1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/LoopPass.h" 31 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopPeel.h" 59 #include "llvm/Transforms/Utils/LoopSimplify.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-unroll" 74 75 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 76 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 77 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 78 " the current top-most loop. This is sometimes preferred to reduce" 79 " compile time.")); 80 81 static cl::opt<unsigned> 82 UnrollThreshold("unroll-threshold", cl::Hidden, 83 cl::desc("The cost threshold for loop unrolling")); 84 85 static cl::opt<unsigned> 86 UnrollOptSizeThreshold( 87 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 88 cl::desc("The cost threshold for loop unrolling when optimizing for " 89 "size")); 90 91 static cl::opt<unsigned> UnrollPartialThreshold( 92 "unroll-partial-threshold", cl::Hidden, 93 cl::desc("The cost threshold for partial loop unrolling")); 94 95 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 96 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 97 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 98 "to the threshold when aggressively unrolling a loop due to the " 99 "dynamic cost savings. If completely unrolling a loop will reduce " 100 "the total runtime from X to Y, we boost the loop unroll " 101 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 102 "X/Y). This limit avoids excessive code bloat.")); 103 104 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 105 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 106 cl::desc("Don't allow loop unrolling to simulate more than this number of" 107 "iterations when checking full unroll profitability")); 108 109 static cl::opt<unsigned> UnrollCount( 110 "unroll-count", cl::Hidden, 111 cl::desc("Use this unroll count for all loops including those with " 112 "unroll_count pragma values, for testing purposes")); 113 114 static cl::opt<unsigned> UnrollMaxCount( 115 "unroll-max-count", cl::Hidden, 116 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 117 "testing purposes")); 118 119 static cl::opt<unsigned> UnrollFullMaxCount( 120 "unroll-full-max-count", cl::Hidden, 121 cl::desc( 122 "Set the max unroll count for full unrolling, for testing purposes")); 123 124 static cl::opt<bool> 125 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 126 cl::desc("Allows loops to be partially unrolled until " 127 "-unroll-threshold loop size is reached.")); 128 129 static cl::opt<bool> UnrollAllowRemainder( 130 "unroll-allow-remainder", cl::Hidden, 131 cl::desc("Allow generation of a loop remainder (extra iterations) " 132 "when unrolling a loop.")); 133 134 static cl::opt<bool> 135 UnrollRuntime("unroll-runtime", cl::Hidden, 136 cl::desc("Unroll loops with run-time trip counts")); 137 138 static cl::opt<unsigned> UnrollMaxUpperBound( 139 "unroll-max-upperbound", cl::init(8), cl::Hidden, 140 cl::desc( 141 "The max of trip count upper bound that is considered in unrolling")); 142 143 static cl::opt<unsigned> PragmaUnrollThreshold( 144 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 145 cl::desc("Unrolled size limit for loops with an unroll(full) or " 146 "unroll_count pragma.")); 147 148 static cl::opt<unsigned> FlatLoopTripCountThreshold( 149 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 150 cl::desc("If the runtime tripcount for the loop is lower than the " 151 "threshold, the loop is considered as flat and will be less " 152 "aggressively unrolled.")); 153 154 static cl::opt<bool> UnrollUnrollRemainder( 155 "unroll-remainder", cl::Hidden, 156 cl::desc("Allow the loop remainder to be unrolled.")); 157 158 // This option isn't ever intended to be enabled, it serves to allow 159 // experiments to check the assumptions about when this kind of revisit is 160 // necessary. 161 static cl::opt<bool> UnrollRevisitChildLoops( 162 "unroll-revisit-child-loops", cl::Hidden, 163 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 164 "This shouldn't typically be needed as child loops (or their " 165 "clones) were already visited.")); 166 167 static cl::opt<unsigned> UnrollThresholdAggressive( 168 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 169 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 170 "optimizations")); 171 static cl::opt<unsigned> 172 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 173 cl::Hidden, 174 cl::desc("Default threshold (max size of unrolled " 175 "loop), used in all but O3 optimizations")); 176 177 /// A magic value for use with the Threshold parameter to indicate 178 /// that the loop unroll should be performed regardless of how much 179 /// code expansion would result. 180 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 181 182 /// Gather the various unrolling parameters based on the defaults, compiler 183 /// flags, TTI overrides and user specified parameters. 184 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 185 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 186 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 187 OptimizationRemarkEmitter &ORE, int OptLevel, 188 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 189 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 190 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 191 TargetTransformInfo::UnrollingPreferences UP; 192 193 // Set up the defaults 194 UP.Threshold = 195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 196 UP.MaxPercentThresholdBoost = 400; 197 UP.OptSizeThreshold = UnrollOptSizeThreshold; 198 UP.PartialThreshold = 150; 199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 200 UP.Count = 0; 201 UP.DefaultUnrollRuntimeCount = 8; 202 UP.MaxCount = std::numeric_limits<unsigned>::max(); 203 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 204 UP.BEInsns = 2; 205 UP.Partial = false; 206 UP.Runtime = false; 207 UP.AllowRemainder = true; 208 UP.UnrollRemainder = false; 209 UP.AllowExpensiveTripCount = false; 210 UP.Force = false; 211 UP.UpperBound = false; 212 UP.UnrollAndJam = false; 213 UP.UnrollAndJamInnerLoopThreshold = 60; 214 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 215 216 // Override with any target specific settings 217 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 218 219 // Apply size attributes 220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 221 // Let unroll hints / pragmas take precedence over PGSO. 222 (hasUnrollTransformation(L) != TM_ForcedByUser && 223 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 224 PGSOQueryType::IRPass)); 225 if (OptForSize) { 226 UP.Threshold = UP.OptSizeThreshold; 227 UP.PartialThreshold = UP.PartialOptSizeThreshold; 228 UP.MaxPercentThresholdBoost = 100; 229 } 230 231 // Apply any user values specified by cl::opt 232 if (UnrollThreshold.getNumOccurrences() > 0) 233 UP.Threshold = UnrollThreshold; 234 if (UnrollPartialThreshold.getNumOccurrences() > 0) 235 UP.PartialThreshold = UnrollPartialThreshold; 236 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 237 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 238 if (UnrollMaxCount.getNumOccurrences() > 0) 239 UP.MaxCount = UnrollMaxCount; 240 if (UnrollFullMaxCount.getNumOccurrences() > 0) 241 UP.FullUnrollMaxCount = UnrollFullMaxCount; 242 if (UnrollAllowPartial.getNumOccurrences() > 0) 243 UP.Partial = UnrollAllowPartial; 244 if (UnrollAllowRemainder.getNumOccurrences() > 0) 245 UP.AllowRemainder = UnrollAllowRemainder; 246 if (UnrollRuntime.getNumOccurrences() > 0) 247 UP.Runtime = UnrollRuntime; 248 if (UnrollMaxUpperBound == 0) 249 UP.UpperBound = false; 250 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 251 UP.UnrollRemainder = UnrollUnrollRemainder; 252 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 253 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 254 255 // Apply user values provided by argument 256 if (UserThreshold) { 257 UP.Threshold = *UserThreshold; 258 UP.PartialThreshold = *UserThreshold; 259 } 260 if (UserCount) 261 UP.Count = *UserCount; 262 if (UserAllowPartial) 263 UP.Partial = *UserAllowPartial; 264 if (UserRuntime) 265 UP.Runtime = *UserRuntime; 266 if (UserUpperBound) 267 UP.UpperBound = *UserUpperBound; 268 if (UserFullUnrollMaxCount) 269 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 270 271 return UP; 272 } 273 274 namespace { 275 276 /// A struct to densely store the state of an instruction after unrolling at 277 /// each iteration. 278 /// 279 /// This is designed to work like a tuple of <Instruction *, int> for the 280 /// purposes of hashing and lookup, but to be able to associate two boolean 281 /// states with each key. 282 struct UnrolledInstState { 283 Instruction *I; 284 int Iteration : 30; 285 unsigned IsFree : 1; 286 unsigned IsCounted : 1; 287 }; 288 289 /// Hashing and equality testing for a set of the instruction states. 290 struct UnrolledInstStateKeyInfo { 291 using PtrInfo = DenseMapInfo<Instruction *>; 292 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 293 294 static inline UnrolledInstState getEmptyKey() { 295 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 296 } 297 298 static inline UnrolledInstState getTombstoneKey() { 299 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 300 } 301 302 static inline unsigned getHashValue(const UnrolledInstState &S) { 303 return PairInfo::getHashValue({S.I, S.Iteration}); 304 } 305 306 static inline bool isEqual(const UnrolledInstState &LHS, 307 const UnrolledInstState &RHS) { 308 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 309 } 310 }; 311 312 struct EstimatedUnrollCost { 313 /// The estimated cost after unrolling. 314 unsigned UnrolledCost; 315 316 /// The estimated dynamic cost of executing the instructions in the 317 /// rolled form. 318 unsigned RolledDynamicCost; 319 }; 320 321 struct PragmaInfo { 322 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 323 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 324 PragmaEnableUnroll(PEU) {} 325 const bool UserUnrollCount; 326 const bool PragmaFullUnroll; 327 const unsigned PragmaCount; 328 const bool PragmaEnableUnroll; 329 }; 330 331 } // end anonymous namespace 332 333 /// Figure out if the loop is worth full unrolling. 334 /// 335 /// Complete loop unrolling can make some loads constant, and we need to know 336 /// if that would expose any further optimization opportunities. This routine 337 /// estimates this optimization. It computes cost of unrolled loop 338 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 339 /// dynamic cost we mean that we won't count costs of blocks that are known not 340 /// to be executed (i.e. if we have a branch in the loop and we know that at the 341 /// given iteration its condition would be resolved to true, we won't add up the 342 /// cost of the 'false'-block). 343 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 344 /// the analysis failed (no benefits expected from the unrolling, or the loop is 345 /// too big to analyze), the returned value is None. 346 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 347 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 348 const SmallPtrSetImpl<const Value *> &EphValues, 349 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 350 unsigned MaxIterationsCountToAnalyze) { 351 // We want to be able to scale offsets by the trip count and add more offsets 352 // to them without checking for overflows, and we already don't want to 353 // analyze *massive* trip counts, so we force the max to be reasonably small. 354 assert(MaxIterationsCountToAnalyze < 355 (unsigned)(std::numeric_limits<int>::max() / 2) && 356 "The unroll iterations max is too large!"); 357 358 // Only analyze inner loops. We can't properly estimate cost of nested loops 359 // and we won't visit inner loops again anyway. 360 if (!L->isInnermost()) 361 return None; 362 363 // Don't simulate loops with a big or unknown tripcount 364 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 365 return None; 366 367 SmallSetVector<BasicBlock *, 16> BBWorklist; 368 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 369 DenseMap<Value *, Value *> SimplifiedValues; 370 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 371 372 // The estimated cost of the unrolled form of the loop. We try to estimate 373 // this by simplifying as much as we can while computing the estimate. 374 InstructionCost UnrolledCost = 0; 375 376 // We also track the estimated dynamic (that is, actually executed) cost in 377 // the rolled form. This helps identify cases when the savings from unrolling 378 // aren't just exposing dead control flows, but actual reduced dynamic 379 // instructions due to the simplifications which we expect to occur after 380 // unrolling. 381 InstructionCost RolledDynamicCost = 0; 382 383 // We track the simplification of each instruction in each iteration. We use 384 // this to recursively merge costs into the unrolled cost on-demand so that 385 // we don't count the cost of any dead code. This is essentially a map from 386 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 387 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 388 389 // A small worklist used to accumulate cost of instructions from each 390 // observable and reached root in the loop. 391 SmallVector<Instruction *, 16> CostWorklist; 392 393 // PHI-used worklist used between iterations while accumulating cost. 394 SmallVector<Instruction *, 4> PHIUsedList; 395 396 // Helper function to accumulate cost for instructions in the loop. 397 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 398 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 399 assert(CostWorklist.empty() && "Must start with an empty cost list"); 400 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 401 CostWorklist.push_back(&RootI); 402 TargetTransformInfo::TargetCostKind CostKind = 403 RootI.getFunction()->hasMinSize() ? 404 TargetTransformInfo::TCK_CodeSize : 405 TargetTransformInfo::TCK_SizeAndLatency; 406 for (;; --Iteration) { 407 do { 408 Instruction *I = CostWorklist.pop_back_val(); 409 410 // InstCostMap only uses I and Iteration as a key, the other two values 411 // don't matter here. 412 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 413 if (CostIter == InstCostMap.end()) 414 // If an input to a PHI node comes from a dead path through the loop 415 // we may have no cost data for it here. What that actually means is 416 // that it is free. 417 continue; 418 auto &Cost = *CostIter; 419 if (Cost.IsCounted) 420 // Already counted this instruction. 421 continue; 422 423 // Mark that we are counting the cost of this instruction now. 424 Cost.IsCounted = true; 425 426 // If this is a PHI node in the loop header, just add it to the PHI set. 427 if (auto *PhiI = dyn_cast<PHINode>(I)) 428 if (PhiI->getParent() == L->getHeader()) { 429 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 430 "inherently simplify during unrolling."); 431 if (Iteration == 0) 432 continue; 433 434 // Push the incoming value from the backedge into the PHI used list 435 // if it is an in-loop instruction. We'll use this to populate the 436 // cost worklist for the next iteration (as we count backwards). 437 if (auto *OpI = dyn_cast<Instruction>( 438 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 439 if (L->contains(OpI)) 440 PHIUsedList.push_back(OpI); 441 continue; 442 } 443 444 // First accumulate the cost of this instruction. 445 if (!Cost.IsFree) { 446 UnrolledCost += TTI.getUserCost(I, CostKind); 447 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 448 << Iteration << "): "); 449 LLVM_DEBUG(I->dump()); 450 } 451 452 // We must count the cost of every operand which is not free, 453 // recursively. If we reach a loop PHI node, simply add it to the set 454 // to be considered on the next iteration (backwards!). 455 for (Value *Op : I->operands()) { 456 // Check whether this operand is free due to being a constant or 457 // outside the loop. 458 auto *OpI = dyn_cast<Instruction>(Op); 459 if (!OpI || !L->contains(OpI)) 460 continue; 461 462 // Otherwise accumulate its cost. 463 CostWorklist.push_back(OpI); 464 } 465 } while (!CostWorklist.empty()); 466 467 if (PHIUsedList.empty()) 468 // We've exhausted the search. 469 break; 470 471 assert(Iteration > 0 && 472 "Cannot track PHI-used values past the first iteration!"); 473 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 474 PHIUsedList.clear(); 475 } 476 }; 477 478 // Ensure that we don't violate the loop structure invariants relied on by 479 // this analysis. 480 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 481 assert(L->isLCSSAForm(DT) && 482 "Must have loops in LCSSA form to track live-out values."); 483 484 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 485 486 TargetTransformInfo::TargetCostKind CostKind = 487 L->getHeader()->getParent()->hasMinSize() ? 488 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 489 // Simulate execution of each iteration of the loop counting instructions, 490 // which would be simplified. 491 // Since the same load will take different values on different iterations, 492 // we literally have to go through all loop's iterations. 493 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 494 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 495 496 // Prepare for the iteration by collecting any simplified entry or backedge 497 // inputs. 498 for (Instruction &I : *L->getHeader()) { 499 auto *PHI = dyn_cast<PHINode>(&I); 500 if (!PHI) 501 break; 502 503 // The loop header PHI nodes must have exactly two input: one from the 504 // loop preheader and one from the loop latch. 505 assert( 506 PHI->getNumIncomingValues() == 2 && 507 "Must have an incoming value only for the preheader and the latch."); 508 509 Value *V = PHI->getIncomingValueForBlock( 510 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 511 if (Iteration != 0 && SimplifiedValues.count(V)) 512 V = SimplifiedValues.lookup(V); 513 SimplifiedInputValues.push_back({PHI, V}); 514 } 515 516 // Now clear and re-populate the map for the next iteration. 517 SimplifiedValues.clear(); 518 while (!SimplifiedInputValues.empty()) 519 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 520 521 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 522 523 BBWorklist.clear(); 524 BBWorklist.insert(L->getHeader()); 525 // Note that we *must not* cache the size, this loop grows the worklist. 526 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 527 BasicBlock *BB = BBWorklist[Idx]; 528 529 // Visit all instructions in the given basic block and try to simplify 530 // it. We don't change the actual IR, just count optimization 531 // opportunities. 532 for (Instruction &I : *BB) { 533 // These won't get into the final code - don't even try calculating the 534 // cost for them. 535 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 536 continue; 537 538 // Track this instruction's expected baseline cost when executing the 539 // rolled loop form. 540 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 541 542 // Visit the instruction to analyze its loop cost after unrolling, 543 // and if the visitor returns true, mark the instruction as free after 544 // unrolling and continue. 545 bool IsFree = Analyzer.visit(I); 546 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 547 (unsigned)IsFree, 548 /*IsCounted*/ false}).second; 549 (void)Inserted; 550 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 551 552 if (IsFree) 553 continue; 554 555 // Can't properly model a cost of a call. 556 // FIXME: With a proper cost model we should be able to do it. 557 if (auto *CI = dyn_cast<CallInst>(&I)) { 558 const Function *Callee = CI->getCalledFunction(); 559 if (!Callee || TTI.isLoweredToCall(Callee)) { 560 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 561 return None; 562 } 563 } 564 565 // If the instruction might have a side-effect recursively account for 566 // the cost of it and all the instructions leading up to it. 567 if (I.mayHaveSideEffects()) 568 AddCostRecursively(I, Iteration); 569 570 // If unrolled body turns out to be too big, bail out. 571 if (UnrolledCost > MaxUnrolledLoopSize) { 572 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 573 << " UnrolledCost: " << UnrolledCost 574 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 575 << "\n"); 576 return None; 577 } 578 } 579 580 Instruction *TI = BB->getTerminator(); 581 582 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 583 if (SimplifiedValues.count(V)) 584 V = SimplifiedValues.lookup(V); 585 return dyn_cast<Constant>(V); 586 }; 587 588 // Add in the live successors by first checking whether we have terminator 589 // that may be simplified based on the values simplified by this call. 590 BasicBlock *KnownSucc = nullptr; 591 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 592 if (BI->isConditional()) { 593 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 594 // Just take the first successor if condition is undef 595 if (isa<UndefValue>(SimpleCond)) 596 KnownSucc = BI->getSuccessor(0); 597 else if (ConstantInt *SimpleCondVal = 598 dyn_cast<ConstantInt>(SimpleCond)) 599 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 600 } 601 } 602 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 603 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 604 // Just take the first successor if condition is undef 605 if (isa<UndefValue>(SimpleCond)) 606 KnownSucc = SI->getSuccessor(0); 607 else if (ConstantInt *SimpleCondVal = 608 dyn_cast<ConstantInt>(SimpleCond)) 609 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 610 } 611 } 612 if (KnownSucc) { 613 if (L->contains(KnownSucc)) 614 BBWorklist.insert(KnownSucc); 615 else 616 ExitWorklist.insert({BB, KnownSucc}); 617 continue; 618 } 619 620 // Add BB's successors to the worklist. 621 for (BasicBlock *Succ : successors(BB)) 622 if (L->contains(Succ)) 623 BBWorklist.insert(Succ); 624 else 625 ExitWorklist.insert({BB, Succ}); 626 AddCostRecursively(*TI, Iteration); 627 } 628 629 // If we found no optimization opportunities on the first iteration, we 630 // won't find them on later ones too. 631 if (UnrolledCost == RolledDynamicCost) { 632 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 633 << " UnrolledCost: " << UnrolledCost << "\n"); 634 return None; 635 } 636 } 637 638 while (!ExitWorklist.empty()) { 639 BasicBlock *ExitingBB, *ExitBB; 640 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 641 642 for (Instruction &I : *ExitBB) { 643 auto *PN = dyn_cast<PHINode>(&I); 644 if (!PN) 645 break; 646 647 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 648 if (auto *OpI = dyn_cast<Instruction>(Op)) 649 if (L->contains(OpI)) 650 AddCostRecursively(*OpI, TripCount - 1); 651 } 652 } 653 654 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 655 "All instructions must have a valid cost, whether the " 656 "loop is rolled or unrolled."); 657 658 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 659 << "UnrolledCost: " << UnrolledCost << ", " 660 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 661 return {{unsigned(*UnrolledCost.getValue()), 662 unsigned(*RolledDynamicCost.getValue())}}; 663 } 664 665 /// ApproximateLoopSize - Approximate the size of the loop. 666 InstructionCost llvm::ApproximateLoopSize( 667 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 668 const TargetTransformInfo &TTI, 669 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 670 CodeMetrics Metrics; 671 for (BasicBlock *BB : L->blocks()) 672 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 673 NumCalls = Metrics.NumInlineCandidates; 674 NotDuplicatable = Metrics.notDuplicatable; 675 Convergent = Metrics.convergent; 676 677 InstructionCost LoopSize = Metrics.NumInsts; 678 679 // Don't allow an estimate of size zero. This would allows unrolling of loops 680 // with huge iteration counts, which is a compile time problem even if it's 681 // not a problem for code quality. Also, the code using this size may assume 682 // that each loop has at least three instructions (likely a conditional 683 // branch, a comparison feeding that branch, and some kind of loop increment 684 // feeding that comparison instruction). 685 if (LoopSize.isValid() && *LoopSize.getValue() < BEInsns + 1) 686 // This is an open coded max() on InstructionCost 687 LoopSize = BEInsns + 1; 688 689 return LoopSize; 690 } 691 692 // Returns the loop hint metadata node with the given name (for example, 693 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 694 // returned. 695 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 696 if (MDNode *LoopID = L->getLoopID()) 697 return GetUnrollMetadata(LoopID, Name); 698 return nullptr; 699 } 700 701 // Returns true if the loop has an unroll(full) pragma. 702 static bool hasUnrollFullPragma(const Loop *L) { 703 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 704 } 705 706 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 707 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 708 static bool hasUnrollEnablePragma(const Loop *L) { 709 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 710 } 711 712 // Returns true if the loop has an runtime unroll(disable) pragma. 713 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 714 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 715 } 716 717 // If loop has an unroll_count pragma return the (necessarily 718 // positive) value from the pragma. Otherwise return 0. 719 static unsigned unrollCountPragmaValue(const Loop *L) { 720 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 721 if (MD) { 722 assert(MD->getNumOperands() == 2 && 723 "Unroll count hint metadata should have two operands."); 724 unsigned Count = 725 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 726 assert(Count >= 1 && "Unroll count must be positive."); 727 return Count; 728 } 729 return 0; 730 } 731 732 // Computes the boosting factor for complete unrolling. 733 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 734 // be beneficial to fully unroll the loop even if unrolledcost is large. We 735 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 736 // the unroll threshold. 737 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 738 unsigned MaxPercentThresholdBoost) { 739 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 740 return 100; 741 else if (Cost.UnrolledCost != 0) 742 // The boosting factor is RolledDynamicCost / UnrolledCost 743 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 744 MaxPercentThresholdBoost); 745 else 746 return MaxPercentThresholdBoost; 747 } 748 749 // Produce an estimate of the unrolled cost of the specified loop. This 750 // is used to a) produce a cost estimate for partial unrolling and b) to 751 // cheaply estimate cost for full unrolling when we don't want to symbolically 752 // evaluate all iterations. 753 class UnrollCostEstimator { 754 const unsigned LoopSize; 755 756 public: 757 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {} 758 759 // Returns loop size estimation for unrolled loop, given the unrolling 760 // configuration specified by UP. 761 uint64_t 762 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP, 763 const unsigned CountOverwrite = 0) const { 764 assert(LoopSize >= UP.BEInsns && 765 "LoopSize should not be less than BEInsns!"); 766 if (CountOverwrite) 767 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite + 768 UP.BEInsns; 769 else 770 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count + 771 UP.BEInsns; 772 } 773 }; 774 775 static Optional<unsigned> 776 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 777 const unsigned TripMultiple, const unsigned TripCount, 778 const UnrollCostEstimator UCE, 779 const TargetTransformInfo::UnrollingPreferences &UP) { 780 781 // Using unroll pragma 782 // 1st priority is unroll count set by "unroll-count" option. 783 784 if (PInfo.UserUnrollCount) { 785 if (UP.AllowRemainder && 786 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 787 return (unsigned)UnrollCount; 788 } 789 790 // 2nd priority is unroll count set by pragma. 791 if (PInfo.PragmaCount > 0) { 792 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) 793 return PInfo.PragmaCount; 794 } 795 796 if (PInfo.PragmaFullUnroll && TripCount != 0) 797 return TripCount; 798 799 // if didn't return until here, should continue to other priorties 800 return None; 801 } 802 803 static Optional<unsigned> shouldFullUnroll( 804 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 805 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 806 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 807 const TargetTransformInfo::UnrollingPreferences &UP) { 808 assert(FullUnrollTripCount && "should be non-zero!"); 809 810 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 811 return None; 812 813 // When computing the unrolled size, note that BEInsns are not replicated 814 // like the rest of the loop body. 815 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 816 return FullUnrollTripCount; 817 818 // The loop isn't that small, but we still can fully unroll it if that 819 // helps to remove a significant number of instructions. 820 // To check that, run additional analysis on the loop. 821 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 822 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 823 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 824 UP.MaxIterationsCountToAnalyze)) { 825 unsigned Boost = 826 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 827 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 828 return FullUnrollTripCount; 829 } 830 return None; 831 } 832 833 static Optional<unsigned> 834 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 835 const UnrollCostEstimator UCE, 836 const TargetTransformInfo::UnrollingPreferences &UP) { 837 838 if (!TripCount) 839 return None; 840 841 if (!UP.Partial) { 842 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 843 << "-unroll-allow-partial not given\n"); 844 return 0; 845 } 846 unsigned count = UP.Count; 847 if (count == 0) 848 count = TripCount; 849 if (UP.PartialThreshold != NoThreshold) { 850 // Reduce unroll count to be modulo of TripCount for partial unrolling. 851 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 852 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 853 (LoopSize - UP.BEInsns); 854 if (count > UP.MaxCount) 855 count = UP.MaxCount; 856 while (count != 0 && TripCount % count != 0) 857 count--; 858 if (UP.AllowRemainder && count <= 1) { 859 // If there is no Count that is modulo of TripCount, set Count to 860 // largest power-of-two factor that satisfies the threshold limit. 861 // As we'll create fixup loop, do the type of unrolling only if 862 // remainder loop is allowed. 863 count = UP.DefaultUnrollRuntimeCount; 864 while (count != 0 && 865 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 866 count >>= 1; 867 } 868 if (count < 2) { 869 count = 0; 870 } 871 } else { 872 count = TripCount; 873 } 874 if (count > UP.MaxCount) 875 count = UP.MaxCount; 876 877 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 878 879 return count; 880 } 881 // Returns true if unroll count was set explicitly. 882 // Calculates unroll count and writes it to UP.Count. 883 // Unless IgnoreUser is true, will also use metadata and command-line options 884 // that are specific to to the LoopUnroll pass (which, for instance, are 885 // irrelevant for the LoopUnrollAndJam pass). 886 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 887 // many LoopUnroll-specific options. The shared functionality should be 888 // refactored into it own function. 889 bool llvm::computeUnrollCount( 890 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 891 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 892 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 893 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize, 894 TargetTransformInfo::UnrollingPreferences &UP, 895 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 896 897 UnrollCostEstimator UCE(*L, LoopSize); 898 899 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 900 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 901 const unsigned PragmaCount = unrollCountPragmaValue(L); 902 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 903 904 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 905 PragmaEnableUnroll || UserUnrollCount; 906 907 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 908 PragmaEnableUnroll); 909 // Use an explicit peel count that has been specified for testing. In this 910 // case it's not permitted to also specify an explicit unroll count. 911 if (PP.PeelCount) { 912 if (UnrollCount.getNumOccurrences() > 0) { 913 report_fatal_error("Cannot specify both explicit peel count and " 914 "explicit unroll count", /*GenCrashDiag=*/false); 915 } 916 UP.Count = 1; 917 UP.Runtime = false; 918 return true; 919 } 920 // Check for explicit Count. 921 // 1st priority is unroll count set by "unroll-count" option. 922 // 2nd priority is unroll count set by pragma. 923 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 924 UCE, UP)) { 925 UP.Count = *UnrollFactor; 926 927 if (UserUnrollCount || (PragmaCount > 0)) { 928 UP.AllowExpensiveTripCount = true; 929 UP.Force = true; 930 } 931 UP.Runtime |= (PragmaCount > 0); 932 return ExplicitUnroll; 933 } else { 934 if (ExplicitUnroll && TripCount != 0) { 935 // If the loop has an unrolling pragma, we want to be more aggressive with 936 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 937 // value which is larger than the default limits. 938 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 939 UP.PartialThreshold = 940 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 941 } 942 } 943 944 // 3rd priority is exact full unrolling. This will eliminate all copies 945 // of some exit test. 946 UP.Count = 0; 947 if (TripCount) { 948 UP.Count = TripCount; 949 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 950 TripCount, UCE, UP)) { 951 UP.Count = *UnrollFactor; 952 UseUpperBound = false; 953 return ExplicitUnroll; 954 } 955 } 956 957 // 4th priority is bounded unrolling. 958 // We can unroll by the upper bound amount if it's generally allowed or if 959 // we know that the loop is executed either the upper bound or zero times. 960 // (MaxOrZero unrolling keeps only the first loop test, so the number of 961 // loop tests remains the same compared to the non-unrolled version, whereas 962 // the generic upper bound unrolling keeps all but the last loop test so the 963 // number of loop tests goes up which may end up being worse on targets with 964 // constrained branch predictor resources so is controlled by an option.) 965 // In addition we only unroll small upper bounds. 966 // Note that the cost of bounded unrolling is always strictly greater than 967 // cost of exact full unrolling. As such, if we have an exact count and 968 // found it unprofitable, we'll never chose to bounded unroll. 969 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 970 MaxTripCount <= UnrollMaxUpperBound) { 971 UP.Count = MaxTripCount; 972 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 973 MaxTripCount, UCE, UP)) { 974 UP.Count = *UnrollFactor; 975 UseUpperBound = true; 976 return ExplicitUnroll; 977 } 978 } 979 980 // 5th priority is loop peeling. 981 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, UP.Threshold); 982 if (PP.PeelCount) { 983 UP.Runtime = false; 984 UP.Count = 1; 985 return ExplicitUnroll; 986 } 987 988 // Before starting partial unrolling, set up.partial to true, 989 // if user explicitly asked for unrolling 990 if (TripCount) 991 UP.Partial |= ExplicitUnroll; 992 993 // 6th priority is partial unrolling. 994 // Try partial unroll only when TripCount could be statically calculated. 995 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 996 UP.Count = *UnrollFactor; 997 998 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 999 UP.Count != TripCount) 1000 ORE->emit([&]() { 1001 return OptimizationRemarkMissed(DEBUG_TYPE, 1002 "FullUnrollAsDirectedTooLarge", 1003 L->getStartLoc(), L->getHeader()) 1004 << "Unable to fully unroll loop as directed by unroll pragma " 1005 "because " 1006 "unrolled size is too large."; 1007 }); 1008 1009 if (UP.PartialThreshold != NoThreshold) { 1010 if (UP.Count == 0) { 1011 if (PragmaEnableUnroll) 1012 ORE->emit([&]() { 1013 return OptimizationRemarkMissed(DEBUG_TYPE, 1014 "UnrollAsDirectedTooLarge", 1015 L->getStartLoc(), L->getHeader()) 1016 << "Unable to unroll loop as directed by unroll(enable) " 1017 "pragma " 1018 "because unrolled size is too large."; 1019 }); 1020 } 1021 } 1022 return ExplicitUnroll; 1023 } 1024 assert(TripCount == 0 && 1025 "All cases when TripCount is constant should be covered here."); 1026 if (PragmaFullUnroll) 1027 ORE->emit([&]() { 1028 return OptimizationRemarkMissed( 1029 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1030 L->getStartLoc(), L->getHeader()) 1031 << "Unable to fully unroll loop as directed by unroll(full) " 1032 "pragma " 1033 "because loop has a runtime trip count."; 1034 }); 1035 1036 // 7th priority is runtime unrolling. 1037 // Don't unroll a runtime trip count loop when it is disabled. 1038 if (hasRuntimeUnrollDisablePragma(L)) { 1039 UP.Count = 0; 1040 return false; 1041 } 1042 1043 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1044 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 1045 UP.Count = 0; 1046 return false; 1047 } 1048 1049 // Check if the runtime trip count is too small when profile is available. 1050 if (L->getHeader()->getParent()->hasProfileData()) { 1051 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1052 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1053 return false; 1054 else 1055 UP.AllowExpensiveTripCount = true; 1056 } 1057 } 1058 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1059 if (!UP.Runtime) { 1060 LLVM_DEBUG( 1061 dbgs() << " will not try to unroll loop with runtime trip count " 1062 << "-unroll-runtime not given\n"); 1063 UP.Count = 0; 1064 return false; 1065 } 1066 if (UP.Count == 0) 1067 UP.Count = UP.DefaultUnrollRuntimeCount; 1068 1069 // Reduce unroll count to be the largest power-of-two factor of 1070 // the original count which satisfies the threshold limit. 1071 while (UP.Count != 0 && 1072 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1073 UP.Count >>= 1; 1074 1075 #ifndef NDEBUG 1076 unsigned OrigCount = UP.Count; 1077 #endif 1078 1079 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1080 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1081 UP.Count >>= 1; 1082 LLVM_DEBUG( 1083 dbgs() << "Remainder loop is restricted (that could architecture " 1084 "specific or because the loop contains a convergent " 1085 "instruction), so unroll count must divide the trip " 1086 "multiple, " 1087 << TripMultiple << ". Reducing unroll count from " << OrigCount 1088 << " to " << UP.Count << ".\n"); 1089 1090 using namespace ore; 1091 1092 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1093 ORE->emit([&]() { 1094 return OptimizationRemarkMissed(DEBUG_TYPE, 1095 "DifferentUnrollCountFromDirected", 1096 L->getStartLoc(), L->getHeader()) 1097 << "Unable to unroll loop the number of times directed by " 1098 "unroll_count pragma because remainder loop is restricted " 1099 "(that could architecture specific or because the loop " 1100 "contains a convergent instruction) and so must have an " 1101 "unroll " 1102 "count that divides the loop trip multiple of " 1103 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1104 << NV("UnrollCount", UP.Count) << " time(s)."; 1105 }); 1106 } 1107 1108 if (UP.Count > UP.MaxCount) 1109 UP.Count = UP.MaxCount; 1110 1111 if (MaxTripCount && UP.Count > MaxTripCount) 1112 UP.Count = MaxTripCount; 1113 1114 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1115 << "\n"); 1116 if (UP.Count < 2) 1117 UP.Count = 0; 1118 return ExplicitUnroll; 1119 } 1120 1121 static LoopUnrollResult tryToUnrollLoop( 1122 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1123 const TargetTransformInfo &TTI, AssumptionCache &AC, 1124 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1125 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1126 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1127 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1128 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1129 Optional<bool> ProvidedAllowPeeling, 1130 Optional<bool> ProvidedAllowProfileBasedPeeling, 1131 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1132 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1133 << L->getHeader()->getParent()->getName() << "] Loop %" 1134 << L->getHeader()->getName() << "\n"); 1135 TransformationMode TM = hasUnrollTransformation(L); 1136 if (TM & TM_Disable) 1137 return LoopUnrollResult::Unmodified; 1138 1139 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1140 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1141 // automatic unrolling from interfering with the user requested 1142 // transformation. 1143 Loop *ParentL = L->getParentLoop(); 1144 if (ParentL != nullptr && 1145 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1146 hasUnrollTransformation(L) != TM_ForcedByUser) { 1147 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1148 << " llvm.loop.unroll_and_jam.\n"); 1149 return LoopUnrollResult::Unmodified; 1150 } 1151 1152 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1153 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1154 // unrolling from interfering with the user requested transformation. 1155 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1156 hasUnrollTransformation(L) != TM_ForcedByUser) { 1157 LLVM_DEBUG( 1158 dbgs() 1159 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1160 return LoopUnrollResult::Unmodified; 1161 } 1162 1163 if (!L->isLoopSimplifyForm()) { 1164 LLVM_DEBUG( 1165 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1166 return LoopUnrollResult::Unmodified; 1167 } 1168 1169 // When automatic unrolling is disabled, do not unroll unless overridden for 1170 // this loop. 1171 if (OnlyWhenForced && !(TM & TM_Enable)) 1172 return LoopUnrollResult::Unmodified; 1173 1174 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1175 unsigned NumInlineCandidates; 1176 bool NotDuplicatable; 1177 bool Convergent; 1178 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1179 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1180 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1181 ProvidedFullUnrollMaxCount); 1182 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1183 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1184 1185 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1186 // as threshold later on. 1187 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1188 !OptForSize) 1189 return LoopUnrollResult::Unmodified; 1190 1191 SmallPtrSet<const Value *, 32> EphValues; 1192 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1193 1194 InstructionCost LoopSizeIC = 1195 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1196 TTI, EphValues, UP.BEInsns); 1197 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSizeIC << "\n"); 1198 1199 if (!LoopSizeIC.isValid()) { 1200 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions" 1201 << " with invalid cost.\n"); 1202 return LoopUnrollResult::Unmodified; 1203 } 1204 unsigned LoopSize = *LoopSizeIC.getValue(); 1205 1206 if (NotDuplicatable) { 1207 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1208 << " instructions.\n"); 1209 return LoopUnrollResult::Unmodified; 1210 } 1211 1212 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1213 // later), to (fully) unroll loops, if it does not increase code size. 1214 if (OptForSize) 1215 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1216 1217 if (NumInlineCandidates != 0) { 1218 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1219 return LoopUnrollResult::Unmodified; 1220 } 1221 1222 // Find the smallest exact trip count for any exit. This is an upper bound 1223 // on the loop trip count, but an exit at an earlier iteration is still 1224 // possible. An unroll by the smallest exact trip count guarantees that all 1225 // brnaches relating to at least one exit can be eliminated. This is unlike 1226 // the max trip count, which only guarantees that the backedge can be broken. 1227 unsigned TripCount = 0; 1228 unsigned TripMultiple = 1; 1229 SmallVector<BasicBlock *, 8> ExitingBlocks; 1230 L->getExitingBlocks(ExitingBlocks); 1231 for (BasicBlock *ExitingBlock : ExitingBlocks) 1232 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1233 if (!TripCount || TC < TripCount) 1234 TripCount = TripMultiple = TC; 1235 1236 if (!TripCount) { 1237 // If no exact trip count is known, determine the trip multiple of either 1238 // the loop latch or the single exiting block. 1239 // TODO: Relax for multiple exits. 1240 BasicBlock *ExitingBlock = L->getLoopLatch(); 1241 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1242 ExitingBlock = L->getExitingBlock(); 1243 if (ExitingBlock) 1244 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1245 } 1246 1247 // If the loop contains a convergent operation, the prelude we'd add 1248 // to do the first few instructions before we hit the unrolled loop 1249 // is unsafe -- it adds a control-flow dependency to the convergent 1250 // operation. Therefore restrict remainder loop (try unrolling without). 1251 // 1252 // TODO: This is quite conservative. In practice, convergent_op() 1253 // is likely to be called unconditionally in the loop. In this 1254 // case, the program would be ill-formed (on most architectures) 1255 // unless n were the same on all threads in a thread group. 1256 // Assuming n is the same on all threads, any kind of unrolling is 1257 // safe. But currently llvm's notion of convergence isn't powerful 1258 // enough to express this. 1259 if (Convergent) 1260 UP.AllowRemainder = false; 1261 1262 // Try to find the trip count upper bound if we cannot find the exact trip 1263 // count. 1264 unsigned MaxTripCount = 0; 1265 bool MaxOrZero = false; 1266 if (!TripCount) { 1267 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1268 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1269 } 1270 1271 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1272 // fully unroll the loop. 1273 bool UseUpperBound = false; 1274 bool IsCountSetExplicitly = computeUnrollCount( 1275 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1276 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1277 if (!UP.Count) 1278 return LoopUnrollResult::Unmodified; 1279 1280 if (PP.PeelCount) { 1281 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1282 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1283 << " with iteration count " << PP.PeelCount << "!\n"); 1284 ORE.emit([&]() { 1285 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1286 L->getHeader()) 1287 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1288 << " iterations"; 1289 }); 1290 1291 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) { 1292 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1293 // If the loop was peeled, we already "used up" the profile information 1294 // we had, so we don't want to unroll or peel again. 1295 if (PP.PeelProfiledIterations) 1296 L->setLoopAlreadyUnrolled(); 1297 return LoopUnrollResult::PartiallyUnrolled; 1298 } 1299 return LoopUnrollResult::Unmodified; 1300 } 1301 1302 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1303 // However, we only want to actually perform it if we don't know the trip 1304 // count and the unroll count doesn't divide the known trip multiple. 1305 // TODO: This decision should probably be pushed up into 1306 // computeUnrollCount(). 1307 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1308 1309 // Save loop properties before it is transformed. 1310 MDNode *OrigLoopID = L->getLoopID(); 1311 1312 // Unroll the loop. 1313 Loop *RemainderLoop = nullptr; 1314 LoopUnrollResult UnrollResult = UnrollLoop( 1315 L, 1316 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1317 UP.UnrollRemainder, ForgetAllSCEV}, 1318 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1319 if (UnrollResult == LoopUnrollResult::Unmodified) 1320 return LoopUnrollResult::Unmodified; 1321 1322 if (RemainderLoop) { 1323 Optional<MDNode *> RemainderLoopID = 1324 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1325 LLVMLoopUnrollFollowupRemainder}); 1326 if (RemainderLoopID) 1327 RemainderLoop->setLoopID(RemainderLoopID.value()); 1328 } 1329 1330 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1331 Optional<MDNode *> NewLoopID = 1332 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1333 LLVMLoopUnrollFollowupUnrolled}); 1334 if (NewLoopID) { 1335 L->setLoopID(NewLoopID.value()); 1336 1337 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1338 // explicitly. 1339 return UnrollResult; 1340 } 1341 } 1342 1343 // If loop has an unroll count pragma or unrolled by explicitly set count 1344 // mark loop as unrolled to prevent unrolling beyond that requested. 1345 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1346 L->setLoopAlreadyUnrolled(); 1347 1348 return UnrollResult; 1349 } 1350 1351 namespace { 1352 1353 class LoopUnroll : public LoopPass { 1354 public: 1355 static char ID; // Pass ID, replacement for typeid 1356 1357 int OptLevel; 1358 1359 /// If false, use a cost model to determine whether unrolling of a loop is 1360 /// profitable. If true, only loops that explicitly request unrolling via 1361 /// metadata are considered. All other loops are skipped. 1362 bool OnlyWhenForced; 1363 1364 /// If false, when SCEV is invalidated, only forget everything in the 1365 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1366 /// Otherwise, forgetAllLoops and rebuild when needed next. 1367 bool ForgetAllSCEV; 1368 1369 Optional<unsigned> ProvidedCount; 1370 Optional<unsigned> ProvidedThreshold; 1371 Optional<bool> ProvidedAllowPartial; 1372 Optional<bool> ProvidedRuntime; 1373 Optional<bool> ProvidedUpperBound; 1374 Optional<bool> ProvidedAllowPeeling; 1375 Optional<bool> ProvidedAllowProfileBasedPeeling; 1376 Optional<unsigned> ProvidedFullUnrollMaxCount; 1377 1378 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1379 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1380 Optional<unsigned> Count = None, 1381 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1382 Optional<bool> UpperBound = None, 1383 Optional<bool> AllowPeeling = None, 1384 Optional<bool> AllowProfileBasedPeeling = None, 1385 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1386 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1387 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1388 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1389 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1390 ProvidedAllowPeeling(AllowPeeling), 1391 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1392 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1393 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1394 } 1395 1396 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1397 if (skipLoop(L)) 1398 return false; 1399 1400 Function &F = *L->getHeader()->getParent(); 1401 1402 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1403 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1404 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1405 const TargetTransformInfo &TTI = 1406 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1407 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1408 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1409 // pass. Function analyses need to be preserved across loop transformations 1410 // but ORE cannot be preserved (see comment before the pass definition). 1411 OptimizationRemarkEmitter ORE(&F); 1412 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1413 1414 LoopUnrollResult Result = tryToUnrollLoop( 1415 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1416 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1417 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1418 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1419 ProvidedFullUnrollMaxCount); 1420 1421 if (Result == LoopUnrollResult::FullyUnrolled) 1422 LPM.markLoopAsDeleted(*L); 1423 1424 return Result != LoopUnrollResult::Unmodified; 1425 } 1426 1427 /// This transformation requires natural loop information & requires that 1428 /// loop preheaders be inserted into the CFG... 1429 void getAnalysisUsage(AnalysisUsage &AU) const override { 1430 AU.addRequired<AssumptionCacheTracker>(); 1431 AU.addRequired<TargetTransformInfoWrapperPass>(); 1432 // FIXME: Loop passes are required to preserve domtree, and for now we just 1433 // recreate dom info if anything gets unrolled. 1434 getLoopAnalysisUsage(AU); 1435 } 1436 }; 1437 1438 } // end anonymous namespace 1439 1440 char LoopUnroll::ID = 0; 1441 1442 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1443 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1444 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1445 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1446 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1447 1448 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1449 bool ForgetAllSCEV, int Threshold, int Count, 1450 int AllowPartial, int Runtime, int UpperBound, 1451 int AllowPeeling) { 1452 // TODO: It would make more sense for this function to take the optionals 1453 // directly, but that's dangerous since it would silently break out of tree 1454 // callers. 1455 return new LoopUnroll( 1456 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1457 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1458 Count == -1 ? None : Optional<unsigned>(Count), 1459 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1460 Runtime == -1 ? None : Optional<bool>(Runtime), 1461 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1462 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1463 } 1464 1465 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1466 bool ForgetAllSCEV) { 1467 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1468 0, 0, 0, 1); 1469 } 1470 1471 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1472 LoopStandardAnalysisResults &AR, 1473 LPMUpdater &Updater) { 1474 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1475 // pass. Function analyses need to be preserved across loop transformations 1476 // but ORE cannot be preserved (see comment before the pass definition). 1477 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1478 1479 // Keep track of the previous loop structure so we can identify new loops 1480 // created by unrolling. 1481 Loop *ParentL = L.getParentLoop(); 1482 SmallPtrSet<Loop *, 4> OldLoops; 1483 if (ParentL) 1484 OldLoops.insert(ParentL->begin(), ParentL->end()); 1485 else 1486 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1487 1488 std::string LoopName = std::string(L.getName()); 1489 1490 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1491 /*BFI*/ nullptr, /*PSI*/ nullptr, 1492 /*PreserveLCSSA*/ true, OptLevel, 1493 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1494 /*Threshold*/ None, /*AllowPartial*/ false, 1495 /*Runtime*/ false, /*UpperBound*/ false, 1496 /*AllowPeeling*/ true, 1497 /*AllowProfileBasedPeeling*/ false, 1498 /*FullUnrollMaxCount*/ None) != 1499 LoopUnrollResult::Unmodified; 1500 if (!Changed) 1501 return PreservedAnalyses::all(); 1502 1503 // The parent must not be damaged by unrolling! 1504 #ifndef NDEBUG 1505 if (ParentL) 1506 ParentL->verifyLoop(); 1507 #endif 1508 1509 // Unrolling can do several things to introduce new loops into a loop nest: 1510 // - Full unrolling clones child loops within the current loop but then 1511 // removes the current loop making all of the children appear to be new 1512 // sibling loops. 1513 // 1514 // When a new loop appears as a sibling loop after fully unrolling, 1515 // its nesting structure has fundamentally changed and we want to revisit 1516 // it to reflect that. 1517 // 1518 // When unrolling has removed the current loop, we need to tell the 1519 // infrastructure that it is gone. 1520 // 1521 // Finally, we support a debugging/testing mode where we revisit child loops 1522 // as well. These are not expected to require further optimizations as either 1523 // they or the loop they were cloned from have been directly visited already. 1524 // But the debugging mode allows us to check this assumption. 1525 bool IsCurrentLoopValid = false; 1526 SmallVector<Loop *, 4> SibLoops; 1527 if (ParentL) 1528 SibLoops.append(ParentL->begin(), ParentL->end()); 1529 else 1530 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1531 erase_if(SibLoops, [&](Loop *SibLoop) { 1532 if (SibLoop == &L) { 1533 IsCurrentLoopValid = true; 1534 return true; 1535 } 1536 1537 // Otherwise erase the loop from the list if it was in the old loops. 1538 return OldLoops.contains(SibLoop); 1539 }); 1540 Updater.addSiblingLoops(SibLoops); 1541 1542 if (!IsCurrentLoopValid) { 1543 Updater.markLoopAsDeleted(L, LoopName); 1544 } else { 1545 // We can only walk child loops if the current loop remained valid. 1546 if (UnrollRevisitChildLoops) { 1547 // Walk *all* of the child loops. 1548 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1549 Updater.addChildLoops(ChildLoops); 1550 } 1551 } 1552 1553 return getLoopPassPreservedAnalyses(); 1554 } 1555 1556 PreservedAnalyses LoopUnrollPass::run(Function &F, 1557 FunctionAnalysisManager &AM) { 1558 auto &LI = AM.getResult<LoopAnalysis>(F); 1559 // There are no loops in the function. Return before computing other expensive 1560 // analyses. 1561 if (LI.empty()) 1562 return PreservedAnalyses::all(); 1563 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1564 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1565 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1566 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1567 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1568 1569 LoopAnalysisManager *LAM = nullptr; 1570 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1571 LAM = &LAMProxy->getManager(); 1572 1573 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1574 ProfileSummaryInfo *PSI = 1575 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1576 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1577 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1578 1579 bool Changed = false; 1580 1581 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1582 // Since simplification may add new inner loops, it has to run before the 1583 // legality and profitability checks. This means running the loop unroller 1584 // will simplify all loops, regardless of whether anything end up being 1585 // unrolled. 1586 for (auto &L : LI) { 1587 Changed |= 1588 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1589 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1590 } 1591 1592 // Add the loop nests in the reverse order of LoopInfo. See method 1593 // declaration. 1594 SmallPriorityWorklist<Loop *, 4> Worklist; 1595 appendLoopsToWorklist(LI, Worklist); 1596 1597 while (!Worklist.empty()) { 1598 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1599 // from back to front so that we work forward across the CFG, which 1600 // for unrolling is only needed to get optimization remarks emitted in 1601 // a forward order. 1602 Loop &L = *Worklist.pop_back_val(); 1603 #ifndef NDEBUG 1604 Loop *ParentL = L.getParentLoop(); 1605 #endif 1606 1607 // Check if the profile summary indicates that the profiled application 1608 // has a huge working set size, in which case we disable peeling to avoid 1609 // bloating it further. 1610 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1611 if (PSI && PSI->hasHugeWorkingSetSize()) 1612 LocalAllowPeeling = false; 1613 std::string LoopName = std::string(L.getName()); 1614 // The API here is quite complex to call and we allow to select some 1615 // flavors of unrolling during construction time (by setting UnrollOpts). 1616 LoopUnrollResult Result = tryToUnrollLoop( 1617 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1618 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1619 UnrollOpts.ForgetSCEV, /*Count*/ None, 1620 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1621 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1622 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1623 Changed |= Result != LoopUnrollResult::Unmodified; 1624 1625 // The parent must not be damaged by unrolling! 1626 #ifndef NDEBUG 1627 if (Result != LoopUnrollResult::Unmodified && ParentL) 1628 ParentL->verifyLoop(); 1629 #endif 1630 1631 // Clear any cached analysis results for L if we removed it completely. 1632 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1633 LAM->clear(L, LoopName); 1634 } 1635 1636 if (!Changed) 1637 return PreservedAnalyses::all(); 1638 1639 return getLoopPassPreservedAnalyses(); 1640 } 1641 1642 void LoopUnrollPass::printPipeline( 1643 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1644 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1645 OS, MapClassName2PassName); 1646 OS << "<"; 1647 if (UnrollOpts.AllowPartial != None) 1648 OS << (UnrollOpts.AllowPartial.value() ? "" : "no-") << "partial;"; 1649 if (UnrollOpts.AllowPeeling != None) 1650 OS << (UnrollOpts.AllowPeeling.value() ? "" : "no-") << "peeling;"; 1651 if (UnrollOpts.AllowRuntime != None) 1652 OS << (UnrollOpts.AllowRuntime.value() ? "" : "no-") << "runtime;"; 1653 if (UnrollOpts.AllowUpperBound != None) 1654 OS << (UnrollOpts.AllowUpperBound.value() ? "" : "no-") << "upperbound;"; 1655 if (UnrollOpts.AllowProfileBasedPeeling != None) 1656 OS << (UnrollOpts.AllowProfileBasedPeeling.value() ? "" : "no-") 1657 << "profile-peeling;"; 1658 if (UnrollOpts.FullUnrollMaxCount != None) 1659 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";"; 1660 OS << "O" << UnrollOpts.OptLevel; 1661 OS << ">"; 1662 } 1663