1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/LoopPeel.h" 60 #include "llvm/Transforms/Utils/LoopSimplify.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include "llvm/Transforms/Utils/UnrollLoop.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <limits> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is sometimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of" 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 /// A magic value for use with the Threshold parameter to indicate 179 /// that the loop unroll should be performed regardless of how much 180 /// code expansion would result. 181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 182 183 /// Gather the various unrolling parameters based on the defaults, compiler 184 /// flags, TTI overrides and user specified parameters. 185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 186 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 187 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 188 OptimizationRemarkEmitter &ORE, int OptLevel, 189 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 190 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 191 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) { 192 TargetTransformInfo::UnrollingPreferences UP; 193 194 // Set up the defaults 195 UP.Threshold = 196 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 197 UP.MaxPercentThresholdBoost = 400; 198 UP.OptSizeThreshold = UnrollOptSizeThreshold; 199 UP.PartialThreshold = 150; 200 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 201 UP.Count = 0; 202 UP.DefaultUnrollRuntimeCount = 8; 203 UP.MaxCount = std::numeric_limits<unsigned>::max(); 204 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 205 UP.BEInsns = 2; 206 UP.Partial = false; 207 UP.Runtime = false; 208 UP.AllowRemainder = true; 209 UP.UnrollRemainder = false; 210 UP.AllowExpensiveTripCount = false; 211 UP.Force = false; 212 UP.UpperBound = false; 213 UP.UnrollAndJam = false; 214 UP.UnrollAndJamInnerLoopThreshold = 60; 215 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 216 217 // Override with any target specific settings 218 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 219 220 // Apply size attributes 221 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 222 // Let unroll hints / pragmas take precedence over PGSO. 223 (hasUnrollTransformation(L) != TM_ForcedByUser && 224 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 225 PGSOQueryType::IRPass)); 226 if (OptForSize) { 227 UP.Threshold = UP.OptSizeThreshold; 228 UP.PartialThreshold = UP.PartialOptSizeThreshold; 229 UP.MaxPercentThresholdBoost = 100; 230 } 231 232 // Apply any user values specified by cl::opt 233 if (UnrollThreshold.getNumOccurrences() > 0) 234 UP.Threshold = UnrollThreshold; 235 if (UnrollPartialThreshold.getNumOccurrences() > 0) 236 UP.PartialThreshold = UnrollPartialThreshold; 237 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 238 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 239 if (UnrollMaxCount.getNumOccurrences() > 0) 240 UP.MaxCount = UnrollMaxCount; 241 if (UnrollFullMaxCount.getNumOccurrences() > 0) 242 UP.FullUnrollMaxCount = UnrollFullMaxCount; 243 if (UnrollAllowPartial.getNumOccurrences() > 0) 244 UP.Partial = UnrollAllowPartial; 245 if (UnrollAllowRemainder.getNumOccurrences() > 0) 246 UP.AllowRemainder = UnrollAllowRemainder; 247 if (UnrollRuntime.getNumOccurrences() > 0) 248 UP.Runtime = UnrollRuntime; 249 if (UnrollMaxUpperBound == 0) 250 UP.UpperBound = false; 251 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 252 UP.UnrollRemainder = UnrollUnrollRemainder; 253 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 254 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 255 256 // Apply user values provided by argument 257 if (UserThreshold.hasValue()) { 258 UP.Threshold = *UserThreshold; 259 UP.PartialThreshold = *UserThreshold; 260 } 261 if (UserCount.hasValue()) 262 UP.Count = *UserCount; 263 if (UserAllowPartial.hasValue()) 264 UP.Partial = *UserAllowPartial; 265 if (UserRuntime.hasValue()) 266 UP.Runtime = *UserRuntime; 267 if (UserUpperBound.hasValue()) 268 UP.UpperBound = *UserUpperBound; 269 if (UserFullUnrollMaxCount.hasValue()) 270 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 271 272 return UP; 273 } 274 275 namespace { 276 277 /// A struct to densely store the state of an instruction after unrolling at 278 /// each iteration. 279 /// 280 /// This is designed to work like a tuple of <Instruction *, int> for the 281 /// purposes of hashing and lookup, but to be able to associate two boolean 282 /// states with each key. 283 struct UnrolledInstState { 284 Instruction *I; 285 int Iteration : 30; 286 unsigned IsFree : 1; 287 unsigned IsCounted : 1; 288 }; 289 290 /// Hashing and equality testing for a set of the instruction states. 291 struct UnrolledInstStateKeyInfo { 292 using PtrInfo = DenseMapInfo<Instruction *>; 293 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 294 295 static inline UnrolledInstState getEmptyKey() { 296 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 297 } 298 299 static inline UnrolledInstState getTombstoneKey() { 300 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 301 } 302 303 static inline unsigned getHashValue(const UnrolledInstState &S) { 304 return PairInfo::getHashValue({S.I, S.Iteration}); 305 } 306 307 static inline bool isEqual(const UnrolledInstState &LHS, 308 const UnrolledInstState &RHS) { 309 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 310 } 311 }; 312 313 struct EstimatedUnrollCost { 314 /// The estimated cost after unrolling. 315 unsigned UnrolledCost; 316 317 /// The estimated dynamic cost of executing the instructions in the 318 /// rolled form. 319 unsigned RolledDynamicCost; 320 }; 321 322 struct PragmaInfo { 323 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 324 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 325 PragmaEnableUnroll(PEU) {} 326 const bool UserUnrollCount; 327 const bool PragmaFullUnroll; 328 const unsigned PragmaCount; 329 const bool PragmaEnableUnroll; 330 }; 331 332 } // end anonymous namespace 333 334 /// Figure out if the loop is worth full unrolling. 335 /// 336 /// Complete loop unrolling can make some loads constant, and we need to know 337 /// if that would expose any further optimization opportunities. This routine 338 /// estimates this optimization. It computes cost of unrolled loop 339 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 340 /// dynamic cost we mean that we won't count costs of blocks that are known not 341 /// to be executed (i.e. if we have a branch in the loop and we know that at the 342 /// given iteration its condition would be resolved to true, we won't add up the 343 /// cost of the 'false'-block). 344 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 345 /// the analysis failed (no benefits expected from the unrolling, or the loop is 346 /// too big to analyze), the returned value is None. 347 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 348 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 349 const SmallPtrSetImpl<const Value *> &EphValues, 350 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 351 unsigned MaxIterationsCountToAnalyze) { 352 // We want to be able to scale offsets by the trip count and add more offsets 353 // to them without checking for overflows, and we already don't want to 354 // analyze *massive* trip counts, so we force the max to be reasonably small. 355 assert(MaxIterationsCountToAnalyze < 356 (unsigned)(std::numeric_limits<int>::max() / 2) && 357 "The unroll iterations max is too large!"); 358 359 // Only analyze inner loops. We can't properly estimate cost of nested loops 360 // and we won't visit inner loops again anyway. 361 if (!L->isInnermost()) 362 return None; 363 364 // Don't simulate loops with a big or unknown tripcount 365 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 366 return None; 367 368 SmallSetVector<BasicBlock *, 16> BBWorklist; 369 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 370 DenseMap<Value *, Value *> SimplifiedValues; 371 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 372 373 // The estimated cost of the unrolled form of the loop. We try to estimate 374 // this by simplifying as much as we can while computing the estimate. 375 InstructionCost UnrolledCost = 0; 376 377 // We also track the estimated dynamic (that is, actually executed) cost in 378 // the rolled form. This helps identify cases when the savings from unrolling 379 // aren't just exposing dead control flows, but actual reduced dynamic 380 // instructions due to the simplifications which we expect to occur after 381 // unrolling. 382 InstructionCost RolledDynamicCost = 0; 383 384 // We track the simplification of each instruction in each iteration. We use 385 // this to recursively merge costs into the unrolled cost on-demand so that 386 // we don't count the cost of any dead code. This is essentially a map from 387 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 388 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 389 390 // A small worklist used to accumulate cost of instructions from each 391 // observable and reached root in the loop. 392 SmallVector<Instruction *, 16> CostWorklist; 393 394 // PHI-used worklist used between iterations while accumulating cost. 395 SmallVector<Instruction *, 4> PHIUsedList; 396 397 // Helper function to accumulate cost for instructions in the loop. 398 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 399 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 400 assert(CostWorklist.empty() && "Must start with an empty cost list"); 401 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 402 CostWorklist.push_back(&RootI); 403 TargetTransformInfo::TargetCostKind CostKind = 404 RootI.getFunction()->hasMinSize() ? 405 TargetTransformInfo::TCK_CodeSize : 406 TargetTransformInfo::TCK_SizeAndLatency; 407 for (;; --Iteration) { 408 do { 409 Instruction *I = CostWorklist.pop_back_val(); 410 411 // InstCostMap only uses I and Iteration as a key, the other two values 412 // don't matter here. 413 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 414 if (CostIter == InstCostMap.end()) 415 // If an input to a PHI node comes from a dead path through the loop 416 // we may have no cost data for it here. What that actually means is 417 // that it is free. 418 continue; 419 auto &Cost = *CostIter; 420 if (Cost.IsCounted) 421 // Already counted this instruction. 422 continue; 423 424 // Mark that we are counting the cost of this instruction now. 425 Cost.IsCounted = true; 426 427 // If this is a PHI node in the loop header, just add it to the PHI set. 428 if (auto *PhiI = dyn_cast<PHINode>(I)) 429 if (PhiI->getParent() == L->getHeader()) { 430 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 431 "inherently simplify during unrolling."); 432 if (Iteration == 0) 433 continue; 434 435 // Push the incoming value from the backedge into the PHI used list 436 // if it is an in-loop instruction. We'll use this to populate the 437 // cost worklist for the next iteration (as we count backwards). 438 if (auto *OpI = dyn_cast<Instruction>( 439 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 440 if (L->contains(OpI)) 441 PHIUsedList.push_back(OpI); 442 continue; 443 } 444 445 // First accumulate the cost of this instruction. 446 if (!Cost.IsFree) { 447 UnrolledCost += TTI.getUserCost(I, CostKind); 448 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 449 << Iteration << "): "); 450 LLVM_DEBUG(I->dump()); 451 } 452 453 // We must count the cost of every operand which is not free, 454 // recursively. If we reach a loop PHI node, simply add it to the set 455 // to be considered on the next iteration (backwards!). 456 for (Value *Op : I->operands()) { 457 // Check whether this operand is free due to being a constant or 458 // outside the loop. 459 auto *OpI = dyn_cast<Instruction>(Op); 460 if (!OpI || !L->contains(OpI)) 461 continue; 462 463 // Otherwise accumulate its cost. 464 CostWorklist.push_back(OpI); 465 } 466 } while (!CostWorklist.empty()); 467 468 if (PHIUsedList.empty()) 469 // We've exhausted the search. 470 break; 471 472 assert(Iteration > 0 && 473 "Cannot track PHI-used values past the first iteration!"); 474 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 475 PHIUsedList.clear(); 476 } 477 }; 478 479 // Ensure that we don't violate the loop structure invariants relied on by 480 // this analysis. 481 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 482 assert(L->isLCSSAForm(DT) && 483 "Must have loops in LCSSA form to track live-out values."); 484 485 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 486 487 TargetTransformInfo::TargetCostKind CostKind = 488 L->getHeader()->getParent()->hasMinSize() ? 489 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 490 // Simulate execution of each iteration of the loop counting instructions, 491 // which would be simplified. 492 // Since the same load will take different values on different iterations, 493 // we literally have to go through all loop's iterations. 494 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 495 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 496 497 // Prepare for the iteration by collecting any simplified entry or backedge 498 // inputs. 499 for (Instruction &I : *L->getHeader()) { 500 auto *PHI = dyn_cast<PHINode>(&I); 501 if (!PHI) 502 break; 503 504 // The loop header PHI nodes must have exactly two input: one from the 505 // loop preheader and one from the loop latch. 506 assert( 507 PHI->getNumIncomingValues() == 2 && 508 "Must have an incoming value only for the preheader and the latch."); 509 510 Value *V = PHI->getIncomingValueForBlock( 511 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 512 if (Iteration != 0 && SimplifiedValues.count(V)) 513 V = SimplifiedValues.lookup(V); 514 SimplifiedInputValues.push_back({PHI, V}); 515 } 516 517 // Now clear and re-populate the map for the next iteration. 518 SimplifiedValues.clear(); 519 while (!SimplifiedInputValues.empty()) 520 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 521 522 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 523 524 BBWorklist.clear(); 525 BBWorklist.insert(L->getHeader()); 526 // Note that we *must not* cache the size, this loop grows the worklist. 527 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 528 BasicBlock *BB = BBWorklist[Idx]; 529 530 // Visit all instructions in the given basic block and try to simplify 531 // it. We don't change the actual IR, just count optimization 532 // opportunities. 533 for (Instruction &I : *BB) { 534 // These won't get into the final code - don't even try calculating the 535 // cost for them. 536 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 537 continue; 538 539 // Track this instruction's expected baseline cost when executing the 540 // rolled loop form. 541 RolledDynamicCost += TTI.getUserCost(&I, CostKind); 542 543 // Visit the instruction to analyze its loop cost after unrolling, 544 // and if the visitor returns true, mark the instruction as free after 545 // unrolling and continue. 546 bool IsFree = Analyzer.visit(I); 547 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 548 (unsigned)IsFree, 549 /*IsCounted*/ false}).second; 550 (void)Inserted; 551 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 552 553 if (IsFree) 554 continue; 555 556 // Can't properly model a cost of a call. 557 // FIXME: With a proper cost model we should be able to do it. 558 if (auto *CI = dyn_cast<CallInst>(&I)) { 559 const Function *Callee = CI->getCalledFunction(); 560 if (!Callee || TTI.isLoweredToCall(Callee)) { 561 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 562 return None; 563 } 564 } 565 566 // If the instruction might have a side-effect recursively account for 567 // the cost of it and all the instructions leading up to it. 568 if (I.mayHaveSideEffects()) 569 AddCostRecursively(I, Iteration); 570 571 // If unrolled body turns out to be too big, bail out. 572 if (UnrolledCost > MaxUnrolledLoopSize) { 573 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 574 << " UnrolledCost: " << UnrolledCost 575 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 576 << "\n"); 577 return None; 578 } 579 } 580 581 Instruction *TI = BB->getTerminator(); 582 583 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 584 if (SimplifiedValues.count(V)) 585 V = SimplifiedValues.lookup(V); 586 return dyn_cast<Constant>(V); 587 }; 588 589 // Add in the live successors by first checking whether we have terminator 590 // that may be simplified based on the values simplified by this call. 591 BasicBlock *KnownSucc = nullptr; 592 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 593 if (BI->isConditional()) { 594 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 595 // Just take the first successor if condition is undef 596 if (isa<UndefValue>(SimpleCond)) 597 KnownSucc = BI->getSuccessor(0); 598 else if (ConstantInt *SimpleCondVal = 599 dyn_cast<ConstantInt>(SimpleCond)) 600 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 601 } 602 } 603 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 604 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 605 // Just take the first successor if condition is undef 606 if (isa<UndefValue>(SimpleCond)) 607 KnownSucc = SI->getSuccessor(0); 608 else if (ConstantInt *SimpleCondVal = 609 dyn_cast<ConstantInt>(SimpleCond)) 610 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 611 } 612 } 613 if (KnownSucc) { 614 if (L->contains(KnownSucc)) 615 BBWorklist.insert(KnownSucc); 616 else 617 ExitWorklist.insert({BB, KnownSucc}); 618 continue; 619 } 620 621 // Add BB's successors to the worklist. 622 for (BasicBlock *Succ : successors(BB)) 623 if (L->contains(Succ)) 624 BBWorklist.insert(Succ); 625 else 626 ExitWorklist.insert({BB, Succ}); 627 AddCostRecursively(*TI, Iteration); 628 } 629 630 // If we found no optimization opportunities on the first iteration, we 631 // won't find them on later ones too. 632 if (UnrolledCost == RolledDynamicCost) { 633 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 634 << " UnrolledCost: " << UnrolledCost << "\n"); 635 return None; 636 } 637 } 638 639 while (!ExitWorklist.empty()) { 640 BasicBlock *ExitingBB, *ExitBB; 641 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 642 643 for (Instruction &I : *ExitBB) { 644 auto *PN = dyn_cast<PHINode>(&I); 645 if (!PN) 646 break; 647 648 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 649 if (auto *OpI = dyn_cast<Instruction>(Op)) 650 if (L->contains(OpI)) 651 AddCostRecursively(*OpI, TripCount - 1); 652 } 653 } 654 655 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 656 "All instructions must have a valid cost, whether the " 657 "loop is rolled or unrolled."); 658 659 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 660 << "UnrolledCost: " << UnrolledCost << ", " 661 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 662 return {{unsigned(*UnrolledCost.getValue()), 663 unsigned(*RolledDynamicCost.getValue())}}; 664 } 665 666 /// ApproximateLoopSize - Approximate the size of the loop. 667 unsigned llvm::ApproximateLoopSize( 668 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 669 const TargetTransformInfo &TTI, 670 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 671 CodeMetrics Metrics; 672 for (BasicBlock *BB : L->blocks()) 673 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 674 NumCalls = Metrics.NumInlineCandidates; 675 NotDuplicatable = Metrics.notDuplicatable; 676 Convergent = Metrics.convergent; 677 678 unsigned LoopSize = Metrics.NumInsts; 679 680 // Don't allow an estimate of size zero. This would allows unrolling of loops 681 // with huge iteration counts, which is a compile time problem even if it's 682 // not a problem for code quality. Also, the code using this size may assume 683 // that each loop has at least three instructions (likely a conditional 684 // branch, a comparison feeding that branch, and some kind of loop increment 685 // feeding that comparison instruction). 686 LoopSize = std::max(LoopSize, BEInsns + 1); 687 688 return LoopSize; 689 } 690 691 // Returns the loop hint metadata node with the given name (for example, 692 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 693 // returned. 694 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 695 if (MDNode *LoopID = L->getLoopID()) 696 return GetUnrollMetadata(LoopID, Name); 697 return nullptr; 698 } 699 700 // Returns true if the loop has an unroll(full) pragma. 701 static bool hasUnrollFullPragma(const Loop *L) { 702 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 703 } 704 705 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 706 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 707 static bool hasUnrollEnablePragma(const Loop *L) { 708 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 709 } 710 711 // Returns true if the loop has an runtime unroll(disable) pragma. 712 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 713 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 714 } 715 716 // If loop has an unroll_count pragma return the (necessarily 717 // positive) value from the pragma. Otherwise return 0. 718 static unsigned unrollCountPragmaValue(const Loop *L) { 719 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 720 if (MD) { 721 assert(MD->getNumOperands() == 2 && 722 "Unroll count hint metadata should have two operands."); 723 unsigned Count = 724 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 725 assert(Count >= 1 && "Unroll count must be positive."); 726 return Count; 727 } 728 return 0; 729 } 730 731 // Computes the boosting factor for complete unrolling. 732 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 733 // be beneficial to fully unroll the loop even if unrolledcost is large. We 734 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 735 // the unroll threshold. 736 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 737 unsigned MaxPercentThresholdBoost) { 738 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 739 return 100; 740 else if (Cost.UnrolledCost != 0) 741 // The boosting factor is RolledDynamicCost / UnrolledCost 742 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 743 MaxPercentThresholdBoost); 744 else 745 return MaxPercentThresholdBoost; 746 } 747 748 // Produce an estimate of the unrolled cost of the specified loop. This 749 // is used to a) produce a cost estimate for partial unrolling and b) to 750 // cheaply estimate cost for full unrolling when we don't want to symbolically 751 // evaluate all iterations. 752 class UnrollCostEstimator { 753 const unsigned LoopSize; 754 755 public: 756 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {} 757 758 // Returns loop size estimation for unrolled loop, given the unrolling 759 // configuration specified by UP. 760 uint64_t 761 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP, 762 const unsigned CountOverwrite = 0) const { 763 assert(LoopSize >= UP.BEInsns && 764 "LoopSize should not be less than BEInsns!"); 765 if (CountOverwrite) 766 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite + 767 UP.BEInsns; 768 else 769 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count + 770 UP.BEInsns; 771 } 772 }; 773 774 static Optional<unsigned> 775 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 776 const unsigned TripMultiple, const unsigned TripCount, 777 const UnrollCostEstimator UCE, 778 const TargetTransformInfo::UnrollingPreferences &UP) { 779 780 // Using unroll pragma 781 // 1st priority is unroll count set by "unroll-count" option. 782 783 if (PInfo.UserUnrollCount) { 784 if (UP.AllowRemainder && 785 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 786 return (unsigned)UnrollCount; 787 } 788 789 // 2nd priority is unroll count set by pragma. 790 if (PInfo.PragmaCount > 0) { 791 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)) && 792 UCE.getUnrolledLoopSize(UP, PInfo.PragmaCount) < PragmaUnrollThreshold) 793 return PInfo.PragmaCount; 794 } 795 796 if (PInfo.PragmaFullUnroll && TripCount != 0) { 797 if (UCE.getUnrolledLoopSize(UP, TripCount) < PragmaUnrollThreshold) 798 return TripCount; 799 } 800 // if didn't return until here, should continue to other priorties 801 return None; 802 } 803 804 static Optional<unsigned> shouldFullUnroll( 805 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 806 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 807 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 808 const TargetTransformInfo::UnrollingPreferences &UP) { 809 assert(FullUnrollTripCount && "should be non-zero!"); 810 811 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 812 return None; 813 814 // When computing the unrolled size, note that BEInsns are not replicated 815 // like the rest of the loop body. 816 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 817 return FullUnrollTripCount; 818 819 // The loop isn't that small, but we still can fully unroll it if that 820 // helps to remove a significant number of instructions. 821 // To check that, run additional analysis on the loop. 822 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 823 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 824 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 825 UP.MaxIterationsCountToAnalyze)) { 826 unsigned Boost = 827 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 828 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 829 return FullUnrollTripCount; 830 } 831 return None; 832 } 833 834 static Optional<unsigned> 835 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 836 const UnrollCostEstimator UCE, 837 const TargetTransformInfo::UnrollingPreferences &UP) { 838 839 if (!TripCount) 840 return None; 841 842 if (!UP.Partial) { 843 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 844 << "-unroll-allow-partial not given\n"); 845 return 0; 846 } 847 unsigned count = UP.Count; 848 if (count == 0) 849 count = TripCount; 850 if (UP.PartialThreshold != NoThreshold) { 851 // Reduce unroll count to be modulo of TripCount for partial unrolling. 852 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 853 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 854 (LoopSize - UP.BEInsns); 855 if (count > UP.MaxCount) 856 count = UP.MaxCount; 857 while (count != 0 && TripCount % count != 0) 858 count--; 859 if (UP.AllowRemainder && count <= 1) { 860 // If there is no Count that is modulo of TripCount, set Count to 861 // largest power-of-two factor that satisfies the threshold limit. 862 // As we'll create fixup loop, do the type of unrolling only if 863 // remainder loop is allowed. 864 count = UP.DefaultUnrollRuntimeCount; 865 while (count != 0 && 866 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 867 count >>= 1; 868 } 869 if (count < 2) { 870 count = 0; 871 } 872 } else { 873 count = TripCount; 874 } 875 if (count > UP.MaxCount) 876 count = UP.MaxCount; 877 878 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 879 880 return count; 881 } 882 // Returns true if unroll count was set explicitly. 883 // Calculates unroll count and writes it to UP.Count. 884 // Unless IgnoreUser is true, will also use metadata and command-line options 885 // that are specific to to the LoopUnroll pass (which, for instance, are 886 // irrelevant for the LoopUnrollAndJam pass). 887 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 888 // many LoopUnroll-specific options. The shared functionality should be 889 // refactored into it own function. 890 bool llvm::computeUnrollCount( 891 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 892 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 893 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 894 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize, 895 TargetTransformInfo::UnrollingPreferences &UP, 896 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 897 898 UnrollCostEstimator UCE(*L, LoopSize); 899 900 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 901 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 902 const unsigned PragmaCount = unrollCountPragmaValue(L); 903 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 904 905 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 906 PragmaEnableUnroll || UserUnrollCount; 907 908 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 909 PragmaEnableUnroll); 910 // Use an explicit peel count that has been specified for testing. In this 911 // case it's not permitted to also specify an explicit unroll count. 912 if (PP.PeelCount) { 913 if (UnrollCount.getNumOccurrences() > 0) { 914 report_fatal_error("Cannot specify both explicit peel count and " 915 "explicit unroll count"); 916 } 917 UP.Count = 1; 918 UP.Runtime = false; 919 return true; 920 } 921 // Check for explicit Count. 922 // 1st priority is unroll count set by "unroll-count" option. 923 // 2nd priority is unroll count set by pragma. 924 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 925 UCE, UP)) { 926 UP.Count = *UnrollFactor; 927 928 if (UserUnrollCount || (PragmaCount > 0)) { 929 UP.AllowExpensiveTripCount = true; 930 UP.Force = true; 931 } 932 UP.Runtime |= (PragmaCount > 0); 933 return ExplicitUnroll; 934 } else { 935 if (ExplicitUnroll && TripCount != 0) { 936 // If the loop has an unrolling pragma, we want to be more aggressive with 937 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 938 // value which is larger than the default limits. 939 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 940 UP.PartialThreshold = 941 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 942 } 943 } 944 945 // 3rd priority is exact full unrolling. This will eliminate all copies 946 // of some exit test. 947 UP.Count = 0; 948 if (TripCount) { 949 UP.Count = TripCount; 950 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 951 TripCount, UCE, UP)) { 952 UP.Count = *UnrollFactor; 953 UseUpperBound = false; 954 return ExplicitUnroll; 955 } 956 } 957 958 // 4th priority is bounded unrolling. 959 // We can unroll by the upper bound amount if it's generally allowed or if 960 // we know that the loop is executed either the upper bound or zero times. 961 // (MaxOrZero unrolling keeps only the first loop test, so the number of 962 // loop tests remains the same compared to the non-unrolled version, whereas 963 // the generic upper bound unrolling keeps all but the last loop test so the 964 // number of loop tests goes up which may end up being worse on targets with 965 // constrained branch predictor resources so is controlled by an option.) 966 // In addition we only unroll small upper bounds. 967 // Note that the cost of bounded unrolling is always strictly greater than 968 // cost of exact full unrolling. As such, if we have an exact count and 969 // found it unprofitable, we'll never chose to bounded unroll. 970 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 971 MaxTripCount <= UnrollMaxUpperBound) { 972 UP.Count = MaxTripCount; 973 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 974 MaxTripCount, UCE, UP)) { 975 UP.Count = *UnrollFactor; 976 UseUpperBound = true; 977 return ExplicitUnroll; 978 } 979 } 980 981 // 5th priority is loop peeling. 982 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, UP.Threshold); 983 if (PP.PeelCount) { 984 UP.Runtime = false; 985 UP.Count = 1; 986 return ExplicitUnroll; 987 } 988 989 // Before starting partial unrolling, set up.partial to true, 990 // if user explicitly asked for unrolling 991 if (TripCount) 992 UP.Partial |= ExplicitUnroll; 993 994 // 6th priority is partial unrolling. 995 // Try partial unroll only when TripCount could be statically calculated. 996 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 997 UP.Count = *UnrollFactor; 998 999 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 1000 UP.Count != TripCount) 1001 ORE->emit([&]() { 1002 return OptimizationRemarkMissed(DEBUG_TYPE, 1003 "FullUnrollAsDirectedTooLarge", 1004 L->getStartLoc(), L->getHeader()) 1005 << "Unable to fully unroll loop as directed by unroll pragma " 1006 "because " 1007 "unrolled size is too large."; 1008 }); 1009 1010 if (UP.PartialThreshold != NoThreshold) { 1011 if (UP.Count == 0) { 1012 if (PragmaEnableUnroll) 1013 ORE->emit([&]() { 1014 return OptimizationRemarkMissed(DEBUG_TYPE, 1015 "UnrollAsDirectedTooLarge", 1016 L->getStartLoc(), L->getHeader()) 1017 << "Unable to unroll loop as directed by unroll(enable) " 1018 "pragma " 1019 "because unrolled size is too large."; 1020 }); 1021 } 1022 } 1023 return ExplicitUnroll; 1024 } 1025 assert(TripCount == 0 && 1026 "All cases when TripCount is constant should be covered here."); 1027 if (PragmaFullUnroll) 1028 ORE->emit([&]() { 1029 return OptimizationRemarkMissed( 1030 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1031 L->getStartLoc(), L->getHeader()) 1032 << "Unable to fully unroll loop as directed by unroll(full) " 1033 "pragma " 1034 "because loop has a runtime trip count."; 1035 }); 1036 1037 // 7th priority is runtime unrolling. 1038 // Don't unroll a runtime trip count loop when it is disabled. 1039 if (hasRuntimeUnrollDisablePragma(L)) { 1040 UP.Count = 0; 1041 return false; 1042 } 1043 1044 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1045 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) { 1046 UP.Count = 0; 1047 return false; 1048 } 1049 1050 // Check if the runtime trip count is too small when profile is available. 1051 if (L->getHeader()->getParent()->hasProfileData()) { 1052 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1053 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1054 return false; 1055 else 1056 UP.AllowExpensiveTripCount = true; 1057 } 1058 } 1059 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1060 if (!UP.Runtime) { 1061 LLVM_DEBUG( 1062 dbgs() << " will not try to unroll loop with runtime trip count " 1063 << "-unroll-runtime not given\n"); 1064 UP.Count = 0; 1065 return false; 1066 } 1067 if (UP.Count == 0) 1068 UP.Count = UP.DefaultUnrollRuntimeCount; 1069 1070 // Reduce unroll count to be the largest power-of-two factor of 1071 // the original count which satisfies the threshold limit. 1072 while (UP.Count != 0 && 1073 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1074 UP.Count >>= 1; 1075 1076 #ifndef NDEBUG 1077 unsigned OrigCount = UP.Count; 1078 #endif 1079 1080 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1081 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1082 UP.Count >>= 1; 1083 LLVM_DEBUG( 1084 dbgs() << "Remainder loop is restricted (that could architecture " 1085 "specific or because the loop contains a convergent " 1086 "instruction), so unroll count must divide the trip " 1087 "multiple, " 1088 << TripMultiple << ". Reducing unroll count from " << OrigCount 1089 << " to " << UP.Count << ".\n"); 1090 1091 using namespace ore; 1092 1093 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1094 ORE->emit([&]() { 1095 return OptimizationRemarkMissed(DEBUG_TYPE, 1096 "DifferentUnrollCountFromDirected", 1097 L->getStartLoc(), L->getHeader()) 1098 << "Unable to unroll loop the number of times directed by " 1099 "unroll_count pragma because remainder loop is restricted " 1100 "(that could architecture specific or because the loop " 1101 "contains a convergent instruction) and so must have an " 1102 "unroll " 1103 "count that divides the loop trip multiple of " 1104 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1105 << NV("UnrollCount", UP.Count) << " time(s)."; 1106 }); 1107 } 1108 1109 if (UP.Count > UP.MaxCount) 1110 UP.Count = UP.MaxCount; 1111 1112 if (MaxTripCount && UP.Count > MaxTripCount) 1113 UP.Count = MaxTripCount; 1114 1115 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1116 << "\n"); 1117 if (UP.Count < 2) 1118 UP.Count = 0; 1119 return ExplicitUnroll; 1120 } 1121 1122 static LoopUnrollResult tryToUnrollLoop( 1123 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1124 const TargetTransformInfo &TTI, AssumptionCache &AC, 1125 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1126 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1127 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 1128 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 1129 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 1130 Optional<bool> ProvidedAllowPeeling, 1131 Optional<bool> ProvidedAllowProfileBasedPeeling, 1132 Optional<unsigned> ProvidedFullUnrollMaxCount) { 1133 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1134 << L->getHeader()->getParent()->getName() << "] Loop %" 1135 << L->getHeader()->getName() << "\n"); 1136 TransformationMode TM = hasUnrollTransformation(L); 1137 if (TM & TM_Disable) 1138 return LoopUnrollResult::Unmodified; 1139 1140 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1141 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1142 // automatic unrolling from interfering with the user requested 1143 // transformation. 1144 Loop *ParentL = L->getParentLoop(); 1145 if (ParentL != nullptr && 1146 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1147 hasUnrollTransformation(L) != TM_ForcedByUser) { 1148 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1149 << " llvm.loop.unroll_and_jam.\n"); 1150 return LoopUnrollResult::Unmodified; 1151 } 1152 1153 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1154 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1155 // unrolling from interfering with the user requested transformation. 1156 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1157 hasUnrollTransformation(L) != TM_ForcedByUser) { 1158 LLVM_DEBUG( 1159 dbgs() 1160 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1161 return LoopUnrollResult::Unmodified; 1162 } 1163 1164 if (!L->isLoopSimplifyForm()) { 1165 LLVM_DEBUG( 1166 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1167 return LoopUnrollResult::Unmodified; 1168 } 1169 1170 // When automatic unrolling is disabled, do not unroll unless overridden for 1171 // this loop. 1172 if (OnlyWhenForced && !(TM & TM_Enable)) 1173 return LoopUnrollResult::Unmodified; 1174 1175 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1176 unsigned NumInlineCandidates; 1177 bool NotDuplicatable; 1178 bool Convergent; 1179 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1180 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1181 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1182 ProvidedFullUnrollMaxCount); 1183 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1184 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1185 1186 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1187 // as threshold later on. 1188 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1189 !OptForSize) 1190 return LoopUnrollResult::Unmodified; 1191 1192 SmallPtrSet<const Value *, 32> EphValues; 1193 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1194 1195 unsigned LoopSize = 1196 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1197 TTI, EphValues, UP.BEInsns); 1198 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1199 if (NotDuplicatable) { 1200 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1201 << " instructions.\n"); 1202 return LoopUnrollResult::Unmodified; 1203 } 1204 1205 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1206 // later), to (fully) unroll loops, if it does not increase code size. 1207 if (OptForSize) 1208 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1209 1210 if (NumInlineCandidates != 0) { 1211 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1212 return LoopUnrollResult::Unmodified; 1213 } 1214 1215 // Find the smallest exact trip count for any exit. This is an upper bound 1216 // on the loop trip count, but an exit at an earlier iteration is still 1217 // possible. An unroll by the smallest exact trip count guarantees that all 1218 // brnaches relating to at least one exit can be eliminated. This is unlike 1219 // the max trip count, which only guarantees that the backedge can be broken. 1220 unsigned TripCount = 0; 1221 unsigned TripMultiple = 1; 1222 SmallVector<BasicBlock *, 8> ExitingBlocks; 1223 L->getExitingBlocks(ExitingBlocks); 1224 for (BasicBlock *ExitingBlock : ExitingBlocks) 1225 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1226 if (!TripCount || TC < TripCount) 1227 TripCount = TripMultiple = TC; 1228 1229 if (!TripCount) { 1230 // If no exact trip count is known, determine the trip multiple of either 1231 // the loop latch or the single exiting block. 1232 // TODO: Relax for multiple exits. 1233 BasicBlock *ExitingBlock = L->getLoopLatch(); 1234 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1235 ExitingBlock = L->getExitingBlock(); 1236 if (ExitingBlock) 1237 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1238 } 1239 1240 // If the loop contains a convergent operation, the prelude we'd add 1241 // to do the first few instructions before we hit the unrolled loop 1242 // is unsafe -- it adds a control-flow dependency to the convergent 1243 // operation. Therefore restrict remainder loop (try unrolling without). 1244 // 1245 // TODO: This is quite conservative. In practice, convergent_op() 1246 // is likely to be called unconditionally in the loop. In this 1247 // case, the program would be ill-formed (on most architectures) 1248 // unless n were the same on all threads in a thread group. 1249 // Assuming n is the same on all threads, any kind of unrolling is 1250 // safe. But currently llvm's notion of convergence isn't powerful 1251 // enough to express this. 1252 if (Convergent) 1253 UP.AllowRemainder = false; 1254 1255 // Try to find the trip count upper bound if we cannot find the exact trip 1256 // count. 1257 unsigned MaxTripCount = 0; 1258 bool MaxOrZero = false; 1259 if (!TripCount) { 1260 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1261 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1262 } 1263 1264 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1265 // fully unroll the loop. 1266 bool UseUpperBound = false; 1267 bool IsCountSetExplicitly = computeUnrollCount( 1268 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, 1269 TripMultiple, LoopSize, UP, PP, UseUpperBound); 1270 if (!UP.Count) 1271 return LoopUnrollResult::Unmodified; 1272 1273 if (PP.PeelCount) { 1274 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1275 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1276 << " with iteration count " << PP.PeelCount << "!\n"); 1277 ORE.emit([&]() { 1278 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1279 L->getHeader()) 1280 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1281 << " iterations"; 1282 }); 1283 1284 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA)) { 1285 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1286 // If the loop was peeled, we already "used up" the profile information 1287 // we had, so we don't want to unroll or peel again. 1288 if (PP.PeelProfiledIterations) 1289 L->setLoopAlreadyUnrolled(); 1290 return LoopUnrollResult::PartiallyUnrolled; 1291 } 1292 return LoopUnrollResult::Unmodified; 1293 } 1294 1295 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1296 // However, we only want to actually perform it if we don't know the trip 1297 // count and the unroll count doesn't divide the known trip multiple. 1298 // TODO: This decision should probably be pushed up into 1299 // computeUnrollCount(). 1300 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1301 1302 // Save loop properties before it is transformed. 1303 MDNode *OrigLoopID = L->getLoopID(); 1304 1305 // Unroll the loop. 1306 Loop *RemainderLoop = nullptr; 1307 LoopUnrollResult UnrollResult = UnrollLoop( 1308 L, 1309 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1310 UP.UnrollRemainder, ForgetAllSCEV}, 1311 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1312 if (UnrollResult == LoopUnrollResult::Unmodified) 1313 return LoopUnrollResult::Unmodified; 1314 1315 if (RemainderLoop) { 1316 Optional<MDNode *> RemainderLoopID = 1317 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1318 LLVMLoopUnrollFollowupRemainder}); 1319 if (RemainderLoopID.hasValue()) 1320 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1321 } 1322 1323 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1324 Optional<MDNode *> NewLoopID = 1325 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1326 LLVMLoopUnrollFollowupUnrolled}); 1327 if (NewLoopID.hasValue()) { 1328 L->setLoopID(NewLoopID.getValue()); 1329 1330 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1331 // explicitly. 1332 return UnrollResult; 1333 } 1334 } 1335 1336 // If loop has an unroll count pragma or unrolled by explicitly set count 1337 // mark loop as unrolled to prevent unrolling beyond that requested. 1338 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1339 L->setLoopAlreadyUnrolled(); 1340 1341 return UnrollResult; 1342 } 1343 1344 namespace { 1345 1346 class LoopUnroll : public LoopPass { 1347 public: 1348 static char ID; // Pass ID, replacement for typeid 1349 1350 int OptLevel; 1351 1352 /// If false, use a cost model to determine whether unrolling of a loop is 1353 /// profitable. If true, only loops that explicitly request unrolling via 1354 /// metadata are considered. All other loops are skipped. 1355 bool OnlyWhenForced; 1356 1357 /// If false, when SCEV is invalidated, only forget everything in the 1358 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1359 /// Otherwise, forgetAllLoops and rebuild when needed next. 1360 bool ForgetAllSCEV; 1361 1362 Optional<unsigned> ProvidedCount; 1363 Optional<unsigned> ProvidedThreshold; 1364 Optional<bool> ProvidedAllowPartial; 1365 Optional<bool> ProvidedRuntime; 1366 Optional<bool> ProvidedUpperBound; 1367 Optional<bool> ProvidedAllowPeeling; 1368 Optional<bool> ProvidedAllowProfileBasedPeeling; 1369 Optional<unsigned> ProvidedFullUnrollMaxCount; 1370 1371 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1372 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1373 Optional<unsigned> Count = None, 1374 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1375 Optional<bool> UpperBound = None, 1376 Optional<bool> AllowPeeling = None, 1377 Optional<bool> AllowProfileBasedPeeling = None, 1378 Optional<unsigned> ProvidedFullUnrollMaxCount = None) 1379 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1380 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1381 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1382 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1383 ProvidedAllowPeeling(AllowPeeling), 1384 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1385 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1386 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1387 } 1388 1389 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1390 if (skipLoop(L)) 1391 return false; 1392 1393 Function &F = *L->getHeader()->getParent(); 1394 1395 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1396 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1397 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1398 const TargetTransformInfo &TTI = 1399 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1400 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1401 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1402 // pass. Function analyses need to be preserved across loop transformations 1403 // but ORE cannot be preserved (see comment before the pass definition). 1404 OptimizationRemarkEmitter ORE(&F); 1405 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1406 1407 LoopUnrollResult Result = tryToUnrollLoop( 1408 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1409 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold, 1410 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1411 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, 1412 ProvidedFullUnrollMaxCount); 1413 1414 if (Result == LoopUnrollResult::FullyUnrolled) 1415 LPM.markLoopAsDeleted(*L); 1416 1417 return Result != LoopUnrollResult::Unmodified; 1418 } 1419 1420 /// This transformation requires natural loop information & requires that 1421 /// loop preheaders be inserted into the CFG... 1422 void getAnalysisUsage(AnalysisUsage &AU) const override { 1423 AU.addRequired<AssumptionCacheTracker>(); 1424 AU.addRequired<TargetTransformInfoWrapperPass>(); 1425 // FIXME: Loop passes are required to preserve domtree, and for now we just 1426 // recreate dom info if anything gets unrolled. 1427 getLoopAnalysisUsage(AU); 1428 } 1429 }; 1430 1431 } // end anonymous namespace 1432 1433 char LoopUnroll::ID = 0; 1434 1435 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1436 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1437 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1438 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1439 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1440 1441 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1442 bool ForgetAllSCEV, int Threshold, int Count, 1443 int AllowPartial, int Runtime, int UpperBound, 1444 int AllowPeeling) { 1445 // TODO: It would make more sense for this function to take the optionals 1446 // directly, but that's dangerous since it would silently break out of tree 1447 // callers. 1448 return new LoopUnroll( 1449 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1450 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1451 Count == -1 ? None : Optional<unsigned>(Count), 1452 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1453 Runtime == -1 ? None : Optional<bool>(Runtime), 1454 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1455 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1456 } 1457 1458 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1459 bool ForgetAllSCEV) { 1460 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1461 0, 0, 0, 1); 1462 } 1463 1464 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1465 LoopStandardAnalysisResults &AR, 1466 LPMUpdater &Updater) { 1467 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1468 // pass. Function analyses need to be preserved across loop transformations 1469 // but ORE cannot be preserved (see comment before the pass definition). 1470 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1471 1472 // Keep track of the previous loop structure so we can identify new loops 1473 // created by unrolling. 1474 Loop *ParentL = L.getParentLoop(); 1475 SmallPtrSet<Loop *, 4> OldLoops; 1476 if (ParentL) 1477 OldLoops.insert(ParentL->begin(), ParentL->end()); 1478 else 1479 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1480 1481 std::string LoopName = std::string(L.getName()); 1482 1483 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1484 /*BFI*/ nullptr, /*PSI*/ nullptr, 1485 /*PreserveLCSSA*/ true, OptLevel, 1486 OnlyWhenForced, ForgetSCEV, /*Count*/ None, 1487 /*Threshold*/ None, /*AllowPartial*/ false, 1488 /*Runtime*/ false, /*UpperBound*/ false, 1489 /*AllowPeeling*/ true, 1490 /*AllowProfileBasedPeeling*/ false, 1491 /*FullUnrollMaxCount*/ None) != 1492 LoopUnrollResult::Unmodified; 1493 if (!Changed) 1494 return PreservedAnalyses::all(); 1495 1496 // The parent must not be damaged by unrolling! 1497 #ifndef NDEBUG 1498 if (ParentL) 1499 ParentL->verifyLoop(); 1500 #endif 1501 1502 // Unrolling can do several things to introduce new loops into a loop nest: 1503 // - Full unrolling clones child loops within the current loop but then 1504 // removes the current loop making all of the children appear to be new 1505 // sibling loops. 1506 // 1507 // When a new loop appears as a sibling loop after fully unrolling, 1508 // its nesting structure has fundamentally changed and we want to revisit 1509 // it to reflect that. 1510 // 1511 // When unrolling has removed the current loop, we need to tell the 1512 // infrastructure that it is gone. 1513 // 1514 // Finally, we support a debugging/testing mode where we revisit child loops 1515 // as well. These are not expected to require further optimizations as either 1516 // they or the loop they were cloned from have been directly visited already. 1517 // But the debugging mode allows us to check this assumption. 1518 bool IsCurrentLoopValid = false; 1519 SmallVector<Loop *, 4> SibLoops; 1520 if (ParentL) 1521 SibLoops.append(ParentL->begin(), ParentL->end()); 1522 else 1523 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1524 erase_if(SibLoops, [&](Loop *SibLoop) { 1525 if (SibLoop == &L) { 1526 IsCurrentLoopValid = true; 1527 return true; 1528 } 1529 1530 // Otherwise erase the loop from the list if it was in the old loops. 1531 return OldLoops.contains(SibLoop); 1532 }); 1533 Updater.addSiblingLoops(SibLoops); 1534 1535 if (!IsCurrentLoopValid) { 1536 Updater.markLoopAsDeleted(L, LoopName); 1537 } else { 1538 // We can only walk child loops if the current loop remained valid. 1539 if (UnrollRevisitChildLoops) { 1540 // Walk *all* of the child loops. 1541 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1542 Updater.addChildLoops(ChildLoops); 1543 } 1544 } 1545 1546 return getLoopPassPreservedAnalyses(); 1547 } 1548 1549 PreservedAnalyses LoopUnrollPass::run(Function &F, 1550 FunctionAnalysisManager &AM) { 1551 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1552 auto &LI = AM.getResult<LoopAnalysis>(F); 1553 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1554 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1555 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1556 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1557 1558 LoopAnalysisManager *LAM = nullptr; 1559 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1560 LAM = &LAMProxy->getManager(); 1561 1562 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1563 ProfileSummaryInfo *PSI = 1564 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1565 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1566 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1567 1568 bool Changed = false; 1569 1570 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1571 // Since simplification may add new inner loops, it has to run before the 1572 // legality and profitability checks. This means running the loop unroller 1573 // will simplify all loops, regardless of whether anything end up being 1574 // unrolled. 1575 for (auto &L : LI) { 1576 Changed |= 1577 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1578 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1579 } 1580 1581 // Add the loop nests in the reverse order of LoopInfo. See method 1582 // declaration. 1583 SmallPriorityWorklist<Loop *, 4> Worklist; 1584 appendLoopsToWorklist(LI, Worklist); 1585 1586 while (!Worklist.empty()) { 1587 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1588 // from back to front so that we work forward across the CFG, which 1589 // for unrolling is only needed to get optimization remarks emitted in 1590 // a forward order. 1591 Loop &L = *Worklist.pop_back_val(); 1592 #ifndef NDEBUG 1593 Loop *ParentL = L.getParentLoop(); 1594 #endif 1595 1596 // Check if the profile summary indicates that the profiled application 1597 // has a huge working set size, in which case we disable peeling to avoid 1598 // bloating it further. 1599 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1600 if (PSI && PSI->hasHugeWorkingSetSize()) 1601 LocalAllowPeeling = false; 1602 std::string LoopName = std::string(L.getName()); 1603 // The API here is quite complex to call and we allow to select some 1604 // flavors of unrolling during construction time (by setting UnrollOpts). 1605 LoopUnrollResult Result = tryToUnrollLoop( 1606 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1607 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1608 UnrollOpts.ForgetSCEV, /*Count*/ None, 1609 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1610 UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1611 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1612 Changed |= Result != LoopUnrollResult::Unmodified; 1613 1614 // The parent must not be damaged by unrolling! 1615 #ifndef NDEBUG 1616 if (Result != LoopUnrollResult::Unmodified && ParentL) 1617 ParentL->verifyLoop(); 1618 #endif 1619 1620 // Clear any cached analysis results for L if we removed it completely. 1621 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1622 LAM->clear(L, LoopName); 1623 } 1624 1625 if (!Changed) 1626 return PreservedAnalyses::all(); 1627 1628 return getLoopPassPreservedAnalyses(); 1629 } 1630 1631 void LoopUnrollPass::printPipeline( 1632 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1633 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1634 OS, MapClassName2PassName); 1635 OS << "<"; 1636 if (UnrollOpts.AllowPartial != None) 1637 OS << (UnrollOpts.AllowPartial.getValue() ? "" : "no-") << "partial;"; 1638 if (UnrollOpts.AllowPeeling != None) 1639 OS << (UnrollOpts.AllowPeeling.getValue() ? "" : "no-") << "peeling;"; 1640 if (UnrollOpts.AllowRuntime != None) 1641 OS << (UnrollOpts.AllowRuntime.getValue() ? "" : "no-") << "runtime;"; 1642 if (UnrollOpts.AllowUpperBound != None) 1643 OS << (UnrollOpts.AllowUpperBound.getValue() ? "" : "no-") << "upperbound;"; 1644 if (UnrollOpts.AllowProfileBasedPeeling != None) 1645 OS << (UnrollOpts.AllowProfileBasedPeeling.getValue() ? "" : "no-") 1646 << "profile-peeling;"; 1647 if (UnrollOpts.FullUnrollMaxCount != None) 1648 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";"; 1649 OS << "O" << UnrollOpts.OptLevel; 1650 OS << ">"; 1651 } 1652