xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
188     OptimizationRemarkEmitter &ORE, int OptLevel,
189     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
190     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
191     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
192   TargetTransformInfo::UnrollingPreferences UP;
193 
194   // Set up the defaults
195   UP.Threshold =
196       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
197   UP.MaxPercentThresholdBoost = 400;
198   UP.OptSizeThreshold = UnrollOptSizeThreshold;
199   UP.PartialThreshold = 150;
200   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
201   UP.Count = 0;
202   UP.DefaultUnrollRuntimeCount = 8;
203   UP.MaxCount = std::numeric_limits<unsigned>::max();
204   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
205   UP.BEInsns = 2;
206   UP.Partial = false;
207   UP.Runtime = false;
208   UP.AllowRemainder = true;
209   UP.UnrollRemainder = false;
210   UP.AllowExpensiveTripCount = false;
211   UP.Force = false;
212   UP.UpperBound = false;
213   UP.UnrollAndJam = false;
214   UP.UnrollAndJamInnerLoopThreshold = 60;
215   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
216 
217   // Override with any target specific settings
218   TTI.getUnrollingPreferences(L, SE, UP, &ORE);
219 
220   // Apply size attributes
221   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
222                     // Let unroll hints / pragmas take precedence over PGSO.
223                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
224                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
225                                                  PGSOQueryType::IRPass));
226   if (OptForSize) {
227     UP.Threshold = UP.OptSizeThreshold;
228     UP.PartialThreshold = UP.PartialOptSizeThreshold;
229     UP.MaxPercentThresholdBoost = 100;
230   }
231 
232   // Apply any user values specified by cl::opt
233   if (UnrollThreshold.getNumOccurrences() > 0)
234     UP.Threshold = UnrollThreshold;
235   if (UnrollPartialThreshold.getNumOccurrences() > 0)
236     UP.PartialThreshold = UnrollPartialThreshold;
237   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
238     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
239   if (UnrollMaxCount.getNumOccurrences() > 0)
240     UP.MaxCount = UnrollMaxCount;
241   if (UnrollFullMaxCount.getNumOccurrences() > 0)
242     UP.FullUnrollMaxCount = UnrollFullMaxCount;
243   if (UnrollAllowPartial.getNumOccurrences() > 0)
244     UP.Partial = UnrollAllowPartial;
245   if (UnrollAllowRemainder.getNumOccurrences() > 0)
246     UP.AllowRemainder = UnrollAllowRemainder;
247   if (UnrollRuntime.getNumOccurrences() > 0)
248     UP.Runtime = UnrollRuntime;
249   if (UnrollMaxUpperBound == 0)
250     UP.UpperBound = false;
251   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
252     UP.UnrollRemainder = UnrollUnrollRemainder;
253   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
254     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
255 
256   // Apply user values provided by argument
257   if (UserThreshold.hasValue()) {
258     UP.Threshold = *UserThreshold;
259     UP.PartialThreshold = *UserThreshold;
260   }
261   if (UserCount.hasValue())
262     UP.Count = *UserCount;
263   if (UserAllowPartial.hasValue())
264     UP.Partial = *UserAllowPartial;
265   if (UserRuntime.hasValue())
266     UP.Runtime = *UserRuntime;
267   if (UserUpperBound.hasValue())
268     UP.UpperBound = *UserUpperBound;
269   if (UserFullUnrollMaxCount.hasValue())
270     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
271 
272   return UP;
273 }
274 
275 namespace {
276 
277 /// A struct to densely store the state of an instruction after unrolling at
278 /// each iteration.
279 ///
280 /// This is designed to work like a tuple of <Instruction *, int> for the
281 /// purposes of hashing and lookup, but to be able to associate two boolean
282 /// states with each key.
283 struct UnrolledInstState {
284   Instruction *I;
285   int Iteration : 30;
286   unsigned IsFree : 1;
287   unsigned IsCounted : 1;
288 };
289 
290 /// Hashing and equality testing for a set of the instruction states.
291 struct UnrolledInstStateKeyInfo {
292   using PtrInfo = DenseMapInfo<Instruction *>;
293   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
294 
295   static inline UnrolledInstState getEmptyKey() {
296     return {PtrInfo::getEmptyKey(), 0, 0, 0};
297   }
298 
299   static inline UnrolledInstState getTombstoneKey() {
300     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
301   }
302 
303   static inline unsigned getHashValue(const UnrolledInstState &S) {
304     return PairInfo::getHashValue({S.I, S.Iteration});
305   }
306 
307   static inline bool isEqual(const UnrolledInstState &LHS,
308                              const UnrolledInstState &RHS) {
309     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
310   }
311 };
312 
313 struct EstimatedUnrollCost {
314   /// The estimated cost after unrolling.
315   unsigned UnrolledCost;
316 
317   /// The estimated dynamic cost of executing the instructions in the
318   /// rolled form.
319   unsigned RolledDynamicCost;
320 };
321 
322 struct PragmaInfo {
323   PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
324       : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
325         PragmaEnableUnroll(PEU) {}
326   const bool UserUnrollCount;
327   const bool PragmaFullUnroll;
328   const unsigned PragmaCount;
329   const bool PragmaEnableUnroll;
330 };
331 
332 } // end anonymous namespace
333 
334 /// Figure out if the loop is worth full unrolling.
335 ///
336 /// Complete loop unrolling can make some loads constant, and we need to know
337 /// if that would expose any further optimization opportunities.  This routine
338 /// estimates this optimization.  It computes cost of unrolled loop
339 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
340 /// dynamic cost we mean that we won't count costs of blocks that are known not
341 /// to be executed (i.e. if we have a branch in the loop and we know that at the
342 /// given iteration its condition would be resolved to true, we won't add up the
343 /// cost of the 'false'-block).
344 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
345 /// the analysis failed (no benefits expected from the unrolling, or the loop is
346 /// too big to analyze), the returned value is None.
347 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
348     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
349     const SmallPtrSetImpl<const Value *> &EphValues,
350     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
351     unsigned MaxIterationsCountToAnalyze) {
352   // We want to be able to scale offsets by the trip count and add more offsets
353   // to them without checking for overflows, and we already don't want to
354   // analyze *massive* trip counts, so we force the max to be reasonably small.
355   assert(MaxIterationsCountToAnalyze <
356              (unsigned)(std::numeric_limits<int>::max() / 2) &&
357          "The unroll iterations max is too large!");
358 
359   // Only analyze inner loops. We can't properly estimate cost of nested loops
360   // and we won't visit inner loops again anyway.
361   if (!L->isInnermost())
362     return None;
363 
364   // Don't simulate loops with a big or unknown tripcount
365   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
366     return None;
367 
368   SmallSetVector<BasicBlock *, 16> BBWorklist;
369   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
370   DenseMap<Value *, Value *> SimplifiedValues;
371   SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
372 
373   // The estimated cost of the unrolled form of the loop. We try to estimate
374   // this by simplifying as much as we can while computing the estimate.
375   InstructionCost UnrolledCost = 0;
376 
377   // We also track the estimated dynamic (that is, actually executed) cost in
378   // the rolled form. This helps identify cases when the savings from unrolling
379   // aren't just exposing dead control flows, but actual reduced dynamic
380   // instructions due to the simplifications which we expect to occur after
381   // unrolling.
382   InstructionCost RolledDynamicCost = 0;
383 
384   // We track the simplification of each instruction in each iteration. We use
385   // this to recursively merge costs into the unrolled cost on-demand so that
386   // we don't count the cost of any dead code. This is essentially a map from
387   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
388   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
389 
390   // A small worklist used to accumulate cost of instructions from each
391   // observable and reached root in the loop.
392   SmallVector<Instruction *, 16> CostWorklist;
393 
394   // PHI-used worklist used between iterations while accumulating cost.
395   SmallVector<Instruction *, 4> PHIUsedList;
396 
397   // Helper function to accumulate cost for instructions in the loop.
398   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
399     assert(Iteration >= 0 && "Cannot have a negative iteration!");
400     assert(CostWorklist.empty() && "Must start with an empty cost list");
401     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
402     CostWorklist.push_back(&RootI);
403     TargetTransformInfo::TargetCostKind CostKind =
404       RootI.getFunction()->hasMinSize() ?
405       TargetTransformInfo::TCK_CodeSize :
406       TargetTransformInfo::TCK_SizeAndLatency;
407     for (;; --Iteration) {
408       do {
409         Instruction *I = CostWorklist.pop_back_val();
410 
411         // InstCostMap only uses I and Iteration as a key, the other two values
412         // don't matter here.
413         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
414         if (CostIter == InstCostMap.end())
415           // If an input to a PHI node comes from a dead path through the loop
416           // we may have no cost data for it here. What that actually means is
417           // that it is free.
418           continue;
419         auto &Cost = *CostIter;
420         if (Cost.IsCounted)
421           // Already counted this instruction.
422           continue;
423 
424         // Mark that we are counting the cost of this instruction now.
425         Cost.IsCounted = true;
426 
427         // If this is a PHI node in the loop header, just add it to the PHI set.
428         if (auto *PhiI = dyn_cast<PHINode>(I))
429           if (PhiI->getParent() == L->getHeader()) {
430             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
431                                   "inherently simplify during unrolling.");
432             if (Iteration == 0)
433               continue;
434 
435             // Push the incoming value from the backedge into the PHI used list
436             // if it is an in-loop instruction. We'll use this to populate the
437             // cost worklist for the next iteration (as we count backwards).
438             if (auto *OpI = dyn_cast<Instruction>(
439                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
440               if (L->contains(OpI))
441                 PHIUsedList.push_back(OpI);
442             continue;
443           }
444 
445         // First accumulate the cost of this instruction.
446         if (!Cost.IsFree) {
447           UnrolledCost += TTI.getUserCost(I, CostKind);
448           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
449                             << Iteration << "): ");
450           LLVM_DEBUG(I->dump());
451         }
452 
453         // We must count the cost of every operand which is not free,
454         // recursively. If we reach a loop PHI node, simply add it to the set
455         // to be considered on the next iteration (backwards!).
456         for (Value *Op : I->operands()) {
457           // Check whether this operand is free due to being a constant or
458           // outside the loop.
459           auto *OpI = dyn_cast<Instruction>(Op);
460           if (!OpI || !L->contains(OpI))
461             continue;
462 
463           // Otherwise accumulate its cost.
464           CostWorklist.push_back(OpI);
465         }
466       } while (!CostWorklist.empty());
467 
468       if (PHIUsedList.empty())
469         // We've exhausted the search.
470         break;
471 
472       assert(Iteration > 0 &&
473              "Cannot track PHI-used values past the first iteration!");
474       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
475       PHIUsedList.clear();
476     }
477   };
478 
479   // Ensure that we don't violate the loop structure invariants relied on by
480   // this analysis.
481   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
482   assert(L->isLCSSAForm(DT) &&
483          "Must have loops in LCSSA form to track live-out values.");
484 
485   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
486 
487   TargetTransformInfo::TargetCostKind CostKind =
488     L->getHeader()->getParent()->hasMinSize() ?
489     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
490   // Simulate execution of each iteration of the loop counting instructions,
491   // which would be simplified.
492   // Since the same load will take different values on different iterations,
493   // we literally have to go through all loop's iterations.
494   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
495     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
496 
497     // Prepare for the iteration by collecting any simplified entry or backedge
498     // inputs.
499     for (Instruction &I : *L->getHeader()) {
500       auto *PHI = dyn_cast<PHINode>(&I);
501       if (!PHI)
502         break;
503 
504       // The loop header PHI nodes must have exactly two input: one from the
505       // loop preheader and one from the loop latch.
506       assert(
507           PHI->getNumIncomingValues() == 2 &&
508           "Must have an incoming value only for the preheader and the latch.");
509 
510       Value *V = PHI->getIncomingValueForBlock(
511           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
512       if (Iteration != 0 && SimplifiedValues.count(V))
513         V = SimplifiedValues.lookup(V);
514       SimplifiedInputValues.push_back({PHI, V});
515     }
516 
517     // Now clear and re-populate the map for the next iteration.
518     SimplifiedValues.clear();
519     while (!SimplifiedInputValues.empty())
520       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
521 
522     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
523 
524     BBWorklist.clear();
525     BBWorklist.insert(L->getHeader());
526     // Note that we *must not* cache the size, this loop grows the worklist.
527     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
528       BasicBlock *BB = BBWorklist[Idx];
529 
530       // Visit all instructions in the given basic block and try to simplify
531       // it.  We don't change the actual IR, just count optimization
532       // opportunities.
533       for (Instruction &I : *BB) {
534         // These won't get into the final code - don't even try calculating the
535         // cost for them.
536         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
537           continue;
538 
539         // Track this instruction's expected baseline cost when executing the
540         // rolled loop form.
541         RolledDynamicCost += TTI.getUserCost(&I, CostKind);
542 
543         // Visit the instruction to analyze its loop cost after unrolling,
544         // and if the visitor returns true, mark the instruction as free after
545         // unrolling and continue.
546         bool IsFree = Analyzer.visit(I);
547         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
548                                            (unsigned)IsFree,
549                                            /*IsCounted*/ false}).second;
550         (void)Inserted;
551         assert(Inserted && "Cannot have a state for an unvisited instruction!");
552 
553         if (IsFree)
554           continue;
555 
556         // Can't properly model a cost of a call.
557         // FIXME: With a proper cost model we should be able to do it.
558         if (auto *CI = dyn_cast<CallInst>(&I)) {
559           const Function *Callee = CI->getCalledFunction();
560           if (!Callee || TTI.isLoweredToCall(Callee)) {
561             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
562             return None;
563           }
564         }
565 
566         // If the instruction might have a side-effect recursively account for
567         // the cost of it and all the instructions leading up to it.
568         if (I.mayHaveSideEffects())
569           AddCostRecursively(I, Iteration);
570 
571         // If unrolled body turns out to be too big, bail out.
572         if (UnrolledCost > MaxUnrolledLoopSize) {
573           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
574                             << "  UnrolledCost: " << UnrolledCost
575                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
576                             << "\n");
577           return None;
578         }
579       }
580 
581       Instruction *TI = BB->getTerminator();
582 
583       auto getSimplifiedConstant = [&](Value *V) -> Constant * {
584         if (SimplifiedValues.count(V))
585           V = SimplifiedValues.lookup(V);
586         return dyn_cast<Constant>(V);
587       };
588 
589       // Add in the live successors by first checking whether we have terminator
590       // that may be simplified based on the values simplified by this call.
591       BasicBlock *KnownSucc = nullptr;
592       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593         if (BI->isConditional()) {
594           if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
595             // Just take the first successor if condition is undef
596             if (isa<UndefValue>(SimpleCond))
597               KnownSucc = BI->getSuccessor(0);
598             else if (ConstantInt *SimpleCondVal =
599                          dyn_cast<ConstantInt>(SimpleCond))
600               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
601           }
602         }
603       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
604         if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
605           // Just take the first successor if condition is undef
606           if (isa<UndefValue>(SimpleCond))
607             KnownSucc = SI->getSuccessor(0);
608           else if (ConstantInt *SimpleCondVal =
609                        dyn_cast<ConstantInt>(SimpleCond))
610             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
611         }
612       }
613       if (KnownSucc) {
614         if (L->contains(KnownSucc))
615           BBWorklist.insert(KnownSucc);
616         else
617           ExitWorklist.insert({BB, KnownSucc});
618         continue;
619       }
620 
621       // Add BB's successors to the worklist.
622       for (BasicBlock *Succ : successors(BB))
623         if (L->contains(Succ))
624           BBWorklist.insert(Succ);
625         else
626           ExitWorklist.insert({BB, Succ});
627       AddCostRecursively(*TI, Iteration);
628     }
629 
630     // If we found no optimization opportunities on the first iteration, we
631     // won't find them on later ones too.
632     if (UnrolledCost == RolledDynamicCost) {
633       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
634                         << "  UnrolledCost: " << UnrolledCost << "\n");
635       return None;
636     }
637   }
638 
639   while (!ExitWorklist.empty()) {
640     BasicBlock *ExitingBB, *ExitBB;
641     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
642 
643     for (Instruction &I : *ExitBB) {
644       auto *PN = dyn_cast<PHINode>(&I);
645       if (!PN)
646         break;
647 
648       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
649       if (auto *OpI = dyn_cast<Instruction>(Op))
650         if (L->contains(OpI))
651           AddCostRecursively(*OpI, TripCount - 1);
652     }
653   }
654 
655   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
656          "All instructions must have a valid cost, whether the "
657          "loop is rolled or unrolled.");
658 
659   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
660                     << "UnrolledCost: " << UnrolledCost << ", "
661                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
662   return {{unsigned(*UnrolledCost.getValue()),
663            unsigned(*RolledDynamicCost.getValue())}};
664 }
665 
666 /// ApproximateLoopSize - Approximate the size of the loop.
667 unsigned llvm::ApproximateLoopSize(
668     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
669     const TargetTransformInfo &TTI,
670     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
671   CodeMetrics Metrics;
672   for (BasicBlock *BB : L->blocks())
673     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
674   NumCalls = Metrics.NumInlineCandidates;
675   NotDuplicatable = Metrics.notDuplicatable;
676   Convergent = Metrics.convergent;
677 
678   unsigned LoopSize = Metrics.NumInsts;
679 
680   // Don't allow an estimate of size zero.  This would allows unrolling of loops
681   // with huge iteration counts, which is a compile time problem even if it's
682   // not a problem for code quality. Also, the code using this size may assume
683   // that each loop has at least three instructions (likely a conditional
684   // branch, a comparison feeding that branch, and some kind of loop increment
685   // feeding that comparison instruction).
686   LoopSize = std::max(LoopSize, BEInsns + 1);
687 
688   return LoopSize;
689 }
690 
691 // Returns the loop hint metadata node with the given name (for example,
692 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
693 // returned.
694 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
695   if (MDNode *LoopID = L->getLoopID())
696     return GetUnrollMetadata(LoopID, Name);
697   return nullptr;
698 }
699 
700 // Returns true if the loop has an unroll(full) pragma.
701 static bool hasUnrollFullPragma(const Loop *L) {
702   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
703 }
704 
705 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
706 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
707 static bool hasUnrollEnablePragma(const Loop *L) {
708   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
709 }
710 
711 // Returns true if the loop has an runtime unroll(disable) pragma.
712 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
713   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
714 }
715 
716 // If loop has an unroll_count pragma return the (necessarily
717 // positive) value from the pragma.  Otherwise return 0.
718 static unsigned unrollCountPragmaValue(const Loop *L) {
719   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
720   if (MD) {
721     assert(MD->getNumOperands() == 2 &&
722            "Unroll count hint metadata should have two operands.");
723     unsigned Count =
724         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
725     assert(Count >= 1 && "Unroll count must be positive.");
726     return Count;
727   }
728   return 0;
729 }
730 
731 // Computes the boosting factor for complete unrolling.
732 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
733 // be beneficial to fully unroll the loop even if unrolledcost is large. We
734 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
735 // the unroll threshold.
736 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
737                                             unsigned MaxPercentThresholdBoost) {
738   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
739     return 100;
740   else if (Cost.UnrolledCost != 0)
741     // The boosting factor is RolledDynamicCost / UnrolledCost
742     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
743                     MaxPercentThresholdBoost);
744   else
745     return MaxPercentThresholdBoost;
746 }
747 
748 // Produce an estimate of the unrolled cost of the specified loop.  This
749 // is used to a) produce a cost estimate for partial unrolling and b) to
750 // cheaply estimate cost for full unrolling when we don't want to symbolically
751 // evaluate all iterations.
752 class UnrollCostEstimator {
753   const unsigned LoopSize;
754 
755 public:
756   UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
757 
758   // Returns loop size estimation for unrolled loop, given the unrolling
759   // configuration specified by UP.
760   uint64_t
761   getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
762                       const unsigned CountOverwrite = 0) const {
763     assert(LoopSize >= UP.BEInsns &&
764            "LoopSize should not be less than BEInsns!");
765     if (CountOverwrite)
766       return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
767              UP.BEInsns;
768     else
769       return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
770              UP.BEInsns;
771   }
772 };
773 
774 static Optional<unsigned>
775 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
776                    const unsigned TripMultiple, const unsigned TripCount,
777                    const UnrollCostEstimator UCE,
778                    const TargetTransformInfo::UnrollingPreferences &UP) {
779 
780   // Using unroll pragma
781   // 1st priority is unroll count set by "unroll-count" option.
782 
783   if (PInfo.UserUnrollCount) {
784     if (UP.AllowRemainder &&
785         UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
786       return (unsigned)UnrollCount;
787   }
788 
789   // 2nd priority is unroll count set by pragma.
790   if (PInfo.PragmaCount > 0) {
791     if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)) &&
792         UCE.getUnrolledLoopSize(UP, PInfo.PragmaCount) < PragmaUnrollThreshold)
793       return PInfo.PragmaCount;
794   }
795 
796   if (PInfo.PragmaFullUnroll && TripCount != 0) {
797     if (UCE.getUnrolledLoopSize(UP, TripCount) < PragmaUnrollThreshold)
798       return TripCount;
799   }
800   // if didn't return until here, should continue to other priorties
801   return None;
802 }
803 
804 static Optional<unsigned> shouldFullUnroll(
805     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
806     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
807     const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
808     const TargetTransformInfo::UnrollingPreferences &UP) {
809   assert(FullUnrollTripCount && "should be non-zero!");
810 
811   if (FullUnrollTripCount > UP.FullUnrollMaxCount)
812     return None;
813 
814   // When computing the unrolled size, note that BEInsns are not replicated
815   // like the rest of the loop body.
816   if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
817     return FullUnrollTripCount;
818 
819   // The loop isn't that small, but we still can fully unroll it if that
820   // helps to remove a significant number of instructions.
821   // To check that, run additional analysis on the loop.
822   if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
823           L, FullUnrollTripCount, DT, SE, EphValues, TTI,
824           UP.Threshold * UP.MaxPercentThresholdBoost / 100,
825           UP.MaxIterationsCountToAnalyze)) {
826     unsigned Boost =
827       getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
828     if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
829       return FullUnrollTripCount;
830   }
831   return None;
832 }
833 
834 static Optional<unsigned>
835 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
836                     const UnrollCostEstimator UCE,
837                     const TargetTransformInfo::UnrollingPreferences &UP) {
838 
839   if (!TripCount)
840     return None;
841 
842   if (!UP.Partial) {
843     LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
844                << "-unroll-allow-partial not given\n");
845     return 0;
846   }
847   unsigned count = UP.Count;
848   if (count == 0)
849     count = TripCount;
850   if (UP.PartialThreshold != NoThreshold) {
851     // Reduce unroll count to be modulo of TripCount for partial unrolling.
852     if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
853       count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
854         (LoopSize - UP.BEInsns);
855     if (count > UP.MaxCount)
856       count = UP.MaxCount;
857     while (count != 0 && TripCount % count != 0)
858       count--;
859     if (UP.AllowRemainder && count <= 1) {
860       // If there is no Count that is modulo of TripCount, set Count to
861       // largest power-of-two factor that satisfies the threshold limit.
862       // As we'll create fixup loop, do the type of unrolling only if
863       // remainder loop is allowed.
864       count = UP.DefaultUnrollRuntimeCount;
865       while (count != 0 &&
866              UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
867         count >>= 1;
868     }
869     if (count < 2) {
870       count = 0;
871     }
872   } else {
873     count = TripCount;
874   }
875   if (count > UP.MaxCount)
876     count = UP.MaxCount;
877 
878   LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << count << "\n");
879 
880   return count;
881 }
882 // Returns true if unroll count was set explicitly.
883 // Calculates unroll count and writes it to UP.Count.
884 // Unless IgnoreUser is true, will also use metadata and command-line options
885 // that are specific to to the LoopUnroll pass (which, for instance, are
886 // irrelevant for the LoopUnrollAndJam pass).
887 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
888 // many LoopUnroll-specific options. The shared functionality should be
889 // refactored into it own function.
890 bool llvm::computeUnrollCount(
891     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
892     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
893     OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
894     bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
895     TargetTransformInfo::UnrollingPreferences &UP,
896     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
897 
898   UnrollCostEstimator UCE(*L, LoopSize);
899 
900   const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
901   const bool PragmaFullUnroll = hasUnrollFullPragma(L);
902   const unsigned PragmaCount = unrollCountPragmaValue(L);
903   const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
904 
905   const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
906                               PragmaEnableUnroll || UserUnrollCount;
907 
908   PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
909                    PragmaEnableUnroll);
910   // Use an explicit peel count that has been specified for testing. In this
911   // case it's not permitted to also specify an explicit unroll count.
912   if (PP.PeelCount) {
913     if (UnrollCount.getNumOccurrences() > 0) {
914       report_fatal_error("Cannot specify both explicit peel count and "
915                          "explicit unroll count");
916     }
917     UP.Count = 1;
918     UP.Runtime = false;
919     return true;
920   }
921   // Check for explicit Count.
922   // 1st priority is unroll count set by "unroll-count" option.
923   // 2nd priority is unroll count set by pragma.
924   if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
925                                              UCE, UP)) {
926     UP.Count = *UnrollFactor;
927 
928     if (UserUnrollCount || (PragmaCount > 0)) {
929       UP.AllowExpensiveTripCount = true;
930       UP.Force = true;
931     }
932     UP.Runtime |= (PragmaCount > 0);
933     return ExplicitUnroll;
934   } else {
935     if (ExplicitUnroll && TripCount != 0) {
936       // If the loop has an unrolling pragma, we want to be more aggressive with
937       // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
938       // value which is larger than the default limits.
939       UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
940       UP.PartialThreshold =
941           std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
942     }
943   }
944 
945   // 3rd priority is exact full unrolling.  This will eliminate all copies
946   // of some exit test.
947   UP.Count = 0;
948   if (TripCount) {
949     UP.Count = TripCount;
950     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
951                                              TripCount, UCE, UP)) {
952       UP.Count = *UnrollFactor;
953       UseUpperBound = false;
954       return ExplicitUnroll;
955     }
956   }
957 
958   // 4th priority is bounded unrolling.
959   // We can unroll by the upper bound amount if it's generally allowed or if
960   // we know that the loop is executed either the upper bound or zero times.
961   // (MaxOrZero unrolling keeps only the first loop test, so the number of
962   // loop tests remains the same compared to the non-unrolled version, whereas
963   // the generic upper bound unrolling keeps all but the last loop test so the
964   // number of loop tests goes up which may end up being worse on targets with
965   // constrained branch predictor resources so is controlled by an option.)
966   // In addition we only unroll small upper bounds.
967   // Note that the cost of bounded unrolling is always strictly greater than
968   // cost of exact full unrolling.  As such, if we have an exact count and
969   // found it unprofitable, we'll never chose to bounded unroll.
970   if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
971       MaxTripCount <= UnrollMaxUpperBound) {
972     UP.Count = MaxTripCount;
973     if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
974                                              MaxTripCount, UCE, UP)) {
975       UP.Count = *UnrollFactor;
976       UseUpperBound = true;
977       return ExplicitUnroll;
978     }
979   }
980 
981   // 5th priority is loop peeling.
982   computePeelCount(L, LoopSize, PP, TripCount, DT, SE, UP.Threshold);
983   if (PP.PeelCount) {
984     UP.Runtime = false;
985     UP.Count = 1;
986     return ExplicitUnroll;
987   }
988 
989   // Before starting partial unrolling, set up.partial to true,
990   // if user explicitly asked  for unrolling
991   if (TripCount)
992     UP.Partial |= ExplicitUnroll;
993 
994   // 6th priority is partial unrolling.
995   // Try partial unroll only when TripCount could be statically calculated.
996   if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
997     UP.Count = *UnrollFactor;
998 
999     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1000         UP.Count != TripCount)
1001       ORE->emit([&]() {
1002         return OptimizationRemarkMissed(DEBUG_TYPE,
1003                                         "FullUnrollAsDirectedTooLarge",
1004                                         L->getStartLoc(), L->getHeader())
1005                << "Unable to fully unroll loop as directed by unroll pragma "
1006                   "because "
1007                   "unrolled size is too large.";
1008       });
1009 
1010     if (UP.PartialThreshold != NoThreshold) {
1011       if (UP.Count == 0) {
1012         if (PragmaEnableUnroll)
1013           ORE->emit([&]() {
1014             return OptimizationRemarkMissed(DEBUG_TYPE,
1015                                             "UnrollAsDirectedTooLarge",
1016                                             L->getStartLoc(), L->getHeader())
1017                    << "Unable to unroll loop as directed by unroll(enable) "
1018                       "pragma "
1019                       "because unrolled size is too large.";
1020           });
1021       }
1022     }
1023     return ExplicitUnroll;
1024   }
1025   assert(TripCount == 0 &&
1026          "All cases when TripCount is constant should be covered here.");
1027   if (PragmaFullUnroll)
1028     ORE->emit([&]() {
1029       return OptimizationRemarkMissed(
1030                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1031                  L->getStartLoc(), L->getHeader())
1032              << "Unable to fully unroll loop as directed by unroll(full) "
1033                 "pragma "
1034                 "because loop has a runtime trip count.";
1035     });
1036 
1037   // 7th priority is runtime unrolling.
1038   // Don't unroll a runtime trip count loop when it is disabled.
1039   if (hasRuntimeUnrollDisablePragma(L)) {
1040     UP.Count = 0;
1041     return false;
1042   }
1043 
1044   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1045   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
1046     UP.Count = 0;
1047     return false;
1048   }
1049 
1050   // Check if the runtime trip count is too small when profile is available.
1051   if (L->getHeader()->getParent()->hasProfileData()) {
1052     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1053       if (*ProfileTripCount < FlatLoopTripCountThreshold)
1054         return false;
1055       else
1056         UP.AllowExpensiveTripCount = true;
1057     }
1058   }
1059   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1060   if (!UP.Runtime) {
1061     LLVM_DEBUG(
1062         dbgs() << "  will not try to unroll loop with runtime trip count "
1063                << "-unroll-runtime not given\n");
1064     UP.Count = 0;
1065     return false;
1066   }
1067   if (UP.Count == 0)
1068     UP.Count = UP.DefaultUnrollRuntimeCount;
1069 
1070   // Reduce unroll count to be the largest power-of-two factor of
1071   // the original count which satisfies the threshold limit.
1072   while (UP.Count != 0 &&
1073          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1074     UP.Count >>= 1;
1075 
1076 #ifndef NDEBUG
1077   unsigned OrigCount = UP.Count;
1078 #endif
1079 
1080   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1081     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1082       UP.Count >>= 1;
1083     LLVM_DEBUG(
1084         dbgs() << "Remainder loop is restricted (that could architecture "
1085                   "specific or because the loop contains a convergent "
1086                   "instruction), so unroll count must divide the trip "
1087                   "multiple, "
1088                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1089                << " to " << UP.Count << ".\n");
1090 
1091     using namespace ore;
1092 
1093     if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1094       ORE->emit([&]() {
1095         return OptimizationRemarkMissed(DEBUG_TYPE,
1096                                         "DifferentUnrollCountFromDirected",
1097                                         L->getStartLoc(), L->getHeader())
1098                << "Unable to unroll loop the number of times directed by "
1099                   "unroll_count pragma because remainder loop is restricted "
1100                   "(that could architecture specific or because the loop "
1101                   "contains a convergent instruction) and so must have an "
1102                   "unroll "
1103                   "count that divides the loop trip multiple of "
1104                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1105                << NV("UnrollCount", UP.Count) << " time(s).";
1106       });
1107   }
1108 
1109   if (UP.Count > UP.MaxCount)
1110     UP.Count = UP.MaxCount;
1111 
1112   if (MaxTripCount && UP.Count > MaxTripCount)
1113     UP.Count = MaxTripCount;
1114 
1115   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1116                     << "\n");
1117   if (UP.Count < 2)
1118     UP.Count = 0;
1119   return ExplicitUnroll;
1120 }
1121 
1122 static LoopUnrollResult tryToUnrollLoop(
1123     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1124     const TargetTransformInfo &TTI, AssumptionCache &AC,
1125     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1126     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1127     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1128     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1129     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1130     Optional<bool> ProvidedAllowPeeling,
1131     Optional<bool> ProvidedAllowProfileBasedPeeling,
1132     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1133   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1134                     << L->getHeader()->getParent()->getName() << "] Loop %"
1135                     << L->getHeader()->getName() << "\n");
1136   TransformationMode TM = hasUnrollTransformation(L);
1137   if (TM & TM_Disable)
1138     return LoopUnrollResult::Unmodified;
1139 
1140   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1141   // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1142   // automatic unrolling from interfering with the user requested
1143   // transformation.
1144   Loop *ParentL = L->getParentLoop();
1145   if (ParentL != nullptr &&
1146       hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1147       hasUnrollTransformation(L) != TM_ForcedByUser) {
1148     LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1149                       << " llvm.loop.unroll_and_jam.\n");
1150     return LoopUnrollResult::Unmodified;
1151   }
1152 
1153   // If this loop isn't forced to be unrolled, avoid unrolling it when the
1154   // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1155   // unrolling from interfering with the user requested transformation.
1156   if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1157       hasUnrollTransformation(L) != TM_ForcedByUser) {
1158     LLVM_DEBUG(
1159         dbgs()
1160         << "  Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1161     return LoopUnrollResult::Unmodified;
1162   }
1163 
1164   if (!L->isLoopSimplifyForm()) {
1165     LLVM_DEBUG(
1166         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1167     return LoopUnrollResult::Unmodified;
1168   }
1169 
1170   // When automatic unrolling is disabled, do not unroll unless overridden for
1171   // this loop.
1172   if (OnlyWhenForced && !(TM & TM_Enable))
1173     return LoopUnrollResult::Unmodified;
1174 
1175   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1176   unsigned NumInlineCandidates;
1177   bool NotDuplicatable;
1178   bool Convergent;
1179   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1180       L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1181       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1182       ProvidedFullUnrollMaxCount);
1183   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1184       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1185 
1186   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1187   // as threshold later on.
1188   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1189       !OptForSize)
1190     return LoopUnrollResult::Unmodified;
1191 
1192   SmallPtrSet<const Value *, 32> EphValues;
1193   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1194 
1195   unsigned LoopSize =
1196       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1197                           TTI, EphValues, UP.BEInsns);
1198   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1199   if (NotDuplicatable) {
1200     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1201                       << " instructions.\n");
1202     return LoopUnrollResult::Unmodified;
1203   }
1204 
1205   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1206   // later), to (fully) unroll loops, if it does not increase code size.
1207   if (OptForSize)
1208     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1209 
1210   if (NumInlineCandidates != 0) {
1211     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1212     return LoopUnrollResult::Unmodified;
1213   }
1214 
1215   // Find the smallest exact trip count for any exit. This is an upper bound
1216   // on the loop trip count, but an exit at an earlier iteration is still
1217   // possible. An unroll by the smallest exact trip count guarantees that all
1218   // brnaches relating to at least one exit can be eliminated. This is unlike
1219   // the max trip count, which only guarantees that the backedge can be broken.
1220   unsigned TripCount = 0;
1221   unsigned TripMultiple = 1;
1222   SmallVector<BasicBlock *, 8> ExitingBlocks;
1223   L->getExitingBlocks(ExitingBlocks);
1224   for (BasicBlock *ExitingBlock : ExitingBlocks)
1225     if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1226       if (!TripCount || TC < TripCount)
1227         TripCount = TripMultiple = TC;
1228 
1229   if (!TripCount) {
1230     // If no exact trip count is known, determine the trip multiple of either
1231     // the loop latch or the single exiting block.
1232     // TODO: Relax for multiple exits.
1233     BasicBlock *ExitingBlock = L->getLoopLatch();
1234     if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1235       ExitingBlock = L->getExitingBlock();
1236     if (ExitingBlock)
1237       TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1238   }
1239 
1240   // If the loop contains a convergent operation, the prelude we'd add
1241   // to do the first few instructions before we hit the unrolled loop
1242   // is unsafe -- it adds a control-flow dependency to the convergent
1243   // operation.  Therefore restrict remainder loop (try unrolling without).
1244   //
1245   // TODO: This is quite conservative.  In practice, convergent_op()
1246   // is likely to be called unconditionally in the loop.  In this
1247   // case, the program would be ill-formed (on most architectures)
1248   // unless n were the same on all threads in a thread group.
1249   // Assuming n is the same on all threads, any kind of unrolling is
1250   // safe.  But currently llvm's notion of convergence isn't powerful
1251   // enough to express this.
1252   if (Convergent)
1253     UP.AllowRemainder = false;
1254 
1255   // Try to find the trip count upper bound if we cannot find the exact trip
1256   // count.
1257   unsigned MaxTripCount = 0;
1258   bool MaxOrZero = false;
1259   if (!TripCount) {
1260     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1261     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1262   }
1263 
1264   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1265   // fully unroll the loop.
1266   bool UseUpperBound = false;
1267   bool IsCountSetExplicitly = computeUnrollCount(
1268       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1269       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1270   if (!UP.Count)
1271     return LoopUnrollResult::Unmodified;
1272 
1273   if (PP.PeelCount) {
1274     assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1275     LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1276                       << " with iteration count " << PP.PeelCount << "!\n");
1277     ORE.emit([&]() {
1278       return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1279                                 L->getHeader())
1280              << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1281              << " iterations";
1282     });
1283 
1284     if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) {
1285       simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1286       // If the loop was peeled, we already "used up" the profile information
1287       // we had, so we don't want to unroll or peel again.
1288       if (PP.PeelProfiledIterations)
1289         L->setLoopAlreadyUnrolled();
1290       return LoopUnrollResult::PartiallyUnrolled;
1291     }
1292     return LoopUnrollResult::Unmodified;
1293   }
1294 
1295   // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1296   // However, we only want to actually perform it if we don't know the trip
1297   // count and the unroll count doesn't divide the known trip multiple.
1298   // TODO: This decision should probably be pushed up into
1299   // computeUnrollCount().
1300   UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1301 
1302   // Save loop properties before it is transformed.
1303   MDNode *OrigLoopID = L->getLoopID();
1304 
1305   // Unroll the loop.
1306   Loop *RemainderLoop = nullptr;
1307   LoopUnrollResult UnrollResult = UnrollLoop(
1308       L,
1309       {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1310        UP.UnrollRemainder, ForgetAllSCEV},
1311       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1312   if (UnrollResult == LoopUnrollResult::Unmodified)
1313     return LoopUnrollResult::Unmodified;
1314 
1315   if (RemainderLoop) {
1316     Optional<MDNode *> RemainderLoopID =
1317         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1318                                         LLVMLoopUnrollFollowupRemainder});
1319     if (RemainderLoopID.hasValue())
1320       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1321   }
1322 
1323   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1324     Optional<MDNode *> NewLoopID =
1325         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1326                                         LLVMLoopUnrollFollowupUnrolled});
1327     if (NewLoopID.hasValue()) {
1328       L->setLoopID(NewLoopID.getValue());
1329 
1330       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1331       // explicitly.
1332       return UnrollResult;
1333     }
1334   }
1335 
1336   // If loop has an unroll count pragma or unrolled by explicitly set count
1337   // mark loop as unrolled to prevent unrolling beyond that requested.
1338   if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1339     L->setLoopAlreadyUnrolled();
1340 
1341   return UnrollResult;
1342 }
1343 
1344 namespace {
1345 
1346 class LoopUnroll : public LoopPass {
1347 public:
1348   static char ID; // Pass ID, replacement for typeid
1349 
1350   int OptLevel;
1351 
1352   /// If false, use a cost model to determine whether unrolling of a loop is
1353   /// profitable. If true, only loops that explicitly request unrolling via
1354   /// metadata are considered. All other loops are skipped.
1355   bool OnlyWhenForced;
1356 
1357   /// If false, when SCEV is invalidated, only forget everything in the
1358   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1359   /// Otherwise, forgetAllLoops and rebuild when needed next.
1360   bool ForgetAllSCEV;
1361 
1362   Optional<unsigned> ProvidedCount;
1363   Optional<unsigned> ProvidedThreshold;
1364   Optional<bool> ProvidedAllowPartial;
1365   Optional<bool> ProvidedRuntime;
1366   Optional<bool> ProvidedUpperBound;
1367   Optional<bool> ProvidedAllowPeeling;
1368   Optional<bool> ProvidedAllowProfileBasedPeeling;
1369   Optional<unsigned> ProvidedFullUnrollMaxCount;
1370 
1371   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1372              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1373              Optional<unsigned> Count = None,
1374              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1375              Optional<bool> UpperBound = None,
1376              Optional<bool> AllowPeeling = None,
1377              Optional<bool> AllowProfileBasedPeeling = None,
1378              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1379       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1380         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1381         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1382         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1383         ProvidedAllowPeeling(AllowPeeling),
1384         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1385         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1386     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1387   }
1388 
1389   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1390     if (skipLoop(L))
1391       return false;
1392 
1393     Function &F = *L->getHeader()->getParent();
1394 
1395     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1396     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1397     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1398     const TargetTransformInfo &TTI =
1399         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1400     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1401     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1402     // pass.  Function analyses need to be preserved across loop transformations
1403     // but ORE cannot be preserved (see comment before the pass definition).
1404     OptimizationRemarkEmitter ORE(&F);
1405     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1406 
1407     LoopUnrollResult Result = tryToUnrollLoop(
1408         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1409         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1410         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1411         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1412         ProvidedFullUnrollMaxCount);
1413 
1414     if (Result == LoopUnrollResult::FullyUnrolled)
1415       LPM.markLoopAsDeleted(*L);
1416 
1417     return Result != LoopUnrollResult::Unmodified;
1418   }
1419 
1420   /// This transformation requires natural loop information & requires that
1421   /// loop preheaders be inserted into the CFG...
1422   void getAnalysisUsage(AnalysisUsage &AU) const override {
1423     AU.addRequired<AssumptionCacheTracker>();
1424     AU.addRequired<TargetTransformInfoWrapperPass>();
1425     // FIXME: Loop passes are required to preserve domtree, and for now we just
1426     // recreate dom info if anything gets unrolled.
1427     getLoopAnalysisUsage(AU);
1428   }
1429 };
1430 
1431 } // end anonymous namespace
1432 
1433 char LoopUnroll::ID = 0;
1434 
1435 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1436 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1437 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1438 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1439 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1440 
1441 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1442                                  bool ForgetAllSCEV, int Threshold, int Count,
1443                                  int AllowPartial, int Runtime, int UpperBound,
1444                                  int AllowPeeling) {
1445   // TODO: It would make more sense for this function to take the optionals
1446   // directly, but that's dangerous since it would silently break out of tree
1447   // callers.
1448   return new LoopUnroll(
1449       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1450       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1451       Count == -1 ? None : Optional<unsigned>(Count),
1452       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1453       Runtime == -1 ? None : Optional<bool>(Runtime),
1454       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1455       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1456 }
1457 
1458 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1459                                        bool ForgetAllSCEV) {
1460   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1461                               0, 0, 0, 1);
1462 }
1463 
1464 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1465                                           LoopStandardAnalysisResults &AR,
1466                                           LPMUpdater &Updater) {
1467   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1468   // pass. Function analyses need to be preserved across loop transformations
1469   // but ORE cannot be preserved (see comment before the pass definition).
1470   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1471 
1472   // Keep track of the previous loop structure so we can identify new loops
1473   // created by unrolling.
1474   Loop *ParentL = L.getParentLoop();
1475   SmallPtrSet<Loop *, 4> OldLoops;
1476   if (ParentL)
1477     OldLoops.insert(ParentL->begin(), ParentL->end());
1478   else
1479     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1480 
1481   std::string LoopName = std::string(L.getName());
1482 
1483   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1484                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1485                                  /*PreserveLCSSA*/ true, OptLevel,
1486                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1487                                  /*Threshold*/ None, /*AllowPartial*/ false,
1488                                  /*Runtime*/ false, /*UpperBound*/ false,
1489                                  /*AllowPeeling*/ true,
1490                                  /*AllowProfileBasedPeeling*/ false,
1491                                  /*FullUnrollMaxCount*/ None) !=
1492                  LoopUnrollResult::Unmodified;
1493   if (!Changed)
1494     return PreservedAnalyses::all();
1495 
1496   // The parent must not be damaged by unrolling!
1497 #ifndef NDEBUG
1498   if (ParentL)
1499     ParentL->verifyLoop();
1500 #endif
1501 
1502   // Unrolling can do several things to introduce new loops into a loop nest:
1503   // - Full unrolling clones child loops within the current loop but then
1504   //   removes the current loop making all of the children appear to be new
1505   //   sibling loops.
1506   //
1507   // When a new loop appears as a sibling loop after fully unrolling,
1508   // its nesting structure has fundamentally changed and we want to revisit
1509   // it to reflect that.
1510   //
1511   // When unrolling has removed the current loop, we need to tell the
1512   // infrastructure that it is gone.
1513   //
1514   // Finally, we support a debugging/testing mode where we revisit child loops
1515   // as well. These are not expected to require further optimizations as either
1516   // they or the loop they were cloned from have been directly visited already.
1517   // But the debugging mode allows us to check this assumption.
1518   bool IsCurrentLoopValid = false;
1519   SmallVector<Loop *, 4> SibLoops;
1520   if (ParentL)
1521     SibLoops.append(ParentL->begin(), ParentL->end());
1522   else
1523     SibLoops.append(AR.LI.begin(), AR.LI.end());
1524   erase_if(SibLoops, [&](Loop *SibLoop) {
1525     if (SibLoop == &L) {
1526       IsCurrentLoopValid = true;
1527       return true;
1528     }
1529 
1530     // Otherwise erase the loop from the list if it was in the old loops.
1531     return OldLoops.contains(SibLoop);
1532   });
1533   Updater.addSiblingLoops(SibLoops);
1534 
1535   if (!IsCurrentLoopValid) {
1536     Updater.markLoopAsDeleted(L, LoopName);
1537   } else {
1538     // We can only walk child loops if the current loop remained valid.
1539     if (UnrollRevisitChildLoops) {
1540       // Walk *all* of the child loops.
1541       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1542       Updater.addChildLoops(ChildLoops);
1543     }
1544   }
1545 
1546   return getLoopPassPreservedAnalyses();
1547 }
1548 
1549 PreservedAnalyses LoopUnrollPass::run(Function &F,
1550                                       FunctionAnalysisManager &AM) {
1551   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1552   auto &LI = AM.getResult<LoopAnalysis>(F);
1553   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1554   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1555   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1556   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1557 
1558   LoopAnalysisManager *LAM = nullptr;
1559   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1560     LAM = &LAMProxy->getManager();
1561 
1562   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1563   ProfileSummaryInfo *PSI =
1564       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1565   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1566       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1567 
1568   bool Changed = false;
1569 
1570   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1571   // Since simplification may add new inner loops, it has to run before the
1572   // legality and profitability checks. This means running the loop unroller
1573   // will simplify all loops, regardless of whether anything end up being
1574   // unrolled.
1575   for (auto &L : LI) {
1576     Changed |=
1577         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1578     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1579   }
1580 
1581   // Add the loop nests in the reverse order of LoopInfo. See method
1582   // declaration.
1583   SmallPriorityWorklist<Loop *, 4> Worklist;
1584   appendLoopsToWorklist(LI, Worklist);
1585 
1586   while (!Worklist.empty()) {
1587     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1588     // from back to front so that we work forward across the CFG, which
1589     // for unrolling is only needed to get optimization remarks emitted in
1590     // a forward order.
1591     Loop &L = *Worklist.pop_back_val();
1592 #ifndef NDEBUG
1593     Loop *ParentL = L.getParentLoop();
1594 #endif
1595 
1596     // Check if the profile summary indicates that the profiled application
1597     // has a huge working set size, in which case we disable peeling to avoid
1598     // bloating it further.
1599     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1600     if (PSI && PSI->hasHugeWorkingSetSize())
1601       LocalAllowPeeling = false;
1602     std::string LoopName = std::string(L.getName());
1603     // The API here is quite complex to call and we allow to select some
1604     // flavors of unrolling during construction time (by setting UnrollOpts).
1605     LoopUnrollResult Result = tryToUnrollLoop(
1606         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1607         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1608         UnrollOpts.ForgetSCEV, /*Count*/ None,
1609         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1610         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1611         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1612     Changed |= Result != LoopUnrollResult::Unmodified;
1613 
1614     // The parent must not be damaged by unrolling!
1615 #ifndef NDEBUG
1616     if (Result != LoopUnrollResult::Unmodified && ParentL)
1617       ParentL->verifyLoop();
1618 #endif
1619 
1620     // Clear any cached analysis results for L if we removed it completely.
1621     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1622       LAM->clear(L, LoopName);
1623   }
1624 
1625   if (!Changed)
1626     return PreservedAnalyses::all();
1627 
1628   return getLoopPassPreservedAnalyses();
1629 }
1630 
1631 void LoopUnrollPass::printPipeline(
1632     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1633   static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1634       OS, MapClassName2PassName);
1635   OS << "<";
1636   if (UnrollOpts.AllowPartial != None)
1637     OS << (UnrollOpts.AllowPartial.getValue() ? "" : "no-") << "partial;";
1638   if (UnrollOpts.AllowPeeling != None)
1639     OS << (UnrollOpts.AllowPeeling.getValue() ? "" : "no-") << "peeling;";
1640   if (UnrollOpts.AllowRuntime != None)
1641     OS << (UnrollOpts.AllowRuntime.getValue() ? "" : "no-") << "runtime;";
1642   if (UnrollOpts.AllowUpperBound != None)
1643     OS << (UnrollOpts.AllowUpperBound.getValue() ? "" : "no-") << "upperbound;";
1644   if (UnrollOpts.AllowProfileBasedPeeling != None)
1645     OS << (UnrollOpts.AllowProfileBasedPeeling.getValue() ? "" : "no-")
1646        << "profile-peeling;";
1647   if (UnrollOpts.FullUnrollMaxCount != None)
1648     OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";";
1649   OS << "O" << UnrollOpts.OptLevel;
1650   OS << ">";
1651 }
1652