1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetTransformInfo.h" 79 #include "llvm/Config/llvm-config.h" 80 #include "llvm/IR/BasicBlock.h" 81 #include "llvm/IR/Constant.h" 82 #include "llvm/IR/Constants.h" 83 #include "llvm/IR/DerivedTypes.h" 84 #include "llvm/IR/Dominators.h" 85 #include "llvm/IR/GlobalValue.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/Intrinsics.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/OperandTraits.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/IR/ValueHandle.h" 101 #include "llvm/InitializePasses.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Transforms/Scalar.h" 111 #include "llvm/Transforms/Utils.h" 112 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 113 #include "llvm/Transforms/Utils/Local.h" 114 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 115 #include <algorithm> 116 #include <cassert> 117 #include <cstddef> 118 #include <cstdint> 119 #include <cstdlib> 120 #include <iterator> 121 #include <limits> 122 #include <map> 123 #include <numeric> 124 #include <utility> 125 126 using namespace llvm; 127 128 #define DEBUG_TYPE "loop-reduce" 129 130 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 131 /// bail out. This threshold is far beyond the number of users that LSR can 132 /// conceivably solve, so it should not affect generated code, but catches the 133 /// worst cases before LSR burns too much compile time and stack space. 134 static const unsigned MaxIVUsers = 200; 135 136 // Temporary flag to cleanup congruent phis after LSR phi expansion. 137 // It's currently disabled until we can determine whether it's truly useful or 138 // not. The flag should be removed after the v3.0 release. 139 // This is now needed for ivchains. 140 static cl::opt<bool> EnablePhiElim( 141 "enable-lsr-phielim", cl::Hidden, cl::init(true), 142 cl::desc("Enable LSR phi elimination")); 143 144 // The flag adds instruction count to solutions cost comparision. 145 static cl::opt<bool> InsnsCost( 146 "lsr-insns-cost", cl::Hidden, cl::init(true), 147 cl::desc("Add instruction count to a LSR cost model")); 148 149 // Flag to choose how to narrow complex lsr solution 150 static cl::opt<bool> LSRExpNarrow( 151 "lsr-exp-narrow", cl::Hidden, cl::init(false), 152 cl::desc("Narrow LSR complex solution using" 153 " expectation of registers number")); 154 155 // Flag to narrow search space by filtering non-optimal formulae with 156 // the same ScaledReg and Scale. 157 static cl::opt<bool> FilterSameScaledReg( 158 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 159 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 160 " with the same ScaledReg and Scale")); 161 162 static cl::opt<bool> EnableBackedgeIndexing( 163 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 164 cl::desc("Enable the generation of cross iteration indexed memops")); 165 166 static cl::opt<unsigned> ComplexityLimit( 167 "lsr-complexity-limit", cl::Hidden, 168 cl::init(std::numeric_limits<uint16_t>::max()), 169 cl::desc("LSR search space complexity limit")); 170 171 static cl::opt<unsigned> SetupCostDepthLimit( 172 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 173 cl::desc("The limit on recursion depth for LSRs setup cost")); 174 175 #ifndef NDEBUG 176 // Stress test IV chain generation. 177 static cl::opt<bool> StressIVChain( 178 "stress-ivchain", cl::Hidden, cl::init(false), 179 cl::desc("Stress test LSR IV chains")); 180 #else 181 static bool StressIVChain = false; 182 #endif 183 184 namespace { 185 186 struct MemAccessTy { 187 /// Used in situations where the accessed memory type is unknown. 188 static const unsigned UnknownAddressSpace = 189 std::numeric_limits<unsigned>::max(); 190 191 Type *MemTy = nullptr; 192 unsigned AddrSpace = UnknownAddressSpace; 193 194 MemAccessTy() = default; 195 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 196 197 bool operator==(MemAccessTy Other) const { 198 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 199 } 200 201 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 202 203 static MemAccessTy getUnknown(LLVMContext &Ctx, 204 unsigned AS = UnknownAddressSpace) { 205 return MemAccessTy(Type::getVoidTy(Ctx), AS); 206 } 207 208 Type *getType() { return MemTy; } 209 }; 210 211 /// This class holds data which is used to order reuse candidates. 212 class RegSortData { 213 public: 214 /// This represents the set of LSRUse indices which reference 215 /// a particular register. 216 SmallBitVector UsedByIndices; 217 218 void print(raw_ostream &OS) const; 219 void dump() const; 220 }; 221 222 } // end anonymous namespace 223 224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 225 void RegSortData::print(raw_ostream &OS) const { 226 OS << "[NumUses=" << UsedByIndices.count() << ']'; 227 } 228 229 LLVM_DUMP_METHOD void RegSortData::dump() const { 230 print(errs()); errs() << '\n'; 231 } 232 #endif 233 234 namespace { 235 236 /// Map register candidates to information about how they are used. 237 class RegUseTracker { 238 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 239 240 RegUsesTy RegUsesMap; 241 SmallVector<const SCEV *, 16> RegSequence; 242 243 public: 244 void countRegister(const SCEV *Reg, size_t LUIdx); 245 void dropRegister(const SCEV *Reg, size_t LUIdx); 246 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 247 248 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 249 250 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 251 252 void clear(); 253 254 using iterator = SmallVectorImpl<const SCEV *>::iterator; 255 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 256 257 iterator begin() { return RegSequence.begin(); } 258 iterator end() { return RegSequence.end(); } 259 const_iterator begin() const { return RegSequence.begin(); } 260 const_iterator end() const { return RegSequence.end(); } 261 }; 262 263 } // end anonymous namespace 264 265 void 266 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 267 std::pair<RegUsesTy::iterator, bool> Pair = 268 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 269 RegSortData &RSD = Pair.first->second; 270 if (Pair.second) 271 RegSequence.push_back(Reg); 272 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 273 RSD.UsedByIndices.set(LUIdx); 274 } 275 276 void 277 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 278 RegUsesTy::iterator It = RegUsesMap.find(Reg); 279 assert(It != RegUsesMap.end()); 280 RegSortData &RSD = It->second; 281 assert(RSD.UsedByIndices.size() > LUIdx); 282 RSD.UsedByIndices.reset(LUIdx); 283 } 284 285 void 286 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 287 assert(LUIdx <= LastLUIdx); 288 289 // Update RegUses. The data structure is not optimized for this purpose; 290 // we must iterate through it and update each of the bit vectors. 291 for (auto &Pair : RegUsesMap) { 292 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 293 if (LUIdx < UsedByIndices.size()) 294 UsedByIndices[LUIdx] = 295 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 296 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 297 } 298 } 299 300 bool 301 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 302 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 303 if (I == RegUsesMap.end()) 304 return false; 305 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 306 int i = UsedByIndices.find_first(); 307 if (i == -1) return false; 308 if ((size_t)i != LUIdx) return true; 309 return UsedByIndices.find_next(i) != -1; 310 } 311 312 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 313 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 314 assert(I != RegUsesMap.end() && "Unknown register!"); 315 return I->second.UsedByIndices; 316 } 317 318 void RegUseTracker::clear() { 319 RegUsesMap.clear(); 320 RegSequence.clear(); 321 } 322 323 namespace { 324 325 /// This class holds information that describes a formula for computing 326 /// satisfying a use. It may include broken-out immediates and scaled registers. 327 struct Formula { 328 /// Global base address used for complex addressing. 329 GlobalValue *BaseGV = nullptr; 330 331 /// Base offset for complex addressing. 332 int64_t BaseOffset = 0; 333 334 /// Whether any complex addressing has a base register. 335 bool HasBaseReg = false; 336 337 /// The scale of any complex addressing. 338 int64_t Scale = 0; 339 340 /// The list of "base" registers for this use. When this is non-empty. The 341 /// canonical representation of a formula is 342 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 343 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 344 /// 3. The reg containing recurrent expr related with currect loop in the 345 /// formula should be put in the ScaledReg. 346 /// #1 enforces that the scaled register is always used when at least two 347 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 348 /// #2 enforces that 1 * reg is reg. 349 /// #3 ensures invariant regs with respect to current loop can be combined 350 /// together in LSR codegen. 351 /// This invariant can be temporarily broken while building a formula. 352 /// However, every formula inserted into the LSRInstance must be in canonical 353 /// form. 354 SmallVector<const SCEV *, 4> BaseRegs; 355 356 /// The 'scaled' register for this use. This should be non-null when Scale is 357 /// not zero. 358 const SCEV *ScaledReg = nullptr; 359 360 /// An additional constant offset which added near the use. This requires a 361 /// temporary register, but the offset itself can live in an add immediate 362 /// field rather than a register. 363 int64_t UnfoldedOffset = 0; 364 365 Formula() = default; 366 367 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 368 369 bool isCanonical(const Loop &L) const; 370 371 void canonicalize(const Loop &L); 372 373 bool unscale(); 374 375 bool hasZeroEnd() const; 376 377 size_t getNumRegs() const; 378 Type *getType() const; 379 380 void deleteBaseReg(const SCEV *&S); 381 382 bool referencesReg(const SCEV *S) const; 383 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 384 const RegUseTracker &RegUses) const; 385 386 void print(raw_ostream &OS) const; 387 void dump() const; 388 }; 389 390 } // end anonymous namespace 391 392 /// Recursion helper for initialMatch. 393 static void DoInitialMatch(const SCEV *S, Loop *L, 394 SmallVectorImpl<const SCEV *> &Good, 395 SmallVectorImpl<const SCEV *> &Bad, 396 ScalarEvolution &SE) { 397 // Collect expressions which properly dominate the loop header. 398 if (SE.properlyDominates(S, L->getHeader())) { 399 Good.push_back(S); 400 return; 401 } 402 403 // Look at add operands. 404 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 405 for (const SCEV *S : Add->operands()) 406 DoInitialMatch(S, L, Good, Bad, SE); 407 return; 408 } 409 410 // Look at addrec operands. 411 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 412 if (!AR->getStart()->isZero() && AR->isAffine()) { 413 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 414 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 415 AR->getStepRecurrence(SE), 416 // FIXME: AR->getNoWrapFlags() 417 AR->getLoop(), SCEV::FlagAnyWrap), 418 L, Good, Bad, SE); 419 return; 420 } 421 422 // Handle a multiplication by -1 (negation) if it didn't fold. 423 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 424 if (Mul->getOperand(0)->isAllOnesValue()) { 425 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 426 const SCEV *NewMul = SE.getMulExpr(Ops); 427 428 SmallVector<const SCEV *, 4> MyGood; 429 SmallVector<const SCEV *, 4> MyBad; 430 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 431 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 432 SE.getEffectiveSCEVType(NewMul->getType()))); 433 for (const SCEV *S : MyGood) 434 Good.push_back(SE.getMulExpr(NegOne, S)); 435 for (const SCEV *S : MyBad) 436 Bad.push_back(SE.getMulExpr(NegOne, S)); 437 return; 438 } 439 440 // Ok, we can't do anything interesting. Just stuff the whole thing into a 441 // register and hope for the best. 442 Bad.push_back(S); 443 } 444 445 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 446 /// all loop-invariant and loop-computable values in a single base register. 447 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 448 SmallVector<const SCEV *, 4> Good; 449 SmallVector<const SCEV *, 4> Bad; 450 DoInitialMatch(S, L, Good, Bad, SE); 451 if (!Good.empty()) { 452 const SCEV *Sum = SE.getAddExpr(Good); 453 if (!Sum->isZero()) 454 BaseRegs.push_back(Sum); 455 HasBaseReg = true; 456 } 457 if (!Bad.empty()) { 458 const SCEV *Sum = SE.getAddExpr(Bad); 459 if (!Sum->isZero()) 460 BaseRegs.push_back(Sum); 461 HasBaseReg = true; 462 } 463 canonicalize(*L); 464 } 465 466 /// Check whether or not this formula satisfies the canonical 467 /// representation. 468 /// \see Formula::BaseRegs. 469 bool Formula::isCanonical(const Loop &L) const { 470 if (!ScaledReg) 471 return BaseRegs.size() <= 1; 472 473 if (Scale != 1) 474 return true; 475 476 if (Scale == 1 && BaseRegs.empty()) 477 return false; 478 479 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 480 if (SAR && SAR->getLoop() == &L) 481 return true; 482 483 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 484 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 485 // loop, we want to swap the reg in BaseRegs with ScaledReg. 486 auto I = 487 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 488 return isa<const SCEVAddRecExpr>(S) && 489 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 490 }); 491 return I == BaseRegs.end(); 492 } 493 494 /// Helper method to morph a formula into its canonical representation. 495 /// \see Formula::BaseRegs. 496 /// Every formula having more than one base register, must use the ScaledReg 497 /// field. Otherwise, we would have to do special cases everywhere in LSR 498 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 499 /// On the other hand, 1*reg should be canonicalized into reg. 500 void Formula::canonicalize(const Loop &L) { 501 if (isCanonical(L)) 502 return; 503 // So far we did not need this case. This is easy to implement but it is 504 // useless to maintain dead code. Beside it could hurt compile time. 505 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 506 507 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 508 if (!ScaledReg) { 509 ScaledReg = BaseRegs.back(); 510 BaseRegs.pop_back(); 511 Scale = 1; 512 } 513 514 // If ScaledReg is an invariant with respect to L, find the reg from 515 // BaseRegs containing the recurrent expr related with Loop L. Swap the 516 // reg with ScaledReg. 517 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 518 if (!SAR || SAR->getLoop() != &L) { 519 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 520 [&](const SCEV *S) { 521 return isa<const SCEVAddRecExpr>(S) && 522 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 523 }); 524 if (I != BaseRegs.end()) 525 std::swap(ScaledReg, *I); 526 } 527 } 528 529 /// Get rid of the scale in the formula. 530 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 531 /// \return true if it was possible to get rid of the scale, false otherwise. 532 /// \note After this operation the formula may not be in the canonical form. 533 bool Formula::unscale() { 534 if (Scale != 1) 535 return false; 536 Scale = 0; 537 BaseRegs.push_back(ScaledReg); 538 ScaledReg = nullptr; 539 return true; 540 } 541 542 bool Formula::hasZeroEnd() const { 543 if (UnfoldedOffset || BaseOffset) 544 return false; 545 if (BaseRegs.size() != 1 || ScaledReg) 546 return false; 547 return true; 548 } 549 550 /// Return the total number of register operands used by this formula. This does 551 /// not include register uses implied by non-constant addrec strides. 552 size_t Formula::getNumRegs() const { 553 return !!ScaledReg + BaseRegs.size(); 554 } 555 556 /// Return the type of this formula, if it has one, or null otherwise. This type 557 /// is meaningless except for the bit size. 558 Type *Formula::getType() const { 559 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 560 ScaledReg ? ScaledReg->getType() : 561 BaseGV ? BaseGV->getType() : 562 nullptr; 563 } 564 565 /// Delete the given base reg from the BaseRegs list. 566 void Formula::deleteBaseReg(const SCEV *&S) { 567 if (&S != &BaseRegs.back()) 568 std::swap(S, BaseRegs.back()); 569 BaseRegs.pop_back(); 570 } 571 572 /// Test if this formula references the given register. 573 bool Formula::referencesReg(const SCEV *S) const { 574 return S == ScaledReg || is_contained(BaseRegs, S); 575 } 576 577 /// Test whether this formula uses registers which are used by uses other than 578 /// the use with the given index. 579 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 580 const RegUseTracker &RegUses) const { 581 if (ScaledReg) 582 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 583 return true; 584 for (const SCEV *BaseReg : BaseRegs) 585 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 586 return true; 587 return false; 588 } 589 590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 591 void Formula::print(raw_ostream &OS) const { 592 bool First = true; 593 if (BaseGV) { 594 if (!First) OS << " + "; else First = false; 595 BaseGV->printAsOperand(OS, /*PrintType=*/false); 596 } 597 if (BaseOffset != 0) { 598 if (!First) OS << " + "; else First = false; 599 OS << BaseOffset; 600 } 601 for (const SCEV *BaseReg : BaseRegs) { 602 if (!First) OS << " + "; else First = false; 603 OS << "reg(" << *BaseReg << ')'; 604 } 605 if (HasBaseReg && BaseRegs.empty()) { 606 if (!First) OS << " + "; else First = false; 607 OS << "**error: HasBaseReg**"; 608 } else if (!HasBaseReg && !BaseRegs.empty()) { 609 if (!First) OS << " + "; else First = false; 610 OS << "**error: !HasBaseReg**"; 611 } 612 if (Scale != 0) { 613 if (!First) OS << " + "; else First = false; 614 OS << Scale << "*reg("; 615 if (ScaledReg) 616 OS << *ScaledReg; 617 else 618 OS << "<unknown>"; 619 OS << ')'; 620 } 621 if (UnfoldedOffset != 0) { 622 if (!First) OS << " + "; 623 OS << "imm(" << UnfoldedOffset << ')'; 624 } 625 } 626 627 LLVM_DUMP_METHOD void Formula::dump() const { 628 print(errs()); errs() << '\n'; 629 } 630 #endif 631 632 /// Return true if the given addrec can be sign-extended without changing its 633 /// value. 634 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 635 Type *WideTy = 636 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 637 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 638 } 639 640 /// Return true if the given add can be sign-extended without changing its 641 /// value. 642 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 643 Type *WideTy = 644 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 645 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 646 } 647 648 /// Return true if the given mul can be sign-extended without changing its 649 /// value. 650 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 651 Type *WideTy = 652 IntegerType::get(SE.getContext(), 653 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 654 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 655 } 656 657 /// Return an expression for LHS /s RHS, if it can be determined and if the 658 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 659 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 660 /// the multiplication may overflow, which is useful when the result will be 661 /// used in a context where the most significant bits are ignored. 662 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 663 ScalarEvolution &SE, 664 bool IgnoreSignificantBits = false) { 665 // Handle the trivial case, which works for any SCEV type. 666 if (LHS == RHS) 667 return SE.getConstant(LHS->getType(), 1); 668 669 // Handle a few RHS special cases. 670 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 671 if (RC) { 672 const APInt &RA = RC->getAPInt(); 673 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 674 // some folding. 675 if (RA.isAllOnesValue()) 676 return SE.getMulExpr(LHS, RC); 677 // Handle x /s 1 as x. 678 if (RA == 1) 679 return LHS; 680 } 681 682 // Check for a division of a constant by a constant. 683 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 684 if (!RC) 685 return nullptr; 686 const APInt &LA = C->getAPInt(); 687 const APInt &RA = RC->getAPInt(); 688 if (LA.srem(RA) != 0) 689 return nullptr; 690 return SE.getConstant(LA.sdiv(RA)); 691 } 692 693 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 694 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 695 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 696 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 697 IgnoreSignificantBits); 698 if (!Step) return nullptr; 699 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 700 IgnoreSignificantBits); 701 if (!Start) return nullptr; 702 // FlagNW is independent of the start value, step direction, and is 703 // preserved with smaller magnitude steps. 704 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 705 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 706 } 707 return nullptr; 708 } 709 710 // Distribute the sdiv over add operands, if the add doesn't overflow. 711 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 712 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 713 SmallVector<const SCEV *, 8> Ops; 714 for (const SCEV *S : Add->operands()) { 715 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 716 if (!Op) return nullptr; 717 Ops.push_back(Op); 718 } 719 return SE.getAddExpr(Ops); 720 } 721 return nullptr; 722 } 723 724 // Check for a multiply operand that we can pull RHS out of. 725 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 726 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 727 SmallVector<const SCEV *, 4> Ops; 728 bool Found = false; 729 for (const SCEV *S : Mul->operands()) { 730 if (!Found) 731 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 732 IgnoreSignificantBits)) { 733 S = Q; 734 Found = true; 735 } 736 Ops.push_back(S); 737 } 738 return Found ? SE.getMulExpr(Ops) : nullptr; 739 } 740 return nullptr; 741 } 742 743 // Otherwise we don't know. 744 return nullptr; 745 } 746 747 /// If S involves the addition of a constant integer value, return that integer 748 /// value, and mutate S to point to a new SCEV with that value excluded. 749 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 750 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 751 if (C->getAPInt().getMinSignedBits() <= 64) { 752 S = SE.getConstant(C->getType(), 0); 753 return C->getValue()->getSExtValue(); 754 } 755 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 756 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 757 int64_t Result = ExtractImmediate(NewOps.front(), SE); 758 if (Result != 0) 759 S = SE.getAddExpr(NewOps); 760 return Result; 761 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 762 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 763 int64_t Result = ExtractImmediate(NewOps.front(), SE); 764 if (Result != 0) 765 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 766 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 767 SCEV::FlagAnyWrap); 768 return Result; 769 } 770 return 0; 771 } 772 773 /// If S involves the addition of a GlobalValue address, return that symbol, and 774 /// mutate S to point to a new SCEV with that value excluded. 775 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 777 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 778 S = SE.getConstant(GV->getType(), 0); 779 return GV; 780 } 781 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 782 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 783 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 784 if (Result) 785 S = SE.getAddExpr(NewOps); 786 return Result; 787 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 788 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 789 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 790 if (Result) 791 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 792 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 793 SCEV::FlagAnyWrap); 794 return Result; 795 } 796 return nullptr; 797 } 798 799 /// Returns true if the specified instruction is using the specified value as an 800 /// address. 801 static bool isAddressUse(const TargetTransformInfo &TTI, 802 Instruction *Inst, Value *OperandVal) { 803 bool isAddress = isa<LoadInst>(Inst); 804 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 805 if (SI->getPointerOperand() == OperandVal) 806 isAddress = true; 807 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 808 // Addressing modes can also be folded into prefetches and a variety 809 // of intrinsics. 810 switch (II->getIntrinsicID()) { 811 case Intrinsic::memset: 812 case Intrinsic::prefetch: 813 case Intrinsic::masked_load: 814 if (II->getArgOperand(0) == OperandVal) 815 isAddress = true; 816 break; 817 case Intrinsic::masked_store: 818 if (II->getArgOperand(1) == OperandVal) 819 isAddress = true; 820 break; 821 case Intrinsic::memmove: 822 case Intrinsic::memcpy: 823 if (II->getArgOperand(0) == OperandVal || 824 II->getArgOperand(1) == OperandVal) 825 isAddress = true; 826 break; 827 default: { 828 MemIntrinsicInfo IntrInfo; 829 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 830 if (IntrInfo.PtrVal == OperandVal) 831 isAddress = true; 832 } 833 } 834 } 835 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 836 if (RMW->getPointerOperand() == OperandVal) 837 isAddress = true; 838 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 839 if (CmpX->getPointerOperand() == OperandVal) 840 isAddress = true; 841 } 842 return isAddress; 843 } 844 845 /// Return the type of the memory being accessed. 846 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 847 Instruction *Inst, Value *OperandVal) { 848 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 849 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 850 AccessTy.MemTy = SI->getOperand(0)->getType(); 851 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 852 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 853 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 854 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 855 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 856 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 857 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 858 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 859 switch (II->getIntrinsicID()) { 860 case Intrinsic::prefetch: 861 case Intrinsic::memset: 862 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 863 AccessTy.MemTy = OperandVal->getType(); 864 break; 865 case Intrinsic::memmove: 866 case Intrinsic::memcpy: 867 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 868 AccessTy.MemTy = OperandVal->getType(); 869 break; 870 case Intrinsic::masked_load: 871 AccessTy.AddrSpace = 872 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 873 break; 874 case Intrinsic::masked_store: 875 AccessTy.MemTy = II->getOperand(0)->getType(); 876 AccessTy.AddrSpace = 877 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 878 break; 879 default: { 880 MemIntrinsicInfo IntrInfo; 881 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 882 AccessTy.AddrSpace 883 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 884 } 885 886 break; 887 } 888 } 889 } 890 891 // All pointers have the same requirements, so canonicalize them to an 892 // arbitrary pointer type to minimize variation. 893 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 894 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 895 PTy->getAddressSpace()); 896 897 return AccessTy; 898 } 899 900 /// Return true if this AddRec is already a phi in its loop. 901 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 902 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 903 if (SE.isSCEVable(PN.getType()) && 904 (SE.getEffectiveSCEVType(PN.getType()) == 905 SE.getEffectiveSCEVType(AR->getType())) && 906 SE.getSCEV(&PN) == AR) 907 return true; 908 } 909 return false; 910 } 911 912 /// Check if expanding this expression is likely to incur significant cost. This 913 /// is tricky because SCEV doesn't track which expressions are actually computed 914 /// by the current IR. 915 /// 916 /// We currently allow expansion of IV increments that involve adds, 917 /// multiplication by constants, and AddRecs from existing phis. 918 /// 919 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 920 /// obvious multiple of the UDivExpr. 921 static bool isHighCostExpansion(const SCEV *S, 922 SmallPtrSetImpl<const SCEV*> &Processed, 923 ScalarEvolution &SE) { 924 // Zero/One operand expressions 925 switch (S->getSCEVType()) { 926 case scUnknown: 927 case scConstant: 928 return false; 929 case scTruncate: 930 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 931 Processed, SE); 932 case scZeroExtend: 933 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 934 Processed, SE); 935 case scSignExtend: 936 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 937 Processed, SE); 938 } 939 940 if (!Processed.insert(S).second) 941 return false; 942 943 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 944 for (const SCEV *S : Add->operands()) { 945 if (isHighCostExpansion(S, Processed, SE)) 946 return true; 947 } 948 return false; 949 } 950 951 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 952 if (Mul->getNumOperands() == 2) { 953 // Multiplication by a constant is ok 954 if (isa<SCEVConstant>(Mul->getOperand(0))) 955 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 956 957 // If we have the value of one operand, check if an existing 958 // multiplication already generates this expression. 959 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 960 Value *UVal = U->getValue(); 961 for (User *UR : UVal->users()) { 962 // If U is a constant, it may be used by a ConstantExpr. 963 Instruction *UI = dyn_cast<Instruction>(UR); 964 if (UI && UI->getOpcode() == Instruction::Mul && 965 SE.isSCEVable(UI->getType())) { 966 return SE.getSCEV(UI) == Mul; 967 } 968 } 969 } 970 } 971 } 972 973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 974 if (isExistingPhi(AR, SE)) 975 return false; 976 } 977 978 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 979 return true; 980 } 981 982 namespace { 983 984 class LSRUse; 985 986 } // end anonymous namespace 987 988 /// Check if the addressing mode defined by \p F is completely 989 /// folded in \p LU at isel time. 990 /// This includes address-mode folding and special icmp tricks. 991 /// This function returns true if \p LU can accommodate what \p F 992 /// defines and up to 1 base + 1 scaled + offset. 993 /// In other words, if \p F has several base registers, this function may 994 /// still return true. Therefore, users still need to account for 995 /// additional base registers and/or unfolded offsets to derive an 996 /// accurate cost model. 997 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 998 const LSRUse &LU, const Formula &F); 999 1000 // Get the cost of the scaling factor used in F for LU. 1001 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1002 const LSRUse &LU, const Formula &F, 1003 const Loop &L); 1004 1005 namespace { 1006 1007 /// This class is used to measure and compare candidate formulae. 1008 class Cost { 1009 const Loop *L = nullptr; 1010 ScalarEvolution *SE = nullptr; 1011 const TargetTransformInfo *TTI = nullptr; 1012 TargetTransformInfo::LSRCost C; 1013 1014 public: 1015 Cost() = delete; 1016 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1017 L(L), SE(&SE), TTI(&TTI) { 1018 C.Insns = 0; 1019 C.NumRegs = 0; 1020 C.AddRecCost = 0; 1021 C.NumIVMuls = 0; 1022 C.NumBaseAdds = 0; 1023 C.ImmCost = 0; 1024 C.SetupCost = 0; 1025 C.ScaleCost = 0; 1026 } 1027 1028 bool isLess(Cost &Other); 1029 1030 void Lose(); 1031 1032 #ifndef NDEBUG 1033 // Once any of the metrics loses, they must all remain losers. 1034 bool isValid() { 1035 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1036 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1037 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1038 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1039 } 1040 #endif 1041 1042 bool isLoser() { 1043 assert(isValid() && "invalid cost"); 1044 return C.NumRegs == ~0u; 1045 } 1046 1047 void RateFormula(const Formula &F, 1048 SmallPtrSetImpl<const SCEV *> &Regs, 1049 const DenseSet<const SCEV *> &VisitedRegs, 1050 const LSRUse &LU, 1051 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1052 1053 void print(raw_ostream &OS) const; 1054 void dump() const; 1055 1056 private: 1057 void RateRegister(const Formula &F, const SCEV *Reg, 1058 SmallPtrSetImpl<const SCEV *> &Regs); 1059 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1060 SmallPtrSetImpl<const SCEV *> &Regs, 1061 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1062 }; 1063 1064 /// An operand value in an instruction which is to be replaced with some 1065 /// equivalent, possibly strength-reduced, replacement. 1066 struct LSRFixup { 1067 /// The instruction which will be updated. 1068 Instruction *UserInst = nullptr; 1069 1070 /// The operand of the instruction which will be replaced. The operand may be 1071 /// used more than once; every instance will be replaced. 1072 Value *OperandValToReplace = nullptr; 1073 1074 /// If this user is to use the post-incremented value of an induction 1075 /// variable, this set is non-empty and holds the loops associated with the 1076 /// induction variable. 1077 PostIncLoopSet PostIncLoops; 1078 1079 /// A constant offset to be added to the LSRUse expression. This allows 1080 /// multiple fixups to share the same LSRUse with different offsets, for 1081 /// example in an unrolled loop. 1082 int64_t Offset = 0; 1083 1084 LSRFixup() = default; 1085 1086 bool isUseFullyOutsideLoop(const Loop *L) const; 1087 1088 void print(raw_ostream &OS) const; 1089 void dump() const; 1090 }; 1091 1092 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1093 /// SmallVectors of const SCEV*. 1094 struct UniquifierDenseMapInfo { 1095 static SmallVector<const SCEV *, 4> getEmptyKey() { 1096 SmallVector<const SCEV *, 4> V; 1097 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1098 return V; 1099 } 1100 1101 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1102 SmallVector<const SCEV *, 4> V; 1103 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1104 return V; 1105 } 1106 1107 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1108 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1109 } 1110 1111 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1112 const SmallVector<const SCEV *, 4> &RHS) { 1113 return LHS == RHS; 1114 } 1115 }; 1116 1117 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1118 /// as uses invented by LSR itself. It includes information about what kinds of 1119 /// things can be folded into the user, information about the user itself, and 1120 /// information about how the use may be satisfied. TODO: Represent multiple 1121 /// users of the same expression in common? 1122 class LSRUse { 1123 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1124 1125 public: 1126 /// An enum for a kind of use, indicating what types of scaled and immediate 1127 /// operands it might support. 1128 enum KindType { 1129 Basic, ///< A normal use, with no folding. 1130 Special, ///< A special case of basic, allowing -1 scales. 1131 Address, ///< An address use; folding according to TargetLowering 1132 ICmpZero ///< An equality icmp with both operands folded into one. 1133 // TODO: Add a generic icmp too? 1134 }; 1135 1136 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1137 1138 KindType Kind; 1139 MemAccessTy AccessTy; 1140 1141 /// The list of operands which are to be replaced. 1142 SmallVector<LSRFixup, 8> Fixups; 1143 1144 /// Keep track of the min and max offsets of the fixups. 1145 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1146 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1147 1148 /// This records whether all of the fixups using this LSRUse are outside of 1149 /// the loop, in which case some special-case heuristics may be used. 1150 bool AllFixupsOutsideLoop = true; 1151 1152 /// RigidFormula is set to true to guarantee that this use will be associated 1153 /// with a single formula--the one that initially matched. Some SCEV 1154 /// expressions cannot be expanded. This allows LSR to consider the registers 1155 /// used by those expressions without the need to expand them later after 1156 /// changing the formula. 1157 bool RigidFormula = false; 1158 1159 /// This records the widest use type for any fixup using this 1160 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1161 /// fixup widths to be equivalent, because the narrower one may be relying on 1162 /// the implicit truncation to truncate away bogus bits. 1163 Type *WidestFixupType = nullptr; 1164 1165 /// A list of ways to build a value that can satisfy this user. After the 1166 /// list is populated, one of these is selected heuristically and used to 1167 /// formulate a replacement for OperandValToReplace in UserInst. 1168 SmallVector<Formula, 12> Formulae; 1169 1170 /// The set of register candidates used by all formulae in this LSRUse. 1171 SmallPtrSet<const SCEV *, 4> Regs; 1172 1173 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1174 1175 LSRFixup &getNewFixup() { 1176 Fixups.push_back(LSRFixup()); 1177 return Fixups.back(); 1178 } 1179 1180 void pushFixup(LSRFixup &f) { 1181 Fixups.push_back(f); 1182 if (f.Offset > MaxOffset) 1183 MaxOffset = f.Offset; 1184 if (f.Offset < MinOffset) 1185 MinOffset = f.Offset; 1186 } 1187 1188 bool HasFormulaWithSameRegs(const Formula &F) const; 1189 float getNotSelectedProbability(const SCEV *Reg) const; 1190 bool InsertFormula(const Formula &F, const Loop &L); 1191 void DeleteFormula(Formula &F); 1192 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1193 1194 void print(raw_ostream &OS) const; 1195 void dump() const; 1196 }; 1197 1198 } // end anonymous namespace 1199 1200 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1201 LSRUse::KindType Kind, MemAccessTy AccessTy, 1202 GlobalValue *BaseGV, int64_t BaseOffset, 1203 bool HasBaseReg, int64_t Scale, 1204 Instruction *Fixup = nullptr); 1205 1206 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1207 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1208 return 1; 1209 if (Depth == 0) 1210 return 0; 1211 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1212 return getSetupCost(S->getStart(), Depth - 1); 1213 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1214 return getSetupCost(S->getOperand(), Depth - 1); 1215 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1216 return std::accumulate(S->op_begin(), S->op_end(), 0, 1217 [&](unsigned i, const SCEV *Reg) { 1218 return i + getSetupCost(Reg, Depth - 1); 1219 }); 1220 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1221 return getSetupCost(S->getLHS(), Depth - 1) + 1222 getSetupCost(S->getRHS(), Depth - 1); 1223 return 0; 1224 } 1225 1226 /// Tally up interesting quantities from the given register. 1227 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1228 SmallPtrSetImpl<const SCEV *> &Regs) { 1229 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1230 // If this is an addrec for another loop, it should be an invariant 1231 // with respect to L since L is the innermost loop (at least 1232 // for now LSR only handles innermost loops). 1233 if (AR->getLoop() != L) { 1234 // If the AddRec exists, consider it's register free and leave it alone. 1235 if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc()) 1236 return; 1237 1238 // It is bad to allow LSR for current loop to add induction variables 1239 // for its sibling loops. 1240 if (!AR->getLoop()->contains(L)) { 1241 Lose(); 1242 return; 1243 } 1244 1245 // Otherwise, it will be an invariant with respect to Loop L. 1246 ++C.NumRegs; 1247 return; 1248 } 1249 1250 unsigned LoopCost = 1; 1251 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1252 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1253 1254 // If the step size matches the base offset, we could use pre-indexed 1255 // addressing. 1256 if (TTI->shouldFavorBackedgeIndex(L)) { 1257 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1258 if (Step->getAPInt() == F.BaseOffset) 1259 LoopCost = 0; 1260 } 1261 1262 if (TTI->shouldFavorPostInc()) { 1263 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1264 if (isa<SCEVConstant>(LoopStep)) { 1265 const SCEV *LoopStart = AR->getStart(); 1266 if (!isa<SCEVConstant>(LoopStart) && 1267 SE->isLoopInvariant(LoopStart, L)) 1268 LoopCost = 0; 1269 } 1270 } 1271 } 1272 C.AddRecCost += LoopCost; 1273 1274 // Add the step value register, if it needs one. 1275 // TODO: The non-affine case isn't precisely modeled here. 1276 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1277 if (!Regs.count(AR->getOperand(1))) { 1278 RateRegister(F, AR->getOperand(1), Regs); 1279 if (isLoser()) 1280 return; 1281 } 1282 } 1283 } 1284 ++C.NumRegs; 1285 1286 // Rough heuristic; favor registers which don't require extra setup 1287 // instructions in the preheader. 1288 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1289 // Ensure we don't, even with the recusion limit, produce invalid costs. 1290 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1291 1292 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1293 SE->hasComputableLoopEvolution(Reg, L); 1294 } 1295 1296 /// Record this register in the set. If we haven't seen it before, rate 1297 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1298 /// one of those regs an instant loser. 1299 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1300 SmallPtrSetImpl<const SCEV *> &Regs, 1301 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1302 if (LoserRegs && LoserRegs->count(Reg)) { 1303 Lose(); 1304 return; 1305 } 1306 if (Regs.insert(Reg).second) { 1307 RateRegister(F, Reg, Regs); 1308 if (LoserRegs && isLoser()) 1309 LoserRegs->insert(Reg); 1310 } 1311 } 1312 1313 void Cost::RateFormula(const Formula &F, 1314 SmallPtrSetImpl<const SCEV *> &Regs, 1315 const DenseSet<const SCEV *> &VisitedRegs, 1316 const LSRUse &LU, 1317 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1318 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1319 // Tally up the registers. 1320 unsigned PrevAddRecCost = C.AddRecCost; 1321 unsigned PrevNumRegs = C.NumRegs; 1322 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1323 if (const SCEV *ScaledReg = F.ScaledReg) { 1324 if (VisitedRegs.count(ScaledReg)) { 1325 Lose(); 1326 return; 1327 } 1328 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1329 if (isLoser()) 1330 return; 1331 } 1332 for (const SCEV *BaseReg : F.BaseRegs) { 1333 if (VisitedRegs.count(BaseReg)) { 1334 Lose(); 1335 return; 1336 } 1337 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1338 if (isLoser()) 1339 return; 1340 } 1341 1342 // Determine how many (unfolded) adds we'll need inside the loop. 1343 size_t NumBaseParts = F.getNumRegs(); 1344 if (NumBaseParts > 1) 1345 // Do not count the base and a possible second register if the target 1346 // allows to fold 2 registers. 1347 C.NumBaseAdds += 1348 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1349 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1350 1351 // Accumulate non-free scaling amounts. 1352 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1353 1354 // Tally up the non-zero immediates. 1355 for (const LSRFixup &Fixup : LU.Fixups) { 1356 int64_t O = Fixup.Offset; 1357 int64_t Offset = (uint64_t)O + F.BaseOffset; 1358 if (F.BaseGV) 1359 C.ImmCost += 64; // Handle symbolic values conservatively. 1360 // TODO: This should probably be the pointer size. 1361 else if (Offset != 0) 1362 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1363 1364 // Check with target if this offset with this instruction is 1365 // specifically not supported. 1366 if (LU.Kind == LSRUse::Address && Offset != 0 && 1367 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1368 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1369 C.NumBaseAdds++; 1370 } 1371 1372 // If we don't count instruction cost exit here. 1373 if (!InsnsCost) { 1374 assert(isValid() && "invalid cost"); 1375 return; 1376 } 1377 1378 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1379 // additional instruction (at least fill). 1380 // TODO: Need distinguish register class? 1381 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1382 TTI->getRegisterClassForType(false, F.getType())) - 1; 1383 if (C.NumRegs > TTIRegNum) { 1384 // Cost already exceeded TTIRegNum, then only newly added register can add 1385 // new instructions. 1386 if (PrevNumRegs > TTIRegNum) 1387 C.Insns += (C.NumRegs - PrevNumRegs); 1388 else 1389 C.Insns += (C.NumRegs - TTIRegNum); 1390 } 1391 1392 // If ICmpZero formula ends with not 0, it could not be replaced by 1393 // just add or sub. We'll need to compare final result of AddRec. 1394 // That means we'll need an additional instruction. But if the target can 1395 // macro-fuse a compare with a branch, don't count this extra instruction. 1396 // For -10 + {0, +, 1}: 1397 // i = i + 1; 1398 // cmp i, 10 1399 // 1400 // For {-10, +, 1}: 1401 // i = i + 1; 1402 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1403 !TTI->canMacroFuseCmp()) 1404 C.Insns++; 1405 // Each new AddRec adds 1 instruction to calculation. 1406 C.Insns += (C.AddRecCost - PrevAddRecCost); 1407 1408 // BaseAdds adds instructions for unfolded registers. 1409 if (LU.Kind != LSRUse::ICmpZero) 1410 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1411 assert(isValid() && "invalid cost"); 1412 } 1413 1414 /// Set this cost to a losing value. 1415 void Cost::Lose() { 1416 C.Insns = std::numeric_limits<unsigned>::max(); 1417 C.NumRegs = std::numeric_limits<unsigned>::max(); 1418 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1419 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1420 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1421 C.ImmCost = std::numeric_limits<unsigned>::max(); 1422 C.SetupCost = std::numeric_limits<unsigned>::max(); 1423 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1424 } 1425 1426 /// Choose the lower cost. 1427 bool Cost::isLess(Cost &Other) { 1428 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1429 C.Insns != Other.C.Insns) 1430 return C.Insns < Other.C.Insns; 1431 return TTI->isLSRCostLess(C, Other.C); 1432 } 1433 1434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1435 void Cost::print(raw_ostream &OS) const { 1436 if (InsnsCost) 1437 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1438 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1439 if (C.AddRecCost != 0) 1440 OS << ", with addrec cost " << C.AddRecCost; 1441 if (C.NumIVMuls != 0) 1442 OS << ", plus " << C.NumIVMuls << " IV mul" 1443 << (C.NumIVMuls == 1 ? "" : "s"); 1444 if (C.NumBaseAdds != 0) 1445 OS << ", plus " << C.NumBaseAdds << " base add" 1446 << (C.NumBaseAdds == 1 ? "" : "s"); 1447 if (C.ScaleCost != 0) 1448 OS << ", plus " << C.ScaleCost << " scale cost"; 1449 if (C.ImmCost != 0) 1450 OS << ", plus " << C.ImmCost << " imm cost"; 1451 if (C.SetupCost != 0) 1452 OS << ", plus " << C.SetupCost << " setup cost"; 1453 } 1454 1455 LLVM_DUMP_METHOD void Cost::dump() const { 1456 print(errs()); errs() << '\n'; 1457 } 1458 #endif 1459 1460 /// Test whether this fixup always uses its value outside of the given loop. 1461 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1462 // PHI nodes use their value in their incoming blocks. 1463 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1464 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1465 if (PN->getIncomingValue(i) == OperandValToReplace && 1466 L->contains(PN->getIncomingBlock(i))) 1467 return false; 1468 return true; 1469 } 1470 1471 return !L->contains(UserInst); 1472 } 1473 1474 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1475 void LSRFixup::print(raw_ostream &OS) const { 1476 OS << "UserInst="; 1477 // Store is common and interesting enough to be worth special-casing. 1478 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1479 OS << "store "; 1480 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1481 } else if (UserInst->getType()->isVoidTy()) 1482 OS << UserInst->getOpcodeName(); 1483 else 1484 UserInst->printAsOperand(OS, /*PrintType=*/false); 1485 1486 OS << ", OperandValToReplace="; 1487 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1488 1489 for (const Loop *PIL : PostIncLoops) { 1490 OS << ", PostIncLoop="; 1491 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1492 } 1493 1494 if (Offset != 0) 1495 OS << ", Offset=" << Offset; 1496 } 1497 1498 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1499 print(errs()); errs() << '\n'; 1500 } 1501 #endif 1502 1503 /// Test whether this use as a formula which has the same registers as the given 1504 /// formula. 1505 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1506 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1507 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1508 // Unstable sort by host order ok, because this is only used for uniquifying. 1509 llvm::sort(Key); 1510 return Uniquifier.count(Key); 1511 } 1512 1513 /// The function returns a probability of selecting formula without Reg. 1514 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1515 unsigned FNum = 0; 1516 for (const Formula &F : Formulae) 1517 if (F.referencesReg(Reg)) 1518 FNum++; 1519 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1520 } 1521 1522 /// If the given formula has not yet been inserted, add it to the list, and 1523 /// return true. Return false otherwise. The formula must be in canonical form. 1524 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1525 assert(F.isCanonical(L) && "Invalid canonical representation"); 1526 1527 if (!Formulae.empty() && RigidFormula) 1528 return false; 1529 1530 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1531 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1532 // Unstable sort by host order ok, because this is only used for uniquifying. 1533 llvm::sort(Key); 1534 1535 if (!Uniquifier.insert(Key).second) 1536 return false; 1537 1538 // Using a register to hold the value of 0 is not profitable. 1539 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1540 "Zero allocated in a scaled register!"); 1541 #ifndef NDEBUG 1542 for (const SCEV *BaseReg : F.BaseRegs) 1543 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1544 #endif 1545 1546 // Add the formula to the list. 1547 Formulae.push_back(F); 1548 1549 // Record registers now being used by this use. 1550 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1551 if (F.ScaledReg) 1552 Regs.insert(F.ScaledReg); 1553 1554 return true; 1555 } 1556 1557 /// Remove the given formula from this use's list. 1558 void LSRUse::DeleteFormula(Formula &F) { 1559 if (&F != &Formulae.back()) 1560 std::swap(F, Formulae.back()); 1561 Formulae.pop_back(); 1562 } 1563 1564 /// Recompute the Regs field, and update RegUses. 1565 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1566 // Now that we've filtered out some formulae, recompute the Regs set. 1567 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1568 Regs.clear(); 1569 for (const Formula &F : Formulae) { 1570 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1571 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1572 } 1573 1574 // Update the RegTracker. 1575 for (const SCEV *S : OldRegs) 1576 if (!Regs.count(S)) 1577 RegUses.dropRegister(S, LUIdx); 1578 } 1579 1580 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1581 void LSRUse::print(raw_ostream &OS) const { 1582 OS << "LSR Use: Kind="; 1583 switch (Kind) { 1584 case Basic: OS << "Basic"; break; 1585 case Special: OS << "Special"; break; 1586 case ICmpZero: OS << "ICmpZero"; break; 1587 case Address: 1588 OS << "Address of "; 1589 if (AccessTy.MemTy->isPointerTy()) 1590 OS << "pointer"; // the full pointer type could be really verbose 1591 else { 1592 OS << *AccessTy.MemTy; 1593 } 1594 1595 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1596 } 1597 1598 OS << ", Offsets={"; 1599 bool NeedComma = false; 1600 for (const LSRFixup &Fixup : Fixups) { 1601 if (NeedComma) OS << ','; 1602 OS << Fixup.Offset; 1603 NeedComma = true; 1604 } 1605 OS << '}'; 1606 1607 if (AllFixupsOutsideLoop) 1608 OS << ", all-fixups-outside-loop"; 1609 1610 if (WidestFixupType) 1611 OS << ", widest fixup type: " << *WidestFixupType; 1612 } 1613 1614 LLVM_DUMP_METHOD void LSRUse::dump() const { 1615 print(errs()); errs() << '\n'; 1616 } 1617 #endif 1618 1619 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1620 LSRUse::KindType Kind, MemAccessTy AccessTy, 1621 GlobalValue *BaseGV, int64_t BaseOffset, 1622 bool HasBaseReg, int64_t Scale, 1623 Instruction *Fixup/*= nullptr*/) { 1624 switch (Kind) { 1625 case LSRUse::Address: 1626 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1627 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1628 1629 case LSRUse::ICmpZero: 1630 // There's not even a target hook for querying whether it would be legal to 1631 // fold a GV into an ICmp. 1632 if (BaseGV) 1633 return false; 1634 1635 // ICmp only has two operands; don't allow more than two non-trivial parts. 1636 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1637 return false; 1638 1639 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1640 // putting the scaled register in the other operand of the icmp. 1641 if (Scale != 0 && Scale != -1) 1642 return false; 1643 1644 // If we have low-level target information, ask the target if it can fold an 1645 // integer immediate on an icmp. 1646 if (BaseOffset != 0) { 1647 // We have one of: 1648 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1649 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1650 // Offs is the ICmp immediate. 1651 if (Scale == 0) 1652 // The cast does the right thing with 1653 // std::numeric_limits<int64_t>::min(). 1654 BaseOffset = -(uint64_t)BaseOffset; 1655 return TTI.isLegalICmpImmediate(BaseOffset); 1656 } 1657 1658 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1659 return true; 1660 1661 case LSRUse::Basic: 1662 // Only handle single-register values. 1663 return !BaseGV && Scale == 0 && BaseOffset == 0; 1664 1665 case LSRUse::Special: 1666 // Special case Basic to handle -1 scales. 1667 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1668 } 1669 1670 llvm_unreachable("Invalid LSRUse Kind!"); 1671 } 1672 1673 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1674 int64_t MinOffset, int64_t MaxOffset, 1675 LSRUse::KindType Kind, MemAccessTy AccessTy, 1676 GlobalValue *BaseGV, int64_t BaseOffset, 1677 bool HasBaseReg, int64_t Scale) { 1678 // Check for overflow. 1679 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1680 (MinOffset > 0)) 1681 return false; 1682 MinOffset = (uint64_t)BaseOffset + MinOffset; 1683 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1684 (MaxOffset > 0)) 1685 return false; 1686 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1687 1688 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1689 HasBaseReg, Scale) && 1690 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1691 HasBaseReg, Scale); 1692 } 1693 1694 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1695 int64_t MinOffset, int64_t MaxOffset, 1696 LSRUse::KindType Kind, MemAccessTy AccessTy, 1697 const Formula &F, const Loop &L) { 1698 // For the purpose of isAMCompletelyFolded either having a canonical formula 1699 // or a scale not equal to zero is correct. 1700 // Problems may arise from non canonical formulae having a scale == 0. 1701 // Strictly speaking it would best to just rely on canonical formulae. 1702 // However, when we generate the scaled formulae, we first check that the 1703 // scaling factor is profitable before computing the actual ScaledReg for 1704 // compile time sake. 1705 assert((F.isCanonical(L) || F.Scale != 0)); 1706 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1707 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1708 } 1709 1710 /// Test whether we know how to expand the current formula. 1711 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1712 int64_t MaxOffset, LSRUse::KindType Kind, 1713 MemAccessTy AccessTy, GlobalValue *BaseGV, 1714 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1715 // We know how to expand completely foldable formulae. 1716 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1717 BaseOffset, HasBaseReg, Scale) || 1718 // Or formulae that use a base register produced by a sum of base 1719 // registers. 1720 (Scale == 1 && 1721 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1722 BaseGV, BaseOffset, true, 0)); 1723 } 1724 1725 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1726 int64_t MaxOffset, LSRUse::KindType Kind, 1727 MemAccessTy AccessTy, const Formula &F) { 1728 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1729 F.BaseOffset, F.HasBaseReg, F.Scale); 1730 } 1731 1732 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1733 const LSRUse &LU, const Formula &F) { 1734 // Target may want to look at the user instructions. 1735 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1736 for (const LSRFixup &Fixup : LU.Fixups) 1737 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1738 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1739 F.Scale, Fixup.UserInst)) 1740 return false; 1741 return true; 1742 } 1743 1744 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1745 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1746 F.Scale); 1747 } 1748 1749 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1750 const LSRUse &LU, const Formula &F, 1751 const Loop &L) { 1752 if (!F.Scale) 1753 return 0; 1754 1755 // If the use is not completely folded in that instruction, we will have to 1756 // pay an extra cost only for scale != 1. 1757 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1758 LU.AccessTy, F, L)) 1759 return F.Scale != 1; 1760 1761 switch (LU.Kind) { 1762 case LSRUse::Address: { 1763 // Check the scaling factor cost with both the min and max offsets. 1764 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1765 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1766 F.Scale, LU.AccessTy.AddrSpace); 1767 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1768 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1769 F.Scale, LU.AccessTy.AddrSpace); 1770 1771 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1772 "Legal addressing mode has an illegal cost!"); 1773 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1774 } 1775 case LSRUse::ICmpZero: 1776 case LSRUse::Basic: 1777 case LSRUse::Special: 1778 // The use is completely folded, i.e., everything is folded into the 1779 // instruction. 1780 return 0; 1781 } 1782 1783 llvm_unreachable("Invalid LSRUse Kind!"); 1784 } 1785 1786 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1787 LSRUse::KindType Kind, MemAccessTy AccessTy, 1788 GlobalValue *BaseGV, int64_t BaseOffset, 1789 bool HasBaseReg) { 1790 // Fast-path: zero is always foldable. 1791 if (BaseOffset == 0 && !BaseGV) return true; 1792 1793 // Conservatively, create an address with an immediate and a 1794 // base and a scale. 1795 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1796 1797 // Canonicalize a scale of 1 to a base register if the formula doesn't 1798 // already have a base register. 1799 if (!HasBaseReg && Scale == 1) { 1800 Scale = 0; 1801 HasBaseReg = true; 1802 } 1803 1804 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1805 HasBaseReg, Scale); 1806 } 1807 1808 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1809 ScalarEvolution &SE, int64_t MinOffset, 1810 int64_t MaxOffset, LSRUse::KindType Kind, 1811 MemAccessTy AccessTy, const SCEV *S, 1812 bool HasBaseReg) { 1813 // Fast-path: zero is always foldable. 1814 if (S->isZero()) return true; 1815 1816 // Conservatively, create an address with an immediate and a 1817 // base and a scale. 1818 int64_t BaseOffset = ExtractImmediate(S, SE); 1819 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1820 1821 // If there's anything else involved, it's not foldable. 1822 if (!S->isZero()) return false; 1823 1824 // Fast-path: zero is always foldable. 1825 if (BaseOffset == 0 && !BaseGV) return true; 1826 1827 // Conservatively, create an address with an immediate and a 1828 // base and a scale. 1829 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1830 1831 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1832 BaseOffset, HasBaseReg, Scale); 1833 } 1834 1835 namespace { 1836 1837 /// An individual increment in a Chain of IV increments. Relate an IV user to 1838 /// an expression that computes the IV it uses from the IV used by the previous 1839 /// link in the Chain. 1840 /// 1841 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1842 /// original IVOperand. The head of the chain's IVOperand is only valid during 1843 /// chain collection, before LSR replaces IV users. During chain generation, 1844 /// IncExpr can be used to find the new IVOperand that computes the same 1845 /// expression. 1846 struct IVInc { 1847 Instruction *UserInst; 1848 Value* IVOperand; 1849 const SCEV *IncExpr; 1850 1851 IVInc(Instruction *U, Value *O, const SCEV *E) 1852 : UserInst(U), IVOperand(O), IncExpr(E) {} 1853 }; 1854 1855 // The list of IV increments in program order. We typically add the head of a 1856 // chain without finding subsequent links. 1857 struct IVChain { 1858 SmallVector<IVInc, 1> Incs; 1859 const SCEV *ExprBase = nullptr; 1860 1861 IVChain() = default; 1862 IVChain(const IVInc &Head, const SCEV *Base) 1863 : Incs(1, Head), ExprBase(Base) {} 1864 1865 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1866 1867 // Return the first increment in the chain. 1868 const_iterator begin() const { 1869 assert(!Incs.empty()); 1870 return std::next(Incs.begin()); 1871 } 1872 const_iterator end() const { 1873 return Incs.end(); 1874 } 1875 1876 // Returns true if this chain contains any increments. 1877 bool hasIncs() const { return Incs.size() >= 2; } 1878 1879 // Add an IVInc to the end of this chain. 1880 void add(const IVInc &X) { Incs.push_back(X); } 1881 1882 // Returns the last UserInst in the chain. 1883 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1884 1885 // Returns true if IncExpr can be profitably added to this chain. 1886 bool isProfitableIncrement(const SCEV *OperExpr, 1887 const SCEV *IncExpr, 1888 ScalarEvolution&); 1889 }; 1890 1891 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1892 /// between FarUsers that definitely cross IV increments and NearUsers that may 1893 /// be used between IV increments. 1894 struct ChainUsers { 1895 SmallPtrSet<Instruction*, 4> FarUsers; 1896 SmallPtrSet<Instruction*, 4> NearUsers; 1897 }; 1898 1899 /// This class holds state for the main loop strength reduction logic. 1900 class LSRInstance { 1901 IVUsers &IU; 1902 ScalarEvolution &SE; 1903 DominatorTree &DT; 1904 LoopInfo &LI; 1905 AssumptionCache &AC; 1906 TargetLibraryInfo &TLI; 1907 const TargetTransformInfo &TTI; 1908 Loop *const L; 1909 MemorySSAUpdater *MSSAU; 1910 bool FavorBackedgeIndex = false; 1911 bool Changed = false; 1912 1913 /// This is the insert position that the current loop's induction variable 1914 /// increment should be placed. In simple loops, this is the latch block's 1915 /// terminator. But in more complicated cases, this is a position which will 1916 /// dominate all the in-loop post-increment users. 1917 Instruction *IVIncInsertPos = nullptr; 1918 1919 /// Interesting factors between use strides. 1920 /// 1921 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1922 /// default, a SmallDenseSet, because we need to use the full range of 1923 /// int64_ts, and there's currently no good way of doing that with 1924 /// SmallDenseSet. 1925 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1926 1927 /// Interesting use types, to facilitate truncation reuse. 1928 SmallSetVector<Type *, 4> Types; 1929 1930 /// The list of interesting uses. 1931 mutable SmallVector<LSRUse, 16> Uses; 1932 1933 /// Track which uses use which register candidates. 1934 RegUseTracker RegUses; 1935 1936 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1937 // have more than a few IV increment chains in a loop. Missing a Chain falls 1938 // back to normal LSR behavior for those uses. 1939 static const unsigned MaxChains = 8; 1940 1941 /// IV users can form a chain of IV increments. 1942 SmallVector<IVChain, MaxChains> IVChainVec; 1943 1944 /// IV users that belong to profitable IVChains. 1945 SmallPtrSet<Use*, MaxChains> IVIncSet; 1946 1947 void OptimizeShadowIV(); 1948 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1949 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1950 void OptimizeLoopTermCond(); 1951 1952 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1953 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1954 void FinalizeChain(IVChain &Chain); 1955 void CollectChains(); 1956 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1957 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1958 1959 void CollectInterestingTypesAndFactors(); 1960 void CollectFixupsAndInitialFormulae(); 1961 1962 // Support for sharing of LSRUses between LSRFixups. 1963 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1964 UseMapTy UseMap; 1965 1966 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1967 LSRUse::KindType Kind, MemAccessTy AccessTy); 1968 1969 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1970 MemAccessTy AccessTy); 1971 1972 void DeleteUse(LSRUse &LU, size_t LUIdx); 1973 1974 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1975 1976 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1977 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1978 void CountRegisters(const Formula &F, size_t LUIdx); 1979 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1980 1981 void CollectLoopInvariantFixupsAndFormulae(); 1982 1983 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1984 unsigned Depth = 0); 1985 1986 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1987 const Formula &Base, unsigned Depth, 1988 size_t Idx, bool IsScaledReg = false); 1989 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1990 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1991 const Formula &Base, size_t Idx, 1992 bool IsScaledReg = false); 1993 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1994 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1995 const Formula &Base, 1996 const SmallVectorImpl<int64_t> &Worklist, 1997 size_t Idx, bool IsScaledReg = false); 1998 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1999 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2000 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2001 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2002 void GenerateCrossUseConstantOffsets(); 2003 void GenerateAllReuseFormulae(); 2004 2005 void FilterOutUndesirableDedicatedRegisters(); 2006 2007 size_t EstimateSearchSpaceComplexity() const; 2008 void NarrowSearchSpaceByDetectingSupersets(); 2009 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2010 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2011 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2012 void NarrowSearchSpaceByFilterPostInc(); 2013 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2014 void NarrowSearchSpaceByPickingWinnerRegs(); 2015 void NarrowSearchSpaceUsingHeuristics(); 2016 2017 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2018 Cost &SolutionCost, 2019 SmallVectorImpl<const Formula *> &Workspace, 2020 const Cost &CurCost, 2021 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2022 DenseSet<const SCEV *> &VisitedRegs) const; 2023 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2024 2025 BasicBlock::iterator 2026 HoistInsertPosition(BasicBlock::iterator IP, 2027 const SmallVectorImpl<Instruction *> &Inputs) const; 2028 BasicBlock::iterator 2029 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2030 const LSRFixup &LF, 2031 const LSRUse &LU, 2032 SCEVExpander &Rewriter) const; 2033 2034 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2035 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2036 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2037 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2038 const Formula &F, SCEVExpander &Rewriter, 2039 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2040 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2041 SCEVExpander &Rewriter, 2042 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2043 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2044 2045 public: 2046 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2047 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2048 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2049 2050 bool getChanged() const { return Changed; } 2051 2052 void print_factors_and_types(raw_ostream &OS) const; 2053 void print_fixups(raw_ostream &OS) const; 2054 void print_uses(raw_ostream &OS) const; 2055 void print(raw_ostream &OS) const; 2056 void dump() const; 2057 }; 2058 2059 } // end anonymous namespace 2060 2061 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2062 /// the cast operation. 2063 void LSRInstance::OptimizeShadowIV() { 2064 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2065 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2066 return; 2067 2068 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2069 UI != E; /* empty */) { 2070 IVUsers::const_iterator CandidateUI = UI; 2071 ++UI; 2072 Instruction *ShadowUse = CandidateUI->getUser(); 2073 Type *DestTy = nullptr; 2074 bool IsSigned = false; 2075 2076 /* If shadow use is a int->float cast then insert a second IV 2077 to eliminate this cast. 2078 2079 for (unsigned i = 0; i < n; ++i) 2080 foo((double)i); 2081 2082 is transformed into 2083 2084 double d = 0.0; 2085 for (unsigned i = 0; i < n; ++i, ++d) 2086 foo(d); 2087 */ 2088 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2089 IsSigned = false; 2090 DestTy = UCast->getDestTy(); 2091 } 2092 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2093 IsSigned = true; 2094 DestTy = SCast->getDestTy(); 2095 } 2096 if (!DestTy) continue; 2097 2098 // If target does not support DestTy natively then do not apply 2099 // this transformation. 2100 if (!TTI.isTypeLegal(DestTy)) continue; 2101 2102 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2103 if (!PH) continue; 2104 if (PH->getNumIncomingValues() != 2) continue; 2105 2106 // If the calculation in integers overflows, the result in FP type will 2107 // differ. So we only can do this transformation if we are guaranteed to not 2108 // deal with overflowing values 2109 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2110 if (!AR) continue; 2111 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2112 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2113 2114 Type *SrcTy = PH->getType(); 2115 int Mantissa = DestTy->getFPMantissaWidth(); 2116 if (Mantissa == -1) continue; 2117 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2118 continue; 2119 2120 unsigned Entry, Latch; 2121 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2122 Entry = 0; 2123 Latch = 1; 2124 } else { 2125 Entry = 1; 2126 Latch = 0; 2127 } 2128 2129 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2130 if (!Init) continue; 2131 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2132 (double)Init->getSExtValue() : 2133 (double)Init->getZExtValue()); 2134 2135 BinaryOperator *Incr = 2136 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2137 if (!Incr) continue; 2138 if (Incr->getOpcode() != Instruction::Add 2139 && Incr->getOpcode() != Instruction::Sub) 2140 continue; 2141 2142 /* Initialize new IV, double d = 0.0 in above example. */ 2143 ConstantInt *C = nullptr; 2144 if (Incr->getOperand(0) == PH) 2145 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2146 else if (Incr->getOperand(1) == PH) 2147 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2148 else 2149 continue; 2150 2151 if (!C) continue; 2152 2153 // Ignore negative constants, as the code below doesn't handle them 2154 // correctly. TODO: Remove this restriction. 2155 if (!C->getValue().isStrictlyPositive()) continue; 2156 2157 /* Add new PHINode. */ 2158 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2159 2160 /* create new increment. '++d' in above example. */ 2161 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2162 BinaryOperator *NewIncr = 2163 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2164 Instruction::FAdd : Instruction::FSub, 2165 NewPH, CFP, "IV.S.next.", Incr); 2166 2167 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2168 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2169 2170 /* Remove cast operation */ 2171 ShadowUse->replaceAllUsesWith(NewPH); 2172 ShadowUse->eraseFromParent(); 2173 Changed = true; 2174 break; 2175 } 2176 } 2177 2178 /// If Cond has an operand that is an expression of an IV, set the IV user and 2179 /// stride information and return true, otherwise return false. 2180 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2181 for (IVStrideUse &U : IU) 2182 if (U.getUser() == Cond) { 2183 // NOTE: we could handle setcc instructions with multiple uses here, but 2184 // InstCombine does it as well for simple uses, it's not clear that it 2185 // occurs enough in real life to handle. 2186 CondUse = &U; 2187 return true; 2188 } 2189 return false; 2190 } 2191 2192 /// Rewrite the loop's terminating condition if it uses a max computation. 2193 /// 2194 /// This is a narrow solution to a specific, but acute, problem. For loops 2195 /// like this: 2196 /// 2197 /// i = 0; 2198 /// do { 2199 /// p[i] = 0.0; 2200 /// } while (++i < n); 2201 /// 2202 /// the trip count isn't just 'n', because 'n' might not be positive. And 2203 /// unfortunately this can come up even for loops where the user didn't use 2204 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2205 /// will commonly be lowered like this: 2206 /// 2207 /// if (n > 0) { 2208 /// i = 0; 2209 /// do { 2210 /// p[i] = 0.0; 2211 /// } while (++i < n); 2212 /// } 2213 /// 2214 /// and then it's possible for subsequent optimization to obscure the if 2215 /// test in such a way that indvars can't find it. 2216 /// 2217 /// When indvars can't find the if test in loops like this, it creates a 2218 /// max expression, which allows it to give the loop a canonical 2219 /// induction variable: 2220 /// 2221 /// i = 0; 2222 /// max = n < 1 ? 1 : n; 2223 /// do { 2224 /// p[i] = 0.0; 2225 /// } while (++i != max); 2226 /// 2227 /// Canonical induction variables are necessary because the loop passes 2228 /// are designed around them. The most obvious example of this is the 2229 /// LoopInfo analysis, which doesn't remember trip count values. It 2230 /// expects to be able to rediscover the trip count each time it is 2231 /// needed, and it does this using a simple analysis that only succeeds if 2232 /// the loop has a canonical induction variable. 2233 /// 2234 /// However, when it comes time to generate code, the maximum operation 2235 /// can be quite costly, especially if it's inside of an outer loop. 2236 /// 2237 /// This function solves this problem by detecting this type of loop and 2238 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2239 /// the instructions for the maximum computation. 2240 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2241 // Check that the loop matches the pattern we're looking for. 2242 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2243 Cond->getPredicate() != CmpInst::ICMP_NE) 2244 return Cond; 2245 2246 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2247 if (!Sel || !Sel->hasOneUse()) return Cond; 2248 2249 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2250 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2251 return Cond; 2252 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2253 2254 // Add one to the backedge-taken count to get the trip count. 2255 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2256 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2257 2258 // Check for a max calculation that matches the pattern. There's no check 2259 // for ICMP_ULE here because the comparison would be with zero, which 2260 // isn't interesting. 2261 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2262 const SCEVNAryExpr *Max = nullptr; 2263 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2264 Pred = ICmpInst::ICMP_SLE; 2265 Max = S; 2266 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2267 Pred = ICmpInst::ICMP_SLT; 2268 Max = S; 2269 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2270 Pred = ICmpInst::ICMP_ULT; 2271 Max = U; 2272 } else { 2273 // No match; bail. 2274 return Cond; 2275 } 2276 2277 // To handle a max with more than two operands, this optimization would 2278 // require additional checking and setup. 2279 if (Max->getNumOperands() != 2) 2280 return Cond; 2281 2282 const SCEV *MaxLHS = Max->getOperand(0); 2283 const SCEV *MaxRHS = Max->getOperand(1); 2284 2285 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2286 // for a comparison with 1. For <= and >=, a comparison with zero. 2287 if (!MaxLHS || 2288 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2289 return Cond; 2290 2291 // Check the relevant induction variable for conformance to 2292 // the pattern. 2293 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2294 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2295 if (!AR || !AR->isAffine() || 2296 AR->getStart() != One || 2297 AR->getStepRecurrence(SE) != One) 2298 return Cond; 2299 2300 assert(AR->getLoop() == L && 2301 "Loop condition operand is an addrec in a different loop!"); 2302 2303 // Check the right operand of the select, and remember it, as it will 2304 // be used in the new comparison instruction. 2305 Value *NewRHS = nullptr; 2306 if (ICmpInst::isTrueWhenEqual(Pred)) { 2307 // Look for n+1, and grab n. 2308 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2309 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2310 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2311 NewRHS = BO->getOperand(0); 2312 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2313 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2314 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2315 NewRHS = BO->getOperand(0); 2316 if (!NewRHS) 2317 return Cond; 2318 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2319 NewRHS = Sel->getOperand(1); 2320 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2321 NewRHS = Sel->getOperand(2); 2322 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2323 NewRHS = SU->getValue(); 2324 else 2325 // Max doesn't match expected pattern. 2326 return Cond; 2327 2328 // Determine the new comparison opcode. It may be signed or unsigned, 2329 // and the original comparison may be either equality or inequality. 2330 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2331 Pred = CmpInst::getInversePredicate(Pred); 2332 2333 // Ok, everything looks ok to change the condition into an SLT or SGE and 2334 // delete the max calculation. 2335 ICmpInst *NewCond = 2336 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2337 2338 // Delete the max calculation instructions. 2339 Cond->replaceAllUsesWith(NewCond); 2340 CondUse->setUser(NewCond); 2341 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2342 Cond->eraseFromParent(); 2343 Sel->eraseFromParent(); 2344 if (Cmp->use_empty()) 2345 Cmp->eraseFromParent(); 2346 return NewCond; 2347 } 2348 2349 /// Change loop terminating condition to use the postinc iv when possible. 2350 void 2351 LSRInstance::OptimizeLoopTermCond() { 2352 SmallPtrSet<Instruction *, 4> PostIncs; 2353 2354 // We need a different set of heuristics for rotated and non-rotated loops. 2355 // If a loop is rotated then the latch is also the backedge, so inserting 2356 // post-inc expressions just before the latch is ideal. To reduce live ranges 2357 // it also makes sense to rewrite terminating conditions to use post-inc 2358 // expressions. 2359 // 2360 // If the loop is not rotated then the latch is not a backedge; the latch 2361 // check is done in the loop head. Adding post-inc expressions before the 2362 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2363 // in the loop body. In this case we do *not* want to use post-inc expressions 2364 // in the latch check, and we want to insert post-inc expressions before 2365 // the backedge. 2366 BasicBlock *LatchBlock = L->getLoopLatch(); 2367 SmallVector<BasicBlock*, 8> ExitingBlocks; 2368 L->getExitingBlocks(ExitingBlocks); 2369 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2370 return LatchBlock != BB; 2371 })) { 2372 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2373 IVIncInsertPos = LatchBlock->getTerminator(); 2374 return; 2375 } 2376 2377 // Otherwise treat this as a rotated loop. 2378 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2379 // Get the terminating condition for the loop if possible. If we 2380 // can, we want to change it to use a post-incremented version of its 2381 // induction variable, to allow coalescing the live ranges for the IV into 2382 // one register value. 2383 2384 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2385 if (!TermBr) 2386 continue; 2387 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2388 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2389 continue; 2390 2391 // Search IVUsesByStride to find Cond's IVUse if there is one. 2392 IVStrideUse *CondUse = nullptr; 2393 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2394 if (!FindIVUserForCond(Cond, CondUse)) 2395 continue; 2396 2397 // If the trip count is computed in terms of a max (due to ScalarEvolution 2398 // being unable to find a sufficient guard, for example), change the loop 2399 // comparison to use SLT or ULT instead of NE. 2400 // One consequence of doing this now is that it disrupts the count-down 2401 // optimization. That's not always a bad thing though, because in such 2402 // cases it may still be worthwhile to avoid a max. 2403 Cond = OptimizeMax(Cond, CondUse); 2404 2405 // If this exiting block dominates the latch block, it may also use 2406 // the post-inc value if it won't be shared with other uses. 2407 // Check for dominance. 2408 if (!DT.dominates(ExitingBlock, LatchBlock)) 2409 continue; 2410 2411 // Conservatively avoid trying to use the post-inc value in non-latch 2412 // exits if there may be pre-inc users in intervening blocks. 2413 if (LatchBlock != ExitingBlock) 2414 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2415 // Test if the use is reachable from the exiting block. This dominator 2416 // query is a conservative approximation of reachability. 2417 if (&*UI != CondUse && 2418 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2419 // Conservatively assume there may be reuse if the quotient of their 2420 // strides could be a legal scale. 2421 const SCEV *A = IU.getStride(*CondUse, L); 2422 const SCEV *B = IU.getStride(*UI, L); 2423 if (!A || !B) continue; 2424 if (SE.getTypeSizeInBits(A->getType()) != 2425 SE.getTypeSizeInBits(B->getType())) { 2426 if (SE.getTypeSizeInBits(A->getType()) > 2427 SE.getTypeSizeInBits(B->getType())) 2428 B = SE.getSignExtendExpr(B, A->getType()); 2429 else 2430 A = SE.getSignExtendExpr(A, B->getType()); 2431 } 2432 if (const SCEVConstant *D = 2433 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2434 const ConstantInt *C = D->getValue(); 2435 // Stride of one or negative one can have reuse with non-addresses. 2436 if (C->isOne() || C->isMinusOne()) 2437 goto decline_post_inc; 2438 // Avoid weird situations. 2439 if (C->getValue().getMinSignedBits() >= 64 || 2440 C->getValue().isMinSignedValue()) 2441 goto decline_post_inc; 2442 // Check for possible scaled-address reuse. 2443 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2444 MemAccessTy AccessTy = getAccessType( 2445 TTI, UI->getUser(), UI->getOperandValToReplace()); 2446 int64_t Scale = C->getSExtValue(); 2447 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2448 /*BaseOffset=*/0, 2449 /*HasBaseReg=*/false, Scale, 2450 AccessTy.AddrSpace)) 2451 goto decline_post_inc; 2452 Scale = -Scale; 2453 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2454 /*BaseOffset=*/0, 2455 /*HasBaseReg=*/false, Scale, 2456 AccessTy.AddrSpace)) 2457 goto decline_post_inc; 2458 } 2459 } 2460 } 2461 2462 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2463 << *Cond << '\n'); 2464 2465 // It's possible for the setcc instruction to be anywhere in the loop, and 2466 // possible for it to have multiple users. If it is not immediately before 2467 // the exiting block branch, move it. 2468 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2469 if (Cond->hasOneUse()) { 2470 Cond->moveBefore(TermBr); 2471 } else { 2472 // Clone the terminating condition and insert into the loopend. 2473 ICmpInst *OldCond = Cond; 2474 Cond = cast<ICmpInst>(Cond->clone()); 2475 Cond->setName(L->getHeader()->getName() + ".termcond"); 2476 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2477 2478 // Clone the IVUse, as the old use still exists! 2479 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2480 TermBr->replaceUsesOfWith(OldCond, Cond); 2481 } 2482 } 2483 2484 // If we get to here, we know that we can transform the setcc instruction to 2485 // use the post-incremented version of the IV, allowing us to coalesce the 2486 // live ranges for the IV correctly. 2487 CondUse->transformToPostInc(L); 2488 Changed = true; 2489 2490 PostIncs.insert(Cond); 2491 decline_post_inc:; 2492 } 2493 2494 // Determine an insertion point for the loop induction variable increment. It 2495 // must dominate all the post-inc comparisons we just set up, and it must 2496 // dominate the loop latch edge. 2497 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2498 for (Instruction *Inst : PostIncs) { 2499 BasicBlock *BB = 2500 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2501 Inst->getParent()); 2502 if (BB == Inst->getParent()) 2503 IVIncInsertPos = Inst; 2504 else if (BB != IVIncInsertPos->getParent()) 2505 IVIncInsertPos = BB->getTerminator(); 2506 } 2507 } 2508 2509 /// Determine if the given use can accommodate a fixup at the given offset and 2510 /// other details. If so, update the use and return true. 2511 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2512 bool HasBaseReg, LSRUse::KindType Kind, 2513 MemAccessTy AccessTy) { 2514 int64_t NewMinOffset = LU.MinOffset; 2515 int64_t NewMaxOffset = LU.MaxOffset; 2516 MemAccessTy NewAccessTy = AccessTy; 2517 2518 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2519 // something conservative, however this can pessimize in the case that one of 2520 // the uses will have all its uses outside the loop, for example. 2521 if (LU.Kind != Kind) 2522 return false; 2523 2524 // Check for a mismatched access type, and fall back conservatively as needed. 2525 // TODO: Be less conservative when the type is similar and can use the same 2526 // addressing modes. 2527 if (Kind == LSRUse::Address) { 2528 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2529 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2530 AccessTy.AddrSpace); 2531 } 2532 } 2533 2534 // Conservatively assume HasBaseReg is true for now. 2535 if (NewOffset < LU.MinOffset) { 2536 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2537 LU.MaxOffset - NewOffset, HasBaseReg)) 2538 return false; 2539 NewMinOffset = NewOffset; 2540 } else if (NewOffset > LU.MaxOffset) { 2541 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2542 NewOffset - LU.MinOffset, HasBaseReg)) 2543 return false; 2544 NewMaxOffset = NewOffset; 2545 } 2546 2547 // Update the use. 2548 LU.MinOffset = NewMinOffset; 2549 LU.MaxOffset = NewMaxOffset; 2550 LU.AccessTy = NewAccessTy; 2551 return true; 2552 } 2553 2554 /// Return an LSRUse index and an offset value for a fixup which needs the given 2555 /// expression, with the given kind and optional access type. Either reuse an 2556 /// existing use or create a new one, as needed. 2557 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2558 LSRUse::KindType Kind, 2559 MemAccessTy AccessTy) { 2560 const SCEV *Copy = Expr; 2561 int64_t Offset = ExtractImmediate(Expr, SE); 2562 2563 // Basic uses can't accept any offset, for example. 2564 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2565 Offset, /*HasBaseReg=*/ true)) { 2566 Expr = Copy; 2567 Offset = 0; 2568 } 2569 2570 std::pair<UseMapTy::iterator, bool> P = 2571 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2572 if (!P.second) { 2573 // A use already existed with this base. 2574 size_t LUIdx = P.first->second; 2575 LSRUse &LU = Uses[LUIdx]; 2576 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2577 // Reuse this use. 2578 return std::make_pair(LUIdx, Offset); 2579 } 2580 2581 // Create a new use. 2582 size_t LUIdx = Uses.size(); 2583 P.first->second = LUIdx; 2584 Uses.push_back(LSRUse(Kind, AccessTy)); 2585 LSRUse &LU = Uses[LUIdx]; 2586 2587 LU.MinOffset = Offset; 2588 LU.MaxOffset = Offset; 2589 return std::make_pair(LUIdx, Offset); 2590 } 2591 2592 /// Delete the given use from the Uses list. 2593 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2594 if (&LU != &Uses.back()) 2595 std::swap(LU, Uses.back()); 2596 Uses.pop_back(); 2597 2598 // Update RegUses. 2599 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2600 } 2601 2602 /// Look for a use distinct from OrigLU which is has a formula that has the same 2603 /// registers as the given formula. 2604 LSRUse * 2605 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2606 const LSRUse &OrigLU) { 2607 // Search all uses for the formula. This could be more clever. 2608 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2609 LSRUse &LU = Uses[LUIdx]; 2610 // Check whether this use is close enough to OrigLU, to see whether it's 2611 // worthwhile looking through its formulae. 2612 // Ignore ICmpZero uses because they may contain formulae generated by 2613 // GenerateICmpZeroScales, in which case adding fixup offsets may 2614 // be invalid. 2615 if (&LU != &OrigLU && 2616 LU.Kind != LSRUse::ICmpZero && 2617 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2618 LU.WidestFixupType == OrigLU.WidestFixupType && 2619 LU.HasFormulaWithSameRegs(OrigF)) { 2620 // Scan through this use's formulae. 2621 for (const Formula &F : LU.Formulae) { 2622 // Check to see if this formula has the same registers and symbols 2623 // as OrigF. 2624 if (F.BaseRegs == OrigF.BaseRegs && 2625 F.ScaledReg == OrigF.ScaledReg && 2626 F.BaseGV == OrigF.BaseGV && 2627 F.Scale == OrigF.Scale && 2628 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2629 if (F.BaseOffset == 0) 2630 return &LU; 2631 // This is the formula where all the registers and symbols matched; 2632 // there aren't going to be any others. Since we declined it, we 2633 // can skip the rest of the formulae and proceed to the next LSRUse. 2634 break; 2635 } 2636 } 2637 } 2638 } 2639 2640 // Nothing looked good. 2641 return nullptr; 2642 } 2643 2644 void LSRInstance::CollectInterestingTypesAndFactors() { 2645 SmallSetVector<const SCEV *, 4> Strides; 2646 2647 // Collect interesting types and strides. 2648 SmallVector<const SCEV *, 4> Worklist; 2649 for (const IVStrideUse &U : IU) { 2650 const SCEV *Expr = IU.getExpr(U); 2651 2652 // Collect interesting types. 2653 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2654 2655 // Add strides for mentioned loops. 2656 Worklist.push_back(Expr); 2657 do { 2658 const SCEV *S = Worklist.pop_back_val(); 2659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2660 if (AR->getLoop() == L) 2661 Strides.insert(AR->getStepRecurrence(SE)); 2662 Worklist.push_back(AR->getStart()); 2663 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2664 Worklist.append(Add->op_begin(), Add->op_end()); 2665 } 2666 } while (!Worklist.empty()); 2667 } 2668 2669 // Compute interesting factors from the set of interesting strides. 2670 for (SmallSetVector<const SCEV *, 4>::const_iterator 2671 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2672 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2673 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2674 const SCEV *OldStride = *I; 2675 const SCEV *NewStride = *NewStrideIter; 2676 2677 if (SE.getTypeSizeInBits(OldStride->getType()) != 2678 SE.getTypeSizeInBits(NewStride->getType())) { 2679 if (SE.getTypeSizeInBits(OldStride->getType()) > 2680 SE.getTypeSizeInBits(NewStride->getType())) 2681 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2682 else 2683 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2684 } 2685 if (const SCEVConstant *Factor = 2686 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2687 SE, true))) { 2688 if (Factor->getAPInt().getMinSignedBits() <= 64) 2689 Factors.insert(Factor->getAPInt().getSExtValue()); 2690 } else if (const SCEVConstant *Factor = 2691 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2692 NewStride, 2693 SE, true))) { 2694 if (Factor->getAPInt().getMinSignedBits() <= 64) 2695 Factors.insert(Factor->getAPInt().getSExtValue()); 2696 } 2697 } 2698 2699 // If all uses use the same type, don't bother looking for truncation-based 2700 // reuse. 2701 if (Types.size() == 1) 2702 Types.clear(); 2703 2704 LLVM_DEBUG(print_factors_and_types(dbgs())); 2705 } 2706 2707 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2708 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2709 /// IVStrideUses, we could partially skip this. 2710 static User::op_iterator 2711 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2712 Loop *L, ScalarEvolution &SE) { 2713 for(; OI != OE; ++OI) { 2714 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2715 if (!SE.isSCEVable(Oper->getType())) 2716 continue; 2717 2718 if (const SCEVAddRecExpr *AR = 2719 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2720 if (AR->getLoop() == L) 2721 break; 2722 } 2723 } 2724 } 2725 return OI; 2726 } 2727 2728 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2729 /// a convenient helper. 2730 static Value *getWideOperand(Value *Oper) { 2731 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2732 return Trunc->getOperand(0); 2733 return Oper; 2734 } 2735 2736 /// Return true if we allow an IV chain to include both types. 2737 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2738 Type *LType = LVal->getType(); 2739 Type *RType = RVal->getType(); 2740 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2741 // Different address spaces means (possibly) 2742 // different types of the pointer implementation, 2743 // e.g. i16 vs i32 so disallow that. 2744 (LType->getPointerAddressSpace() == 2745 RType->getPointerAddressSpace())); 2746 } 2747 2748 /// Return an approximation of this SCEV expression's "base", or NULL for any 2749 /// constant. Returning the expression itself is conservative. Returning a 2750 /// deeper subexpression is more precise and valid as long as it isn't less 2751 /// complex than another subexpression. For expressions involving multiple 2752 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2753 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2754 /// IVInc==b-a. 2755 /// 2756 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2757 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2758 static const SCEV *getExprBase(const SCEV *S) { 2759 switch (S->getSCEVType()) { 2760 default: // uncluding scUnknown. 2761 return S; 2762 case scConstant: 2763 return nullptr; 2764 case scTruncate: 2765 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2766 case scZeroExtend: 2767 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2768 case scSignExtend: 2769 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2770 case scAddExpr: { 2771 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2772 // there's nothing more complex. 2773 // FIXME: not sure if we want to recognize negation. 2774 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2775 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2776 E(Add->op_begin()); I != E; ++I) { 2777 const SCEV *SubExpr = *I; 2778 if (SubExpr->getSCEVType() == scAddExpr) 2779 return getExprBase(SubExpr); 2780 2781 if (SubExpr->getSCEVType() != scMulExpr) 2782 return SubExpr; 2783 } 2784 return S; // all operands are scaled, be conservative. 2785 } 2786 case scAddRecExpr: 2787 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2788 } 2789 } 2790 2791 /// Return true if the chain increment is profitable to expand into a loop 2792 /// invariant value, which may require its own register. A profitable chain 2793 /// increment will be an offset relative to the same base. We allow such offsets 2794 /// to potentially be used as chain increment as long as it's not obviously 2795 /// expensive to expand using real instructions. 2796 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2797 const SCEV *IncExpr, 2798 ScalarEvolution &SE) { 2799 // Aggressively form chains when -stress-ivchain. 2800 if (StressIVChain) 2801 return true; 2802 2803 // Do not replace a constant offset from IV head with a nonconstant IV 2804 // increment. 2805 if (!isa<SCEVConstant>(IncExpr)) { 2806 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2807 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2808 return false; 2809 } 2810 2811 SmallPtrSet<const SCEV*, 8> Processed; 2812 return !isHighCostExpansion(IncExpr, Processed, SE); 2813 } 2814 2815 /// Return true if the number of registers needed for the chain is estimated to 2816 /// be less than the number required for the individual IV users. First prohibit 2817 /// any IV users that keep the IV live across increments (the Users set should 2818 /// be empty). Next count the number and type of increments in the chain. 2819 /// 2820 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2821 /// effectively use postinc addressing modes. Only consider it profitable it the 2822 /// increments can be computed in fewer registers when chained. 2823 /// 2824 /// TODO: Consider IVInc free if it's already used in another chains. 2825 static bool isProfitableChain(IVChain &Chain, 2826 SmallPtrSetImpl<Instruction *> &Users, 2827 ScalarEvolution &SE, 2828 const TargetTransformInfo &TTI) { 2829 if (StressIVChain) 2830 return true; 2831 2832 if (!Chain.hasIncs()) 2833 return false; 2834 2835 if (!Users.empty()) { 2836 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2837 for (Instruction *Inst 2838 : Users) { dbgs() << " " << *Inst << "\n"; }); 2839 return false; 2840 } 2841 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2842 2843 // The chain itself may require a register, so intialize cost to 1. 2844 int cost = 1; 2845 2846 // A complete chain likely eliminates the need for keeping the original IV in 2847 // a register. LSR does not currently know how to form a complete chain unless 2848 // the header phi already exists. 2849 if (isa<PHINode>(Chain.tailUserInst()) 2850 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2851 --cost; 2852 } 2853 const SCEV *LastIncExpr = nullptr; 2854 unsigned NumConstIncrements = 0; 2855 unsigned NumVarIncrements = 0; 2856 unsigned NumReusedIncrements = 0; 2857 2858 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2859 return true; 2860 2861 for (const IVInc &Inc : Chain) { 2862 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2863 return true; 2864 2865 if (Inc.IncExpr->isZero()) 2866 continue; 2867 2868 // Incrementing by zero or some constant is neutral. We assume constants can 2869 // be folded into an addressing mode or an add's immediate operand. 2870 if (isa<SCEVConstant>(Inc.IncExpr)) { 2871 ++NumConstIncrements; 2872 continue; 2873 } 2874 2875 if (Inc.IncExpr == LastIncExpr) 2876 ++NumReusedIncrements; 2877 else 2878 ++NumVarIncrements; 2879 2880 LastIncExpr = Inc.IncExpr; 2881 } 2882 // An IV chain with a single increment is handled by LSR's postinc 2883 // uses. However, a chain with multiple increments requires keeping the IV's 2884 // value live longer than it needs to be if chained. 2885 if (NumConstIncrements > 1) 2886 --cost; 2887 2888 // Materializing increment expressions in the preheader that didn't exist in 2889 // the original code may cost a register. For example, sign-extended array 2890 // indices can produce ridiculous increments like this: 2891 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2892 cost += NumVarIncrements; 2893 2894 // Reusing variable increments likely saves a register to hold the multiple of 2895 // the stride. 2896 cost -= NumReusedIncrements; 2897 2898 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2899 << "\n"); 2900 2901 return cost < 0; 2902 } 2903 2904 /// Add this IV user to an existing chain or make it the head of a new chain. 2905 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2906 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2907 // When IVs are used as types of varying widths, they are generally converted 2908 // to a wider type with some uses remaining narrow under a (free) trunc. 2909 Value *const NextIV = getWideOperand(IVOper); 2910 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2911 const SCEV *const OperExprBase = getExprBase(OperExpr); 2912 2913 // Visit all existing chains. Check if its IVOper can be computed as a 2914 // profitable loop invariant increment from the last link in the Chain. 2915 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2916 const SCEV *LastIncExpr = nullptr; 2917 for (; ChainIdx < NChains; ++ChainIdx) { 2918 IVChain &Chain = IVChainVec[ChainIdx]; 2919 2920 // Prune the solution space aggressively by checking that both IV operands 2921 // are expressions that operate on the same unscaled SCEVUnknown. This 2922 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2923 // first avoids creating extra SCEV expressions. 2924 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2925 continue; 2926 2927 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2928 if (!isCompatibleIVType(PrevIV, NextIV)) 2929 continue; 2930 2931 // A phi node terminates a chain. 2932 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2933 continue; 2934 2935 // The increment must be loop-invariant so it can be kept in a register. 2936 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2937 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2938 if (!SE.isLoopInvariant(IncExpr, L)) 2939 continue; 2940 2941 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2942 LastIncExpr = IncExpr; 2943 break; 2944 } 2945 } 2946 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2947 // bother for phi nodes, because they must be last in the chain. 2948 if (ChainIdx == NChains) { 2949 if (isa<PHINode>(UserInst)) 2950 return; 2951 if (NChains >= MaxChains && !StressIVChain) { 2952 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2953 return; 2954 } 2955 LastIncExpr = OperExpr; 2956 // IVUsers may have skipped over sign/zero extensions. We don't currently 2957 // attempt to form chains involving extensions unless they can be hoisted 2958 // into this loop's AddRec. 2959 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2960 return; 2961 ++NChains; 2962 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2963 OperExprBase)); 2964 ChainUsersVec.resize(NChains); 2965 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2966 << ") IV=" << *LastIncExpr << "\n"); 2967 } else { 2968 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2969 << ") IV+" << *LastIncExpr << "\n"); 2970 // Add this IV user to the end of the chain. 2971 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2972 } 2973 IVChain &Chain = IVChainVec[ChainIdx]; 2974 2975 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2976 // This chain's NearUsers become FarUsers. 2977 if (!LastIncExpr->isZero()) { 2978 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2979 NearUsers.end()); 2980 NearUsers.clear(); 2981 } 2982 2983 // All other uses of IVOperand become near uses of the chain. 2984 // We currently ignore intermediate values within SCEV expressions, assuming 2985 // they will eventually be used be the current chain, or can be computed 2986 // from one of the chain increments. To be more precise we could 2987 // transitively follow its user and only add leaf IV users to the set. 2988 for (User *U : IVOper->users()) { 2989 Instruction *OtherUse = dyn_cast<Instruction>(U); 2990 if (!OtherUse) 2991 continue; 2992 // Uses in the chain will no longer be uses if the chain is formed. 2993 // Include the head of the chain in this iteration (not Chain.begin()). 2994 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2995 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2996 for( ; IncIter != IncEnd; ++IncIter) { 2997 if (IncIter->UserInst == OtherUse) 2998 break; 2999 } 3000 if (IncIter != IncEnd) 3001 continue; 3002 3003 if (SE.isSCEVable(OtherUse->getType()) 3004 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3005 && IU.isIVUserOrOperand(OtherUse)) { 3006 continue; 3007 } 3008 NearUsers.insert(OtherUse); 3009 } 3010 3011 // Since this user is part of the chain, it's no longer considered a use 3012 // of the chain. 3013 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3014 } 3015 3016 /// Populate the vector of Chains. 3017 /// 3018 /// This decreases ILP at the architecture level. Targets with ample registers, 3019 /// multiple memory ports, and no register renaming probably don't want 3020 /// this. However, such targets should probably disable LSR altogether. 3021 /// 3022 /// The job of LSR is to make a reasonable choice of induction variables across 3023 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3024 /// ILP *within the loop* if the target wants it. 3025 /// 3026 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3027 /// will not reorder memory operations, it will recognize this as a chain, but 3028 /// will generate redundant IV increments. Ideally this would be corrected later 3029 /// by a smart scheduler: 3030 /// = A[i] 3031 /// = A[i+x] 3032 /// A[i] = 3033 /// A[i+x] = 3034 /// 3035 /// TODO: Walk the entire domtree within this loop, not just the path to the 3036 /// loop latch. This will discover chains on side paths, but requires 3037 /// maintaining multiple copies of the Chains state. 3038 void LSRInstance::CollectChains() { 3039 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3040 SmallVector<ChainUsers, 8> ChainUsersVec; 3041 3042 SmallVector<BasicBlock *,8> LatchPath; 3043 BasicBlock *LoopHeader = L->getHeader(); 3044 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3045 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3046 LatchPath.push_back(Rung->getBlock()); 3047 } 3048 LatchPath.push_back(LoopHeader); 3049 3050 // Walk the instruction stream from the loop header to the loop latch. 3051 for (BasicBlock *BB : reverse(LatchPath)) { 3052 for (Instruction &I : *BB) { 3053 // Skip instructions that weren't seen by IVUsers analysis. 3054 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3055 continue; 3056 3057 // Ignore users that are part of a SCEV expression. This way we only 3058 // consider leaf IV Users. This effectively rediscovers a portion of 3059 // IVUsers analysis but in program order this time. 3060 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3061 continue; 3062 3063 // Remove this instruction from any NearUsers set it may be in. 3064 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3065 ChainIdx < NChains; ++ChainIdx) { 3066 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3067 } 3068 // Search for operands that can be chained. 3069 SmallPtrSet<Instruction*, 4> UniqueOperands; 3070 User::op_iterator IVOpEnd = I.op_end(); 3071 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3072 while (IVOpIter != IVOpEnd) { 3073 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3074 if (UniqueOperands.insert(IVOpInst).second) 3075 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3076 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3077 } 3078 } // Continue walking down the instructions. 3079 } // Continue walking down the domtree. 3080 // Visit phi backedges to determine if the chain can generate the IV postinc. 3081 for (PHINode &PN : L->getHeader()->phis()) { 3082 if (!SE.isSCEVable(PN.getType())) 3083 continue; 3084 3085 Instruction *IncV = 3086 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3087 if (IncV) 3088 ChainInstruction(&PN, IncV, ChainUsersVec); 3089 } 3090 // Remove any unprofitable chains. 3091 unsigned ChainIdx = 0; 3092 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3093 UsersIdx < NChains; ++UsersIdx) { 3094 if (!isProfitableChain(IVChainVec[UsersIdx], 3095 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3096 continue; 3097 // Preserve the chain at UsesIdx. 3098 if (ChainIdx != UsersIdx) 3099 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3100 FinalizeChain(IVChainVec[ChainIdx]); 3101 ++ChainIdx; 3102 } 3103 IVChainVec.resize(ChainIdx); 3104 } 3105 3106 void LSRInstance::FinalizeChain(IVChain &Chain) { 3107 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3108 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3109 3110 for (const IVInc &Inc : Chain) { 3111 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3112 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3113 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3114 IVIncSet.insert(UseI); 3115 } 3116 } 3117 3118 /// Return true if the IVInc can be folded into an addressing mode. 3119 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3120 Value *Operand, const TargetTransformInfo &TTI) { 3121 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3122 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3123 return false; 3124 3125 if (IncConst->getAPInt().getMinSignedBits() > 64) 3126 return false; 3127 3128 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3129 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3130 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3131 IncOffset, /*HasBaseReg=*/false)) 3132 return false; 3133 3134 return true; 3135 } 3136 3137 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3138 /// user's operand from the previous IV user's operand. 3139 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3140 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3141 // Find the new IVOperand for the head of the chain. It may have been replaced 3142 // by LSR. 3143 const IVInc &Head = Chain.Incs[0]; 3144 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3145 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3146 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3147 IVOpEnd, L, SE); 3148 Value *IVSrc = nullptr; 3149 while (IVOpIter != IVOpEnd) { 3150 IVSrc = getWideOperand(*IVOpIter); 3151 3152 // If this operand computes the expression that the chain needs, we may use 3153 // it. (Check this after setting IVSrc which is used below.) 3154 // 3155 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3156 // narrow for the chain, so we can no longer use it. We do allow using a 3157 // wider phi, assuming the LSR checked for free truncation. In that case we 3158 // should already have a truncate on this operand such that 3159 // getSCEV(IVSrc) == IncExpr. 3160 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3161 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3162 break; 3163 } 3164 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3165 } 3166 if (IVOpIter == IVOpEnd) { 3167 // Gracefully give up on this chain. 3168 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3169 return; 3170 } 3171 assert(IVSrc && "Failed to find IV chain source"); 3172 3173 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3174 Type *IVTy = IVSrc->getType(); 3175 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3176 const SCEV *LeftOverExpr = nullptr; 3177 for (const IVInc &Inc : Chain) { 3178 Instruction *InsertPt = Inc.UserInst; 3179 if (isa<PHINode>(InsertPt)) 3180 InsertPt = L->getLoopLatch()->getTerminator(); 3181 3182 // IVOper will replace the current IV User's operand. IVSrc is the IV 3183 // value currently held in a register. 3184 Value *IVOper = IVSrc; 3185 if (!Inc.IncExpr->isZero()) { 3186 // IncExpr was the result of subtraction of two narrow values, so must 3187 // be signed. 3188 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3189 LeftOverExpr = LeftOverExpr ? 3190 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3191 } 3192 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3193 // Expand the IV increment. 3194 Rewriter.clearPostInc(); 3195 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3196 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3197 SE.getUnknown(IncV)); 3198 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3199 3200 // If an IV increment can't be folded, use it as the next IV value. 3201 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3202 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3203 IVSrc = IVOper; 3204 LeftOverExpr = nullptr; 3205 } 3206 } 3207 Type *OperTy = Inc.IVOperand->getType(); 3208 if (IVTy != OperTy) { 3209 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3210 "cannot extend a chained IV"); 3211 IRBuilder<> Builder(InsertPt); 3212 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3213 } 3214 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3215 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3216 DeadInsts.emplace_back(OperandIsInstr); 3217 } 3218 // If LSR created a new, wider phi, we may also replace its postinc. We only 3219 // do this if we also found a wide value for the head of the chain. 3220 if (isa<PHINode>(Chain.tailUserInst())) { 3221 for (PHINode &Phi : L->getHeader()->phis()) { 3222 if (!isCompatibleIVType(&Phi, IVSrc)) 3223 continue; 3224 Instruction *PostIncV = dyn_cast<Instruction>( 3225 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3226 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3227 continue; 3228 Value *IVOper = IVSrc; 3229 Type *PostIncTy = PostIncV->getType(); 3230 if (IVTy != PostIncTy) { 3231 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3232 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3233 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3234 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3235 } 3236 Phi.replaceUsesOfWith(PostIncV, IVOper); 3237 DeadInsts.emplace_back(PostIncV); 3238 } 3239 } 3240 } 3241 3242 void LSRInstance::CollectFixupsAndInitialFormulae() { 3243 BranchInst *ExitBranch = nullptr; 3244 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3245 3246 for (const IVStrideUse &U : IU) { 3247 Instruction *UserInst = U.getUser(); 3248 // Skip IV users that are part of profitable IV Chains. 3249 User::op_iterator UseI = 3250 find(UserInst->operands(), U.getOperandValToReplace()); 3251 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3252 if (IVIncSet.count(UseI)) { 3253 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3254 continue; 3255 } 3256 3257 LSRUse::KindType Kind = LSRUse::Basic; 3258 MemAccessTy AccessTy; 3259 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3260 Kind = LSRUse::Address; 3261 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3262 } 3263 3264 const SCEV *S = IU.getExpr(U); 3265 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3266 3267 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3268 // (N - i == 0), and this allows (N - i) to be the expression that we work 3269 // with rather than just N or i, so we can consider the register 3270 // requirements for both N and i at the same time. Limiting this code to 3271 // equality icmps is not a problem because all interesting loops use 3272 // equality icmps, thanks to IndVarSimplify. 3273 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3274 // If CI can be saved in some target, like replaced inside hardware loop 3275 // in PowerPC, no need to generate initial formulae for it. 3276 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3277 continue; 3278 if (CI->isEquality()) { 3279 // Swap the operands if needed to put the OperandValToReplace on the 3280 // left, for consistency. 3281 Value *NV = CI->getOperand(1); 3282 if (NV == U.getOperandValToReplace()) { 3283 CI->setOperand(1, CI->getOperand(0)); 3284 CI->setOperand(0, NV); 3285 NV = CI->getOperand(1); 3286 Changed = true; 3287 } 3288 3289 // x == y --> x - y == 0 3290 const SCEV *N = SE.getSCEV(NV); 3291 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3292 // S is normalized, so normalize N before folding it into S 3293 // to keep the result normalized. 3294 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3295 Kind = LSRUse::ICmpZero; 3296 S = SE.getMinusSCEV(N, S); 3297 } 3298 3299 // -1 and the negations of all interesting strides (except the negation 3300 // of -1) are now also interesting. 3301 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3302 if (Factors[i] != -1) 3303 Factors.insert(-(uint64_t)Factors[i]); 3304 Factors.insert(-1); 3305 } 3306 } 3307 3308 // Get or create an LSRUse. 3309 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3310 size_t LUIdx = P.first; 3311 int64_t Offset = P.second; 3312 LSRUse &LU = Uses[LUIdx]; 3313 3314 // Record the fixup. 3315 LSRFixup &LF = LU.getNewFixup(); 3316 LF.UserInst = UserInst; 3317 LF.OperandValToReplace = U.getOperandValToReplace(); 3318 LF.PostIncLoops = TmpPostIncLoops; 3319 LF.Offset = Offset; 3320 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3321 3322 if (!LU.WidestFixupType || 3323 SE.getTypeSizeInBits(LU.WidestFixupType) < 3324 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3325 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3326 3327 // If this is the first use of this LSRUse, give it a formula. 3328 if (LU.Formulae.empty()) { 3329 InsertInitialFormula(S, LU, LUIdx); 3330 CountRegisters(LU.Formulae.back(), LUIdx); 3331 } 3332 } 3333 3334 LLVM_DEBUG(print_fixups(dbgs())); 3335 } 3336 3337 /// Insert a formula for the given expression into the given use, separating out 3338 /// loop-variant portions from loop-invariant and loop-computable portions. 3339 void 3340 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3341 // Mark uses whose expressions cannot be expanded. 3342 if (!isSafeToExpand(S, SE)) 3343 LU.RigidFormula = true; 3344 3345 Formula F; 3346 F.initialMatch(S, L, SE); 3347 bool Inserted = InsertFormula(LU, LUIdx, F); 3348 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3349 } 3350 3351 /// Insert a simple single-register formula for the given expression into the 3352 /// given use. 3353 void 3354 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3355 LSRUse &LU, size_t LUIdx) { 3356 Formula F; 3357 F.BaseRegs.push_back(S); 3358 F.HasBaseReg = true; 3359 bool Inserted = InsertFormula(LU, LUIdx, F); 3360 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3361 } 3362 3363 /// Note which registers are used by the given formula, updating RegUses. 3364 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3365 if (F.ScaledReg) 3366 RegUses.countRegister(F.ScaledReg, LUIdx); 3367 for (const SCEV *BaseReg : F.BaseRegs) 3368 RegUses.countRegister(BaseReg, LUIdx); 3369 } 3370 3371 /// If the given formula has not yet been inserted, add it to the list, and 3372 /// return true. Return false otherwise. 3373 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3374 // Do not insert formula that we will not be able to expand. 3375 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3376 "Formula is illegal"); 3377 3378 if (!LU.InsertFormula(F, *L)) 3379 return false; 3380 3381 CountRegisters(F, LUIdx); 3382 return true; 3383 } 3384 3385 /// Check for other uses of loop-invariant values which we're tracking. These 3386 /// other uses will pin these values in registers, making them less profitable 3387 /// for elimination. 3388 /// TODO: This currently misses non-constant addrec step registers. 3389 /// TODO: Should this give more weight to users inside the loop? 3390 void 3391 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3392 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3393 SmallPtrSet<const SCEV *, 32> Visited; 3394 3395 while (!Worklist.empty()) { 3396 const SCEV *S = Worklist.pop_back_val(); 3397 3398 // Don't process the same SCEV twice 3399 if (!Visited.insert(S).second) 3400 continue; 3401 3402 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3403 Worklist.append(N->op_begin(), N->op_end()); 3404 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3405 Worklist.push_back(C->getOperand()); 3406 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3407 Worklist.push_back(D->getLHS()); 3408 Worklist.push_back(D->getRHS()); 3409 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3410 const Value *V = US->getValue(); 3411 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3412 // Look for instructions defined outside the loop. 3413 if (L->contains(Inst)) continue; 3414 } else if (isa<UndefValue>(V)) 3415 // Undef doesn't have a live range, so it doesn't matter. 3416 continue; 3417 for (const Use &U : V->uses()) { 3418 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3419 // Ignore non-instructions. 3420 if (!UserInst) 3421 continue; 3422 // Ignore instructions in other functions (as can happen with 3423 // Constants). 3424 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3425 continue; 3426 // Ignore instructions not dominated by the loop. 3427 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3428 UserInst->getParent() : 3429 cast<PHINode>(UserInst)->getIncomingBlock( 3430 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3431 if (!DT.dominates(L->getHeader(), UseBB)) 3432 continue; 3433 // Don't bother if the instruction is in a BB which ends in an EHPad. 3434 if (UseBB->getTerminator()->isEHPad()) 3435 continue; 3436 // Don't bother rewriting PHIs in catchswitch blocks. 3437 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3438 continue; 3439 // Ignore uses which are part of other SCEV expressions, to avoid 3440 // analyzing them multiple times. 3441 if (SE.isSCEVable(UserInst->getType())) { 3442 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3443 // If the user is a no-op, look through to its uses. 3444 if (!isa<SCEVUnknown>(UserS)) 3445 continue; 3446 if (UserS == US) { 3447 Worklist.push_back( 3448 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3449 continue; 3450 } 3451 } 3452 // Ignore icmp instructions which are already being analyzed. 3453 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3454 unsigned OtherIdx = !U.getOperandNo(); 3455 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3456 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3457 continue; 3458 } 3459 3460 std::pair<size_t, int64_t> P = getUse( 3461 S, LSRUse::Basic, MemAccessTy()); 3462 size_t LUIdx = P.first; 3463 int64_t Offset = P.second; 3464 LSRUse &LU = Uses[LUIdx]; 3465 LSRFixup &LF = LU.getNewFixup(); 3466 LF.UserInst = const_cast<Instruction *>(UserInst); 3467 LF.OperandValToReplace = U; 3468 LF.Offset = Offset; 3469 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3470 if (!LU.WidestFixupType || 3471 SE.getTypeSizeInBits(LU.WidestFixupType) < 3472 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3473 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3474 InsertSupplementalFormula(US, LU, LUIdx); 3475 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3476 break; 3477 } 3478 } 3479 } 3480 } 3481 3482 /// Split S into subexpressions which can be pulled out into separate 3483 /// registers. If C is non-null, multiply each subexpression by C. 3484 /// 3485 /// Return remainder expression after factoring the subexpressions captured by 3486 /// Ops. If Ops is complete, return NULL. 3487 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3488 SmallVectorImpl<const SCEV *> &Ops, 3489 const Loop *L, 3490 ScalarEvolution &SE, 3491 unsigned Depth = 0) { 3492 // Arbitrarily cap recursion to protect compile time. 3493 if (Depth >= 3) 3494 return S; 3495 3496 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3497 // Break out add operands. 3498 for (const SCEV *S : Add->operands()) { 3499 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3500 if (Remainder) 3501 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3502 } 3503 return nullptr; 3504 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3505 // Split a non-zero base out of an addrec. 3506 if (AR->getStart()->isZero() || !AR->isAffine()) 3507 return S; 3508 3509 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3510 C, Ops, L, SE, Depth+1); 3511 // Split the non-zero AddRec unless it is part of a nested recurrence that 3512 // does not pertain to this loop. 3513 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3514 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3515 Remainder = nullptr; 3516 } 3517 if (Remainder != AR->getStart()) { 3518 if (!Remainder) 3519 Remainder = SE.getConstant(AR->getType(), 0); 3520 return SE.getAddRecExpr(Remainder, 3521 AR->getStepRecurrence(SE), 3522 AR->getLoop(), 3523 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3524 SCEV::FlagAnyWrap); 3525 } 3526 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3527 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3528 if (Mul->getNumOperands() != 2) 3529 return S; 3530 if (const SCEVConstant *Op0 = 3531 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3532 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3533 const SCEV *Remainder = 3534 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3535 if (Remainder) 3536 Ops.push_back(SE.getMulExpr(C, Remainder)); 3537 return nullptr; 3538 } 3539 } 3540 return S; 3541 } 3542 3543 /// Return true if the SCEV represents a value that may end up as a 3544 /// post-increment operation. 3545 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3546 LSRUse &LU, const SCEV *S, const Loop *L, 3547 ScalarEvolution &SE) { 3548 if (LU.Kind != LSRUse::Address || 3549 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3550 return false; 3551 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3552 if (!AR) 3553 return false; 3554 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3555 if (!isa<SCEVConstant>(LoopStep)) 3556 return false; 3557 // Check if a post-indexed load/store can be used. 3558 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3559 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3560 const SCEV *LoopStart = AR->getStart(); 3561 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3562 return true; 3563 } 3564 return false; 3565 } 3566 3567 /// Helper function for LSRInstance::GenerateReassociations. 3568 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3569 const Formula &Base, 3570 unsigned Depth, size_t Idx, 3571 bool IsScaledReg) { 3572 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3573 // Don't generate reassociations for the base register of a value that 3574 // may generate a post-increment operator. The reason is that the 3575 // reassociations cause extra base+register formula to be created, 3576 // and possibly chosen, but the post-increment is more efficient. 3577 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3578 return; 3579 SmallVector<const SCEV *, 8> AddOps; 3580 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3581 if (Remainder) 3582 AddOps.push_back(Remainder); 3583 3584 if (AddOps.size() == 1) 3585 return; 3586 3587 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3588 JE = AddOps.end(); 3589 J != JE; ++J) { 3590 // Loop-variant "unknown" values are uninteresting; we won't be able to 3591 // do anything meaningful with them. 3592 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3593 continue; 3594 3595 // Don't pull a constant into a register if the constant could be folded 3596 // into an immediate field. 3597 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3598 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3599 continue; 3600 3601 // Collect all operands except *J. 3602 SmallVector<const SCEV *, 8> InnerAddOps( 3603 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3604 InnerAddOps.append(std::next(J), 3605 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3606 3607 // Don't leave just a constant behind in a register if the constant could 3608 // be folded into an immediate field. 3609 if (InnerAddOps.size() == 1 && 3610 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3611 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3612 continue; 3613 3614 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3615 if (InnerSum->isZero()) 3616 continue; 3617 Formula F = Base; 3618 3619 // Add the remaining pieces of the add back into the new formula. 3620 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3621 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3622 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3623 InnerSumSC->getValue()->getZExtValue())) { 3624 F.UnfoldedOffset = 3625 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3626 if (IsScaledReg) 3627 F.ScaledReg = nullptr; 3628 else 3629 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3630 } else if (IsScaledReg) 3631 F.ScaledReg = InnerSum; 3632 else 3633 F.BaseRegs[Idx] = InnerSum; 3634 3635 // Add J as its own register, or an unfolded immediate. 3636 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3637 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3638 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3639 SC->getValue()->getZExtValue())) 3640 F.UnfoldedOffset = 3641 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3642 else 3643 F.BaseRegs.push_back(*J); 3644 // We may have changed the number of register in base regs, adjust the 3645 // formula accordingly. 3646 F.canonicalize(*L); 3647 3648 if (InsertFormula(LU, LUIdx, F)) 3649 // If that formula hadn't been seen before, recurse to find more like 3650 // it. 3651 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3652 // Because just Depth is not enough to bound compile time. 3653 // This means that every time AddOps.size() is greater 16^x we will add 3654 // x to Depth. 3655 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3656 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3657 } 3658 } 3659 3660 /// Split out subexpressions from adds and the bases of addrecs. 3661 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3662 Formula Base, unsigned Depth) { 3663 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3664 // Arbitrarily cap recursion to protect compile time. 3665 if (Depth >= 3) 3666 return; 3667 3668 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3669 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3670 3671 if (Base.Scale == 1) 3672 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3673 /* Idx */ -1, /* IsScaledReg */ true); 3674 } 3675 3676 /// Generate a formula consisting of all of the loop-dominating registers added 3677 /// into a single register. 3678 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3679 Formula Base) { 3680 // This method is only interesting on a plurality of registers. 3681 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3682 (Base.UnfoldedOffset != 0) <= 1) 3683 return; 3684 3685 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3686 // processing the formula. 3687 Base.unscale(); 3688 SmallVector<const SCEV *, 4> Ops; 3689 Formula NewBase = Base; 3690 NewBase.BaseRegs.clear(); 3691 Type *CombinedIntegerType = nullptr; 3692 for (const SCEV *BaseReg : Base.BaseRegs) { 3693 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3694 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3695 if (!CombinedIntegerType) 3696 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3697 Ops.push_back(BaseReg); 3698 } 3699 else 3700 NewBase.BaseRegs.push_back(BaseReg); 3701 } 3702 3703 // If no register is relevant, we're done. 3704 if (Ops.size() == 0) 3705 return; 3706 3707 // Utility function for generating the required variants of the combined 3708 // registers. 3709 auto GenerateFormula = [&](const SCEV *Sum) { 3710 Formula F = NewBase; 3711 3712 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3713 // opportunity to fold something. For now, just ignore such cases 3714 // rather than proceed with zero in a register. 3715 if (Sum->isZero()) 3716 return; 3717 3718 F.BaseRegs.push_back(Sum); 3719 F.canonicalize(*L); 3720 (void)InsertFormula(LU, LUIdx, F); 3721 }; 3722 3723 // If we collected at least two registers, generate a formula combining them. 3724 if (Ops.size() > 1) { 3725 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3726 GenerateFormula(SE.getAddExpr(OpsCopy)); 3727 } 3728 3729 // If we have an unfolded offset, generate a formula combining it with the 3730 // registers collected. 3731 if (NewBase.UnfoldedOffset) { 3732 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3733 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3734 true)); 3735 NewBase.UnfoldedOffset = 0; 3736 GenerateFormula(SE.getAddExpr(Ops)); 3737 } 3738 } 3739 3740 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3741 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3742 const Formula &Base, size_t Idx, 3743 bool IsScaledReg) { 3744 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3745 GlobalValue *GV = ExtractSymbol(G, SE); 3746 if (G->isZero() || !GV) 3747 return; 3748 Formula F = Base; 3749 F.BaseGV = GV; 3750 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3751 return; 3752 if (IsScaledReg) 3753 F.ScaledReg = G; 3754 else 3755 F.BaseRegs[Idx] = G; 3756 (void)InsertFormula(LU, LUIdx, F); 3757 } 3758 3759 /// Generate reuse formulae using symbolic offsets. 3760 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3761 Formula Base) { 3762 // We can't add a symbolic offset if the address already contains one. 3763 if (Base.BaseGV) return; 3764 3765 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3766 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3767 if (Base.Scale == 1) 3768 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3769 /* IsScaledReg */ true); 3770 } 3771 3772 /// Helper function for LSRInstance::GenerateConstantOffsets. 3773 void LSRInstance::GenerateConstantOffsetsImpl( 3774 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3775 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3776 3777 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3778 Formula F = Base; 3779 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3780 3781 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3782 LU.AccessTy, F)) { 3783 // Add the offset to the base register. 3784 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3785 // If it cancelled out, drop the base register, otherwise update it. 3786 if (NewG->isZero()) { 3787 if (IsScaledReg) { 3788 F.Scale = 0; 3789 F.ScaledReg = nullptr; 3790 } else 3791 F.deleteBaseReg(F.BaseRegs[Idx]); 3792 F.canonicalize(*L); 3793 } else if (IsScaledReg) 3794 F.ScaledReg = NewG; 3795 else 3796 F.BaseRegs[Idx] = NewG; 3797 3798 (void)InsertFormula(LU, LUIdx, F); 3799 } 3800 }; 3801 3802 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3803 3804 // With constant offsets and constant steps, we can generate pre-inc 3805 // accesses by having the offset equal the step. So, for access #0 with a 3806 // step of 8, we generate a G - 8 base which would require the first access 3807 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3808 // for itself and hopefully becomes the base for other accesses. This means 3809 // means that a single pre-indexed access can be generated to become the new 3810 // base pointer for each iteration of the loop, resulting in no extra add/sub 3811 // instructions for pointer updating. 3812 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3813 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3814 if (auto *StepRec = 3815 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3816 const APInt &StepInt = StepRec->getAPInt(); 3817 int64_t Step = StepInt.isNegative() ? 3818 StepInt.getSExtValue() : StepInt.getZExtValue(); 3819 3820 for (int64_t Offset : Worklist) { 3821 Offset -= Step; 3822 GenerateOffset(G, Offset); 3823 } 3824 } 3825 } 3826 } 3827 for (int64_t Offset : Worklist) 3828 GenerateOffset(G, Offset); 3829 3830 int64_t Imm = ExtractImmediate(G, SE); 3831 if (G->isZero() || Imm == 0) 3832 return; 3833 Formula F = Base; 3834 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3835 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3836 return; 3837 if (IsScaledReg) 3838 F.ScaledReg = G; 3839 else 3840 F.BaseRegs[Idx] = G; 3841 (void)InsertFormula(LU, LUIdx, F); 3842 } 3843 3844 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3845 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3846 Formula Base) { 3847 // TODO: For now, just add the min and max offset, because it usually isn't 3848 // worthwhile looking at everything inbetween. 3849 SmallVector<int64_t, 2> Worklist; 3850 Worklist.push_back(LU.MinOffset); 3851 if (LU.MaxOffset != LU.MinOffset) 3852 Worklist.push_back(LU.MaxOffset); 3853 3854 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3855 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3856 if (Base.Scale == 1) 3857 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3858 /* IsScaledReg */ true); 3859 } 3860 3861 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3862 /// == y -> x*c == y*c. 3863 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3864 Formula Base) { 3865 if (LU.Kind != LSRUse::ICmpZero) return; 3866 3867 // Determine the integer type for the base formula. 3868 Type *IntTy = Base.getType(); 3869 if (!IntTy) return; 3870 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3871 3872 // Don't do this if there is more than one offset. 3873 if (LU.MinOffset != LU.MaxOffset) return; 3874 3875 // Check if transformation is valid. It is illegal to multiply pointer. 3876 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3877 return; 3878 for (const SCEV *BaseReg : Base.BaseRegs) 3879 if (BaseReg->getType()->isPointerTy()) 3880 return; 3881 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3882 3883 // Check each interesting stride. 3884 for (int64_t Factor : Factors) { 3885 // Check that the multiplication doesn't overflow. 3886 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3887 continue; 3888 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3889 if (NewBaseOffset / Factor != Base.BaseOffset) 3890 continue; 3891 // If the offset will be truncated at this use, check that it is in bounds. 3892 if (!IntTy->isPointerTy() && 3893 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3894 continue; 3895 3896 // Check that multiplying with the use offset doesn't overflow. 3897 int64_t Offset = LU.MinOffset; 3898 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3899 continue; 3900 Offset = (uint64_t)Offset * Factor; 3901 if (Offset / Factor != LU.MinOffset) 3902 continue; 3903 // If the offset will be truncated at this use, check that it is in bounds. 3904 if (!IntTy->isPointerTy() && 3905 !ConstantInt::isValueValidForType(IntTy, Offset)) 3906 continue; 3907 3908 Formula F = Base; 3909 F.BaseOffset = NewBaseOffset; 3910 3911 // Check that this scale is legal. 3912 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3913 continue; 3914 3915 // Compensate for the use having MinOffset built into it. 3916 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3917 3918 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3919 3920 // Check that multiplying with each base register doesn't overflow. 3921 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3922 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3923 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3924 goto next; 3925 } 3926 3927 // Check that multiplying with the scaled register doesn't overflow. 3928 if (F.ScaledReg) { 3929 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3930 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3931 continue; 3932 } 3933 3934 // Check that multiplying with the unfolded offset doesn't overflow. 3935 if (F.UnfoldedOffset != 0) { 3936 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3937 Factor == -1) 3938 continue; 3939 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3940 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3941 continue; 3942 // If the offset will be truncated, check that it is in bounds. 3943 if (!IntTy->isPointerTy() && 3944 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3945 continue; 3946 } 3947 3948 // If we make it here and it's legal, add it. 3949 (void)InsertFormula(LU, LUIdx, F); 3950 next:; 3951 } 3952 } 3953 3954 /// Generate stride factor reuse formulae by making use of scaled-offset address 3955 /// modes, for example. 3956 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3957 // Determine the integer type for the base formula. 3958 Type *IntTy = Base.getType(); 3959 if (!IntTy) return; 3960 3961 // If this Formula already has a scaled register, we can't add another one. 3962 // Try to unscale the formula to generate a better scale. 3963 if (Base.Scale != 0 && !Base.unscale()) 3964 return; 3965 3966 assert(Base.Scale == 0 && "unscale did not did its job!"); 3967 3968 // Check each interesting stride. 3969 for (int64_t Factor : Factors) { 3970 Base.Scale = Factor; 3971 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3972 // Check whether this scale is going to be legal. 3973 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3974 Base)) { 3975 // As a special-case, handle special out-of-loop Basic users specially. 3976 // TODO: Reconsider this special case. 3977 if (LU.Kind == LSRUse::Basic && 3978 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3979 LU.AccessTy, Base) && 3980 LU.AllFixupsOutsideLoop) 3981 LU.Kind = LSRUse::Special; 3982 else 3983 continue; 3984 } 3985 // For an ICmpZero, negating a solitary base register won't lead to 3986 // new solutions. 3987 if (LU.Kind == LSRUse::ICmpZero && 3988 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3989 continue; 3990 // For each addrec base reg, if its loop is current loop, apply the scale. 3991 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3992 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3993 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3994 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3995 if (FactorS->isZero()) 3996 continue; 3997 // Divide out the factor, ignoring high bits, since we'll be 3998 // scaling the value back up in the end. 3999 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4000 // TODO: This could be optimized to avoid all the copying. 4001 Formula F = Base; 4002 F.ScaledReg = Quotient; 4003 F.deleteBaseReg(F.BaseRegs[i]); 4004 // The canonical representation of 1*reg is reg, which is already in 4005 // Base. In that case, do not try to insert the formula, it will be 4006 // rejected anyway. 4007 if (F.Scale == 1 && (F.BaseRegs.empty() || 4008 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4009 continue; 4010 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4011 // non canonical Formula with ScaledReg's loop not being L. 4012 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4013 F.canonicalize(*L); 4014 (void)InsertFormula(LU, LUIdx, F); 4015 } 4016 } 4017 } 4018 } 4019 } 4020 4021 /// Generate reuse formulae from different IV types. 4022 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4023 // Don't bother truncating symbolic values. 4024 if (Base.BaseGV) return; 4025 4026 // Determine the integer type for the base formula. 4027 Type *DstTy = Base.getType(); 4028 if (!DstTy) return; 4029 DstTy = SE.getEffectiveSCEVType(DstTy); 4030 4031 for (Type *SrcTy : Types) { 4032 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4033 Formula F = Base; 4034 4035 // Sometimes SCEV is able to prove zero during ext transform. It may 4036 // happen if SCEV did not do all possible transforms while creating the 4037 // initial node (maybe due to depth limitations), but it can do them while 4038 // taking ext. 4039 if (F.ScaledReg) { 4040 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4041 if (NewScaledReg->isZero()) 4042 continue; 4043 F.ScaledReg = NewScaledReg; 4044 } 4045 bool HasZeroBaseReg = false; 4046 for (const SCEV *&BaseReg : F.BaseRegs) { 4047 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4048 if (NewBaseReg->isZero()) { 4049 HasZeroBaseReg = true; 4050 break; 4051 } 4052 BaseReg = NewBaseReg; 4053 } 4054 if (HasZeroBaseReg) 4055 continue; 4056 4057 // TODO: This assumes we've done basic processing on all uses and 4058 // have an idea what the register usage is. 4059 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4060 continue; 4061 4062 F.canonicalize(*L); 4063 (void)InsertFormula(LU, LUIdx, F); 4064 } 4065 } 4066 } 4067 4068 namespace { 4069 4070 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4071 /// modifications so that the search phase doesn't have to worry about the data 4072 /// structures moving underneath it. 4073 struct WorkItem { 4074 size_t LUIdx; 4075 int64_t Imm; 4076 const SCEV *OrigReg; 4077 4078 WorkItem(size_t LI, int64_t I, const SCEV *R) 4079 : LUIdx(LI), Imm(I), OrigReg(R) {} 4080 4081 void print(raw_ostream &OS) const; 4082 void dump() const; 4083 }; 4084 4085 } // end anonymous namespace 4086 4087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4088 void WorkItem::print(raw_ostream &OS) const { 4089 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4090 << " , add offset " << Imm; 4091 } 4092 4093 LLVM_DUMP_METHOD void WorkItem::dump() const { 4094 print(errs()); errs() << '\n'; 4095 } 4096 #endif 4097 4098 /// Look for registers which are a constant distance apart and try to form reuse 4099 /// opportunities between them. 4100 void LSRInstance::GenerateCrossUseConstantOffsets() { 4101 // Group the registers by their value without any added constant offset. 4102 using ImmMapTy = std::map<int64_t, const SCEV *>; 4103 4104 DenseMap<const SCEV *, ImmMapTy> Map; 4105 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4106 SmallVector<const SCEV *, 8> Sequence; 4107 for (const SCEV *Use : RegUses) { 4108 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4109 int64_t Imm = ExtractImmediate(Reg, SE); 4110 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4111 if (Pair.second) 4112 Sequence.push_back(Reg); 4113 Pair.first->second.insert(std::make_pair(Imm, Use)); 4114 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4115 } 4116 4117 // Now examine each set of registers with the same base value. Build up 4118 // a list of work to do and do the work in a separate step so that we're 4119 // not adding formulae and register counts while we're searching. 4120 SmallVector<WorkItem, 32> WorkItems; 4121 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4122 for (const SCEV *Reg : Sequence) { 4123 const ImmMapTy &Imms = Map.find(Reg)->second; 4124 4125 // It's not worthwhile looking for reuse if there's only one offset. 4126 if (Imms.size() == 1) 4127 continue; 4128 4129 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4130 for (const auto &Entry 4131 : Imms) dbgs() 4132 << ' ' << Entry.first; 4133 dbgs() << '\n'); 4134 4135 // Examine each offset. 4136 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4137 J != JE; ++J) { 4138 const SCEV *OrigReg = J->second; 4139 4140 int64_t JImm = J->first; 4141 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4142 4143 if (!isa<SCEVConstant>(OrigReg) && 4144 UsedByIndicesMap[Reg].count() == 1) { 4145 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4146 << '\n'); 4147 continue; 4148 } 4149 4150 // Conservatively examine offsets between this orig reg a few selected 4151 // other orig regs. 4152 int64_t First = Imms.begin()->first; 4153 int64_t Last = std::prev(Imms.end())->first; 4154 // Compute (First + Last) / 2 without overflow using the fact that 4155 // First + Last = 2 * (First + Last) + (First ^ Last). 4156 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4157 // If the result is negative and First is odd and Last even (or vice versa), 4158 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4159 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4160 ImmMapTy::const_iterator OtherImms[] = { 4161 Imms.begin(), std::prev(Imms.end()), 4162 Imms.lower_bound(Avg)}; 4163 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4164 ImmMapTy::const_iterator M = OtherImms[i]; 4165 if (M == J || M == JE) continue; 4166 4167 // Compute the difference between the two. 4168 int64_t Imm = (uint64_t)JImm - M->first; 4169 for (unsigned LUIdx : UsedByIndices.set_bits()) 4170 // Make a memo of this use, offset, and register tuple. 4171 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4172 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4173 } 4174 } 4175 } 4176 4177 Map.clear(); 4178 Sequence.clear(); 4179 UsedByIndicesMap.clear(); 4180 UniqueItems.clear(); 4181 4182 // Now iterate through the worklist and add new formulae. 4183 for (const WorkItem &WI : WorkItems) { 4184 size_t LUIdx = WI.LUIdx; 4185 LSRUse &LU = Uses[LUIdx]; 4186 int64_t Imm = WI.Imm; 4187 const SCEV *OrigReg = WI.OrigReg; 4188 4189 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4190 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4191 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4192 4193 // TODO: Use a more targeted data structure. 4194 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4195 Formula F = LU.Formulae[L]; 4196 // FIXME: The code for the scaled and unscaled registers looks 4197 // very similar but slightly different. Investigate if they 4198 // could be merged. That way, we would not have to unscale the 4199 // Formula. 4200 F.unscale(); 4201 // Use the immediate in the scaled register. 4202 if (F.ScaledReg == OrigReg) { 4203 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4204 // Don't create 50 + reg(-50). 4205 if (F.referencesReg(SE.getSCEV( 4206 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4207 continue; 4208 Formula NewF = F; 4209 NewF.BaseOffset = Offset; 4210 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4211 NewF)) 4212 continue; 4213 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4214 4215 // If the new scale is a constant in a register, and adding the constant 4216 // value to the immediate would produce a value closer to zero than the 4217 // immediate itself, then the formula isn't worthwhile. 4218 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4219 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4220 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4221 .ule(std::abs(NewF.BaseOffset))) 4222 continue; 4223 4224 // OK, looks good. 4225 NewF.canonicalize(*this->L); 4226 (void)InsertFormula(LU, LUIdx, NewF); 4227 } else { 4228 // Use the immediate in a base register. 4229 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4230 const SCEV *BaseReg = F.BaseRegs[N]; 4231 if (BaseReg != OrigReg) 4232 continue; 4233 Formula NewF = F; 4234 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4235 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4236 LU.Kind, LU.AccessTy, NewF)) { 4237 if (TTI.shouldFavorPostInc() && 4238 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4239 continue; 4240 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4241 continue; 4242 NewF = F; 4243 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4244 } 4245 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4246 4247 // If the new formula has a constant in a register, and adding the 4248 // constant value to the immediate would produce a value closer to 4249 // zero than the immediate itself, then the formula isn't worthwhile. 4250 for (const SCEV *NewReg : NewF.BaseRegs) 4251 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4252 if ((C->getAPInt() + NewF.BaseOffset) 4253 .abs() 4254 .slt(std::abs(NewF.BaseOffset)) && 4255 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4256 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4257 goto skip_formula; 4258 4259 // Ok, looks good. 4260 NewF.canonicalize(*this->L); 4261 (void)InsertFormula(LU, LUIdx, NewF); 4262 break; 4263 skip_formula:; 4264 } 4265 } 4266 } 4267 } 4268 } 4269 4270 /// Generate formulae for each use. 4271 void 4272 LSRInstance::GenerateAllReuseFormulae() { 4273 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4274 // queries are more precise. 4275 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4276 LSRUse &LU = Uses[LUIdx]; 4277 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4278 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4279 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4280 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4281 } 4282 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4283 LSRUse &LU = Uses[LUIdx]; 4284 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4285 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4286 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4287 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4288 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4289 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4290 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4291 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4292 } 4293 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4294 LSRUse &LU = Uses[LUIdx]; 4295 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4296 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4297 } 4298 4299 GenerateCrossUseConstantOffsets(); 4300 4301 LLVM_DEBUG(dbgs() << "\n" 4302 "After generating reuse formulae:\n"; 4303 print_uses(dbgs())); 4304 } 4305 4306 /// If there are multiple formulae with the same set of registers used 4307 /// by other uses, pick the best one and delete the others. 4308 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4309 DenseSet<const SCEV *> VisitedRegs; 4310 SmallPtrSet<const SCEV *, 16> Regs; 4311 SmallPtrSet<const SCEV *, 16> LoserRegs; 4312 #ifndef NDEBUG 4313 bool ChangedFormulae = false; 4314 #endif 4315 4316 // Collect the best formula for each unique set of shared registers. This 4317 // is reset for each use. 4318 using BestFormulaeTy = 4319 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4320 4321 BestFormulaeTy BestFormulae; 4322 4323 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4324 LSRUse &LU = Uses[LUIdx]; 4325 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4326 dbgs() << '\n'); 4327 4328 bool Any = false; 4329 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4330 FIdx != NumForms; ++FIdx) { 4331 Formula &F = LU.Formulae[FIdx]; 4332 4333 // Some formulas are instant losers. For example, they may depend on 4334 // nonexistent AddRecs from other loops. These need to be filtered 4335 // immediately, otherwise heuristics could choose them over others leading 4336 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4337 // avoids the need to recompute this information across formulae using the 4338 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4339 // the corresponding bad register from the Regs set. 4340 Cost CostF(L, SE, TTI); 4341 Regs.clear(); 4342 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4343 if (CostF.isLoser()) { 4344 // During initial formula generation, undesirable formulae are generated 4345 // by uses within other loops that have some non-trivial address mode or 4346 // use the postinc form of the IV. LSR needs to provide these formulae 4347 // as the basis of rediscovering the desired formula that uses an AddRec 4348 // corresponding to the existing phi. Once all formulae have been 4349 // generated, these initial losers may be pruned. 4350 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4351 dbgs() << "\n"); 4352 } 4353 else { 4354 SmallVector<const SCEV *, 4> Key; 4355 for (const SCEV *Reg : F.BaseRegs) { 4356 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4357 Key.push_back(Reg); 4358 } 4359 if (F.ScaledReg && 4360 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4361 Key.push_back(F.ScaledReg); 4362 // Unstable sort by host order ok, because this is only used for 4363 // uniquifying. 4364 llvm::sort(Key); 4365 4366 std::pair<BestFormulaeTy::const_iterator, bool> P = 4367 BestFormulae.insert(std::make_pair(Key, FIdx)); 4368 if (P.second) 4369 continue; 4370 4371 Formula &Best = LU.Formulae[P.first->second]; 4372 4373 Cost CostBest(L, SE, TTI); 4374 Regs.clear(); 4375 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4376 if (CostF.isLess(CostBest)) 4377 std::swap(F, Best); 4378 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4379 dbgs() << "\n" 4380 " in favor of formula "; 4381 Best.print(dbgs()); dbgs() << '\n'); 4382 } 4383 #ifndef NDEBUG 4384 ChangedFormulae = true; 4385 #endif 4386 LU.DeleteFormula(F); 4387 --FIdx; 4388 --NumForms; 4389 Any = true; 4390 } 4391 4392 // Now that we've filtered out some formulae, recompute the Regs set. 4393 if (Any) 4394 LU.RecomputeRegs(LUIdx, RegUses); 4395 4396 // Reset this to prepare for the next use. 4397 BestFormulae.clear(); 4398 } 4399 4400 LLVM_DEBUG(if (ChangedFormulae) { 4401 dbgs() << "\n" 4402 "After filtering out undesirable candidates:\n"; 4403 print_uses(dbgs()); 4404 }); 4405 } 4406 4407 /// Estimate the worst-case number of solutions the solver might have to 4408 /// consider. It almost never considers this many solutions because it prune the 4409 /// search space, but the pruning isn't always sufficient. 4410 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4411 size_t Power = 1; 4412 for (const LSRUse &LU : Uses) { 4413 size_t FSize = LU.Formulae.size(); 4414 if (FSize >= ComplexityLimit) { 4415 Power = ComplexityLimit; 4416 break; 4417 } 4418 Power *= FSize; 4419 if (Power >= ComplexityLimit) 4420 break; 4421 } 4422 return Power; 4423 } 4424 4425 /// When one formula uses a superset of the registers of another formula, it 4426 /// won't help reduce register pressure (though it may not necessarily hurt 4427 /// register pressure); remove it to simplify the system. 4428 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4429 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4430 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4431 4432 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4433 "which use a superset of registers used by other " 4434 "formulae.\n"); 4435 4436 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4437 LSRUse &LU = Uses[LUIdx]; 4438 bool Any = false; 4439 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4440 Formula &F = LU.Formulae[i]; 4441 // Look for a formula with a constant or GV in a register. If the use 4442 // also has a formula with that same value in an immediate field, 4443 // delete the one that uses a register. 4444 for (SmallVectorImpl<const SCEV *>::const_iterator 4445 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4446 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4447 Formula NewF = F; 4448 //FIXME: Formulas should store bitwidth to do wrapping properly. 4449 // See PR41034. 4450 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4451 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4452 (I - F.BaseRegs.begin())); 4453 if (LU.HasFormulaWithSameRegs(NewF)) { 4454 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4455 dbgs() << '\n'); 4456 LU.DeleteFormula(F); 4457 --i; 4458 --e; 4459 Any = true; 4460 break; 4461 } 4462 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4463 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4464 if (!F.BaseGV) { 4465 Formula NewF = F; 4466 NewF.BaseGV = GV; 4467 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4468 (I - F.BaseRegs.begin())); 4469 if (LU.HasFormulaWithSameRegs(NewF)) { 4470 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4471 dbgs() << '\n'); 4472 LU.DeleteFormula(F); 4473 --i; 4474 --e; 4475 Any = true; 4476 break; 4477 } 4478 } 4479 } 4480 } 4481 } 4482 if (Any) 4483 LU.RecomputeRegs(LUIdx, RegUses); 4484 } 4485 4486 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4487 } 4488 } 4489 4490 /// When there are many registers for expressions like A, A+1, A+2, etc., 4491 /// allocate a single register for them. 4492 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4493 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4494 return; 4495 4496 LLVM_DEBUG( 4497 dbgs() << "The search space is too complex.\n" 4498 "Narrowing the search space by assuming that uses separated " 4499 "by a constant offset will use the same registers.\n"); 4500 4501 // This is especially useful for unrolled loops. 4502 4503 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4504 LSRUse &LU = Uses[LUIdx]; 4505 for (const Formula &F : LU.Formulae) { 4506 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4507 continue; 4508 4509 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4510 if (!LUThatHas) 4511 continue; 4512 4513 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4514 LU.Kind, LU.AccessTy)) 4515 continue; 4516 4517 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4518 4519 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4520 4521 // Transfer the fixups of LU to LUThatHas. 4522 for (LSRFixup &Fixup : LU.Fixups) { 4523 Fixup.Offset += F.BaseOffset; 4524 LUThatHas->pushFixup(Fixup); 4525 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4526 } 4527 4528 // Delete formulae from the new use which are no longer legal. 4529 bool Any = false; 4530 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4531 Formula &F = LUThatHas->Formulae[i]; 4532 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4533 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4534 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4535 LUThatHas->DeleteFormula(F); 4536 --i; 4537 --e; 4538 Any = true; 4539 } 4540 } 4541 4542 if (Any) 4543 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4544 4545 // Delete the old use. 4546 DeleteUse(LU, LUIdx); 4547 --LUIdx; 4548 --NumUses; 4549 break; 4550 } 4551 } 4552 4553 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4554 } 4555 4556 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4557 /// we've done more filtering, as it may be able to find more formulae to 4558 /// eliminate. 4559 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4560 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4561 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4562 4563 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4564 "undesirable dedicated registers.\n"); 4565 4566 FilterOutUndesirableDedicatedRegisters(); 4567 4568 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4569 } 4570 } 4571 4572 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4573 /// Pick the best one and delete the others. 4574 /// This narrowing heuristic is to keep as many formulae with different 4575 /// Scale and ScaledReg pair as possible while narrowing the search space. 4576 /// The benefit is that it is more likely to find out a better solution 4577 /// from a formulae set with more Scale and ScaledReg variations than 4578 /// a formulae set with the same Scale and ScaledReg. The picking winner 4579 /// reg heuristic will often keep the formulae with the same Scale and 4580 /// ScaledReg and filter others, and we want to avoid that if possible. 4581 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4582 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4583 return; 4584 4585 LLVM_DEBUG( 4586 dbgs() << "The search space is too complex.\n" 4587 "Narrowing the search space by choosing the best Formula " 4588 "from the Formulae with the same Scale and ScaledReg.\n"); 4589 4590 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4591 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4592 4593 BestFormulaeTy BestFormulae; 4594 #ifndef NDEBUG 4595 bool ChangedFormulae = false; 4596 #endif 4597 DenseSet<const SCEV *> VisitedRegs; 4598 SmallPtrSet<const SCEV *, 16> Regs; 4599 4600 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4601 LSRUse &LU = Uses[LUIdx]; 4602 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4603 dbgs() << '\n'); 4604 4605 // Return true if Formula FA is better than Formula FB. 4606 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4607 // First we will try to choose the Formula with fewer new registers. 4608 // For a register used by current Formula, the more the register is 4609 // shared among LSRUses, the less we increase the register number 4610 // counter of the formula. 4611 size_t FARegNum = 0; 4612 for (const SCEV *Reg : FA.BaseRegs) { 4613 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4614 FARegNum += (NumUses - UsedByIndices.count() + 1); 4615 } 4616 size_t FBRegNum = 0; 4617 for (const SCEV *Reg : FB.BaseRegs) { 4618 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4619 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4620 } 4621 if (FARegNum != FBRegNum) 4622 return FARegNum < FBRegNum; 4623 4624 // If the new register numbers are the same, choose the Formula with 4625 // less Cost. 4626 Cost CostFA(L, SE, TTI); 4627 Cost CostFB(L, SE, TTI); 4628 Regs.clear(); 4629 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4630 Regs.clear(); 4631 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4632 return CostFA.isLess(CostFB); 4633 }; 4634 4635 bool Any = false; 4636 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4637 ++FIdx) { 4638 Formula &F = LU.Formulae[FIdx]; 4639 if (!F.ScaledReg) 4640 continue; 4641 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4642 if (P.second) 4643 continue; 4644 4645 Formula &Best = LU.Formulae[P.first->second]; 4646 if (IsBetterThan(F, Best)) 4647 std::swap(F, Best); 4648 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4649 dbgs() << "\n" 4650 " in favor of formula "; 4651 Best.print(dbgs()); dbgs() << '\n'); 4652 #ifndef NDEBUG 4653 ChangedFormulae = true; 4654 #endif 4655 LU.DeleteFormula(F); 4656 --FIdx; 4657 --NumForms; 4658 Any = true; 4659 } 4660 if (Any) 4661 LU.RecomputeRegs(LUIdx, RegUses); 4662 4663 // Reset this to prepare for the next use. 4664 BestFormulae.clear(); 4665 } 4666 4667 LLVM_DEBUG(if (ChangedFormulae) { 4668 dbgs() << "\n" 4669 "After filtering out undesirable candidates:\n"; 4670 print_uses(dbgs()); 4671 }); 4672 } 4673 4674 /// If we are over the complexity limit, filter out any post-inc prefering 4675 /// variables to only post-inc values. 4676 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4677 if (!TTI.shouldFavorPostInc()) 4678 return; 4679 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4680 return; 4681 4682 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4683 "Narrowing the search space by choosing the lowest " 4684 "register Formula for PostInc Uses.\n"); 4685 4686 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4687 LSRUse &LU = Uses[LUIdx]; 4688 4689 if (LU.Kind != LSRUse::Address) 4690 continue; 4691 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4692 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4693 continue; 4694 4695 size_t MinRegs = std::numeric_limits<size_t>::max(); 4696 for (const Formula &F : LU.Formulae) 4697 MinRegs = std::min(F.getNumRegs(), MinRegs); 4698 4699 bool Any = false; 4700 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4701 ++FIdx) { 4702 Formula &F = LU.Formulae[FIdx]; 4703 if (F.getNumRegs() > MinRegs) { 4704 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4705 dbgs() << "\n"); 4706 LU.DeleteFormula(F); 4707 --FIdx; 4708 --NumForms; 4709 Any = true; 4710 } 4711 } 4712 if (Any) 4713 LU.RecomputeRegs(LUIdx, RegUses); 4714 4715 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4716 break; 4717 } 4718 4719 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4720 } 4721 4722 /// The function delete formulas with high registers number expectation. 4723 /// Assuming we don't know the value of each formula (already delete 4724 /// all inefficient), generate probability of not selecting for each 4725 /// register. 4726 /// For example, 4727 /// Use1: 4728 /// reg(a) + reg({0,+,1}) 4729 /// reg(a) + reg({-1,+,1}) + 1 4730 /// reg({a,+,1}) 4731 /// Use2: 4732 /// reg(b) + reg({0,+,1}) 4733 /// reg(b) + reg({-1,+,1}) + 1 4734 /// reg({b,+,1}) 4735 /// Use3: 4736 /// reg(c) + reg(b) + reg({0,+,1}) 4737 /// reg(c) + reg({b,+,1}) 4738 /// 4739 /// Probability of not selecting 4740 /// Use1 Use2 Use3 4741 /// reg(a) (1/3) * 1 * 1 4742 /// reg(b) 1 * (1/3) * (1/2) 4743 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4744 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4745 /// reg({a,+,1}) (2/3) * 1 * 1 4746 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4747 /// reg(c) 1 * 1 * 0 4748 /// 4749 /// Now count registers number mathematical expectation for each formula: 4750 /// Note that for each use we exclude probability if not selecting for the use. 4751 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4752 /// probabilty 1/3 of not selecting for Use1). 4753 /// Use1: 4754 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4755 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4756 /// reg({a,+,1}) 1 4757 /// Use2: 4758 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4759 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4760 /// reg({b,+,1}) 2/3 4761 /// Use3: 4762 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4763 /// reg(c) + reg({b,+,1}) 1 + 2/3 4764 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4765 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4766 return; 4767 // Ok, we have too many of formulae on our hands to conveniently handle. 4768 // Use a rough heuristic to thin out the list. 4769 4770 // Set of Regs wich will be 100% used in final solution. 4771 // Used in each formula of a solution (in example above this is reg(c)). 4772 // We can skip them in calculations. 4773 SmallPtrSet<const SCEV *, 4> UniqRegs; 4774 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4775 4776 // Map each register to probability of not selecting 4777 DenseMap <const SCEV *, float> RegNumMap; 4778 for (const SCEV *Reg : RegUses) { 4779 if (UniqRegs.count(Reg)) 4780 continue; 4781 float PNotSel = 1; 4782 for (const LSRUse &LU : Uses) { 4783 if (!LU.Regs.count(Reg)) 4784 continue; 4785 float P = LU.getNotSelectedProbability(Reg); 4786 if (P != 0.0) 4787 PNotSel *= P; 4788 else 4789 UniqRegs.insert(Reg); 4790 } 4791 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4792 } 4793 4794 LLVM_DEBUG( 4795 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4796 4797 // Delete formulas where registers number expectation is high. 4798 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4799 LSRUse &LU = Uses[LUIdx]; 4800 // If nothing to delete - continue. 4801 if (LU.Formulae.size() < 2) 4802 continue; 4803 // This is temporary solution to test performance. Float should be 4804 // replaced with round independent type (based on integers) to avoid 4805 // different results for different target builds. 4806 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4807 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4808 size_t MinIdx = 0; 4809 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4810 Formula &F = LU.Formulae[i]; 4811 float FRegNum = 0; 4812 float FARegNum = 0; 4813 for (const SCEV *BaseReg : F.BaseRegs) { 4814 if (UniqRegs.count(BaseReg)) 4815 continue; 4816 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4817 if (isa<SCEVAddRecExpr>(BaseReg)) 4818 FARegNum += 4819 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4820 } 4821 if (const SCEV *ScaledReg = F.ScaledReg) { 4822 if (!UniqRegs.count(ScaledReg)) { 4823 FRegNum += 4824 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4825 if (isa<SCEVAddRecExpr>(ScaledReg)) 4826 FARegNum += 4827 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4828 } 4829 } 4830 if (FMinRegNum > FRegNum || 4831 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4832 FMinRegNum = FRegNum; 4833 FMinARegNum = FARegNum; 4834 MinIdx = i; 4835 } 4836 } 4837 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4838 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4839 if (MinIdx != 0) 4840 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4841 while (LU.Formulae.size() != 1) { 4842 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4843 dbgs() << '\n'); 4844 LU.Formulae.pop_back(); 4845 } 4846 LU.RecomputeRegs(LUIdx, RegUses); 4847 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4848 Formula &F = LU.Formulae[0]; 4849 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4850 // When we choose the formula, the regs become unique. 4851 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4852 if (F.ScaledReg) 4853 UniqRegs.insert(F.ScaledReg); 4854 } 4855 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4856 } 4857 4858 /// Pick a register which seems likely to be profitable, and then in any use 4859 /// which has any reference to that register, delete all formulae which do not 4860 /// reference that register. 4861 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4862 // With all other options exhausted, loop until the system is simple 4863 // enough to handle. 4864 SmallPtrSet<const SCEV *, 4> Taken; 4865 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4866 // Ok, we have too many of formulae on our hands to conveniently handle. 4867 // Use a rough heuristic to thin out the list. 4868 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4869 4870 // Pick the register which is used by the most LSRUses, which is likely 4871 // to be a good reuse register candidate. 4872 const SCEV *Best = nullptr; 4873 unsigned BestNum = 0; 4874 for (const SCEV *Reg : RegUses) { 4875 if (Taken.count(Reg)) 4876 continue; 4877 if (!Best) { 4878 Best = Reg; 4879 BestNum = RegUses.getUsedByIndices(Reg).count(); 4880 } else { 4881 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4882 if (Count > BestNum) { 4883 Best = Reg; 4884 BestNum = Count; 4885 } 4886 } 4887 } 4888 assert(Best && "Failed to find best LSRUse candidate"); 4889 4890 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4891 << " will yield profitable reuse.\n"); 4892 Taken.insert(Best); 4893 4894 // In any use with formulae which references this register, delete formulae 4895 // which don't reference it. 4896 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4897 LSRUse &LU = Uses[LUIdx]; 4898 if (!LU.Regs.count(Best)) continue; 4899 4900 bool Any = false; 4901 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4902 Formula &F = LU.Formulae[i]; 4903 if (!F.referencesReg(Best)) { 4904 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4905 LU.DeleteFormula(F); 4906 --e; 4907 --i; 4908 Any = true; 4909 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4910 continue; 4911 } 4912 } 4913 4914 if (Any) 4915 LU.RecomputeRegs(LUIdx, RegUses); 4916 } 4917 4918 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4919 } 4920 } 4921 4922 /// If there are an extraordinary number of formulae to choose from, use some 4923 /// rough heuristics to prune down the number of formulae. This keeps the main 4924 /// solver from taking an extraordinary amount of time in some worst-case 4925 /// scenarios. 4926 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4927 NarrowSearchSpaceByDetectingSupersets(); 4928 NarrowSearchSpaceByCollapsingUnrolledCode(); 4929 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4930 if (FilterSameScaledReg) 4931 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4932 NarrowSearchSpaceByFilterPostInc(); 4933 if (LSRExpNarrow) 4934 NarrowSearchSpaceByDeletingCostlyFormulas(); 4935 else 4936 NarrowSearchSpaceByPickingWinnerRegs(); 4937 } 4938 4939 /// This is the recursive solver. 4940 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4941 Cost &SolutionCost, 4942 SmallVectorImpl<const Formula *> &Workspace, 4943 const Cost &CurCost, 4944 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4945 DenseSet<const SCEV *> &VisitedRegs) const { 4946 // Some ideas: 4947 // - prune more: 4948 // - use more aggressive filtering 4949 // - sort the formula so that the most profitable solutions are found first 4950 // - sort the uses too 4951 // - search faster: 4952 // - don't compute a cost, and then compare. compare while computing a cost 4953 // and bail early. 4954 // - track register sets with SmallBitVector 4955 4956 const LSRUse &LU = Uses[Workspace.size()]; 4957 4958 // If this use references any register that's already a part of the 4959 // in-progress solution, consider it a requirement that a formula must 4960 // reference that register in order to be considered. This prunes out 4961 // unprofitable searching. 4962 SmallSetVector<const SCEV *, 4> ReqRegs; 4963 for (const SCEV *S : CurRegs) 4964 if (LU.Regs.count(S)) 4965 ReqRegs.insert(S); 4966 4967 SmallPtrSet<const SCEV *, 16> NewRegs; 4968 Cost NewCost(L, SE, TTI); 4969 for (const Formula &F : LU.Formulae) { 4970 // Ignore formulae which may not be ideal in terms of register reuse of 4971 // ReqRegs. The formula should use all required registers before 4972 // introducing new ones. 4973 // This can sometimes (notably when trying to favour postinc) lead to 4974 // sub-optimial decisions. There it is best left to the cost modelling to 4975 // get correct. 4976 if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) { 4977 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4978 for (const SCEV *Reg : ReqRegs) { 4979 if ((F.ScaledReg && F.ScaledReg == Reg) || 4980 is_contained(F.BaseRegs, Reg)) { 4981 --NumReqRegsToFind; 4982 if (NumReqRegsToFind == 0) 4983 break; 4984 } 4985 } 4986 if (NumReqRegsToFind != 0) { 4987 // If none of the formulae satisfied the required registers, then we could 4988 // clear ReqRegs and try again. Currently, we simply give up in this case. 4989 continue; 4990 } 4991 } 4992 4993 // Evaluate the cost of the current formula. If it's already worse than 4994 // the current best, prune the search at that point. 4995 NewCost = CurCost; 4996 NewRegs = CurRegs; 4997 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4998 if (NewCost.isLess(SolutionCost)) { 4999 Workspace.push_back(&F); 5000 if (Workspace.size() != Uses.size()) { 5001 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5002 NewRegs, VisitedRegs); 5003 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5004 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5005 } else { 5006 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5007 dbgs() << ".\nRegs:\n"; 5008 for (const SCEV *S : NewRegs) dbgs() 5009 << "- " << *S << "\n"; 5010 dbgs() << '\n'); 5011 5012 SolutionCost = NewCost; 5013 Solution = Workspace; 5014 } 5015 Workspace.pop_back(); 5016 } 5017 } 5018 } 5019 5020 /// Choose one formula from each use. Return the results in the given Solution 5021 /// vector. 5022 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5023 SmallVector<const Formula *, 8> Workspace; 5024 Cost SolutionCost(L, SE, TTI); 5025 SolutionCost.Lose(); 5026 Cost CurCost(L, SE, TTI); 5027 SmallPtrSet<const SCEV *, 16> CurRegs; 5028 DenseSet<const SCEV *> VisitedRegs; 5029 Workspace.reserve(Uses.size()); 5030 5031 // SolveRecurse does all the work. 5032 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5033 CurRegs, VisitedRegs); 5034 if (Solution.empty()) { 5035 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5036 return; 5037 } 5038 5039 // Ok, we've now made all our decisions. 5040 LLVM_DEBUG(dbgs() << "\n" 5041 "The chosen solution requires "; 5042 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5043 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5044 dbgs() << " "; 5045 Uses[i].print(dbgs()); 5046 dbgs() << "\n" 5047 " "; 5048 Solution[i]->print(dbgs()); 5049 dbgs() << '\n'; 5050 }); 5051 5052 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5053 } 5054 5055 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5056 /// we can go while still being dominated by the input positions. This helps 5057 /// canonicalize the insert position, which encourages sharing. 5058 BasicBlock::iterator 5059 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5060 const SmallVectorImpl<Instruction *> &Inputs) 5061 const { 5062 Instruction *Tentative = &*IP; 5063 while (true) { 5064 bool AllDominate = true; 5065 Instruction *BetterPos = nullptr; 5066 // Don't bother attempting to insert before a catchswitch, their basic block 5067 // cannot have other non-PHI instructions. 5068 if (isa<CatchSwitchInst>(Tentative)) 5069 return IP; 5070 5071 for (Instruction *Inst : Inputs) { 5072 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5073 AllDominate = false; 5074 break; 5075 } 5076 // Attempt to find an insert position in the middle of the block, 5077 // instead of at the end, so that it can be used for other expansions. 5078 if (Tentative->getParent() == Inst->getParent() && 5079 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5080 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5081 } 5082 if (!AllDominate) 5083 break; 5084 if (BetterPos) 5085 IP = BetterPos->getIterator(); 5086 else 5087 IP = Tentative->getIterator(); 5088 5089 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5090 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5091 5092 BasicBlock *IDom; 5093 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5094 if (!Rung) return IP; 5095 Rung = Rung->getIDom(); 5096 if (!Rung) return IP; 5097 IDom = Rung->getBlock(); 5098 5099 // Don't climb into a loop though. 5100 const Loop *IDomLoop = LI.getLoopFor(IDom); 5101 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5102 if (IDomDepth <= IPLoopDepth && 5103 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5104 break; 5105 } 5106 5107 Tentative = IDom->getTerminator(); 5108 } 5109 5110 return IP; 5111 } 5112 5113 /// Determine an input position which will be dominated by the operands and 5114 /// which will dominate the result. 5115 BasicBlock::iterator 5116 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5117 const LSRFixup &LF, 5118 const LSRUse &LU, 5119 SCEVExpander &Rewriter) const { 5120 // Collect some instructions which must be dominated by the 5121 // expanding replacement. These must be dominated by any operands that 5122 // will be required in the expansion. 5123 SmallVector<Instruction *, 4> Inputs; 5124 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5125 Inputs.push_back(I); 5126 if (LU.Kind == LSRUse::ICmpZero) 5127 if (Instruction *I = 5128 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5129 Inputs.push_back(I); 5130 if (LF.PostIncLoops.count(L)) { 5131 if (LF.isUseFullyOutsideLoop(L)) 5132 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5133 else 5134 Inputs.push_back(IVIncInsertPos); 5135 } 5136 // The expansion must also be dominated by the increment positions of any 5137 // loops it for which it is using post-inc mode. 5138 for (const Loop *PIL : LF.PostIncLoops) { 5139 if (PIL == L) continue; 5140 5141 // Be dominated by the loop exit. 5142 SmallVector<BasicBlock *, 4> ExitingBlocks; 5143 PIL->getExitingBlocks(ExitingBlocks); 5144 if (!ExitingBlocks.empty()) { 5145 BasicBlock *BB = ExitingBlocks[0]; 5146 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5147 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5148 Inputs.push_back(BB->getTerminator()); 5149 } 5150 } 5151 5152 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5153 && !isa<DbgInfoIntrinsic>(LowestIP) && 5154 "Insertion point must be a normal instruction"); 5155 5156 // Then, climb up the immediate dominator tree as far as we can go while 5157 // still being dominated by the input positions. 5158 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5159 5160 // Don't insert instructions before PHI nodes. 5161 while (isa<PHINode>(IP)) ++IP; 5162 5163 // Ignore landingpad instructions. 5164 while (IP->isEHPad()) ++IP; 5165 5166 // Ignore debug intrinsics. 5167 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5168 5169 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5170 // IP consistent across expansions and allows the previously inserted 5171 // instructions to be reused by subsequent expansion. 5172 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5173 ++IP; 5174 5175 return IP; 5176 } 5177 5178 /// Emit instructions for the leading candidate expression for this LSRUse (this 5179 /// is called "expanding"). 5180 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5181 const Formula &F, BasicBlock::iterator IP, 5182 SCEVExpander &Rewriter, 5183 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5184 if (LU.RigidFormula) 5185 return LF.OperandValToReplace; 5186 5187 // Determine an input position which will be dominated by the operands and 5188 // which will dominate the result. 5189 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5190 Rewriter.setInsertPoint(&*IP); 5191 5192 // Inform the Rewriter if we have a post-increment use, so that it can 5193 // perform an advantageous expansion. 5194 Rewriter.setPostInc(LF.PostIncLoops); 5195 5196 // This is the type that the user actually needs. 5197 Type *OpTy = LF.OperandValToReplace->getType(); 5198 // This will be the type that we'll initially expand to. 5199 Type *Ty = F.getType(); 5200 if (!Ty) 5201 // No type known; just expand directly to the ultimate type. 5202 Ty = OpTy; 5203 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5204 // Expand directly to the ultimate type if it's the right size. 5205 Ty = OpTy; 5206 // This is the type to do integer arithmetic in. 5207 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5208 5209 // Build up a list of operands to add together to form the full base. 5210 SmallVector<const SCEV *, 8> Ops; 5211 5212 // Expand the BaseRegs portion. 5213 for (const SCEV *Reg : F.BaseRegs) { 5214 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5215 5216 // If we're expanding for a post-inc user, make the post-inc adjustment. 5217 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5218 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5219 } 5220 5221 // Expand the ScaledReg portion. 5222 Value *ICmpScaledV = nullptr; 5223 if (F.Scale != 0) { 5224 const SCEV *ScaledS = F.ScaledReg; 5225 5226 // If we're expanding for a post-inc user, make the post-inc adjustment. 5227 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5228 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5229 5230 if (LU.Kind == LSRUse::ICmpZero) { 5231 // Expand ScaleReg as if it was part of the base regs. 5232 if (F.Scale == 1) 5233 Ops.push_back( 5234 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5235 else { 5236 // An interesting way of "folding" with an icmp is to use a negated 5237 // scale, which we'll implement by inserting it into the other operand 5238 // of the icmp. 5239 assert(F.Scale == -1 && 5240 "The only scale supported by ICmpZero uses is -1!"); 5241 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5242 } 5243 } else { 5244 // Otherwise just expand the scaled register and an explicit scale, 5245 // which is expected to be matched as part of the address. 5246 5247 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5248 // Unless the addressing mode will not be folded. 5249 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5250 isAMCompletelyFolded(TTI, LU, F)) { 5251 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5252 Ops.clear(); 5253 Ops.push_back(SE.getUnknown(FullV)); 5254 } 5255 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5256 if (F.Scale != 1) 5257 ScaledS = 5258 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5259 Ops.push_back(ScaledS); 5260 } 5261 } 5262 5263 // Expand the GV portion. 5264 if (F.BaseGV) { 5265 // Flush the operand list to suppress SCEVExpander hoisting. 5266 if (!Ops.empty()) { 5267 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5268 Ops.clear(); 5269 Ops.push_back(SE.getUnknown(FullV)); 5270 } 5271 Ops.push_back(SE.getUnknown(F.BaseGV)); 5272 } 5273 5274 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5275 // unfolded offsets. LSR assumes they both live next to their uses. 5276 if (!Ops.empty()) { 5277 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5278 Ops.clear(); 5279 Ops.push_back(SE.getUnknown(FullV)); 5280 } 5281 5282 // Expand the immediate portion. 5283 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5284 if (Offset != 0) { 5285 if (LU.Kind == LSRUse::ICmpZero) { 5286 // The other interesting way of "folding" with an ICmpZero is to use a 5287 // negated immediate. 5288 if (!ICmpScaledV) 5289 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5290 else { 5291 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5292 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5293 } 5294 } else { 5295 // Just add the immediate values. These again are expected to be matched 5296 // as part of the address. 5297 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5298 } 5299 } 5300 5301 // Expand the unfolded offset portion. 5302 int64_t UnfoldedOffset = F.UnfoldedOffset; 5303 if (UnfoldedOffset != 0) { 5304 // Just add the immediate values. 5305 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5306 UnfoldedOffset))); 5307 } 5308 5309 // Emit instructions summing all the operands. 5310 const SCEV *FullS = Ops.empty() ? 5311 SE.getConstant(IntTy, 0) : 5312 SE.getAddExpr(Ops); 5313 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5314 5315 // We're done expanding now, so reset the rewriter. 5316 Rewriter.clearPostInc(); 5317 5318 // An ICmpZero Formula represents an ICmp which we're handling as a 5319 // comparison against zero. Now that we've expanded an expression for that 5320 // form, update the ICmp's other operand. 5321 if (LU.Kind == LSRUse::ICmpZero) { 5322 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5323 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5324 DeadInsts.emplace_back(OperandIsInstr); 5325 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5326 "a scale at the same time!"); 5327 if (F.Scale == -1) { 5328 if (ICmpScaledV->getType() != OpTy) { 5329 Instruction *Cast = 5330 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5331 OpTy, false), 5332 ICmpScaledV, OpTy, "tmp", CI); 5333 ICmpScaledV = Cast; 5334 } 5335 CI->setOperand(1, ICmpScaledV); 5336 } else { 5337 // A scale of 1 means that the scale has been expanded as part of the 5338 // base regs. 5339 assert((F.Scale == 0 || F.Scale == 1) && 5340 "ICmp does not support folding a global value and " 5341 "a scale at the same time!"); 5342 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5343 -(uint64_t)Offset); 5344 if (C->getType() != OpTy) 5345 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5346 OpTy, false), 5347 C, OpTy); 5348 5349 CI->setOperand(1, C); 5350 } 5351 } 5352 5353 return FullV; 5354 } 5355 5356 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5357 /// effectively happens in their predecessor blocks, so the expression may need 5358 /// to be expanded in multiple places. 5359 void LSRInstance::RewriteForPHI( 5360 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5361 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5362 DenseMap<BasicBlock *, Value *> Inserted; 5363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5364 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5365 bool needUpdateFixups = false; 5366 BasicBlock *BB = PN->getIncomingBlock(i); 5367 5368 // If this is a critical edge, split the edge so that we do not insert 5369 // the code on all predecessor/successor paths. We do this unless this 5370 // is the canonical backedge for this loop, which complicates post-inc 5371 // users. 5372 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5373 !isa<IndirectBrInst>(BB->getTerminator()) && 5374 !isa<CatchSwitchInst>(BB->getTerminator())) { 5375 BasicBlock *Parent = PN->getParent(); 5376 Loop *PNLoop = LI.getLoopFor(Parent); 5377 if (!PNLoop || Parent != PNLoop->getHeader()) { 5378 // Split the critical edge. 5379 BasicBlock *NewBB = nullptr; 5380 if (!Parent->isLandingPad()) { 5381 NewBB = SplitCriticalEdge(BB, Parent, 5382 CriticalEdgeSplittingOptions(&DT, &LI) 5383 .setMergeIdenticalEdges() 5384 .setKeepOneInputPHIs()); 5385 } else { 5386 SmallVector<BasicBlock*, 2> NewBBs; 5387 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5388 NewBB = NewBBs[0]; 5389 } 5390 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5391 // phi predecessors are identical. The simple thing to do is skip 5392 // splitting in this case rather than complicate the API. 5393 if (NewBB) { 5394 // If PN is outside of the loop and BB is in the loop, we want to 5395 // move the block to be immediately before the PHI block, not 5396 // immediately after BB. 5397 if (L->contains(BB) && !L->contains(PN)) 5398 NewBB->moveBefore(PN->getParent()); 5399 5400 // Splitting the edge can reduce the number of PHI entries we have. 5401 e = PN->getNumIncomingValues(); 5402 BB = NewBB; 5403 i = PN->getBasicBlockIndex(BB); 5404 5405 needUpdateFixups = true; 5406 } 5407 } 5408 } 5409 5410 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5411 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5412 if (!Pair.second) 5413 PN->setIncomingValue(i, Pair.first->second); 5414 else { 5415 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5416 Rewriter, DeadInsts); 5417 5418 // If this is reuse-by-noop-cast, insert the noop cast. 5419 Type *OpTy = LF.OperandValToReplace->getType(); 5420 if (FullV->getType() != OpTy) 5421 FullV = 5422 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5423 OpTy, false), 5424 FullV, LF.OperandValToReplace->getType(), 5425 "tmp", BB->getTerminator()); 5426 5427 PN->setIncomingValue(i, FullV); 5428 Pair.first->second = FullV; 5429 } 5430 5431 // If LSR splits critical edge and phi node has other pending 5432 // fixup operands, we need to update those pending fixups. Otherwise 5433 // formulae will not be implemented completely and some instructions 5434 // will not be eliminated. 5435 if (needUpdateFixups) { 5436 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5437 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5438 // If fixup is supposed to rewrite some operand in the phi 5439 // that was just updated, it may be already moved to 5440 // another phi node. Such fixup requires update. 5441 if (Fixup.UserInst == PN) { 5442 // Check if the operand we try to replace still exists in the 5443 // original phi. 5444 bool foundInOriginalPHI = false; 5445 for (const auto &val : PN->incoming_values()) 5446 if (val == Fixup.OperandValToReplace) { 5447 foundInOriginalPHI = true; 5448 break; 5449 } 5450 5451 // If fixup operand found in original PHI - nothing to do. 5452 if (foundInOriginalPHI) 5453 continue; 5454 5455 // Otherwise it might be moved to another PHI and requires update. 5456 // If fixup operand not found in any of the incoming blocks that 5457 // means we have already rewritten it - nothing to do. 5458 for (const auto &Block : PN->blocks()) 5459 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5460 ++I) { 5461 PHINode *NewPN = cast<PHINode>(I); 5462 for (const auto &val : NewPN->incoming_values()) 5463 if (val == Fixup.OperandValToReplace) 5464 Fixup.UserInst = NewPN; 5465 } 5466 } 5467 } 5468 } 5469 } 5470 5471 /// Emit instructions for the leading candidate expression for this LSRUse (this 5472 /// is called "expanding"), and update the UserInst to reference the newly 5473 /// expanded value. 5474 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5475 const Formula &F, SCEVExpander &Rewriter, 5476 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5477 // First, find an insertion point that dominates UserInst. For PHI nodes, 5478 // find the nearest block which dominates all the relevant uses. 5479 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5480 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5481 } else { 5482 Value *FullV = 5483 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5484 5485 // If this is reuse-by-noop-cast, insert the noop cast. 5486 Type *OpTy = LF.OperandValToReplace->getType(); 5487 if (FullV->getType() != OpTy) { 5488 Instruction *Cast = 5489 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5490 FullV, OpTy, "tmp", LF.UserInst); 5491 FullV = Cast; 5492 } 5493 5494 // Update the user. ICmpZero is handled specially here (for now) because 5495 // Expand may have updated one of the operands of the icmp already, and 5496 // its new value may happen to be equal to LF.OperandValToReplace, in 5497 // which case doing replaceUsesOfWith leads to replacing both operands 5498 // with the same value. TODO: Reorganize this. 5499 if (LU.Kind == LSRUse::ICmpZero) 5500 LF.UserInst->setOperand(0, FullV); 5501 else 5502 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5503 } 5504 5505 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5506 DeadInsts.emplace_back(OperandIsInstr); 5507 } 5508 5509 /// Rewrite all the fixup locations with new values, following the chosen 5510 /// solution. 5511 void LSRInstance::ImplementSolution( 5512 const SmallVectorImpl<const Formula *> &Solution) { 5513 // Keep track of instructions we may have made dead, so that 5514 // we can remove them after we are done working. 5515 SmallVector<WeakTrackingVH, 16> DeadInsts; 5516 5517 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5518 "lsr"); 5519 #ifndef NDEBUG 5520 Rewriter.setDebugType(DEBUG_TYPE); 5521 #endif 5522 Rewriter.disableCanonicalMode(); 5523 Rewriter.enableLSRMode(); 5524 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5525 5526 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5527 for (const IVChain &Chain : IVChainVec) { 5528 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5529 Rewriter.setChainedPhi(PN); 5530 } 5531 5532 // Expand the new value definitions and update the users. 5533 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5534 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5535 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5536 Changed = true; 5537 } 5538 5539 for (const IVChain &Chain : IVChainVec) { 5540 GenerateIVChain(Chain, Rewriter, DeadInsts); 5541 Changed = true; 5542 } 5543 // Clean up after ourselves. This must be done before deleting any 5544 // instructions. 5545 Rewriter.clear(); 5546 5547 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5548 &TLI, MSSAU); 5549 } 5550 5551 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5552 DominatorTree &DT, LoopInfo &LI, 5553 const TargetTransformInfo &TTI, AssumptionCache &AC, 5554 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5555 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5556 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5557 TTI.shouldFavorBackedgeIndex(L)) { 5558 // If LoopSimplify form is not available, stay out of trouble. 5559 if (!L->isLoopSimplifyForm()) 5560 return; 5561 5562 // If there's no interesting work to be done, bail early. 5563 if (IU.empty()) return; 5564 5565 // If there's too much analysis to be done, bail early. We won't be able to 5566 // model the problem anyway. 5567 unsigned NumUsers = 0; 5568 for (const IVStrideUse &U : IU) { 5569 if (++NumUsers > MaxIVUsers) { 5570 (void)U; 5571 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5572 << "\n"); 5573 return; 5574 } 5575 // Bail out if we have a PHI on an EHPad that gets a value from a 5576 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5577 // no good place to stick any instructions. 5578 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5579 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5580 if (isa<FuncletPadInst>(FirstNonPHI) || 5581 isa<CatchSwitchInst>(FirstNonPHI)) 5582 for (BasicBlock *PredBB : PN->blocks()) 5583 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5584 return; 5585 } 5586 } 5587 5588 #ifndef NDEBUG 5589 // All dominating loops must have preheaders, or SCEVExpander may not be able 5590 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5591 // 5592 // IVUsers analysis should only create users that are dominated by simple loop 5593 // headers. Since this loop should dominate all of its users, its user list 5594 // should be empty if this loop itself is not within a simple loop nest. 5595 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5596 Rung; Rung = Rung->getIDom()) { 5597 BasicBlock *BB = Rung->getBlock(); 5598 const Loop *DomLoop = LI.getLoopFor(BB); 5599 if (DomLoop && DomLoop->getHeader() == BB) { 5600 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5601 } 5602 } 5603 #endif // DEBUG 5604 5605 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5606 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5607 dbgs() << ":\n"); 5608 5609 // First, perform some low-level loop optimizations. 5610 OptimizeShadowIV(); 5611 OptimizeLoopTermCond(); 5612 5613 // If loop preparation eliminates all interesting IV users, bail. 5614 if (IU.empty()) return; 5615 5616 // Skip nested loops until we can model them better with formulae. 5617 if (!L->empty()) { 5618 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5619 return; 5620 } 5621 5622 // Start collecting data and preparing for the solver. 5623 CollectChains(); 5624 CollectInterestingTypesAndFactors(); 5625 CollectFixupsAndInitialFormulae(); 5626 CollectLoopInvariantFixupsAndFormulae(); 5627 5628 if (Uses.empty()) 5629 return; 5630 5631 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5632 print_uses(dbgs())); 5633 5634 // Now use the reuse data to generate a bunch of interesting ways 5635 // to formulate the values needed for the uses. 5636 GenerateAllReuseFormulae(); 5637 5638 FilterOutUndesirableDedicatedRegisters(); 5639 NarrowSearchSpaceUsingHeuristics(); 5640 5641 SmallVector<const Formula *, 8> Solution; 5642 Solve(Solution); 5643 5644 // Release memory that is no longer needed. 5645 Factors.clear(); 5646 Types.clear(); 5647 RegUses.clear(); 5648 5649 if (Solution.empty()) 5650 return; 5651 5652 #ifndef NDEBUG 5653 // Formulae should be legal. 5654 for (const LSRUse &LU : Uses) { 5655 for (const Formula &F : LU.Formulae) 5656 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5657 F) && "Illegal formula generated!"); 5658 }; 5659 #endif 5660 5661 // Now that we've decided what we want, make it so. 5662 ImplementSolution(Solution); 5663 } 5664 5665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5666 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5667 if (Factors.empty() && Types.empty()) return; 5668 5669 OS << "LSR has identified the following interesting factors and types: "; 5670 bool First = true; 5671 5672 for (int64_t Factor : Factors) { 5673 if (!First) OS << ", "; 5674 First = false; 5675 OS << '*' << Factor; 5676 } 5677 5678 for (Type *Ty : Types) { 5679 if (!First) OS << ", "; 5680 First = false; 5681 OS << '(' << *Ty << ')'; 5682 } 5683 OS << '\n'; 5684 } 5685 5686 void LSRInstance::print_fixups(raw_ostream &OS) const { 5687 OS << "LSR is examining the following fixup sites:\n"; 5688 for (const LSRUse &LU : Uses) 5689 for (const LSRFixup &LF : LU.Fixups) { 5690 dbgs() << " "; 5691 LF.print(OS); 5692 OS << '\n'; 5693 } 5694 } 5695 5696 void LSRInstance::print_uses(raw_ostream &OS) const { 5697 OS << "LSR is examining the following uses:\n"; 5698 for (const LSRUse &LU : Uses) { 5699 dbgs() << " "; 5700 LU.print(OS); 5701 OS << '\n'; 5702 for (const Formula &F : LU.Formulae) { 5703 OS << " "; 5704 F.print(OS); 5705 OS << '\n'; 5706 } 5707 } 5708 } 5709 5710 void LSRInstance::print(raw_ostream &OS) const { 5711 print_factors_and_types(OS); 5712 print_fixups(OS); 5713 print_uses(OS); 5714 } 5715 5716 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5717 print(errs()); errs() << '\n'; 5718 } 5719 #endif 5720 5721 namespace { 5722 5723 class LoopStrengthReduce : public LoopPass { 5724 public: 5725 static char ID; // Pass ID, replacement for typeid 5726 5727 LoopStrengthReduce(); 5728 5729 private: 5730 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5731 void getAnalysisUsage(AnalysisUsage &AU) const override; 5732 }; 5733 5734 } // end anonymous namespace 5735 5736 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5737 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5738 } 5739 5740 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5741 // We split critical edges, so we change the CFG. However, we do update 5742 // many analyses if they are around. 5743 AU.addPreservedID(LoopSimplifyID); 5744 5745 AU.addRequired<LoopInfoWrapperPass>(); 5746 AU.addPreserved<LoopInfoWrapperPass>(); 5747 AU.addRequiredID(LoopSimplifyID); 5748 AU.addRequired<DominatorTreeWrapperPass>(); 5749 AU.addPreserved<DominatorTreeWrapperPass>(); 5750 AU.addRequired<ScalarEvolutionWrapperPass>(); 5751 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5752 AU.addRequired<AssumptionCacheTracker>(); 5753 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5754 // Requiring LoopSimplify a second time here prevents IVUsers from running 5755 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5756 AU.addRequiredID(LoopSimplifyID); 5757 AU.addRequired<IVUsersWrapperPass>(); 5758 AU.addPreserved<IVUsersWrapperPass>(); 5759 AU.addRequired<TargetTransformInfoWrapperPass>(); 5760 AU.addPreserved<MemorySSAWrapperPass>(); 5761 } 5762 5763 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5764 DominatorTree &DT, LoopInfo &LI, 5765 const TargetTransformInfo &TTI, 5766 AssumptionCache &AC, TargetLibraryInfo &TLI, 5767 MemorySSA *MSSA) { 5768 5769 bool Changed = false; 5770 std::unique_ptr<MemorySSAUpdater> MSSAU; 5771 if (MSSA) 5772 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5773 5774 // Run the main LSR transformation. 5775 Changed |= 5776 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5777 5778 // Remove any extra phis created by processing inner loops. 5779 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5780 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5781 SmallVector<WeakTrackingVH, 16> DeadInsts; 5782 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5783 SCEVExpander Rewriter(SE, DL, "lsr"); 5784 #ifndef NDEBUG 5785 Rewriter.setDebugType(DEBUG_TYPE); 5786 #endif 5787 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5788 if (numFolded) { 5789 Changed = true; 5790 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5791 MSSAU.get()); 5792 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5793 } 5794 } 5795 return Changed; 5796 } 5797 5798 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5799 if (skipLoop(L)) 5800 return false; 5801 5802 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5803 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5804 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5805 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5806 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5807 *L->getHeader()->getParent()); 5808 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5809 *L->getHeader()->getParent()); 5810 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5811 *L->getHeader()->getParent()); 5812 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5813 MemorySSA *MSSA = nullptr; 5814 if (MSSAAnalysis) 5815 MSSA = &MSSAAnalysis->getMSSA(); 5816 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5817 } 5818 5819 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5820 LoopStandardAnalysisResults &AR, 5821 LPMUpdater &) { 5822 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5823 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5824 return PreservedAnalyses::all(); 5825 5826 auto PA = getLoopPassPreservedAnalyses(); 5827 if (AR.MSSA) 5828 PA.preserve<MemorySSAAnalysis>(); 5829 return PA; 5830 } 5831 5832 char LoopStrengthReduce::ID = 0; 5833 5834 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5835 "Loop Strength Reduction", false, false) 5836 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5837 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5838 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5839 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5840 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5841 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5842 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5843 "Loop Strength Reduction", false, false) 5844 5845 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5846