1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 /// Limit the size of expression that SCEV-based salvaging will attempt to 140 /// translate into a DIExpression. 141 /// Choose a maximum size such that debuginfo is not excessively increased and 142 /// the salvaging is not too expensive for the compiler. 143 static const unsigned MaxSCEVSalvageExpressionSize = 64; 144 145 // Temporary flag to cleanup congruent phis after LSR phi expansion. 146 // It's currently disabled until we can determine whether it's truly useful or 147 // not. The flag should be removed after the v3.0 release. 148 // This is now needed for ivchains. 149 static cl::opt<bool> EnablePhiElim( 150 "enable-lsr-phielim", cl::Hidden, cl::init(true), 151 cl::desc("Enable LSR phi elimination")); 152 153 // The flag adds instruction count to solutions cost comparision. 154 static cl::opt<bool> InsnsCost( 155 "lsr-insns-cost", cl::Hidden, cl::init(true), 156 cl::desc("Add instruction count to a LSR cost model")); 157 158 // Flag to choose how to narrow complex lsr solution 159 static cl::opt<bool> LSRExpNarrow( 160 "lsr-exp-narrow", cl::Hidden, cl::init(false), 161 cl::desc("Narrow LSR complex solution using" 162 " expectation of registers number")); 163 164 // Flag to narrow search space by filtering non-optimal formulae with 165 // the same ScaledReg and Scale. 166 static cl::opt<bool> FilterSameScaledReg( 167 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 168 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 169 " with the same ScaledReg and Scale")); 170 171 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 172 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 173 cl::desc("A flag that overrides the target's preferred addressing mode."), 174 cl::values(clEnumValN(TTI::AMK_None, 175 "none", 176 "Don't prefer any addressing mode"), 177 clEnumValN(TTI::AMK_PreIndexed, 178 "preindexed", 179 "Prefer pre-indexed addressing mode"), 180 clEnumValN(TTI::AMK_PostIndexed, 181 "postindexed", 182 "Prefer post-indexed addressing mode"))); 183 184 static cl::opt<unsigned> ComplexityLimit( 185 "lsr-complexity-limit", cl::Hidden, 186 cl::init(std::numeric_limits<uint16_t>::max()), 187 cl::desc("LSR search space complexity limit")); 188 189 static cl::opt<unsigned> SetupCostDepthLimit( 190 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 191 cl::desc("The limit on recursion depth for LSRs setup cost")); 192 193 #ifndef NDEBUG 194 // Stress test IV chain generation. 195 static cl::opt<bool> StressIVChain( 196 "stress-ivchain", cl::Hidden, cl::init(false), 197 cl::desc("Stress test LSR IV chains")); 198 #else 199 static bool StressIVChain = false; 200 #endif 201 202 namespace { 203 204 struct MemAccessTy { 205 /// Used in situations where the accessed memory type is unknown. 206 static const unsigned UnknownAddressSpace = 207 std::numeric_limits<unsigned>::max(); 208 209 Type *MemTy = nullptr; 210 unsigned AddrSpace = UnknownAddressSpace; 211 212 MemAccessTy() = default; 213 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 214 215 bool operator==(MemAccessTy Other) const { 216 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 217 } 218 219 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 220 221 static MemAccessTy getUnknown(LLVMContext &Ctx, 222 unsigned AS = UnknownAddressSpace) { 223 return MemAccessTy(Type::getVoidTy(Ctx), AS); 224 } 225 226 Type *getType() { return MemTy; } 227 }; 228 229 /// This class holds data which is used to order reuse candidates. 230 class RegSortData { 231 public: 232 /// This represents the set of LSRUse indices which reference 233 /// a particular register. 234 SmallBitVector UsedByIndices; 235 236 void print(raw_ostream &OS) const; 237 void dump() const; 238 }; 239 240 } // end anonymous namespace 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 void RegSortData::print(raw_ostream &OS) const { 244 OS << "[NumUses=" << UsedByIndices.count() << ']'; 245 } 246 247 LLVM_DUMP_METHOD void RegSortData::dump() const { 248 print(errs()); errs() << '\n'; 249 } 250 #endif 251 252 namespace { 253 254 /// Map register candidates to information about how they are used. 255 class RegUseTracker { 256 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 257 258 RegUsesTy RegUsesMap; 259 SmallVector<const SCEV *, 16> RegSequence; 260 261 public: 262 void countRegister(const SCEV *Reg, size_t LUIdx); 263 void dropRegister(const SCEV *Reg, size_t LUIdx); 264 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 265 266 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 267 268 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 269 270 void clear(); 271 272 using iterator = SmallVectorImpl<const SCEV *>::iterator; 273 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 274 275 iterator begin() { return RegSequence.begin(); } 276 iterator end() { return RegSequence.end(); } 277 const_iterator begin() const { return RegSequence.begin(); } 278 const_iterator end() const { return RegSequence.end(); } 279 }; 280 281 } // end anonymous namespace 282 283 void 284 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 285 std::pair<RegUsesTy::iterator, bool> Pair = 286 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 287 RegSortData &RSD = Pair.first->second; 288 if (Pair.second) 289 RegSequence.push_back(Reg); 290 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 291 RSD.UsedByIndices.set(LUIdx); 292 } 293 294 void 295 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 296 RegUsesTy::iterator It = RegUsesMap.find(Reg); 297 assert(It != RegUsesMap.end()); 298 RegSortData &RSD = It->second; 299 assert(RSD.UsedByIndices.size() > LUIdx); 300 RSD.UsedByIndices.reset(LUIdx); 301 } 302 303 void 304 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 305 assert(LUIdx <= LastLUIdx); 306 307 // Update RegUses. The data structure is not optimized for this purpose; 308 // we must iterate through it and update each of the bit vectors. 309 for (auto &Pair : RegUsesMap) { 310 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 311 if (LUIdx < UsedByIndices.size()) 312 UsedByIndices[LUIdx] = 313 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 314 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 315 } 316 } 317 318 bool 319 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 320 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 321 if (I == RegUsesMap.end()) 322 return false; 323 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 324 int i = UsedByIndices.find_first(); 325 if (i == -1) return false; 326 if ((size_t)i != LUIdx) return true; 327 return UsedByIndices.find_next(i) != -1; 328 } 329 330 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 331 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 332 assert(I != RegUsesMap.end() && "Unknown register!"); 333 return I->second.UsedByIndices; 334 } 335 336 void RegUseTracker::clear() { 337 RegUsesMap.clear(); 338 RegSequence.clear(); 339 } 340 341 namespace { 342 343 /// This class holds information that describes a formula for computing 344 /// satisfying a use. It may include broken-out immediates and scaled registers. 345 struct Formula { 346 /// Global base address used for complex addressing. 347 GlobalValue *BaseGV = nullptr; 348 349 /// Base offset for complex addressing. 350 int64_t BaseOffset = 0; 351 352 /// Whether any complex addressing has a base register. 353 bool HasBaseReg = false; 354 355 /// The scale of any complex addressing. 356 int64_t Scale = 0; 357 358 /// The list of "base" registers for this use. When this is non-empty. The 359 /// canonical representation of a formula is 360 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 361 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 362 /// 3. The reg containing recurrent expr related with currect loop in the 363 /// formula should be put in the ScaledReg. 364 /// #1 enforces that the scaled register is always used when at least two 365 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 366 /// #2 enforces that 1 * reg is reg. 367 /// #3 ensures invariant regs with respect to current loop can be combined 368 /// together in LSR codegen. 369 /// This invariant can be temporarily broken while building a formula. 370 /// However, every formula inserted into the LSRInstance must be in canonical 371 /// form. 372 SmallVector<const SCEV *, 4> BaseRegs; 373 374 /// The 'scaled' register for this use. This should be non-null when Scale is 375 /// not zero. 376 const SCEV *ScaledReg = nullptr; 377 378 /// An additional constant offset which added near the use. This requires a 379 /// temporary register, but the offset itself can live in an add immediate 380 /// field rather than a register. 381 int64_t UnfoldedOffset = 0; 382 383 Formula() = default; 384 385 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 386 387 bool isCanonical(const Loop &L) const; 388 389 void canonicalize(const Loop &L); 390 391 bool unscale(); 392 393 bool hasZeroEnd() const; 394 395 size_t getNumRegs() const; 396 Type *getType() const; 397 398 void deleteBaseReg(const SCEV *&S); 399 400 bool referencesReg(const SCEV *S) const; 401 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 402 const RegUseTracker &RegUses) const; 403 404 void print(raw_ostream &OS) const; 405 void dump() const; 406 }; 407 408 } // end anonymous namespace 409 410 /// Recursion helper for initialMatch. 411 static void DoInitialMatch(const SCEV *S, Loop *L, 412 SmallVectorImpl<const SCEV *> &Good, 413 SmallVectorImpl<const SCEV *> &Bad, 414 ScalarEvolution &SE) { 415 // Collect expressions which properly dominate the loop header. 416 if (SE.properlyDominates(S, L->getHeader())) { 417 Good.push_back(S); 418 return; 419 } 420 421 // Look at add operands. 422 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 423 for (const SCEV *S : Add->operands()) 424 DoInitialMatch(S, L, Good, Bad, SE); 425 return; 426 } 427 428 // Look at addrec operands. 429 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 430 if (!AR->getStart()->isZero() && AR->isAffine()) { 431 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 432 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 433 AR->getStepRecurrence(SE), 434 // FIXME: AR->getNoWrapFlags() 435 AR->getLoop(), SCEV::FlagAnyWrap), 436 L, Good, Bad, SE); 437 return; 438 } 439 440 // Handle a multiplication by -1 (negation) if it didn't fold. 441 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 442 if (Mul->getOperand(0)->isAllOnesValue()) { 443 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 444 const SCEV *NewMul = SE.getMulExpr(Ops); 445 446 SmallVector<const SCEV *, 4> MyGood; 447 SmallVector<const SCEV *, 4> MyBad; 448 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 449 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 450 SE.getEffectiveSCEVType(NewMul->getType()))); 451 for (const SCEV *S : MyGood) 452 Good.push_back(SE.getMulExpr(NegOne, S)); 453 for (const SCEV *S : MyBad) 454 Bad.push_back(SE.getMulExpr(NegOne, S)); 455 return; 456 } 457 458 // Ok, we can't do anything interesting. Just stuff the whole thing into a 459 // register and hope for the best. 460 Bad.push_back(S); 461 } 462 463 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 464 /// all loop-invariant and loop-computable values in a single base register. 465 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 466 SmallVector<const SCEV *, 4> Good; 467 SmallVector<const SCEV *, 4> Bad; 468 DoInitialMatch(S, L, Good, Bad, SE); 469 if (!Good.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Good); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 if (!Bad.empty()) { 476 const SCEV *Sum = SE.getAddExpr(Bad); 477 if (!Sum->isZero()) 478 BaseRegs.push_back(Sum); 479 HasBaseReg = true; 480 } 481 canonicalize(*L); 482 } 483 484 /// Check whether or not this formula satisfies the canonical 485 /// representation. 486 /// \see Formula::BaseRegs. 487 bool Formula::isCanonical(const Loop &L) const { 488 if (!ScaledReg) 489 return BaseRegs.size() <= 1; 490 491 if (Scale != 1) 492 return true; 493 494 if (Scale == 1 && BaseRegs.empty()) 495 return false; 496 497 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 498 if (SAR && SAR->getLoop() == &L) 499 return true; 500 501 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 502 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 503 // loop, we want to swap the reg in BaseRegs with ScaledReg. 504 auto I = find_if(BaseRegs, [&](const SCEV *S) { 505 return isa<const SCEVAddRecExpr>(S) && 506 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 507 }); 508 return I == BaseRegs.end(); 509 } 510 511 /// Helper method to morph a formula into its canonical representation. 512 /// \see Formula::BaseRegs. 513 /// Every formula having more than one base register, must use the ScaledReg 514 /// field. Otherwise, we would have to do special cases everywhere in LSR 515 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 516 /// On the other hand, 1*reg should be canonicalized into reg. 517 void Formula::canonicalize(const Loop &L) { 518 if (isCanonical(L)) 519 return; 520 521 if (BaseRegs.empty()) { 522 // No base reg? Use scale reg with scale = 1 as such. 523 assert(ScaledReg && "Expected 1*reg => reg"); 524 assert(Scale == 1 && "Expected 1*reg => reg"); 525 BaseRegs.push_back(ScaledReg); 526 Scale = 0; 527 ScaledReg = nullptr; 528 return; 529 } 530 531 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 532 if (!ScaledReg) { 533 ScaledReg = BaseRegs.pop_back_val(); 534 Scale = 1; 535 } 536 537 // If ScaledReg is an invariant with respect to L, find the reg from 538 // BaseRegs containing the recurrent expr related with Loop L. Swap the 539 // reg with ScaledReg. 540 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 541 if (!SAR || SAR->getLoop() != &L) { 542 auto I = find_if(BaseRegs, [&](const SCEV *S) { 543 return isa<const SCEVAddRecExpr>(S) && 544 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 545 }); 546 if (I != BaseRegs.end()) 547 std::swap(ScaledReg, *I); 548 } 549 assert(isCanonical(L) && "Failed to canonicalize?"); 550 } 551 552 /// Get rid of the scale in the formula. 553 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 554 /// \return true if it was possible to get rid of the scale, false otherwise. 555 /// \note After this operation the formula may not be in the canonical form. 556 bool Formula::unscale() { 557 if (Scale != 1) 558 return false; 559 Scale = 0; 560 BaseRegs.push_back(ScaledReg); 561 ScaledReg = nullptr; 562 return true; 563 } 564 565 bool Formula::hasZeroEnd() const { 566 if (UnfoldedOffset || BaseOffset) 567 return false; 568 if (BaseRegs.size() != 1 || ScaledReg) 569 return false; 570 return true; 571 } 572 573 /// Return the total number of register operands used by this formula. This does 574 /// not include register uses implied by non-constant addrec strides. 575 size_t Formula::getNumRegs() const { 576 return !!ScaledReg + BaseRegs.size(); 577 } 578 579 /// Return the type of this formula, if it has one, or null otherwise. This type 580 /// is meaningless except for the bit size. 581 Type *Formula::getType() const { 582 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 583 ScaledReg ? ScaledReg->getType() : 584 BaseGV ? BaseGV->getType() : 585 nullptr; 586 } 587 588 /// Delete the given base reg from the BaseRegs list. 589 void Formula::deleteBaseReg(const SCEV *&S) { 590 if (&S != &BaseRegs.back()) 591 std::swap(S, BaseRegs.back()); 592 BaseRegs.pop_back(); 593 } 594 595 /// Test if this formula references the given register. 596 bool Formula::referencesReg(const SCEV *S) const { 597 return S == ScaledReg || is_contained(BaseRegs, S); 598 } 599 600 /// Test whether this formula uses registers which are used by uses other than 601 /// the use with the given index. 602 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 603 const RegUseTracker &RegUses) const { 604 if (ScaledReg) 605 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 606 return true; 607 for (const SCEV *BaseReg : BaseRegs) 608 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 609 return true; 610 return false; 611 } 612 613 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 614 void Formula::print(raw_ostream &OS) const { 615 bool First = true; 616 if (BaseGV) { 617 if (!First) OS << " + "; else First = false; 618 BaseGV->printAsOperand(OS, /*PrintType=*/false); 619 } 620 if (BaseOffset != 0) { 621 if (!First) OS << " + "; else First = false; 622 OS << BaseOffset; 623 } 624 for (const SCEV *BaseReg : BaseRegs) { 625 if (!First) OS << " + "; else First = false; 626 OS << "reg(" << *BaseReg << ')'; 627 } 628 if (HasBaseReg && BaseRegs.empty()) { 629 if (!First) OS << " + "; else First = false; 630 OS << "**error: HasBaseReg**"; 631 } else if (!HasBaseReg && !BaseRegs.empty()) { 632 if (!First) OS << " + "; else First = false; 633 OS << "**error: !HasBaseReg**"; 634 } 635 if (Scale != 0) { 636 if (!First) OS << " + "; else First = false; 637 OS << Scale << "*reg("; 638 if (ScaledReg) 639 OS << *ScaledReg; 640 else 641 OS << "<unknown>"; 642 OS << ')'; 643 } 644 if (UnfoldedOffset != 0) { 645 if (!First) OS << " + "; 646 OS << "imm(" << UnfoldedOffset << ')'; 647 } 648 } 649 650 LLVM_DUMP_METHOD void Formula::dump() const { 651 print(errs()); errs() << '\n'; 652 } 653 #endif 654 655 /// Return true if the given addrec can be sign-extended without changing its 656 /// value. 657 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 658 Type *WideTy = 659 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 660 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 661 } 662 663 /// Return true if the given add can be sign-extended without changing its 664 /// value. 665 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 666 Type *WideTy = 667 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 668 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 669 } 670 671 /// Return true if the given mul can be sign-extended without changing its 672 /// value. 673 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 674 Type *WideTy = 675 IntegerType::get(SE.getContext(), 676 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 677 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 678 } 679 680 /// Return an expression for LHS /s RHS, if it can be determined and if the 681 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 682 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 683 /// the multiplication may overflow, which is useful when the result will be 684 /// used in a context where the most significant bits are ignored. 685 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 686 ScalarEvolution &SE, 687 bool IgnoreSignificantBits = false) { 688 // Handle the trivial case, which works for any SCEV type. 689 if (LHS == RHS) 690 return SE.getConstant(LHS->getType(), 1); 691 692 // Handle a few RHS special cases. 693 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 694 if (RC) { 695 const APInt &RA = RC->getAPInt(); 696 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 697 // some folding. 698 if (RA.isAllOnes()) { 699 if (LHS->getType()->isPointerTy()) 700 return nullptr; 701 return SE.getMulExpr(LHS, RC); 702 } 703 // Handle x /s 1 as x. 704 if (RA == 1) 705 return LHS; 706 } 707 708 // Check for a division of a constant by a constant. 709 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 710 if (!RC) 711 return nullptr; 712 const APInt &LA = C->getAPInt(); 713 const APInt &RA = RC->getAPInt(); 714 if (LA.srem(RA) != 0) 715 return nullptr; 716 return SE.getConstant(LA.sdiv(RA)); 717 } 718 719 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 720 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 721 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 722 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 723 IgnoreSignificantBits); 724 if (!Step) return nullptr; 725 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 726 IgnoreSignificantBits); 727 if (!Start) return nullptr; 728 // FlagNW is independent of the start value, step direction, and is 729 // preserved with smaller magnitude steps. 730 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 731 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 732 } 733 return nullptr; 734 } 735 736 // Distribute the sdiv over add operands, if the add doesn't overflow. 737 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 738 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 739 SmallVector<const SCEV *, 8> Ops; 740 for (const SCEV *S : Add->operands()) { 741 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 742 if (!Op) return nullptr; 743 Ops.push_back(Op); 744 } 745 return SE.getAddExpr(Ops); 746 } 747 return nullptr; 748 } 749 750 // Check for a multiply operand that we can pull RHS out of. 751 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 752 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 753 // Handle special case C1*X*Y /s C2*X*Y. 754 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 755 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 756 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 757 const SCEVConstant *RC = 758 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 759 if (LC && RC) { 760 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 761 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 762 if (LOps == ROps) 763 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 764 } 765 } 766 } 767 768 SmallVector<const SCEV *, 4> Ops; 769 bool Found = false; 770 for (const SCEV *S : Mul->operands()) { 771 if (!Found) 772 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 773 IgnoreSignificantBits)) { 774 S = Q; 775 Found = true; 776 } 777 Ops.push_back(S); 778 } 779 return Found ? SE.getMulExpr(Ops) : nullptr; 780 } 781 return nullptr; 782 } 783 784 // Otherwise we don't know. 785 return nullptr; 786 } 787 788 /// If S involves the addition of a constant integer value, return that integer 789 /// value, and mutate S to point to a new SCEV with that value excluded. 790 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 791 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 792 if (C->getAPInt().getMinSignedBits() <= 64) { 793 S = SE.getConstant(C->getType(), 0); 794 return C->getValue()->getSExtValue(); 795 } 796 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 797 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 798 int64_t Result = ExtractImmediate(NewOps.front(), SE); 799 if (Result != 0) 800 S = SE.getAddExpr(NewOps); 801 return Result; 802 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 803 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 804 int64_t Result = ExtractImmediate(NewOps.front(), SE); 805 if (Result != 0) 806 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 807 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 808 SCEV::FlagAnyWrap); 809 return Result; 810 } 811 return 0; 812 } 813 814 /// If S involves the addition of a GlobalValue address, return that symbol, and 815 /// mutate S to point to a new SCEV with that value excluded. 816 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 817 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 818 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 819 S = SE.getConstant(GV->getType(), 0); 820 return GV; 821 } 822 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 823 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 824 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 825 if (Result) 826 S = SE.getAddExpr(NewOps); 827 return Result; 828 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 829 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 830 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 831 if (Result) 832 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 833 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 834 SCEV::FlagAnyWrap); 835 return Result; 836 } 837 return nullptr; 838 } 839 840 /// Returns true if the specified instruction is using the specified value as an 841 /// address. 842 static bool isAddressUse(const TargetTransformInfo &TTI, 843 Instruction *Inst, Value *OperandVal) { 844 bool isAddress = isa<LoadInst>(Inst); 845 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 846 if (SI->getPointerOperand() == OperandVal) 847 isAddress = true; 848 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 849 // Addressing modes can also be folded into prefetches and a variety 850 // of intrinsics. 851 switch (II->getIntrinsicID()) { 852 case Intrinsic::memset: 853 case Intrinsic::prefetch: 854 case Intrinsic::masked_load: 855 if (II->getArgOperand(0) == OperandVal) 856 isAddress = true; 857 break; 858 case Intrinsic::masked_store: 859 if (II->getArgOperand(1) == OperandVal) 860 isAddress = true; 861 break; 862 case Intrinsic::memmove: 863 case Intrinsic::memcpy: 864 if (II->getArgOperand(0) == OperandVal || 865 II->getArgOperand(1) == OperandVal) 866 isAddress = true; 867 break; 868 default: { 869 MemIntrinsicInfo IntrInfo; 870 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 871 if (IntrInfo.PtrVal == OperandVal) 872 isAddress = true; 873 } 874 } 875 } 876 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 877 if (RMW->getPointerOperand() == OperandVal) 878 isAddress = true; 879 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 880 if (CmpX->getPointerOperand() == OperandVal) 881 isAddress = true; 882 } 883 return isAddress; 884 } 885 886 /// Return the type of the memory being accessed. 887 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 888 Instruction *Inst, Value *OperandVal) { 889 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 890 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 891 AccessTy.MemTy = SI->getOperand(0)->getType(); 892 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 893 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 894 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 895 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 896 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 897 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 898 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 899 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 900 switch (II->getIntrinsicID()) { 901 case Intrinsic::prefetch: 902 case Intrinsic::memset: 903 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 904 AccessTy.MemTy = OperandVal->getType(); 905 break; 906 case Intrinsic::memmove: 907 case Intrinsic::memcpy: 908 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 909 AccessTy.MemTy = OperandVal->getType(); 910 break; 911 case Intrinsic::masked_load: 912 AccessTy.AddrSpace = 913 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 914 break; 915 case Intrinsic::masked_store: 916 AccessTy.MemTy = II->getOperand(0)->getType(); 917 AccessTy.AddrSpace = 918 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 919 break; 920 default: { 921 MemIntrinsicInfo IntrInfo; 922 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 923 AccessTy.AddrSpace 924 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 925 } 926 927 break; 928 } 929 } 930 } 931 932 // All pointers have the same requirements, so canonicalize them to an 933 // arbitrary pointer type to minimize variation. 934 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 935 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 936 PTy->getAddressSpace()); 937 938 return AccessTy; 939 } 940 941 /// Return true if this AddRec is already a phi in its loop. 942 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 943 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 944 if (SE.isSCEVable(PN.getType()) && 945 (SE.getEffectiveSCEVType(PN.getType()) == 946 SE.getEffectiveSCEVType(AR->getType())) && 947 SE.getSCEV(&PN) == AR) 948 return true; 949 } 950 return false; 951 } 952 953 /// Check if expanding this expression is likely to incur significant cost. This 954 /// is tricky because SCEV doesn't track which expressions are actually computed 955 /// by the current IR. 956 /// 957 /// We currently allow expansion of IV increments that involve adds, 958 /// multiplication by constants, and AddRecs from existing phis. 959 /// 960 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 961 /// obvious multiple of the UDivExpr. 962 static bool isHighCostExpansion(const SCEV *S, 963 SmallPtrSetImpl<const SCEV*> &Processed, 964 ScalarEvolution &SE) { 965 // Zero/One operand expressions 966 switch (S->getSCEVType()) { 967 case scUnknown: 968 case scConstant: 969 return false; 970 case scTruncate: 971 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 972 Processed, SE); 973 case scZeroExtend: 974 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 975 Processed, SE); 976 case scSignExtend: 977 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 978 Processed, SE); 979 default: 980 break; 981 } 982 983 if (!Processed.insert(S).second) 984 return false; 985 986 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 987 for (const SCEV *S : Add->operands()) { 988 if (isHighCostExpansion(S, Processed, SE)) 989 return true; 990 } 991 return false; 992 } 993 994 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 995 if (Mul->getNumOperands() == 2) { 996 // Multiplication by a constant is ok 997 if (isa<SCEVConstant>(Mul->getOperand(0))) 998 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 999 1000 // If we have the value of one operand, check if an existing 1001 // multiplication already generates this expression. 1002 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1003 Value *UVal = U->getValue(); 1004 for (User *UR : UVal->users()) { 1005 // If U is a constant, it may be used by a ConstantExpr. 1006 Instruction *UI = dyn_cast<Instruction>(UR); 1007 if (UI && UI->getOpcode() == Instruction::Mul && 1008 SE.isSCEVable(UI->getType())) { 1009 return SE.getSCEV(UI) == Mul; 1010 } 1011 } 1012 } 1013 } 1014 } 1015 1016 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1017 if (isExistingPhi(AR, SE)) 1018 return false; 1019 } 1020 1021 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1022 return true; 1023 } 1024 1025 namespace { 1026 1027 class LSRUse; 1028 1029 } // end anonymous namespace 1030 1031 /// Check if the addressing mode defined by \p F is completely 1032 /// folded in \p LU at isel time. 1033 /// This includes address-mode folding and special icmp tricks. 1034 /// This function returns true if \p LU can accommodate what \p F 1035 /// defines and up to 1 base + 1 scaled + offset. 1036 /// In other words, if \p F has several base registers, this function may 1037 /// still return true. Therefore, users still need to account for 1038 /// additional base registers and/or unfolded offsets to derive an 1039 /// accurate cost model. 1040 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1041 const LSRUse &LU, const Formula &F); 1042 1043 // Get the cost of the scaling factor used in F for LU. 1044 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1045 const LSRUse &LU, const Formula &F, 1046 const Loop &L); 1047 1048 namespace { 1049 1050 /// This class is used to measure and compare candidate formulae. 1051 class Cost { 1052 const Loop *L = nullptr; 1053 ScalarEvolution *SE = nullptr; 1054 const TargetTransformInfo *TTI = nullptr; 1055 TargetTransformInfo::LSRCost C; 1056 TTI::AddressingModeKind AMK = TTI::AMK_None; 1057 1058 public: 1059 Cost() = delete; 1060 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1061 TTI::AddressingModeKind AMK) : 1062 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1063 C.Insns = 0; 1064 C.NumRegs = 0; 1065 C.AddRecCost = 0; 1066 C.NumIVMuls = 0; 1067 C.NumBaseAdds = 0; 1068 C.ImmCost = 0; 1069 C.SetupCost = 0; 1070 C.ScaleCost = 0; 1071 } 1072 1073 bool isLess(Cost &Other); 1074 1075 void Lose(); 1076 1077 #ifndef NDEBUG 1078 // Once any of the metrics loses, they must all remain losers. 1079 bool isValid() { 1080 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1081 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1082 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1083 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1084 } 1085 #endif 1086 1087 bool isLoser() { 1088 assert(isValid() && "invalid cost"); 1089 return C.NumRegs == ~0u; 1090 } 1091 1092 void RateFormula(const Formula &F, 1093 SmallPtrSetImpl<const SCEV *> &Regs, 1094 const DenseSet<const SCEV *> &VisitedRegs, 1095 const LSRUse &LU, 1096 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1097 1098 void print(raw_ostream &OS) const; 1099 void dump() const; 1100 1101 private: 1102 void RateRegister(const Formula &F, const SCEV *Reg, 1103 SmallPtrSetImpl<const SCEV *> &Regs); 1104 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1105 SmallPtrSetImpl<const SCEV *> &Regs, 1106 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1107 }; 1108 1109 /// An operand value in an instruction which is to be replaced with some 1110 /// equivalent, possibly strength-reduced, replacement. 1111 struct LSRFixup { 1112 /// The instruction which will be updated. 1113 Instruction *UserInst = nullptr; 1114 1115 /// The operand of the instruction which will be replaced. The operand may be 1116 /// used more than once; every instance will be replaced. 1117 Value *OperandValToReplace = nullptr; 1118 1119 /// If this user is to use the post-incremented value of an induction 1120 /// variable, this set is non-empty and holds the loops associated with the 1121 /// induction variable. 1122 PostIncLoopSet PostIncLoops; 1123 1124 /// A constant offset to be added to the LSRUse expression. This allows 1125 /// multiple fixups to share the same LSRUse with different offsets, for 1126 /// example in an unrolled loop. 1127 int64_t Offset = 0; 1128 1129 LSRFixup() = default; 1130 1131 bool isUseFullyOutsideLoop(const Loop *L) const; 1132 1133 void print(raw_ostream &OS) const; 1134 void dump() const; 1135 }; 1136 1137 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1138 /// SmallVectors of const SCEV*. 1139 struct UniquifierDenseMapInfo { 1140 static SmallVector<const SCEV *, 4> getEmptyKey() { 1141 SmallVector<const SCEV *, 4> V; 1142 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1143 return V; 1144 } 1145 1146 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1147 SmallVector<const SCEV *, 4> V; 1148 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1149 return V; 1150 } 1151 1152 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1153 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1154 } 1155 1156 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1157 const SmallVector<const SCEV *, 4> &RHS) { 1158 return LHS == RHS; 1159 } 1160 }; 1161 1162 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1163 /// as uses invented by LSR itself. It includes information about what kinds of 1164 /// things can be folded into the user, information about the user itself, and 1165 /// information about how the use may be satisfied. TODO: Represent multiple 1166 /// users of the same expression in common? 1167 class LSRUse { 1168 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1169 1170 public: 1171 /// An enum for a kind of use, indicating what types of scaled and immediate 1172 /// operands it might support. 1173 enum KindType { 1174 Basic, ///< A normal use, with no folding. 1175 Special, ///< A special case of basic, allowing -1 scales. 1176 Address, ///< An address use; folding according to TargetLowering 1177 ICmpZero ///< An equality icmp with both operands folded into one. 1178 // TODO: Add a generic icmp too? 1179 }; 1180 1181 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1182 1183 KindType Kind; 1184 MemAccessTy AccessTy; 1185 1186 /// The list of operands which are to be replaced. 1187 SmallVector<LSRFixup, 8> Fixups; 1188 1189 /// Keep track of the min and max offsets of the fixups. 1190 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1191 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1192 1193 /// This records whether all of the fixups using this LSRUse are outside of 1194 /// the loop, in which case some special-case heuristics may be used. 1195 bool AllFixupsOutsideLoop = true; 1196 1197 /// RigidFormula is set to true to guarantee that this use will be associated 1198 /// with a single formula--the one that initially matched. Some SCEV 1199 /// expressions cannot be expanded. This allows LSR to consider the registers 1200 /// used by those expressions without the need to expand them later after 1201 /// changing the formula. 1202 bool RigidFormula = false; 1203 1204 /// This records the widest use type for any fixup using this 1205 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1206 /// fixup widths to be equivalent, because the narrower one may be relying on 1207 /// the implicit truncation to truncate away bogus bits. 1208 Type *WidestFixupType = nullptr; 1209 1210 /// A list of ways to build a value that can satisfy this user. After the 1211 /// list is populated, one of these is selected heuristically and used to 1212 /// formulate a replacement for OperandValToReplace in UserInst. 1213 SmallVector<Formula, 12> Formulae; 1214 1215 /// The set of register candidates used by all formulae in this LSRUse. 1216 SmallPtrSet<const SCEV *, 4> Regs; 1217 1218 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1219 1220 LSRFixup &getNewFixup() { 1221 Fixups.push_back(LSRFixup()); 1222 return Fixups.back(); 1223 } 1224 1225 void pushFixup(LSRFixup &f) { 1226 Fixups.push_back(f); 1227 if (f.Offset > MaxOffset) 1228 MaxOffset = f.Offset; 1229 if (f.Offset < MinOffset) 1230 MinOffset = f.Offset; 1231 } 1232 1233 bool HasFormulaWithSameRegs(const Formula &F) const; 1234 float getNotSelectedProbability(const SCEV *Reg) const; 1235 bool InsertFormula(const Formula &F, const Loop &L); 1236 void DeleteFormula(Formula &F); 1237 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1238 1239 void print(raw_ostream &OS) const; 1240 void dump() const; 1241 }; 1242 1243 } // end anonymous namespace 1244 1245 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1246 LSRUse::KindType Kind, MemAccessTy AccessTy, 1247 GlobalValue *BaseGV, int64_t BaseOffset, 1248 bool HasBaseReg, int64_t Scale, 1249 Instruction *Fixup = nullptr); 1250 1251 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1252 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1253 return 1; 1254 if (Depth == 0) 1255 return 0; 1256 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1257 return getSetupCost(S->getStart(), Depth - 1); 1258 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1259 return getSetupCost(S->getOperand(), Depth - 1); 1260 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1261 return std::accumulate(S->op_begin(), S->op_end(), 0, 1262 [&](unsigned i, const SCEV *Reg) { 1263 return i + getSetupCost(Reg, Depth - 1); 1264 }); 1265 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1266 return getSetupCost(S->getLHS(), Depth - 1) + 1267 getSetupCost(S->getRHS(), Depth - 1); 1268 return 0; 1269 } 1270 1271 /// Tally up interesting quantities from the given register. 1272 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1273 SmallPtrSetImpl<const SCEV *> &Regs) { 1274 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1275 // If this is an addrec for another loop, it should be an invariant 1276 // with respect to L since L is the innermost loop (at least 1277 // for now LSR only handles innermost loops). 1278 if (AR->getLoop() != L) { 1279 // If the AddRec exists, consider it's register free and leave it alone. 1280 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1281 return; 1282 1283 // It is bad to allow LSR for current loop to add induction variables 1284 // for its sibling loops. 1285 if (!AR->getLoop()->contains(L)) { 1286 Lose(); 1287 return; 1288 } 1289 1290 // Otherwise, it will be an invariant with respect to Loop L. 1291 ++C.NumRegs; 1292 return; 1293 } 1294 1295 unsigned LoopCost = 1; 1296 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1297 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1298 1299 // If the step size matches the base offset, we could use pre-indexed 1300 // addressing. 1301 if (AMK == TTI::AMK_PreIndexed) { 1302 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1303 if (Step->getAPInt() == F.BaseOffset) 1304 LoopCost = 0; 1305 } else if (AMK == TTI::AMK_PostIndexed) { 1306 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1307 if (isa<SCEVConstant>(LoopStep)) { 1308 const SCEV *LoopStart = AR->getStart(); 1309 if (!isa<SCEVConstant>(LoopStart) && 1310 SE->isLoopInvariant(LoopStart, L)) 1311 LoopCost = 0; 1312 } 1313 } 1314 } 1315 C.AddRecCost += LoopCost; 1316 1317 // Add the step value register, if it needs one. 1318 // TODO: The non-affine case isn't precisely modeled here. 1319 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1320 if (!Regs.count(AR->getOperand(1))) { 1321 RateRegister(F, AR->getOperand(1), Regs); 1322 if (isLoser()) 1323 return; 1324 } 1325 } 1326 } 1327 ++C.NumRegs; 1328 1329 // Rough heuristic; favor registers which don't require extra setup 1330 // instructions in the preheader. 1331 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1332 // Ensure we don't, even with the recusion limit, produce invalid costs. 1333 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1334 1335 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1336 SE->hasComputableLoopEvolution(Reg, L); 1337 } 1338 1339 /// Record this register in the set. If we haven't seen it before, rate 1340 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1341 /// one of those regs an instant loser. 1342 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1343 SmallPtrSetImpl<const SCEV *> &Regs, 1344 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1345 if (LoserRegs && LoserRegs->count(Reg)) { 1346 Lose(); 1347 return; 1348 } 1349 if (Regs.insert(Reg).second) { 1350 RateRegister(F, Reg, Regs); 1351 if (LoserRegs && isLoser()) 1352 LoserRegs->insert(Reg); 1353 } 1354 } 1355 1356 void Cost::RateFormula(const Formula &F, 1357 SmallPtrSetImpl<const SCEV *> &Regs, 1358 const DenseSet<const SCEV *> &VisitedRegs, 1359 const LSRUse &LU, 1360 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1361 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1362 // Tally up the registers. 1363 unsigned PrevAddRecCost = C.AddRecCost; 1364 unsigned PrevNumRegs = C.NumRegs; 1365 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1366 if (const SCEV *ScaledReg = F.ScaledReg) { 1367 if (VisitedRegs.count(ScaledReg)) { 1368 Lose(); 1369 return; 1370 } 1371 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1372 if (isLoser()) 1373 return; 1374 } 1375 for (const SCEV *BaseReg : F.BaseRegs) { 1376 if (VisitedRegs.count(BaseReg)) { 1377 Lose(); 1378 return; 1379 } 1380 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1381 if (isLoser()) 1382 return; 1383 } 1384 1385 // Determine how many (unfolded) adds we'll need inside the loop. 1386 size_t NumBaseParts = F.getNumRegs(); 1387 if (NumBaseParts > 1) 1388 // Do not count the base and a possible second register if the target 1389 // allows to fold 2 registers. 1390 C.NumBaseAdds += 1391 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1392 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1393 1394 // Accumulate non-free scaling amounts. 1395 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1396 1397 // Tally up the non-zero immediates. 1398 for (const LSRFixup &Fixup : LU.Fixups) { 1399 int64_t O = Fixup.Offset; 1400 int64_t Offset = (uint64_t)O + F.BaseOffset; 1401 if (F.BaseGV) 1402 C.ImmCost += 64; // Handle symbolic values conservatively. 1403 // TODO: This should probably be the pointer size. 1404 else if (Offset != 0) 1405 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1406 1407 // Check with target if this offset with this instruction is 1408 // specifically not supported. 1409 if (LU.Kind == LSRUse::Address && Offset != 0 && 1410 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1411 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1412 C.NumBaseAdds++; 1413 } 1414 1415 // If we don't count instruction cost exit here. 1416 if (!InsnsCost) { 1417 assert(isValid() && "invalid cost"); 1418 return; 1419 } 1420 1421 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1422 // additional instruction (at least fill). 1423 // TODO: Need distinguish register class? 1424 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1425 TTI->getRegisterClassForType(false, F.getType())) - 1; 1426 if (C.NumRegs > TTIRegNum) { 1427 // Cost already exceeded TTIRegNum, then only newly added register can add 1428 // new instructions. 1429 if (PrevNumRegs > TTIRegNum) 1430 C.Insns += (C.NumRegs - PrevNumRegs); 1431 else 1432 C.Insns += (C.NumRegs - TTIRegNum); 1433 } 1434 1435 // If ICmpZero formula ends with not 0, it could not be replaced by 1436 // just add or sub. We'll need to compare final result of AddRec. 1437 // That means we'll need an additional instruction. But if the target can 1438 // macro-fuse a compare with a branch, don't count this extra instruction. 1439 // For -10 + {0, +, 1}: 1440 // i = i + 1; 1441 // cmp i, 10 1442 // 1443 // For {-10, +, 1}: 1444 // i = i + 1; 1445 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1446 !TTI->canMacroFuseCmp()) 1447 C.Insns++; 1448 // Each new AddRec adds 1 instruction to calculation. 1449 C.Insns += (C.AddRecCost - PrevAddRecCost); 1450 1451 // BaseAdds adds instructions for unfolded registers. 1452 if (LU.Kind != LSRUse::ICmpZero) 1453 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1454 assert(isValid() && "invalid cost"); 1455 } 1456 1457 /// Set this cost to a losing value. 1458 void Cost::Lose() { 1459 C.Insns = std::numeric_limits<unsigned>::max(); 1460 C.NumRegs = std::numeric_limits<unsigned>::max(); 1461 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1462 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1463 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1464 C.ImmCost = std::numeric_limits<unsigned>::max(); 1465 C.SetupCost = std::numeric_limits<unsigned>::max(); 1466 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1467 } 1468 1469 /// Choose the lower cost. 1470 bool Cost::isLess(Cost &Other) { 1471 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1472 C.Insns != Other.C.Insns) 1473 return C.Insns < Other.C.Insns; 1474 return TTI->isLSRCostLess(C, Other.C); 1475 } 1476 1477 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1478 void Cost::print(raw_ostream &OS) const { 1479 if (InsnsCost) 1480 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1481 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1482 if (C.AddRecCost != 0) 1483 OS << ", with addrec cost " << C.AddRecCost; 1484 if (C.NumIVMuls != 0) 1485 OS << ", plus " << C.NumIVMuls << " IV mul" 1486 << (C.NumIVMuls == 1 ? "" : "s"); 1487 if (C.NumBaseAdds != 0) 1488 OS << ", plus " << C.NumBaseAdds << " base add" 1489 << (C.NumBaseAdds == 1 ? "" : "s"); 1490 if (C.ScaleCost != 0) 1491 OS << ", plus " << C.ScaleCost << " scale cost"; 1492 if (C.ImmCost != 0) 1493 OS << ", plus " << C.ImmCost << " imm cost"; 1494 if (C.SetupCost != 0) 1495 OS << ", plus " << C.SetupCost << " setup cost"; 1496 } 1497 1498 LLVM_DUMP_METHOD void Cost::dump() const { 1499 print(errs()); errs() << '\n'; 1500 } 1501 #endif 1502 1503 /// Test whether this fixup always uses its value outside of the given loop. 1504 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1505 // PHI nodes use their value in their incoming blocks. 1506 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1507 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1508 if (PN->getIncomingValue(i) == OperandValToReplace && 1509 L->contains(PN->getIncomingBlock(i))) 1510 return false; 1511 return true; 1512 } 1513 1514 return !L->contains(UserInst); 1515 } 1516 1517 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1518 void LSRFixup::print(raw_ostream &OS) const { 1519 OS << "UserInst="; 1520 // Store is common and interesting enough to be worth special-casing. 1521 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1522 OS << "store "; 1523 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1524 } else if (UserInst->getType()->isVoidTy()) 1525 OS << UserInst->getOpcodeName(); 1526 else 1527 UserInst->printAsOperand(OS, /*PrintType=*/false); 1528 1529 OS << ", OperandValToReplace="; 1530 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1531 1532 for (const Loop *PIL : PostIncLoops) { 1533 OS << ", PostIncLoop="; 1534 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1535 } 1536 1537 if (Offset != 0) 1538 OS << ", Offset=" << Offset; 1539 } 1540 1541 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1542 print(errs()); errs() << '\n'; 1543 } 1544 #endif 1545 1546 /// Test whether this use as a formula which has the same registers as the given 1547 /// formula. 1548 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1549 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1550 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1551 // Unstable sort by host order ok, because this is only used for uniquifying. 1552 llvm::sort(Key); 1553 return Uniquifier.count(Key); 1554 } 1555 1556 /// The function returns a probability of selecting formula without Reg. 1557 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1558 unsigned FNum = 0; 1559 for (const Formula &F : Formulae) 1560 if (F.referencesReg(Reg)) 1561 FNum++; 1562 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1563 } 1564 1565 /// If the given formula has not yet been inserted, add it to the list, and 1566 /// return true. Return false otherwise. The formula must be in canonical form. 1567 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1568 assert(F.isCanonical(L) && "Invalid canonical representation"); 1569 1570 if (!Formulae.empty() && RigidFormula) 1571 return false; 1572 1573 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1574 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1575 // Unstable sort by host order ok, because this is only used for uniquifying. 1576 llvm::sort(Key); 1577 1578 if (!Uniquifier.insert(Key).second) 1579 return false; 1580 1581 // Using a register to hold the value of 0 is not profitable. 1582 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1583 "Zero allocated in a scaled register!"); 1584 #ifndef NDEBUG 1585 for (const SCEV *BaseReg : F.BaseRegs) 1586 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1587 #endif 1588 1589 // Add the formula to the list. 1590 Formulae.push_back(F); 1591 1592 // Record registers now being used by this use. 1593 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1594 if (F.ScaledReg) 1595 Regs.insert(F.ScaledReg); 1596 1597 return true; 1598 } 1599 1600 /// Remove the given formula from this use's list. 1601 void LSRUse::DeleteFormula(Formula &F) { 1602 if (&F != &Formulae.back()) 1603 std::swap(F, Formulae.back()); 1604 Formulae.pop_back(); 1605 } 1606 1607 /// Recompute the Regs field, and update RegUses. 1608 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1609 // Now that we've filtered out some formulae, recompute the Regs set. 1610 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1611 Regs.clear(); 1612 for (const Formula &F : Formulae) { 1613 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1614 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1615 } 1616 1617 // Update the RegTracker. 1618 for (const SCEV *S : OldRegs) 1619 if (!Regs.count(S)) 1620 RegUses.dropRegister(S, LUIdx); 1621 } 1622 1623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1624 void LSRUse::print(raw_ostream &OS) const { 1625 OS << "LSR Use: Kind="; 1626 switch (Kind) { 1627 case Basic: OS << "Basic"; break; 1628 case Special: OS << "Special"; break; 1629 case ICmpZero: OS << "ICmpZero"; break; 1630 case Address: 1631 OS << "Address of "; 1632 if (AccessTy.MemTy->isPointerTy()) 1633 OS << "pointer"; // the full pointer type could be really verbose 1634 else { 1635 OS << *AccessTy.MemTy; 1636 } 1637 1638 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1639 } 1640 1641 OS << ", Offsets={"; 1642 bool NeedComma = false; 1643 for (const LSRFixup &Fixup : Fixups) { 1644 if (NeedComma) OS << ','; 1645 OS << Fixup.Offset; 1646 NeedComma = true; 1647 } 1648 OS << '}'; 1649 1650 if (AllFixupsOutsideLoop) 1651 OS << ", all-fixups-outside-loop"; 1652 1653 if (WidestFixupType) 1654 OS << ", widest fixup type: " << *WidestFixupType; 1655 } 1656 1657 LLVM_DUMP_METHOD void LSRUse::dump() const { 1658 print(errs()); errs() << '\n'; 1659 } 1660 #endif 1661 1662 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1663 LSRUse::KindType Kind, MemAccessTy AccessTy, 1664 GlobalValue *BaseGV, int64_t BaseOffset, 1665 bool HasBaseReg, int64_t Scale, 1666 Instruction *Fixup/*= nullptr*/) { 1667 switch (Kind) { 1668 case LSRUse::Address: 1669 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1670 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1671 1672 case LSRUse::ICmpZero: 1673 // There's not even a target hook for querying whether it would be legal to 1674 // fold a GV into an ICmp. 1675 if (BaseGV) 1676 return false; 1677 1678 // ICmp only has two operands; don't allow more than two non-trivial parts. 1679 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1680 return false; 1681 1682 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1683 // putting the scaled register in the other operand of the icmp. 1684 if (Scale != 0 && Scale != -1) 1685 return false; 1686 1687 // If we have low-level target information, ask the target if it can fold an 1688 // integer immediate on an icmp. 1689 if (BaseOffset != 0) { 1690 // We have one of: 1691 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1692 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1693 // Offs is the ICmp immediate. 1694 if (Scale == 0) 1695 // The cast does the right thing with 1696 // std::numeric_limits<int64_t>::min(). 1697 BaseOffset = -(uint64_t)BaseOffset; 1698 return TTI.isLegalICmpImmediate(BaseOffset); 1699 } 1700 1701 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1702 return true; 1703 1704 case LSRUse::Basic: 1705 // Only handle single-register values. 1706 return !BaseGV && Scale == 0 && BaseOffset == 0; 1707 1708 case LSRUse::Special: 1709 // Special case Basic to handle -1 scales. 1710 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1711 } 1712 1713 llvm_unreachable("Invalid LSRUse Kind!"); 1714 } 1715 1716 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1717 int64_t MinOffset, int64_t MaxOffset, 1718 LSRUse::KindType Kind, MemAccessTy AccessTy, 1719 GlobalValue *BaseGV, int64_t BaseOffset, 1720 bool HasBaseReg, int64_t Scale) { 1721 // Check for overflow. 1722 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1723 (MinOffset > 0)) 1724 return false; 1725 MinOffset = (uint64_t)BaseOffset + MinOffset; 1726 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1727 (MaxOffset > 0)) 1728 return false; 1729 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1730 1731 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1732 HasBaseReg, Scale) && 1733 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1734 HasBaseReg, Scale); 1735 } 1736 1737 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1738 int64_t MinOffset, int64_t MaxOffset, 1739 LSRUse::KindType Kind, MemAccessTy AccessTy, 1740 const Formula &F, const Loop &L) { 1741 // For the purpose of isAMCompletelyFolded either having a canonical formula 1742 // or a scale not equal to zero is correct. 1743 // Problems may arise from non canonical formulae having a scale == 0. 1744 // Strictly speaking it would best to just rely on canonical formulae. 1745 // However, when we generate the scaled formulae, we first check that the 1746 // scaling factor is profitable before computing the actual ScaledReg for 1747 // compile time sake. 1748 assert((F.isCanonical(L) || F.Scale != 0)); 1749 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1750 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1751 } 1752 1753 /// Test whether we know how to expand the current formula. 1754 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1755 int64_t MaxOffset, LSRUse::KindType Kind, 1756 MemAccessTy AccessTy, GlobalValue *BaseGV, 1757 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1758 // We know how to expand completely foldable formulae. 1759 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1760 BaseOffset, HasBaseReg, Scale) || 1761 // Or formulae that use a base register produced by a sum of base 1762 // registers. 1763 (Scale == 1 && 1764 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1765 BaseGV, BaseOffset, true, 0)); 1766 } 1767 1768 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1769 int64_t MaxOffset, LSRUse::KindType Kind, 1770 MemAccessTy AccessTy, const Formula &F) { 1771 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1772 F.BaseOffset, F.HasBaseReg, F.Scale); 1773 } 1774 1775 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1776 const LSRUse &LU, const Formula &F) { 1777 // Target may want to look at the user instructions. 1778 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1779 for (const LSRFixup &Fixup : LU.Fixups) 1780 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1781 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1782 F.Scale, Fixup.UserInst)) 1783 return false; 1784 return true; 1785 } 1786 1787 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1788 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1789 F.Scale); 1790 } 1791 1792 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1793 const LSRUse &LU, const Formula &F, 1794 const Loop &L) { 1795 if (!F.Scale) 1796 return 0; 1797 1798 // If the use is not completely folded in that instruction, we will have to 1799 // pay an extra cost only for scale != 1. 1800 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1801 LU.AccessTy, F, L)) 1802 return F.Scale != 1; 1803 1804 switch (LU.Kind) { 1805 case LSRUse::Address: { 1806 // Check the scaling factor cost with both the min and max offsets. 1807 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1808 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1809 F.Scale, LU.AccessTy.AddrSpace); 1810 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1811 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1812 F.Scale, LU.AccessTy.AddrSpace); 1813 1814 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1815 "Legal addressing mode has an illegal cost!"); 1816 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1817 } 1818 case LSRUse::ICmpZero: 1819 case LSRUse::Basic: 1820 case LSRUse::Special: 1821 // The use is completely folded, i.e., everything is folded into the 1822 // instruction. 1823 return 0; 1824 } 1825 1826 llvm_unreachable("Invalid LSRUse Kind!"); 1827 } 1828 1829 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1830 LSRUse::KindType Kind, MemAccessTy AccessTy, 1831 GlobalValue *BaseGV, int64_t BaseOffset, 1832 bool HasBaseReg) { 1833 // Fast-path: zero is always foldable. 1834 if (BaseOffset == 0 && !BaseGV) return true; 1835 1836 // Conservatively, create an address with an immediate and a 1837 // base and a scale. 1838 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1839 1840 // Canonicalize a scale of 1 to a base register if the formula doesn't 1841 // already have a base register. 1842 if (!HasBaseReg && Scale == 1) { 1843 Scale = 0; 1844 HasBaseReg = true; 1845 } 1846 1847 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1848 HasBaseReg, Scale); 1849 } 1850 1851 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1852 ScalarEvolution &SE, int64_t MinOffset, 1853 int64_t MaxOffset, LSRUse::KindType Kind, 1854 MemAccessTy AccessTy, const SCEV *S, 1855 bool HasBaseReg) { 1856 // Fast-path: zero is always foldable. 1857 if (S->isZero()) return true; 1858 1859 // Conservatively, create an address with an immediate and a 1860 // base and a scale. 1861 int64_t BaseOffset = ExtractImmediate(S, SE); 1862 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1863 1864 // If there's anything else involved, it's not foldable. 1865 if (!S->isZero()) return false; 1866 1867 // Fast-path: zero is always foldable. 1868 if (BaseOffset == 0 && !BaseGV) return true; 1869 1870 // Conservatively, create an address with an immediate and a 1871 // base and a scale. 1872 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1873 1874 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1875 BaseOffset, HasBaseReg, Scale); 1876 } 1877 1878 namespace { 1879 1880 /// An individual increment in a Chain of IV increments. Relate an IV user to 1881 /// an expression that computes the IV it uses from the IV used by the previous 1882 /// link in the Chain. 1883 /// 1884 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1885 /// original IVOperand. The head of the chain's IVOperand is only valid during 1886 /// chain collection, before LSR replaces IV users. During chain generation, 1887 /// IncExpr can be used to find the new IVOperand that computes the same 1888 /// expression. 1889 struct IVInc { 1890 Instruction *UserInst; 1891 Value* IVOperand; 1892 const SCEV *IncExpr; 1893 1894 IVInc(Instruction *U, Value *O, const SCEV *E) 1895 : UserInst(U), IVOperand(O), IncExpr(E) {} 1896 }; 1897 1898 // The list of IV increments in program order. We typically add the head of a 1899 // chain without finding subsequent links. 1900 struct IVChain { 1901 SmallVector<IVInc, 1> Incs; 1902 const SCEV *ExprBase = nullptr; 1903 1904 IVChain() = default; 1905 IVChain(const IVInc &Head, const SCEV *Base) 1906 : Incs(1, Head), ExprBase(Base) {} 1907 1908 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1909 1910 // Return the first increment in the chain. 1911 const_iterator begin() const { 1912 assert(!Incs.empty()); 1913 return std::next(Incs.begin()); 1914 } 1915 const_iterator end() const { 1916 return Incs.end(); 1917 } 1918 1919 // Returns true if this chain contains any increments. 1920 bool hasIncs() const { return Incs.size() >= 2; } 1921 1922 // Add an IVInc to the end of this chain. 1923 void add(const IVInc &X) { Incs.push_back(X); } 1924 1925 // Returns the last UserInst in the chain. 1926 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1927 1928 // Returns true if IncExpr can be profitably added to this chain. 1929 bool isProfitableIncrement(const SCEV *OperExpr, 1930 const SCEV *IncExpr, 1931 ScalarEvolution&); 1932 }; 1933 1934 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1935 /// between FarUsers that definitely cross IV increments and NearUsers that may 1936 /// be used between IV increments. 1937 struct ChainUsers { 1938 SmallPtrSet<Instruction*, 4> FarUsers; 1939 SmallPtrSet<Instruction*, 4> NearUsers; 1940 }; 1941 1942 /// This class holds state for the main loop strength reduction logic. 1943 class LSRInstance { 1944 IVUsers &IU; 1945 ScalarEvolution &SE; 1946 DominatorTree &DT; 1947 LoopInfo &LI; 1948 AssumptionCache &AC; 1949 TargetLibraryInfo &TLI; 1950 const TargetTransformInfo &TTI; 1951 Loop *const L; 1952 MemorySSAUpdater *MSSAU; 1953 TTI::AddressingModeKind AMK; 1954 bool Changed = false; 1955 1956 /// This is the insert position that the current loop's induction variable 1957 /// increment should be placed. In simple loops, this is the latch block's 1958 /// terminator. But in more complicated cases, this is a position which will 1959 /// dominate all the in-loop post-increment users. 1960 Instruction *IVIncInsertPos = nullptr; 1961 1962 /// Interesting factors between use strides. 1963 /// 1964 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1965 /// default, a SmallDenseSet, because we need to use the full range of 1966 /// int64_ts, and there's currently no good way of doing that with 1967 /// SmallDenseSet. 1968 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1969 1970 /// Interesting use types, to facilitate truncation reuse. 1971 SmallSetVector<Type *, 4> Types; 1972 1973 /// The list of interesting uses. 1974 mutable SmallVector<LSRUse, 16> Uses; 1975 1976 /// Track which uses use which register candidates. 1977 RegUseTracker RegUses; 1978 1979 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1980 // have more than a few IV increment chains in a loop. Missing a Chain falls 1981 // back to normal LSR behavior for those uses. 1982 static const unsigned MaxChains = 8; 1983 1984 /// IV users can form a chain of IV increments. 1985 SmallVector<IVChain, MaxChains> IVChainVec; 1986 1987 /// IV users that belong to profitable IVChains. 1988 SmallPtrSet<Use*, MaxChains> IVIncSet; 1989 1990 /// Induction variables that were generated and inserted by the SCEV Expander. 1991 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 1992 1993 void OptimizeShadowIV(); 1994 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1995 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1996 void OptimizeLoopTermCond(); 1997 1998 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1999 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2000 void FinalizeChain(IVChain &Chain); 2001 void CollectChains(); 2002 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2003 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2004 2005 void CollectInterestingTypesAndFactors(); 2006 void CollectFixupsAndInitialFormulae(); 2007 2008 // Support for sharing of LSRUses between LSRFixups. 2009 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2010 UseMapTy UseMap; 2011 2012 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2013 LSRUse::KindType Kind, MemAccessTy AccessTy); 2014 2015 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2016 MemAccessTy AccessTy); 2017 2018 void DeleteUse(LSRUse &LU, size_t LUIdx); 2019 2020 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2021 2022 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2023 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2024 void CountRegisters(const Formula &F, size_t LUIdx); 2025 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2026 2027 void CollectLoopInvariantFixupsAndFormulae(); 2028 2029 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2030 unsigned Depth = 0); 2031 2032 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2033 const Formula &Base, unsigned Depth, 2034 size_t Idx, bool IsScaledReg = false); 2035 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2036 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2037 const Formula &Base, size_t Idx, 2038 bool IsScaledReg = false); 2039 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2040 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2041 const Formula &Base, 2042 const SmallVectorImpl<int64_t> &Worklist, 2043 size_t Idx, bool IsScaledReg = false); 2044 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2045 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2046 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2047 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2048 void GenerateCrossUseConstantOffsets(); 2049 void GenerateAllReuseFormulae(); 2050 2051 void FilterOutUndesirableDedicatedRegisters(); 2052 2053 size_t EstimateSearchSpaceComplexity() const; 2054 void NarrowSearchSpaceByDetectingSupersets(); 2055 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2056 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2057 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2058 void NarrowSearchSpaceByFilterPostInc(); 2059 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2060 void NarrowSearchSpaceByPickingWinnerRegs(); 2061 void NarrowSearchSpaceUsingHeuristics(); 2062 2063 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2064 Cost &SolutionCost, 2065 SmallVectorImpl<const Formula *> &Workspace, 2066 const Cost &CurCost, 2067 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2068 DenseSet<const SCEV *> &VisitedRegs) const; 2069 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2070 2071 BasicBlock::iterator 2072 HoistInsertPosition(BasicBlock::iterator IP, 2073 const SmallVectorImpl<Instruction *> &Inputs) const; 2074 BasicBlock::iterator 2075 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2076 const LSRFixup &LF, 2077 const LSRUse &LU, 2078 SCEVExpander &Rewriter) const; 2079 2080 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2081 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2082 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2083 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2084 const Formula &F, SCEVExpander &Rewriter, 2085 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2086 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2087 SCEVExpander &Rewriter, 2088 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2089 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2090 2091 public: 2092 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2093 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2094 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2095 2096 bool getChanged() const { return Changed; } 2097 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2098 return ScalarEvolutionIVs; 2099 } 2100 2101 void print_factors_and_types(raw_ostream &OS) const; 2102 void print_fixups(raw_ostream &OS) const; 2103 void print_uses(raw_ostream &OS) const; 2104 void print(raw_ostream &OS) const; 2105 void dump() const; 2106 }; 2107 2108 } // end anonymous namespace 2109 2110 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2111 /// the cast operation. 2112 void LSRInstance::OptimizeShadowIV() { 2113 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2114 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2115 return; 2116 2117 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2118 UI != E; /* empty */) { 2119 IVUsers::const_iterator CandidateUI = UI; 2120 ++UI; 2121 Instruction *ShadowUse = CandidateUI->getUser(); 2122 Type *DestTy = nullptr; 2123 bool IsSigned = false; 2124 2125 /* If shadow use is a int->float cast then insert a second IV 2126 to eliminate this cast. 2127 2128 for (unsigned i = 0; i < n; ++i) 2129 foo((double)i); 2130 2131 is transformed into 2132 2133 double d = 0.0; 2134 for (unsigned i = 0; i < n; ++i, ++d) 2135 foo(d); 2136 */ 2137 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2138 IsSigned = false; 2139 DestTy = UCast->getDestTy(); 2140 } 2141 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2142 IsSigned = true; 2143 DestTy = SCast->getDestTy(); 2144 } 2145 if (!DestTy) continue; 2146 2147 // If target does not support DestTy natively then do not apply 2148 // this transformation. 2149 if (!TTI.isTypeLegal(DestTy)) continue; 2150 2151 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2152 if (!PH) continue; 2153 if (PH->getNumIncomingValues() != 2) continue; 2154 2155 // If the calculation in integers overflows, the result in FP type will 2156 // differ. So we only can do this transformation if we are guaranteed to not 2157 // deal with overflowing values 2158 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2159 if (!AR) continue; 2160 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2161 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2162 2163 Type *SrcTy = PH->getType(); 2164 int Mantissa = DestTy->getFPMantissaWidth(); 2165 if (Mantissa == -1) continue; 2166 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2167 continue; 2168 2169 unsigned Entry, Latch; 2170 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2171 Entry = 0; 2172 Latch = 1; 2173 } else { 2174 Entry = 1; 2175 Latch = 0; 2176 } 2177 2178 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2179 if (!Init) continue; 2180 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2181 (double)Init->getSExtValue() : 2182 (double)Init->getZExtValue()); 2183 2184 BinaryOperator *Incr = 2185 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2186 if (!Incr) continue; 2187 if (Incr->getOpcode() != Instruction::Add 2188 && Incr->getOpcode() != Instruction::Sub) 2189 continue; 2190 2191 /* Initialize new IV, double d = 0.0 in above example. */ 2192 ConstantInt *C = nullptr; 2193 if (Incr->getOperand(0) == PH) 2194 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2195 else if (Incr->getOperand(1) == PH) 2196 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2197 else 2198 continue; 2199 2200 if (!C) continue; 2201 2202 // Ignore negative constants, as the code below doesn't handle them 2203 // correctly. TODO: Remove this restriction. 2204 if (!C->getValue().isStrictlyPositive()) continue; 2205 2206 /* Add new PHINode. */ 2207 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2208 2209 /* create new increment. '++d' in above example. */ 2210 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2211 BinaryOperator *NewIncr = 2212 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2213 Instruction::FAdd : Instruction::FSub, 2214 NewPH, CFP, "IV.S.next.", Incr); 2215 2216 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2217 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2218 2219 /* Remove cast operation */ 2220 ShadowUse->replaceAllUsesWith(NewPH); 2221 ShadowUse->eraseFromParent(); 2222 Changed = true; 2223 break; 2224 } 2225 } 2226 2227 /// If Cond has an operand that is an expression of an IV, set the IV user and 2228 /// stride information and return true, otherwise return false. 2229 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2230 for (IVStrideUse &U : IU) 2231 if (U.getUser() == Cond) { 2232 // NOTE: we could handle setcc instructions with multiple uses here, but 2233 // InstCombine does it as well for simple uses, it's not clear that it 2234 // occurs enough in real life to handle. 2235 CondUse = &U; 2236 return true; 2237 } 2238 return false; 2239 } 2240 2241 /// Rewrite the loop's terminating condition if it uses a max computation. 2242 /// 2243 /// This is a narrow solution to a specific, but acute, problem. For loops 2244 /// like this: 2245 /// 2246 /// i = 0; 2247 /// do { 2248 /// p[i] = 0.0; 2249 /// } while (++i < n); 2250 /// 2251 /// the trip count isn't just 'n', because 'n' might not be positive. And 2252 /// unfortunately this can come up even for loops where the user didn't use 2253 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2254 /// will commonly be lowered like this: 2255 /// 2256 /// if (n > 0) { 2257 /// i = 0; 2258 /// do { 2259 /// p[i] = 0.0; 2260 /// } while (++i < n); 2261 /// } 2262 /// 2263 /// and then it's possible for subsequent optimization to obscure the if 2264 /// test in such a way that indvars can't find it. 2265 /// 2266 /// When indvars can't find the if test in loops like this, it creates a 2267 /// max expression, which allows it to give the loop a canonical 2268 /// induction variable: 2269 /// 2270 /// i = 0; 2271 /// max = n < 1 ? 1 : n; 2272 /// do { 2273 /// p[i] = 0.0; 2274 /// } while (++i != max); 2275 /// 2276 /// Canonical induction variables are necessary because the loop passes 2277 /// are designed around them. The most obvious example of this is the 2278 /// LoopInfo analysis, which doesn't remember trip count values. It 2279 /// expects to be able to rediscover the trip count each time it is 2280 /// needed, and it does this using a simple analysis that only succeeds if 2281 /// the loop has a canonical induction variable. 2282 /// 2283 /// However, when it comes time to generate code, the maximum operation 2284 /// can be quite costly, especially if it's inside of an outer loop. 2285 /// 2286 /// This function solves this problem by detecting this type of loop and 2287 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2288 /// the instructions for the maximum computation. 2289 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2290 // Check that the loop matches the pattern we're looking for. 2291 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2292 Cond->getPredicate() != CmpInst::ICMP_NE) 2293 return Cond; 2294 2295 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2296 if (!Sel || !Sel->hasOneUse()) return Cond; 2297 2298 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2299 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2300 return Cond; 2301 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2302 2303 // Add one to the backedge-taken count to get the trip count. 2304 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2305 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2306 2307 // Check for a max calculation that matches the pattern. There's no check 2308 // for ICMP_ULE here because the comparison would be with zero, which 2309 // isn't interesting. 2310 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2311 const SCEVNAryExpr *Max = nullptr; 2312 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2313 Pred = ICmpInst::ICMP_SLE; 2314 Max = S; 2315 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2316 Pred = ICmpInst::ICMP_SLT; 2317 Max = S; 2318 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2319 Pred = ICmpInst::ICMP_ULT; 2320 Max = U; 2321 } else { 2322 // No match; bail. 2323 return Cond; 2324 } 2325 2326 // To handle a max with more than two operands, this optimization would 2327 // require additional checking and setup. 2328 if (Max->getNumOperands() != 2) 2329 return Cond; 2330 2331 const SCEV *MaxLHS = Max->getOperand(0); 2332 const SCEV *MaxRHS = Max->getOperand(1); 2333 2334 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2335 // for a comparison with 1. For <= and >=, a comparison with zero. 2336 if (!MaxLHS || 2337 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2338 return Cond; 2339 2340 // Check the relevant induction variable for conformance to 2341 // the pattern. 2342 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2343 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2344 if (!AR || !AR->isAffine() || 2345 AR->getStart() != One || 2346 AR->getStepRecurrence(SE) != One) 2347 return Cond; 2348 2349 assert(AR->getLoop() == L && 2350 "Loop condition operand is an addrec in a different loop!"); 2351 2352 // Check the right operand of the select, and remember it, as it will 2353 // be used in the new comparison instruction. 2354 Value *NewRHS = nullptr; 2355 if (ICmpInst::isTrueWhenEqual(Pred)) { 2356 // Look for n+1, and grab n. 2357 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2358 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2359 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2360 NewRHS = BO->getOperand(0); 2361 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2362 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2363 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2364 NewRHS = BO->getOperand(0); 2365 if (!NewRHS) 2366 return Cond; 2367 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2368 NewRHS = Sel->getOperand(1); 2369 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2370 NewRHS = Sel->getOperand(2); 2371 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2372 NewRHS = SU->getValue(); 2373 else 2374 // Max doesn't match expected pattern. 2375 return Cond; 2376 2377 // Determine the new comparison opcode. It may be signed or unsigned, 2378 // and the original comparison may be either equality or inequality. 2379 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2380 Pred = CmpInst::getInversePredicate(Pred); 2381 2382 // Ok, everything looks ok to change the condition into an SLT or SGE and 2383 // delete the max calculation. 2384 ICmpInst *NewCond = 2385 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2386 2387 // Delete the max calculation instructions. 2388 NewCond->setDebugLoc(Cond->getDebugLoc()); 2389 Cond->replaceAllUsesWith(NewCond); 2390 CondUse->setUser(NewCond); 2391 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2392 Cond->eraseFromParent(); 2393 Sel->eraseFromParent(); 2394 if (Cmp->use_empty()) 2395 Cmp->eraseFromParent(); 2396 return NewCond; 2397 } 2398 2399 /// Change loop terminating condition to use the postinc iv when possible. 2400 void 2401 LSRInstance::OptimizeLoopTermCond() { 2402 SmallPtrSet<Instruction *, 4> PostIncs; 2403 2404 // We need a different set of heuristics for rotated and non-rotated loops. 2405 // If a loop is rotated then the latch is also the backedge, so inserting 2406 // post-inc expressions just before the latch is ideal. To reduce live ranges 2407 // it also makes sense to rewrite terminating conditions to use post-inc 2408 // expressions. 2409 // 2410 // If the loop is not rotated then the latch is not a backedge; the latch 2411 // check is done in the loop head. Adding post-inc expressions before the 2412 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2413 // in the loop body. In this case we do *not* want to use post-inc expressions 2414 // in the latch check, and we want to insert post-inc expressions before 2415 // the backedge. 2416 BasicBlock *LatchBlock = L->getLoopLatch(); 2417 SmallVector<BasicBlock*, 8> ExitingBlocks; 2418 L->getExitingBlocks(ExitingBlocks); 2419 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2420 return LatchBlock != BB; 2421 })) { 2422 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2423 IVIncInsertPos = LatchBlock->getTerminator(); 2424 return; 2425 } 2426 2427 // Otherwise treat this as a rotated loop. 2428 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2429 // Get the terminating condition for the loop if possible. If we 2430 // can, we want to change it to use a post-incremented version of its 2431 // induction variable, to allow coalescing the live ranges for the IV into 2432 // one register value. 2433 2434 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2435 if (!TermBr) 2436 continue; 2437 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2438 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2439 continue; 2440 2441 // Search IVUsesByStride to find Cond's IVUse if there is one. 2442 IVStrideUse *CondUse = nullptr; 2443 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2444 if (!FindIVUserForCond(Cond, CondUse)) 2445 continue; 2446 2447 // If the trip count is computed in terms of a max (due to ScalarEvolution 2448 // being unable to find a sufficient guard, for example), change the loop 2449 // comparison to use SLT or ULT instead of NE. 2450 // One consequence of doing this now is that it disrupts the count-down 2451 // optimization. That's not always a bad thing though, because in such 2452 // cases it may still be worthwhile to avoid a max. 2453 Cond = OptimizeMax(Cond, CondUse); 2454 2455 // If this exiting block dominates the latch block, it may also use 2456 // the post-inc value if it won't be shared with other uses. 2457 // Check for dominance. 2458 if (!DT.dominates(ExitingBlock, LatchBlock)) 2459 continue; 2460 2461 // Conservatively avoid trying to use the post-inc value in non-latch 2462 // exits if there may be pre-inc users in intervening blocks. 2463 if (LatchBlock != ExitingBlock) 2464 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2465 // Test if the use is reachable from the exiting block. This dominator 2466 // query is a conservative approximation of reachability. 2467 if (&*UI != CondUse && 2468 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2469 // Conservatively assume there may be reuse if the quotient of their 2470 // strides could be a legal scale. 2471 const SCEV *A = IU.getStride(*CondUse, L); 2472 const SCEV *B = IU.getStride(*UI, L); 2473 if (!A || !B) continue; 2474 if (SE.getTypeSizeInBits(A->getType()) != 2475 SE.getTypeSizeInBits(B->getType())) { 2476 if (SE.getTypeSizeInBits(A->getType()) > 2477 SE.getTypeSizeInBits(B->getType())) 2478 B = SE.getSignExtendExpr(B, A->getType()); 2479 else 2480 A = SE.getSignExtendExpr(A, B->getType()); 2481 } 2482 if (const SCEVConstant *D = 2483 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2484 const ConstantInt *C = D->getValue(); 2485 // Stride of one or negative one can have reuse with non-addresses. 2486 if (C->isOne() || C->isMinusOne()) 2487 goto decline_post_inc; 2488 // Avoid weird situations. 2489 if (C->getValue().getMinSignedBits() >= 64 || 2490 C->getValue().isMinSignedValue()) 2491 goto decline_post_inc; 2492 // Check for possible scaled-address reuse. 2493 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2494 MemAccessTy AccessTy = getAccessType( 2495 TTI, UI->getUser(), UI->getOperandValToReplace()); 2496 int64_t Scale = C->getSExtValue(); 2497 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2498 /*BaseOffset=*/0, 2499 /*HasBaseReg=*/false, Scale, 2500 AccessTy.AddrSpace)) 2501 goto decline_post_inc; 2502 Scale = -Scale; 2503 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2504 /*BaseOffset=*/0, 2505 /*HasBaseReg=*/false, Scale, 2506 AccessTy.AddrSpace)) 2507 goto decline_post_inc; 2508 } 2509 } 2510 } 2511 2512 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2513 << *Cond << '\n'); 2514 2515 // It's possible for the setcc instruction to be anywhere in the loop, and 2516 // possible for it to have multiple users. If it is not immediately before 2517 // the exiting block branch, move it. 2518 if (Cond->getNextNonDebugInstruction() != TermBr) { 2519 if (Cond->hasOneUse()) { 2520 Cond->moveBefore(TermBr); 2521 } else { 2522 // Clone the terminating condition and insert into the loopend. 2523 ICmpInst *OldCond = Cond; 2524 Cond = cast<ICmpInst>(Cond->clone()); 2525 Cond->setName(L->getHeader()->getName() + ".termcond"); 2526 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2527 2528 // Clone the IVUse, as the old use still exists! 2529 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2530 TermBr->replaceUsesOfWith(OldCond, Cond); 2531 } 2532 } 2533 2534 // If we get to here, we know that we can transform the setcc instruction to 2535 // use the post-incremented version of the IV, allowing us to coalesce the 2536 // live ranges for the IV correctly. 2537 CondUse->transformToPostInc(L); 2538 Changed = true; 2539 2540 PostIncs.insert(Cond); 2541 decline_post_inc:; 2542 } 2543 2544 // Determine an insertion point for the loop induction variable increment. It 2545 // must dominate all the post-inc comparisons we just set up, and it must 2546 // dominate the loop latch edge. 2547 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2548 for (Instruction *Inst : PostIncs) { 2549 BasicBlock *BB = 2550 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2551 Inst->getParent()); 2552 if (BB == Inst->getParent()) 2553 IVIncInsertPos = Inst; 2554 else if (BB != IVIncInsertPos->getParent()) 2555 IVIncInsertPos = BB->getTerminator(); 2556 } 2557 } 2558 2559 /// Determine if the given use can accommodate a fixup at the given offset and 2560 /// other details. If so, update the use and return true. 2561 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2562 bool HasBaseReg, LSRUse::KindType Kind, 2563 MemAccessTy AccessTy) { 2564 int64_t NewMinOffset = LU.MinOffset; 2565 int64_t NewMaxOffset = LU.MaxOffset; 2566 MemAccessTy NewAccessTy = AccessTy; 2567 2568 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2569 // something conservative, however this can pessimize in the case that one of 2570 // the uses will have all its uses outside the loop, for example. 2571 if (LU.Kind != Kind) 2572 return false; 2573 2574 // Check for a mismatched access type, and fall back conservatively as needed. 2575 // TODO: Be less conservative when the type is similar and can use the same 2576 // addressing modes. 2577 if (Kind == LSRUse::Address) { 2578 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2579 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2580 AccessTy.AddrSpace); 2581 } 2582 } 2583 2584 // Conservatively assume HasBaseReg is true for now. 2585 if (NewOffset < LU.MinOffset) { 2586 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2587 LU.MaxOffset - NewOffset, HasBaseReg)) 2588 return false; 2589 NewMinOffset = NewOffset; 2590 } else if (NewOffset > LU.MaxOffset) { 2591 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2592 NewOffset - LU.MinOffset, HasBaseReg)) 2593 return false; 2594 NewMaxOffset = NewOffset; 2595 } 2596 2597 // Update the use. 2598 LU.MinOffset = NewMinOffset; 2599 LU.MaxOffset = NewMaxOffset; 2600 LU.AccessTy = NewAccessTy; 2601 return true; 2602 } 2603 2604 /// Return an LSRUse index and an offset value for a fixup which needs the given 2605 /// expression, with the given kind and optional access type. Either reuse an 2606 /// existing use or create a new one, as needed. 2607 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2608 LSRUse::KindType Kind, 2609 MemAccessTy AccessTy) { 2610 const SCEV *Copy = Expr; 2611 int64_t Offset = ExtractImmediate(Expr, SE); 2612 2613 // Basic uses can't accept any offset, for example. 2614 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2615 Offset, /*HasBaseReg=*/ true)) { 2616 Expr = Copy; 2617 Offset = 0; 2618 } 2619 2620 std::pair<UseMapTy::iterator, bool> P = 2621 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2622 if (!P.second) { 2623 // A use already existed with this base. 2624 size_t LUIdx = P.first->second; 2625 LSRUse &LU = Uses[LUIdx]; 2626 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2627 // Reuse this use. 2628 return std::make_pair(LUIdx, Offset); 2629 } 2630 2631 // Create a new use. 2632 size_t LUIdx = Uses.size(); 2633 P.first->second = LUIdx; 2634 Uses.push_back(LSRUse(Kind, AccessTy)); 2635 LSRUse &LU = Uses[LUIdx]; 2636 2637 LU.MinOffset = Offset; 2638 LU.MaxOffset = Offset; 2639 return std::make_pair(LUIdx, Offset); 2640 } 2641 2642 /// Delete the given use from the Uses list. 2643 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2644 if (&LU != &Uses.back()) 2645 std::swap(LU, Uses.back()); 2646 Uses.pop_back(); 2647 2648 // Update RegUses. 2649 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2650 } 2651 2652 /// Look for a use distinct from OrigLU which is has a formula that has the same 2653 /// registers as the given formula. 2654 LSRUse * 2655 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2656 const LSRUse &OrigLU) { 2657 // Search all uses for the formula. This could be more clever. 2658 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2659 LSRUse &LU = Uses[LUIdx]; 2660 // Check whether this use is close enough to OrigLU, to see whether it's 2661 // worthwhile looking through its formulae. 2662 // Ignore ICmpZero uses because they may contain formulae generated by 2663 // GenerateICmpZeroScales, in which case adding fixup offsets may 2664 // be invalid. 2665 if (&LU != &OrigLU && 2666 LU.Kind != LSRUse::ICmpZero && 2667 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2668 LU.WidestFixupType == OrigLU.WidestFixupType && 2669 LU.HasFormulaWithSameRegs(OrigF)) { 2670 // Scan through this use's formulae. 2671 for (const Formula &F : LU.Formulae) { 2672 // Check to see if this formula has the same registers and symbols 2673 // as OrigF. 2674 if (F.BaseRegs == OrigF.BaseRegs && 2675 F.ScaledReg == OrigF.ScaledReg && 2676 F.BaseGV == OrigF.BaseGV && 2677 F.Scale == OrigF.Scale && 2678 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2679 if (F.BaseOffset == 0) 2680 return &LU; 2681 // This is the formula where all the registers and symbols matched; 2682 // there aren't going to be any others. Since we declined it, we 2683 // can skip the rest of the formulae and proceed to the next LSRUse. 2684 break; 2685 } 2686 } 2687 } 2688 } 2689 2690 // Nothing looked good. 2691 return nullptr; 2692 } 2693 2694 void LSRInstance::CollectInterestingTypesAndFactors() { 2695 SmallSetVector<const SCEV *, 4> Strides; 2696 2697 // Collect interesting types and strides. 2698 SmallVector<const SCEV *, 4> Worklist; 2699 for (const IVStrideUse &U : IU) { 2700 const SCEV *Expr = IU.getExpr(U); 2701 2702 // Collect interesting types. 2703 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2704 2705 // Add strides for mentioned loops. 2706 Worklist.push_back(Expr); 2707 do { 2708 const SCEV *S = Worklist.pop_back_val(); 2709 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2710 if (AR->getLoop() == L) 2711 Strides.insert(AR->getStepRecurrence(SE)); 2712 Worklist.push_back(AR->getStart()); 2713 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2714 Worklist.append(Add->op_begin(), Add->op_end()); 2715 } 2716 } while (!Worklist.empty()); 2717 } 2718 2719 // Compute interesting factors from the set of interesting strides. 2720 for (SmallSetVector<const SCEV *, 4>::const_iterator 2721 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2722 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2723 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2724 const SCEV *OldStride = *I; 2725 const SCEV *NewStride = *NewStrideIter; 2726 2727 if (SE.getTypeSizeInBits(OldStride->getType()) != 2728 SE.getTypeSizeInBits(NewStride->getType())) { 2729 if (SE.getTypeSizeInBits(OldStride->getType()) > 2730 SE.getTypeSizeInBits(NewStride->getType())) 2731 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2732 else 2733 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2734 } 2735 if (const SCEVConstant *Factor = 2736 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2737 SE, true))) { 2738 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2739 Factors.insert(Factor->getAPInt().getSExtValue()); 2740 } else if (const SCEVConstant *Factor = 2741 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2742 NewStride, 2743 SE, true))) { 2744 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2745 Factors.insert(Factor->getAPInt().getSExtValue()); 2746 } 2747 } 2748 2749 // If all uses use the same type, don't bother looking for truncation-based 2750 // reuse. 2751 if (Types.size() == 1) 2752 Types.clear(); 2753 2754 LLVM_DEBUG(print_factors_and_types(dbgs())); 2755 } 2756 2757 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2758 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2759 /// IVStrideUses, we could partially skip this. 2760 static User::op_iterator 2761 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2762 Loop *L, ScalarEvolution &SE) { 2763 for(; OI != OE; ++OI) { 2764 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2765 if (!SE.isSCEVable(Oper->getType())) 2766 continue; 2767 2768 if (const SCEVAddRecExpr *AR = 2769 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2770 if (AR->getLoop() == L) 2771 break; 2772 } 2773 } 2774 } 2775 return OI; 2776 } 2777 2778 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2779 /// a convenient helper. 2780 static Value *getWideOperand(Value *Oper) { 2781 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2782 return Trunc->getOperand(0); 2783 return Oper; 2784 } 2785 2786 /// Return true if we allow an IV chain to include both types. 2787 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2788 Type *LType = LVal->getType(); 2789 Type *RType = RVal->getType(); 2790 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2791 // Different address spaces means (possibly) 2792 // different types of the pointer implementation, 2793 // e.g. i16 vs i32 so disallow that. 2794 (LType->getPointerAddressSpace() == 2795 RType->getPointerAddressSpace())); 2796 } 2797 2798 /// Return an approximation of this SCEV expression's "base", or NULL for any 2799 /// constant. Returning the expression itself is conservative. Returning a 2800 /// deeper subexpression is more precise and valid as long as it isn't less 2801 /// complex than another subexpression. For expressions involving multiple 2802 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2803 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2804 /// IVInc==b-a. 2805 /// 2806 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2807 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2808 static const SCEV *getExprBase(const SCEV *S) { 2809 switch (S->getSCEVType()) { 2810 default: // uncluding scUnknown. 2811 return S; 2812 case scConstant: 2813 return nullptr; 2814 case scTruncate: 2815 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2816 case scZeroExtend: 2817 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2818 case scSignExtend: 2819 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2820 case scAddExpr: { 2821 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2822 // there's nothing more complex. 2823 // FIXME: not sure if we want to recognize negation. 2824 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2825 for (const SCEV *SubExpr : reverse(Add->operands())) { 2826 if (SubExpr->getSCEVType() == scAddExpr) 2827 return getExprBase(SubExpr); 2828 2829 if (SubExpr->getSCEVType() != scMulExpr) 2830 return SubExpr; 2831 } 2832 return S; // all operands are scaled, be conservative. 2833 } 2834 case scAddRecExpr: 2835 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2836 } 2837 llvm_unreachable("Unknown SCEV kind!"); 2838 } 2839 2840 /// Return true if the chain increment is profitable to expand into a loop 2841 /// invariant value, which may require its own register. A profitable chain 2842 /// increment will be an offset relative to the same base. We allow such offsets 2843 /// to potentially be used as chain increment as long as it's not obviously 2844 /// expensive to expand using real instructions. 2845 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2846 const SCEV *IncExpr, 2847 ScalarEvolution &SE) { 2848 // Aggressively form chains when -stress-ivchain. 2849 if (StressIVChain) 2850 return true; 2851 2852 // Do not replace a constant offset from IV head with a nonconstant IV 2853 // increment. 2854 if (!isa<SCEVConstant>(IncExpr)) { 2855 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2856 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2857 return false; 2858 } 2859 2860 SmallPtrSet<const SCEV*, 8> Processed; 2861 return !isHighCostExpansion(IncExpr, Processed, SE); 2862 } 2863 2864 /// Return true if the number of registers needed for the chain is estimated to 2865 /// be less than the number required for the individual IV users. First prohibit 2866 /// any IV users that keep the IV live across increments (the Users set should 2867 /// be empty). Next count the number and type of increments in the chain. 2868 /// 2869 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2870 /// effectively use postinc addressing modes. Only consider it profitable it the 2871 /// increments can be computed in fewer registers when chained. 2872 /// 2873 /// TODO: Consider IVInc free if it's already used in another chains. 2874 static bool isProfitableChain(IVChain &Chain, 2875 SmallPtrSetImpl<Instruction *> &Users, 2876 ScalarEvolution &SE, 2877 const TargetTransformInfo &TTI) { 2878 if (StressIVChain) 2879 return true; 2880 2881 if (!Chain.hasIncs()) 2882 return false; 2883 2884 if (!Users.empty()) { 2885 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2886 for (Instruction *Inst 2887 : Users) { dbgs() << " " << *Inst << "\n"; }); 2888 return false; 2889 } 2890 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2891 2892 // The chain itself may require a register, so intialize cost to 1. 2893 int cost = 1; 2894 2895 // A complete chain likely eliminates the need for keeping the original IV in 2896 // a register. LSR does not currently know how to form a complete chain unless 2897 // the header phi already exists. 2898 if (isa<PHINode>(Chain.tailUserInst()) 2899 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2900 --cost; 2901 } 2902 const SCEV *LastIncExpr = nullptr; 2903 unsigned NumConstIncrements = 0; 2904 unsigned NumVarIncrements = 0; 2905 unsigned NumReusedIncrements = 0; 2906 2907 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2908 return true; 2909 2910 for (const IVInc &Inc : Chain) { 2911 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2912 return true; 2913 if (Inc.IncExpr->isZero()) 2914 continue; 2915 2916 // Incrementing by zero or some constant is neutral. We assume constants can 2917 // be folded into an addressing mode or an add's immediate operand. 2918 if (isa<SCEVConstant>(Inc.IncExpr)) { 2919 ++NumConstIncrements; 2920 continue; 2921 } 2922 2923 if (Inc.IncExpr == LastIncExpr) 2924 ++NumReusedIncrements; 2925 else 2926 ++NumVarIncrements; 2927 2928 LastIncExpr = Inc.IncExpr; 2929 } 2930 // An IV chain with a single increment is handled by LSR's postinc 2931 // uses. However, a chain with multiple increments requires keeping the IV's 2932 // value live longer than it needs to be if chained. 2933 if (NumConstIncrements > 1) 2934 --cost; 2935 2936 // Materializing increment expressions in the preheader that didn't exist in 2937 // the original code may cost a register. For example, sign-extended array 2938 // indices can produce ridiculous increments like this: 2939 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2940 cost += NumVarIncrements; 2941 2942 // Reusing variable increments likely saves a register to hold the multiple of 2943 // the stride. 2944 cost -= NumReusedIncrements; 2945 2946 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2947 << "\n"); 2948 2949 return cost < 0; 2950 } 2951 2952 /// Add this IV user to an existing chain or make it the head of a new chain. 2953 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2954 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2955 // When IVs are used as types of varying widths, they are generally converted 2956 // to a wider type with some uses remaining narrow under a (free) trunc. 2957 Value *const NextIV = getWideOperand(IVOper); 2958 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2959 const SCEV *const OperExprBase = getExprBase(OperExpr); 2960 2961 // Visit all existing chains. Check if its IVOper can be computed as a 2962 // profitable loop invariant increment from the last link in the Chain. 2963 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2964 const SCEV *LastIncExpr = nullptr; 2965 for (; ChainIdx < NChains; ++ChainIdx) { 2966 IVChain &Chain = IVChainVec[ChainIdx]; 2967 2968 // Prune the solution space aggressively by checking that both IV operands 2969 // are expressions that operate on the same unscaled SCEVUnknown. This 2970 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2971 // first avoids creating extra SCEV expressions. 2972 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2973 continue; 2974 2975 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2976 if (!isCompatibleIVType(PrevIV, NextIV)) 2977 continue; 2978 2979 // A phi node terminates a chain. 2980 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2981 continue; 2982 2983 // The increment must be loop-invariant so it can be kept in a register. 2984 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2985 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2986 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2987 continue; 2988 2989 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2990 LastIncExpr = IncExpr; 2991 break; 2992 } 2993 } 2994 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2995 // bother for phi nodes, because they must be last in the chain. 2996 if (ChainIdx == NChains) { 2997 if (isa<PHINode>(UserInst)) 2998 return; 2999 if (NChains >= MaxChains && !StressIVChain) { 3000 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3001 return; 3002 } 3003 LastIncExpr = OperExpr; 3004 // IVUsers may have skipped over sign/zero extensions. We don't currently 3005 // attempt to form chains involving extensions unless they can be hoisted 3006 // into this loop's AddRec. 3007 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3008 return; 3009 ++NChains; 3010 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3011 OperExprBase)); 3012 ChainUsersVec.resize(NChains); 3013 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3014 << ") IV=" << *LastIncExpr << "\n"); 3015 } else { 3016 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3017 << ") IV+" << *LastIncExpr << "\n"); 3018 // Add this IV user to the end of the chain. 3019 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3020 } 3021 IVChain &Chain = IVChainVec[ChainIdx]; 3022 3023 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3024 // This chain's NearUsers become FarUsers. 3025 if (!LastIncExpr->isZero()) { 3026 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3027 NearUsers.end()); 3028 NearUsers.clear(); 3029 } 3030 3031 // All other uses of IVOperand become near uses of the chain. 3032 // We currently ignore intermediate values within SCEV expressions, assuming 3033 // they will eventually be used be the current chain, or can be computed 3034 // from one of the chain increments. To be more precise we could 3035 // transitively follow its user and only add leaf IV users to the set. 3036 for (User *U : IVOper->users()) { 3037 Instruction *OtherUse = dyn_cast<Instruction>(U); 3038 if (!OtherUse) 3039 continue; 3040 // Uses in the chain will no longer be uses if the chain is formed. 3041 // Include the head of the chain in this iteration (not Chain.begin()). 3042 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3043 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3044 for( ; IncIter != IncEnd; ++IncIter) { 3045 if (IncIter->UserInst == OtherUse) 3046 break; 3047 } 3048 if (IncIter != IncEnd) 3049 continue; 3050 3051 if (SE.isSCEVable(OtherUse->getType()) 3052 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3053 && IU.isIVUserOrOperand(OtherUse)) { 3054 continue; 3055 } 3056 NearUsers.insert(OtherUse); 3057 } 3058 3059 // Since this user is part of the chain, it's no longer considered a use 3060 // of the chain. 3061 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3062 } 3063 3064 /// Populate the vector of Chains. 3065 /// 3066 /// This decreases ILP at the architecture level. Targets with ample registers, 3067 /// multiple memory ports, and no register renaming probably don't want 3068 /// this. However, such targets should probably disable LSR altogether. 3069 /// 3070 /// The job of LSR is to make a reasonable choice of induction variables across 3071 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3072 /// ILP *within the loop* if the target wants it. 3073 /// 3074 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3075 /// will not reorder memory operations, it will recognize this as a chain, but 3076 /// will generate redundant IV increments. Ideally this would be corrected later 3077 /// by a smart scheduler: 3078 /// = A[i] 3079 /// = A[i+x] 3080 /// A[i] = 3081 /// A[i+x] = 3082 /// 3083 /// TODO: Walk the entire domtree within this loop, not just the path to the 3084 /// loop latch. This will discover chains on side paths, but requires 3085 /// maintaining multiple copies of the Chains state. 3086 void LSRInstance::CollectChains() { 3087 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3088 SmallVector<ChainUsers, 8> ChainUsersVec; 3089 3090 SmallVector<BasicBlock *,8> LatchPath; 3091 BasicBlock *LoopHeader = L->getHeader(); 3092 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3093 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3094 LatchPath.push_back(Rung->getBlock()); 3095 } 3096 LatchPath.push_back(LoopHeader); 3097 3098 // Walk the instruction stream from the loop header to the loop latch. 3099 for (BasicBlock *BB : reverse(LatchPath)) { 3100 for (Instruction &I : *BB) { 3101 // Skip instructions that weren't seen by IVUsers analysis. 3102 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3103 continue; 3104 3105 // Ignore users that are part of a SCEV expression. This way we only 3106 // consider leaf IV Users. This effectively rediscovers a portion of 3107 // IVUsers analysis but in program order this time. 3108 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3109 continue; 3110 3111 // Remove this instruction from any NearUsers set it may be in. 3112 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3113 ChainIdx < NChains; ++ChainIdx) { 3114 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3115 } 3116 // Search for operands that can be chained. 3117 SmallPtrSet<Instruction*, 4> UniqueOperands; 3118 User::op_iterator IVOpEnd = I.op_end(); 3119 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3120 while (IVOpIter != IVOpEnd) { 3121 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3122 if (UniqueOperands.insert(IVOpInst).second) 3123 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3124 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3125 } 3126 } // Continue walking down the instructions. 3127 } // Continue walking down the domtree. 3128 // Visit phi backedges to determine if the chain can generate the IV postinc. 3129 for (PHINode &PN : L->getHeader()->phis()) { 3130 if (!SE.isSCEVable(PN.getType())) 3131 continue; 3132 3133 Instruction *IncV = 3134 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3135 if (IncV) 3136 ChainInstruction(&PN, IncV, ChainUsersVec); 3137 } 3138 // Remove any unprofitable chains. 3139 unsigned ChainIdx = 0; 3140 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3141 UsersIdx < NChains; ++UsersIdx) { 3142 if (!isProfitableChain(IVChainVec[UsersIdx], 3143 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3144 continue; 3145 // Preserve the chain at UsesIdx. 3146 if (ChainIdx != UsersIdx) 3147 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3148 FinalizeChain(IVChainVec[ChainIdx]); 3149 ++ChainIdx; 3150 } 3151 IVChainVec.resize(ChainIdx); 3152 } 3153 3154 void LSRInstance::FinalizeChain(IVChain &Chain) { 3155 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3156 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3157 3158 for (const IVInc &Inc : Chain) { 3159 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3160 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3161 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3162 IVIncSet.insert(UseI); 3163 } 3164 } 3165 3166 /// Return true if the IVInc can be folded into an addressing mode. 3167 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3168 Value *Operand, const TargetTransformInfo &TTI) { 3169 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3170 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3171 return false; 3172 3173 if (IncConst->getAPInt().getMinSignedBits() > 64) 3174 return false; 3175 3176 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3177 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3178 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3179 IncOffset, /*HasBaseReg=*/false)) 3180 return false; 3181 3182 return true; 3183 } 3184 3185 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3186 /// user's operand from the previous IV user's operand. 3187 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3188 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3189 // Find the new IVOperand for the head of the chain. It may have been replaced 3190 // by LSR. 3191 const IVInc &Head = Chain.Incs[0]; 3192 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3193 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3194 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3195 IVOpEnd, L, SE); 3196 Value *IVSrc = nullptr; 3197 while (IVOpIter != IVOpEnd) { 3198 IVSrc = getWideOperand(*IVOpIter); 3199 3200 // If this operand computes the expression that the chain needs, we may use 3201 // it. (Check this after setting IVSrc which is used below.) 3202 // 3203 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3204 // narrow for the chain, so we can no longer use it. We do allow using a 3205 // wider phi, assuming the LSR checked for free truncation. In that case we 3206 // should already have a truncate on this operand such that 3207 // getSCEV(IVSrc) == IncExpr. 3208 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3209 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3210 break; 3211 } 3212 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3213 } 3214 if (IVOpIter == IVOpEnd) { 3215 // Gracefully give up on this chain. 3216 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3217 return; 3218 } 3219 assert(IVSrc && "Failed to find IV chain source"); 3220 3221 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3222 Type *IVTy = IVSrc->getType(); 3223 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3224 const SCEV *LeftOverExpr = nullptr; 3225 for (const IVInc &Inc : Chain) { 3226 Instruction *InsertPt = Inc.UserInst; 3227 if (isa<PHINode>(InsertPt)) 3228 InsertPt = L->getLoopLatch()->getTerminator(); 3229 3230 // IVOper will replace the current IV User's operand. IVSrc is the IV 3231 // value currently held in a register. 3232 Value *IVOper = IVSrc; 3233 if (!Inc.IncExpr->isZero()) { 3234 // IncExpr was the result of subtraction of two narrow values, so must 3235 // be signed. 3236 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3237 LeftOverExpr = LeftOverExpr ? 3238 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3239 } 3240 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3241 // Expand the IV increment. 3242 Rewriter.clearPostInc(); 3243 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3244 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3245 SE.getUnknown(IncV)); 3246 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3247 3248 // If an IV increment can't be folded, use it as the next IV value. 3249 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3250 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3251 IVSrc = IVOper; 3252 LeftOverExpr = nullptr; 3253 } 3254 } 3255 Type *OperTy = Inc.IVOperand->getType(); 3256 if (IVTy != OperTy) { 3257 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3258 "cannot extend a chained IV"); 3259 IRBuilder<> Builder(InsertPt); 3260 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3261 } 3262 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3263 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3264 DeadInsts.emplace_back(OperandIsInstr); 3265 } 3266 // If LSR created a new, wider phi, we may also replace its postinc. We only 3267 // do this if we also found a wide value for the head of the chain. 3268 if (isa<PHINode>(Chain.tailUserInst())) { 3269 for (PHINode &Phi : L->getHeader()->phis()) { 3270 if (!isCompatibleIVType(&Phi, IVSrc)) 3271 continue; 3272 Instruction *PostIncV = dyn_cast<Instruction>( 3273 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3274 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3275 continue; 3276 Value *IVOper = IVSrc; 3277 Type *PostIncTy = PostIncV->getType(); 3278 if (IVTy != PostIncTy) { 3279 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3280 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3281 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3282 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3283 } 3284 Phi.replaceUsesOfWith(PostIncV, IVOper); 3285 DeadInsts.emplace_back(PostIncV); 3286 } 3287 } 3288 } 3289 3290 void LSRInstance::CollectFixupsAndInitialFormulae() { 3291 BranchInst *ExitBranch = nullptr; 3292 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3293 3294 for (const IVStrideUse &U : IU) { 3295 Instruction *UserInst = U.getUser(); 3296 // Skip IV users that are part of profitable IV Chains. 3297 User::op_iterator UseI = 3298 find(UserInst->operands(), U.getOperandValToReplace()); 3299 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3300 if (IVIncSet.count(UseI)) { 3301 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3302 continue; 3303 } 3304 3305 LSRUse::KindType Kind = LSRUse::Basic; 3306 MemAccessTy AccessTy; 3307 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3308 Kind = LSRUse::Address; 3309 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3310 } 3311 3312 const SCEV *S = IU.getExpr(U); 3313 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3314 3315 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3316 // (N - i == 0), and this allows (N - i) to be the expression that we work 3317 // with rather than just N or i, so we can consider the register 3318 // requirements for both N and i at the same time. Limiting this code to 3319 // equality icmps is not a problem because all interesting loops use 3320 // equality icmps, thanks to IndVarSimplify. 3321 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3322 // If CI can be saved in some target, like replaced inside hardware loop 3323 // in PowerPC, no need to generate initial formulae for it. 3324 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3325 continue; 3326 if (CI->isEquality()) { 3327 // Swap the operands if needed to put the OperandValToReplace on the 3328 // left, for consistency. 3329 Value *NV = CI->getOperand(1); 3330 if (NV == U.getOperandValToReplace()) { 3331 CI->setOperand(1, CI->getOperand(0)); 3332 CI->setOperand(0, NV); 3333 NV = CI->getOperand(1); 3334 Changed = true; 3335 } 3336 3337 // x == y --> x - y == 0 3338 const SCEV *N = SE.getSCEV(NV); 3339 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3340 (!NV->getType()->isPointerTy() || 3341 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3342 // S is normalized, so normalize N before folding it into S 3343 // to keep the result normalized. 3344 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3345 Kind = LSRUse::ICmpZero; 3346 S = SE.getMinusSCEV(N, S); 3347 } 3348 3349 // -1 and the negations of all interesting strides (except the negation 3350 // of -1) are now also interesting. 3351 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3352 if (Factors[i] != -1) 3353 Factors.insert(-(uint64_t)Factors[i]); 3354 Factors.insert(-1); 3355 } 3356 } 3357 3358 // Get or create an LSRUse. 3359 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3360 size_t LUIdx = P.first; 3361 int64_t Offset = P.second; 3362 LSRUse &LU = Uses[LUIdx]; 3363 3364 // Record the fixup. 3365 LSRFixup &LF = LU.getNewFixup(); 3366 LF.UserInst = UserInst; 3367 LF.OperandValToReplace = U.getOperandValToReplace(); 3368 LF.PostIncLoops = TmpPostIncLoops; 3369 LF.Offset = Offset; 3370 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3371 3372 if (!LU.WidestFixupType || 3373 SE.getTypeSizeInBits(LU.WidestFixupType) < 3374 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3375 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3376 3377 // If this is the first use of this LSRUse, give it a formula. 3378 if (LU.Formulae.empty()) { 3379 InsertInitialFormula(S, LU, LUIdx); 3380 CountRegisters(LU.Formulae.back(), LUIdx); 3381 } 3382 } 3383 3384 LLVM_DEBUG(print_fixups(dbgs())); 3385 } 3386 3387 /// Insert a formula for the given expression into the given use, separating out 3388 /// loop-variant portions from loop-invariant and loop-computable portions. 3389 void 3390 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3391 // Mark uses whose expressions cannot be expanded. 3392 if (!isSafeToExpand(S, SE, /*CanonicalMode*/ false)) 3393 LU.RigidFormula = true; 3394 3395 Formula F; 3396 F.initialMatch(S, L, SE); 3397 bool Inserted = InsertFormula(LU, LUIdx, F); 3398 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3399 } 3400 3401 /// Insert a simple single-register formula for the given expression into the 3402 /// given use. 3403 void 3404 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3405 LSRUse &LU, size_t LUIdx) { 3406 Formula F; 3407 F.BaseRegs.push_back(S); 3408 F.HasBaseReg = true; 3409 bool Inserted = InsertFormula(LU, LUIdx, F); 3410 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3411 } 3412 3413 /// Note which registers are used by the given formula, updating RegUses. 3414 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3415 if (F.ScaledReg) 3416 RegUses.countRegister(F.ScaledReg, LUIdx); 3417 for (const SCEV *BaseReg : F.BaseRegs) 3418 RegUses.countRegister(BaseReg, LUIdx); 3419 } 3420 3421 /// If the given formula has not yet been inserted, add it to the list, and 3422 /// return true. Return false otherwise. 3423 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3424 // Do not insert formula that we will not be able to expand. 3425 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3426 "Formula is illegal"); 3427 3428 if (!LU.InsertFormula(F, *L)) 3429 return false; 3430 3431 CountRegisters(F, LUIdx); 3432 return true; 3433 } 3434 3435 /// Check for other uses of loop-invariant values which we're tracking. These 3436 /// other uses will pin these values in registers, making them less profitable 3437 /// for elimination. 3438 /// TODO: This currently misses non-constant addrec step registers. 3439 /// TODO: Should this give more weight to users inside the loop? 3440 void 3441 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3442 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3443 SmallPtrSet<const SCEV *, 32> Visited; 3444 3445 while (!Worklist.empty()) { 3446 const SCEV *S = Worklist.pop_back_val(); 3447 3448 // Don't process the same SCEV twice 3449 if (!Visited.insert(S).second) 3450 continue; 3451 3452 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3453 Worklist.append(N->op_begin(), N->op_end()); 3454 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3455 Worklist.push_back(C->getOperand()); 3456 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3457 Worklist.push_back(D->getLHS()); 3458 Worklist.push_back(D->getRHS()); 3459 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3460 const Value *V = US->getValue(); 3461 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3462 // Look for instructions defined outside the loop. 3463 if (L->contains(Inst)) continue; 3464 } else if (isa<UndefValue>(V)) 3465 // Undef doesn't have a live range, so it doesn't matter. 3466 continue; 3467 for (const Use &U : V->uses()) { 3468 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3469 // Ignore non-instructions. 3470 if (!UserInst) 3471 continue; 3472 // Don't bother if the instruction is an EHPad. 3473 if (UserInst->isEHPad()) 3474 continue; 3475 // Ignore instructions in other functions (as can happen with 3476 // Constants). 3477 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3478 continue; 3479 // Ignore instructions not dominated by the loop. 3480 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3481 UserInst->getParent() : 3482 cast<PHINode>(UserInst)->getIncomingBlock( 3483 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3484 if (!DT.dominates(L->getHeader(), UseBB)) 3485 continue; 3486 // Don't bother if the instruction is in a BB which ends in an EHPad. 3487 if (UseBB->getTerminator()->isEHPad()) 3488 continue; 3489 3490 // Ignore cases in which the currently-examined value could come from 3491 // a basic block terminated with an EHPad. This checks all incoming 3492 // blocks of the phi node since it is possible that the same incoming 3493 // value comes from multiple basic blocks, only some of which may end 3494 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3495 // pass would try to insert instructions into an EHPad, hitting an 3496 // assertion. 3497 if (isa<PHINode>(UserInst)) { 3498 const auto *PhiNode = cast<PHINode>(UserInst); 3499 bool HasIncompatibleEHPTerminatedBlock = false; 3500 llvm::Value *ExpectedValue = U; 3501 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3502 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3503 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3504 HasIncompatibleEHPTerminatedBlock = true; 3505 break; 3506 } 3507 } 3508 } 3509 if (HasIncompatibleEHPTerminatedBlock) { 3510 continue; 3511 } 3512 } 3513 3514 // Don't bother rewriting PHIs in catchswitch blocks. 3515 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3516 continue; 3517 // Ignore uses which are part of other SCEV expressions, to avoid 3518 // analyzing them multiple times. 3519 if (SE.isSCEVable(UserInst->getType())) { 3520 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3521 // If the user is a no-op, look through to its uses. 3522 if (!isa<SCEVUnknown>(UserS)) 3523 continue; 3524 if (UserS == US) { 3525 Worklist.push_back( 3526 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3527 continue; 3528 } 3529 } 3530 // Ignore icmp instructions which are already being analyzed. 3531 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3532 unsigned OtherIdx = !U.getOperandNo(); 3533 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3534 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3535 continue; 3536 } 3537 3538 std::pair<size_t, int64_t> P = getUse( 3539 S, LSRUse::Basic, MemAccessTy()); 3540 size_t LUIdx = P.first; 3541 int64_t Offset = P.second; 3542 LSRUse &LU = Uses[LUIdx]; 3543 LSRFixup &LF = LU.getNewFixup(); 3544 LF.UserInst = const_cast<Instruction *>(UserInst); 3545 LF.OperandValToReplace = U; 3546 LF.Offset = Offset; 3547 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3548 if (!LU.WidestFixupType || 3549 SE.getTypeSizeInBits(LU.WidestFixupType) < 3550 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3551 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3552 InsertSupplementalFormula(US, LU, LUIdx); 3553 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3554 break; 3555 } 3556 } 3557 } 3558 } 3559 3560 /// Split S into subexpressions which can be pulled out into separate 3561 /// registers. If C is non-null, multiply each subexpression by C. 3562 /// 3563 /// Return remainder expression after factoring the subexpressions captured by 3564 /// Ops. If Ops is complete, return NULL. 3565 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3566 SmallVectorImpl<const SCEV *> &Ops, 3567 const Loop *L, 3568 ScalarEvolution &SE, 3569 unsigned Depth = 0) { 3570 // Arbitrarily cap recursion to protect compile time. 3571 if (Depth >= 3) 3572 return S; 3573 3574 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3575 // Break out add operands. 3576 for (const SCEV *S : Add->operands()) { 3577 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3578 if (Remainder) 3579 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3580 } 3581 return nullptr; 3582 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3583 // Split a non-zero base out of an addrec. 3584 if (AR->getStart()->isZero() || !AR->isAffine()) 3585 return S; 3586 3587 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3588 C, Ops, L, SE, Depth+1); 3589 // Split the non-zero AddRec unless it is part of a nested recurrence that 3590 // does not pertain to this loop. 3591 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3592 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3593 Remainder = nullptr; 3594 } 3595 if (Remainder != AR->getStart()) { 3596 if (!Remainder) 3597 Remainder = SE.getConstant(AR->getType(), 0); 3598 return SE.getAddRecExpr(Remainder, 3599 AR->getStepRecurrence(SE), 3600 AR->getLoop(), 3601 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3602 SCEV::FlagAnyWrap); 3603 } 3604 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3605 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3606 if (Mul->getNumOperands() != 2) 3607 return S; 3608 if (const SCEVConstant *Op0 = 3609 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3610 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3611 const SCEV *Remainder = 3612 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3613 if (Remainder) 3614 Ops.push_back(SE.getMulExpr(C, Remainder)); 3615 return nullptr; 3616 } 3617 } 3618 return S; 3619 } 3620 3621 /// Return true if the SCEV represents a value that may end up as a 3622 /// post-increment operation. 3623 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3624 LSRUse &LU, const SCEV *S, const Loop *L, 3625 ScalarEvolution &SE) { 3626 if (LU.Kind != LSRUse::Address || 3627 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3628 return false; 3629 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3630 if (!AR) 3631 return false; 3632 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3633 if (!isa<SCEVConstant>(LoopStep)) 3634 return false; 3635 // Check if a post-indexed load/store can be used. 3636 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3637 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3638 const SCEV *LoopStart = AR->getStart(); 3639 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3640 return true; 3641 } 3642 return false; 3643 } 3644 3645 /// Helper function for LSRInstance::GenerateReassociations. 3646 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3647 const Formula &Base, 3648 unsigned Depth, size_t Idx, 3649 bool IsScaledReg) { 3650 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3651 // Don't generate reassociations for the base register of a value that 3652 // may generate a post-increment operator. The reason is that the 3653 // reassociations cause extra base+register formula to be created, 3654 // and possibly chosen, but the post-increment is more efficient. 3655 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3656 return; 3657 SmallVector<const SCEV *, 8> AddOps; 3658 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3659 if (Remainder) 3660 AddOps.push_back(Remainder); 3661 3662 if (AddOps.size() == 1) 3663 return; 3664 3665 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3666 JE = AddOps.end(); 3667 J != JE; ++J) { 3668 // Loop-variant "unknown" values are uninteresting; we won't be able to 3669 // do anything meaningful with them. 3670 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3671 continue; 3672 3673 // Don't pull a constant into a register if the constant could be folded 3674 // into an immediate field. 3675 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3676 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3677 continue; 3678 3679 // Collect all operands except *J. 3680 SmallVector<const SCEV *, 8> InnerAddOps( 3681 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3682 InnerAddOps.append(std::next(J), 3683 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3684 3685 // Don't leave just a constant behind in a register if the constant could 3686 // be folded into an immediate field. 3687 if (InnerAddOps.size() == 1 && 3688 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3689 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3690 continue; 3691 3692 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3693 if (InnerSum->isZero()) 3694 continue; 3695 Formula F = Base; 3696 3697 // Add the remaining pieces of the add back into the new formula. 3698 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3699 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3700 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3701 InnerSumSC->getValue()->getZExtValue())) { 3702 F.UnfoldedOffset = 3703 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3704 if (IsScaledReg) 3705 F.ScaledReg = nullptr; 3706 else 3707 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3708 } else if (IsScaledReg) 3709 F.ScaledReg = InnerSum; 3710 else 3711 F.BaseRegs[Idx] = InnerSum; 3712 3713 // Add J as its own register, or an unfolded immediate. 3714 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3715 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3716 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3717 SC->getValue()->getZExtValue())) 3718 F.UnfoldedOffset = 3719 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3720 else 3721 F.BaseRegs.push_back(*J); 3722 // We may have changed the number of register in base regs, adjust the 3723 // formula accordingly. 3724 F.canonicalize(*L); 3725 3726 if (InsertFormula(LU, LUIdx, F)) 3727 // If that formula hadn't been seen before, recurse to find more like 3728 // it. 3729 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3730 // Because just Depth is not enough to bound compile time. 3731 // This means that every time AddOps.size() is greater 16^x we will add 3732 // x to Depth. 3733 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3734 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3735 } 3736 } 3737 3738 /// Split out subexpressions from adds and the bases of addrecs. 3739 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3740 Formula Base, unsigned Depth) { 3741 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3742 // Arbitrarily cap recursion to protect compile time. 3743 if (Depth >= 3) 3744 return; 3745 3746 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3747 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3748 3749 if (Base.Scale == 1) 3750 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3751 /* Idx */ -1, /* IsScaledReg */ true); 3752 } 3753 3754 /// Generate a formula consisting of all of the loop-dominating registers added 3755 /// into a single register. 3756 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3757 Formula Base) { 3758 // This method is only interesting on a plurality of registers. 3759 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3760 (Base.UnfoldedOffset != 0) <= 1) 3761 return; 3762 3763 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3764 // processing the formula. 3765 Base.unscale(); 3766 SmallVector<const SCEV *, 4> Ops; 3767 Formula NewBase = Base; 3768 NewBase.BaseRegs.clear(); 3769 Type *CombinedIntegerType = nullptr; 3770 for (const SCEV *BaseReg : Base.BaseRegs) { 3771 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3772 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3773 if (!CombinedIntegerType) 3774 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3775 Ops.push_back(BaseReg); 3776 } 3777 else 3778 NewBase.BaseRegs.push_back(BaseReg); 3779 } 3780 3781 // If no register is relevant, we're done. 3782 if (Ops.size() == 0) 3783 return; 3784 3785 // Utility function for generating the required variants of the combined 3786 // registers. 3787 auto GenerateFormula = [&](const SCEV *Sum) { 3788 Formula F = NewBase; 3789 3790 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3791 // opportunity to fold something. For now, just ignore such cases 3792 // rather than proceed with zero in a register. 3793 if (Sum->isZero()) 3794 return; 3795 3796 F.BaseRegs.push_back(Sum); 3797 F.canonicalize(*L); 3798 (void)InsertFormula(LU, LUIdx, F); 3799 }; 3800 3801 // If we collected at least two registers, generate a formula combining them. 3802 if (Ops.size() > 1) { 3803 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3804 GenerateFormula(SE.getAddExpr(OpsCopy)); 3805 } 3806 3807 // If we have an unfolded offset, generate a formula combining it with the 3808 // registers collected. 3809 if (NewBase.UnfoldedOffset) { 3810 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3811 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3812 true)); 3813 NewBase.UnfoldedOffset = 0; 3814 GenerateFormula(SE.getAddExpr(Ops)); 3815 } 3816 } 3817 3818 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3819 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3820 const Formula &Base, size_t Idx, 3821 bool IsScaledReg) { 3822 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3823 GlobalValue *GV = ExtractSymbol(G, SE); 3824 if (G->isZero() || !GV) 3825 return; 3826 Formula F = Base; 3827 F.BaseGV = GV; 3828 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3829 return; 3830 if (IsScaledReg) 3831 F.ScaledReg = G; 3832 else 3833 F.BaseRegs[Idx] = G; 3834 (void)InsertFormula(LU, LUIdx, F); 3835 } 3836 3837 /// Generate reuse formulae using symbolic offsets. 3838 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3839 Formula Base) { 3840 // We can't add a symbolic offset if the address already contains one. 3841 if (Base.BaseGV) return; 3842 3843 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3844 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3845 if (Base.Scale == 1) 3846 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3847 /* IsScaledReg */ true); 3848 } 3849 3850 /// Helper function for LSRInstance::GenerateConstantOffsets. 3851 void LSRInstance::GenerateConstantOffsetsImpl( 3852 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3853 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3854 3855 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3856 Formula F = Base; 3857 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3858 3859 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3860 // Add the offset to the base register. 3861 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3862 // If it cancelled out, drop the base register, otherwise update it. 3863 if (NewG->isZero()) { 3864 if (IsScaledReg) { 3865 F.Scale = 0; 3866 F.ScaledReg = nullptr; 3867 } else 3868 F.deleteBaseReg(F.BaseRegs[Idx]); 3869 F.canonicalize(*L); 3870 } else if (IsScaledReg) 3871 F.ScaledReg = NewG; 3872 else 3873 F.BaseRegs[Idx] = NewG; 3874 3875 (void)InsertFormula(LU, LUIdx, F); 3876 } 3877 }; 3878 3879 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3880 3881 // With constant offsets and constant steps, we can generate pre-inc 3882 // accesses by having the offset equal the step. So, for access #0 with a 3883 // step of 8, we generate a G - 8 base which would require the first access 3884 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3885 // for itself and hopefully becomes the base for other accesses. This means 3886 // means that a single pre-indexed access can be generated to become the new 3887 // base pointer for each iteration of the loop, resulting in no extra add/sub 3888 // instructions for pointer updating. 3889 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3890 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3891 if (auto *StepRec = 3892 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3893 const APInt &StepInt = StepRec->getAPInt(); 3894 int64_t Step = StepInt.isNegative() ? 3895 StepInt.getSExtValue() : StepInt.getZExtValue(); 3896 3897 for (int64_t Offset : Worklist) { 3898 Offset -= Step; 3899 GenerateOffset(G, Offset); 3900 } 3901 } 3902 } 3903 } 3904 for (int64_t Offset : Worklist) 3905 GenerateOffset(G, Offset); 3906 3907 int64_t Imm = ExtractImmediate(G, SE); 3908 if (G->isZero() || Imm == 0) 3909 return; 3910 Formula F = Base; 3911 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3912 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3913 return; 3914 if (IsScaledReg) { 3915 F.ScaledReg = G; 3916 } else { 3917 F.BaseRegs[Idx] = G; 3918 // We may generate non canonical Formula if G is a recurrent expr reg 3919 // related with current loop while F.ScaledReg is not. 3920 F.canonicalize(*L); 3921 } 3922 (void)InsertFormula(LU, LUIdx, F); 3923 } 3924 3925 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3926 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3927 Formula Base) { 3928 // TODO: For now, just add the min and max offset, because it usually isn't 3929 // worthwhile looking at everything inbetween. 3930 SmallVector<int64_t, 2> Worklist; 3931 Worklist.push_back(LU.MinOffset); 3932 if (LU.MaxOffset != LU.MinOffset) 3933 Worklist.push_back(LU.MaxOffset); 3934 3935 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3936 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3937 if (Base.Scale == 1) 3938 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3939 /* IsScaledReg */ true); 3940 } 3941 3942 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3943 /// == y -> x*c == y*c. 3944 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3945 Formula Base) { 3946 if (LU.Kind != LSRUse::ICmpZero) return; 3947 3948 // Determine the integer type for the base formula. 3949 Type *IntTy = Base.getType(); 3950 if (!IntTy) return; 3951 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3952 3953 // Don't do this if there is more than one offset. 3954 if (LU.MinOffset != LU.MaxOffset) return; 3955 3956 // Check if transformation is valid. It is illegal to multiply pointer. 3957 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3958 return; 3959 for (const SCEV *BaseReg : Base.BaseRegs) 3960 if (BaseReg->getType()->isPointerTy()) 3961 return; 3962 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3963 3964 // Check each interesting stride. 3965 for (int64_t Factor : Factors) { 3966 // Check that Factor can be represented by IntTy 3967 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 3968 continue; 3969 // Check that the multiplication doesn't overflow. 3970 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3971 continue; 3972 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3973 assert(Factor != 0 && "Zero factor not expected!"); 3974 if (NewBaseOffset / Factor != Base.BaseOffset) 3975 continue; 3976 // If the offset will be truncated at this use, check that it is in bounds. 3977 if (!IntTy->isPointerTy() && 3978 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3979 continue; 3980 3981 // Check that multiplying with the use offset doesn't overflow. 3982 int64_t Offset = LU.MinOffset; 3983 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3984 continue; 3985 Offset = (uint64_t)Offset * Factor; 3986 if (Offset / Factor != LU.MinOffset) 3987 continue; 3988 // If the offset will be truncated at this use, check that it is in bounds. 3989 if (!IntTy->isPointerTy() && 3990 !ConstantInt::isValueValidForType(IntTy, Offset)) 3991 continue; 3992 3993 Formula F = Base; 3994 F.BaseOffset = NewBaseOffset; 3995 3996 // Check that this scale is legal. 3997 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3998 continue; 3999 4000 // Compensate for the use having MinOffset built into it. 4001 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 4002 4003 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4004 4005 // Check that multiplying with each base register doesn't overflow. 4006 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4007 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4008 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4009 goto next; 4010 } 4011 4012 // Check that multiplying with the scaled register doesn't overflow. 4013 if (F.ScaledReg) { 4014 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4015 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4016 continue; 4017 } 4018 4019 // Check that multiplying with the unfolded offset doesn't overflow. 4020 if (F.UnfoldedOffset != 0) { 4021 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 4022 Factor == -1) 4023 continue; 4024 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 4025 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 4026 continue; 4027 // If the offset will be truncated, check that it is in bounds. 4028 if (!IntTy->isPointerTy() && 4029 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 4030 continue; 4031 } 4032 4033 // If we make it here and it's legal, add it. 4034 (void)InsertFormula(LU, LUIdx, F); 4035 next:; 4036 } 4037 } 4038 4039 /// Generate stride factor reuse formulae by making use of scaled-offset address 4040 /// modes, for example. 4041 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4042 // Determine the integer type for the base formula. 4043 Type *IntTy = Base.getType(); 4044 if (!IntTy) return; 4045 4046 // If this Formula already has a scaled register, we can't add another one. 4047 // Try to unscale the formula to generate a better scale. 4048 if (Base.Scale != 0 && !Base.unscale()) 4049 return; 4050 4051 assert(Base.Scale == 0 && "unscale did not did its job!"); 4052 4053 // Check each interesting stride. 4054 for (int64_t Factor : Factors) { 4055 Base.Scale = Factor; 4056 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4057 // Check whether this scale is going to be legal. 4058 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4059 Base)) { 4060 // As a special-case, handle special out-of-loop Basic users specially. 4061 // TODO: Reconsider this special case. 4062 if (LU.Kind == LSRUse::Basic && 4063 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4064 LU.AccessTy, Base) && 4065 LU.AllFixupsOutsideLoop) 4066 LU.Kind = LSRUse::Special; 4067 else 4068 continue; 4069 } 4070 // For an ICmpZero, negating a solitary base register won't lead to 4071 // new solutions. 4072 if (LU.Kind == LSRUse::ICmpZero && 4073 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4074 continue; 4075 // For each addrec base reg, if its loop is current loop, apply the scale. 4076 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4077 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4078 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4079 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4080 if (FactorS->isZero()) 4081 continue; 4082 // Divide out the factor, ignoring high bits, since we'll be 4083 // scaling the value back up in the end. 4084 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4085 // TODO: This could be optimized to avoid all the copying. 4086 Formula F = Base; 4087 F.ScaledReg = Quotient; 4088 F.deleteBaseReg(F.BaseRegs[i]); 4089 // The canonical representation of 1*reg is reg, which is already in 4090 // Base. In that case, do not try to insert the formula, it will be 4091 // rejected anyway. 4092 if (F.Scale == 1 && (F.BaseRegs.empty() || 4093 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4094 continue; 4095 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4096 // non canonical Formula with ScaledReg's loop not being L. 4097 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4098 F.canonicalize(*L); 4099 (void)InsertFormula(LU, LUIdx, F); 4100 } 4101 } 4102 } 4103 } 4104 } 4105 4106 /// Generate reuse formulae from different IV types. 4107 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4108 // Don't bother truncating symbolic values. 4109 if (Base.BaseGV) return; 4110 4111 // Determine the integer type for the base formula. 4112 Type *DstTy = Base.getType(); 4113 if (!DstTy) return; 4114 if (DstTy->isPointerTy()) 4115 return; 4116 4117 // It is invalid to extend a pointer type so exit early if ScaledReg or 4118 // any of the BaseRegs are pointers. 4119 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4120 return; 4121 if (any_of(Base.BaseRegs, 4122 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4123 return; 4124 4125 for (Type *SrcTy : Types) { 4126 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4127 Formula F = Base; 4128 4129 // Sometimes SCEV is able to prove zero during ext transform. It may 4130 // happen if SCEV did not do all possible transforms while creating the 4131 // initial node (maybe due to depth limitations), but it can do them while 4132 // taking ext. 4133 if (F.ScaledReg) { 4134 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4135 if (NewScaledReg->isZero()) 4136 continue; 4137 F.ScaledReg = NewScaledReg; 4138 } 4139 bool HasZeroBaseReg = false; 4140 for (const SCEV *&BaseReg : F.BaseRegs) { 4141 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4142 if (NewBaseReg->isZero()) { 4143 HasZeroBaseReg = true; 4144 break; 4145 } 4146 BaseReg = NewBaseReg; 4147 } 4148 if (HasZeroBaseReg) 4149 continue; 4150 4151 // TODO: This assumes we've done basic processing on all uses and 4152 // have an idea what the register usage is. 4153 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4154 continue; 4155 4156 F.canonicalize(*L); 4157 (void)InsertFormula(LU, LUIdx, F); 4158 } 4159 } 4160 } 4161 4162 namespace { 4163 4164 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4165 /// modifications so that the search phase doesn't have to worry about the data 4166 /// structures moving underneath it. 4167 struct WorkItem { 4168 size_t LUIdx; 4169 int64_t Imm; 4170 const SCEV *OrigReg; 4171 4172 WorkItem(size_t LI, int64_t I, const SCEV *R) 4173 : LUIdx(LI), Imm(I), OrigReg(R) {} 4174 4175 void print(raw_ostream &OS) const; 4176 void dump() const; 4177 }; 4178 4179 } // end anonymous namespace 4180 4181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4182 void WorkItem::print(raw_ostream &OS) const { 4183 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4184 << " , add offset " << Imm; 4185 } 4186 4187 LLVM_DUMP_METHOD void WorkItem::dump() const { 4188 print(errs()); errs() << '\n'; 4189 } 4190 #endif 4191 4192 /// Look for registers which are a constant distance apart and try to form reuse 4193 /// opportunities between them. 4194 void LSRInstance::GenerateCrossUseConstantOffsets() { 4195 // Group the registers by their value without any added constant offset. 4196 using ImmMapTy = std::map<int64_t, const SCEV *>; 4197 4198 DenseMap<const SCEV *, ImmMapTy> Map; 4199 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4200 SmallVector<const SCEV *, 8> Sequence; 4201 for (const SCEV *Use : RegUses) { 4202 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4203 int64_t Imm = ExtractImmediate(Reg, SE); 4204 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4205 if (Pair.second) 4206 Sequence.push_back(Reg); 4207 Pair.first->second.insert(std::make_pair(Imm, Use)); 4208 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4209 } 4210 4211 // Now examine each set of registers with the same base value. Build up 4212 // a list of work to do and do the work in a separate step so that we're 4213 // not adding formulae and register counts while we're searching. 4214 SmallVector<WorkItem, 32> WorkItems; 4215 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4216 for (const SCEV *Reg : Sequence) { 4217 const ImmMapTy &Imms = Map.find(Reg)->second; 4218 4219 // It's not worthwhile looking for reuse if there's only one offset. 4220 if (Imms.size() == 1) 4221 continue; 4222 4223 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4224 for (const auto &Entry 4225 : Imms) dbgs() 4226 << ' ' << Entry.first; 4227 dbgs() << '\n'); 4228 4229 // Examine each offset. 4230 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4231 J != JE; ++J) { 4232 const SCEV *OrigReg = J->second; 4233 4234 int64_t JImm = J->first; 4235 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4236 4237 if (!isa<SCEVConstant>(OrigReg) && 4238 UsedByIndicesMap[Reg].count() == 1) { 4239 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4240 << '\n'); 4241 continue; 4242 } 4243 4244 // Conservatively examine offsets between this orig reg a few selected 4245 // other orig regs. 4246 int64_t First = Imms.begin()->first; 4247 int64_t Last = std::prev(Imms.end())->first; 4248 // Compute (First + Last) / 2 without overflow using the fact that 4249 // First + Last = 2 * (First + Last) + (First ^ Last). 4250 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4251 // If the result is negative and First is odd and Last even (or vice versa), 4252 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4253 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4254 ImmMapTy::const_iterator OtherImms[] = { 4255 Imms.begin(), std::prev(Imms.end()), 4256 Imms.lower_bound(Avg)}; 4257 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4258 ImmMapTy::const_iterator M = OtherImms[i]; 4259 if (M == J || M == JE) continue; 4260 4261 // Compute the difference between the two. 4262 int64_t Imm = (uint64_t)JImm - M->first; 4263 for (unsigned LUIdx : UsedByIndices.set_bits()) 4264 // Make a memo of this use, offset, and register tuple. 4265 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4266 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4267 } 4268 } 4269 } 4270 4271 Map.clear(); 4272 Sequence.clear(); 4273 UsedByIndicesMap.clear(); 4274 UniqueItems.clear(); 4275 4276 // Now iterate through the worklist and add new formulae. 4277 for (const WorkItem &WI : WorkItems) { 4278 size_t LUIdx = WI.LUIdx; 4279 LSRUse &LU = Uses[LUIdx]; 4280 int64_t Imm = WI.Imm; 4281 const SCEV *OrigReg = WI.OrigReg; 4282 4283 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4284 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4285 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4286 4287 // TODO: Use a more targeted data structure. 4288 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4289 Formula F = LU.Formulae[L]; 4290 // FIXME: The code for the scaled and unscaled registers looks 4291 // very similar but slightly different. Investigate if they 4292 // could be merged. That way, we would not have to unscale the 4293 // Formula. 4294 F.unscale(); 4295 // Use the immediate in the scaled register. 4296 if (F.ScaledReg == OrigReg) { 4297 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4298 // Don't create 50 + reg(-50). 4299 if (F.referencesReg(SE.getSCEV( 4300 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4301 continue; 4302 Formula NewF = F; 4303 NewF.BaseOffset = Offset; 4304 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4305 NewF)) 4306 continue; 4307 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4308 4309 // If the new scale is a constant in a register, and adding the constant 4310 // value to the immediate would produce a value closer to zero than the 4311 // immediate itself, then the formula isn't worthwhile. 4312 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4313 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4314 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4315 .ule(std::abs(NewF.BaseOffset))) 4316 continue; 4317 4318 // OK, looks good. 4319 NewF.canonicalize(*this->L); 4320 (void)InsertFormula(LU, LUIdx, NewF); 4321 } else { 4322 // Use the immediate in a base register. 4323 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4324 const SCEV *BaseReg = F.BaseRegs[N]; 4325 if (BaseReg != OrigReg) 4326 continue; 4327 Formula NewF = F; 4328 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4329 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4330 LU.Kind, LU.AccessTy, NewF)) { 4331 if (AMK == TTI::AMK_PostIndexed && 4332 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4333 continue; 4334 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4335 continue; 4336 NewF = F; 4337 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4338 } 4339 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4340 4341 // If the new formula has a constant in a register, and adding the 4342 // constant value to the immediate would produce a value closer to 4343 // zero than the immediate itself, then the formula isn't worthwhile. 4344 for (const SCEV *NewReg : NewF.BaseRegs) 4345 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4346 if ((C->getAPInt() + NewF.BaseOffset) 4347 .abs() 4348 .slt(std::abs(NewF.BaseOffset)) && 4349 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4350 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4351 goto skip_formula; 4352 4353 // Ok, looks good. 4354 NewF.canonicalize(*this->L); 4355 (void)InsertFormula(LU, LUIdx, NewF); 4356 break; 4357 skip_formula:; 4358 } 4359 } 4360 } 4361 } 4362 } 4363 4364 /// Generate formulae for each use. 4365 void 4366 LSRInstance::GenerateAllReuseFormulae() { 4367 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4368 // queries are more precise. 4369 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4370 LSRUse &LU = Uses[LUIdx]; 4371 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4372 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4373 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4374 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4375 } 4376 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4377 LSRUse &LU = Uses[LUIdx]; 4378 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4379 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4380 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4381 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4382 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4383 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4384 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4385 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4386 } 4387 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4388 LSRUse &LU = Uses[LUIdx]; 4389 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4390 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4391 } 4392 4393 GenerateCrossUseConstantOffsets(); 4394 4395 LLVM_DEBUG(dbgs() << "\n" 4396 "After generating reuse formulae:\n"; 4397 print_uses(dbgs())); 4398 } 4399 4400 /// If there are multiple formulae with the same set of registers used 4401 /// by other uses, pick the best one and delete the others. 4402 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4403 DenseSet<const SCEV *> VisitedRegs; 4404 SmallPtrSet<const SCEV *, 16> Regs; 4405 SmallPtrSet<const SCEV *, 16> LoserRegs; 4406 #ifndef NDEBUG 4407 bool ChangedFormulae = false; 4408 #endif 4409 4410 // Collect the best formula for each unique set of shared registers. This 4411 // is reset for each use. 4412 using BestFormulaeTy = 4413 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4414 4415 BestFormulaeTy BestFormulae; 4416 4417 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4418 LSRUse &LU = Uses[LUIdx]; 4419 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4420 dbgs() << '\n'); 4421 4422 bool Any = false; 4423 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4424 FIdx != NumForms; ++FIdx) { 4425 Formula &F = LU.Formulae[FIdx]; 4426 4427 // Some formulas are instant losers. For example, they may depend on 4428 // nonexistent AddRecs from other loops. These need to be filtered 4429 // immediately, otherwise heuristics could choose them over others leading 4430 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4431 // avoids the need to recompute this information across formulae using the 4432 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4433 // the corresponding bad register from the Regs set. 4434 Cost CostF(L, SE, TTI, AMK); 4435 Regs.clear(); 4436 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4437 if (CostF.isLoser()) { 4438 // During initial formula generation, undesirable formulae are generated 4439 // by uses within other loops that have some non-trivial address mode or 4440 // use the postinc form of the IV. LSR needs to provide these formulae 4441 // as the basis of rediscovering the desired formula that uses an AddRec 4442 // corresponding to the existing phi. Once all formulae have been 4443 // generated, these initial losers may be pruned. 4444 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4445 dbgs() << "\n"); 4446 } 4447 else { 4448 SmallVector<const SCEV *, 4> Key; 4449 for (const SCEV *Reg : F.BaseRegs) { 4450 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4451 Key.push_back(Reg); 4452 } 4453 if (F.ScaledReg && 4454 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4455 Key.push_back(F.ScaledReg); 4456 // Unstable sort by host order ok, because this is only used for 4457 // uniquifying. 4458 llvm::sort(Key); 4459 4460 std::pair<BestFormulaeTy::const_iterator, bool> P = 4461 BestFormulae.insert(std::make_pair(Key, FIdx)); 4462 if (P.second) 4463 continue; 4464 4465 Formula &Best = LU.Formulae[P.first->second]; 4466 4467 Cost CostBest(L, SE, TTI, AMK); 4468 Regs.clear(); 4469 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4470 if (CostF.isLess(CostBest)) 4471 std::swap(F, Best); 4472 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4473 dbgs() << "\n" 4474 " in favor of formula "; 4475 Best.print(dbgs()); dbgs() << '\n'); 4476 } 4477 #ifndef NDEBUG 4478 ChangedFormulae = true; 4479 #endif 4480 LU.DeleteFormula(F); 4481 --FIdx; 4482 --NumForms; 4483 Any = true; 4484 } 4485 4486 // Now that we've filtered out some formulae, recompute the Regs set. 4487 if (Any) 4488 LU.RecomputeRegs(LUIdx, RegUses); 4489 4490 // Reset this to prepare for the next use. 4491 BestFormulae.clear(); 4492 } 4493 4494 LLVM_DEBUG(if (ChangedFormulae) { 4495 dbgs() << "\n" 4496 "After filtering out undesirable candidates:\n"; 4497 print_uses(dbgs()); 4498 }); 4499 } 4500 4501 /// Estimate the worst-case number of solutions the solver might have to 4502 /// consider. It almost never considers this many solutions because it prune the 4503 /// search space, but the pruning isn't always sufficient. 4504 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4505 size_t Power = 1; 4506 for (const LSRUse &LU : Uses) { 4507 size_t FSize = LU.Formulae.size(); 4508 if (FSize >= ComplexityLimit) { 4509 Power = ComplexityLimit; 4510 break; 4511 } 4512 Power *= FSize; 4513 if (Power >= ComplexityLimit) 4514 break; 4515 } 4516 return Power; 4517 } 4518 4519 /// When one formula uses a superset of the registers of another formula, it 4520 /// won't help reduce register pressure (though it may not necessarily hurt 4521 /// register pressure); remove it to simplify the system. 4522 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4523 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4524 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4525 4526 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4527 "which use a superset of registers used by other " 4528 "formulae.\n"); 4529 4530 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4531 LSRUse &LU = Uses[LUIdx]; 4532 bool Any = false; 4533 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4534 Formula &F = LU.Formulae[i]; 4535 // Look for a formula with a constant or GV in a register. If the use 4536 // also has a formula with that same value in an immediate field, 4537 // delete the one that uses a register. 4538 for (SmallVectorImpl<const SCEV *>::const_iterator 4539 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4540 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4541 Formula NewF = F; 4542 //FIXME: Formulas should store bitwidth to do wrapping properly. 4543 // See PR41034. 4544 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4545 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4546 (I - F.BaseRegs.begin())); 4547 if (LU.HasFormulaWithSameRegs(NewF)) { 4548 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4549 dbgs() << '\n'); 4550 LU.DeleteFormula(F); 4551 --i; 4552 --e; 4553 Any = true; 4554 break; 4555 } 4556 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4557 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4558 if (!F.BaseGV) { 4559 Formula NewF = F; 4560 NewF.BaseGV = GV; 4561 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4562 (I - F.BaseRegs.begin())); 4563 if (LU.HasFormulaWithSameRegs(NewF)) { 4564 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4565 dbgs() << '\n'); 4566 LU.DeleteFormula(F); 4567 --i; 4568 --e; 4569 Any = true; 4570 break; 4571 } 4572 } 4573 } 4574 } 4575 } 4576 if (Any) 4577 LU.RecomputeRegs(LUIdx, RegUses); 4578 } 4579 4580 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4581 } 4582 } 4583 4584 /// When there are many registers for expressions like A, A+1, A+2, etc., 4585 /// allocate a single register for them. 4586 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4587 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4588 return; 4589 4590 LLVM_DEBUG( 4591 dbgs() << "The search space is too complex.\n" 4592 "Narrowing the search space by assuming that uses separated " 4593 "by a constant offset will use the same registers.\n"); 4594 4595 // This is especially useful for unrolled loops. 4596 4597 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4598 LSRUse &LU = Uses[LUIdx]; 4599 for (const Formula &F : LU.Formulae) { 4600 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4601 continue; 4602 4603 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4604 if (!LUThatHas) 4605 continue; 4606 4607 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4608 LU.Kind, LU.AccessTy)) 4609 continue; 4610 4611 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4612 4613 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4614 4615 // Transfer the fixups of LU to LUThatHas. 4616 for (LSRFixup &Fixup : LU.Fixups) { 4617 Fixup.Offset += F.BaseOffset; 4618 LUThatHas->pushFixup(Fixup); 4619 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4620 } 4621 4622 // Delete formulae from the new use which are no longer legal. 4623 bool Any = false; 4624 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4625 Formula &F = LUThatHas->Formulae[i]; 4626 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4627 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4628 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4629 LUThatHas->DeleteFormula(F); 4630 --i; 4631 --e; 4632 Any = true; 4633 } 4634 } 4635 4636 if (Any) 4637 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4638 4639 // Delete the old use. 4640 DeleteUse(LU, LUIdx); 4641 --LUIdx; 4642 --NumUses; 4643 break; 4644 } 4645 } 4646 4647 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4648 } 4649 4650 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4651 /// we've done more filtering, as it may be able to find more formulae to 4652 /// eliminate. 4653 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4654 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4655 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4656 4657 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4658 "undesirable dedicated registers.\n"); 4659 4660 FilterOutUndesirableDedicatedRegisters(); 4661 4662 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4663 } 4664 } 4665 4666 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4667 /// Pick the best one and delete the others. 4668 /// This narrowing heuristic is to keep as many formulae with different 4669 /// Scale and ScaledReg pair as possible while narrowing the search space. 4670 /// The benefit is that it is more likely to find out a better solution 4671 /// from a formulae set with more Scale and ScaledReg variations than 4672 /// a formulae set with the same Scale and ScaledReg. The picking winner 4673 /// reg heuristic will often keep the formulae with the same Scale and 4674 /// ScaledReg and filter others, and we want to avoid that if possible. 4675 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4676 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4677 return; 4678 4679 LLVM_DEBUG( 4680 dbgs() << "The search space is too complex.\n" 4681 "Narrowing the search space by choosing the best Formula " 4682 "from the Formulae with the same Scale and ScaledReg.\n"); 4683 4684 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4685 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4686 4687 BestFormulaeTy BestFormulae; 4688 #ifndef NDEBUG 4689 bool ChangedFormulae = false; 4690 #endif 4691 DenseSet<const SCEV *> VisitedRegs; 4692 SmallPtrSet<const SCEV *, 16> Regs; 4693 4694 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4695 LSRUse &LU = Uses[LUIdx]; 4696 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4697 dbgs() << '\n'); 4698 4699 // Return true if Formula FA is better than Formula FB. 4700 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4701 // First we will try to choose the Formula with fewer new registers. 4702 // For a register used by current Formula, the more the register is 4703 // shared among LSRUses, the less we increase the register number 4704 // counter of the formula. 4705 size_t FARegNum = 0; 4706 for (const SCEV *Reg : FA.BaseRegs) { 4707 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4708 FARegNum += (NumUses - UsedByIndices.count() + 1); 4709 } 4710 size_t FBRegNum = 0; 4711 for (const SCEV *Reg : FB.BaseRegs) { 4712 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4713 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4714 } 4715 if (FARegNum != FBRegNum) 4716 return FARegNum < FBRegNum; 4717 4718 // If the new register numbers are the same, choose the Formula with 4719 // less Cost. 4720 Cost CostFA(L, SE, TTI, AMK); 4721 Cost CostFB(L, SE, TTI, AMK); 4722 Regs.clear(); 4723 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4724 Regs.clear(); 4725 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4726 return CostFA.isLess(CostFB); 4727 }; 4728 4729 bool Any = false; 4730 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4731 ++FIdx) { 4732 Formula &F = LU.Formulae[FIdx]; 4733 if (!F.ScaledReg) 4734 continue; 4735 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4736 if (P.second) 4737 continue; 4738 4739 Formula &Best = LU.Formulae[P.first->second]; 4740 if (IsBetterThan(F, Best)) 4741 std::swap(F, Best); 4742 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4743 dbgs() << "\n" 4744 " in favor of formula "; 4745 Best.print(dbgs()); dbgs() << '\n'); 4746 #ifndef NDEBUG 4747 ChangedFormulae = true; 4748 #endif 4749 LU.DeleteFormula(F); 4750 --FIdx; 4751 --NumForms; 4752 Any = true; 4753 } 4754 if (Any) 4755 LU.RecomputeRegs(LUIdx, RegUses); 4756 4757 // Reset this to prepare for the next use. 4758 BestFormulae.clear(); 4759 } 4760 4761 LLVM_DEBUG(if (ChangedFormulae) { 4762 dbgs() << "\n" 4763 "After filtering out undesirable candidates:\n"; 4764 print_uses(dbgs()); 4765 }); 4766 } 4767 4768 /// If we are over the complexity limit, filter out any post-inc prefering 4769 /// variables to only post-inc values. 4770 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4771 if (AMK != TTI::AMK_PostIndexed) 4772 return; 4773 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4774 return; 4775 4776 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4777 "Narrowing the search space by choosing the lowest " 4778 "register Formula for PostInc Uses.\n"); 4779 4780 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4781 LSRUse &LU = Uses[LUIdx]; 4782 4783 if (LU.Kind != LSRUse::Address) 4784 continue; 4785 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4786 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4787 continue; 4788 4789 size_t MinRegs = std::numeric_limits<size_t>::max(); 4790 for (const Formula &F : LU.Formulae) 4791 MinRegs = std::min(F.getNumRegs(), MinRegs); 4792 4793 bool Any = false; 4794 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4795 ++FIdx) { 4796 Formula &F = LU.Formulae[FIdx]; 4797 if (F.getNumRegs() > MinRegs) { 4798 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4799 dbgs() << "\n"); 4800 LU.DeleteFormula(F); 4801 --FIdx; 4802 --NumForms; 4803 Any = true; 4804 } 4805 } 4806 if (Any) 4807 LU.RecomputeRegs(LUIdx, RegUses); 4808 4809 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4810 break; 4811 } 4812 4813 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4814 } 4815 4816 /// The function delete formulas with high registers number expectation. 4817 /// Assuming we don't know the value of each formula (already delete 4818 /// all inefficient), generate probability of not selecting for each 4819 /// register. 4820 /// For example, 4821 /// Use1: 4822 /// reg(a) + reg({0,+,1}) 4823 /// reg(a) + reg({-1,+,1}) + 1 4824 /// reg({a,+,1}) 4825 /// Use2: 4826 /// reg(b) + reg({0,+,1}) 4827 /// reg(b) + reg({-1,+,1}) + 1 4828 /// reg({b,+,1}) 4829 /// Use3: 4830 /// reg(c) + reg(b) + reg({0,+,1}) 4831 /// reg(c) + reg({b,+,1}) 4832 /// 4833 /// Probability of not selecting 4834 /// Use1 Use2 Use3 4835 /// reg(a) (1/3) * 1 * 1 4836 /// reg(b) 1 * (1/3) * (1/2) 4837 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4838 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4839 /// reg({a,+,1}) (2/3) * 1 * 1 4840 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4841 /// reg(c) 1 * 1 * 0 4842 /// 4843 /// Now count registers number mathematical expectation for each formula: 4844 /// Note that for each use we exclude probability if not selecting for the use. 4845 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4846 /// probabilty 1/3 of not selecting for Use1). 4847 /// Use1: 4848 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4849 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4850 /// reg({a,+,1}) 1 4851 /// Use2: 4852 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4853 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4854 /// reg({b,+,1}) 2/3 4855 /// Use3: 4856 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4857 /// reg(c) + reg({b,+,1}) 1 + 2/3 4858 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4859 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4860 return; 4861 // Ok, we have too many of formulae on our hands to conveniently handle. 4862 // Use a rough heuristic to thin out the list. 4863 4864 // Set of Regs wich will be 100% used in final solution. 4865 // Used in each formula of a solution (in example above this is reg(c)). 4866 // We can skip them in calculations. 4867 SmallPtrSet<const SCEV *, 4> UniqRegs; 4868 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4869 4870 // Map each register to probability of not selecting 4871 DenseMap <const SCEV *, float> RegNumMap; 4872 for (const SCEV *Reg : RegUses) { 4873 if (UniqRegs.count(Reg)) 4874 continue; 4875 float PNotSel = 1; 4876 for (const LSRUse &LU : Uses) { 4877 if (!LU.Regs.count(Reg)) 4878 continue; 4879 float P = LU.getNotSelectedProbability(Reg); 4880 if (P != 0.0) 4881 PNotSel *= P; 4882 else 4883 UniqRegs.insert(Reg); 4884 } 4885 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4886 } 4887 4888 LLVM_DEBUG( 4889 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4890 4891 // Delete formulas where registers number expectation is high. 4892 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4893 LSRUse &LU = Uses[LUIdx]; 4894 // If nothing to delete - continue. 4895 if (LU.Formulae.size() < 2) 4896 continue; 4897 // This is temporary solution to test performance. Float should be 4898 // replaced with round independent type (based on integers) to avoid 4899 // different results for different target builds. 4900 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4901 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4902 size_t MinIdx = 0; 4903 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4904 Formula &F = LU.Formulae[i]; 4905 float FRegNum = 0; 4906 float FARegNum = 0; 4907 for (const SCEV *BaseReg : F.BaseRegs) { 4908 if (UniqRegs.count(BaseReg)) 4909 continue; 4910 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4911 if (isa<SCEVAddRecExpr>(BaseReg)) 4912 FARegNum += 4913 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4914 } 4915 if (const SCEV *ScaledReg = F.ScaledReg) { 4916 if (!UniqRegs.count(ScaledReg)) { 4917 FRegNum += 4918 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4919 if (isa<SCEVAddRecExpr>(ScaledReg)) 4920 FARegNum += 4921 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4922 } 4923 } 4924 if (FMinRegNum > FRegNum || 4925 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4926 FMinRegNum = FRegNum; 4927 FMinARegNum = FARegNum; 4928 MinIdx = i; 4929 } 4930 } 4931 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4932 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4933 if (MinIdx != 0) 4934 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4935 while (LU.Formulae.size() != 1) { 4936 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4937 dbgs() << '\n'); 4938 LU.Formulae.pop_back(); 4939 } 4940 LU.RecomputeRegs(LUIdx, RegUses); 4941 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4942 Formula &F = LU.Formulae[0]; 4943 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4944 // When we choose the formula, the regs become unique. 4945 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4946 if (F.ScaledReg) 4947 UniqRegs.insert(F.ScaledReg); 4948 } 4949 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4950 } 4951 4952 /// Pick a register which seems likely to be profitable, and then in any use 4953 /// which has any reference to that register, delete all formulae which do not 4954 /// reference that register. 4955 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4956 // With all other options exhausted, loop until the system is simple 4957 // enough to handle. 4958 SmallPtrSet<const SCEV *, 4> Taken; 4959 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4960 // Ok, we have too many of formulae on our hands to conveniently handle. 4961 // Use a rough heuristic to thin out the list. 4962 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4963 4964 // Pick the register which is used by the most LSRUses, which is likely 4965 // to be a good reuse register candidate. 4966 const SCEV *Best = nullptr; 4967 unsigned BestNum = 0; 4968 for (const SCEV *Reg : RegUses) { 4969 if (Taken.count(Reg)) 4970 continue; 4971 if (!Best) { 4972 Best = Reg; 4973 BestNum = RegUses.getUsedByIndices(Reg).count(); 4974 } else { 4975 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4976 if (Count > BestNum) { 4977 Best = Reg; 4978 BestNum = Count; 4979 } 4980 } 4981 } 4982 assert(Best && "Failed to find best LSRUse candidate"); 4983 4984 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4985 << " will yield profitable reuse.\n"); 4986 Taken.insert(Best); 4987 4988 // In any use with formulae which references this register, delete formulae 4989 // which don't reference it. 4990 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4991 LSRUse &LU = Uses[LUIdx]; 4992 if (!LU.Regs.count(Best)) continue; 4993 4994 bool Any = false; 4995 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4996 Formula &F = LU.Formulae[i]; 4997 if (!F.referencesReg(Best)) { 4998 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4999 LU.DeleteFormula(F); 5000 --e; 5001 --i; 5002 Any = true; 5003 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5004 continue; 5005 } 5006 } 5007 5008 if (Any) 5009 LU.RecomputeRegs(LUIdx, RegUses); 5010 } 5011 5012 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5013 } 5014 } 5015 5016 /// If there are an extraordinary number of formulae to choose from, use some 5017 /// rough heuristics to prune down the number of formulae. This keeps the main 5018 /// solver from taking an extraordinary amount of time in some worst-case 5019 /// scenarios. 5020 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5021 NarrowSearchSpaceByDetectingSupersets(); 5022 NarrowSearchSpaceByCollapsingUnrolledCode(); 5023 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5024 if (FilterSameScaledReg) 5025 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5026 NarrowSearchSpaceByFilterPostInc(); 5027 if (LSRExpNarrow) 5028 NarrowSearchSpaceByDeletingCostlyFormulas(); 5029 else 5030 NarrowSearchSpaceByPickingWinnerRegs(); 5031 } 5032 5033 /// This is the recursive solver. 5034 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5035 Cost &SolutionCost, 5036 SmallVectorImpl<const Formula *> &Workspace, 5037 const Cost &CurCost, 5038 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5039 DenseSet<const SCEV *> &VisitedRegs) const { 5040 // Some ideas: 5041 // - prune more: 5042 // - use more aggressive filtering 5043 // - sort the formula so that the most profitable solutions are found first 5044 // - sort the uses too 5045 // - search faster: 5046 // - don't compute a cost, and then compare. compare while computing a cost 5047 // and bail early. 5048 // - track register sets with SmallBitVector 5049 5050 const LSRUse &LU = Uses[Workspace.size()]; 5051 5052 // If this use references any register that's already a part of the 5053 // in-progress solution, consider it a requirement that a formula must 5054 // reference that register in order to be considered. This prunes out 5055 // unprofitable searching. 5056 SmallSetVector<const SCEV *, 4> ReqRegs; 5057 for (const SCEV *S : CurRegs) 5058 if (LU.Regs.count(S)) 5059 ReqRegs.insert(S); 5060 5061 SmallPtrSet<const SCEV *, 16> NewRegs; 5062 Cost NewCost(L, SE, TTI, AMK); 5063 for (const Formula &F : LU.Formulae) { 5064 // Ignore formulae which may not be ideal in terms of register reuse of 5065 // ReqRegs. The formula should use all required registers before 5066 // introducing new ones. 5067 // This can sometimes (notably when trying to favour postinc) lead to 5068 // sub-optimial decisions. There it is best left to the cost modelling to 5069 // get correct. 5070 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5071 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5072 for (const SCEV *Reg : ReqRegs) { 5073 if ((F.ScaledReg && F.ScaledReg == Reg) || 5074 is_contained(F.BaseRegs, Reg)) { 5075 --NumReqRegsToFind; 5076 if (NumReqRegsToFind == 0) 5077 break; 5078 } 5079 } 5080 if (NumReqRegsToFind != 0) { 5081 // If none of the formulae satisfied the required registers, then we could 5082 // clear ReqRegs and try again. Currently, we simply give up in this case. 5083 continue; 5084 } 5085 } 5086 5087 // Evaluate the cost of the current formula. If it's already worse than 5088 // the current best, prune the search at that point. 5089 NewCost = CurCost; 5090 NewRegs = CurRegs; 5091 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5092 if (NewCost.isLess(SolutionCost)) { 5093 Workspace.push_back(&F); 5094 if (Workspace.size() != Uses.size()) { 5095 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5096 NewRegs, VisitedRegs); 5097 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5098 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5099 } else { 5100 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5101 dbgs() << ".\nRegs:\n"; 5102 for (const SCEV *S : NewRegs) dbgs() 5103 << "- " << *S << "\n"; 5104 dbgs() << '\n'); 5105 5106 SolutionCost = NewCost; 5107 Solution = Workspace; 5108 } 5109 Workspace.pop_back(); 5110 } 5111 } 5112 } 5113 5114 /// Choose one formula from each use. Return the results in the given Solution 5115 /// vector. 5116 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5117 SmallVector<const Formula *, 8> Workspace; 5118 Cost SolutionCost(L, SE, TTI, AMK); 5119 SolutionCost.Lose(); 5120 Cost CurCost(L, SE, TTI, AMK); 5121 SmallPtrSet<const SCEV *, 16> CurRegs; 5122 DenseSet<const SCEV *> VisitedRegs; 5123 Workspace.reserve(Uses.size()); 5124 5125 // SolveRecurse does all the work. 5126 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5127 CurRegs, VisitedRegs); 5128 if (Solution.empty()) { 5129 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5130 return; 5131 } 5132 5133 // Ok, we've now made all our decisions. 5134 LLVM_DEBUG(dbgs() << "\n" 5135 "The chosen solution requires "; 5136 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5137 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5138 dbgs() << " "; 5139 Uses[i].print(dbgs()); 5140 dbgs() << "\n" 5141 " "; 5142 Solution[i]->print(dbgs()); 5143 dbgs() << '\n'; 5144 }); 5145 5146 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5147 } 5148 5149 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5150 /// we can go while still being dominated by the input positions. This helps 5151 /// canonicalize the insert position, which encourages sharing. 5152 BasicBlock::iterator 5153 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5154 const SmallVectorImpl<Instruction *> &Inputs) 5155 const { 5156 Instruction *Tentative = &*IP; 5157 while (true) { 5158 bool AllDominate = true; 5159 Instruction *BetterPos = nullptr; 5160 // Don't bother attempting to insert before a catchswitch, their basic block 5161 // cannot have other non-PHI instructions. 5162 if (isa<CatchSwitchInst>(Tentative)) 5163 return IP; 5164 5165 for (Instruction *Inst : Inputs) { 5166 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5167 AllDominate = false; 5168 break; 5169 } 5170 // Attempt to find an insert position in the middle of the block, 5171 // instead of at the end, so that it can be used for other expansions. 5172 if (Tentative->getParent() == Inst->getParent() && 5173 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5174 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5175 } 5176 if (!AllDominate) 5177 break; 5178 if (BetterPos) 5179 IP = BetterPos->getIterator(); 5180 else 5181 IP = Tentative->getIterator(); 5182 5183 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5184 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5185 5186 BasicBlock *IDom; 5187 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5188 if (!Rung) return IP; 5189 Rung = Rung->getIDom(); 5190 if (!Rung) return IP; 5191 IDom = Rung->getBlock(); 5192 5193 // Don't climb into a loop though. 5194 const Loop *IDomLoop = LI.getLoopFor(IDom); 5195 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5196 if (IDomDepth <= IPLoopDepth && 5197 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5198 break; 5199 } 5200 5201 Tentative = IDom->getTerminator(); 5202 } 5203 5204 return IP; 5205 } 5206 5207 /// Determine an input position which will be dominated by the operands and 5208 /// which will dominate the result. 5209 BasicBlock::iterator 5210 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5211 const LSRFixup &LF, 5212 const LSRUse &LU, 5213 SCEVExpander &Rewriter) const { 5214 // Collect some instructions which must be dominated by the 5215 // expanding replacement. These must be dominated by any operands that 5216 // will be required in the expansion. 5217 SmallVector<Instruction *, 4> Inputs; 5218 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5219 Inputs.push_back(I); 5220 if (LU.Kind == LSRUse::ICmpZero) 5221 if (Instruction *I = 5222 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5223 Inputs.push_back(I); 5224 if (LF.PostIncLoops.count(L)) { 5225 if (LF.isUseFullyOutsideLoop(L)) 5226 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5227 else 5228 Inputs.push_back(IVIncInsertPos); 5229 } 5230 // The expansion must also be dominated by the increment positions of any 5231 // loops it for which it is using post-inc mode. 5232 for (const Loop *PIL : LF.PostIncLoops) { 5233 if (PIL == L) continue; 5234 5235 // Be dominated by the loop exit. 5236 SmallVector<BasicBlock *, 4> ExitingBlocks; 5237 PIL->getExitingBlocks(ExitingBlocks); 5238 if (!ExitingBlocks.empty()) { 5239 BasicBlock *BB = ExitingBlocks[0]; 5240 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5241 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5242 Inputs.push_back(BB->getTerminator()); 5243 } 5244 } 5245 5246 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5247 && !isa<DbgInfoIntrinsic>(LowestIP) && 5248 "Insertion point must be a normal instruction"); 5249 5250 // Then, climb up the immediate dominator tree as far as we can go while 5251 // still being dominated by the input positions. 5252 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5253 5254 // Don't insert instructions before PHI nodes. 5255 while (isa<PHINode>(IP)) ++IP; 5256 5257 // Ignore landingpad instructions. 5258 while (IP->isEHPad()) ++IP; 5259 5260 // Ignore debug intrinsics. 5261 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5262 5263 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5264 // IP consistent across expansions and allows the previously inserted 5265 // instructions to be reused by subsequent expansion. 5266 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5267 ++IP; 5268 5269 return IP; 5270 } 5271 5272 /// Emit instructions for the leading candidate expression for this LSRUse (this 5273 /// is called "expanding"). 5274 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5275 const Formula &F, BasicBlock::iterator IP, 5276 SCEVExpander &Rewriter, 5277 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5278 if (LU.RigidFormula) 5279 return LF.OperandValToReplace; 5280 5281 // Determine an input position which will be dominated by the operands and 5282 // which will dominate the result. 5283 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5284 Rewriter.setInsertPoint(&*IP); 5285 5286 // Inform the Rewriter if we have a post-increment use, so that it can 5287 // perform an advantageous expansion. 5288 Rewriter.setPostInc(LF.PostIncLoops); 5289 5290 // This is the type that the user actually needs. 5291 Type *OpTy = LF.OperandValToReplace->getType(); 5292 // This will be the type that we'll initially expand to. 5293 Type *Ty = F.getType(); 5294 if (!Ty) 5295 // No type known; just expand directly to the ultimate type. 5296 Ty = OpTy; 5297 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5298 // Expand directly to the ultimate type if it's the right size. 5299 Ty = OpTy; 5300 // This is the type to do integer arithmetic in. 5301 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5302 5303 // Build up a list of operands to add together to form the full base. 5304 SmallVector<const SCEV *, 8> Ops; 5305 5306 // Expand the BaseRegs portion. 5307 for (const SCEV *Reg : F.BaseRegs) { 5308 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5309 5310 // If we're expanding for a post-inc user, make the post-inc adjustment. 5311 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5312 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5313 } 5314 5315 // Expand the ScaledReg portion. 5316 Value *ICmpScaledV = nullptr; 5317 if (F.Scale != 0) { 5318 const SCEV *ScaledS = F.ScaledReg; 5319 5320 // If we're expanding for a post-inc user, make the post-inc adjustment. 5321 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5322 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5323 5324 if (LU.Kind == LSRUse::ICmpZero) { 5325 // Expand ScaleReg as if it was part of the base regs. 5326 if (F.Scale == 1) 5327 Ops.push_back( 5328 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5329 else { 5330 // An interesting way of "folding" with an icmp is to use a negated 5331 // scale, which we'll implement by inserting it into the other operand 5332 // of the icmp. 5333 assert(F.Scale == -1 && 5334 "The only scale supported by ICmpZero uses is -1!"); 5335 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5336 } 5337 } else { 5338 // Otherwise just expand the scaled register and an explicit scale, 5339 // which is expected to be matched as part of the address. 5340 5341 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5342 // Unless the addressing mode will not be folded. 5343 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5344 isAMCompletelyFolded(TTI, LU, F)) { 5345 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5346 Ops.clear(); 5347 Ops.push_back(SE.getUnknown(FullV)); 5348 } 5349 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5350 if (F.Scale != 1) 5351 ScaledS = 5352 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5353 Ops.push_back(ScaledS); 5354 } 5355 } 5356 5357 // Expand the GV portion. 5358 if (F.BaseGV) { 5359 // Flush the operand list to suppress SCEVExpander hoisting. 5360 if (!Ops.empty()) { 5361 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5362 Ops.clear(); 5363 Ops.push_back(SE.getUnknown(FullV)); 5364 } 5365 Ops.push_back(SE.getUnknown(F.BaseGV)); 5366 } 5367 5368 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5369 // unfolded offsets. LSR assumes they both live next to their uses. 5370 if (!Ops.empty()) { 5371 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5372 Ops.clear(); 5373 Ops.push_back(SE.getUnknown(FullV)); 5374 } 5375 5376 // Expand the immediate portion. 5377 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5378 if (Offset != 0) { 5379 if (LU.Kind == LSRUse::ICmpZero) { 5380 // The other interesting way of "folding" with an ICmpZero is to use a 5381 // negated immediate. 5382 if (!ICmpScaledV) 5383 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5384 else { 5385 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5386 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5387 } 5388 } else { 5389 // Just add the immediate values. These again are expected to be matched 5390 // as part of the address. 5391 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5392 } 5393 } 5394 5395 // Expand the unfolded offset portion. 5396 int64_t UnfoldedOffset = F.UnfoldedOffset; 5397 if (UnfoldedOffset != 0) { 5398 // Just add the immediate values. 5399 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5400 UnfoldedOffset))); 5401 } 5402 5403 // Emit instructions summing all the operands. 5404 const SCEV *FullS = Ops.empty() ? 5405 SE.getConstant(IntTy, 0) : 5406 SE.getAddExpr(Ops); 5407 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5408 5409 // We're done expanding now, so reset the rewriter. 5410 Rewriter.clearPostInc(); 5411 5412 // An ICmpZero Formula represents an ICmp which we're handling as a 5413 // comparison against zero. Now that we've expanded an expression for that 5414 // form, update the ICmp's other operand. 5415 if (LU.Kind == LSRUse::ICmpZero) { 5416 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5417 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5418 DeadInsts.emplace_back(OperandIsInstr); 5419 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5420 "a scale at the same time!"); 5421 if (F.Scale == -1) { 5422 if (ICmpScaledV->getType() != OpTy) { 5423 Instruction *Cast = 5424 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5425 OpTy, false), 5426 ICmpScaledV, OpTy, "tmp", CI); 5427 ICmpScaledV = Cast; 5428 } 5429 CI->setOperand(1, ICmpScaledV); 5430 } else { 5431 // A scale of 1 means that the scale has been expanded as part of the 5432 // base regs. 5433 assert((F.Scale == 0 || F.Scale == 1) && 5434 "ICmp does not support folding a global value and " 5435 "a scale at the same time!"); 5436 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5437 -(uint64_t)Offset); 5438 if (C->getType() != OpTy) 5439 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5440 OpTy, false), 5441 C, OpTy); 5442 5443 CI->setOperand(1, C); 5444 } 5445 } 5446 5447 return FullV; 5448 } 5449 5450 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5451 /// effectively happens in their predecessor blocks, so the expression may need 5452 /// to be expanded in multiple places. 5453 void LSRInstance::RewriteForPHI( 5454 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5455 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5456 DenseMap<BasicBlock *, Value *> Inserted; 5457 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5458 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5459 bool needUpdateFixups = false; 5460 BasicBlock *BB = PN->getIncomingBlock(i); 5461 5462 // If this is a critical edge, split the edge so that we do not insert 5463 // the code on all predecessor/successor paths. We do this unless this 5464 // is the canonical backedge for this loop, which complicates post-inc 5465 // users. 5466 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5467 !isa<IndirectBrInst>(BB->getTerminator()) && 5468 !isa<CatchSwitchInst>(BB->getTerminator())) { 5469 BasicBlock *Parent = PN->getParent(); 5470 Loop *PNLoop = LI.getLoopFor(Parent); 5471 if (!PNLoop || Parent != PNLoop->getHeader()) { 5472 // Split the critical edge. 5473 BasicBlock *NewBB = nullptr; 5474 if (!Parent->isLandingPad()) { 5475 NewBB = 5476 SplitCriticalEdge(BB, Parent, 5477 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5478 .setMergeIdenticalEdges() 5479 .setKeepOneInputPHIs()); 5480 } else { 5481 SmallVector<BasicBlock*, 2> NewBBs; 5482 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5483 NewBB = NewBBs[0]; 5484 } 5485 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5486 // phi predecessors are identical. The simple thing to do is skip 5487 // splitting in this case rather than complicate the API. 5488 if (NewBB) { 5489 // If PN is outside of the loop and BB is in the loop, we want to 5490 // move the block to be immediately before the PHI block, not 5491 // immediately after BB. 5492 if (L->contains(BB) && !L->contains(PN)) 5493 NewBB->moveBefore(PN->getParent()); 5494 5495 // Splitting the edge can reduce the number of PHI entries we have. 5496 e = PN->getNumIncomingValues(); 5497 BB = NewBB; 5498 i = PN->getBasicBlockIndex(BB); 5499 5500 needUpdateFixups = true; 5501 } 5502 } 5503 } 5504 5505 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5506 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5507 if (!Pair.second) 5508 PN->setIncomingValue(i, Pair.first->second); 5509 else { 5510 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5511 Rewriter, DeadInsts); 5512 5513 // If this is reuse-by-noop-cast, insert the noop cast. 5514 Type *OpTy = LF.OperandValToReplace->getType(); 5515 if (FullV->getType() != OpTy) 5516 FullV = 5517 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5518 OpTy, false), 5519 FullV, LF.OperandValToReplace->getType(), 5520 "tmp", BB->getTerminator()); 5521 5522 PN->setIncomingValue(i, FullV); 5523 Pair.first->second = FullV; 5524 } 5525 5526 // If LSR splits critical edge and phi node has other pending 5527 // fixup operands, we need to update those pending fixups. Otherwise 5528 // formulae will not be implemented completely and some instructions 5529 // will not be eliminated. 5530 if (needUpdateFixups) { 5531 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5532 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5533 // If fixup is supposed to rewrite some operand in the phi 5534 // that was just updated, it may be already moved to 5535 // another phi node. Such fixup requires update. 5536 if (Fixup.UserInst == PN) { 5537 // Check if the operand we try to replace still exists in the 5538 // original phi. 5539 bool foundInOriginalPHI = false; 5540 for (const auto &val : PN->incoming_values()) 5541 if (val == Fixup.OperandValToReplace) { 5542 foundInOriginalPHI = true; 5543 break; 5544 } 5545 5546 // If fixup operand found in original PHI - nothing to do. 5547 if (foundInOriginalPHI) 5548 continue; 5549 5550 // Otherwise it might be moved to another PHI and requires update. 5551 // If fixup operand not found in any of the incoming blocks that 5552 // means we have already rewritten it - nothing to do. 5553 for (const auto &Block : PN->blocks()) 5554 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5555 ++I) { 5556 PHINode *NewPN = cast<PHINode>(I); 5557 for (const auto &val : NewPN->incoming_values()) 5558 if (val == Fixup.OperandValToReplace) 5559 Fixup.UserInst = NewPN; 5560 } 5561 } 5562 } 5563 } 5564 } 5565 5566 /// Emit instructions for the leading candidate expression for this LSRUse (this 5567 /// is called "expanding"), and update the UserInst to reference the newly 5568 /// expanded value. 5569 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5570 const Formula &F, SCEVExpander &Rewriter, 5571 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5572 // First, find an insertion point that dominates UserInst. For PHI nodes, 5573 // find the nearest block which dominates all the relevant uses. 5574 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5575 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5576 } else { 5577 Value *FullV = 5578 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5579 5580 // If this is reuse-by-noop-cast, insert the noop cast. 5581 Type *OpTy = LF.OperandValToReplace->getType(); 5582 if (FullV->getType() != OpTy) { 5583 Instruction *Cast = 5584 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5585 FullV, OpTy, "tmp", LF.UserInst); 5586 FullV = Cast; 5587 } 5588 5589 // Update the user. ICmpZero is handled specially here (for now) because 5590 // Expand may have updated one of the operands of the icmp already, and 5591 // its new value may happen to be equal to LF.OperandValToReplace, in 5592 // which case doing replaceUsesOfWith leads to replacing both operands 5593 // with the same value. TODO: Reorganize this. 5594 if (LU.Kind == LSRUse::ICmpZero) 5595 LF.UserInst->setOperand(0, FullV); 5596 else 5597 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5598 } 5599 5600 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5601 DeadInsts.emplace_back(OperandIsInstr); 5602 } 5603 5604 /// Rewrite all the fixup locations with new values, following the chosen 5605 /// solution. 5606 void LSRInstance::ImplementSolution( 5607 const SmallVectorImpl<const Formula *> &Solution) { 5608 // Keep track of instructions we may have made dead, so that 5609 // we can remove them after we are done working. 5610 SmallVector<WeakTrackingVH, 16> DeadInsts; 5611 5612 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5613 false); 5614 #ifndef NDEBUG 5615 Rewriter.setDebugType(DEBUG_TYPE); 5616 #endif 5617 Rewriter.disableCanonicalMode(); 5618 Rewriter.enableLSRMode(); 5619 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5620 5621 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5622 for (const IVChain &Chain : IVChainVec) { 5623 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5624 Rewriter.setChainedPhi(PN); 5625 } 5626 5627 // Expand the new value definitions and update the users. 5628 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5629 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5630 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5631 Changed = true; 5632 } 5633 5634 for (const IVChain &Chain : IVChainVec) { 5635 GenerateIVChain(Chain, Rewriter, DeadInsts); 5636 Changed = true; 5637 } 5638 5639 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5640 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5641 ScalarEvolutionIVs.push_back(IV); 5642 5643 // Clean up after ourselves. This must be done before deleting any 5644 // instructions. 5645 Rewriter.clear(); 5646 5647 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5648 &TLI, MSSAU); 5649 5650 // In our cost analysis above, we assume that each addrec consumes exactly 5651 // one register, and arrange to have increments inserted just before the 5652 // latch to maximimize the chance this is true. However, if we reused 5653 // existing IVs, we now need to move the increments to match our 5654 // expectations. Otherwise, our cost modeling results in us having a 5655 // chosen a non-optimal result for the actual schedule. (And yes, this 5656 // scheduling decision does impact later codegen.) 5657 for (PHINode &PN : L->getHeader()->phis()) { 5658 BinaryOperator *BO = nullptr; 5659 Value *Start = nullptr, *Step = nullptr; 5660 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5661 continue; 5662 5663 switch (BO->getOpcode()) { 5664 case Instruction::Sub: 5665 if (BO->getOperand(0) != &PN) 5666 // sub is non-commutative - match handling elsewhere in LSR 5667 continue; 5668 break; 5669 case Instruction::Add: 5670 break; 5671 default: 5672 continue; 5673 }; 5674 5675 if (!isa<Constant>(Step)) 5676 // If not a constant step, might increase register pressure 5677 // (We assume constants have been canonicalized to RHS) 5678 continue; 5679 5680 if (BO->getParent() == IVIncInsertPos->getParent()) 5681 // Only bother moving across blocks. Isel can handle block local case. 5682 continue; 5683 5684 // Can we legally schedule inc at the desired point? 5685 if (!llvm::all_of(BO->uses(), 5686 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5687 continue; 5688 BO->moveBefore(IVIncInsertPos); 5689 Changed = true; 5690 } 5691 5692 5693 } 5694 5695 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5696 DominatorTree &DT, LoopInfo &LI, 5697 const TargetTransformInfo &TTI, AssumptionCache &AC, 5698 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5699 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5700 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5701 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5702 // If LoopSimplify form is not available, stay out of trouble. 5703 if (!L->isLoopSimplifyForm()) 5704 return; 5705 5706 // If there's no interesting work to be done, bail early. 5707 if (IU.empty()) return; 5708 5709 // If there's too much analysis to be done, bail early. We won't be able to 5710 // model the problem anyway. 5711 unsigned NumUsers = 0; 5712 for (const IVStrideUse &U : IU) { 5713 if (++NumUsers > MaxIVUsers) { 5714 (void)U; 5715 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5716 << "\n"); 5717 return; 5718 } 5719 // Bail out if we have a PHI on an EHPad that gets a value from a 5720 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5721 // no good place to stick any instructions. 5722 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5723 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5724 if (isa<FuncletPadInst>(FirstNonPHI) || 5725 isa<CatchSwitchInst>(FirstNonPHI)) 5726 for (BasicBlock *PredBB : PN->blocks()) 5727 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5728 return; 5729 } 5730 } 5731 5732 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5733 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5734 dbgs() << ":\n"); 5735 5736 // First, perform some low-level loop optimizations. 5737 OptimizeShadowIV(); 5738 OptimizeLoopTermCond(); 5739 5740 // If loop preparation eliminates all interesting IV users, bail. 5741 if (IU.empty()) return; 5742 5743 // Skip nested loops until we can model them better with formulae. 5744 if (!L->isInnermost()) { 5745 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5746 return; 5747 } 5748 5749 // Start collecting data and preparing for the solver. 5750 // If number of registers is not the major cost, we cannot benefit from the 5751 // current profitable chain optimization which is based on number of 5752 // registers. 5753 // FIXME: add profitable chain optimization for other kinds major cost, for 5754 // example number of instructions. 5755 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5756 CollectChains(); 5757 CollectInterestingTypesAndFactors(); 5758 CollectFixupsAndInitialFormulae(); 5759 CollectLoopInvariantFixupsAndFormulae(); 5760 5761 if (Uses.empty()) 5762 return; 5763 5764 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5765 print_uses(dbgs())); 5766 5767 // Now use the reuse data to generate a bunch of interesting ways 5768 // to formulate the values needed for the uses. 5769 GenerateAllReuseFormulae(); 5770 5771 FilterOutUndesirableDedicatedRegisters(); 5772 NarrowSearchSpaceUsingHeuristics(); 5773 5774 SmallVector<const Formula *, 8> Solution; 5775 Solve(Solution); 5776 5777 // Release memory that is no longer needed. 5778 Factors.clear(); 5779 Types.clear(); 5780 RegUses.clear(); 5781 5782 if (Solution.empty()) 5783 return; 5784 5785 #ifndef NDEBUG 5786 // Formulae should be legal. 5787 for (const LSRUse &LU : Uses) { 5788 for (const Formula &F : LU.Formulae) 5789 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5790 F) && "Illegal formula generated!"); 5791 }; 5792 #endif 5793 5794 // Now that we've decided what we want, make it so. 5795 ImplementSolution(Solution); 5796 } 5797 5798 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5799 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5800 if (Factors.empty() && Types.empty()) return; 5801 5802 OS << "LSR has identified the following interesting factors and types: "; 5803 bool First = true; 5804 5805 for (int64_t Factor : Factors) { 5806 if (!First) OS << ", "; 5807 First = false; 5808 OS << '*' << Factor; 5809 } 5810 5811 for (Type *Ty : Types) { 5812 if (!First) OS << ", "; 5813 First = false; 5814 OS << '(' << *Ty << ')'; 5815 } 5816 OS << '\n'; 5817 } 5818 5819 void LSRInstance::print_fixups(raw_ostream &OS) const { 5820 OS << "LSR is examining the following fixup sites:\n"; 5821 for (const LSRUse &LU : Uses) 5822 for (const LSRFixup &LF : LU.Fixups) { 5823 dbgs() << " "; 5824 LF.print(OS); 5825 OS << '\n'; 5826 } 5827 } 5828 5829 void LSRInstance::print_uses(raw_ostream &OS) const { 5830 OS << "LSR is examining the following uses:\n"; 5831 for (const LSRUse &LU : Uses) { 5832 dbgs() << " "; 5833 LU.print(OS); 5834 OS << '\n'; 5835 for (const Formula &F : LU.Formulae) { 5836 OS << " "; 5837 F.print(OS); 5838 OS << '\n'; 5839 } 5840 } 5841 } 5842 5843 void LSRInstance::print(raw_ostream &OS) const { 5844 print_factors_and_types(OS); 5845 print_fixups(OS); 5846 print_uses(OS); 5847 } 5848 5849 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5850 print(errs()); errs() << '\n'; 5851 } 5852 #endif 5853 5854 namespace { 5855 5856 class LoopStrengthReduce : public LoopPass { 5857 public: 5858 static char ID; // Pass ID, replacement for typeid 5859 5860 LoopStrengthReduce(); 5861 5862 private: 5863 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5864 void getAnalysisUsage(AnalysisUsage &AU) const override; 5865 }; 5866 5867 } // end anonymous namespace 5868 5869 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5870 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5871 } 5872 5873 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5874 // We split critical edges, so we change the CFG. However, we do update 5875 // many analyses if they are around. 5876 AU.addPreservedID(LoopSimplifyID); 5877 5878 AU.addRequired<LoopInfoWrapperPass>(); 5879 AU.addPreserved<LoopInfoWrapperPass>(); 5880 AU.addRequiredID(LoopSimplifyID); 5881 AU.addRequired<DominatorTreeWrapperPass>(); 5882 AU.addPreserved<DominatorTreeWrapperPass>(); 5883 AU.addRequired<ScalarEvolutionWrapperPass>(); 5884 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5885 AU.addRequired<AssumptionCacheTracker>(); 5886 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5887 // Requiring LoopSimplify a second time here prevents IVUsers from running 5888 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5889 AU.addRequiredID(LoopSimplifyID); 5890 AU.addRequired<IVUsersWrapperPass>(); 5891 AU.addPreserved<IVUsersWrapperPass>(); 5892 AU.addRequired<TargetTransformInfoWrapperPass>(); 5893 AU.addPreserved<MemorySSAWrapperPass>(); 5894 } 5895 5896 namespace { 5897 struct SCEVDbgValueBuilder { 5898 SCEVDbgValueBuilder() = default; 5899 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { 5900 Values = Base.Values; 5901 Expr = Base.Expr; 5902 } 5903 5904 /// The DIExpression as we translate the SCEV. 5905 SmallVector<uint64_t, 6> Expr; 5906 /// The location ops of the DIExpression. 5907 SmallVector<llvm::ValueAsMetadata *, 2> Values; 5908 5909 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 5910 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 5911 5912 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 5913 /// in the set of values referenced by the expression. 5914 void pushValue(llvm::Value *V) { 5915 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 5916 auto *It = 5917 std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V)); 5918 unsigned ArgIndex = 0; 5919 if (It != Values.end()) { 5920 ArgIndex = std::distance(Values.begin(), It); 5921 } else { 5922 ArgIndex = Values.size(); 5923 Values.push_back(llvm::ValueAsMetadata::get(V)); 5924 } 5925 Expr.push_back(ArgIndex); 5926 } 5927 5928 void pushValue(const SCEVUnknown *U) { 5929 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 5930 pushValue(V); 5931 } 5932 5933 bool pushConst(const SCEVConstant *C) { 5934 if (C->getAPInt().getMinSignedBits() > 64) 5935 return false; 5936 Expr.push_back(llvm::dwarf::DW_OP_consts); 5937 Expr.push_back(C->getAPInt().getSExtValue()); 5938 return true; 5939 } 5940 5941 /// Several SCEV types are sequences of the same arithmetic operator applied 5942 /// to constants and values that may be extended or truncated. 5943 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 5944 uint64_t DwarfOp) { 5945 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 5946 "Expected arithmetic SCEV type"); 5947 bool Success = true; 5948 unsigned EmitOperator = 0; 5949 for (auto &Op : CommExpr->operands()) { 5950 Success &= pushSCEV(Op); 5951 5952 if (EmitOperator >= 1) 5953 pushOperator(DwarfOp); 5954 ++EmitOperator; 5955 } 5956 return Success; 5957 } 5958 5959 // TODO: Identify and omit noop casts. 5960 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 5961 const llvm::SCEV *Inner = C->getOperand(0); 5962 const llvm::Type *Type = C->getType(); 5963 uint64_t ToWidth = Type->getIntegerBitWidth(); 5964 bool Success = pushSCEV(Inner); 5965 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 5966 IsSigned ? llvm::dwarf::DW_ATE_signed 5967 : llvm::dwarf::DW_ATE_unsigned}; 5968 for (const auto &Op : CastOps) 5969 pushOperator(Op); 5970 return Success; 5971 } 5972 5973 // TODO: MinMax - although these haven't been encountered in the test suite. 5974 bool pushSCEV(const llvm::SCEV *S) { 5975 bool Success = true; 5976 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 5977 Success &= pushConst(StartInt); 5978 5979 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5980 if (!U->getValue()) 5981 return false; 5982 pushValue(U->getValue()); 5983 5984 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 5985 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 5986 5987 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5988 Success &= pushSCEV(UDiv->getLHS()); 5989 Success &= pushSCEV(UDiv->getRHS()); 5990 pushOperator(llvm::dwarf::DW_OP_div); 5991 5992 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 5993 // Assert if a new and unknown SCEVCastEXpr type is encountered. 5994 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 5995 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 5996 "Unexpected cast type in SCEV."); 5997 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 5998 5999 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6000 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6001 6002 } else if (isa<SCEVAddRecExpr>(S)) { 6003 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6004 // unsupported. 6005 return false; 6006 6007 } else { 6008 return false; 6009 } 6010 return Success; 6011 } 6012 6013 void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) { 6014 // Re-state assumption that this dbg.value is not variadic. Any remaining 6015 // opcodes in its expression operate on a single value already on the 6016 // expression stack. Prepend our operations, which will re-compute and 6017 // place that value on the expression stack. 6018 assert(!DI.hasArgList()); 6019 auto *NewExpr = 6020 DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true); 6021 DI.setExpression(NewExpr); 6022 6023 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values); 6024 DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef)); 6025 } 6026 6027 /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the 6028 /// location op index 0. 6029 void setShortFinalExpression(llvm::DbgValueInst &DI, 6030 const DIExpression *OldExpr) { 6031 assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) && 6032 "Expected DW_OP_llvm_arg and 0."); 6033 DI.replaceVariableLocationOp( 6034 0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0])); 6035 6036 // See setFinalExpression: prepend our opcodes on the start of any old 6037 // expression opcodes. 6038 assert(!DI.hasArgList()); 6039 llvm::SmallVector<uint64_t, 6> FinalExpr(llvm::drop_begin(Expr, 2)); 6040 auto *NewExpr = 6041 DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true); 6042 DI.setExpression(NewExpr); 6043 } 6044 6045 /// Once the IV and variable SCEV translation is complete, write it to the 6046 /// source DVI. 6047 void applyExprToDbgValue(llvm::DbgValueInst &DI, 6048 const DIExpression *OldExpr) { 6049 assert(!Expr.empty() && "Unexpected empty expression."); 6050 // Emit a simpler form if only a single location is referenced. 6051 if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && 6052 Expr[1] == 0) { 6053 setShortFinalExpression(DI, OldExpr); 6054 } else { 6055 setFinalExpression(DI, OldExpr); 6056 } 6057 } 6058 6059 /// Return true if the combination of arithmetic operator and underlying 6060 /// SCEV constant value is an identity function. 6061 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6062 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6063 if (C->getAPInt().getMinSignedBits() > 64) 6064 return false; 6065 int64_t I = C->getAPInt().getSExtValue(); 6066 switch (Op) { 6067 case llvm::dwarf::DW_OP_plus: 6068 case llvm::dwarf::DW_OP_minus: 6069 return I == 0; 6070 case llvm::dwarf::DW_OP_mul: 6071 case llvm::dwarf::DW_OP_div: 6072 return I == 1; 6073 } 6074 } 6075 return false; 6076 } 6077 6078 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6079 /// builder's expression stack. The stack should already contain an 6080 /// expression for the iteration count, so that it can be multiplied by 6081 /// the stride and added to the start. 6082 /// Components of the expression are omitted if they are an identity function. 6083 /// Chain (non-affine) SCEVs are not supported. 6084 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6085 assert(SAR.isAffine() && "Expected affine SCEV"); 6086 // TODO: Is this check needed? 6087 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6088 return false; 6089 6090 const SCEV *Start = SAR.getStart(); 6091 const SCEV *Stride = SAR.getStepRecurrence(SE); 6092 6093 // Skip pushing arithmetic noops. 6094 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6095 if (!pushSCEV(Stride)) 6096 return false; 6097 pushOperator(llvm::dwarf::DW_OP_mul); 6098 } 6099 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6100 if (!pushSCEV(Start)) 6101 return false; 6102 pushOperator(llvm::dwarf::DW_OP_plus); 6103 } 6104 return true; 6105 } 6106 6107 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6108 /// builder's expression stack. The stack should already contain an 6109 /// expression for the iteration count, so that it can be multiplied by 6110 /// the stride and added to the start. 6111 /// Components of the expression are omitted if they are an identity function. 6112 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6113 ScalarEvolution &SE) { 6114 assert(SAR.isAffine() && "Expected affine SCEV"); 6115 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6116 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6117 << SAR << '\n'); 6118 return false; 6119 } 6120 const SCEV *Start = SAR.getStart(); 6121 const SCEV *Stride = SAR.getStepRecurrence(SE); 6122 6123 // Skip pushing arithmetic noops. 6124 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6125 if (!pushSCEV(Start)) 6126 return false; 6127 pushOperator(llvm::dwarf::DW_OP_minus); 6128 } 6129 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6130 if (!pushSCEV(Stride)) 6131 return false; 6132 pushOperator(llvm::dwarf::DW_OP_div); 6133 } 6134 return true; 6135 } 6136 }; 6137 6138 struct DVIRecoveryRec { 6139 DbgValueInst *DVI; 6140 DIExpression *Expr; 6141 Metadata *LocationOp; 6142 const llvm::SCEV *SCEV; 6143 }; 6144 } // namespace 6145 6146 static void RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI, 6147 const SCEVDbgValueBuilder &IterationCount, 6148 ScalarEvolution &SE) { 6149 // LSR may add locations to previously single location-op DVIs which 6150 // are currently not supported. 6151 if (CachedDVI.DVI->getNumVariableLocationOps() != 1) 6152 return; 6153 6154 // SCEVs for SSA values are most frquently of the form 6155 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6156 // This is because %a is a PHI node that is not the IV. However, these 6157 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6158 // so its not expected this point will be reached. 6159 if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV)) 6160 return; 6161 6162 LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: " 6163 << *CachedDVI.SCEV << '\n'); 6164 6165 const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV); 6166 if (!Rec->isAffine()) 6167 return; 6168 6169 if (CachedDVI.SCEV->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6170 return; 6171 6172 // Initialise a new builder with the iteration count expression. In 6173 // combination with the value's SCEV this enables recovery. 6174 SCEVDbgValueBuilder RecoverValue(IterationCount); 6175 if (!RecoverValue.SCEVToValueExpr(*Rec, SE)) 6176 return; 6177 6178 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n'); 6179 RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr); 6180 LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n'); 6181 } 6182 6183 static void RewriteDVIUsingOffset(DVIRecoveryRec &DVIRec, llvm::PHINode &IV, 6184 int64_t Offset) { 6185 assert(!DVIRec.DVI->hasArgList() && "Expected single location-op dbg.value."); 6186 DbgValueInst *DVI = DVIRec.DVI; 6187 SmallVector<uint64_t, 8> Ops; 6188 DIExpression::appendOffset(Ops, Offset); 6189 DIExpression *Expr = DIExpression::prependOpcodes(DVIRec.Expr, Ops, true); 6190 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *DVIRec.DVI << '\n'); 6191 DVI->setExpression(Expr); 6192 llvm::Value *ValIV = dyn_cast<llvm::Value>(&IV); 6193 DVI->replaceVariableLocationOp( 6194 0u, llvm::MetadataAsValue::get(DVI->getContext(), 6195 llvm::ValueAsMetadata::get(ValIV))); 6196 LLVM_DEBUG(dbgs() << "scev-salvage: updated with offset to IV: " 6197 << *DVIRec.DVI << '\n'); 6198 } 6199 6200 static void 6201 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE, 6202 llvm::PHINode *LSRInductionVar, 6203 SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) { 6204 if (DVIToUpdate.empty()) 6205 return; 6206 6207 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6208 assert(SCEVInductionVar && 6209 "Anticipated a SCEV for the post-LSR induction variable"); 6210 6211 if (const SCEVAddRecExpr *IVAddRec = 6212 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6213 if (!IVAddRec->isAffine()) 6214 return; 6215 6216 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6217 return; 6218 6219 // The iteration count is required to recover location values. 6220 SCEVDbgValueBuilder IterCountExpr; 6221 IterCountExpr.pushValue(LSRInductionVar); 6222 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6223 return; 6224 6225 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6226 << '\n'); 6227 6228 // Needn't salvage if the location op hasn't been undef'd by LSR. 6229 for (auto &DVIRec : DVIToUpdate) { 6230 if (!DVIRec.DVI->isUndef()) 6231 continue; 6232 6233 // Some DVIs that were single location-op when cached are now multi-op, 6234 // due to LSR optimisations. However, multi-op salvaging is not yet 6235 // supported by SCEV salvaging. But, we can attempt a salvage by restoring 6236 // the pre-LSR single-op expression. 6237 if (DVIRec.DVI->hasArgList()) { 6238 if (!DVIRec.DVI->getVariableLocationOp(0)) 6239 continue; 6240 llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType(); 6241 DVIRec.DVI->setRawLocation( 6242 llvm::ValueAsMetadata::get(UndefValue::get(Ty))); 6243 DVIRec.DVI->setExpression(DVIRec.Expr); 6244 } 6245 6246 LLVM_DEBUG(dbgs() << "scev-salvage: value to recover SCEV: " 6247 << *DVIRec.SCEV << '\n'); 6248 6249 // Create a simple expression if the IV and value to salvage SCEVs 6250 // start values differ by only a constant value. 6251 if (Optional<APInt> Offset = 6252 SE.computeConstantDifference(DVIRec.SCEV, SCEVInductionVar)) { 6253 if (Offset.getValue().getMinSignedBits() <= 64) 6254 RewriteDVIUsingOffset(DVIRec, *LSRInductionVar, 6255 Offset.getValue().getSExtValue()); 6256 } else { 6257 RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE); 6258 } 6259 } 6260 } 6261 } 6262 6263 /// Identify and cache salvageable DVI locations and expressions along with the 6264 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6265 /// cacheing and salvaging. 6266 static void 6267 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE, 6268 SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs, 6269 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6270 for (auto &B : L->getBlocks()) { 6271 for (auto &I : *B) { 6272 auto DVI = dyn_cast<DbgValueInst>(&I); 6273 if (!DVI) 6274 continue; 6275 6276 if (DVI->isUndef()) 6277 continue; 6278 6279 if (DVI->hasArgList()) 6280 continue; 6281 6282 if (!DVI->getVariableLocationOp(0) || 6283 !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType())) 6284 continue; 6285 6286 // SCEVUnknown wraps an llvm::Value, it does not have a start and stride. 6287 // Therefore no translation to DIExpression is performed. 6288 const SCEV *S = SE.getSCEV(DVI->getVariableLocationOp(0)); 6289 if (isa<SCEVUnknown>(S)) 6290 continue; 6291 6292 // Avoid wasting resources generating an expression containing undef. 6293 if (SE.containsUndefs(S)) 6294 continue; 6295 6296 SalvageableDVISCEVs.push_back( 6297 {DVI, DVI->getExpression(), DVI->getRawLocation(), 6298 SE.getSCEV(DVI->getVariableLocationOp(0))}); 6299 DVIHandles.insert(DVI); 6300 } 6301 } 6302 } 6303 6304 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6305 /// any PHi from the loop header is usable, but may have less chance of 6306 /// surviving subsequent transforms. 6307 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6308 const LSRInstance &LSR) { 6309 6310 auto IsSuitableIV = [&](PHINode *P) { 6311 if (!SE.isSCEVable(P->getType())) 6312 return false; 6313 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 6314 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 6315 return false; 6316 }; 6317 6318 // For now, just pick the first IV that was generated and inserted by 6319 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 6320 // by subsequent transforms. 6321 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6322 if (!IV) 6323 continue; 6324 6325 // There should only be PHI node IVs. 6326 PHINode *P = cast<PHINode>(&*IV); 6327 6328 if (IsSuitableIV(P)) 6329 return P; 6330 } 6331 6332 for (PHINode &P : L.getHeader()->phis()) { 6333 if (IsSuitableIV(&P)) 6334 return &P; 6335 } 6336 return nullptr; 6337 } 6338 6339 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6340 DominatorTree &DT, LoopInfo &LI, 6341 const TargetTransformInfo &TTI, 6342 AssumptionCache &AC, TargetLibraryInfo &TLI, 6343 MemorySSA *MSSA) { 6344 6345 // Debug preservation - before we start removing anything identify which DVI 6346 // meet the salvageable criteria and store their DIExpression and SCEVs. 6347 SmallVector<DVIRecoveryRec, 2> SalvageableDVI; 6348 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6349 DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles); 6350 6351 bool Changed = false; 6352 std::unique_ptr<MemorySSAUpdater> MSSAU; 6353 if (MSSA) 6354 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6355 6356 // Run the main LSR transformation. 6357 const LSRInstance &Reducer = 6358 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6359 Changed |= Reducer.getChanged(); 6360 6361 // Remove any extra phis created by processing inner loops. 6362 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6363 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6364 SmallVector<WeakTrackingVH, 16> DeadInsts; 6365 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6366 SCEVExpander Rewriter(SE, DL, "lsr", false); 6367 #ifndef NDEBUG 6368 Rewriter.setDebugType(DEBUG_TYPE); 6369 #endif 6370 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6371 if (numFolded) { 6372 Changed = true; 6373 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6374 MSSAU.get()); 6375 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6376 } 6377 } 6378 6379 if (SalvageableDVI.empty()) 6380 return Changed; 6381 6382 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 6383 // expressions composed using the derived iteration count. 6384 // TODO: Allow for multiple IV references for nested AddRecSCEVs 6385 for (auto &L : LI) { 6386 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 6387 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI); 6388 else { 6389 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 6390 "could not be identified.\n"); 6391 } 6392 } 6393 6394 DVIHandles.clear(); 6395 return Changed; 6396 } 6397 6398 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 6399 if (skipLoop(L)) 6400 return false; 6401 6402 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 6403 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6404 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6405 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6406 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 6407 *L->getHeader()->getParent()); 6408 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6409 *L->getHeader()->getParent()); 6410 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6411 *L->getHeader()->getParent()); 6412 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6413 MemorySSA *MSSA = nullptr; 6414 if (MSSAAnalysis) 6415 MSSA = &MSSAAnalysis->getMSSA(); 6416 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6417 } 6418 6419 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6420 LoopStandardAnalysisResults &AR, 6421 LPMUpdater &) { 6422 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6423 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6424 return PreservedAnalyses::all(); 6425 6426 auto PA = getLoopPassPreservedAnalyses(); 6427 if (AR.MSSA) 6428 PA.preserve<MemorySSAAnalysis>(); 6429 return PA; 6430 } 6431 6432 char LoopStrengthReduce::ID = 0; 6433 6434 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6435 "Loop Strength Reduction", false, false) 6436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6437 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6438 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6439 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6440 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6441 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6442 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6443 "Loop Strength Reduction", false, false) 6444 6445 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6446