, note that BEInsns are not replicated 816 // like the rest of the loop body. 817 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 818 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 819 TripCount = FullUnrollTripCount; 820 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 821 return ExplicitUnroll; 822 } else { 823 // The loop isn't that small, but we still can fully unroll it if that 824 // helps to remove a significant number of instructions. 825 // To check that, run additional analysis on the loop. 826 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 827 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 828 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 829 unsigned Boost = 830 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 831 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 832 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount); 833 TripCount = FullUnrollTripCount; 834 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 835 return ExplicitUnroll; 836 } 837 } 838 } 839 } 840 841 // 4th priority is loop peeling. 842 computePeelCount(L, LoopSize, UP, TripCount, SE); 843 if (UP.PeelCount) { 844 UP.Runtime = false; 845 UP.Count = 1; 846 return ExplicitUnroll; 847 } 848 849 // 5th priority is partial unrolling. 850 // Try partial unroll only when TripCount could be statically calculated. 851 if (TripCount) { 852 UP.Partial |= ExplicitUnroll; 853 if (!UP.Partial) { 854 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 855 << "-unroll-allow-partial not given\n"); 856 UP.Count = 0; 857 return false; 858 } 859 if (UP.Count == 0) 860 UP.Count = TripCount; 861 if (UP.PartialThreshold != NoThreshold) { 862 // Reduce unroll count to be modulo of TripCount for partial unrolling. 863 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 864 UP.Count = 865 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 866 (LoopSize - UP.BEInsns); 867 if (UP.Count > UP.MaxCount) 868 UP.Count = UP.MaxCount; 869 while (UP.Count != 0 && TripCount % UP.Count != 0) 870 UP.Count--; 871 if (UP.AllowRemainder && UP.Count <= 1) { 872 // If there is no Count that is modulo of TripCount, set Count to 873 // largest power-of-two factor that satisfies the threshold limit. 874 // As we'll create fixup loop, do the type of unrolling only if 875 // remainder loop is allowed. 876 UP.Count = UP.DefaultUnrollRuntimeCount; 877 while (UP.Count != 0 && 878 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 879 UP.Count >>= 1; 880 } 881 if (UP.Count < 2) { 882 if (PragmaEnableUnroll) 883 ORE->emit([&]() { 884 return OptimizationRemarkMissed(DEBUG_TYPE, 885 "UnrollAsDirectedTooLarge", 886 L->getStartLoc(), L->getHeader()) 887 << "Unable to unroll loop as directed by unroll(enable) " 888 "pragma " 889 "because unrolled size is too large."; 890 }); 891 UP.Count = 0; 892 } 893 } else { 894 UP.Count = TripCount; 895 } 896 if (UP.Count > UP.MaxCount) 897 UP.Count = UP.MaxCount; 898 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 899 UP.Count != TripCount) 900 ORE->emit([&]() { 901 return OptimizationRemarkMissed(DEBUG_TYPE, 902 "FullUnrollAsDirectedTooLarge", 903 L->getStartLoc(), L->getHeader()) 904 << "Unable to fully unroll loop as directed by unroll pragma " 905 "because " 906 "unrolled size is too large."; 907 }); 908 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 909 << "\n"); 910 return ExplicitUnroll; 911 } 912 assert(TripCount == 0 && 913 "All cases when TripCount is constant should be covered here."); 914 if (PragmaFullUnroll) 915 ORE->emit([&]() { 916 return OptimizationRemarkMissed( 917 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 918 L->getStartLoc(), L->getHeader()) 919 << "Unable to fully unroll loop as directed by unroll(full) " 920 "pragma " 921 "because loop has a runtime trip count."; 922 }); 923 924 // 6th priority is runtime unrolling. 925 // Don't unroll a runtime trip count loop when it is disabled. 926 if (HasRuntimeUnrollDisablePragma(L)) { 927 UP.Count = 0; 928 return false; 929 } 930 931 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 932 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 933 UP.Count = 0; 934 return false; 935 } 936 937 // Check if the runtime trip count is too small when profile is available. 938 if (L->getHeader()->getParent()->hasProfileData()) { 939 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 940 if (*ProfileTripCount < FlatLoopTripCountThreshold) 941 return false; 942 else 943 UP.AllowExpensiveTripCount = true; 944 } 945 } 946 947 // Reduce count based on the type of unrolling and the threshold values. 948 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 949 if (!UP.Runtime) { 950 LLVM_DEBUG( 951 dbgs() << " will not try to unroll loop with runtime trip count " 952 << "-unroll-runtime not given\n"); 953 UP.Count = 0; 954 return false; 955 } 956 if (UP.Count == 0) 957 UP.Count = UP.DefaultUnrollRuntimeCount; 958 959 // Reduce unroll count to be the largest power-of-two factor of 960 // the original count which satisfies the threshold limit. 961 while (UP.Count != 0 && 962 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 963 UP.Count >>= 1; 964 965 #ifndef NDEBUG 966 unsigned OrigCount = UP.Count; 967 #endif 968 969 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 970 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 971 UP.Count >>= 1; 972 LLVM_DEBUG( 973 dbgs() << "Remainder loop is restricted (that could architecture " 974 "specific or because the loop contains a convergent " 975 "instruction), so unroll count must divide the trip " 976 "multiple, " 977 << TripMultiple << ". Reducing unroll count from " << OrigCount 978 << " to " << UP.Count << ".\n"); 979 980 using namespace ore; 981 982 if (PragmaCount > 0 && !UP.AllowRemainder) 983 ORE->emit([&]() { 984 return OptimizationRemarkMissed(DEBUG_TYPE, 985 "DifferentUnrollCountFromDirected", 986 L->getStartLoc(), L->getHeader()) 987 << "Unable to unroll loop the number of times directed by " 988 "unroll_count pragma because remainder loop is restricted " 989 "(that could architecture specific or because the loop " 990 "contains a convergent instruction) and so must have an " 991 "unroll " 992 "count that divides the loop trip multiple of " 993 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 994 << NV("UnrollCount", UP.Count) << " time(s)."; 995 }); 996 } 997 998 if (UP.Count > UP.MaxCount) 999 UP.Count = UP.MaxCount; 1000 1001 if (MaxTripCount && UP.Count > MaxTripCount) 1002 UP.Count = MaxTripCount; 1003 1004 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1005 << "\n"); 1006 if (UP.Count < 2) 1007 UP.Count = 0; 1008 return ExplicitUnroll; 1009 } 1010 1011 static LoopUnrollResult tryToUnrollLoop( 1012 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1013 const TargetTransformInfo &TTI, AssumptionCache &AC, 1014 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1015 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1016 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1017 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1018 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1019 Optional<bool> ProvidedAllowPeeling, 1020 Optional<bool> ProvidedAllowProfileBasedPeeling, 1021 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1022 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1023 << L->getHeader()->getParent()->getName() << "] Loop %" 1024 << L->getHeader()->getName() << "\n"); 1025 TransformationMode TM = hasUnrollTransformation(L); 1026 if (TM & TM_Disable) 1027 return LoopUnrollResult::Unmodified; 1028 if (!L->isLoopSimplifyForm()) { 1029 LLVM_DEBUG( 1030 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1031 return LoopUnrollResult::Unmodified; 1032 } 1033 1034 // When automtatic unrolling is disabled, do not unroll unless overridden for 1035 // this loop. 1036 if (OnlyWhenForced && !(TM & TM_Enable)) 1037 return LoopUnrollResult::Unmodified; 1038 1039 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1040 unsigned NumInlineCandidates; 1041 bool NotDuplicatable; 1042 bool Convergent; 1043 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1044 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1045 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1046 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1047 ProvidedFullUnrollMaxCount); 1048 1049 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1050 // as threshold later on. 1051 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1052 !OptForSize) 1053 return LoopUnrollResult::Unmodified; 1054 1055 SmallPtrSet<const Value *, 32> EphValues; 1056 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1057 1058 unsigned LoopSize = 1059 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1060 TTI, EphValues, UP.BEInsns); 1061 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1062 if (NotDuplicatable) { 1063 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1064 << " instructions.\n"); 1065 return LoopUnrollResult::Unmodified; 1066 } 1067 1068 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1069 // later), to (fully) unroll loops, if it does not increase code size. 1070 if (OptForSize) 1071 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1072 1073 if (NumInlineCandidates != 0) { 1074 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1075 return LoopUnrollResult::Unmodified; 1076 } 1077 1078 // Find trip count and trip multiple if count is not available 1079 unsigned TripCount = 0; 1080 unsigned TripMultiple = 1; 1081 // If there are multiple exiting blocks but one of them is the latch, use the 1082 // latch for the trip count estimation. Otherwise insist on a single exiting 1083 // block for the trip count estimation. 1084 BasicBlock *ExitingBlock = L->getLoopLatch(); 1085 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1086 ExitingBlock = L->getExitingBlock(); 1087 if (ExitingBlock) { 1088 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1089 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1090 } 1091 1092 // If the loop contains a convergent operation, the prelude we'd add 1093 // to do the first few instructions before we hit the unrolled loop 1094 // is unsafe -- it adds a control-flow dependency to the convergent 1095 // operation. Therefore restrict remainder loop (try unrollig without). 1096 // 1097 // TODO: This is quite conservative. In practice, convergent_op() 1098 // is likely to be called unconditionally in the loop. In this 1099 // case, the program would be ill-formed (on most architectures) 1100 // unless n were the same on all threads in a thread group. 1101 // Assuming n is the same on all threads, any kind of unrolling is 1102 // safe. But currently llvm's notion of convergence isn't powerful 1103 // enough to express this. 1104 if (Convergent) 1105 UP.AllowRemainder = false; 1106 1107 // Try to find the trip count upper bound if we cannot find the exact trip 1108 // count. 1109 unsigned MaxTripCount = 0; 1110 bool MaxOrZero = false; 1111 if (!TripCount) { 1112 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1113 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1114 } 1115 1116 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1117 // fully unroll the loop. 1118 bool UseUpperBound = false; 1119 bool IsCountSetExplicitly = computeUnrollCount( 1120 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1121 TripMultiple, LoopSize, UP, UseUpperBound); 1122 if (!UP.Count) 1123 return LoopUnrollResult::Unmodified; 1124 // Unroll factor (Count) must be less or equal to TripCount. 1125 if (TripCount && UP.Count > TripCount) 1126 UP.Count = TripCount; 1127 1128 // Save loop properties before it is transformed. 1129 MDNode *OrigLoopID = L->getLoopID(); 1130 1131 // Unroll the loop. 1132 Loop *RemainderLoop = nullptr; 1133 LoopUnrollResult UnrollResult = UnrollLoop( 1134 L, 1135 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1136 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1137 ForgetAllSCEV}, 1138 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1139 if (UnrollResult == LoopUnrollResult::Unmodified) 1140 return LoopUnrollResult::Unmodified; 1141 1142 if (RemainderLoop) { 1143 Optional<MDNode *> RemainderLoopID = 1144 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1145 LLVMLoopUnrollFollowupRemainder}); 1146 if (RemainderLoopID.hasValue()) 1147 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1148 } 1149 1150 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1151 Optional<MDNode *> NewLoopID = 1152 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1153 LLVMLoopUnrollFollowupUnrolled}); 1154 if (NewLoopID.hasValue()) { 1155 L->setLoopID(NewLoopID.getValue()); 1156 1157 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1158 // explicitly. 1159 return UnrollResult; 1160 } 1161 } 1162 1163 // If loop has an unroll count pragma or unrolled by explicitly set count 1164 // mark loop as unrolled to prevent unrolling beyond that requested. 1165 // If the loop was peeled, we already "used up" the profile information 1166 // we had, so we don't want to unroll or peel again. 1167 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1168 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1169 L->setLoopAlreadyUnrolled(); 1170 1171 return UnrollResult; 1172 } 1173 1174 namespace { 1175 1176 class LoopUnroll : public LoopPass { 1177 public: 1178 static char ID; // Pass ID, replacement for typeid 1179 1180 int OptLevel; 1181 1182 /// If false, use a cost model to determine whether unrolling of a loop is 1183 /// profitable. If true, only loops that explicitly request unrolling via 1184 /// metadata are considered. All other loops are skipped. 1185 bool OnlyWhenForced; 1186 1187 /// If false, when SCEV is invalidated, only forget everything in the 1188 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1189 /// Otherwise, forgetAllLoops and rebuild when needed next. 1190 bool ForgetAllSCEV; 1191 1192 Optional<unsigned> ProvidedCount; 1193 Optional<unsigned> ProvidedThreshold; 1194 Optional<bool> ProvidedAllowPartial; 1195 Optional<bool> ProvidedRuntime; 1196 Optional<bool> ProvidedUpperBound; 1197 Optional<bool> ProvidedAllowPeeling; 1198 Optional<bool> ProvidedAllowProfileBasedPeeling; 1199 Optional<unsigned> ProvidedFullUnrollMaxCount; 1200 1201 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1202 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1203 Optional<unsigned> Count = None, 1204 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1205 Optional<bool> UpperBound = None, 1206 Optional<bool> AllowPeeling = None, 1207 Optional<bool> AllowProfileBasedPeeling = None, 1208 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1209 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1210 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1211 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1212 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1213 ProvidedAllowPeeling(AllowPeeling), 1214 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1215 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1216 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1217 } 1218 1219 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1220 if (skipLoop(L)) 1221 return false; 1222 1223 Function &F = *L->getHeader()->getParent(); 1224 1225 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1226 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1227 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1228 const TargetTransformInfo &TTI = 1229 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1230 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1231 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1232 // pass. Function analyses need to be preserved across loop transformations 1233 // but ORE cannot be preserved (see comment before the pass definition). 1234 OptimizationRemarkEmitter ORE(&F); 1235 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1236 1237 LoopUnrollResult Result = tryToUnrollLoop( 1238 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1239 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1240 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1241 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1242 ProvidedFullUnrollMaxCount); 1243 1244 if (Result == LoopUnrollResult::FullyUnrolled) 1245 LPM.markLoopAsDeleted(*L); 1246 1247 return Result != LoopUnrollResult::Unmodified; 1248 } 1249 1250 /// This transformation requires natural loop information & requires that 1251 /// loop preheaders be inserted into the CFG... 1252 void getAnalysisUsage(AnalysisUsage &AU) const override { 1253 AU.addRequired<AssumptionCacheTracker>(); 1254 AU.addRequired<TargetTransformInfoWrapperPass>(); 1255 // FIXME: Loop passes are required to preserve domtree, and for now we just 1256 // recreate dom info if anything gets unrolled. 1257 getLoopAnalysisUsage(AU); 1258 } 1259 }; 1260 1261 } // end anonymous namespace 1262 1263 char LoopUnroll::ID = 0; 1264 1265 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1266 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1267 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1268 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1269 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1270 1271 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1272 bool ForgetAllSCEV, int Threshold, int Count, 1273 int AllowPartial, int Runtime, int UpperBound, 1274 int AllowPeeling) { 1275 // TODO: It would make more sense for this function to take the optionals 1276 // directly, but that's dangerous since it would silently break out of tree 1277 // callers. 1278 return new LoopUnroll( 1279 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1280 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1281 Count == -1 ? None : Optional<unsigned>(Count), 1282 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1283 Runtime == -1 ? None : Optional<bool>(Runtime), 1284 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1285 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1286 } 1287 1288 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1289 bool ForgetAllSCEV) { 1290 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1291 0, 0, 0, 0); 1292 } 1293 1294 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1295 LoopStandardAnalysisResults &AR, 1296 LPMUpdater &Updater) { 1297 const auto &FAM = 1298 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1299 Function *F = L.getHeader()->getParent(); 1300 1301 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1302 // FIXME: This should probably be optional rather than required. 1303 if (!ORE) 1304 report_fatal_error( 1305 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1306 "cached at a higher level"); 1307 1308 // Keep track of the previous loop structure so we can identify new loops 1309 // created by unrolling. 1310 Loop *ParentL = L.getParentLoop(); 1311 SmallPtrSet<Loop *, 4> OldLoops; 1312 if (ParentL) 1313 OldLoops.insert(ParentL->begin(), ParentL->end()); 1314 else 1315 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1316 1317 std::string LoopName = L.getName(); 1318 1319 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1320 /*BFI*/ nullptr, /*PSI*/ nullptr, 1321 /*PreserveLCSSA*/ true, OptLevel, 1322 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1323 /*Threshold*/ None, /*AllowPartial*/ false, 1324 /*Runtime*/ false, /*UpperBound*/ false, 1325 /*AllowPeeling*/ false, 1326 /*AllowProfileBasedPeeling*/ false, 1327 /*FullUnrollMaxCount*/ None) != 1328 LoopUnrollResult::Unmodified; 1329 if (!Changed) 1330 return PreservedAnalyses::all(); 1331 1332 // The parent must not be damaged by unrolling! 1333 #ifndef NDEBUG 1334 if (ParentL) 1335 ParentL->verifyLoop(); 1336 #endif 1337 1338 // Unrolling can do several things to introduce new loops into a loop nest: 1339 // - Full unrolling clones child loops within the current loop but then 1340 // removes the current loop making all of the children appear to be new 1341 // sibling loops. 1342 // 1343 // When a new loop appears as a sibling loop after fully unrolling, 1344 // its nesting structure has fundamentally changed and we want to revisit 1345 // it to reflect that. 1346 // 1347 // When unrolling has removed the current loop, we need to tell the 1348 // infrastructure that it is gone. 1349 // 1350 // Finally, we support a debugging/testing mode where we revisit child loops 1351 // as well. These are not expected to require further optimizations as either 1352 // they or the loop they were cloned from have been directly visited already. 1353 // But the debugging mode allows us to check this assumption. 1354 bool IsCurrentLoopValid = false; 1355 SmallVector<Loop *, 4> SibLoops; 1356 if (ParentL) 1357 SibLoops.append(ParentL->begin(), ParentL->end()); 1358 else 1359 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1360 erase_if(SibLoops, [&](Loop *SibLoop) { 1361 if (SibLoop == &L) { 1362 IsCurrentLoopValid = true; 1363 return true; 1364 } 1365 1366 // Otherwise erase the loop from the list if it was in the old loops. 1367 return OldLoops.count(SibLoop) != 0; 1368 }); 1369 Updater.addSiblingLoops(SibLoops); 1370 1371 if (!IsCurrentLoopValid) { 1372 Updater.markLoopAsDeleted(L, LoopName); 1373 } else { 1374 // We can only walk child loops if the current loop remained valid. 1375 if (UnrollRevisitChildLoops) { 1376 // Walk *all* of the child loops. 1377 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1378 Updater.addChildLoops(ChildLoops); 1379 } 1380 } 1381 1382 return getLoopPassPreservedAnalyses(); 1383 } 1384 1385 template <typename RangeT> 1386 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1387 SmallVector<Loop *, 8> Worklist; 1388 // We use an internal worklist to build up the preorder traversal without 1389 // recursion. 1390 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1391 1392 for (Loop *RootL : Loops) { 1393 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1394 assert(PreOrderWorklist.empty() && 1395 "Must start with an empty preorder walk worklist."); 1396 PreOrderWorklist.push_back(RootL); 1397 do { 1398 Loop *L = PreOrderWorklist.pop_back_val(); 1399 PreOrderWorklist.append(L->begin(), L->end()); 1400 PreOrderLoops.push_back(L); 1401 } while (!PreOrderWorklist.empty()); 1402 1403 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1404 PreOrderLoops.clear(); 1405 } 1406 return Worklist; 1407 } 1408 1409 PreservedAnalyses LoopUnrollPass::run(Function &F, 1410 FunctionAnalysisManager &AM) { 1411 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1412 auto &LI = AM.getResult<LoopAnalysis>(F); 1413 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1414 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1415 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1416 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1417 1418 LoopAnalysisManager *LAM = nullptr; 1419 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1420 LAM = &LAMProxy->getManager(); 1421 1422 const ModuleAnalysisManager &MAM = 1423 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1424 ProfileSummaryInfo *PSI = 1425 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1426 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1427 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1428 1429 bool Changed = false; 1430 1431 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1432 // Since simplification may add new inner loops, it has to run before the 1433 // legality and profitability checks. This means running the loop unroller 1434 // will simplify all loops, regardless of whether anything end up being 1435 // unrolled. 1436 for (auto &L : LI) { 1437 Changed |= 1438 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1439 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1440 } 1441 1442 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1443 1444 while (!Worklist.empty()) { 1445 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1446 // from back to front so that we work forward across the CFG, which 1447 // for unrolling is only needed to get optimization remarks emitted in 1448 // a forward order. 1449 Loop &L = *Worklist.pop_back_val(); 1450 #ifndef NDEBUG 1451 Loop *ParentL = L.getParentLoop(); 1452 #endif 1453 1454 // Check if the profile summary indicates that the profiled application 1455 // has a huge working set size, in which case we disable peeling to avoid 1456 // bloating it further. 1457 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1458 if (PSI && PSI->hasHugeWorkingSetSize()) 1459 LocalAllowPeeling = false; 1460 std::string LoopName = L.getName(); 1461 // The API here is quite complex to call and we allow to select some 1462 // flavors of unrolling during construction time (by setting UnrollOpts). 1463 LoopUnrollResult Result = tryToUnrollLoop( 1464 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1465 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1466 UnrollOpts.ForgetSCEV, /*Count*/ None, 1467 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1468 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1469 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1470 Changed |= Result != LoopUnrollResult::Unmodified; 1471 1472 // The parent must not be damaged by unrolling! 1473 #ifndef NDEBUG 1474 if (Result != LoopUnrollResult::Unmodified && ParentL) 1475 ParentL->verifyLoop(); 1476 #endif 1477 1478 // Clear any cached analysis results for L if we removed it completely. 1479 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1480 LAM->clear(L, LoopName); 1481 } 1482 1483 if (!Changed) 1484 return PreservedAnalyses::all(); 1485 1486 return getLoopPassPreservedAnalyses(); 1487 } 1488