1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is somtimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> UnrollPartialThreshold( 85 "unroll-partial-threshold", cl::Hidden, 86 cl::desc("The cost threshold for partial loop unrolling")); 87 88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 91 "to the threshold when aggressively unrolling a loop due to the " 92 "dynamic cost savings. If completely unrolling a loop will reduce " 93 "the total runtime from X to Y, we boost the loop unroll " 94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 95 "X/Y). This limit avoids excessive code bloat.")); 96 97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 99 cl::desc("Don't allow loop unrolling to simulate more than this number of" 100 "iterations when checking full unroll profitability")); 101 102 static cl::opt<unsigned> UnrollCount( 103 "unroll-count", cl::Hidden, 104 cl::desc("Use this unroll count for all loops including those with " 105 "unroll_count pragma values, for testing purposes")); 106 107 static cl::opt<unsigned> UnrollMaxCount( 108 "unroll-max-count", cl::Hidden, 109 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 110 "testing purposes")); 111 112 static cl::opt<unsigned> UnrollFullMaxCount( 113 "unroll-full-max-count", cl::Hidden, 114 cl::desc( 115 "Set the max unroll count for full unrolling, for testing purposes")); 116 117 static cl::opt<unsigned> UnrollPeelCount( 118 "unroll-peel-count", cl::Hidden, 119 cl::desc("Set the unroll peeling count, for testing purposes")); 120 121 static cl::opt<bool> 122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 123 cl::desc("Allows loops to be partially unrolled until " 124 "-unroll-threshold loop size is reached.")); 125 126 static cl::opt<bool> UnrollAllowRemainder( 127 "unroll-allow-remainder", cl::Hidden, 128 cl::desc("Allow generation of a loop remainder (extra iterations) " 129 "when unrolling a loop.")); 130 131 static cl::opt<bool> 132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 133 cl::desc("Unroll loops with run-time trip counts")); 134 135 static cl::opt<unsigned> UnrollMaxUpperBound( 136 "unroll-max-upperbound", cl::init(8), cl::Hidden, 137 cl::desc( 138 "The max of trip count upper bound that is considered in unrolling")); 139 140 static cl::opt<unsigned> PragmaUnrollThreshold( 141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 142 cl::desc("Unrolled size limit for loops with an unroll(full) or " 143 "unroll_count pragma.")); 144 145 static cl::opt<unsigned> FlatLoopTripCountThreshold( 146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 147 cl::desc("If the runtime tripcount for the loop is lower than the " 148 "threshold, the loop is considered as flat and will be less " 149 "aggressively unrolled.")); 150 151 static cl::opt<bool> 152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 153 cl::desc("Allows loops to be peeled when the dynamic " 154 "trip count is known to be low.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 /// A magic value for use with the Threshold parameter to indicate 170 /// that the loop unroll should be performed regardless of how much 171 /// code expansion would result. 172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 173 174 /// Gather the various unrolling parameters based on the defaults, compiler 175 /// flags, TTI overrides and user specified parameters. 176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 182 TargetTransformInfo::UnrollingPreferences UP; 183 184 // Set up the defaults 185 UP.Threshold = OptLevel > 2 ? 300 : 150; 186 UP.MaxPercentThresholdBoost = 400; 187 UP.OptSizeThreshold = 0; 188 UP.PartialThreshold = 150; 189 UP.PartialOptSizeThreshold = 0; 190 UP.Count = 0; 191 UP.PeelCount = 0; 192 UP.DefaultUnrollRuntimeCount = 8; 193 UP.MaxCount = std::numeric_limits<unsigned>::max(); 194 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 195 UP.BEInsns = 2; 196 UP.Partial = false; 197 UP.Runtime = false; 198 UP.AllowRemainder = true; 199 UP.UnrollRemainder = false; 200 UP.AllowExpensiveTripCount = false; 201 UP.Force = false; 202 UP.UpperBound = false; 203 UP.AllowPeeling = true; 204 UP.UnrollAndJam = false; 205 UP.UnrollAndJamInnerLoopThreshold = 60; 206 207 // Override with any target specific settings 208 TTI.getUnrollingPreferences(L, SE, UP); 209 210 // Apply size attributes 211 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 212 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 213 if (OptForSize) { 214 UP.Threshold = UP.OptSizeThreshold; 215 UP.PartialThreshold = UP.PartialOptSizeThreshold; 216 UP.MaxPercentThresholdBoost = 100; 217 } 218 219 // Apply any user values specified by cl::opt 220 if (UnrollThreshold.getNumOccurrences() > 0) 221 UP.Threshold = UnrollThreshold; 222 if (UnrollPartialThreshold.getNumOccurrences() > 0) 223 UP.PartialThreshold = UnrollPartialThreshold; 224 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 225 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 226 if (UnrollMaxCount.getNumOccurrences() > 0) 227 UP.MaxCount = UnrollMaxCount; 228 if (UnrollFullMaxCount.getNumOccurrences() > 0) 229 UP.FullUnrollMaxCount = UnrollFullMaxCount; 230 if (UnrollPeelCount.getNumOccurrences() > 0) 231 UP.PeelCount = UnrollPeelCount; 232 if (UnrollAllowPartial.getNumOccurrences() > 0) 233 UP.Partial = UnrollAllowPartial; 234 if (UnrollAllowRemainder.getNumOccurrences() > 0) 235 UP.AllowRemainder = UnrollAllowRemainder; 236 if (UnrollRuntime.getNumOccurrences() > 0) 237 UP.Runtime = UnrollRuntime; 238 if (UnrollMaxUpperBound == 0) 239 UP.UpperBound = false; 240 if (UnrollAllowPeeling.getNumOccurrences() > 0) 241 UP.AllowPeeling = UnrollAllowPeeling; 242 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 243 UP.UnrollRemainder = UnrollUnrollRemainder; 244 245 // Apply user values provided by argument 246 if (UserThreshold.hasValue()) { 247 UP.Threshold = *UserThreshold; 248 UP.PartialThreshold = *UserThreshold; 249 } 250 if (UserCount.hasValue()) 251 UP.Count = *UserCount; 252 if (UserAllowPartial.hasValue()) 253 UP.Partial = *UserAllowPartial; 254 if (UserRuntime.hasValue()) 255 UP.Runtime = *UserRuntime; 256 if (UserUpperBound.hasValue()) 257 UP.UpperBound = *UserUpperBound; 258 if (UserAllowPeeling.hasValue()) 259 UP.AllowPeeling = *UserAllowPeeling; 260 261 return UP; 262 } 263 264 namespace { 265 266 /// A struct to densely store the state of an instruction after unrolling at 267 /// each iteration. 268 /// 269 /// This is designed to work like a tuple of <Instruction *, int> for the 270 /// purposes of hashing and lookup, but to be able to associate two boolean 271 /// states with each key. 272 struct UnrolledInstState { 273 Instruction *I; 274 int Iteration : 30; 275 unsigned IsFree : 1; 276 unsigned IsCounted : 1; 277 }; 278 279 /// Hashing and equality testing for a set of the instruction states. 280 struct UnrolledInstStateKeyInfo { 281 using PtrInfo = DenseMapInfo<Instruction *>; 282 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 283 284 static inline UnrolledInstState getEmptyKey() { 285 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 286 } 287 288 static inline UnrolledInstState getTombstoneKey() { 289 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 290 } 291 292 static inline unsigned getHashValue(const UnrolledInstState &S) { 293 return PairInfo::getHashValue({S.I, S.Iteration}); 294 } 295 296 static inline bool isEqual(const UnrolledInstState &LHS, 297 const UnrolledInstState &RHS) { 298 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 299 } 300 }; 301 302 struct EstimatedUnrollCost { 303 /// The estimated cost after unrolling. 304 unsigned UnrolledCost; 305 306 /// The estimated dynamic cost of executing the instructions in the 307 /// rolled form. 308 unsigned RolledDynamicCost; 309 }; 310 311 } // end anonymous namespace 312 313 /// Figure out if the loop is worth full unrolling. 314 /// 315 /// Complete loop unrolling can make some loads constant, and we need to know 316 /// if that would expose any further optimization opportunities. This routine 317 /// estimates this optimization. It computes cost of unrolled loop 318 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 319 /// dynamic cost we mean that we won't count costs of blocks that are known not 320 /// to be executed (i.e. if we have a branch in the loop and we know that at the 321 /// given iteration its condition would be resolved to true, we won't add up the 322 /// cost of the 'false'-block). 323 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 324 /// the analysis failed (no benefits expected from the unrolling, or the loop is 325 /// too big to analyze), the returned value is None. 326 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 327 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 328 const SmallPtrSetImpl<const Value *> &EphValues, 329 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 330 // We want to be able to scale offsets by the trip count and add more offsets 331 // to them without checking for overflows, and we already don't want to 332 // analyze *massive* trip counts, so we force the max to be reasonably small. 333 assert(UnrollMaxIterationsCountToAnalyze < 334 (unsigned)(std::numeric_limits<int>::max() / 2) && 335 "The unroll iterations max is too large!"); 336 337 // Only analyze inner loops. We can't properly estimate cost of nested loops 338 // and we won't visit inner loops again anyway. 339 if (!L->empty()) 340 return None; 341 342 // Don't simulate loops with a big or unknown tripcount 343 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 344 TripCount > UnrollMaxIterationsCountToAnalyze) 345 return None; 346 347 SmallSetVector<BasicBlock *, 16> BBWorklist; 348 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 349 DenseMap<Value *, Constant *> SimplifiedValues; 350 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 351 352 // The estimated cost of the unrolled form of the loop. We try to estimate 353 // this by simplifying as much as we can while computing the estimate. 354 unsigned UnrolledCost = 0; 355 356 // We also track the estimated dynamic (that is, actually executed) cost in 357 // the rolled form. This helps identify cases when the savings from unrolling 358 // aren't just exposing dead control flows, but actual reduced dynamic 359 // instructions due to the simplifications which we expect to occur after 360 // unrolling. 361 unsigned RolledDynamicCost = 0; 362 363 // We track the simplification of each instruction in each iteration. We use 364 // this to recursively merge costs into the unrolled cost on-demand so that 365 // we don't count the cost of any dead code. This is essentially a map from 366 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 367 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 368 369 // A small worklist used to accumulate cost of instructions from each 370 // observable and reached root in the loop. 371 SmallVector<Instruction *, 16> CostWorklist; 372 373 // PHI-used worklist used between iterations while accumulating cost. 374 SmallVector<Instruction *, 4> PHIUsedList; 375 376 // Helper function to accumulate cost for instructions in the loop. 377 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 378 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 379 assert(CostWorklist.empty() && "Must start with an empty cost list"); 380 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 381 CostWorklist.push_back(&RootI); 382 for (;; --Iteration) { 383 do { 384 Instruction *I = CostWorklist.pop_back_val(); 385 386 // InstCostMap only uses I and Iteration as a key, the other two values 387 // don't matter here. 388 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 389 if (CostIter == InstCostMap.end()) 390 // If an input to a PHI node comes from a dead path through the loop 391 // we may have no cost data for it here. What that actually means is 392 // that it is free. 393 continue; 394 auto &Cost = *CostIter; 395 if (Cost.IsCounted) 396 // Already counted this instruction. 397 continue; 398 399 // Mark that we are counting the cost of this instruction now. 400 Cost.IsCounted = true; 401 402 // If this is a PHI node in the loop header, just add it to the PHI set. 403 if (auto *PhiI = dyn_cast<PHINode>(I)) 404 if (PhiI->getParent() == L->getHeader()) { 405 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 406 "inherently simplify during unrolling."); 407 if (Iteration == 0) 408 continue; 409 410 // Push the incoming value from the backedge into the PHI used list 411 // if it is an in-loop instruction. We'll use this to populate the 412 // cost worklist for the next iteration (as we count backwards). 413 if (auto *OpI = dyn_cast<Instruction>( 414 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 415 if (L->contains(OpI)) 416 PHIUsedList.push_back(OpI); 417 continue; 418 } 419 420 // First accumulate the cost of this instruction. 421 if (!Cost.IsFree) { 422 UnrolledCost += TTI.getUserCost(I); 423 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 424 << Iteration << "): "); 425 LLVM_DEBUG(I->dump()); 426 } 427 428 // We must count the cost of every operand which is not free, 429 // recursively. If we reach a loop PHI node, simply add it to the set 430 // to be considered on the next iteration (backwards!). 431 for (Value *Op : I->operands()) { 432 // Check whether this operand is free due to being a constant or 433 // outside the loop. 434 auto *OpI = dyn_cast<Instruction>(Op); 435 if (!OpI || !L->contains(OpI)) 436 continue; 437 438 // Otherwise accumulate its cost. 439 CostWorklist.push_back(OpI); 440 } 441 } while (!CostWorklist.empty()); 442 443 if (PHIUsedList.empty()) 444 // We've exhausted the search. 445 break; 446 447 assert(Iteration > 0 && 448 "Cannot track PHI-used values past the first iteration!"); 449 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 450 PHIUsedList.clear(); 451 } 452 }; 453 454 // Ensure that we don't violate the loop structure invariants relied on by 455 // this analysis. 456 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 457 assert(L->isLCSSAForm(DT) && 458 "Must have loops in LCSSA form to track live-out values."); 459 460 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 461 462 // Simulate execution of each iteration of the loop counting instructions, 463 // which would be simplified. 464 // Since the same load will take different values on different iterations, 465 // we literally have to go through all loop's iterations. 466 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 467 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 468 469 // Prepare for the iteration by collecting any simplified entry or backedge 470 // inputs. 471 for (Instruction &I : *L->getHeader()) { 472 auto *PHI = dyn_cast<PHINode>(&I); 473 if (!PHI) 474 break; 475 476 // The loop header PHI nodes must have exactly two input: one from the 477 // loop preheader and one from the loop latch. 478 assert( 479 PHI->getNumIncomingValues() == 2 && 480 "Must have an incoming value only for the preheader and the latch."); 481 482 Value *V = PHI->getIncomingValueForBlock( 483 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 484 Constant *C = dyn_cast<Constant>(V); 485 if (Iteration != 0 && !C) 486 C = SimplifiedValues.lookup(V); 487 if (C) 488 SimplifiedInputValues.push_back({PHI, C}); 489 } 490 491 // Now clear and re-populate the map for the next iteration. 492 SimplifiedValues.clear(); 493 while (!SimplifiedInputValues.empty()) 494 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 495 496 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 497 498 BBWorklist.clear(); 499 BBWorklist.insert(L->getHeader()); 500 // Note that we *must not* cache the size, this loop grows the worklist. 501 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 502 BasicBlock *BB = BBWorklist[Idx]; 503 504 // Visit all instructions in the given basic block and try to simplify 505 // it. We don't change the actual IR, just count optimization 506 // opportunities. 507 for (Instruction &I : *BB) { 508 // These won't get into the final code - don't even try calculating the 509 // cost for them. 510 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 511 continue; 512 513 // Track this instruction's expected baseline cost when executing the 514 // rolled loop form. 515 RolledDynamicCost += TTI.getUserCost(&I); 516 517 // Visit the instruction to analyze its loop cost after unrolling, 518 // and if the visitor returns true, mark the instruction as free after 519 // unrolling and continue. 520 bool IsFree = Analyzer.visit(I); 521 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 522 (unsigned)IsFree, 523 /*IsCounted*/ false}).second; 524 (void)Inserted; 525 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 526 527 if (IsFree) 528 continue; 529 530 // Can't properly model a cost of a call. 531 // FIXME: With a proper cost model we should be able to do it. 532 if (auto *CI = dyn_cast<CallInst>(&I)) { 533 const Function *Callee = CI->getCalledFunction(); 534 if (!Callee || TTI.isLoweredToCall(Callee)) { 535 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 536 return None; 537 } 538 } 539 540 // If the instruction might have a side-effect recursively account for 541 // the cost of it and all the instructions leading up to it. 542 if (I.mayHaveSideEffects()) 543 AddCostRecursively(I, Iteration); 544 545 // If unrolled body turns out to be too big, bail out. 546 if (UnrolledCost > MaxUnrolledLoopSize) { 547 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 548 << " UnrolledCost: " << UnrolledCost 549 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 550 << "\n"); 551 return None; 552 } 553 } 554 555 Instruction *TI = BB->getTerminator(); 556 557 // Add in the live successors by first checking whether we have terminator 558 // that may be simplified based on the values simplified by this call. 559 BasicBlock *KnownSucc = nullptr; 560 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 561 if (BI->isConditional()) { 562 if (Constant *SimpleCond = 563 SimplifiedValues.lookup(BI->getCondition())) { 564 // Just take the first successor if condition is undef 565 if (isa<UndefValue>(SimpleCond)) 566 KnownSucc = BI->getSuccessor(0); 567 else if (ConstantInt *SimpleCondVal = 568 dyn_cast<ConstantInt>(SimpleCond)) 569 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 570 } 571 } 572 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 573 if (Constant *SimpleCond = 574 SimplifiedValues.lookup(SI->getCondition())) { 575 // Just take the first successor if condition is undef 576 if (isa<UndefValue>(SimpleCond)) 577 KnownSucc = SI->getSuccessor(0); 578 else if (ConstantInt *SimpleCondVal = 579 dyn_cast<ConstantInt>(SimpleCond)) 580 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 581 } 582 } 583 if (KnownSucc) { 584 if (L->contains(KnownSucc)) 585 BBWorklist.insert(KnownSucc); 586 else 587 ExitWorklist.insert({BB, KnownSucc}); 588 continue; 589 } 590 591 // Add BB's successors to the worklist. 592 for (BasicBlock *Succ : successors(BB)) 593 if (L->contains(Succ)) 594 BBWorklist.insert(Succ); 595 else 596 ExitWorklist.insert({BB, Succ}); 597 AddCostRecursively(*TI, Iteration); 598 } 599 600 // If we found no optimization opportunities on the first iteration, we 601 // won't find them on later ones too. 602 if (UnrolledCost == RolledDynamicCost) { 603 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 604 << " UnrolledCost: " << UnrolledCost << "\n"); 605 return None; 606 } 607 } 608 609 while (!ExitWorklist.empty()) { 610 BasicBlock *ExitingBB, *ExitBB; 611 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 612 613 for (Instruction &I : *ExitBB) { 614 auto *PN = dyn_cast<PHINode>(&I); 615 if (!PN) 616 break; 617 618 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 619 if (auto *OpI = dyn_cast<Instruction>(Op)) 620 if (L->contains(OpI)) 621 AddCostRecursively(*OpI, TripCount - 1); 622 } 623 } 624 625 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 626 << "UnrolledCost: " << UnrolledCost << ", " 627 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 628 return {{UnrolledCost, RolledDynamicCost}}; 629 } 630 631 /// ApproximateLoopSize - Approximate the size of the loop. 632 unsigned llvm::ApproximateLoopSize( 633 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 634 const TargetTransformInfo &TTI, 635 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 636 CodeMetrics Metrics; 637 for (BasicBlock *BB : L->blocks()) 638 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 639 NumCalls = Metrics.NumInlineCandidates; 640 NotDuplicatable = Metrics.notDuplicatable; 641 Convergent = Metrics.convergent; 642 643 unsigned LoopSize = Metrics.NumInsts; 644 645 // Don't allow an estimate of size zero. This would allows unrolling of loops 646 // with huge iteration counts, which is a compile time problem even if it's 647 // not a problem for code quality. Also, the code using this size may assume 648 // that each loop has at least three instructions (likely a conditional 649 // branch, a comparison feeding that branch, and some kind of loop increment 650 // feeding that comparison instruction). 651 LoopSize = std::max(LoopSize, BEInsns + 1); 652 653 return LoopSize; 654 } 655 656 // Returns the loop hint metadata node with the given name (for example, 657 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 658 // returned. 659 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 660 if (MDNode *LoopID = L->getLoopID()) 661 return GetUnrollMetadata(LoopID, Name); 662 return nullptr; 663 } 664 665 // Returns true if the loop has an unroll(full) pragma. 666 static bool HasUnrollFullPragma(const Loop *L) { 667 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 668 } 669 670 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 671 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 672 static bool HasUnrollEnablePragma(const Loop *L) { 673 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 674 } 675 676 // Returns true if the loop has an runtime unroll(disable) pragma. 677 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 678 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 679 } 680 681 // If loop has an unroll_count pragma return the (necessarily 682 // positive) value from the pragma. Otherwise return 0. 683 static unsigned UnrollCountPragmaValue(const Loop *L) { 684 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 685 if (MD) { 686 assert(MD->getNumOperands() == 2 && 687 "Unroll count hint metadata should have two operands."); 688 unsigned Count = 689 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 690 assert(Count >= 1 && "Unroll count must be positive."); 691 return Count; 692 } 693 return 0; 694 } 695 696 // Computes the boosting factor for complete unrolling. 697 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 698 // be beneficial to fully unroll the loop even if unrolledcost is large. We 699 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 700 // the unroll threshold. 701 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 702 unsigned MaxPercentThresholdBoost) { 703 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 704 return 100; 705 else if (Cost.UnrolledCost != 0) 706 // The boosting factor is RolledDynamicCost / UnrolledCost 707 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 708 MaxPercentThresholdBoost); 709 else 710 return MaxPercentThresholdBoost; 711 } 712 713 // Returns loop size estimation for unrolled loop. 714 static uint64_t getUnrolledLoopSize( 715 unsigned LoopSize, 716 TargetTransformInfo::UnrollingPreferences &UP) { 717 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 718 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 719 } 720 721 // Returns true if unroll count was set explicitly. 722 // Calculates unroll count and writes it to UP.Count. 723 // Unless IgnoreUser is true, will also use metadata and command-line options 724 // that are specific to to the LoopUnroll pass (which, for instance, are 725 // irrelevant for the LoopUnrollAndJam pass). 726 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 727 // many LoopUnroll-specific options. The shared functionality should be 728 // refactored into it own function. 729 bool llvm::computeUnrollCount( 730 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 731 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 732 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 733 unsigned &TripMultiple, unsigned LoopSize, 734 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 735 736 // Check for explicit Count. 737 // 1st priority is unroll count set by "unroll-count" option. 738 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 739 if (UserUnrollCount) { 740 UP.Count = UnrollCount; 741 UP.AllowExpensiveTripCount = true; 742 UP.Force = true; 743 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 744 return true; 745 } 746 747 // 2nd priority is unroll count set by pragma. 748 unsigned PragmaCount = UnrollCountPragmaValue(L); 749 if (PragmaCount > 0) { 750 UP.Count = PragmaCount; 751 UP.Runtime = true; 752 UP.AllowExpensiveTripCount = true; 753 UP.Force = true; 754 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 755 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 756 return true; 757 } 758 bool PragmaFullUnroll = HasUnrollFullPragma(L); 759 if (PragmaFullUnroll && TripCount != 0) { 760 UP.Count = TripCount; 761 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 762 return false; 763 } 764 765 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 766 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 767 PragmaEnableUnroll || UserUnrollCount; 768 769 if (ExplicitUnroll && TripCount != 0) { 770 // If the loop has an unrolling pragma, we want to be more aggressive with 771 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 772 // value which is larger than the default limits. 773 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 774 UP.PartialThreshold = 775 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 776 } 777 778 // 3rd priority is full unroll count. 779 // Full unroll makes sense only when TripCount or its upper bound could be 780 // statically calculated. 781 // Also we need to check if we exceed FullUnrollMaxCount. 782 // If using the upper bound to unroll, TripMultiple should be set to 1 because 783 // we do not know when loop may exit. 784 // MaxTripCount and ExactTripCount cannot both be non zero since we only 785 // compute the former when the latter is zero. 786 unsigned ExactTripCount = TripCount; 787 assert((ExactTripCount == 0 || MaxTripCount == 0) && 788 "ExtractTripCount and MaxTripCount cannot both be non zero."); 789 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 790 UP.Count = FullUnrollTripCount; 791 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 792 // When computing the unrolled size, note that BEInsns are not replicated 793 // like the rest of the loop body. 794 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 795 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 796 TripCount = FullUnrollTripCount; 797 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 798 return ExplicitUnroll; 799 } else { 800 // The loop isn't that small, but we still can fully unroll it if that 801 // helps to remove a significant number of instructions. 802 // To check that, run additional analysis on the loop. 803 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 804 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 805 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 806 unsigned Boost = 807 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 808 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 809 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 810 TripCount = FullUnrollTripCount; 811 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 812 return ExplicitUnroll; 813 } 814 } 815 } 816 } 817 818 // 4th priority is loop peeling. 819 computePeelCount(L, LoopSize, UP, TripCount, SE); 820 if (UP.PeelCount) { 821 UP.Runtime = false; 822 UP.Count = 1; 823 return ExplicitUnroll; 824 } 825 826 // 5th priority is partial unrolling. 827 // Try partial unroll only when TripCount could be statically calculated. 828 if (TripCount) { 829 UP.Partial |= ExplicitUnroll; 830 if (!UP.Partial) { 831 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 832 << "-unroll-allow-partial not given\n"); 833 UP.Count = 0; 834 return false; 835 } 836 if (UP.Count == 0) 837 UP.Count = TripCount; 838 if (UP.PartialThreshold != NoThreshold) { 839 // Reduce unroll count to be modulo of TripCount for partial unrolling. 840 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 841 UP.Count = 842 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 843 (LoopSize - UP.BEInsns); 844 if (UP.Count > UP.MaxCount) 845 UP.Count = UP.MaxCount; 846 while (UP.Count != 0 && TripCount % UP.Count != 0) 847 UP.Count--; 848 if (UP.AllowRemainder && UP.Count <= 1) { 849 // If there is no Count that is modulo of TripCount, set Count to 850 // largest power-of-two factor that satisfies the threshold limit. 851 // As we'll create fixup loop, do the type of unrolling only if 852 // remainder loop is allowed. 853 UP.Count = UP.DefaultUnrollRuntimeCount; 854 while (UP.Count != 0 && 855 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 856 UP.Count >>= 1; 857 } 858 if (UP.Count < 2) { 859 if (PragmaEnableUnroll) 860 ORE->emit([&]() { 861 return OptimizationRemarkMissed(DEBUG_TYPE, 862 "UnrollAsDirectedTooLarge", 863 L->getStartLoc(), L->getHeader()) 864 << "Unable to unroll loop as directed by unroll(enable) " 865 "pragma " 866 "because unrolled size is too large."; 867 }); 868 UP.Count = 0; 869 } 870 } else { 871 UP.Count = TripCount; 872 } 873 if (UP.Count > UP.MaxCount) 874 UP.Count = UP.MaxCount; 875 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 876 UP.Count != TripCount) 877 ORE->emit([&]() { 878 return OptimizationRemarkMissed(DEBUG_TYPE, 879 "FullUnrollAsDirectedTooLarge", 880 L->getStartLoc(), L->getHeader()) 881 << "Unable to fully unroll loop as directed by unroll pragma " 882 "because " 883 "unrolled size is too large."; 884 }); 885 return ExplicitUnroll; 886 } 887 assert(TripCount == 0 && 888 "All cases when TripCount is constant should be covered here."); 889 if (PragmaFullUnroll) 890 ORE->emit([&]() { 891 return OptimizationRemarkMissed( 892 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 893 L->getStartLoc(), L->getHeader()) 894 << "Unable to fully unroll loop as directed by unroll(full) " 895 "pragma " 896 "because loop has a runtime trip count."; 897 }); 898 899 // 6th priority is runtime unrolling. 900 // Don't unroll a runtime trip count loop when it is disabled. 901 if (HasRuntimeUnrollDisablePragma(L)) { 902 UP.Count = 0; 903 return false; 904 } 905 906 // Check if the runtime trip count is too small when profile is available. 907 if (L->getHeader()->getParent()->hasProfileData()) { 908 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 909 if (*ProfileTripCount < FlatLoopTripCountThreshold) 910 return false; 911 else 912 UP.AllowExpensiveTripCount = true; 913 } 914 } 915 916 // Reduce count based on the type of unrolling and the threshold values. 917 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 918 if (!UP.Runtime) { 919 LLVM_DEBUG( 920 dbgs() << " will not try to unroll loop with runtime trip count " 921 << "-unroll-runtime not given\n"); 922 UP.Count = 0; 923 return false; 924 } 925 if (UP.Count == 0) 926 UP.Count = UP.DefaultUnrollRuntimeCount; 927 928 // Reduce unroll count to be the largest power-of-two factor of 929 // the original count which satisfies the threshold limit. 930 while (UP.Count != 0 && 931 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 932 UP.Count >>= 1; 933 934 #ifndef NDEBUG 935 unsigned OrigCount = UP.Count; 936 #endif 937 938 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 939 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 940 UP.Count >>= 1; 941 LLVM_DEBUG( 942 dbgs() << "Remainder loop is restricted (that could architecture " 943 "specific or because the loop contains a convergent " 944 "instruction), so unroll count must divide the trip " 945 "multiple, " 946 << TripMultiple << ". Reducing unroll count from " << OrigCount 947 << " to " << UP.Count << ".\n"); 948 949 using namespace ore; 950 951 if (PragmaCount > 0 && !UP.AllowRemainder) 952 ORE->emit([&]() { 953 return OptimizationRemarkMissed(DEBUG_TYPE, 954 "DifferentUnrollCountFromDirected", 955 L->getStartLoc(), L->getHeader()) 956 << "Unable to unroll loop the number of times directed by " 957 "unroll_count pragma because remainder loop is restricted " 958 "(that could architecture specific or because the loop " 959 "contains a convergent instruction) and so must have an " 960 "unroll " 961 "count that divides the loop trip multiple of " 962 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 963 << NV("UnrollCount", UP.Count) << " time(s)."; 964 }); 965 } 966 967 if (UP.Count > UP.MaxCount) 968 UP.Count = UP.MaxCount; 969 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 970 << "\n"); 971 if (UP.Count < 2) 972 UP.Count = 0; 973 return ExplicitUnroll; 974 } 975 976 static LoopUnrollResult tryToUnrollLoop( 977 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 978 const TargetTransformInfo &TTI, AssumptionCache &AC, 979 OptimizationRemarkEmitter &ORE, 980 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 981 bool PreserveLCSSA, int OptLevel, 982 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 983 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 984 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 985 Optional<bool> ProvidedAllowPeeling) { 986 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 987 << L->getHeader()->getParent()->getName() << "] Loop %" 988 << L->getHeader()->getName() << "\n"); 989 TransformationMode TM = hasUnrollTransformation(L); 990 if (TM & TM_Disable) 991 return LoopUnrollResult::Unmodified; 992 if (!L->isLoopSimplifyForm()) { 993 LLVM_DEBUG( 994 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 995 return LoopUnrollResult::Unmodified; 996 } 997 998 // When automtatic unrolling is disabled, do not unroll unless overridden for 999 // this loop. 1000 if (OnlyWhenForced && !(TM & TM_Enable)) 1001 return LoopUnrollResult::Unmodified; 1002 1003 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1004 unsigned NumInlineCandidates; 1005 bool NotDuplicatable; 1006 bool Convergent; 1007 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1008 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1009 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1010 ProvidedAllowPeeling); 1011 1012 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1013 // as threshold later on. 1014 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1015 !OptForSize) 1016 return LoopUnrollResult::Unmodified; 1017 1018 SmallPtrSet<const Value *, 32> EphValues; 1019 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1020 1021 unsigned LoopSize = 1022 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1023 TTI, EphValues, UP.BEInsns); 1024 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1025 if (NotDuplicatable) { 1026 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1027 << " instructions.\n"); 1028 return LoopUnrollResult::Unmodified; 1029 } 1030 1031 // When optimizing for size, use LoopSize as threshold, to (fully) unroll 1032 // loops, if it does not increase code size. 1033 if (OptForSize) 1034 UP.Threshold = std::max(UP.Threshold, LoopSize); 1035 1036 if (NumInlineCandidates != 0) { 1037 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1038 return LoopUnrollResult::Unmodified; 1039 } 1040 1041 // Find trip count and trip multiple if count is not available 1042 unsigned TripCount = 0; 1043 unsigned MaxTripCount = 0; 1044 unsigned TripMultiple = 1; 1045 // If there are multiple exiting blocks but one of them is the latch, use the 1046 // latch for the trip count estimation. Otherwise insist on a single exiting 1047 // block for the trip count estimation. 1048 BasicBlock *ExitingBlock = L->getLoopLatch(); 1049 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1050 ExitingBlock = L->getExitingBlock(); 1051 if (ExitingBlock) { 1052 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1053 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1054 } 1055 1056 // If the loop contains a convergent operation, the prelude we'd add 1057 // to do the first few instructions before we hit the unrolled loop 1058 // is unsafe -- it adds a control-flow dependency to the convergent 1059 // operation. Therefore restrict remainder loop (try unrollig without). 1060 // 1061 // TODO: This is quite conservative. In practice, convergent_op() 1062 // is likely to be called unconditionally in the loop. In this 1063 // case, the program would be ill-formed (on most architectures) 1064 // unless n were the same on all threads in a thread group. 1065 // Assuming n is the same on all threads, any kind of unrolling is 1066 // safe. But currently llvm's notion of convergence isn't powerful 1067 // enough to express this. 1068 if (Convergent) 1069 UP.AllowRemainder = false; 1070 1071 // Try to find the trip count upper bound if we cannot find the exact trip 1072 // count. 1073 bool MaxOrZero = false; 1074 if (!TripCount) { 1075 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1076 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1077 // We can unroll by the upper bound amount if it's generally allowed or if 1078 // we know that the loop is executed either the upper bound or zero times. 1079 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1080 // loop tests remains the same compared to the non-unrolled version, whereas 1081 // the generic upper bound unrolling keeps all but the last loop test so the 1082 // number of loop tests goes up which may end up being worse on targets with 1083 // constrained branch predictor resources so is controlled by an option.) 1084 // In addition we only unroll small upper bounds. 1085 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1086 MaxTripCount = 0; 1087 } 1088 } 1089 1090 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1091 // fully unroll the loop. 1092 bool UseUpperBound = false; 1093 bool IsCountSetExplicitly = computeUnrollCount( 1094 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1095 TripMultiple, LoopSize, UP, UseUpperBound); 1096 if (!UP.Count) 1097 return LoopUnrollResult::Unmodified; 1098 // Unroll factor (Count) must be less or equal to TripCount. 1099 if (TripCount && UP.Count > TripCount) 1100 UP.Count = TripCount; 1101 1102 // Save loop properties before it is transformed. 1103 MDNode *OrigLoopID = L->getLoopID(); 1104 1105 // Unroll the loop. 1106 Loop *RemainderLoop = nullptr; 1107 LoopUnrollResult UnrollResult = UnrollLoop( 1108 L, 1109 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1110 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1111 ForgetAllSCEV}, 1112 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1113 if (UnrollResult == LoopUnrollResult::Unmodified) 1114 return LoopUnrollResult::Unmodified; 1115 1116 if (RemainderLoop) { 1117 Optional<MDNode *> RemainderLoopID = 1118 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1119 LLVMLoopUnrollFollowupRemainder}); 1120 if (RemainderLoopID.hasValue()) 1121 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1122 } 1123 1124 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1125 Optional<MDNode *> NewLoopID = 1126 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1127 LLVMLoopUnrollFollowupUnrolled}); 1128 if (NewLoopID.hasValue()) { 1129 L->setLoopID(NewLoopID.getValue()); 1130 1131 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1132 // explicitly. 1133 return UnrollResult; 1134 } 1135 } 1136 1137 // If loop has an unroll count pragma or unrolled by explicitly set count 1138 // mark loop as unrolled to prevent unrolling beyond that requested. 1139 // If the loop was peeled, we already "used up" the profile information 1140 // we had, so we don't want to unroll or peel again. 1141 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1142 (IsCountSetExplicitly || UP.PeelCount)) 1143 L->setLoopAlreadyUnrolled(); 1144 1145 return UnrollResult; 1146 } 1147 1148 namespace { 1149 1150 class LoopUnroll : public LoopPass { 1151 public: 1152 static char ID; // Pass ID, replacement for typeid 1153 1154 int OptLevel; 1155 1156 /// If false, use a cost model to determine whether unrolling of a loop is 1157 /// profitable. If true, only loops that explicitly request unrolling via 1158 /// metadata are considered. All other loops are skipped. 1159 bool OnlyWhenForced; 1160 1161 /// If false, when SCEV is invalidated, only forget everything in the 1162 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1163 /// Otherwise, forgetAllLoops and rebuild when needed next. 1164 bool ForgetAllSCEV; 1165 1166 Optional<unsigned> ProvidedCount; 1167 Optional<unsigned> ProvidedThreshold; 1168 Optional<bool> ProvidedAllowPartial; 1169 Optional<bool> ProvidedRuntime; 1170 Optional<bool> ProvidedUpperBound; 1171 Optional<bool> ProvidedAllowPeeling; 1172 1173 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1174 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1175 Optional<unsigned> Count = None, 1176 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1177 Optional<bool> UpperBound = None, 1178 Optional<bool> AllowPeeling = None) 1179 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1180 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1181 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1182 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1183 ProvidedAllowPeeling(AllowPeeling) { 1184 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1185 } 1186 1187 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1188 if (skipLoop(L)) 1189 return false; 1190 1191 Function &F = *L->getHeader()->getParent(); 1192 1193 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1194 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1195 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1196 const TargetTransformInfo &TTI = 1197 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1198 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1199 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1200 // pass. Function analyses need to be preserved across loop transformations 1201 // but ORE cannot be preserved (see comment before the pass definition). 1202 OptimizationRemarkEmitter ORE(&F); 1203 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1204 1205 LoopUnrollResult Result = tryToUnrollLoop( 1206 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, 1207 PreserveLCSSA, OptLevel, OnlyWhenForced, 1208 ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1209 ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling); 1210 1211 if (Result == LoopUnrollResult::FullyUnrolled) 1212 LPM.markLoopAsDeleted(*L); 1213 1214 return Result != LoopUnrollResult::Unmodified; 1215 } 1216 1217 /// This transformation requires natural loop information & requires that 1218 /// loop preheaders be inserted into the CFG... 1219 void getAnalysisUsage(AnalysisUsage &AU) const override { 1220 AU.addRequired<AssumptionCacheTracker>(); 1221 AU.addRequired<TargetTransformInfoWrapperPass>(); 1222 // FIXME: Loop passes are required to preserve domtree, and for now we just 1223 // recreate dom info if anything gets unrolled. 1224 getLoopAnalysisUsage(AU); 1225 } 1226 }; 1227 1228 } // end anonymous namespace 1229 1230 char LoopUnroll::ID = 0; 1231 1232 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1233 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1234 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1235 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1236 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1237 1238 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1239 bool ForgetAllSCEV, int Threshold, int Count, 1240 int AllowPartial, int Runtime, int UpperBound, 1241 int AllowPeeling) { 1242 // TODO: It would make more sense for this function to take the optionals 1243 // directly, but that's dangerous since it would silently break out of tree 1244 // callers. 1245 return new LoopUnroll( 1246 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1247 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1248 Count == -1 ? None : Optional<unsigned>(Count), 1249 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1250 Runtime == -1 ? None : Optional<bool>(Runtime), 1251 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1252 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1253 } 1254 1255 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1256 bool ForgetAllSCEV) { 1257 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1258 0, 0, 0, 0); 1259 } 1260 1261 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1262 LoopStandardAnalysisResults &AR, 1263 LPMUpdater &Updater) { 1264 const auto &FAM = 1265 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1266 Function *F = L.getHeader()->getParent(); 1267 1268 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1269 // FIXME: This should probably be optional rather than required. 1270 if (!ORE) 1271 report_fatal_error( 1272 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1273 "cached at a higher level"); 1274 1275 // Keep track of the previous loop structure so we can identify new loops 1276 // created by unrolling. 1277 Loop *ParentL = L.getParentLoop(); 1278 SmallPtrSet<Loop *, 4> OldLoops; 1279 if (ParentL) 1280 OldLoops.insert(ParentL->begin(), ParentL->end()); 1281 else 1282 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1283 1284 std::string LoopName = L.getName(); 1285 1286 bool Changed = 1287 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1288 /*BFI*/ nullptr, /*PSI*/ nullptr, 1289 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced, 1290 ForgetSCEV, /*Count*/ None, 1291 /*Threshold*/ None, /*AllowPartial*/ false, 1292 /*Runtime*/ false, /*UpperBound*/ false, 1293 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1294 if (!Changed) 1295 return PreservedAnalyses::all(); 1296 1297 // The parent must not be damaged by unrolling! 1298 #ifndef NDEBUG 1299 if (ParentL) 1300 ParentL->verifyLoop(); 1301 #endif 1302 1303 // Unrolling can do several things to introduce new loops into a loop nest: 1304 // - Full unrolling clones child loops within the current loop but then 1305 // removes the current loop making all of the children appear to be new 1306 // sibling loops. 1307 // 1308 // When a new loop appears as a sibling loop after fully unrolling, 1309 // its nesting structure has fundamentally changed and we want to revisit 1310 // it to reflect that. 1311 // 1312 // When unrolling has removed the current loop, we need to tell the 1313 // infrastructure that it is gone. 1314 // 1315 // Finally, we support a debugging/testing mode where we revisit child loops 1316 // as well. These are not expected to require further optimizations as either 1317 // they or the loop they were cloned from have been directly visited already. 1318 // But the debugging mode allows us to check this assumption. 1319 bool IsCurrentLoopValid = false; 1320 SmallVector<Loop *, 4> SibLoops; 1321 if (ParentL) 1322 SibLoops.append(ParentL->begin(), ParentL->end()); 1323 else 1324 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1325 erase_if(SibLoops, [&](Loop *SibLoop) { 1326 if (SibLoop == &L) { 1327 IsCurrentLoopValid = true; 1328 return true; 1329 } 1330 1331 // Otherwise erase the loop from the list if it was in the old loops. 1332 return OldLoops.count(SibLoop) != 0; 1333 }); 1334 Updater.addSiblingLoops(SibLoops); 1335 1336 if (!IsCurrentLoopValid) { 1337 Updater.markLoopAsDeleted(L, LoopName); 1338 } else { 1339 // We can only walk child loops if the current loop remained valid. 1340 if (UnrollRevisitChildLoops) { 1341 // Walk *all* of the child loops. 1342 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1343 Updater.addChildLoops(ChildLoops); 1344 } 1345 } 1346 1347 return getLoopPassPreservedAnalyses(); 1348 } 1349 1350 template <typename RangeT> 1351 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1352 SmallVector<Loop *, 8> Worklist; 1353 // We use an internal worklist to build up the preorder traversal without 1354 // recursion. 1355 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1356 1357 for (Loop *RootL : Loops) { 1358 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1359 assert(PreOrderWorklist.empty() && 1360 "Must start with an empty preorder walk worklist."); 1361 PreOrderWorklist.push_back(RootL); 1362 do { 1363 Loop *L = PreOrderWorklist.pop_back_val(); 1364 PreOrderWorklist.append(L->begin(), L->end()); 1365 PreOrderLoops.push_back(L); 1366 } while (!PreOrderWorklist.empty()); 1367 1368 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1369 PreOrderLoops.clear(); 1370 } 1371 return Worklist; 1372 } 1373 1374 PreservedAnalyses LoopUnrollPass::run(Function &F, 1375 FunctionAnalysisManager &AM) { 1376 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1377 auto &LI = AM.getResult<LoopAnalysis>(F); 1378 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1379 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1380 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1381 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1382 1383 LoopAnalysisManager *LAM = nullptr; 1384 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1385 LAM = &LAMProxy->getManager(); 1386 1387 const ModuleAnalysisManager &MAM = 1388 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1389 ProfileSummaryInfo *PSI = 1390 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1391 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1392 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1393 1394 bool Changed = false; 1395 1396 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1397 // Since simplification may add new inner loops, it has to run before the 1398 // legality and profitability checks. This means running the loop unroller 1399 // will simplify all loops, regardless of whether anything end up being 1400 // unrolled. 1401 for (auto &L : LI) { 1402 Changed |= 1403 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1404 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1405 } 1406 1407 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1408 1409 while (!Worklist.empty()) { 1410 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1411 // from back to front so that we work forward across the CFG, which 1412 // for unrolling is only needed to get optimization remarks emitted in 1413 // a forward order. 1414 Loop &L = *Worklist.pop_back_val(); 1415 #ifndef NDEBUG 1416 Loop *ParentL = L.getParentLoop(); 1417 #endif 1418 1419 // Check if the profile summary indicates that the profiled application 1420 // has a huge working set size, in which case we disable peeling to avoid 1421 // bloating it further. 1422 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1423 if (PSI && PSI->hasHugeWorkingSetSize()) 1424 LocalAllowPeeling = false; 1425 std::string LoopName = L.getName(); 1426 // The API here is quite complex to call and we allow to select some 1427 // flavors of unrolling during construction time (by setting UnrollOpts). 1428 LoopUnrollResult Result = tryToUnrollLoop( 1429 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1430 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1431 UnrollOpts.ForgetSCEV, /*Count*/ None, 1432 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1433 UnrollOpts.AllowUpperBound, LocalAllowPeeling); 1434 Changed |= Result != LoopUnrollResult::Unmodified; 1435 1436 // The parent must not be damaged by unrolling! 1437 #ifndef NDEBUG 1438 if (Result != LoopUnrollResult::Unmodified && ParentL) 1439 ParentL->verifyLoop(); 1440 #endif 1441 1442 // Clear any cached analysis results for L if we removed it completely. 1443 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1444 LAM->clear(L, LoopName); 1445 } 1446 1447 if (!Changed) 1448 return PreservedAnalyses::all(); 1449 1450 return getLoopPassPreservedAnalyses(); 1451 } 1452