1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CodeMetrics.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/LoopPass.h" 30 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 31 #include "llvm/Analysis/MemorySSA.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/ScalarEvolution.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopPeel.h" 59 #include "llvm/Transforms/Utils/LoopSimplify.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <optional> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is sometimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of" 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 static cl::opt<unsigned> PragmaUnrollFullMaxIterations( 179 "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden, 180 cl::desc("Maximum allowed iterations to unroll under pragma unroll full.")); 181 182 /// A magic value for use with the Threshold parameter to indicate 183 /// that the loop unroll should be performed regardless of how much 184 /// code expansion would result. 185 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 186 187 /// Gather the various unrolling parameters based on the defaults, compiler 188 /// flags, TTI overrides and user specified parameters. 189 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 190 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 191 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 192 OptimizationRemarkEmitter &ORE, int OptLevel, 193 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, 194 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, 195 std::optional<bool> UserUpperBound, 196 std::optional<unsigned> UserFullUnrollMaxCount) { 197 TargetTransformInfo::UnrollingPreferences UP; 198 199 // Set up the defaults 200 UP.Threshold = 201 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 202 UP.MaxPercentThresholdBoost = 400; 203 UP.OptSizeThreshold = UnrollOptSizeThreshold; 204 UP.PartialThreshold = 150; 205 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 206 UP.Count = 0; 207 UP.DefaultUnrollRuntimeCount = 8; 208 UP.MaxCount = std::numeric_limits<unsigned>::max(); 209 UP.MaxUpperBound = UnrollMaxUpperBound; 210 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 211 UP.BEInsns = 2; 212 UP.Partial = false; 213 UP.Runtime = false; 214 UP.AllowRemainder = true; 215 UP.UnrollRemainder = false; 216 UP.AllowExpensiveTripCount = false; 217 UP.Force = false; 218 UP.UpperBound = false; 219 UP.UnrollAndJam = false; 220 UP.UnrollAndJamInnerLoopThreshold = 60; 221 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 222 223 // Override with any target specific settings 224 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 225 226 // Apply size attributes 227 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 228 // Let unroll hints / pragmas take precedence over PGSO. 229 (hasUnrollTransformation(L) != TM_ForcedByUser && 230 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 231 PGSOQueryType::IRPass)); 232 if (OptForSize) { 233 UP.Threshold = UP.OptSizeThreshold; 234 UP.PartialThreshold = UP.PartialOptSizeThreshold; 235 UP.MaxPercentThresholdBoost = 100; 236 } 237 238 // Apply any user values specified by cl::opt 239 if (UnrollThreshold.getNumOccurrences() > 0) 240 UP.Threshold = UnrollThreshold; 241 if (UnrollPartialThreshold.getNumOccurrences() > 0) 242 UP.PartialThreshold = UnrollPartialThreshold; 243 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 244 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 245 if (UnrollMaxCount.getNumOccurrences() > 0) 246 UP.MaxCount = UnrollMaxCount; 247 if (UnrollMaxUpperBound.getNumOccurrences() > 0) 248 UP.MaxUpperBound = UnrollMaxUpperBound; 249 if (UnrollFullMaxCount.getNumOccurrences() > 0) 250 UP.FullUnrollMaxCount = UnrollFullMaxCount; 251 if (UnrollAllowPartial.getNumOccurrences() > 0) 252 UP.Partial = UnrollAllowPartial; 253 if (UnrollAllowRemainder.getNumOccurrences() > 0) 254 UP.AllowRemainder = UnrollAllowRemainder; 255 if (UnrollRuntime.getNumOccurrences() > 0) 256 UP.Runtime = UnrollRuntime; 257 if (UnrollMaxUpperBound == 0) 258 UP.UpperBound = false; 259 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 260 UP.UnrollRemainder = UnrollUnrollRemainder; 261 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 262 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 263 264 // Apply user values provided by argument 265 if (UserThreshold) { 266 UP.Threshold = *UserThreshold; 267 UP.PartialThreshold = *UserThreshold; 268 } 269 if (UserCount) 270 UP.Count = *UserCount; 271 if (UserAllowPartial) 272 UP.Partial = *UserAllowPartial; 273 if (UserRuntime) 274 UP.Runtime = *UserRuntime; 275 if (UserUpperBound) 276 UP.UpperBound = *UserUpperBound; 277 if (UserFullUnrollMaxCount) 278 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 279 280 return UP; 281 } 282 283 namespace { 284 285 /// A struct to densely store the state of an instruction after unrolling at 286 /// each iteration. 287 /// 288 /// This is designed to work like a tuple of <Instruction *, int> for the 289 /// purposes of hashing and lookup, but to be able to associate two boolean 290 /// states with each key. 291 struct UnrolledInstState { 292 Instruction *I; 293 int Iteration : 30; 294 unsigned IsFree : 1; 295 unsigned IsCounted : 1; 296 }; 297 298 /// Hashing and equality testing for a set of the instruction states. 299 struct UnrolledInstStateKeyInfo { 300 using PtrInfo = DenseMapInfo<Instruction *>; 301 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 302 303 static inline UnrolledInstState getEmptyKey() { 304 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 305 } 306 307 static inline UnrolledInstState getTombstoneKey() { 308 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 309 } 310 311 static inline unsigned getHashValue(const UnrolledInstState &S) { 312 return PairInfo::getHashValue({S.I, S.Iteration}); 313 } 314 315 static inline bool isEqual(const UnrolledInstState &LHS, 316 const UnrolledInstState &RHS) { 317 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 318 } 319 }; 320 321 struct EstimatedUnrollCost { 322 /// The estimated cost after unrolling. 323 unsigned UnrolledCost; 324 325 /// The estimated dynamic cost of executing the instructions in the 326 /// rolled form. 327 unsigned RolledDynamicCost; 328 }; 329 330 struct PragmaInfo { 331 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 332 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 333 PragmaEnableUnroll(PEU) {} 334 const bool UserUnrollCount; 335 const bool PragmaFullUnroll; 336 const unsigned PragmaCount; 337 const bool PragmaEnableUnroll; 338 }; 339 340 } // end anonymous namespace 341 342 /// Figure out if the loop is worth full unrolling. 343 /// 344 /// Complete loop unrolling can make some loads constant, and we need to know 345 /// if that would expose any further optimization opportunities. This routine 346 /// estimates this optimization. It computes cost of unrolled loop 347 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 348 /// dynamic cost we mean that we won't count costs of blocks that are known not 349 /// to be executed (i.e. if we have a branch in the loop and we know that at the 350 /// given iteration its condition would be resolved to true, we won't add up the 351 /// cost of the 'false'-block). 352 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 353 /// the analysis failed (no benefits expected from the unrolling, or the loop is 354 /// too big to analyze), the returned value is std::nullopt. 355 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 356 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 357 const SmallPtrSetImpl<const Value *> &EphValues, 358 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 359 unsigned MaxIterationsCountToAnalyze) { 360 // We want to be able to scale offsets by the trip count and add more offsets 361 // to them without checking for overflows, and we already don't want to 362 // analyze *massive* trip counts, so we force the max to be reasonably small. 363 assert(MaxIterationsCountToAnalyze < 364 (unsigned)(std::numeric_limits<int>::max() / 2) && 365 "The unroll iterations max is too large!"); 366 367 // Only analyze inner loops. We can't properly estimate cost of nested loops 368 // and we won't visit inner loops again anyway. 369 if (!L->isInnermost()) 370 return std::nullopt; 371 372 // Don't simulate loops with a big or unknown tripcount 373 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 374 return std::nullopt; 375 376 SmallSetVector<BasicBlock *, 16> BBWorklist; 377 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 378 DenseMap<Value *, Value *> SimplifiedValues; 379 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 380 381 // The estimated cost of the unrolled form of the loop. We try to estimate 382 // this by simplifying as much as we can while computing the estimate. 383 InstructionCost UnrolledCost = 0; 384 385 // We also track the estimated dynamic (that is, actually executed) cost in 386 // the rolled form. This helps identify cases when the savings from unrolling 387 // aren't just exposing dead control flows, but actual reduced dynamic 388 // instructions due to the simplifications which we expect to occur after 389 // unrolling. 390 InstructionCost RolledDynamicCost = 0; 391 392 // We track the simplification of each instruction in each iteration. We use 393 // this to recursively merge costs into the unrolled cost on-demand so that 394 // we don't count the cost of any dead code. This is essentially a map from 395 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 396 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 397 398 // A small worklist used to accumulate cost of instructions from each 399 // observable and reached root in the loop. 400 SmallVector<Instruction *, 16> CostWorklist; 401 402 // PHI-used worklist used between iterations while accumulating cost. 403 SmallVector<Instruction *, 4> PHIUsedList; 404 405 // Helper function to accumulate cost for instructions in the loop. 406 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 407 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 408 assert(CostWorklist.empty() && "Must start with an empty cost list"); 409 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 410 CostWorklist.push_back(&RootI); 411 TargetTransformInfo::TargetCostKind CostKind = 412 RootI.getFunction()->hasMinSize() ? 413 TargetTransformInfo::TCK_CodeSize : 414 TargetTransformInfo::TCK_SizeAndLatency; 415 for (;; --Iteration) { 416 do { 417 Instruction *I = CostWorklist.pop_back_val(); 418 419 // InstCostMap only uses I and Iteration as a key, the other two values 420 // don't matter here. 421 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 422 if (CostIter == InstCostMap.end()) 423 // If an input to a PHI node comes from a dead path through the loop 424 // we may have no cost data for it here. What that actually means is 425 // that it is free. 426 continue; 427 auto &Cost = *CostIter; 428 if (Cost.IsCounted) 429 // Already counted this instruction. 430 continue; 431 432 // Mark that we are counting the cost of this instruction now. 433 Cost.IsCounted = true; 434 435 // If this is a PHI node in the loop header, just add it to the PHI set. 436 if (auto *PhiI = dyn_cast<PHINode>(I)) 437 if (PhiI->getParent() == L->getHeader()) { 438 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 439 "inherently simplify during unrolling."); 440 if (Iteration == 0) 441 continue; 442 443 // Push the incoming value from the backedge into the PHI used list 444 // if it is an in-loop instruction. We'll use this to populate the 445 // cost worklist for the next iteration (as we count backwards). 446 if (auto *OpI = dyn_cast<Instruction>( 447 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 448 if (L->contains(OpI)) 449 PHIUsedList.push_back(OpI); 450 continue; 451 } 452 453 // First accumulate the cost of this instruction. 454 if (!Cost.IsFree) { 455 // Consider simplified operands in instruction cost. 456 SmallVector<Value *, 4> Operands; 457 transform(I->operands(), std::back_inserter(Operands), 458 [&](Value *Op) { 459 if (auto Res = SimplifiedValues.lookup(Op)) 460 return Res; 461 return Op; 462 }); 463 UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind); 464 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 465 << Iteration << "): "); 466 LLVM_DEBUG(I->dump()); 467 } 468 469 // We must count the cost of every operand which is not free, 470 // recursively. If we reach a loop PHI node, simply add it to the set 471 // to be considered on the next iteration (backwards!). 472 for (Value *Op : I->operands()) { 473 // Check whether this operand is free due to being a constant or 474 // outside the loop. 475 auto *OpI = dyn_cast<Instruction>(Op); 476 if (!OpI || !L->contains(OpI)) 477 continue; 478 479 // Otherwise accumulate its cost. 480 CostWorklist.push_back(OpI); 481 } 482 } while (!CostWorklist.empty()); 483 484 if (PHIUsedList.empty()) 485 // We've exhausted the search. 486 break; 487 488 assert(Iteration > 0 && 489 "Cannot track PHI-used values past the first iteration!"); 490 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 491 PHIUsedList.clear(); 492 } 493 }; 494 495 // Ensure that we don't violate the loop structure invariants relied on by 496 // this analysis. 497 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 498 assert(L->isLCSSAForm(DT) && 499 "Must have loops in LCSSA form to track live-out values."); 500 501 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 502 503 TargetTransformInfo::TargetCostKind CostKind = 504 L->getHeader()->getParent()->hasMinSize() ? 505 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 506 // Simulate execution of each iteration of the loop counting instructions, 507 // which would be simplified. 508 // Since the same load will take different values on different iterations, 509 // we literally have to go through all loop's iterations. 510 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 511 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 512 513 // Prepare for the iteration by collecting any simplified entry or backedge 514 // inputs. 515 for (Instruction &I : *L->getHeader()) { 516 auto *PHI = dyn_cast<PHINode>(&I); 517 if (!PHI) 518 break; 519 520 // The loop header PHI nodes must have exactly two input: one from the 521 // loop preheader and one from the loop latch. 522 assert( 523 PHI->getNumIncomingValues() == 2 && 524 "Must have an incoming value only for the preheader and the latch."); 525 526 Value *V = PHI->getIncomingValueForBlock( 527 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 528 if (Iteration != 0 && SimplifiedValues.count(V)) 529 V = SimplifiedValues.lookup(V); 530 SimplifiedInputValues.push_back({PHI, V}); 531 } 532 533 // Now clear and re-populate the map for the next iteration. 534 SimplifiedValues.clear(); 535 while (!SimplifiedInputValues.empty()) 536 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 537 538 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 539 540 BBWorklist.clear(); 541 BBWorklist.insert(L->getHeader()); 542 // Note that we *must not* cache the size, this loop grows the worklist. 543 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 544 BasicBlock *BB = BBWorklist[Idx]; 545 546 // Visit all instructions in the given basic block and try to simplify 547 // it. We don't change the actual IR, just count optimization 548 // opportunities. 549 for (Instruction &I : *BB) { 550 // These won't get into the final code - don't even try calculating the 551 // cost for them. 552 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 553 continue; 554 555 // Track this instruction's expected baseline cost when executing the 556 // rolled loop form. 557 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind); 558 559 // Visit the instruction to analyze its loop cost after unrolling, 560 // and if the visitor returns true, mark the instruction as free after 561 // unrolling and continue. 562 bool IsFree = Analyzer.visit(I); 563 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 564 (unsigned)IsFree, 565 /*IsCounted*/ false}).second; 566 (void)Inserted; 567 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 568 569 if (IsFree) 570 continue; 571 572 // Can't properly model a cost of a call. 573 // FIXME: With a proper cost model we should be able to do it. 574 if (auto *CI = dyn_cast<CallInst>(&I)) { 575 const Function *Callee = CI->getCalledFunction(); 576 if (!Callee || TTI.isLoweredToCall(Callee)) { 577 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 578 return std::nullopt; 579 } 580 } 581 582 // If the instruction might have a side-effect recursively account for 583 // the cost of it and all the instructions leading up to it. 584 if (I.mayHaveSideEffects()) 585 AddCostRecursively(I, Iteration); 586 587 // If unrolled body turns out to be too big, bail out. 588 if (UnrolledCost > MaxUnrolledLoopSize) { 589 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 590 << " UnrolledCost: " << UnrolledCost 591 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 592 << "\n"); 593 return std::nullopt; 594 } 595 } 596 597 Instruction *TI = BB->getTerminator(); 598 599 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 600 if (SimplifiedValues.count(V)) 601 V = SimplifiedValues.lookup(V); 602 return dyn_cast<Constant>(V); 603 }; 604 605 // Add in the live successors by first checking whether we have terminator 606 // that may be simplified based on the values simplified by this call. 607 BasicBlock *KnownSucc = nullptr; 608 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 609 if (BI->isConditional()) { 610 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 611 // Just take the first successor if condition is undef 612 if (isa<UndefValue>(SimpleCond)) 613 KnownSucc = BI->getSuccessor(0); 614 else if (ConstantInt *SimpleCondVal = 615 dyn_cast<ConstantInt>(SimpleCond)) 616 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 617 } 618 } 619 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 620 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 621 // Just take the first successor if condition is undef 622 if (isa<UndefValue>(SimpleCond)) 623 KnownSucc = SI->getSuccessor(0); 624 else if (ConstantInt *SimpleCondVal = 625 dyn_cast<ConstantInt>(SimpleCond)) 626 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 627 } 628 } 629 if (KnownSucc) { 630 if (L->contains(KnownSucc)) 631 BBWorklist.insert(KnownSucc); 632 else 633 ExitWorklist.insert({BB, KnownSucc}); 634 continue; 635 } 636 637 // Add BB's successors to the worklist. 638 for (BasicBlock *Succ : successors(BB)) 639 if (L->contains(Succ)) 640 BBWorklist.insert(Succ); 641 else 642 ExitWorklist.insert({BB, Succ}); 643 AddCostRecursively(*TI, Iteration); 644 } 645 646 // If we found no optimization opportunities on the first iteration, we 647 // won't find them on later ones too. 648 if (UnrolledCost == RolledDynamicCost) { 649 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 650 << " UnrolledCost: " << UnrolledCost << "\n"); 651 return std::nullopt; 652 } 653 } 654 655 while (!ExitWorklist.empty()) { 656 BasicBlock *ExitingBB, *ExitBB; 657 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 658 659 for (Instruction &I : *ExitBB) { 660 auto *PN = dyn_cast<PHINode>(&I); 661 if (!PN) 662 break; 663 664 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 665 if (auto *OpI = dyn_cast<Instruction>(Op)) 666 if (L->contains(OpI)) 667 AddCostRecursively(*OpI, TripCount - 1); 668 } 669 } 670 671 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 672 "All instructions must have a valid cost, whether the " 673 "loop is rolled or unrolled."); 674 675 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 676 << "UnrolledCost: " << UnrolledCost << ", " 677 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 678 return {{unsigned(*UnrolledCost.getValue()), 679 unsigned(*RolledDynamicCost.getValue())}}; 680 } 681 682 UnrollCostEstimator::UnrollCostEstimator( 683 const Loop *L, const TargetTransformInfo &TTI, 684 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 685 CodeMetrics Metrics; 686 for (BasicBlock *BB : L->blocks()) 687 Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false, 688 L); 689 NumInlineCandidates = Metrics.NumInlineCandidates; 690 NotDuplicatable = Metrics.notDuplicatable; 691 Convergence = Metrics.Convergence; 692 LoopSize = Metrics.NumInsts; 693 ConvergenceAllowsRuntime = 694 Metrics.Convergence != ConvergenceKind::Uncontrolled && 695 !getLoopConvergenceHeart(L); 696 697 // Don't allow an estimate of size zero. This would allows unrolling of loops 698 // with huge iteration counts, which is a compile time problem even if it's 699 // not a problem for code quality. Also, the code using this size may assume 700 // that each loop has at least three instructions (likely a conditional 701 // branch, a comparison feeding that branch, and some kind of loop increment 702 // feeding that comparison instruction). 703 if (LoopSize.isValid() && LoopSize < BEInsns + 1) 704 // This is an open coded max() on InstructionCost 705 LoopSize = BEInsns + 1; 706 } 707 708 bool UnrollCostEstimator::canUnroll() const { 709 switch (Convergence) { 710 case ConvergenceKind::ExtendedLoop: 711 LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n"); 712 return false; 713 default: 714 break; 715 } 716 if (!LoopSize.isValid()) { 717 LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n"); 718 return false; 719 } 720 if (NotDuplicatable) { 721 LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n"); 722 return false; 723 } 724 return true; 725 } 726 727 uint64_t UnrollCostEstimator::getUnrolledLoopSize( 728 const TargetTransformInfo::UnrollingPreferences &UP, 729 unsigned CountOverwrite) const { 730 unsigned LS = *LoopSize.getValue(); 731 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 732 if (CountOverwrite) 733 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; 734 else 735 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; 736 } 737 738 // Returns the loop hint metadata node with the given name (for example, 739 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 740 // returned. 741 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 742 if (MDNode *LoopID = L->getLoopID()) 743 return GetUnrollMetadata(LoopID, Name); 744 return nullptr; 745 } 746 747 // Returns true if the loop has an unroll(full) pragma. 748 static bool hasUnrollFullPragma(const Loop *L) { 749 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 750 } 751 752 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 753 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 754 static bool hasUnrollEnablePragma(const Loop *L) { 755 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 756 } 757 758 // Returns true if the loop has an runtime unroll(disable) pragma. 759 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 760 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 761 } 762 763 // If loop has an unroll_count pragma return the (necessarily 764 // positive) value from the pragma. Otherwise return 0. 765 static unsigned unrollCountPragmaValue(const Loop *L) { 766 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 767 if (MD) { 768 assert(MD->getNumOperands() == 2 && 769 "Unroll count hint metadata should have two operands."); 770 unsigned Count = 771 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 772 assert(Count >= 1 && "Unroll count must be positive."); 773 return Count; 774 } 775 return 0; 776 } 777 778 // Computes the boosting factor for complete unrolling. 779 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 780 // be beneficial to fully unroll the loop even if unrolledcost is large. We 781 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 782 // the unroll threshold. 783 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 784 unsigned MaxPercentThresholdBoost) { 785 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 786 return 100; 787 else if (Cost.UnrolledCost != 0) 788 // The boosting factor is RolledDynamicCost / UnrolledCost 789 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 790 MaxPercentThresholdBoost); 791 else 792 return MaxPercentThresholdBoost; 793 } 794 795 static std::optional<unsigned> 796 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 797 const unsigned TripMultiple, const unsigned TripCount, 798 unsigned MaxTripCount, const UnrollCostEstimator UCE, 799 const TargetTransformInfo::UnrollingPreferences &UP) { 800 801 // Using unroll pragma 802 // 1st priority is unroll count set by "unroll-count" option. 803 804 if (PInfo.UserUnrollCount) { 805 if (UP.AllowRemainder && 806 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 807 return (unsigned)UnrollCount; 808 } 809 810 // 2nd priority is unroll count set by pragma. 811 if (PInfo.PragmaCount > 0) { 812 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) 813 return PInfo.PragmaCount; 814 } 815 816 if (PInfo.PragmaFullUnroll && TripCount != 0) { 817 // Certain cases with UBSAN can cause trip count to be calculated as 818 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler 819 // doesn't hang trying to unroll the loop. See PR77842 820 if (TripCount > PragmaUnrollFullMaxIterations) { 821 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n"); 822 return std::nullopt; 823 } 824 825 return TripCount; 826 } 827 828 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && 829 MaxTripCount <= UP.MaxUpperBound) 830 return MaxTripCount; 831 832 // if didn't return until here, should continue to other priorties 833 return std::nullopt; 834 } 835 836 static std::optional<unsigned> shouldFullUnroll( 837 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 838 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 839 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 840 const TargetTransformInfo::UnrollingPreferences &UP) { 841 assert(FullUnrollTripCount && "should be non-zero!"); 842 843 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 844 return std::nullopt; 845 846 // When computing the unrolled size, note that BEInsns are not replicated 847 // like the rest of the loop body. 848 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 849 return FullUnrollTripCount; 850 851 // The loop isn't that small, but we still can fully unroll it if that 852 // helps to remove a significant number of instructions. 853 // To check that, run additional analysis on the loop. 854 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 855 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 856 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 857 UP.MaxIterationsCountToAnalyze)) { 858 unsigned Boost = 859 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 860 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 861 return FullUnrollTripCount; 862 } 863 return std::nullopt; 864 } 865 866 static std::optional<unsigned> 867 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 868 const UnrollCostEstimator UCE, 869 const TargetTransformInfo::UnrollingPreferences &UP) { 870 871 if (!TripCount) 872 return std::nullopt; 873 874 if (!UP.Partial) { 875 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 876 << "-unroll-allow-partial not given\n"); 877 return 0; 878 } 879 unsigned count = UP.Count; 880 if (count == 0) 881 count = TripCount; 882 if (UP.PartialThreshold != NoThreshold) { 883 // Reduce unroll count to be modulo of TripCount for partial unrolling. 884 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 885 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 886 (LoopSize - UP.BEInsns); 887 if (count > UP.MaxCount) 888 count = UP.MaxCount; 889 while (count != 0 && TripCount % count != 0) 890 count--; 891 if (UP.AllowRemainder && count <= 1) { 892 // If there is no Count that is modulo of TripCount, set Count to 893 // largest power-of-two factor that satisfies the threshold limit. 894 // As we'll create fixup loop, do the type of unrolling only if 895 // remainder loop is allowed. 896 count = UP.DefaultUnrollRuntimeCount; 897 while (count != 0 && 898 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 899 count >>= 1; 900 } 901 if (count < 2) { 902 count = 0; 903 } 904 } else { 905 count = TripCount; 906 } 907 if (count > UP.MaxCount) 908 count = UP.MaxCount; 909 910 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 911 912 return count; 913 } 914 // Returns true if unroll count was set explicitly. 915 // Calculates unroll count and writes it to UP.Count. 916 // Unless IgnoreUser is true, will also use metadata and command-line options 917 // that are specific to to the LoopUnroll pass (which, for instance, are 918 // irrelevant for the LoopUnrollAndJam pass). 919 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 920 // many LoopUnroll-specific options. The shared functionality should be 921 // refactored into it own function. 922 bool llvm::computeUnrollCount( 923 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 924 AssumptionCache *AC, ScalarEvolution &SE, 925 const SmallPtrSetImpl<const Value *> &EphValues, 926 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 927 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, 928 TargetTransformInfo::UnrollingPreferences &UP, 929 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 930 931 unsigned LoopSize = UCE.getRolledLoopSize(); 932 933 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 934 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 935 const unsigned PragmaCount = unrollCountPragmaValue(L); 936 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 937 938 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 939 PragmaEnableUnroll || UserUnrollCount; 940 941 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 942 PragmaEnableUnroll); 943 // Use an explicit peel count that has been specified for testing. In this 944 // case it's not permitted to also specify an explicit unroll count. 945 if (PP.PeelCount) { 946 if (UnrollCount.getNumOccurrences() > 0) { 947 report_fatal_error("Cannot specify both explicit peel count and " 948 "explicit unroll count", /*GenCrashDiag=*/false); 949 } 950 UP.Count = 1; 951 UP.Runtime = false; 952 return true; 953 } 954 // Check for explicit Count. 955 // 1st priority is unroll count set by "unroll-count" option. 956 // 2nd priority is unroll count set by pragma. 957 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 958 MaxTripCount, UCE, UP)) { 959 UP.Count = *UnrollFactor; 960 961 if (UserUnrollCount || (PragmaCount > 0)) { 962 UP.AllowExpensiveTripCount = true; 963 UP.Force = true; 964 } 965 UP.Runtime |= (PragmaCount > 0); 966 return ExplicitUnroll; 967 } else { 968 if (ExplicitUnroll && TripCount != 0) { 969 // If the loop has an unrolling pragma, we want to be more aggressive with 970 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 971 // value which is larger than the default limits. 972 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 973 UP.PartialThreshold = 974 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 975 } 976 } 977 978 // 3rd priority is exact full unrolling. This will eliminate all copies 979 // of some exit test. 980 UP.Count = 0; 981 if (TripCount) { 982 UP.Count = TripCount; 983 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 984 TripCount, UCE, UP)) { 985 UP.Count = *UnrollFactor; 986 UseUpperBound = false; 987 return ExplicitUnroll; 988 } 989 } 990 991 // 4th priority is bounded unrolling. 992 // We can unroll by the upper bound amount if it's generally allowed or if 993 // we know that the loop is executed either the upper bound or zero times. 994 // (MaxOrZero unrolling keeps only the first loop test, so the number of 995 // loop tests remains the same compared to the non-unrolled version, whereas 996 // the generic upper bound unrolling keeps all but the last loop test so the 997 // number of loop tests goes up which may end up being worse on targets with 998 // constrained branch predictor resources so is controlled by an option.) 999 // In addition we only unroll small upper bounds. 1000 // Note that the cost of bounded unrolling is always strictly greater than 1001 // cost of exact full unrolling. As such, if we have an exact count and 1002 // found it unprofitable, we'll never chose to bounded unroll. 1003 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 1004 MaxTripCount <= UP.MaxUpperBound) { 1005 UP.Count = MaxTripCount; 1006 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 1007 MaxTripCount, UCE, UP)) { 1008 UP.Count = *UnrollFactor; 1009 UseUpperBound = true; 1010 return ExplicitUnroll; 1011 } 1012 } 1013 1014 // 5th priority is loop peeling. 1015 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold); 1016 if (PP.PeelCount) { 1017 UP.Runtime = false; 1018 UP.Count = 1; 1019 return ExplicitUnroll; 1020 } 1021 1022 // Before starting partial unrolling, set up.partial to true, 1023 // if user explicitly asked for unrolling 1024 if (TripCount) 1025 UP.Partial |= ExplicitUnroll; 1026 1027 // 6th priority is partial unrolling. 1028 // Try partial unroll only when TripCount could be statically calculated. 1029 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 1030 UP.Count = *UnrollFactor; 1031 1032 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 1033 UP.Count != TripCount) 1034 ORE->emit([&]() { 1035 return OptimizationRemarkMissed(DEBUG_TYPE, 1036 "FullUnrollAsDirectedTooLarge", 1037 L->getStartLoc(), L->getHeader()) 1038 << "Unable to fully unroll loop as directed by unroll pragma " 1039 "because " 1040 "unrolled size is too large."; 1041 }); 1042 1043 if (UP.PartialThreshold != NoThreshold) { 1044 if (UP.Count == 0) { 1045 if (PragmaEnableUnroll) 1046 ORE->emit([&]() { 1047 return OptimizationRemarkMissed(DEBUG_TYPE, 1048 "UnrollAsDirectedTooLarge", 1049 L->getStartLoc(), L->getHeader()) 1050 << "Unable to unroll loop as directed by unroll(enable) " 1051 "pragma " 1052 "because unrolled size is too large."; 1053 }); 1054 } 1055 } 1056 return ExplicitUnroll; 1057 } 1058 assert(TripCount == 0 && 1059 "All cases when TripCount is constant should be covered here."); 1060 if (PragmaFullUnroll) 1061 ORE->emit([&]() { 1062 return OptimizationRemarkMissed( 1063 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1064 L->getStartLoc(), L->getHeader()) 1065 << "Unable to fully unroll loop as directed by unroll(full) " 1066 "pragma " 1067 "because loop has a runtime trip count."; 1068 }); 1069 1070 // 7th priority is runtime unrolling. 1071 // Don't unroll a runtime trip count loop when it is disabled. 1072 if (hasRuntimeUnrollDisablePragma(L)) { 1073 UP.Count = 0; 1074 return false; 1075 } 1076 1077 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1078 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { 1079 UP.Count = 0; 1080 return false; 1081 } 1082 1083 // Check if the runtime trip count is too small when profile is available. 1084 if (L->getHeader()->getParent()->hasProfileData()) { 1085 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1086 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1087 return false; 1088 else 1089 UP.AllowExpensiveTripCount = true; 1090 } 1091 } 1092 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1093 if (!UP.Runtime) { 1094 LLVM_DEBUG( 1095 dbgs() << " will not try to unroll loop with runtime trip count " 1096 << "-unroll-runtime not given\n"); 1097 UP.Count = 0; 1098 return false; 1099 } 1100 if (UP.Count == 0) 1101 UP.Count = UP.DefaultUnrollRuntimeCount; 1102 1103 // Reduce unroll count to be the largest power-of-two factor of 1104 // the original count which satisfies the threshold limit. 1105 while (UP.Count != 0 && 1106 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1107 UP.Count >>= 1; 1108 1109 #ifndef NDEBUG 1110 unsigned OrigCount = UP.Count; 1111 #endif 1112 1113 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1114 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1115 UP.Count >>= 1; 1116 LLVM_DEBUG( 1117 dbgs() << "Remainder loop is restricted (that could architecture " 1118 "specific or because the loop contains a convergent " 1119 "instruction), so unroll count must divide the trip " 1120 "multiple, " 1121 << TripMultiple << ". Reducing unroll count from " << OrigCount 1122 << " to " << UP.Count << ".\n"); 1123 1124 using namespace ore; 1125 1126 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1127 ORE->emit([&]() { 1128 return OptimizationRemarkMissed(DEBUG_TYPE, 1129 "DifferentUnrollCountFromDirected", 1130 L->getStartLoc(), L->getHeader()) 1131 << "Unable to unroll loop the number of times directed by " 1132 "unroll_count pragma because remainder loop is restricted " 1133 "(that could architecture specific or because the loop " 1134 "contains a convergent instruction) and so must have an " 1135 "unroll " 1136 "count that divides the loop trip multiple of " 1137 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1138 << NV("UnrollCount", UP.Count) << " time(s)."; 1139 }); 1140 } 1141 1142 if (UP.Count > UP.MaxCount) 1143 UP.Count = UP.MaxCount; 1144 1145 if (MaxTripCount && UP.Count > MaxTripCount) 1146 UP.Count = MaxTripCount; 1147 1148 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1149 << "\n"); 1150 if (UP.Count < 2) 1151 UP.Count = 0; 1152 return ExplicitUnroll; 1153 } 1154 1155 static LoopUnrollResult 1156 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1157 const TargetTransformInfo &TTI, AssumptionCache &AC, 1158 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1159 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1160 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, 1161 std::optional<unsigned> ProvidedCount, 1162 std::optional<unsigned> ProvidedThreshold, 1163 std::optional<bool> ProvidedAllowPartial, 1164 std::optional<bool> ProvidedRuntime, 1165 std::optional<bool> ProvidedUpperBound, 1166 std::optional<bool> ProvidedAllowPeeling, 1167 std::optional<bool> ProvidedAllowProfileBasedPeeling, 1168 std::optional<unsigned> ProvidedFullUnrollMaxCount, 1169 AAResults *AA = nullptr) { 1170 1171 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1172 << L->getHeader()->getParent()->getName() << "] Loop %" 1173 << L->getHeader()->getName() << "\n"); 1174 TransformationMode TM = hasUnrollTransformation(L); 1175 if (TM & TM_Disable) 1176 return LoopUnrollResult::Unmodified; 1177 1178 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1179 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1180 // automatic unrolling from interfering with the user requested 1181 // transformation. 1182 Loop *ParentL = L->getParentLoop(); 1183 if (ParentL != nullptr && 1184 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1185 hasUnrollTransformation(L) != TM_ForcedByUser) { 1186 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1187 << " llvm.loop.unroll_and_jam.\n"); 1188 return LoopUnrollResult::Unmodified; 1189 } 1190 1191 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1192 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1193 // unrolling from interfering with the user requested transformation. 1194 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1195 hasUnrollTransformation(L) != TM_ForcedByUser) { 1196 LLVM_DEBUG( 1197 dbgs() 1198 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1199 return LoopUnrollResult::Unmodified; 1200 } 1201 1202 if (!L->isLoopSimplifyForm()) { 1203 LLVM_DEBUG( 1204 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1205 return LoopUnrollResult::Unmodified; 1206 } 1207 1208 // When automatic unrolling is disabled, do not unroll unless overridden for 1209 // this loop. 1210 if (OnlyWhenForced && !(TM & TM_Enable)) 1211 return LoopUnrollResult::Unmodified; 1212 1213 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1214 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1215 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1216 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1217 ProvidedFullUnrollMaxCount); 1218 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1219 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1220 1221 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1222 // as threshold later on. 1223 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1224 !OptForSize) 1225 return LoopUnrollResult::Unmodified; 1226 1227 SmallPtrSet<const Value *, 32> EphValues; 1228 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1229 1230 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); 1231 if (!UCE.canUnroll()) { 1232 LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n"); 1233 return LoopUnrollResult::Unmodified; 1234 } 1235 1236 unsigned LoopSize = UCE.getRolledLoopSize(); 1237 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1238 1239 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1240 // later), to (fully) unroll loops, if it does not increase code size. 1241 if (OptForSize) 1242 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1243 1244 if (UCE.NumInlineCandidates != 0) { 1245 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1246 return LoopUnrollResult::Unmodified; 1247 } 1248 1249 // Find the smallest exact trip count for any exit. This is an upper bound 1250 // on the loop trip count, but an exit at an earlier iteration is still 1251 // possible. An unroll by the smallest exact trip count guarantees that all 1252 // branches relating to at least one exit can be eliminated. This is unlike 1253 // the max trip count, which only guarantees that the backedge can be broken. 1254 unsigned TripCount = 0; 1255 unsigned TripMultiple = 1; 1256 SmallVector<BasicBlock *, 8> ExitingBlocks; 1257 L->getExitingBlocks(ExitingBlocks); 1258 for (BasicBlock *ExitingBlock : ExitingBlocks) 1259 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1260 if (!TripCount || TC < TripCount) 1261 TripCount = TripMultiple = TC; 1262 1263 if (!TripCount) { 1264 // If no exact trip count is known, determine the trip multiple of either 1265 // the loop latch or the single exiting block. 1266 // TODO: Relax for multiple exits. 1267 BasicBlock *ExitingBlock = L->getLoopLatch(); 1268 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1269 ExitingBlock = L->getExitingBlock(); 1270 if (ExitingBlock) 1271 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1272 } 1273 1274 // If the loop contains a convergent operation, the prelude we'd add 1275 // to do the first few instructions before we hit the unrolled loop 1276 // is unsafe -- it adds a control-flow dependency to the convergent 1277 // operation. Therefore restrict remainder loop (try unrolling without). 1278 // 1279 // TODO: This is somewhat conservative; we could allow the remainder if the 1280 // trip count is uniform. 1281 UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime; 1282 1283 // Try to find the trip count upper bound if we cannot find the exact trip 1284 // count. 1285 unsigned MaxTripCount = 0; 1286 bool MaxOrZero = false; 1287 if (!TripCount) { 1288 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1289 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1290 } 1291 1292 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1293 // fully unroll the loop. 1294 bool UseUpperBound = false; 1295 bool IsCountSetExplicitly = computeUnrollCount( 1296 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, 1297 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); 1298 if (!UP.Count) 1299 return LoopUnrollResult::Unmodified; 1300 1301 UP.Runtime &= UCE.ConvergenceAllowsRuntime; 1302 1303 if (PP.PeelCount) { 1304 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1305 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1306 << " with iteration count " << PP.PeelCount << "!\n"); 1307 ORE.emit([&]() { 1308 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1309 L->getHeader()) 1310 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1311 << " iterations"; 1312 }); 1313 1314 ValueToValueMapTy VMap; 1315 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) { 1316 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI, nullptr); 1317 // If the loop was peeled, we already "used up" the profile information 1318 // we had, so we don't want to unroll or peel again. 1319 if (PP.PeelProfiledIterations) 1320 L->setLoopAlreadyUnrolled(); 1321 return LoopUnrollResult::PartiallyUnrolled; 1322 } 1323 return LoopUnrollResult::Unmodified; 1324 } 1325 1326 // Do not attempt partial/runtime unrolling in FullLoopUnrolling 1327 if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { 1328 LLVM_DEBUG( 1329 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n"); 1330 return LoopUnrollResult::Unmodified; 1331 } 1332 1333 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1334 // However, we only want to actually perform it if we don't know the trip 1335 // count and the unroll count doesn't divide the known trip multiple. 1336 // TODO: This decision should probably be pushed up into 1337 // computeUnrollCount(). 1338 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1339 1340 // Save loop properties before it is transformed. 1341 MDNode *OrigLoopID = L->getLoopID(); 1342 1343 // Unroll the loop. 1344 Loop *RemainderLoop = nullptr; 1345 UnrollLoopOptions ULO; 1346 ULO.Count = UP.Count; 1347 ULO.Force = UP.Force; 1348 ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount; 1349 ULO.UnrollRemainder = UP.UnrollRemainder; 1350 ULO.Runtime = UP.Runtime; 1351 ULO.ForgetAllSCEV = ForgetAllSCEV; 1352 ULO.Heart = getLoopConvergenceHeart(L); 1353 LoopUnrollResult UnrollResult = UnrollLoop( 1354 L, ULO, LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop, AA); 1355 if (UnrollResult == LoopUnrollResult::Unmodified) 1356 return LoopUnrollResult::Unmodified; 1357 1358 if (RemainderLoop) { 1359 std::optional<MDNode *> RemainderLoopID = 1360 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1361 LLVMLoopUnrollFollowupRemainder}); 1362 if (RemainderLoopID) 1363 RemainderLoop->setLoopID(*RemainderLoopID); 1364 } 1365 1366 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1367 std::optional<MDNode *> NewLoopID = 1368 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1369 LLVMLoopUnrollFollowupUnrolled}); 1370 if (NewLoopID) { 1371 L->setLoopID(*NewLoopID); 1372 1373 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1374 // explicitly. 1375 return UnrollResult; 1376 } 1377 } 1378 1379 // If loop has an unroll count pragma or unrolled by explicitly set count 1380 // mark loop as unrolled to prevent unrolling beyond that requested. 1381 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1382 L->setLoopAlreadyUnrolled(); 1383 1384 return UnrollResult; 1385 } 1386 1387 namespace { 1388 1389 class LoopUnroll : public LoopPass { 1390 public: 1391 static char ID; // Pass ID, replacement for typeid 1392 1393 int OptLevel; 1394 1395 /// If false, use a cost model to determine whether unrolling of a loop is 1396 /// profitable. If true, only loops that explicitly request unrolling via 1397 /// metadata are considered. All other loops are skipped. 1398 bool OnlyWhenForced; 1399 1400 /// If false, when SCEV is invalidated, only forget everything in the 1401 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1402 /// Otherwise, forgetAllLoops and rebuild when needed next. 1403 bool ForgetAllSCEV; 1404 1405 std::optional<unsigned> ProvidedCount; 1406 std::optional<unsigned> ProvidedThreshold; 1407 std::optional<bool> ProvidedAllowPartial; 1408 std::optional<bool> ProvidedRuntime; 1409 std::optional<bool> ProvidedUpperBound; 1410 std::optional<bool> ProvidedAllowPeeling; 1411 std::optional<bool> ProvidedAllowProfileBasedPeeling; 1412 std::optional<unsigned> ProvidedFullUnrollMaxCount; 1413 1414 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1415 bool ForgetAllSCEV = false, 1416 std::optional<unsigned> Threshold = std::nullopt, 1417 std::optional<unsigned> Count = std::nullopt, 1418 std::optional<bool> AllowPartial = std::nullopt, 1419 std::optional<bool> Runtime = std::nullopt, 1420 std::optional<bool> UpperBound = std::nullopt, 1421 std::optional<bool> AllowPeeling = std::nullopt, 1422 std::optional<bool> AllowProfileBasedPeeling = std::nullopt, 1423 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) 1424 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1425 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1426 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1427 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1428 ProvidedAllowPeeling(AllowPeeling), 1429 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1430 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1431 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1432 } 1433 1434 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1435 if (skipLoop(L)) 1436 return false; 1437 1438 Function &F = *L->getHeader()->getParent(); 1439 1440 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1441 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1442 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1443 const TargetTransformInfo &TTI = 1444 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1445 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1446 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1447 // pass. Function analyses need to be preserved across loop transformations 1448 // but ORE cannot be preserved (see comment before the pass definition). 1449 OptimizationRemarkEmitter ORE(&F); 1450 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1451 1452 LoopUnrollResult Result = tryToUnrollLoop( 1453 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1454 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, 1455 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1456 ProvidedUpperBound, ProvidedAllowPeeling, 1457 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); 1458 1459 if (Result == LoopUnrollResult::FullyUnrolled) 1460 LPM.markLoopAsDeleted(*L); 1461 1462 return Result != LoopUnrollResult::Unmodified; 1463 } 1464 1465 /// This transformation requires natural loop information & requires that 1466 /// loop preheaders be inserted into the CFG... 1467 void getAnalysisUsage(AnalysisUsage &AU) const override { 1468 AU.addRequired<AssumptionCacheTracker>(); 1469 AU.addRequired<TargetTransformInfoWrapperPass>(); 1470 // FIXME: Loop passes are required to preserve domtree, and for now we just 1471 // recreate dom info if anything gets unrolled. 1472 getLoopAnalysisUsage(AU); 1473 } 1474 }; 1475 1476 } // end anonymous namespace 1477 1478 char LoopUnroll::ID = 0; 1479 1480 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1481 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1482 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1483 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1484 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1485 1486 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1487 bool ForgetAllSCEV, int Threshold, int Count, 1488 int AllowPartial, int Runtime, int UpperBound, 1489 int AllowPeeling) { 1490 // TODO: It would make more sense for this function to take the optionals 1491 // directly, but that's dangerous since it would silently break out of tree 1492 // callers. 1493 return new LoopUnroll( 1494 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1495 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), 1496 Count == -1 ? std::nullopt : std::optional<unsigned>(Count), 1497 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), 1498 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), 1499 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), 1500 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); 1501 } 1502 1503 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1504 LoopStandardAnalysisResults &AR, 1505 LPMUpdater &Updater) { 1506 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1507 // pass. Function analyses need to be preserved across loop transformations 1508 // but ORE cannot be preserved (see comment before the pass definition). 1509 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1510 1511 // Keep track of the previous loop structure so we can identify new loops 1512 // created by unrolling. 1513 Loop *ParentL = L.getParentLoop(); 1514 SmallPtrSet<Loop *, 4> OldLoops; 1515 if (ParentL) 1516 OldLoops.insert(ParentL->begin(), ParentL->end()); 1517 else 1518 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1519 1520 std::string LoopName = std::string(L.getName()); 1521 1522 bool Changed = 1523 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1524 /*BFI*/ nullptr, /*PSI*/ nullptr, 1525 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, 1526 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt, 1527 /*Threshold*/ std::nullopt, /*AllowPartial*/ false, 1528 /*Runtime*/ false, /*UpperBound*/ false, 1529 /*AllowPeeling*/ true, 1530 /*AllowProfileBasedPeeling*/ false, 1531 /*FullUnrollMaxCount*/ std::nullopt) != 1532 LoopUnrollResult::Unmodified; 1533 if (!Changed) 1534 return PreservedAnalyses::all(); 1535 1536 // The parent must not be damaged by unrolling! 1537 #ifndef NDEBUG 1538 if (ParentL) 1539 ParentL->verifyLoop(); 1540 #endif 1541 1542 // Unrolling can do several things to introduce new loops into a loop nest: 1543 // - Full unrolling clones child loops within the current loop but then 1544 // removes the current loop making all of the children appear to be new 1545 // sibling loops. 1546 // 1547 // When a new loop appears as a sibling loop after fully unrolling, 1548 // its nesting structure has fundamentally changed and we want to revisit 1549 // it to reflect that. 1550 // 1551 // When unrolling has removed the current loop, we need to tell the 1552 // infrastructure that it is gone. 1553 // 1554 // Finally, we support a debugging/testing mode where we revisit child loops 1555 // as well. These are not expected to require further optimizations as either 1556 // they or the loop they were cloned from have been directly visited already. 1557 // But the debugging mode allows us to check this assumption. 1558 bool IsCurrentLoopValid = false; 1559 SmallVector<Loop *, 4> SibLoops; 1560 if (ParentL) 1561 SibLoops.append(ParentL->begin(), ParentL->end()); 1562 else 1563 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1564 erase_if(SibLoops, [&](Loop *SibLoop) { 1565 if (SibLoop == &L) { 1566 IsCurrentLoopValid = true; 1567 return true; 1568 } 1569 1570 // Otherwise erase the loop from the list if it was in the old loops. 1571 return OldLoops.contains(SibLoop); 1572 }); 1573 Updater.addSiblingLoops(SibLoops); 1574 1575 if (!IsCurrentLoopValid) { 1576 Updater.markLoopAsDeleted(L, LoopName); 1577 } else { 1578 // We can only walk child loops if the current loop remained valid. 1579 if (UnrollRevisitChildLoops) { 1580 // Walk *all* of the child loops. 1581 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1582 Updater.addChildLoops(ChildLoops); 1583 } 1584 } 1585 1586 return getLoopPassPreservedAnalyses(); 1587 } 1588 1589 PreservedAnalyses LoopUnrollPass::run(Function &F, 1590 FunctionAnalysisManager &AM) { 1591 auto &LI = AM.getResult<LoopAnalysis>(F); 1592 // There are no loops in the function. Return before computing other expensive 1593 // analyses. 1594 if (LI.empty()) 1595 return PreservedAnalyses::all(); 1596 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1597 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1598 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1599 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1600 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1601 AAResults &AA = AM.getResult<AAManager>(F); 1602 1603 LoopAnalysisManager *LAM = nullptr; 1604 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1605 LAM = &LAMProxy->getManager(); 1606 1607 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1608 ProfileSummaryInfo *PSI = 1609 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1610 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1611 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1612 1613 bool Changed = false; 1614 1615 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1616 // Since simplification may add new inner loops, it has to run before the 1617 // legality and profitability checks. This means running the loop unroller 1618 // will simplify all loops, regardless of whether anything end up being 1619 // unrolled. 1620 for (const auto &L : LI) { 1621 Changed |= 1622 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1623 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1624 } 1625 1626 // Add the loop nests in the reverse order of LoopInfo. See method 1627 // declaration. 1628 SmallPriorityWorklist<Loop *, 4> Worklist; 1629 appendLoopsToWorklist(LI, Worklist); 1630 1631 while (!Worklist.empty()) { 1632 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1633 // from back to front so that we work forward across the CFG, which 1634 // for unrolling is only needed to get optimization remarks emitted in 1635 // a forward order. 1636 Loop &L = *Worklist.pop_back_val(); 1637 #ifndef NDEBUG 1638 Loop *ParentL = L.getParentLoop(); 1639 #endif 1640 1641 // Check if the profile summary indicates that the profiled application 1642 // has a huge working set size, in which case we disable peeling to avoid 1643 // bloating it further. 1644 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1645 if (PSI && PSI->hasHugeWorkingSetSize()) 1646 LocalAllowPeeling = false; 1647 std::string LoopName = std::string(L.getName()); 1648 // The API here is quite complex to call and we allow to select some 1649 // flavors of unrolling during construction time (by setting UnrollOpts). 1650 LoopUnrollResult Result = tryToUnrollLoop( 1651 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1652 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, 1653 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV, 1654 /*Count*/ std::nullopt, 1655 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial, 1656 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1657 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount, 1658 &AA); 1659 Changed |= Result != LoopUnrollResult::Unmodified; 1660 1661 // The parent must not be damaged by unrolling! 1662 #ifndef NDEBUG 1663 if (Result != LoopUnrollResult::Unmodified && ParentL) 1664 ParentL->verifyLoop(); 1665 #endif 1666 1667 // Clear any cached analysis results for L if we removed it completely. 1668 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1669 LAM->clear(L, LoopName); 1670 } 1671 1672 if (!Changed) 1673 return PreservedAnalyses::all(); 1674 1675 return getLoopPassPreservedAnalyses(); 1676 } 1677 1678 void LoopUnrollPass::printPipeline( 1679 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1680 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1681 OS, MapClassName2PassName); 1682 OS << '<'; 1683 if (UnrollOpts.AllowPartial != std::nullopt) 1684 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;"; 1685 if (UnrollOpts.AllowPeeling != std::nullopt) 1686 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;"; 1687 if (UnrollOpts.AllowRuntime != std::nullopt) 1688 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;"; 1689 if (UnrollOpts.AllowUpperBound != std::nullopt) 1690 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;"; 1691 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) 1692 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-") 1693 << "profile-peeling;"; 1694 if (UnrollOpts.FullUnrollMaxCount != std::nullopt) 1695 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; 1696 OS << 'O' << UnrollOpts.OptLevel; 1697 OS << '>'; 1698 } 1699