1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/CodeMetrics.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DiagnosticInfo.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Scalar/LoopPassManager.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/LoopPeel.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/SizeOpts.h" 60 #include "llvm/Transforms/Utils/UnrollLoop.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <limits> 65 #include <optional> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is sometimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> 85 UnrollOptSizeThreshold( 86 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 87 cl::desc("The cost threshold for loop unrolling when optimizing for " 88 "size")); 89 90 static cl::opt<unsigned> UnrollPartialThreshold( 91 "unroll-partial-threshold", cl::Hidden, 92 cl::desc("The cost threshold for partial loop unrolling")); 93 94 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 95 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 97 "to the threshold when aggressively unrolling a loop due to the " 98 "dynamic cost savings. If completely unrolling a loop will reduce " 99 "the total runtime from X to Y, we boost the loop unroll " 100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 101 "X/Y). This limit avoids excessive code bloat.")); 102 103 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 104 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 105 cl::desc("Don't allow loop unrolling to simulate more than this number of" 106 "iterations when checking full unroll profitability")); 107 108 static cl::opt<unsigned> UnrollCount( 109 "unroll-count", cl::Hidden, 110 cl::desc("Use this unroll count for all loops including those with " 111 "unroll_count pragma values, for testing purposes")); 112 113 static cl::opt<unsigned> UnrollMaxCount( 114 "unroll-max-count", cl::Hidden, 115 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 116 "testing purposes")); 117 118 static cl::opt<unsigned> UnrollFullMaxCount( 119 "unroll-full-max-count", cl::Hidden, 120 cl::desc( 121 "Set the max unroll count for full unrolling, for testing purposes")); 122 123 static cl::opt<bool> 124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 125 cl::desc("Allows loops to be partially unrolled until " 126 "-unroll-threshold loop size is reached.")); 127 128 static cl::opt<bool> UnrollAllowRemainder( 129 "unroll-allow-remainder", cl::Hidden, 130 cl::desc("Allow generation of a loop remainder (extra iterations) " 131 "when unrolling a loop.")); 132 133 static cl::opt<bool> 134 UnrollRuntime("unroll-runtime", cl::Hidden, 135 cl::desc("Unroll loops with run-time trip counts")); 136 137 static cl::opt<unsigned> UnrollMaxUpperBound( 138 "unroll-max-upperbound", cl::init(8), cl::Hidden, 139 cl::desc( 140 "The max of trip count upper bound that is considered in unrolling")); 141 142 static cl::opt<unsigned> PragmaUnrollThreshold( 143 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 144 cl::desc("Unrolled size limit for loops with an unroll(full) or " 145 "unroll_count pragma.")); 146 147 static cl::opt<unsigned> FlatLoopTripCountThreshold( 148 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 149 cl::desc("If the runtime tripcount for the loop is lower than the " 150 "threshold, the loop is considered as flat and will be less " 151 "aggressively unrolled.")); 152 153 static cl::opt<bool> UnrollUnrollRemainder( 154 "unroll-remainder", cl::Hidden, 155 cl::desc("Allow the loop remainder to be unrolled.")); 156 157 // This option isn't ever intended to be enabled, it serves to allow 158 // experiments to check the assumptions about when this kind of revisit is 159 // necessary. 160 static cl::opt<bool> UnrollRevisitChildLoops( 161 "unroll-revisit-child-loops", cl::Hidden, 162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 163 "This shouldn't typically be needed as child loops (or their " 164 "clones) were already visited.")); 165 166 static cl::opt<unsigned> UnrollThresholdAggressive( 167 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 169 "optimizations")); 170 static cl::opt<unsigned> 171 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 172 cl::Hidden, 173 cl::desc("Default threshold (max size of unrolled " 174 "loop), used in all but O3 optimizations")); 175 176 /// A magic value for use with the Threshold parameter to indicate 177 /// that the loop unroll should be performed regardless of how much 178 /// code expansion would result. 179 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 180 181 /// Gather the various unrolling parameters based on the defaults, compiler 182 /// flags, TTI overrides and user specified parameters. 183 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 184 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 185 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 186 OptimizationRemarkEmitter &ORE, int OptLevel, 187 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, 188 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, 189 std::optional<bool> UserUpperBound, 190 std::optional<unsigned> UserFullUnrollMaxCount) { 191 TargetTransformInfo::UnrollingPreferences UP; 192 193 // Set up the defaults 194 UP.Threshold = 195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 196 UP.MaxPercentThresholdBoost = 400; 197 UP.OptSizeThreshold = UnrollOptSizeThreshold; 198 UP.PartialThreshold = 150; 199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 200 UP.Count = 0; 201 UP.DefaultUnrollRuntimeCount = 8; 202 UP.MaxCount = std::numeric_limits<unsigned>::max(); 203 UP.MaxUpperBound = UnrollMaxUpperBound; 204 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 205 UP.BEInsns = 2; 206 UP.Partial = false; 207 UP.Runtime = false; 208 UP.AllowRemainder = true; 209 UP.UnrollRemainder = false; 210 UP.AllowExpensiveTripCount = false; 211 UP.Force = false; 212 UP.UpperBound = false; 213 UP.UnrollAndJam = false; 214 UP.UnrollAndJamInnerLoopThreshold = 60; 215 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 216 217 // Override with any target specific settings 218 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 219 220 // Apply size attributes 221 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 222 // Let unroll hints / pragmas take precedence over PGSO. 223 (hasUnrollTransformation(L) != TM_ForcedByUser && 224 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 225 PGSOQueryType::IRPass)); 226 if (OptForSize) { 227 UP.Threshold = UP.OptSizeThreshold; 228 UP.PartialThreshold = UP.PartialOptSizeThreshold; 229 UP.MaxPercentThresholdBoost = 100; 230 } 231 232 // Apply any user values specified by cl::opt 233 if (UnrollThreshold.getNumOccurrences() > 0) 234 UP.Threshold = UnrollThreshold; 235 if (UnrollPartialThreshold.getNumOccurrences() > 0) 236 UP.PartialThreshold = UnrollPartialThreshold; 237 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 238 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 239 if (UnrollMaxCount.getNumOccurrences() > 0) 240 UP.MaxCount = UnrollMaxCount; 241 if (UnrollMaxUpperBound.getNumOccurrences() > 0) 242 UP.MaxUpperBound = UnrollMaxUpperBound; 243 if (UnrollFullMaxCount.getNumOccurrences() > 0) 244 UP.FullUnrollMaxCount = UnrollFullMaxCount; 245 if (UnrollAllowPartial.getNumOccurrences() > 0) 246 UP.Partial = UnrollAllowPartial; 247 if (UnrollAllowRemainder.getNumOccurrences() > 0) 248 UP.AllowRemainder = UnrollAllowRemainder; 249 if (UnrollRuntime.getNumOccurrences() > 0) 250 UP.Runtime = UnrollRuntime; 251 if (UnrollMaxUpperBound == 0) 252 UP.UpperBound = false; 253 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 254 UP.UnrollRemainder = UnrollUnrollRemainder; 255 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 256 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 257 258 // Apply user values provided by argument 259 if (UserThreshold) { 260 UP.Threshold = *UserThreshold; 261 UP.PartialThreshold = *UserThreshold; 262 } 263 if (UserCount) 264 UP.Count = *UserCount; 265 if (UserAllowPartial) 266 UP.Partial = *UserAllowPartial; 267 if (UserRuntime) 268 UP.Runtime = *UserRuntime; 269 if (UserUpperBound) 270 UP.UpperBound = *UserUpperBound; 271 if (UserFullUnrollMaxCount) 272 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 273 274 return UP; 275 } 276 277 namespace { 278 279 /// A struct to densely store the state of an instruction after unrolling at 280 /// each iteration. 281 /// 282 /// This is designed to work like a tuple of <Instruction *, int> for the 283 /// purposes of hashing and lookup, but to be able to associate two boolean 284 /// states with each key. 285 struct UnrolledInstState { 286 Instruction *I; 287 int Iteration : 30; 288 unsigned IsFree : 1; 289 unsigned IsCounted : 1; 290 }; 291 292 /// Hashing and equality testing for a set of the instruction states. 293 struct UnrolledInstStateKeyInfo { 294 using PtrInfo = DenseMapInfo<Instruction *>; 295 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 296 297 static inline UnrolledInstState getEmptyKey() { 298 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 299 } 300 301 static inline UnrolledInstState getTombstoneKey() { 302 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 303 } 304 305 static inline unsigned getHashValue(const UnrolledInstState &S) { 306 return PairInfo::getHashValue({S.I, S.Iteration}); 307 } 308 309 static inline bool isEqual(const UnrolledInstState &LHS, 310 const UnrolledInstState &RHS) { 311 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 312 } 313 }; 314 315 struct EstimatedUnrollCost { 316 /// The estimated cost after unrolling. 317 unsigned UnrolledCost; 318 319 /// The estimated dynamic cost of executing the instructions in the 320 /// rolled form. 321 unsigned RolledDynamicCost; 322 }; 323 324 struct PragmaInfo { 325 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 326 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 327 PragmaEnableUnroll(PEU) {} 328 const bool UserUnrollCount; 329 const bool PragmaFullUnroll; 330 const unsigned PragmaCount; 331 const bool PragmaEnableUnroll; 332 }; 333 334 } // end anonymous namespace 335 336 /// Figure out if the loop is worth full unrolling. 337 /// 338 /// Complete loop unrolling can make some loads constant, and we need to know 339 /// if that would expose any further optimization opportunities. This routine 340 /// estimates this optimization. It computes cost of unrolled loop 341 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 342 /// dynamic cost we mean that we won't count costs of blocks that are known not 343 /// to be executed (i.e. if we have a branch in the loop and we know that at the 344 /// given iteration its condition would be resolved to true, we won't add up the 345 /// cost of the 'false'-block). 346 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 347 /// the analysis failed (no benefits expected from the unrolling, or the loop is 348 /// too big to analyze), the returned value is std::nullopt. 349 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 350 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 351 const SmallPtrSetImpl<const Value *> &EphValues, 352 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 353 unsigned MaxIterationsCountToAnalyze) { 354 // We want to be able to scale offsets by the trip count and add more offsets 355 // to them without checking for overflows, and we already don't want to 356 // analyze *massive* trip counts, so we force the max to be reasonably small. 357 assert(MaxIterationsCountToAnalyze < 358 (unsigned)(std::numeric_limits<int>::max() / 2) && 359 "The unroll iterations max is too large!"); 360 361 // Only analyze inner loops. We can't properly estimate cost of nested loops 362 // and we won't visit inner loops again anyway. 363 if (!L->isInnermost()) 364 return std::nullopt; 365 366 // Don't simulate loops with a big or unknown tripcount 367 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 368 return std::nullopt; 369 370 SmallSetVector<BasicBlock *, 16> BBWorklist; 371 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 372 DenseMap<Value *, Value *> SimplifiedValues; 373 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 374 375 // The estimated cost of the unrolled form of the loop. We try to estimate 376 // this by simplifying as much as we can while computing the estimate. 377 InstructionCost UnrolledCost = 0; 378 379 // We also track the estimated dynamic (that is, actually executed) cost in 380 // the rolled form. This helps identify cases when the savings from unrolling 381 // aren't just exposing dead control flows, but actual reduced dynamic 382 // instructions due to the simplifications which we expect to occur after 383 // unrolling. 384 InstructionCost RolledDynamicCost = 0; 385 386 // We track the simplification of each instruction in each iteration. We use 387 // this to recursively merge costs into the unrolled cost on-demand so that 388 // we don't count the cost of any dead code. This is essentially a map from 389 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 390 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 391 392 // A small worklist used to accumulate cost of instructions from each 393 // observable and reached root in the loop. 394 SmallVector<Instruction *, 16> CostWorklist; 395 396 // PHI-used worklist used between iterations while accumulating cost. 397 SmallVector<Instruction *, 4> PHIUsedList; 398 399 // Helper function to accumulate cost for instructions in the loop. 400 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 401 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 402 assert(CostWorklist.empty() && "Must start with an empty cost list"); 403 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 404 CostWorklist.push_back(&RootI); 405 TargetTransformInfo::TargetCostKind CostKind = 406 RootI.getFunction()->hasMinSize() ? 407 TargetTransformInfo::TCK_CodeSize : 408 TargetTransformInfo::TCK_SizeAndLatency; 409 for (;; --Iteration) { 410 do { 411 Instruction *I = CostWorklist.pop_back_val(); 412 413 // InstCostMap only uses I and Iteration as a key, the other two values 414 // don't matter here. 415 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 416 if (CostIter == InstCostMap.end()) 417 // If an input to a PHI node comes from a dead path through the loop 418 // we may have no cost data for it here. What that actually means is 419 // that it is free. 420 continue; 421 auto &Cost = *CostIter; 422 if (Cost.IsCounted) 423 // Already counted this instruction. 424 continue; 425 426 // Mark that we are counting the cost of this instruction now. 427 Cost.IsCounted = true; 428 429 // If this is a PHI node in the loop header, just add it to the PHI set. 430 if (auto *PhiI = dyn_cast<PHINode>(I)) 431 if (PhiI->getParent() == L->getHeader()) { 432 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 433 "inherently simplify during unrolling."); 434 if (Iteration == 0) 435 continue; 436 437 // Push the incoming value from the backedge into the PHI used list 438 // if it is an in-loop instruction. We'll use this to populate the 439 // cost worklist for the next iteration (as we count backwards). 440 if (auto *OpI = dyn_cast<Instruction>( 441 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 442 if (L->contains(OpI)) 443 PHIUsedList.push_back(OpI); 444 continue; 445 } 446 447 // First accumulate the cost of this instruction. 448 if (!Cost.IsFree) { 449 UnrolledCost += TTI.getInstructionCost(I, CostKind); 450 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 451 << Iteration << "): "); 452 LLVM_DEBUG(I->dump()); 453 } 454 455 // We must count the cost of every operand which is not free, 456 // recursively. If we reach a loop PHI node, simply add it to the set 457 // to be considered on the next iteration (backwards!). 458 for (Value *Op : I->operands()) { 459 // Check whether this operand is free due to being a constant or 460 // outside the loop. 461 auto *OpI = dyn_cast<Instruction>(Op); 462 if (!OpI || !L->contains(OpI)) 463 continue; 464 465 // Otherwise accumulate its cost. 466 CostWorklist.push_back(OpI); 467 } 468 } while (!CostWorklist.empty()); 469 470 if (PHIUsedList.empty()) 471 // We've exhausted the search. 472 break; 473 474 assert(Iteration > 0 && 475 "Cannot track PHI-used values past the first iteration!"); 476 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 477 PHIUsedList.clear(); 478 } 479 }; 480 481 // Ensure that we don't violate the loop structure invariants relied on by 482 // this analysis. 483 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 484 assert(L->isLCSSAForm(DT) && 485 "Must have loops in LCSSA form to track live-out values."); 486 487 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 488 489 TargetTransformInfo::TargetCostKind CostKind = 490 L->getHeader()->getParent()->hasMinSize() ? 491 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 492 // Simulate execution of each iteration of the loop counting instructions, 493 // which would be simplified. 494 // Since the same load will take different values on different iterations, 495 // we literally have to go through all loop's iterations. 496 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 497 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 498 499 // Prepare for the iteration by collecting any simplified entry or backedge 500 // inputs. 501 for (Instruction &I : *L->getHeader()) { 502 auto *PHI = dyn_cast<PHINode>(&I); 503 if (!PHI) 504 break; 505 506 // The loop header PHI nodes must have exactly two input: one from the 507 // loop preheader and one from the loop latch. 508 assert( 509 PHI->getNumIncomingValues() == 2 && 510 "Must have an incoming value only for the preheader and the latch."); 511 512 Value *V = PHI->getIncomingValueForBlock( 513 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 514 if (Iteration != 0 && SimplifiedValues.count(V)) 515 V = SimplifiedValues.lookup(V); 516 SimplifiedInputValues.push_back({PHI, V}); 517 } 518 519 // Now clear and re-populate the map for the next iteration. 520 SimplifiedValues.clear(); 521 while (!SimplifiedInputValues.empty()) 522 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 523 524 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 525 526 BBWorklist.clear(); 527 BBWorklist.insert(L->getHeader()); 528 // Note that we *must not* cache the size, this loop grows the worklist. 529 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 530 BasicBlock *BB = BBWorklist[Idx]; 531 532 // Visit all instructions in the given basic block and try to simplify 533 // it. We don't change the actual IR, just count optimization 534 // opportunities. 535 for (Instruction &I : *BB) { 536 // These won't get into the final code - don't even try calculating the 537 // cost for them. 538 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 539 continue; 540 541 // Track this instruction's expected baseline cost when executing the 542 // rolled loop form. 543 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind); 544 545 // Visit the instruction to analyze its loop cost after unrolling, 546 // and if the visitor returns true, mark the instruction as free after 547 // unrolling and continue. 548 bool IsFree = Analyzer.visit(I); 549 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 550 (unsigned)IsFree, 551 /*IsCounted*/ false}).second; 552 (void)Inserted; 553 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 554 555 if (IsFree) 556 continue; 557 558 // Can't properly model a cost of a call. 559 // FIXME: With a proper cost model we should be able to do it. 560 if (auto *CI = dyn_cast<CallInst>(&I)) { 561 const Function *Callee = CI->getCalledFunction(); 562 if (!Callee || TTI.isLoweredToCall(Callee)) { 563 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 564 return std::nullopt; 565 } 566 } 567 568 // If the instruction might have a side-effect recursively account for 569 // the cost of it and all the instructions leading up to it. 570 if (I.mayHaveSideEffects()) 571 AddCostRecursively(I, Iteration); 572 573 // If unrolled body turns out to be too big, bail out. 574 if (UnrolledCost > MaxUnrolledLoopSize) { 575 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 576 << " UnrolledCost: " << UnrolledCost 577 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 578 << "\n"); 579 return std::nullopt; 580 } 581 } 582 583 Instruction *TI = BB->getTerminator(); 584 585 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 586 if (SimplifiedValues.count(V)) 587 V = SimplifiedValues.lookup(V); 588 return dyn_cast<Constant>(V); 589 }; 590 591 // Add in the live successors by first checking whether we have terminator 592 // that may be simplified based on the values simplified by this call. 593 BasicBlock *KnownSucc = nullptr; 594 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 595 if (BI->isConditional()) { 596 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 597 // Just take the first successor if condition is undef 598 if (isa<UndefValue>(SimpleCond)) 599 KnownSucc = BI->getSuccessor(0); 600 else if (ConstantInt *SimpleCondVal = 601 dyn_cast<ConstantInt>(SimpleCond)) 602 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 603 } 604 } 605 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 606 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 607 // Just take the first successor if condition is undef 608 if (isa<UndefValue>(SimpleCond)) 609 KnownSucc = SI->getSuccessor(0); 610 else if (ConstantInt *SimpleCondVal = 611 dyn_cast<ConstantInt>(SimpleCond)) 612 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 613 } 614 } 615 if (KnownSucc) { 616 if (L->contains(KnownSucc)) 617 BBWorklist.insert(KnownSucc); 618 else 619 ExitWorklist.insert({BB, KnownSucc}); 620 continue; 621 } 622 623 // Add BB's successors to the worklist. 624 for (BasicBlock *Succ : successors(BB)) 625 if (L->contains(Succ)) 626 BBWorklist.insert(Succ); 627 else 628 ExitWorklist.insert({BB, Succ}); 629 AddCostRecursively(*TI, Iteration); 630 } 631 632 // If we found no optimization opportunities on the first iteration, we 633 // won't find them on later ones too. 634 if (UnrolledCost == RolledDynamicCost) { 635 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 636 << " UnrolledCost: " << UnrolledCost << "\n"); 637 return std::nullopt; 638 } 639 } 640 641 while (!ExitWorklist.empty()) { 642 BasicBlock *ExitingBB, *ExitBB; 643 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 644 645 for (Instruction &I : *ExitBB) { 646 auto *PN = dyn_cast<PHINode>(&I); 647 if (!PN) 648 break; 649 650 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 651 if (auto *OpI = dyn_cast<Instruction>(Op)) 652 if (L->contains(OpI)) 653 AddCostRecursively(*OpI, TripCount - 1); 654 } 655 } 656 657 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 658 "All instructions must have a valid cost, whether the " 659 "loop is rolled or unrolled."); 660 661 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 662 << "UnrolledCost: " << UnrolledCost << ", " 663 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 664 return {{unsigned(*UnrolledCost.getValue()), 665 unsigned(*RolledDynamicCost.getValue())}}; 666 } 667 668 UnrollCostEstimator::UnrollCostEstimator( 669 const Loop *L, const TargetTransformInfo &TTI, 670 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 671 CodeMetrics Metrics; 672 for (BasicBlock *BB : L->blocks()) 673 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 674 NumInlineCandidates = Metrics.NumInlineCandidates; 675 NotDuplicatable = Metrics.notDuplicatable; 676 Convergent = Metrics.convergent; 677 LoopSize = Metrics.NumInsts; 678 679 // Don't allow an estimate of size zero. This would allows unrolling of loops 680 // with huge iteration counts, which is a compile time problem even if it's 681 // not a problem for code quality. Also, the code using this size may assume 682 // that each loop has at least three instructions (likely a conditional 683 // branch, a comparison feeding that branch, and some kind of loop increment 684 // feeding that comparison instruction). 685 if (LoopSize.isValid() && LoopSize < BEInsns + 1) 686 // This is an open coded max() on InstructionCost 687 LoopSize = BEInsns + 1; 688 } 689 690 uint64_t UnrollCostEstimator::getUnrolledLoopSize( 691 const TargetTransformInfo::UnrollingPreferences &UP, 692 unsigned CountOverwrite) const { 693 unsigned LS = *LoopSize.getValue(); 694 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 695 if (CountOverwrite) 696 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; 697 else 698 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; 699 } 700 701 // Returns the loop hint metadata node with the given name (for example, 702 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 703 // returned. 704 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 705 if (MDNode *LoopID = L->getLoopID()) 706 return GetUnrollMetadata(LoopID, Name); 707 return nullptr; 708 } 709 710 // Returns true if the loop has an unroll(full) pragma. 711 static bool hasUnrollFullPragma(const Loop *L) { 712 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 713 } 714 715 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 716 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 717 static bool hasUnrollEnablePragma(const Loop *L) { 718 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 719 } 720 721 // Returns true if the loop has an runtime unroll(disable) pragma. 722 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 723 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 724 } 725 726 // If loop has an unroll_count pragma return the (necessarily 727 // positive) value from the pragma. Otherwise return 0. 728 static unsigned unrollCountPragmaValue(const Loop *L) { 729 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 730 if (MD) { 731 assert(MD->getNumOperands() == 2 && 732 "Unroll count hint metadata should have two operands."); 733 unsigned Count = 734 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 735 assert(Count >= 1 && "Unroll count must be positive."); 736 return Count; 737 } 738 return 0; 739 } 740 741 // Computes the boosting factor for complete unrolling. 742 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 743 // be beneficial to fully unroll the loop even if unrolledcost is large. We 744 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 745 // the unroll threshold. 746 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 747 unsigned MaxPercentThresholdBoost) { 748 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 749 return 100; 750 else if (Cost.UnrolledCost != 0) 751 // The boosting factor is RolledDynamicCost / UnrolledCost 752 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 753 MaxPercentThresholdBoost); 754 else 755 return MaxPercentThresholdBoost; 756 } 757 758 static std::optional<unsigned> 759 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 760 const unsigned TripMultiple, const unsigned TripCount, 761 unsigned MaxTripCount, const UnrollCostEstimator UCE, 762 const TargetTransformInfo::UnrollingPreferences &UP) { 763 764 // Using unroll pragma 765 // 1st priority is unroll count set by "unroll-count" option. 766 767 if (PInfo.UserUnrollCount) { 768 if (UP.AllowRemainder && 769 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 770 return (unsigned)UnrollCount; 771 } 772 773 // 2nd priority is unroll count set by pragma. 774 if (PInfo.PragmaCount > 0) { 775 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) 776 return PInfo.PragmaCount; 777 } 778 779 if (PInfo.PragmaFullUnroll && TripCount != 0) 780 return TripCount; 781 782 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && 783 MaxTripCount <= UP.MaxUpperBound) 784 return MaxTripCount; 785 786 // if didn't return until here, should continue to other priorties 787 return std::nullopt; 788 } 789 790 static std::optional<unsigned> shouldFullUnroll( 791 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 792 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 793 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 794 const TargetTransformInfo::UnrollingPreferences &UP) { 795 assert(FullUnrollTripCount && "should be non-zero!"); 796 797 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 798 return std::nullopt; 799 800 // When computing the unrolled size, note that BEInsns are not replicated 801 // like the rest of the loop body. 802 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 803 return FullUnrollTripCount; 804 805 // The loop isn't that small, but we still can fully unroll it if that 806 // helps to remove a significant number of instructions. 807 // To check that, run additional analysis on the loop. 808 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 809 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 810 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 811 UP.MaxIterationsCountToAnalyze)) { 812 unsigned Boost = 813 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 814 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 815 return FullUnrollTripCount; 816 } 817 return std::nullopt; 818 } 819 820 static std::optional<unsigned> 821 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 822 const UnrollCostEstimator UCE, 823 const TargetTransformInfo::UnrollingPreferences &UP) { 824 825 if (!TripCount) 826 return std::nullopt; 827 828 if (!UP.Partial) { 829 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 830 << "-unroll-allow-partial not given\n"); 831 return 0; 832 } 833 unsigned count = UP.Count; 834 if (count == 0) 835 count = TripCount; 836 if (UP.PartialThreshold != NoThreshold) { 837 // Reduce unroll count to be modulo of TripCount for partial unrolling. 838 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 839 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 840 (LoopSize - UP.BEInsns); 841 if (count > UP.MaxCount) 842 count = UP.MaxCount; 843 while (count != 0 && TripCount % count != 0) 844 count--; 845 if (UP.AllowRemainder && count <= 1) { 846 // If there is no Count that is modulo of TripCount, set Count to 847 // largest power-of-two factor that satisfies the threshold limit. 848 // As we'll create fixup loop, do the type of unrolling only if 849 // remainder loop is allowed. 850 count = UP.DefaultUnrollRuntimeCount; 851 while (count != 0 && 852 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 853 count >>= 1; 854 } 855 if (count < 2) { 856 count = 0; 857 } 858 } else { 859 count = TripCount; 860 } 861 if (count > UP.MaxCount) 862 count = UP.MaxCount; 863 864 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 865 866 return count; 867 } 868 // Returns true if unroll count was set explicitly. 869 // Calculates unroll count and writes it to UP.Count. 870 // Unless IgnoreUser is true, will also use metadata and command-line options 871 // that are specific to to the LoopUnroll pass (which, for instance, are 872 // irrelevant for the LoopUnrollAndJam pass). 873 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 874 // many LoopUnroll-specific options. The shared functionality should be 875 // refactored into it own function. 876 bool llvm::computeUnrollCount( 877 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 878 AssumptionCache *AC, ScalarEvolution &SE, 879 const SmallPtrSetImpl<const Value *> &EphValues, 880 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 881 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, 882 TargetTransformInfo::UnrollingPreferences &UP, 883 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 884 885 unsigned LoopSize = UCE.getRolledLoopSize(); 886 887 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 888 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 889 const unsigned PragmaCount = unrollCountPragmaValue(L); 890 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 891 892 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 893 PragmaEnableUnroll || UserUnrollCount; 894 895 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 896 PragmaEnableUnroll); 897 // Use an explicit peel count that has been specified for testing. In this 898 // case it's not permitted to also specify an explicit unroll count. 899 if (PP.PeelCount) { 900 if (UnrollCount.getNumOccurrences() > 0) { 901 report_fatal_error("Cannot specify both explicit peel count and " 902 "explicit unroll count", /*GenCrashDiag=*/false); 903 } 904 UP.Count = 1; 905 UP.Runtime = false; 906 return true; 907 } 908 // Check for explicit Count. 909 // 1st priority is unroll count set by "unroll-count" option. 910 // 2nd priority is unroll count set by pragma. 911 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 912 MaxTripCount, UCE, UP)) { 913 UP.Count = *UnrollFactor; 914 915 if (UserUnrollCount || (PragmaCount > 0)) { 916 UP.AllowExpensiveTripCount = true; 917 UP.Force = true; 918 } 919 UP.Runtime |= (PragmaCount > 0); 920 return ExplicitUnroll; 921 } else { 922 if (ExplicitUnroll && TripCount != 0) { 923 // If the loop has an unrolling pragma, we want to be more aggressive with 924 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 925 // value which is larger than the default limits. 926 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 927 UP.PartialThreshold = 928 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 929 } 930 } 931 932 // 3rd priority is exact full unrolling. This will eliminate all copies 933 // of some exit test. 934 UP.Count = 0; 935 if (TripCount) { 936 UP.Count = TripCount; 937 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 938 TripCount, UCE, UP)) { 939 UP.Count = *UnrollFactor; 940 UseUpperBound = false; 941 return ExplicitUnroll; 942 } 943 } 944 945 // 4th priority is bounded unrolling. 946 // We can unroll by the upper bound amount if it's generally allowed or if 947 // we know that the loop is executed either the upper bound or zero times. 948 // (MaxOrZero unrolling keeps only the first loop test, so the number of 949 // loop tests remains the same compared to the non-unrolled version, whereas 950 // the generic upper bound unrolling keeps all but the last loop test so the 951 // number of loop tests goes up which may end up being worse on targets with 952 // constrained branch predictor resources so is controlled by an option.) 953 // In addition we only unroll small upper bounds. 954 // Note that the cost of bounded unrolling is always strictly greater than 955 // cost of exact full unrolling. As such, if we have an exact count and 956 // found it unprofitable, we'll never chose to bounded unroll. 957 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 958 MaxTripCount <= UP.MaxUpperBound) { 959 UP.Count = MaxTripCount; 960 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 961 MaxTripCount, UCE, UP)) { 962 UP.Count = *UnrollFactor; 963 UseUpperBound = true; 964 return ExplicitUnroll; 965 } 966 } 967 968 // 5th priority is loop peeling. 969 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold); 970 if (PP.PeelCount) { 971 UP.Runtime = false; 972 UP.Count = 1; 973 return ExplicitUnroll; 974 } 975 976 // Before starting partial unrolling, set up.partial to true, 977 // if user explicitly asked for unrolling 978 if (TripCount) 979 UP.Partial |= ExplicitUnroll; 980 981 // 6th priority is partial unrolling. 982 // Try partial unroll only when TripCount could be statically calculated. 983 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 984 UP.Count = *UnrollFactor; 985 986 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 987 UP.Count != TripCount) 988 ORE->emit([&]() { 989 return OptimizationRemarkMissed(DEBUG_TYPE, 990 "FullUnrollAsDirectedTooLarge", 991 L->getStartLoc(), L->getHeader()) 992 << "Unable to fully unroll loop as directed by unroll pragma " 993 "because " 994 "unrolled size is too large."; 995 }); 996 997 if (UP.PartialThreshold != NoThreshold) { 998 if (UP.Count == 0) { 999 if (PragmaEnableUnroll) 1000 ORE->emit([&]() { 1001 return OptimizationRemarkMissed(DEBUG_TYPE, 1002 "UnrollAsDirectedTooLarge", 1003 L->getStartLoc(), L->getHeader()) 1004 << "Unable to unroll loop as directed by unroll(enable) " 1005 "pragma " 1006 "because unrolled size is too large."; 1007 }); 1008 } 1009 } 1010 return ExplicitUnroll; 1011 } 1012 assert(TripCount == 0 && 1013 "All cases when TripCount is constant should be covered here."); 1014 if (PragmaFullUnroll) 1015 ORE->emit([&]() { 1016 return OptimizationRemarkMissed( 1017 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1018 L->getStartLoc(), L->getHeader()) 1019 << "Unable to fully unroll loop as directed by unroll(full) " 1020 "pragma " 1021 "because loop has a runtime trip count."; 1022 }); 1023 1024 // 7th priority is runtime unrolling. 1025 // Don't unroll a runtime trip count loop when it is disabled. 1026 if (hasRuntimeUnrollDisablePragma(L)) { 1027 UP.Count = 0; 1028 return false; 1029 } 1030 1031 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1032 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { 1033 UP.Count = 0; 1034 return false; 1035 } 1036 1037 // Check if the runtime trip count is too small when profile is available. 1038 if (L->getHeader()->getParent()->hasProfileData()) { 1039 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1040 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1041 return false; 1042 else 1043 UP.AllowExpensiveTripCount = true; 1044 } 1045 } 1046 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1047 if (!UP.Runtime) { 1048 LLVM_DEBUG( 1049 dbgs() << " will not try to unroll loop with runtime trip count " 1050 << "-unroll-runtime not given\n"); 1051 UP.Count = 0; 1052 return false; 1053 } 1054 if (UP.Count == 0) 1055 UP.Count = UP.DefaultUnrollRuntimeCount; 1056 1057 // Reduce unroll count to be the largest power-of-two factor of 1058 // the original count which satisfies the threshold limit. 1059 while (UP.Count != 0 && 1060 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1061 UP.Count >>= 1; 1062 1063 #ifndef NDEBUG 1064 unsigned OrigCount = UP.Count; 1065 #endif 1066 1067 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1068 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1069 UP.Count >>= 1; 1070 LLVM_DEBUG( 1071 dbgs() << "Remainder loop is restricted (that could architecture " 1072 "specific or because the loop contains a convergent " 1073 "instruction), so unroll count must divide the trip " 1074 "multiple, " 1075 << TripMultiple << ". Reducing unroll count from " << OrigCount 1076 << " to " << UP.Count << ".\n"); 1077 1078 using namespace ore; 1079 1080 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1081 ORE->emit([&]() { 1082 return OptimizationRemarkMissed(DEBUG_TYPE, 1083 "DifferentUnrollCountFromDirected", 1084 L->getStartLoc(), L->getHeader()) 1085 << "Unable to unroll loop the number of times directed by " 1086 "unroll_count pragma because remainder loop is restricted " 1087 "(that could architecture specific or because the loop " 1088 "contains a convergent instruction) and so must have an " 1089 "unroll " 1090 "count that divides the loop trip multiple of " 1091 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1092 << NV("UnrollCount", UP.Count) << " time(s)."; 1093 }); 1094 } 1095 1096 if (UP.Count > UP.MaxCount) 1097 UP.Count = UP.MaxCount; 1098 1099 if (MaxTripCount && UP.Count > MaxTripCount) 1100 UP.Count = MaxTripCount; 1101 1102 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1103 << "\n"); 1104 if (UP.Count < 2) 1105 UP.Count = 0; 1106 return ExplicitUnroll; 1107 } 1108 1109 static LoopUnrollResult 1110 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1111 const TargetTransformInfo &TTI, AssumptionCache &AC, 1112 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1113 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1114 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, 1115 std::optional<unsigned> ProvidedCount, 1116 std::optional<unsigned> ProvidedThreshold, 1117 std::optional<bool> ProvidedAllowPartial, 1118 std::optional<bool> ProvidedRuntime, 1119 std::optional<bool> ProvidedUpperBound, 1120 std::optional<bool> ProvidedAllowPeeling, 1121 std::optional<bool> ProvidedAllowProfileBasedPeeling, 1122 std::optional<unsigned> ProvidedFullUnrollMaxCount) { 1123 1124 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1125 << L->getHeader()->getParent()->getName() << "] Loop %" 1126 << L->getHeader()->getName() << "\n"); 1127 TransformationMode TM = hasUnrollTransformation(L); 1128 if (TM & TM_Disable) 1129 return LoopUnrollResult::Unmodified; 1130 1131 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1132 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1133 // automatic unrolling from interfering with the user requested 1134 // transformation. 1135 Loop *ParentL = L->getParentLoop(); 1136 if (ParentL != nullptr && 1137 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1138 hasUnrollTransformation(L) != TM_ForcedByUser) { 1139 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1140 << " llvm.loop.unroll_and_jam.\n"); 1141 return LoopUnrollResult::Unmodified; 1142 } 1143 1144 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1145 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1146 // unrolling from interfering with the user requested transformation. 1147 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1148 hasUnrollTransformation(L) != TM_ForcedByUser) { 1149 LLVM_DEBUG( 1150 dbgs() 1151 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1152 return LoopUnrollResult::Unmodified; 1153 } 1154 1155 if (!L->isLoopSimplifyForm()) { 1156 LLVM_DEBUG( 1157 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1158 return LoopUnrollResult::Unmodified; 1159 } 1160 1161 // When automatic unrolling is disabled, do not unroll unless overridden for 1162 // this loop. 1163 if (OnlyWhenForced && !(TM & TM_Enable)) 1164 return LoopUnrollResult::Unmodified; 1165 1166 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1167 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1168 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1169 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1170 ProvidedFullUnrollMaxCount); 1171 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1172 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1173 1174 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1175 // as threshold later on. 1176 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1177 !OptForSize) 1178 return LoopUnrollResult::Unmodified; 1179 1180 SmallPtrSet<const Value *, 32> EphValues; 1181 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1182 1183 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); 1184 if (!UCE.canUnroll()) { 1185 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions" 1186 << " which cannot be duplicated or have invalid cost.\n"); 1187 return LoopUnrollResult::Unmodified; 1188 } 1189 1190 unsigned LoopSize = UCE.getRolledLoopSize(); 1191 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1192 1193 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1194 // later), to (fully) unroll loops, if it does not increase code size. 1195 if (OptForSize) 1196 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1197 1198 if (UCE.NumInlineCandidates != 0) { 1199 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1200 return LoopUnrollResult::Unmodified; 1201 } 1202 1203 // Find the smallest exact trip count for any exit. This is an upper bound 1204 // on the loop trip count, but an exit at an earlier iteration is still 1205 // possible. An unroll by the smallest exact trip count guarantees that all 1206 // branches relating to at least one exit can be eliminated. This is unlike 1207 // the max trip count, which only guarantees that the backedge can be broken. 1208 unsigned TripCount = 0; 1209 unsigned TripMultiple = 1; 1210 SmallVector<BasicBlock *, 8> ExitingBlocks; 1211 L->getExitingBlocks(ExitingBlocks); 1212 for (BasicBlock *ExitingBlock : ExitingBlocks) 1213 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1214 if (!TripCount || TC < TripCount) 1215 TripCount = TripMultiple = TC; 1216 1217 if (!TripCount) { 1218 // If no exact trip count is known, determine the trip multiple of either 1219 // the loop latch or the single exiting block. 1220 // TODO: Relax for multiple exits. 1221 BasicBlock *ExitingBlock = L->getLoopLatch(); 1222 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1223 ExitingBlock = L->getExitingBlock(); 1224 if (ExitingBlock) 1225 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1226 } 1227 1228 // If the loop contains a convergent operation, the prelude we'd add 1229 // to do the first few instructions before we hit the unrolled loop 1230 // is unsafe -- it adds a control-flow dependency to the convergent 1231 // operation. Therefore restrict remainder loop (try unrolling without). 1232 // 1233 // TODO: This is quite conservative. In practice, convergent_op() 1234 // is likely to be called unconditionally in the loop. In this 1235 // case, the program would be ill-formed (on most architectures) 1236 // unless n were the same on all threads in a thread group. 1237 // Assuming n is the same on all threads, any kind of unrolling is 1238 // safe. But currently llvm's notion of convergence isn't powerful 1239 // enough to express this. 1240 if (UCE.Convergent) 1241 UP.AllowRemainder = false; 1242 1243 // Try to find the trip count upper bound if we cannot find the exact trip 1244 // count. 1245 unsigned MaxTripCount = 0; 1246 bool MaxOrZero = false; 1247 if (!TripCount) { 1248 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1249 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1250 } 1251 1252 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1253 // fully unroll the loop. 1254 bool UseUpperBound = false; 1255 bool IsCountSetExplicitly = computeUnrollCount( 1256 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, 1257 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); 1258 if (!UP.Count) 1259 return LoopUnrollResult::Unmodified; 1260 1261 if (PP.PeelCount) { 1262 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1263 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1264 << " with iteration count " << PP.PeelCount << "!\n"); 1265 ORE.emit([&]() { 1266 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1267 L->getHeader()) 1268 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1269 << " iterations"; 1270 }); 1271 1272 ValueToValueMapTy VMap; 1273 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) { 1274 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI); 1275 // If the loop was peeled, we already "used up" the profile information 1276 // we had, so we don't want to unroll or peel again. 1277 if (PP.PeelProfiledIterations) 1278 L->setLoopAlreadyUnrolled(); 1279 return LoopUnrollResult::PartiallyUnrolled; 1280 } 1281 return LoopUnrollResult::Unmodified; 1282 } 1283 1284 // Do not attempt partial/runtime unrolling in FullLoopUnrolling 1285 if (OnlyFullUnroll && !(UP.Count >= MaxTripCount)) { 1286 LLVM_DEBUG( 1287 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n"); 1288 return LoopUnrollResult::Unmodified; 1289 } 1290 1291 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1292 // However, we only want to actually perform it if we don't know the trip 1293 // count and the unroll count doesn't divide the known trip multiple. 1294 // TODO: This decision should probably be pushed up into 1295 // computeUnrollCount(). 1296 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1297 1298 // Save loop properties before it is transformed. 1299 MDNode *OrigLoopID = L->getLoopID(); 1300 1301 // Unroll the loop. 1302 Loop *RemainderLoop = nullptr; 1303 LoopUnrollResult UnrollResult = UnrollLoop( 1304 L, 1305 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1306 UP.UnrollRemainder, ForgetAllSCEV}, 1307 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop); 1308 if (UnrollResult == LoopUnrollResult::Unmodified) 1309 return LoopUnrollResult::Unmodified; 1310 1311 if (RemainderLoop) { 1312 std::optional<MDNode *> RemainderLoopID = 1313 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1314 LLVMLoopUnrollFollowupRemainder}); 1315 if (RemainderLoopID) 1316 RemainderLoop->setLoopID(*RemainderLoopID); 1317 } 1318 1319 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1320 std::optional<MDNode *> NewLoopID = 1321 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1322 LLVMLoopUnrollFollowupUnrolled}); 1323 if (NewLoopID) { 1324 L->setLoopID(*NewLoopID); 1325 1326 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1327 // explicitly. 1328 return UnrollResult; 1329 } 1330 } 1331 1332 // If loop has an unroll count pragma or unrolled by explicitly set count 1333 // mark loop as unrolled to prevent unrolling beyond that requested. 1334 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1335 L->setLoopAlreadyUnrolled(); 1336 1337 return UnrollResult; 1338 } 1339 1340 namespace { 1341 1342 class LoopUnroll : public LoopPass { 1343 public: 1344 static char ID; // Pass ID, replacement for typeid 1345 1346 int OptLevel; 1347 1348 /// If false, use a cost model to determine whether unrolling of a loop is 1349 /// profitable. If true, only loops that explicitly request unrolling via 1350 /// metadata are considered. All other loops are skipped. 1351 bool OnlyWhenForced; 1352 1353 /// If false, when SCEV is invalidated, only forget everything in the 1354 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1355 /// Otherwise, forgetAllLoops and rebuild when needed next. 1356 bool ForgetAllSCEV; 1357 1358 std::optional<unsigned> ProvidedCount; 1359 std::optional<unsigned> ProvidedThreshold; 1360 std::optional<bool> ProvidedAllowPartial; 1361 std::optional<bool> ProvidedRuntime; 1362 std::optional<bool> ProvidedUpperBound; 1363 std::optional<bool> ProvidedAllowPeeling; 1364 std::optional<bool> ProvidedAllowProfileBasedPeeling; 1365 std::optional<unsigned> ProvidedFullUnrollMaxCount; 1366 1367 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1368 bool ForgetAllSCEV = false, 1369 std::optional<unsigned> Threshold = std::nullopt, 1370 std::optional<unsigned> Count = std::nullopt, 1371 std::optional<bool> AllowPartial = std::nullopt, 1372 std::optional<bool> Runtime = std::nullopt, 1373 std::optional<bool> UpperBound = std::nullopt, 1374 std::optional<bool> AllowPeeling = std::nullopt, 1375 std::optional<bool> AllowProfileBasedPeeling = std::nullopt, 1376 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) 1377 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1378 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1379 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1380 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1381 ProvidedAllowPeeling(AllowPeeling), 1382 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1383 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1384 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1385 } 1386 1387 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1388 if (skipLoop(L)) 1389 return false; 1390 1391 Function &F = *L->getHeader()->getParent(); 1392 1393 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1394 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1395 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1396 const TargetTransformInfo &TTI = 1397 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1398 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1399 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1400 // pass. Function analyses need to be preserved across loop transformations 1401 // but ORE cannot be preserved (see comment before the pass definition). 1402 OptimizationRemarkEmitter ORE(&F); 1403 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1404 1405 LoopUnrollResult Result = tryToUnrollLoop( 1406 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1407 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, 1408 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1409 ProvidedUpperBound, ProvidedAllowPeeling, 1410 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); 1411 1412 if (Result == LoopUnrollResult::FullyUnrolled) 1413 LPM.markLoopAsDeleted(*L); 1414 1415 return Result != LoopUnrollResult::Unmodified; 1416 } 1417 1418 /// This transformation requires natural loop information & requires that 1419 /// loop preheaders be inserted into the CFG... 1420 void getAnalysisUsage(AnalysisUsage &AU) const override { 1421 AU.addRequired<AssumptionCacheTracker>(); 1422 AU.addRequired<TargetTransformInfoWrapperPass>(); 1423 // FIXME: Loop passes are required to preserve domtree, and for now we just 1424 // recreate dom info if anything gets unrolled. 1425 getLoopAnalysisUsage(AU); 1426 } 1427 }; 1428 1429 } // end anonymous namespace 1430 1431 char LoopUnroll::ID = 0; 1432 1433 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1434 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1435 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1437 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1438 1439 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1440 bool ForgetAllSCEV, int Threshold, int Count, 1441 int AllowPartial, int Runtime, int UpperBound, 1442 int AllowPeeling) { 1443 // TODO: It would make more sense for this function to take the optionals 1444 // directly, but that's dangerous since it would silently break out of tree 1445 // callers. 1446 return new LoopUnroll( 1447 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1448 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), 1449 Count == -1 ? std::nullopt : std::optional<unsigned>(Count), 1450 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), 1451 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), 1452 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), 1453 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); 1454 } 1455 1456 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1457 LoopStandardAnalysisResults &AR, 1458 LPMUpdater &Updater) { 1459 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1460 // pass. Function analyses need to be preserved across loop transformations 1461 // but ORE cannot be preserved (see comment before the pass definition). 1462 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1463 1464 // Keep track of the previous loop structure so we can identify new loops 1465 // created by unrolling. 1466 Loop *ParentL = L.getParentLoop(); 1467 SmallPtrSet<Loop *, 4> OldLoops; 1468 if (ParentL) 1469 OldLoops.insert(ParentL->begin(), ParentL->end()); 1470 else 1471 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1472 1473 std::string LoopName = std::string(L.getName()); 1474 1475 bool Changed = 1476 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1477 /*BFI*/ nullptr, /*PSI*/ nullptr, 1478 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, 1479 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt, 1480 /*Threshold*/ std::nullopt, /*AllowPartial*/ false, 1481 /*Runtime*/ false, /*UpperBound*/ false, 1482 /*AllowPeeling*/ true, 1483 /*AllowProfileBasedPeeling*/ false, 1484 /*FullUnrollMaxCount*/ std::nullopt) != 1485 LoopUnrollResult::Unmodified; 1486 if (!Changed) 1487 return PreservedAnalyses::all(); 1488 1489 // The parent must not be damaged by unrolling! 1490 #ifndef NDEBUG 1491 if (ParentL) 1492 ParentL->verifyLoop(); 1493 #endif 1494 1495 // Unrolling can do several things to introduce new loops into a loop nest: 1496 // - Full unrolling clones child loops within the current loop but then 1497 // removes the current loop making all of the children appear to be new 1498 // sibling loops. 1499 // 1500 // When a new loop appears as a sibling loop after fully unrolling, 1501 // its nesting structure has fundamentally changed and we want to revisit 1502 // it to reflect that. 1503 // 1504 // When unrolling has removed the current loop, we need to tell the 1505 // infrastructure that it is gone. 1506 // 1507 // Finally, we support a debugging/testing mode where we revisit child loops 1508 // as well. These are not expected to require further optimizations as either 1509 // they or the loop they were cloned from have been directly visited already. 1510 // But the debugging mode allows us to check this assumption. 1511 bool IsCurrentLoopValid = false; 1512 SmallVector<Loop *, 4> SibLoops; 1513 if (ParentL) 1514 SibLoops.append(ParentL->begin(), ParentL->end()); 1515 else 1516 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1517 erase_if(SibLoops, [&](Loop *SibLoop) { 1518 if (SibLoop == &L) { 1519 IsCurrentLoopValid = true; 1520 return true; 1521 } 1522 1523 // Otherwise erase the loop from the list if it was in the old loops. 1524 return OldLoops.contains(SibLoop); 1525 }); 1526 Updater.addSiblingLoops(SibLoops); 1527 1528 if (!IsCurrentLoopValid) { 1529 Updater.markLoopAsDeleted(L, LoopName); 1530 } else { 1531 // We can only walk child loops if the current loop remained valid. 1532 if (UnrollRevisitChildLoops) { 1533 // Walk *all* of the child loops. 1534 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1535 Updater.addChildLoops(ChildLoops); 1536 } 1537 } 1538 1539 return getLoopPassPreservedAnalyses(); 1540 } 1541 1542 PreservedAnalyses LoopUnrollPass::run(Function &F, 1543 FunctionAnalysisManager &AM) { 1544 auto &LI = AM.getResult<LoopAnalysis>(F); 1545 // There are no loops in the function. Return before computing other expensive 1546 // analyses. 1547 if (LI.empty()) 1548 return PreservedAnalyses::all(); 1549 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1550 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1551 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1552 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1553 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1554 1555 LoopAnalysisManager *LAM = nullptr; 1556 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1557 LAM = &LAMProxy->getManager(); 1558 1559 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1560 ProfileSummaryInfo *PSI = 1561 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1562 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1563 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1564 1565 bool Changed = false; 1566 1567 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1568 // Since simplification may add new inner loops, it has to run before the 1569 // legality and profitability checks. This means running the loop unroller 1570 // will simplify all loops, regardless of whether anything end up being 1571 // unrolled. 1572 for (const auto &L : LI) { 1573 Changed |= 1574 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1575 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1576 } 1577 1578 // Add the loop nests in the reverse order of LoopInfo. See method 1579 // declaration. 1580 SmallPriorityWorklist<Loop *, 4> Worklist; 1581 appendLoopsToWorklist(LI, Worklist); 1582 1583 while (!Worklist.empty()) { 1584 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1585 // from back to front so that we work forward across the CFG, which 1586 // for unrolling is only needed to get optimization remarks emitted in 1587 // a forward order. 1588 Loop &L = *Worklist.pop_back_val(); 1589 #ifndef NDEBUG 1590 Loop *ParentL = L.getParentLoop(); 1591 #endif 1592 1593 // Check if the profile summary indicates that the profiled application 1594 // has a huge working set size, in which case we disable peeling to avoid 1595 // bloating it further. 1596 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1597 if (PSI && PSI->hasHugeWorkingSetSize()) 1598 LocalAllowPeeling = false; 1599 std::string LoopName = std::string(L.getName()); 1600 // The API here is quite complex to call and we allow to select some 1601 // flavors of unrolling during construction time (by setting UnrollOpts). 1602 LoopUnrollResult Result = tryToUnrollLoop( 1603 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1604 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, 1605 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV, 1606 /*Count*/ std::nullopt, 1607 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial, 1608 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1609 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount); 1610 Changed |= Result != LoopUnrollResult::Unmodified; 1611 1612 // The parent must not be damaged by unrolling! 1613 #ifndef NDEBUG 1614 if (Result != LoopUnrollResult::Unmodified && ParentL) 1615 ParentL->verifyLoop(); 1616 #endif 1617 1618 // Clear any cached analysis results for L if we removed it completely. 1619 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1620 LAM->clear(L, LoopName); 1621 } 1622 1623 if (!Changed) 1624 return PreservedAnalyses::all(); 1625 1626 return getLoopPassPreservedAnalyses(); 1627 } 1628 1629 void LoopUnrollPass::printPipeline( 1630 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1631 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1632 OS, MapClassName2PassName); 1633 OS << '<'; 1634 if (UnrollOpts.AllowPartial != std::nullopt) 1635 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;"; 1636 if (UnrollOpts.AllowPeeling != std::nullopt) 1637 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;"; 1638 if (UnrollOpts.AllowRuntime != std::nullopt) 1639 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;"; 1640 if (UnrollOpts.AllowUpperBound != std::nullopt) 1641 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;"; 1642 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) 1643 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-") 1644 << "profile-peeling;"; 1645 if (UnrollOpts.FullUnrollMaxCount != std::nullopt) 1646 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; 1647 OS << 'O' << UnrollOpts.OptLevel; 1648 OS << '>'; 1649 } 1650