1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <map> 120 #include <utility> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "loop-reduce" 125 126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 127 /// bail out. This threshold is far beyond the number of users that LSR can 128 /// conceivably solve, so it should not affect generated code, but catches the 129 /// worst cases before LSR burns too much compile time and stack space. 130 static const unsigned MaxIVUsers = 200; 131 132 // Temporary flag to cleanup congruent phis after LSR phi expansion. 133 // It's currently disabled until we can determine whether it's truly useful or 134 // not. The flag should be removed after the v3.0 release. 135 // This is now needed for ivchains. 136 static cl::opt<bool> EnablePhiElim( 137 "enable-lsr-phielim", cl::Hidden, cl::init(true), 138 cl::desc("Enable LSR phi elimination")); 139 140 // The flag adds instruction count to solutions cost comparision. 141 static cl::opt<bool> InsnsCost( 142 "lsr-insns-cost", cl::Hidden, cl::init(true), 143 cl::desc("Add instruction count to a LSR cost model")); 144 145 // Flag to choose how to narrow complex lsr solution 146 static cl::opt<bool> LSRExpNarrow( 147 "lsr-exp-narrow", cl::Hidden, cl::init(false), 148 cl::desc("Narrow LSR complex solution using" 149 " expectation of registers number")); 150 151 // Flag to narrow search space by filtering non-optimal formulae with 152 // the same ScaledReg and Scale. 153 static cl::opt<bool> FilterSameScaledReg( 154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 155 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 156 " with the same ScaledReg and Scale")); 157 158 static cl::opt<bool> EnableBackedgeIndexing( 159 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 160 cl::desc("Enable the generation of cross iteration indexed memops")); 161 162 static cl::opt<unsigned> ComplexityLimit( 163 "lsr-complexity-limit", cl::Hidden, 164 cl::init(std::numeric_limits<uint16_t>::max()), 165 cl::desc("LSR search space complexity limit")); 166 167 static cl::opt<unsigned> SetupCostDepthLimit( 168 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 169 cl::desc("The limit on recursion depth for LSRs setup cost")); 170 171 #ifndef NDEBUG 172 // Stress test IV chain generation. 173 static cl::opt<bool> StressIVChain( 174 "stress-ivchain", cl::Hidden, cl::init(false), 175 cl::desc("Stress test LSR IV chains")); 176 #else 177 static bool StressIVChain = false; 178 #endif 179 180 namespace { 181 182 struct MemAccessTy { 183 /// Used in situations where the accessed memory type is unknown. 184 static const unsigned UnknownAddressSpace = 185 std::numeric_limits<unsigned>::max(); 186 187 Type *MemTy = nullptr; 188 unsigned AddrSpace = UnknownAddressSpace; 189 190 MemAccessTy() = default; 191 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 192 193 bool operator==(MemAccessTy Other) const { 194 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 195 } 196 197 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 198 199 static MemAccessTy getUnknown(LLVMContext &Ctx, 200 unsigned AS = UnknownAddressSpace) { 201 return MemAccessTy(Type::getVoidTy(Ctx), AS); 202 } 203 204 Type *getType() { return MemTy; } 205 }; 206 207 /// This class holds data which is used to order reuse candidates. 208 class RegSortData { 209 public: 210 /// This represents the set of LSRUse indices which reference 211 /// a particular register. 212 SmallBitVector UsedByIndices; 213 214 void print(raw_ostream &OS) const; 215 void dump() const; 216 }; 217 218 } // end anonymous namespace 219 220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 221 void RegSortData::print(raw_ostream &OS) const { 222 OS << "[NumUses=" << UsedByIndices.count() << ']'; 223 } 224 225 LLVM_DUMP_METHOD void RegSortData::dump() const { 226 print(errs()); errs() << '\n'; 227 } 228 #endif 229 230 namespace { 231 232 /// Map register candidates to information about how they are used. 233 class RegUseTracker { 234 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 235 236 RegUsesTy RegUsesMap; 237 SmallVector<const SCEV *, 16> RegSequence; 238 239 public: 240 void countRegister(const SCEV *Reg, size_t LUIdx); 241 void dropRegister(const SCEV *Reg, size_t LUIdx); 242 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 243 244 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 245 246 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 247 248 void clear(); 249 250 using iterator = SmallVectorImpl<const SCEV *>::iterator; 251 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 252 253 iterator begin() { return RegSequence.begin(); } 254 iterator end() { return RegSequence.end(); } 255 const_iterator begin() const { return RegSequence.begin(); } 256 const_iterator end() const { return RegSequence.end(); } 257 }; 258 259 } // end anonymous namespace 260 261 void 262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 263 std::pair<RegUsesTy::iterator, bool> Pair = 264 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 265 RegSortData &RSD = Pair.first->second; 266 if (Pair.second) 267 RegSequence.push_back(Reg); 268 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 269 RSD.UsedByIndices.set(LUIdx); 270 } 271 272 void 273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 274 RegUsesTy::iterator It = RegUsesMap.find(Reg); 275 assert(It != RegUsesMap.end()); 276 RegSortData &RSD = It->second; 277 assert(RSD.UsedByIndices.size() > LUIdx); 278 RSD.UsedByIndices.reset(LUIdx); 279 } 280 281 void 282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 283 assert(LUIdx <= LastLUIdx); 284 285 // Update RegUses. The data structure is not optimized for this purpose; 286 // we must iterate through it and update each of the bit vectors. 287 for (auto &Pair : RegUsesMap) { 288 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 289 if (LUIdx < UsedByIndices.size()) 290 UsedByIndices[LUIdx] = 291 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 292 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 293 } 294 } 295 296 bool 297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 298 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 299 if (I == RegUsesMap.end()) 300 return false; 301 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 302 int i = UsedByIndices.find_first(); 303 if (i == -1) return false; 304 if ((size_t)i != LUIdx) return true; 305 return UsedByIndices.find_next(i) != -1; 306 } 307 308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 309 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 310 assert(I != RegUsesMap.end() && "Unknown register!"); 311 return I->second.UsedByIndices; 312 } 313 314 void RegUseTracker::clear() { 315 RegUsesMap.clear(); 316 RegSequence.clear(); 317 } 318 319 namespace { 320 321 /// This class holds information that describes a formula for computing 322 /// satisfying a use. It may include broken-out immediates and scaled registers. 323 struct Formula { 324 /// Global base address used for complex addressing. 325 GlobalValue *BaseGV = nullptr; 326 327 /// Base offset for complex addressing. 328 int64_t BaseOffset = 0; 329 330 /// Whether any complex addressing has a base register. 331 bool HasBaseReg = false; 332 333 /// The scale of any complex addressing. 334 int64_t Scale = 0; 335 336 /// The list of "base" registers for this use. When this is non-empty. The 337 /// canonical representation of a formula is 338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 340 /// 3. The reg containing recurrent expr related with currect loop in the 341 /// formula should be put in the ScaledReg. 342 /// #1 enforces that the scaled register is always used when at least two 343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 344 /// #2 enforces that 1 * reg is reg. 345 /// #3 ensures invariant regs with respect to current loop can be combined 346 /// together in LSR codegen. 347 /// This invariant can be temporarily broken while building a formula. 348 /// However, every formula inserted into the LSRInstance must be in canonical 349 /// form. 350 SmallVector<const SCEV *, 4> BaseRegs; 351 352 /// The 'scaled' register for this use. This should be non-null when Scale is 353 /// not zero. 354 const SCEV *ScaledReg = nullptr; 355 356 /// An additional constant offset which added near the use. This requires a 357 /// temporary register, but the offset itself can live in an add immediate 358 /// field rather than a register. 359 int64_t UnfoldedOffset = 0; 360 361 Formula() = default; 362 363 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 364 365 bool isCanonical(const Loop &L) const; 366 367 void canonicalize(const Loop &L); 368 369 bool unscale(); 370 371 bool hasZeroEnd() const; 372 373 size_t getNumRegs() const; 374 Type *getType() const; 375 376 void deleteBaseReg(const SCEV *&S); 377 378 bool referencesReg(const SCEV *S) const; 379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 380 const RegUseTracker &RegUses) const; 381 382 void print(raw_ostream &OS) const; 383 void dump() const; 384 }; 385 386 } // end anonymous namespace 387 388 /// Recursion helper for initialMatch. 389 static void DoInitialMatch(const SCEV *S, Loop *L, 390 SmallVectorImpl<const SCEV *> &Good, 391 SmallVectorImpl<const SCEV *> &Bad, 392 ScalarEvolution &SE) { 393 // Collect expressions which properly dominate the loop header. 394 if (SE.properlyDominates(S, L->getHeader())) { 395 Good.push_back(S); 396 return; 397 } 398 399 // Look at add operands. 400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 401 for (const SCEV *S : Add->operands()) 402 DoInitialMatch(S, L, Good, Bad, SE); 403 return; 404 } 405 406 // Look at addrec operands. 407 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 408 if (!AR->getStart()->isZero() && AR->isAffine()) { 409 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 410 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 411 AR->getStepRecurrence(SE), 412 // FIXME: AR->getNoWrapFlags() 413 AR->getLoop(), SCEV::FlagAnyWrap), 414 L, Good, Bad, SE); 415 return; 416 } 417 418 // Handle a multiplication by -1 (negation) if it didn't fold. 419 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 420 if (Mul->getOperand(0)->isAllOnesValue()) { 421 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 422 const SCEV *NewMul = SE.getMulExpr(Ops); 423 424 SmallVector<const SCEV *, 4> MyGood; 425 SmallVector<const SCEV *, 4> MyBad; 426 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 427 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 428 SE.getEffectiveSCEVType(NewMul->getType()))); 429 for (const SCEV *S : MyGood) 430 Good.push_back(SE.getMulExpr(NegOne, S)); 431 for (const SCEV *S : MyBad) 432 Bad.push_back(SE.getMulExpr(NegOne, S)); 433 return; 434 } 435 436 // Ok, we can't do anything interesting. Just stuff the whole thing into a 437 // register and hope for the best. 438 Bad.push_back(S); 439 } 440 441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 442 /// all loop-invariant and loop-computable values in a single base register. 443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 444 SmallVector<const SCEV *, 4> Good; 445 SmallVector<const SCEV *, 4> Bad; 446 DoInitialMatch(S, L, Good, Bad, SE); 447 if (!Good.empty()) { 448 const SCEV *Sum = SE.getAddExpr(Good); 449 if (!Sum->isZero()) 450 BaseRegs.push_back(Sum); 451 HasBaseReg = true; 452 } 453 if (!Bad.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Bad); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 canonicalize(*L); 460 } 461 462 /// Check whether or not this formula satisfies the canonical 463 /// representation. 464 /// \see Formula::BaseRegs. 465 bool Formula::isCanonical(const Loop &L) const { 466 if (!ScaledReg) 467 return BaseRegs.size() <= 1; 468 469 if (Scale != 1) 470 return true; 471 472 if (Scale == 1 && BaseRegs.empty()) 473 return false; 474 475 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 476 if (SAR && SAR->getLoop() == &L) 477 return true; 478 479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 481 // loop, we want to swap the reg in BaseRegs with ScaledReg. 482 auto I = 483 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 484 return isa<const SCEVAddRecExpr>(S) && 485 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 486 }); 487 return I == BaseRegs.end(); 488 } 489 490 /// Helper method to morph a formula into its canonical representation. 491 /// \see Formula::BaseRegs. 492 /// Every formula having more than one base register, must use the ScaledReg 493 /// field. Otherwise, we would have to do special cases everywhere in LSR 494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 495 /// On the other hand, 1*reg should be canonicalized into reg. 496 void Formula::canonicalize(const Loop &L) { 497 if (isCanonical(L)) 498 return; 499 // So far we did not need this case. This is easy to implement but it is 500 // useless to maintain dead code. Beside it could hurt compile time. 501 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 502 503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 504 if (!ScaledReg) { 505 ScaledReg = BaseRegs.back(); 506 BaseRegs.pop_back(); 507 Scale = 1; 508 } 509 510 // If ScaledReg is an invariant with respect to L, find the reg from 511 // BaseRegs containing the recurrent expr related with Loop L. Swap the 512 // reg with ScaledReg. 513 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 514 if (!SAR || SAR->getLoop() != &L) { 515 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 516 [&](const SCEV *S) { 517 return isa<const SCEVAddRecExpr>(S) && 518 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 519 }); 520 if (I != BaseRegs.end()) 521 std::swap(ScaledReg, *I); 522 } 523 } 524 525 /// Get rid of the scale in the formula. 526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 527 /// \return true if it was possible to get rid of the scale, false otherwise. 528 /// \note After this operation the formula may not be in the canonical form. 529 bool Formula::unscale() { 530 if (Scale != 1) 531 return false; 532 Scale = 0; 533 BaseRegs.push_back(ScaledReg); 534 ScaledReg = nullptr; 535 return true; 536 } 537 538 bool Formula::hasZeroEnd() const { 539 if (UnfoldedOffset || BaseOffset) 540 return false; 541 if (BaseRegs.size() != 1 || ScaledReg) 542 return false; 543 return true; 544 } 545 546 /// Return the total number of register operands used by this formula. This does 547 /// not include register uses implied by non-constant addrec strides. 548 size_t Formula::getNumRegs() const { 549 return !!ScaledReg + BaseRegs.size(); 550 } 551 552 /// Return the type of this formula, if it has one, or null otherwise. This type 553 /// is meaningless except for the bit size. 554 Type *Formula::getType() const { 555 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 556 ScaledReg ? ScaledReg->getType() : 557 BaseGV ? BaseGV->getType() : 558 nullptr; 559 } 560 561 /// Delete the given base reg from the BaseRegs list. 562 void Formula::deleteBaseReg(const SCEV *&S) { 563 if (&S != &BaseRegs.back()) 564 std::swap(S, BaseRegs.back()); 565 BaseRegs.pop_back(); 566 } 567 568 /// Test if this formula references the given register. 569 bool Formula::referencesReg(const SCEV *S) const { 570 return S == ScaledReg || is_contained(BaseRegs, S); 571 } 572 573 /// Test whether this formula uses registers which are used by uses other than 574 /// the use with the given index. 575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 576 const RegUseTracker &RegUses) const { 577 if (ScaledReg) 578 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 579 return true; 580 for (const SCEV *BaseReg : BaseRegs) 581 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 582 return true; 583 return false; 584 } 585 586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 587 void Formula::print(raw_ostream &OS) const { 588 bool First = true; 589 if (BaseGV) { 590 if (!First) OS << " + "; else First = false; 591 BaseGV->printAsOperand(OS, /*PrintType=*/false); 592 } 593 if (BaseOffset != 0) { 594 if (!First) OS << " + "; else First = false; 595 OS << BaseOffset; 596 } 597 for (const SCEV *BaseReg : BaseRegs) { 598 if (!First) OS << " + "; else First = false; 599 OS << "reg(" << *BaseReg << ')'; 600 } 601 if (HasBaseReg && BaseRegs.empty()) { 602 if (!First) OS << " + "; else First = false; 603 OS << "**error: HasBaseReg**"; 604 } else if (!HasBaseReg && !BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: !HasBaseReg**"; 607 } 608 if (Scale != 0) { 609 if (!First) OS << " + "; else First = false; 610 OS << Scale << "*reg("; 611 if (ScaledReg) 612 OS << *ScaledReg; 613 else 614 OS << "<unknown>"; 615 OS << ')'; 616 } 617 if (UnfoldedOffset != 0) { 618 if (!First) OS << " + "; 619 OS << "imm(" << UnfoldedOffset << ')'; 620 } 621 } 622 623 LLVM_DUMP_METHOD void Formula::dump() const { 624 print(errs()); errs() << '\n'; 625 } 626 #endif 627 628 /// Return true if the given addrec can be sign-extended without changing its 629 /// value. 630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 631 Type *WideTy = 632 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 633 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 634 } 635 636 /// Return true if the given add can be sign-extended without changing its 637 /// value. 638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 639 Type *WideTy = 640 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 641 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 642 } 643 644 /// Return true if the given mul can be sign-extended without changing its 645 /// value. 646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 647 Type *WideTy = 648 IntegerType::get(SE.getContext(), 649 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 650 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 651 } 652 653 /// Return an expression for LHS /s RHS, if it can be determined and if the 654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 656 /// the multiplication may overflow, which is useful when the result will be 657 /// used in a context where the most significant bits are ignored. 658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 659 ScalarEvolution &SE, 660 bool IgnoreSignificantBits = false) { 661 // Handle the trivial case, which works for any SCEV type. 662 if (LHS == RHS) 663 return SE.getConstant(LHS->getType(), 1); 664 665 // Handle a few RHS special cases. 666 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 667 if (RC) { 668 const APInt &RA = RC->getAPInt(); 669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 670 // some folding. 671 if (RA.isAllOnesValue()) 672 return SE.getMulExpr(LHS, RC); 673 // Handle x /s 1 as x. 674 if (RA == 1) 675 return LHS; 676 } 677 678 // Check for a division of a constant by a constant. 679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 680 if (!RC) 681 return nullptr; 682 const APInt &LA = C->getAPInt(); 683 const APInt &RA = RC->getAPInt(); 684 if (LA.srem(RA) != 0) 685 return nullptr; 686 return SE.getConstant(LA.sdiv(RA)); 687 } 688 689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 691 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 692 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 693 IgnoreSignificantBits); 694 if (!Step) return nullptr; 695 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Start) return nullptr; 698 // FlagNW is independent of the start value, step direction, and is 699 // preserved with smaller magnitude steps. 700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 701 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 702 } 703 return nullptr; 704 } 705 706 // Distribute the sdiv over add operands, if the add doesn't overflow. 707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 708 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 709 SmallVector<const SCEV *, 8> Ops; 710 for (const SCEV *S : Add->operands()) { 711 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 712 if (!Op) return nullptr; 713 Ops.push_back(Op); 714 } 715 return SE.getAddExpr(Ops); 716 } 717 return nullptr; 718 } 719 720 // Check for a multiply operand that we can pull RHS out of. 721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 722 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 723 SmallVector<const SCEV *, 4> Ops; 724 bool Found = false; 725 for (const SCEV *S : Mul->operands()) { 726 if (!Found) 727 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 728 IgnoreSignificantBits)) { 729 S = Q; 730 Found = true; 731 } 732 Ops.push_back(S); 733 } 734 return Found ? SE.getMulExpr(Ops) : nullptr; 735 } 736 return nullptr; 737 } 738 739 // Otherwise we don't know. 740 return nullptr; 741 } 742 743 /// If S involves the addition of a constant integer value, return that integer 744 /// value, and mutate S to point to a new SCEV with that value excluded. 745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 747 if (C->getAPInt().getMinSignedBits() <= 64) { 748 S = SE.getConstant(C->getType(), 0); 749 return C->getValue()->getSExtValue(); 750 } 751 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 752 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 753 int64_t Result = ExtractImmediate(NewOps.front(), SE); 754 if (Result != 0) 755 S = SE.getAddExpr(NewOps); 756 return Result; 757 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 758 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 759 int64_t Result = ExtractImmediate(NewOps.front(), SE); 760 if (Result != 0) 761 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 763 SCEV::FlagAnyWrap); 764 return Result; 765 } 766 return 0; 767 } 768 769 /// If S involves the addition of a GlobalValue address, return that symbol, and 770 /// mutate S to point to a new SCEV with that value excluded. 771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 773 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 774 S = SE.getConstant(GV->getType(), 0); 775 return GV; 776 } 777 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 778 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 779 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 780 if (Result) 781 S = SE.getAddExpr(NewOps); 782 return Result; 783 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 785 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 786 if (Result) 787 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 789 SCEV::FlagAnyWrap); 790 return Result; 791 } 792 return nullptr; 793 } 794 795 /// Returns true if the specified instruction is using the specified value as an 796 /// address. 797 static bool isAddressUse(const TargetTransformInfo &TTI, 798 Instruction *Inst, Value *OperandVal) { 799 bool isAddress = isa<LoadInst>(Inst); 800 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 801 if (SI->getPointerOperand() == OperandVal) 802 isAddress = true; 803 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 804 // Addressing modes can also be folded into prefetches and a variety 805 // of intrinsics. 806 switch (II->getIntrinsicID()) { 807 case Intrinsic::memset: 808 case Intrinsic::prefetch: 809 if (II->getArgOperand(0) == OperandVal) 810 isAddress = true; 811 break; 812 case Intrinsic::memmove: 813 case Intrinsic::memcpy: 814 if (II->getArgOperand(0) == OperandVal || 815 II->getArgOperand(1) == OperandVal) 816 isAddress = true; 817 break; 818 default: { 819 MemIntrinsicInfo IntrInfo; 820 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 821 if (IntrInfo.PtrVal == OperandVal) 822 isAddress = true; 823 } 824 } 825 } 826 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 827 if (RMW->getPointerOperand() == OperandVal) 828 isAddress = true; 829 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 830 if (CmpX->getPointerOperand() == OperandVal) 831 isAddress = true; 832 } 833 return isAddress; 834 } 835 836 /// Return the type of the memory being accessed. 837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 838 Instruction *Inst, Value *OperandVal) { 839 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 840 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 841 AccessTy.MemTy = SI->getOperand(0)->getType(); 842 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 843 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 844 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 845 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 846 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 847 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 848 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 850 switch (II->getIntrinsicID()) { 851 case Intrinsic::prefetch: 852 case Intrinsic::memset: 853 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 854 AccessTy.MemTy = OperandVal->getType(); 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 859 AccessTy.MemTy = OperandVal->getType(); 860 break; 861 default: { 862 MemIntrinsicInfo IntrInfo; 863 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 864 AccessTy.AddrSpace 865 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 866 } 867 868 break; 869 } 870 } 871 } 872 873 // All pointers have the same requirements, so canonicalize them to an 874 // arbitrary pointer type to minimize variation. 875 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 876 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 877 PTy->getAddressSpace()); 878 879 return AccessTy; 880 } 881 882 /// Return true if this AddRec is already a phi in its loop. 883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 884 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 885 if (SE.isSCEVable(PN.getType()) && 886 (SE.getEffectiveSCEVType(PN.getType()) == 887 SE.getEffectiveSCEVType(AR->getType())) && 888 SE.getSCEV(&PN) == AR) 889 return true; 890 } 891 return false; 892 } 893 894 /// Check if expanding this expression is likely to incur significant cost. This 895 /// is tricky because SCEV doesn't track which expressions are actually computed 896 /// by the current IR. 897 /// 898 /// We currently allow expansion of IV increments that involve adds, 899 /// multiplication by constants, and AddRecs from existing phis. 900 /// 901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 902 /// obvious multiple of the UDivExpr. 903 static bool isHighCostExpansion(const SCEV *S, 904 SmallPtrSetImpl<const SCEV*> &Processed, 905 ScalarEvolution &SE) { 906 // Zero/One operand expressions 907 switch (S->getSCEVType()) { 908 case scUnknown: 909 case scConstant: 910 return false; 911 case scTruncate: 912 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 913 Processed, SE); 914 case scZeroExtend: 915 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 916 Processed, SE); 917 case scSignExtend: 918 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 919 Processed, SE); 920 } 921 922 if (!Processed.insert(S).second) 923 return false; 924 925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 926 for (const SCEV *S : Add->operands()) { 927 if (isHighCostExpansion(S, Processed, SE)) 928 return true; 929 } 930 return false; 931 } 932 933 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 934 if (Mul->getNumOperands() == 2) { 935 // Multiplication by a constant is ok 936 if (isa<SCEVConstant>(Mul->getOperand(0))) 937 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 938 939 // If we have the value of one operand, check if an existing 940 // multiplication already generates this expression. 941 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 942 Value *UVal = U->getValue(); 943 for (User *UR : UVal->users()) { 944 // If U is a constant, it may be used by a ConstantExpr. 945 Instruction *UI = dyn_cast<Instruction>(UR); 946 if (UI && UI->getOpcode() == Instruction::Mul && 947 SE.isSCEVable(UI->getType())) { 948 return SE.getSCEV(UI) == Mul; 949 } 950 } 951 } 952 } 953 } 954 955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 956 if (isExistingPhi(AR, SE)) 957 return false; 958 } 959 960 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 961 return true; 962 } 963 964 /// If any of the instructions in the specified set are trivially dead, delete 965 /// them and see if this makes any of their operands subsequently dead. 966 static bool 967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 968 bool Changed = false; 969 970 while (!DeadInsts.empty()) { 971 Value *V = DeadInsts.pop_back_val(); 972 Instruction *I = dyn_cast_or_null<Instruction>(V); 973 974 if (!I || !isInstructionTriviallyDead(I)) 975 continue; 976 977 for (Use &O : I->operands()) 978 if (Instruction *U = dyn_cast<Instruction>(O)) { 979 O = nullptr; 980 if (U->use_empty()) 981 DeadInsts.emplace_back(U); 982 } 983 984 I->eraseFromParent(); 985 Changed = true; 986 } 987 988 return Changed; 989 } 990 991 namespace { 992 993 class LSRUse; 994 995 } // end anonymous namespace 996 997 /// Check if the addressing mode defined by \p F is completely 998 /// folded in \p LU at isel time. 999 /// This includes address-mode folding and special icmp tricks. 1000 /// This function returns true if \p LU can accommodate what \p F 1001 /// defines and up to 1 base + 1 scaled + offset. 1002 /// In other words, if \p F has several base registers, this function may 1003 /// still return true. Therefore, users still need to account for 1004 /// additional base registers and/or unfolded offsets to derive an 1005 /// accurate cost model. 1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1007 const LSRUse &LU, const Formula &F); 1008 1009 // Get the cost of the scaling factor used in F for LU. 1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1011 const LSRUse &LU, const Formula &F, 1012 const Loop &L); 1013 1014 namespace { 1015 1016 /// This class is used to measure and compare candidate formulae. 1017 class Cost { 1018 const Loop *L = nullptr; 1019 ScalarEvolution *SE = nullptr; 1020 const TargetTransformInfo *TTI = nullptr; 1021 TargetTransformInfo::LSRCost C; 1022 1023 public: 1024 Cost() = delete; 1025 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1026 L(L), SE(&SE), TTI(&TTI) { 1027 C.Insns = 0; 1028 C.NumRegs = 0; 1029 C.AddRecCost = 0; 1030 C.NumIVMuls = 0; 1031 C.NumBaseAdds = 0; 1032 C.ImmCost = 0; 1033 C.SetupCost = 0; 1034 C.ScaleCost = 0; 1035 } 1036 1037 bool isLess(Cost &Other); 1038 1039 void Lose(); 1040 1041 #ifndef NDEBUG 1042 // Once any of the metrics loses, they must all remain losers. 1043 bool isValid() { 1044 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1045 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1046 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1047 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1048 } 1049 #endif 1050 1051 bool isLoser() { 1052 assert(isValid() && "invalid cost"); 1053 return C.NumRegs == ~0u; 1054 } 1055 1056 void RateFormula(const Formula &F, 1057 SmallPtrSetImpl<const SCEV *> &Regs, 1058 const DenseSet<const SCEV *> &VisitedRegs, 1059 const LSRUse &LU, 1060 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1061 1062 void print(raw_ostream &OS) const; 1063 void dump() const; 1064 1065 private: 1066 void RateRegister(const Formula &F, const SCEV *Reg, 1067 SmallPtrSetImpl<const SCEV *> &Regs); 1068 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1069 SmallPtrSetImpl<const SCEV *> &Regs, 1070 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1071 }; 1072 1073 /// An operand value in an instruction which is to be replaced with some 1074 /// equivalent, possibly strength-reduced, replacement. 1075 struct LSRFixup { 1076 /// The instruction which will be updated. 1077 Instruction *UserInst = nullptr; 1078 1079 /// The operand of the instruction which will be replaced. The operand may be 1080 /// used more than once; every instance will be replaced. 1081 Value *OperandValToReplace = nullptr; 1082 1083 /// If this user is to use the post-incremented value of an induction 1084 /// variable, this set is non-empty and holds the loops associated with the 1085 /// induction variable. 1086 PostIncLoopSet PostIncLoops; 1087 1088 /// A constant offset to be added to the LSRUse expression. This allows 1089 /// multiple fixups to share the same LSRUse with different offsets, for 1090 /// example in an unrolled loop. 1091 int64_t Offset = 0; 1092 1093 LSRFixup() = default; 1094 1095 bool isUseFullyOutsideLoop(const Loop *L) const; 1096 1097 void print(raw_ostream &OS) const; 1098 void dump() const; 1099 }; 1100 1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1102 /// SmallVectors of const SCEV*. 1103 struct UniquifierDenseMapInfo { 1104 static SmallVector<const SCEV *, 4> getEmptyKey() { 1105 SmallVector<const SCEV *, 4> V; 1106 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1107 return V; 1108 } 1109 1110 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1111 SmallVector<const SCEV *, 4> V; 1112 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1113 return V; 1114 } 1115 1116 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1118 } 1119 1120 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1121 const SmallVector<const SCEV *, 4> &RHS) { 1122 return LHS == RHS; 1123 } 1124 }; 1125 1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1127 /// as uses invented by LSR itself. It includes information about what kinds of 1128 /// things can be folded into the user, information about the user itself, and 1129 /// information about how the use may be satisfied. TODO: Represent multiple 1130 /// users of the same expression in common? 1131 class LSRUse { 1132 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1133 1134 public: 1135 /// An enum for a kind of use, indicating what types of scaled and immediate 1136 /// operands it might support. 1137 enum KindType { 1138 Basic, ///< A normal use, with no folding. 1139 Special, ///< A special case of basic, allowing -1 scales. 1140 Address, ///< An address use; folding according to TargetLowering 1141 ICmpZero ///< An equality icmp with both operands folded into one. 1142 // TODO: Add a generic icmp too? 1143 }; 1144 1145 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1146 1147 KindType Kind; 1148 MemAccessTy AccessTy; 1149 1150 /// The list of operands which are to be replaced. 1151 SmallVector<LSRFixup, 8> Fixups; 1152 1153 /// Keep track of the min and max offsets of the fixups. 1154 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1155 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1156 1157 /// This records whether all of the fixups using this LSRUse are outside of 1158 /// the loop, in which case some special-case heuristics may be used. 1159 bool AllFixupsOutsideLoop = true; 1160 1161 /// RigidFormula is set to true to guarantee that this use will be associated 1162 /// with a single formula--the one that initially matched. Some SCEV 1163 /// expressions cannot be expanded. This allows LSR to consider the registers 1164 /// used by those expressions without the need to expand them later after 1165 /// changing the formula. 1166 bool RigidFormula = false; 1167 1168 /// This records the widest use type for any fixup using this 1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1170 /// fixup widths to be equivalent, because the narrower one may be relying on 1171 /// the implicit truncation to truncate away bogus bits. 1172 Type *WidestFixupType = nullptr; 1173 1174 /// A list of ways to build a value that can satisfy this user. After the 1175 /// list is populated, one of these is selected heuristically and used to 1176 /// formulate a replacement for OperandValToReplace in UserInst. 1177 SmallVector<Formula, 12> Formulae; 1178 1179 /// The set of register candidates used by all formulae in this LSRUse. 1180 SmallPtrSet<const SCEV *, 4> Regs; 1181 1182 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1183 1184 LSRFixup &getNewFixup() { 1185 Fixups.push_back(LSRFixup()); 1186 return Fixups.back(); 1187 } 1188 1189 void pushFixup(LSRFixup &f) { 1190 Fixups.push_back(f); 1191 if (f.Offset > MaxOffset) 1192 MaxOffset = f.Offset; 1193 if (f.Offset < MinOffset) 1194 MinOffset = f.Offset; 1195 } 1196 1197 bool HasFormulaWithSameRegs(const Formula &F) const; 1198 float getNotSelectedProbability(const SCEV *Reg) const; 1199 bool InsertFormula(const Formula &F, const Loop &L); 1200 void DeleteFormula(Formula &F); 1201 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1202 1203 void print(raw_ostream &OS) const; 1204 void dump() const; 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1210 LSRUse::KindType Kind, MemAccessTy AccessTy, 1211 GlobalValue *BaseGV, int64_t BaseOffset, 1212 bool HasBaseReg, int64_t Scale, 1213 Instruction *Fixup = nullptr); 1214 1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1216 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1217 return 1; 1218 if (Depth == 0) 1219 return 0; 1220 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1221 return getSetupCost(S->getStart(), Depth - 1); 1222 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1223 return getSetupCost(S->getOperand(), Depth - 1); 1224 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1225 return std::accumulate(S->op_begin(), S->op_end(), 0, 1226 [&](unsigned i, const SCEV *Reg) { 1227 return i + getSetupCost(Reg, Depth - 1); 1228 }); 1229 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1230 return getSetupCost(S->getLHS(), Depth - 1) + 1231 getSetupCost(S->getRHS(), Depth - 1); 1232 return 0; 1233 } 1234 1235 /// Tally up interesting quantities from the given register. 1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1237 SmallPtrSetImpl<const SCEV *> &Regs) { 1238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1239 // If this is an addrec for another loop, it should be an invariant 1240 // with respect to L since L is the innermost loop (at least 1241 // for now LSR only handles innermost loops). 1242 if (AR->getLoop() != L) { 1243 // If the AddRec exists, consider it's register free and leave it alone. 1244 if (isExistingPhi(AR, *SE)) 1245 return; 1246 1247 // It is bad to allow LSR for current loop to add induction variables 1248 // for its sibling loops. 1249 if (!AR->getLoop()->contains(L)) { 1250 Lose(); 1251 return; 1252 } 1253 1254 // Otherwise, it will be an invariant with respect to Loop L. 1255 ++C.NumRegs; 1256 return; 1257 } 1258 1259 unsigned LoopCost = 1; 1260 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1261 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1262 1263 // If the step size matches the base offset, we could use pre-indexed 1264 // addressing. 1265 if (TTI->shouldFavorBackedgeIndex(L)) { 1266 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1267 if (Step->getAPInt() == F.BaseOffset) 1268 LoopCost = 0; 1269 } 1270 1271 if (TTI->shouldFavorPostInc()) { 1272 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1273 if (isa<SCEVConstant>(LoopStep)) { 1274 const SCEV *LoopStart = AR->getStart(); 1275 if (!isa<SCEVConstant>(LoopStart) && 1276 SE->isLoopInvariant(LoopStart, L)) 1277 LoopCost = 0; 1278 } 1279 } 1280 } 1281 C.AddRecCost += LoopCost; 1282 1283 // Add the step value register, if it needs one. 1284 // TODO: The non-affine case isn't precisely modeled here. 1285 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1286 if (!Regs.count(AR->getOperand(1))) { 1287 RateRegister(F, AR->getOperand(1), Regs); 1288 if (isLoser()) 1289 return; 1290 } 1291 } 1292 } 1293 ++C.NumRegs; 1294 1295 // Rough heuristic; favor registers which don't require extra setup 1296 // instructions in the preheader. 1297 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1298 // Ensure we don't, even with the recusion limit, produce invalid costs. 1299 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1300 1301 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1302 SE->hasComputableLoopEvolution(Reg, L); 1303 } 1304 1305 /// Record this register in the set. If we haven't seen it before, rate 1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1307 /// one of those regs an instant loser. 1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1309 SmallPtrSetImpl<const SCEV *> &Regs, 1310 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1311 if (LoserRegs && LoserRegs->count(Reg)) { 1312 Lose(); 1313 return; 1314 } 1315 if (Regs.insert(Reg).second) { 1316 RateRegister(F, Reg, Regs); 1317 if (LoserRegs && isLoser()) 1318 LoserRegs->insert(Reg); 1319 } 1320 } 1321 1322 void Cost::RateFormula(const Formula &F, 1323 SmallPtrSetImpl<const SCEV *> &Regs, 1324 const DenseSet<const SCEV *> &VisitedRegs, 1325 const LSRUse &LU, 1326 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1327 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1328 // Tally up the registers. 1329 unsigned PrevAddRecCost = C.AddRecCost; 1330 unsigned PrevNumRegs = C.NumRegs; 1331 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1332 if (const SCEV *ScaledReg = F.ScaledReg) { 1333 if (VisitedRegs.count(ScaledReg)) { 1334 Lose(); 1335 return; 1336 } 1337 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1338 if (isLoser()) 1339 return; 1340 } 1341 for (const SCEV *BaseReg : F.BaseRegs) { 1342 if (VisitedRegs.count(BaseReg)) { 1343 Lose(); 1344 return; 1345 } 1346 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1347 if (isLoser()) 1348 return; 1349 } 1350 1351 // Determine how many (unfolded) adds we'll need inside the loop. 1352 size_t NumBaseParts = F.getNumRegs(); 1353 if (NumBaseParts > 1) 1354 // Do not count the base and a possible second register if the target 1355 // allows to fold 2 registers. 1356 C.NumBaseAdds += 1357 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1358 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1359 1360 // Accumulate non-free scaling amounts. 1361 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1362 1363 // Tally up the non-zero immediates. 1364 for (const LSRFixup &Fixup : LU.Fixups) { 1365 int64_t O = Fixup.Offset; 1366 int64_t Offset = (uint64_t)O + F.BaseOffset; 1367 if (F.BaseGV) 1368 C.ImmCost += 64; // Handle symbolic values conservatively. 1369 // TODO: This should probably be the pointer size. 1370 else if (Offset != 0) 1371 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1372 1373 // Check with target if this offset with this instruction is 1374 // specifically not supported. 1375 if (LU.Kind == LSRUse::Address && Offset != 0 && 1376 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1377 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1378 C.NumBaseAdds++; 1379 } 1380 1381 // If we don't count instruction cost exit here. 1382 if (!InsnsCost) { 1383 assert(isValid() && "invalid cost"); 1384 return; 1385 } 1386 1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1388 // additional instruction (at least fill). 1389 // TODO: Need distinguish register class? 1390 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1391 TTI->getRegisterClassForType(false, F.getType())) - 1; 1392 if (C.NumRegs > TTIRegNum) { 1393 // Cost already exceeded TTIRegNum, then only newly added register can add 1394 // new instructions. 1395 if (PrevNumRegs > TTIRegNum) 1396 C.Insns += (C.NumRegs - PrevNumRegs); 1397 else 1398 C.Insns += (C.NumRegs - TTIRegNum); 1399 } 1400 1401 // If ICmpZero formula ends with not 0, it could not be replaced by 1402 // just add or sub. We'll need to compare final result of AddRec. 1403 // That means we'll need an additional instruction. But if the target can 1404 // macro-fuse a compare with a branch, don't count this extra instruction. 1405 // For -10 + {0, +, 1}: 1406 // i = i + 1; 1407 // cmp i, 10 1408 // 1409 // For {-10, +, 1}: 1410 // i = i + 1; 1411 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1412 !TTI->canMacroFuseCmp()) 1413 C.Insns++; 1414 // Each new AddRec adds 1 instruction to calculation. 1415 C.Insns += (C.AddRecCost - PrevAddRecCost); 1416 1417 // BaseAdds adds instructions for unfolded registers. 1418 if (LU.Kind != LSRUse::ICmpZero) 1419 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1420 assert(isValid() && "invalid cost"); 1421 } 1422 1423 /// Set this cost to a losing value. 1424 void Cost::Lose() { 1425 C.Insns = std::numeric_limits<unsigned>::max(); 1426 C.NumRegs = std::numeric_limits<unsigned>::max(); 1427 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1428 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1429 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1430 C.ImmCost = std::numeric_limits<unsigned>::max(); 1431 C.SetupCost = std::numeric_limits<unsigned>::max(); 1432 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1433 } 1434 1435 /// Choose the lower cost. 1436 bool Cost::isLess(Cost &Other) { 1437 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1438 C.Insns != Other.C.Insns) 1439 return C.Insns < Other.C.Insns; 1440 return TTI->isLSRCostLess(C, Other.C); 1441 } 1442 1443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1444 void Cost::print(raw_ostream &OS) const { 1445 if (InsnsCost) 1446 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1447 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1448 if (C.AddRecCost != 0) 1449 OS << ", with addrec cost " << C.AddRecCost; 1450 if (C.NumIVMuls != 0) 1451 OS << ", plus " << C.NumIVMuls << " IV mul" 1452 << (C.NumIVMuls == 1 ? "" : "s"); 1453 if (C.NumBaseAdds != 0) 1454 OS << ", plus " << C.NumBaseAdds << " base add" 1455 << (C.NumBaseAdds == 1 ? "" : "s"); 1456 if (C.ScaleCost != 0) 1457 OS << ", plus " << C.ScaleCost << " scale cost"; 1458 if (C.ImmCost != 0) 1459 OS << ", plus " << C.ImmCost << " imm cost"; 1460 if (C.SetupCost != 0) 1461 OS << ", plus " << C.SetupCost << " setup cost"; 1462 } 1463 1464 LLVM_DUMP_METHOD void Cost::dump() const { 1465 print(errs()); errs() << '\n'; 1466 } 1467 #endif 1468 1469 /// Test whether this fixup always uses its value outside of the given loop. 1470 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1471 // PHI nodes use their value in their incoming blocks. 1472 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1473 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1474 if (PN->getIncomingValue(i) == OperandValToReplace && 1475 L->contains(PN->getIncomingBlock(i))) 1476 return false; 1477 return true; 1478 } 1479 1480 return !L->contains(UserInst); 1481 } 1482 1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1484 void LSRFixup::print(raw_ostream &OS) const { 1485 OS << "UserInst="; 1486 // Store is common and interesting enough to be worth special-casing. 1487 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1488 OS << "store "; 1489 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1490 } else if (UserInst->getType()->isVoidTy()) 1491 OS << UserInst->getOpcodeName(); 1492 else 1493 UserInst->printAsOperand(OS, /*PrintType=*/false); 1494 1495 OS << ", OperandValToReplace="; 1496 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1497 1498 for (const Loop *PIL : PostIncLoops) { 1499 OS << ", PostIncLoop="; 1500 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1501 } 1502 1503 if (Offset != 0) 1504 OS << ", Offset=" << Offset; 1505 } 1506 1507 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1508 print(errs()); errs() << '\n'; 1509 } 1510 #endif 1511 1512 /// Test whether this use as a formula which has the same registers as the given 1513 /// formula. 1514 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1515 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1516 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1517 // Unstable sort by host order ok, because this is only used for uniquifying. 1518 llvm::sort(Key); 1519 return Uniquifier.count(Key); 1520 } 1521 1522 /// The function returns a probability of selecting formula without Reg. 1523 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1524 unsigned FNum = 0; 1525 for (const Formula &F : Formulae) 1526 if (F.referencesReg(Reg)) 1527 FNum++; 1528 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1529 } 1530 1531 /// If the given formula has not yet been inserted, add it to the list, and 1532 /// return true. Return false otherwise. The formula must be in canonical form. 1533 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1534 assert(F.isCanonical(L) && "Invalid canonical representation"); 1535 1536 if (!Formulae.empty() && RigidFormula) 1537 return false; 1538 1539 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1540 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1541 // Unstable sort by host order ok, because this is only used for uniquifying. 1542 llvm::sort(Key); 1543 1544 if (!Uniquifier.insert(Key).second) 1545 return false; 1546 1547 // Using a register to hold the value of 0 is not profitable. 1548 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1549 "Zero allocated in a scaled register!"); 1550 #ifndef NDEBUG 1551 for (const SCEV *BaseReg : F.BaseRegs) 1552 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1553 #endif 1554 1555 // Add the formula to the list. 1556 Formulae.push_back(F); 1557 1558 // Record registers now being used by this use. 1559 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1560 if (F.ScaledReg) 1561 Regs.insert(F.ScaledReg); 1562 1563 return true; 1564 } 1565 1566 /// Remove the given formula from this use's list. 1567 void LSRUse::DeleteFormula(Formula &F) { 1568 if (&F != &Formulae.back()) 1569 std::swap(F, Formulae.back()); 1570 Formulae.pop_back(); 1571 } 1572 1573 /// Recompute the Regs field, and update RegUses. 1574 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1575 // Now that we've filtered out some formulae, recompute the Regs set. 1576 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1577 Regs.clear(); 1578 for (const Formula &F : Formulae) { 1579 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1580 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1581 } 1582 1583 // Update the RegTracker. 1584 for (const SCEV *S : OldRegs) 1585 if (!Regs.count(S)) 1586 RegUses.dropRegister(S, LUIdx); 1587 } 1588 1589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1590 void LSRUse::print(raw_ostream &OS) const { 1591 OS << "LSR Use: Kind="; 1592 switch (Kind) { 1593 case Basic: OS << "Basic"; break; 1594 case Special: OS << "Special"; break; 1595 case ICmpZero: OS << "ICmpZero"; break; 1596 case Address: 1597 OS << "Address of "; 1598 if (AccessTy.MemTy->isPointerTy()) 1599 OS << "pointer"; // the full pointer type could be really verbose 1600 else { 1601 OS << *AccessTy.MemTy; 1602 } 1603 1604 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1605 } 1606 1607 OS << ", Offsets={"; 1608 bool NeedComma = false; 1609 for (const LSRFixup &Fixup : Fixups) { 1610 if (NeedComma) OS << ','; 1611 OS << Fixup.Offset; 1612 NeedComma = true; 1613 } 1614 OS << '}'; 1615 1616 if (AllFixupsOutsideLoop) 1617 OS << ", all-fixups-outside-loop"; 1618 1619 if (WidestFixupType) 1620 OS << ", widest fixup type: " << *WidestFixupType; 1621 } 1622 1623 LLVM_DUMP_METHOD void LSRUse::dump() const { 1624 print(errs()); errs() << '\n'; 1625 } 1626 #endif 1627 1628 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1629 LSRUse::KindType Kind, MemAccessTy AccessTy, 1630 GlobalValue *BaseGV, int64_t BaseOffset, 1631 bool HasBaseReg, int64_t Scale, 1632 Instruction *Fixup/*= nullptr*/) { 1633 switch (Kind) { 1634 case LSRUse::Address: 1635 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1636 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1637 1638 case LSRUse::ICmpZero: 1639 // There's not even a target hook for querying whether it would be legal to 1640 // fold a GV into an ICmp. 1641 if (BaseGV) 1642 return false; 1643 1644 // ICmp only has two operands; don't allow more than two non-trivial parts. 1645 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1646 return false; 1647 1648 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1649 // putting the scaled register in the other operand of the icmp. 1650 if (Scale != 0 && Scale != -1) 1651 return false; 1652 1653 // If we have low-level target information, ask the target if it can fold an 1654 // integer immediate on an icmp. 1655 if (BaseOffset != 0) { 1656 // We have one of: 1657 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1658 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1659 // Offs is the ICmp immediate. 1660 if (Scale == 0) 1661 // The cast does the right thing with 1662 // std::numeric_limits<int64_t>::min(). 1663 BaseOffset = -(uint64_t)BaseOffset; 1664 return TTI.isLegalICmpImmediate(BaseOffset); 1665 } 1666 1667 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1668 return true; 1669 1670 case LSRUse::Basic: 1671 // Only handle single-register values. 1672 return !BaseGV && Scale == 0 && BaseOffset == 0; 1673 1674 case LSRUse::Special: 1675 // Special case Basic to handle -1 scales. 1676 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1677 } 1678 1679 llvm_unreachable("Invalid LSRUse Kind!"); 1680 } 1681 1682 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1683 int64_t MinOffset, int64_t MaxOffset, 1684 LSRUse::KindType Kind, MemAccessTy AccessTy, 1685 GlobalValue *BaseGV, int64_t BaseOffset, 1686 bool HasBaseReg, int64_t Scale) { 1687 // Check for overflow. 1688 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1689 (MinOffset > 0)) 1690 return false; 1691 MinOffset = (uint64_t)BaseOffset + MinOffset; 1692 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1693 (MaxOffset > 0)) 1694 return false; 1695 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1696 1697 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1698 HasBaseReg, Scale) && 1699 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1700 HasBaseReg, Scale); 1701 } 1702 1703 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1704 int64_t MinOffset, int64_t MaxOffset, 1705 LSRUse::KindType Kind, MemAccessTy AccessTy, 1706 const Formula &F, const Loop &L) { 1707 // For the purpose of isAMCompletelyFolded either having a canonical formula 1708 // or a scale not equal to zero is correct. 1709 // Problems may arise from non canonical formulae having a scale == 0. 1710 // Strictly speaking it would best to just rely on canonical formulae. 1711 // However, when we generate the scaled formulae, we first check that the 1712 // scaling factor is profitable before computing the actual ScaledReg for 1713 // compile time sake. 1714 assert((F.isCanonical(L) || F.Scale != 0)); 1715 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1716 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1717 } 1718 1719 /// Test whether we know how to expand the current formula. 1720 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1721 int64_t MaxOffset, LSRUse::KindType Kind, 1722 MemAccessTy AccessTy, GlobalValue *BaseGV, 1723 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1724 // We know how to expand completely foldable formulae. 1725 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1726 BaseOffset, HasBaseReg, Scale) || 1727 // Or formulae that use a base register produced by a sum of base 1728 // registers. 1729 (Scale == 1 && 1730 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1731 BaseGV, BaseOffset, true, 0)); 1732 } 1733 1734 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1735 int64_t MaxOffset, LSRUse::KindType Kind, 1736 MemAccessTy AccessTy, const Formula &F) { 1737 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1738 F.BaseOffset, F.HasBaseReg, F.Scale); 1739 } 1740 1741 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1742 const LSRUse &LU, const Formula &F) { 1743 // Target may want to look at the user instructions. 1744 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1745 for (const LSRFixup &Fixup : LU.Fixups) 1746 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1747 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1748 F.Scale, Fixup.UserInst)) 1749 return false; 1750 return true; 1751 } 1752 1753 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1754 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1755 F.Scale); 1756 } 1757 1758 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1759 const LSRUse &LU, const Formula &F, 1760 const Loop &L) { 1761 if (!F.Scale) 1762 return 0; 1763 1764 // If the use is not completely folded in that instruction, we will have to 1765 // pay an extra cost only for scale != 1. 1766 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1767 LU.AccessTy, F, L)) 1768 return F.Scale != 1; 1769 1770 switch (LU.Kind) { 1771 case LSRUse::Address: { 1772 // Check the scaling factor cost with both the min and max offsets. 1773 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1774 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1775 F.Scale, LU.AccessTy.AddrSpace); 1776 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1777 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1778 F.Scale, LU.AccessTy.AddrSpace); 1779 1780 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1781 "Legal addressing mode has an illegal cost!"); 1782 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1783 } 1784 case LSRUse::ICmpZero: 1785 case LSRUse::Basic: 1786 case LSRUse::Special: 1787 // The use is completely folded, i.e., everything is folded into the 1788 // instruction. 1789 return 0; 1790 } 1791 1792 llvm_unreachable("Invalid LSRUse Kind!"); 1793 } 1794 1795 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1796 LSRUse::KindType Kind, MemAccessTy AccessTy, 1797 GlobalValue *BaseGV, int64_t BaseOffset, 1798 bool HasBaseReg) { 1799 // Fast-path: zero is always foldable. 1800 if (BaseOffset == 0 && !BaseGV) return true; 1801 1802 // Conservatively, create an address with an immediate and a 1803 // base and a scale. 1804 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1805 1806 // Canonicalize a scale of 1 to a base register if the formula doesn't 1807 // already have a base register. 1808 if (!HasBaseReg && Scale == 1) { 1809 Scale = 0; 1810 HasBaseReg = true; 1811 } 1812 1813 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1814 HasBaseReg, Scale); 1815 } 1816 1817 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1818 ScalarEvolution &SE, int64_t MinOffset, 1819 int64_t MaxOffset, LSRUse::KindType Kind, 1820 MemAccessTy AccessTy, const SCEV *S, 1821 bool HasBaseReg) { 1822 // Fast-path: zero is always foldable. 1823 if (S->isZero()) return true; 1824 1825 // Conservatively, create an address with an immediate and a 1826 // base and a scale. 1827 int64_t BaseOffset = ExtractImmediate(S, SE); 1828 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1829 1830 // If there's anything else involved, it's not foldable. 1831 if (!S->isZero()) return false; 1832 1833 // Fast-path: zero is always foldable. 1834 if (BaseOffset == 0 && !BaseGV) return true; 1835 1836 // Conservatively, create an address with an immediate and a 1837 // base and a scale. 1838 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1839 1840 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1841 BaseOffset, HasBaseReg, Scale); 1842 } 1843 1844 namespace { 1845 1846 /// An individual increment in a Chain of IV increments. Relate an IV user to 1847 /// an expression that computes the IV it uses from the IV used by the previous 1848 /// link in the Chain. 1849 /// 1850 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1851 /// original IVOperand. The head of the chain's IVOperand is only valid during 1852 /// chain collection, before LSR replaces IV users. During chain generation, 1853 /// IncExpr can be used to find the new IVOperand that computes the same 1854 /// expression. 1855 struct IVInc { 1856 Instruction *UserInst; 1857 Value* IVOperand; 1858 const SCEV *IncExpr; 1859 1860 IVInc(Instruction *U, Value *O, const SCEV *E) 1861 : UserInst(U), IVOperand(O), IncExpr(E) {} 1862 }; 1863 1864 // The list of IV increments in program order. We typically add the head of a 1865 // chain without finding subsequent links. 1866 struct IVChain { 1867 SmallVector<IVInc, 1> Incs; 1868 const SCEV *ExprBase = nullptr; 1869 1870 IVChain() = default; 1871 IVChain(const IVInc &Head, const SCEV *Base) 1872 : Incs(1, Head), ExprBase(Base) {} 1873 1874 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1875 1876 // Return the first increment in the chain. 1877 const_iterator begin() const { 1878 assert(!Incs.empty()); 1879 return std::next(Incs.begin()); 1880 } 1881 const_iterator end() const { 1882 return Incs.end(); 1883 } 1884 1885 // Returns true if this chain contains any increments. 1886 bool hasIncs() const { return Incs.size() >= 2; } 1887 1888 // Add an IVInc to the end of this chain. 1889 void add(const IVInc &X) { Incs.push_back(X); } 1890 1891 // Returns the last UserInst in the chain. 1892 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1893 1894 // Returns true if IncExpr can be profitably added to this chain. 1895 bool isProfitableIncrement(const SCEV *OperExpr, 1896 const SCEV *IncExpr, 1897 ScalarEvolution&); 1898 }; 1899 1900 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1901 /// between FarUsers that definitely cross IV increments and NearUsers that may 1902 /// be used between IV increments. 1903 struct ChainUsers { 1904 SmallPtrSet<Instruction*, 4> FarUsers; 1905 SmallPtrSet<Instruction*, 4> NearUsers; 1906 }; 1907 1908 /// This class holds state for the main loop strength reduction logic. 1909 class LSRInstance { 1910 IVUsers &IU; 1911 ScalarEvolution &SE; 1912 DominatorTree &DT; 1913 LoopInfo &LI; 1914 AssumptionCache &AC; 1915 TargetLibraryInfo &LibInfo; 1916 const TargetTransformInfo &TTI; 1917 Loop *const L; 1918 bool FavorBackedgeIndex = false; 1919 bool Changed = false; 1920 1921 /// This is the insert position that the current loop's induction variable 1922 /// increment should be placed. In simple loops, this is the latch block's 1923 /// terminator. But in more complicated cases, this is a position which will 1924 /// dominate all the in-loop post-increment users. 1925 Instruction *IVIncInsertPos = nullptr; 1926 1927 /// Interesting factors between use strides. 1928 /// 1929 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1930 /// default, a SmallDenseSet, because we need to use the full range of 1931 /// int64_ts, and there's currently no good way of doing that with 1932 /// SmallDenseSet. 1933 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1934 1935 /// Interesting use types, to facilitate truncation reuse. 1936 SmallSetVector<Type *, 4> Types; 1937 1938 /// The list of interesting uses. 1939 mutable SmallVector<LSRUse, 16> Uses; 1940 1941 /// Track which uses use which register candidates. 1942 RegUseTracker RegUses; 1943 1944 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1945 // have more than a few IV increment chains in a loop. Missing a Chain falls 1946 // back to normal LSR behavior for those uses. 1947 static const unsigned MaxChains = 8; 1948 1949 /// IV users can form a chain of IV increments. 1950 SmallVector<IVChain, MaxChains> IVChainVec; 1951 1952 /// IV users that belong to profitable IVChains. 1953 SmallPtrSet<Use*, MaxChains> IVIncSet; 1954 1955 void OptimizeShadowIV(); 1956 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1957 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1958 void OptimizeLoopTermCond(); 1959 1960 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1961 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1962 void FinalizeChain(IVChain &Chain); 1963 void CollectChains(); 1964 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1965 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1966 1967 void CollectInterestingTypesAndFactors(); 1968 void CollectFixupsAndInitialFormulae(); 1969 1970 // Support for sharing of LSRUses between LSRFixups. 1971 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1972 UseMapTy UseMap; 1973 1974 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1975 LSRUse::KindType Kind, MemAccessTy AccessTy); 1976 1977 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1978 MemAccessTy AccessTy); 1979 1980 void DeleteUse(LSRUse &LU, size_t LUIdx); 1981 1982 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1983 1984 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1985 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1986 void CountRegisters(const Formula &F, size_t LUIdx); 1987 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1988 1989 void CollectLoopInvariantFixupsAndFormulae(); 1990 1991 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1992 unsigned Depth = 0); 1993 1994 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1995 const Formula &Base, unsigned Depth, 1996 size_t Idx, bool IsScaledReg = false); 1997 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1998 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1999 const Formula &Base, size_t Idx, 2000 bool IsScaledReg = false); 2001 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2002 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2003 const Formula &Base, 2004 const SmallVectorImpl<int64_t> &Worklist, 2005 size_t Idx, bool IsScaledReg = false); 2006 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2007 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2008 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2009 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2010 void GenerateCrossUseConstantOffsets(); 2011 void GenerateAllReuseFormulae(); 2012 2013 void FilterOutUndesirableDedicatedRegisters(); 2014 2015 size_t EstimateSearchSpaceComplexity() const; 2016 void NarrowSearchSpaceByDetectingSupersets(); 2017 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2018 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2019 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2020 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2021 void NarrowSearchSpaceByPickingWinnerRegs(); 2022 void NarrowSearchSpaceUsingHeuristics(); 2023 2024 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2025 Cost &SolutionCost, 2026 SmallVectorImpl<const Formula *> &Workspace, 2027 const Cost &CurCost, 2028 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2029 DenseSet<const SCEV *> &VisitedRegs) const; 2030 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2031 2032 BasicBlock::iterator 2033 HoistInsertPosition(BasicBlock::iterator IP, 2034 const SmallVectorImpl<Instruction *> &Inputs) const; 2035 BasicBlock::iterator 2036 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2037 const LSRFixup &LF, 2038 const LSRUse &LU, 2039 SCEVExpander &Rewriter) const; 2040 2041 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2042 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2043 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2044 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2045 const Formula &F, SCEVExpander &Rewriter, 2046 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2047 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2048 SCEVExpander &Rewriter, 2049 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2050 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2051 2052 public: 2053 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2054 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2055 TargetLibraryInfo &LibInfo); 2056 2057 bool getChanged() const { return Changed; } 2058 2059 void print_factors_and_types(raw_ostream &OS) const; 2060 void print_fixups(raw_ostream &OS) const; 2061 void print_uses(raw_ostream &OS) const; 2062 void print(raw_ostream &OS) const; 2063 void dump() const; 2064 }; 2065 2066 } // end anonymous namespace 2067 2068 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2069 /// the cast operation. 2070 void LSRInstance::OptimizeShadowIV() { 2071 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2072 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2073 return; 2074 2075 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2076 UI != E; /* empty */) { 2077 IVUsers::const_iterator CandidateUI = UI; 2078 ++UI; 2079 Instruction *ShadowUse = CandidateUI->getUser(); 2080 Type *DestTy = nullptr; 2081 bool IsSigned = false; 2082 2083 /* If shadow use is a int->float cast then insert a second IV 2084 to eliminate this cast. 2085 2086 for (unsigned i = 0; i < n; ++i) 2087 foo((double)i); 2088 2089 is transformed into 2090 2091 double d = 0.0; 2092 for (unsigned i = 0; i < n; ++i, ++d) 2093 foo(d); 2094 */ 2095 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2096 IsSigned = false; 2097 DestTy = UCast->getDestTy(); 2098 } 2099 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2100 IsSigned = true; 2101 DestTy = SCast->getDestTy(); 2102 } 2103 if (!DestTy) continue; 2104 2105 // If target does not support DestTy natively then do not apply 2106 // this transformation. 2107 if (!TTI.isTypeLegal(DestTy)) continue; 2108 2109 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2110 if (!PH) continue; 2111 if (PH->getNumIncomingValues() != 2) continue; 2112 2113 // If the calculation in integers overflows, the result in FP type will 2114 // differ. So we only can do this transformation if we are guaranteed to not 2115 // deal with overflowing values 2116 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2117 if (!AR) continue; 2118 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2119 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2120 2121 Type *SrcTy = PH->getType(); 2122 int Mantissa = DestTy->getFPMantissaWidth(); 2123 if (Mantissa == -1) continue; 2124 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2125 continue; 2126 2127 unsigned Entry, Latch; 2128 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2129 Entry = 0; 2130 Latch = 1; 2131 } else { 2132 Entry = 1; 2133 Latch = 0; 2134 } 2135 2136 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2137 if (!Init) continue; 2138 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2139 (double)Init->getSExtValue() : 2140 (double)Init->getZExtValue()); 2141 2142 BinaryOperator *Incr = 2143 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2144 if (!Incr) continue; 2145 if (Incr->getOpcode() != Instruction::Add 2146 && Incr->getOpcode() != Instruction::Sub) 2147 continue; 2148 2149 /* Initialize new IV, double d = 0.0 in above example. */ 2150 ConstantInt *C = nullptr; 2151 if (Incr->getOperand(0) == PH) 2152 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2153 else if (Incr->getOperand(1) == PH) 2154 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2155 else 2156 continue; 2157 2158 if (!C) continue; 2159 2160 // Ignore negative constants, as the code below doesn't handle them 2161 // correctly. TODO: Remove this restriction. 2162 if (!C->getValue().isStrictlyPositive()) continue; 2163 2164 /* Add new PHINode. */ 2165 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2166 2167 /* create new increment. '++d' in above example. */ 2168 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2169 BinaryOperator *NewIncr = 2170 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2171 Instruction::FAdd : Instruction::FSub, 2172 NewPH, CFP, "IV.S.next.", Incr); 2173 2174 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2175 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2176 2177 /* Remove cast operation */ 2178 ShadowUse->replaceAllUsesWith(NewPH); 2179 ShadowUse->eraseFromParent(); 2180 Changed = true; 2181 break; 2182 } 2183 } 2184 2185 /// If Cond has an operand that is an expression of an IV, set the IV user and 2186 /// stride information and return true, otherwise return false. 2187 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2188 for (IVStrideUse &U : IU) 2189 if (U.getUser() == Cond) { 2190 // NOTE: we could handle setcc instructions with multiple uses here, but 2191 // InstCombine does it as well for simple uses, it's not clear that it 2192 // occurs enough in real life to handle. 2193 CondUse = &U; 2194 return true; 2195 } 2196 return false; 2197 } 2198 2199 /// Rewrite the loop's terminating condition if it uses a max computation. 2200 /// 2201 /// This is a narrow solution to a specific, but acute, problem. For loops 2202 /// like this: 2203 /// 2204 /// i = 0; 2205 /// do { 2206 /// p[i] = 0.0; 2207 /// } while (++i < n); 2208 /// 2209 /// the trip count isn't just 'n', because 'n' might not be positive. And 2210 /// unfortunately this can come up even for loops where the user didn't use 2211 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2212 /// will commonly be lowered like this: 2213 /// 2214 /// if (n > 0) { 2215 /// i = 0; 2216 /// do { 2217 /// p[i] = 0.0; 2218 /// } while (++i < n); 2219 /// } 2220 /// 2221 /// and then it's possible for subsequent optimization to obscure the if 2222 /// test in such a way that indvars can't find it. 2223 /// 2224 /// When indvars can't find the if test in loops like this, it creates a 2225 /// max expression, which allows it to give the loop a canonical 2226 /// induction variable: 2227 /// 2228 /// i = 0; 2229 /// max = n < 1 ? 1 : n; 2230 /// do { 2231 /// p[i] = 0.0; 2232 /// } while (++i != max); 2233 /// 2234 /// Canonical induction variables are necessary because the loop passes 2235 /// are designed around them. The most obvious example of this is the 2236 /// LoopInfo analysis, which doesn't remember trip count values. It 2237 /// expects to be able to rediscover the trip count each time it is 2238 /// needed, and it does this using a simple analysis that only succeeds if 2239 /// the loop has a canonical induction variable. 2240 /// 2241 /// However, when it comes time to generate code, the maximum operation 2242 /// can be quite costly, especially if it's inside of an outer loop. 2243 /// 2244 /// This function solves this problem by detecting this type of loop and 2245 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2246 /// the instructions for the maximum computation. 2247 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2248 // Check that the loop matches the pattern we're looking for. 2249 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2250 Cond->getPredicate() != CmpInst::ICMP_NE) 2251 return Cond; 2252 2253 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2254 if (!Sel || !Sel->hasOneUse()) return Cond; 2255 2256 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2257 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2258 return Cond; 2259 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2260 2261 // Add one to the backedge-taken count to get the trip count. 2262 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2263 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2264 2265 // Check for a max calculation that matches the pattern. There's no check 2266 // for ICMP_ULE here because the comparison would be with zero, which 2267 // isn't interesting. 2268 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2269 const SCEVNAryExpr *Max = nullptr; 2270 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2271 Pred = ICmpInst::ICMP_SLE; 2272 Max = S; 2273 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2274 Pred = ICmpInst::ICMP_SLT; 2275 Max = S; 2276 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2277 Pred = ICmpInst::ICMP_ULT; 2278 Max = U; 2279 } else { 2280 // No match; bail. 2281 return Cond; 2282 } 2283 2284 // To handle a max with more than two operands, this optimization would 2285 // require additional checking and setup. 2286 if (Max->getNumOperands() != 2) 2287 return Cond; 2288 2289 const SCEV *MaxLHS = Max->getOperand(0); 2290 const SCEV *MaxRHS = Max->getOperand(1); 2291 2292 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2293 // for a comparison with 1. For <= and >=, a comparison with zero. 2294 if (!MaxLHS || 2295 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2296 return Cond; 2297 2298 // Check the relevant induction variable for conformance to 2299 // the pattern. 2300 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2301 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2302 if (!AR || !AR->isAffine() || 2303 AR->getStart() != One || 2304 AR->getStepRecurrence(SE) != One) 2305 return Cond; 2306 2307 assert(AR->getLoop() == L && 2308 "Loop condition operand is an addrec in a different loop!"); 2309 2310 // Check the right operand of the select, and remember it, as it will 2311 // be used in the new comparison instruction. 2312 Value *NewRHS = nullptr; 2313 if (ICmpInst::isTrueWhenEqual(Pred)) { 2314 // Look for n+1, and grab n. 2315 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2316 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2317 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2318 NewRHS = BO->getOperand(0); 2319 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2320 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2321 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2322 NewRHS = BO->getOperand(0); 2323 if (!NewRHS) 2324 return Cond; 2325 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2326 NewRHS = Sel->getOperand(1); 2327 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2328 NewRHS = Sel->getOperand(2); 2329 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2330 NewRHS = SU->getValue(); 2331 else 2332 // Max doesn't match expected pattern. 2333 return Cond; 2334 2335 // Determine the new comparison opcode. It may be signed or unsigned, 2336 // and the original comparison may be either equality or inequality. 2337 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2338 Pred = CmpInst::getInversePredicate(Pred); 2339 2340 // Ok, everything looks ok to change the condition into an SLT or SGE and 2341 // delete the max calculation. 2342 ICmpInst *NewCond = 2343 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2344 2345 // Delete the max calculation instructions. 2346 Cond->replaceAllUsesWith(NewCond); 2347 CondUse->setUser(NewCond); 2348 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2349 Cond->eraseFromParent(); 2350 Sel->eraseFromParent(); 2351 if (Cmp->use_empty()) 2352 Cmp->eraseFromParent(); 2353 return NewCond; 2354 } 2355 2356 /// Change loop terminating condition to use the postinc iv when possible. 2357 void 2358 LSRInstance::OptimizeLoopTermCond() { 2359 SmallPtrSet<Instruction *, 4> PostIncs; 2360 2361 // We need a different set of heuristics for rotated and non-rotated loops. 2362 // If a loop is rotated then the latch is also the backedge, so inserting 2363 // post-inc expressions just before the latch is ideal. To reduce live ranges 2364 // it also makes sense to rewrite terminating conditions to use post-inc 2365 // expressions. 2366 // 2367 // If the loop is not rotated then the latch is not a backedge; the latch 2368 // check is done in the loop head. Adding post-inc expressions before the 2369 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2370 // in the loop body. In this case we do *not* want to use post-inc expressions 2371 // in the latch check, and we want to insert post-inc expressions before 2372 // the backedge. 2373 BasicBlock *LatchBlock = L->getLoopLatch(); 2374 SmallVector<BasicBlock*, 8> ExitingBlocks; 2375 L->getExitingBlocks(ExitingBlocks); 2376 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2377 return LatchBlock != BB; 2378 })) { 2379 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2380 IVIncInsertPos = LatchBlock->getTerminator(); 2381 return; 2382 } 2383 2384 // Otherwise treat this as a rotated loop. 2385 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2386 // Get the terminating condition for the loop if possible. If we 2387 // can, we want to change it to use a post-incremented version of its 2388 // induction variable, to allow coalescing the live ranges for the IV into 2389 // one register value. 2390 2391 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2392 if (!TermBr) 2393 continue; 2394 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2395 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2396 continue; 2397 2398 // Search IVUsesByStride to find Cond's IVUse if there is one. 2399 IVStrideUse *CondUse = nullptr; 2400 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2401 if (!FindIVUserForCond(Cond, CondUse)) 2402 continue; 2403 2404 // If the trip count is computed in terms of a max (due to ScalarEvolution 2405 // being unable to find a sufficient guard, for example), change the loop 2406 // comparison to use SLT or ULT instead of NE. 2407 // One consequence of doing this now is that it disrupts the count-down 2408 // optimization. That's not always a bad thing though, because in such 2409 // cases it may still be worthwhile to avoid a max. 2410 Cond = OptimizeMax(Cond, CondUse); 2411 2412 // If this exiting block dominates the latch block, it may also use 2413 // the post-inc value if it won't be shared with other uses. 2414 // Check for dominance. 2415 if (!DT.dominates(ExitingBlock, LatchBlock)) 2416 continue; 2417 2418 // Conservatively avoid trying to use the post-inc value in non-latch 2419 // exits if there may be pre-inc users in intervening blocks. 2420 if (LatchBlock != ExitingBlock) 2421 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2422 // Test if the use is reachable from the exiting block. This dominator 2423 // query is a conservative approximation of reachability. 2424 if (&*UI != CondUse && 2425 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2426 // Conservatively assume there may be reuse if the quotient of their 2427 // strides could be a legal scale. 2428 const SCEV *A = IU.getStride(*CondUse, L); 2429 const SCEV *B = IU.getStride(*UI, L); 2430 if (!A || !B) continue; 2431 if (SE.getTypeSizeInBits(A->getType()) != 2432 SE.getTypeSizeInBits(B->getType())) { 2433 if (SE.getTypeSizeInBits(A->getType()) > 2434 SE.getTypeSizeInBits(B->getType())) 2435 B = SE.getSignExtendExpr(B, A->getType()); 2436 else 2437 A = SE.getSignExtendExpr(A, B->getType()); 2438 } 2439 if (const SCEVConstant *D = 2440 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2441 const ConstantInt *C = D->getValue(); 2442 // Stride of one or negative one can have reuse with non-addresses. 2443 if (C->isOne() || C->isMinusOne()) 2444 goto decline_post_inc; 2445 // Avoid weird situations. 2446 if (C->getValue().getMinSignedBits() >= 64 || 2447 C->getValue().isMinSignedValue()) 2448 goto decline_post_inc; 2449 // Check for possible scaled-address reuse. 2450 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2451 MemAccessTy AccessTy = getAccessType( 2452 TTI, UI->getUser(), UI->getOperandValToReplace()); 2453 int64_t Scale = C->getSExtValue(); 2454 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2455 /*BaseOffset=*/0, 2456 /*HasBaseReg=*/false, Scale, 2457 AccessTy.AddrSpace)) 2458 goto decline_post_inc; 2459 Scale = -Scale; 2460 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2461 /*BaseOffset=*/0, 2462 /*HasBaseReg=*/false, Scale, 2463 AccessTy.AddrSpace)) 2464 goto decline_post_inc; 2465 } 2466 } 2467 } 2468 2469 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2470 << *Cond << '\n'); 2471 2472 // It's possible for the setcc instruction to be anywhere in the loop, and 2473 // possible for it to have multiple users. If it is not immediately before 2474 // the exiting block branch, move it. 2475 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2476 if (Cond->hasOneUse()) { 2477 Cond->moveBefore(TermBr); 2478 } else { 2479 // Clone the terminating condition and insert into the loopend. 2480 ICmpInst *OldCond = Cond; 2481 Cond = cast<ICmpInst>(Cond->clone()); 2482 Cond->setName(L->getHeader()->getName() + ".termcond"); 2483 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2484 2485 // Clone the IVUse, as the old use still exists! 2486 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2487 TermBr->replaceUsesOfWith(OldCond, Cond); 2488 } 2489 } 2490 2491 // If we get to here, we know that we can transform the setcc instruction to 2492 // use the post-incremented version of the IV, allowing us to coalesce the 2493 // live ranges for the IV correctly. 2494 CondUse->transformToPostInc(L); 2495 Changed = true; 2496 2497 PostIncs.insert(Cond); 2498 decline_post_inc:; 2499 } 2500 2501 // Determine an insertion point for the loop induction variable increment. It 2502 // must dominate all the post-inc comparisons we just set up, and it must 2503 // dominate the loop latch edge. 2504 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2505 for (Instruction *Inst : PostIncs) { 2506 BasicBlock *BB = 2507 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2508 Inst->getParent()); 2509 if (BB == Inst->getParent()) 2510 IVIncInsertPos = Inst; 2511 else if (BB != IVIncInsertPos->getParent()) 2512 IVIncInsertPos = BB->getTerminator(); 2513 } 2514 } 2515 2516 /// Determine if the given use can accommodate a fixup at the given offset and 2517 /// other details. If so, update the use and return true. 2518 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2519 bool HasBaseReg, LSRUse::KindType Kind, 2520 MemAccessTy AccessTy) { 2521 int64_t NewMinOffset = LU.MinOffset; 2522 int64_t NewMaxOffset = LU.MaxOffset; 2523 MemAccessTy NewAccessTy = AccessTy; 2524 2525 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2526 // something conservative, however this can pessimize in the case that one of 2527 // the uses will have all its uses outside the loop, for example. 2528 if (LU.Kind != Kind) 2529 return false; 2530 2531 // Check for a mismatched access type, and fall back conservatively as needed. 2532 // TODO: Be less conservative when the type is similar and can use the same 2533 // addressing modes. 2534 if (Kind == LSRUse::Address) { 2535 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2536 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2537 AccessTy.AddrSpace); 2538 } 2539 } 2540 2541 // Conservatively assume HasBaseReg is true for now. 2542 if (NewOffset < LU.MinOffset) { 2543 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2544 LU.MaxOffset - NewOffset, HasBaseReg)) 2545 return false; 2546 NewMinOffset = NewOffset; 2547 } else if (NewOffset > LU.MaxOffset) { 2548 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2549 NewOffset - LU.MinOffset, HasBaseReg)) 2550 return false; 2551 NewMaxOffset = NewOffset; 2552 } 2553 2554 // Update the use. 2555 LU.MinOffset = NewMinOffset; 2556 LU.MaxOffset = NewMaxOffset; 2557 LU.AccessTy = NewAccessTy; 2558 return true; 2559 } 2560 2561 /// Return an LSRUse index and an offset value for a fixup which needs the given 2562 /// expression, with the given kind and optional access type. Either reuse an 2563 /// existing use or create a new one, as needed. 2564 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2565 LSRUse::KindType Kind, 2566 MemAccessTy AccessTy) { 2567 const SCEV *Copy = Expr; 2568 int64_t Offset = ExtractImmediate(Expr, SE); 2569 2570 // Basic uses can't accept any offset, for example. 2571 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2572 Offset, /*HasBaseReg=*/ true)) { 2573 Expr = Copy; 2574 Offset = 0; 2575 } 2576 2577 std::pair<UseMapTy::iterator, bool> P = 2578 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2579 if (!P.second) { 2580 // A use already existed with this base. 2581 size_t LUIdx = P.first->second; 2582 LSRUse &LU = Uses[LUIdx]; 2583 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2584 // Reuse this use. 2585 return std::make_pair(LUIdx, Offset); 2586 } 2587 2588 // Create a new use. 2589 size_t LUIdx = Uses.size(); 2590 P.first->second = LUIdx; 2591 Uses.push_back(LSRUse(Kind, AccessTy)); 2592 LSRUse &LU = Uses[LUIdx]; 2593 2594 LU.MinOffset = Offset; 2595 LU.MaxOffset = Offset; 2596 return std::make_pair(LUIdx, Offset); 2597 } 2598 2599 /// Delete the given use from the Uses list. 2600 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2601 if (&LU != &Uses.back()) 2602 std::swap(LU, Uses.back()); 2603 Uses.pop_back(); 2604 2605 // Update RegUses. 2606 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2607 } 2608 2609 /// Look for a use distinct from OrigLU which is has a formula that has the same 2610 /// registers as the given formula. 2611 LSRUse * 2612 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2613 const LSRUse &OrigLU) { 2614 // Search all uses for the formula. This could be more clever. 2615 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2616 LSRUse &LU = Uses[LUIdx]; 2617 // Check whether this use is close enough to OrigLU, to see whether it's 2618 // worthwhile looking through its formulae. 2619 // Ignore ICmpZero uses because they may contain formulae generated by 2620 // GenerateICmpZeroScales, in which case adding fixup offsets may 2621 // be invalid. 2622 if (&LU != &OrigLU && 2623 LU.Kind != LSRUse::ICmpZero && 2624 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2625 LU.WidestFixupType == OrigLU.WidestFixupType && 2626 LU.HasFormulaWithSameRegs(OrigF)) { 2627 // Scan through this use's formulae. 2628 for (const Formula &F : LU.Formulae) { 2629 // Check to see if this formula has the same registers and symbols 2630 // as OrigF. 2631 if (F.BaseRegs == OrigF.BaseRegs && 2632 F.ScaledReg == OrigF.ScaledReg && 2633 F.BaseGV == OrigF.BaseGV && 2634 F.Scale == OrigF.Scale && 2635 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2636 if (F.BaseOffset == 0) 2637 return &LU; 2638 // This is the formula where all the registers and symbols matched; 2639 // there aren't going to be any others. Since we declined it, we 2640 // can skip the rest of the formulae and proceed to the next LSRUse. 2641 break; 2642 } 2643 } 2644 } 2645 } 2646 2647 // Nothing looked good. 2648 return nullptr; 2649 } 2650 2651 void LSRInstance::CollectInterestingTypesAndFactors() { 2652 SmallSetVector<const SCEV *, 4> Strides; 2653 2654 // Collect interesting types and strides. 2655 SmallVector<const SCEV *, 4> Worklist; 2656 for (const IVStrideUse &U : IU) { 2657 const SCEV *Expr = IU.getExpr(U); 2658 2659 // Collect interesting types. 2660 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2661 2662 // Add strides for mentioned loops. 2663 Worklist.push_back(Expr); 2664 do { 2665 const SCEV *S = Worklist.pop_back_val(); 2666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2667 if (AR->getLoop() == L) 2668 Strides.insert(AR->getStepRecurrence(SE)); 2669 Worklist.push_back(AR->getStart()); 2670 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2671 Worklist.append(Add->op_begin(), Add->op_end()); 2672 } 2673 } while (!Worklist.empty()); 2674 } 2675 2676 // Compute interesting factors from the set of interesting strides. 2677 for (SmallSetVector<const SCEV *, 4>::const_iterator 2678 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2679 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2680 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2681 const SCEV *OldStride = *I; 2682 const SCEV *NewStride = *NewStrideIter; 2683 2684 if (SE.getTypeSizeInBits(OldStride->getType()) != 2685 SE.getTypeSizeInBits(NewStride->getType())) { 2686 if (SE.getTypeSizeInBits(OldStride->getType()) > 2687 SE.getTypeSizeInBits(NewStride->getType())) 2688 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2689 else 2690 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2691 } 2692 if (const SCEVConstant *Factor = 2693 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2694 SE, true))) { 2695 if (Factor->getAPInt().getMinSignedBits() <= 64) 2696 Factors.insert(Factor->getAPInt().getSExtValue()); 2697 } else if (const SCEVConstant *Factor = 2698 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2699 NewStride, 2700 SE, true))) { 2701 if (Factor->getAPInt().getMinSignedBits() <= 64) 2702 Factors.insert(Factor->getAPInt().getSExtValue()); 2703 } 2704 } 2705 2706 // If all uses use the same type, don't bother looking for truncation-based 2707 // reuse. 2708 if (Types.size() == 1) 2709 Types.clear(); 2710 2711 LLVM_DEBUG(print_factors_and_types(dbgs())); 2712 } 2713 2714 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2715 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2716 /// IVStrideUses, we could partially skip this. 2717 static User::op_iterator 2718 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2719 Loop *L, ScalarEvolution &SE) { 2720 for(; OI != OE; ++OI) { 2721 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2722 if (!SE.isSCEVable(Oper->getType())) 2723 continue; 2724 2725 if (const SCEVAddRecExpr *AR = 2726 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2727 if (AR->getLoop() == L) 2728 break; 2729 } 2730 } 2731 } 2732 return OI; 2733 } 2734 2735 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2736 /// a convenient helper. 2737 static Value *getWideOperand(Value *Oper) { 2738 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2739 return Trunc->getOperand(0); 2740 return Oper; 2741 } 2742 2743 /// Return true if we allow an IV chain to include both types. 2744 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2745 Type *LType = LVal->getType(); 2746 Type *RType = RVal->getType(); 2747 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2748 // Different address spaces means (possibly) 2749 // different types of the pointer implementation, 2750 // e.g. i16 vs i32 so disallow that. 2751 (LType->getPointerAddressSpace() == 2752 RType->getPointerAddressSpace())); 2753 } 2754 2755 /// Return an approximation of this SCEV expression's "base", or NULL for any 2756 /// constant. Returning the expression itself is conservative. Returning a 2757 /// deeper subexpression is more precise and valid as long as it isn't less 2758 /// complex than another subexpression. For expressions involving multiple 2759 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2760 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2761 /// IVInc==b-a. 2762 /// 2763 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2764 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2765 static const SCEV *getExprBase(const SCEV *S) { 2766 switch (S->getSCEVType()) { 2767 default: // uncluding scUnknown. 2768 return S; 2769 case scConstant: 2770 return nullptr; 2771 case scTruncate: 2772 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2773 case scZeroExtend: 2774 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2775 case scSignExtend: 2776 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2777 case scAddExpr: { 2778 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2779 // there's nothing more complex. 2780 // FIXME: not sure if we want to recognize negation. 2781 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2782 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2783 E(Add->op_begin()); I != E; ++I) { 2784 const SCEV *SubExpr = *I; 2785 if (SubExpr->getSCEVType() == scAddExpr) 2786 return getExprBase(SubExpr); 2787 2788 if (SubExpr->getSCEVType() != scMulExpr) 2789 return SubExpr; 2790 } 2791 return S; // all operands are scaled, be conservative. 2792 } 2793 case scAddRecExpr: 2794 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2795 } 2796 } 2797 2798 /// Return true if the chain increment is profitable to expand into a loop 2799 /// invariant value, which may require its own register. A profitable chain 2800 /// increment will be an offset relative to the same base. We allow such offsets 2801 /// to potentially be used as chain increment as long as it's not obviously 2802 /// expensive to expand using real instructions. 2803 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2804 const SCEV *IncExpr, 2805 ScalarEvolution &SE) { 2806 // Aggressively form chains when -stress-ivchain. 2807 if (StressIVChain) 2808 return true; 2809 2810 // Do not replace a constant offset from IV head with a nonconstant IV 2811 // increment. 2812 if (!isa<SCEVConstant>(IncExpr)) { 2813 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2814 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2815 return false; 2816 } 2817 2818 SmallPtrSet<const SCEV*, 8> Processed; 2819 return !isHighCostExpansion(IncExpr, Processed, SE); 2820 } 2821 2822 /// Return true if the number of registers needed for the chain is estimated to 2823 /// be less than the number required for the individual IV users. First prohibit 2824 /// any IV users that keep the IV live across increments (the Users set should 2825 /// be empty). Next count the number and type of increments in the chain. 2826 /// 2827 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2828 /// effectively use postinc addressing modes. Only consider it profitable it the 2829 /// increments can be computed in fewer registers when chained. 2830 /// 2831 /// TODO: Consider IVInc free if it's already used in another chains. 2832 static bool 2833 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2834 ScalarEvolution &SE) { 2835 if (StressIVChain) 2836 return true; 2837 2838 if (!Chain.hasIncs()) 2839 return false; 2840 2841 if (!Users.empty()) { 2842 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2843 for (Instruction *Inst 2844 : Users) { dbgs() << " " << *Inst << "\n"; }); 2845 return false; 2846 } 2847 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2848 2849 // The chain itself may require a register, so intialize cost to 1. 2850 int cost = 1; 2851 2852 // A complete chain likely eliminates the need for keeping the original IV in 2853 // a register. LSR does not currently know how to form a complete chain unless 2854 // the header phi already exists. 2855 if (isa<PHINode>(Chain.tailUserInst()) 2856 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2857 --cost; 2858 } 2859 const SCEV *LastIncExpr = nullptr; 2860 unsigned NumConstIncrements = 0; 2861 unsigned NumVarIncrements = 0; 2862 unsigned NumReusedIncrements = 0; 2863 for (const IVInc &Inc : Chain) { 2864 if (Inc.IncExpr->isZero()) 2865 continue; 2866 2867 // Incrementing by zero or some constant is neutral. We assume constants can 2868 // be folded into an addressing mode or an add's immediate operand. 2869 if (isa<SCEVConstant>(Inc.IncExpr)) { 2870 ++NumConstIncrements; 2871 continue; 2872 } 2873 2874 if (Inc.IncExpr == LastIncExpr) 2875 ++NumReusedIncrements; 2876 else 2877 ++NumVarIncrements; 2878 2879 LastIncExpr = Inc.IncExpr; 2880 } 2881 // An IV chain with a single increment is handled by LSR's postinc 2882 // uses. However, a chain with multiple increments requires keeping the IV's 2883 // value live longer than it needs to be if chained. 2884 if (NumConstIncrements > 1) 2885 --cost; 2886 2887 // Materializing increment expressions in the preheader that didn't exist in 2888 // the original code may cost a register. For example, sign-extended array 2889 // indices can produce ridiculous increments like this: 2890 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2891 cost += NumVarIncrements; 2892 2893 // Reusing variable increments likely saves a register to hold the multiple of 2894 // the stride. 2895 cost -= NumReusedIncrements; 2896 2897 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2898 << "\n"); 2899 2900 return cost < 0; 2901 } 2902 2903 /// Add this IV user to an existing chain or make it the head of a new chain. 2904 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2905 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2906 // When IVs are used as types of varying widths, they are generally converted 2907 // to a wider type with some uses remaining narrow under a (free) trunc. 2908 Value *const NextIV = getWideOperand(IVOper); 2909 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2910 const SCEV *const OperExprBase = getExprBase(OperExpr); 2911 2912 // Visit all existing chains. Check if its IVOper can be computed as a 2913 // profitable loop invariant increment from the last link in the Chain. 2914 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2915 const SCEV *LastIncExpr = nullptr; 2916 for (; ChainIdx < NChains; ++ChainIdx) { 2917 IVChain &Chain = IVChainVec[ChainIdx]; 2918 2919 // Prune the solution space aggressively by checking that both IV operands 2920 // are expressions that operate on the same unscaled SCEVUnknown. This 2921 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2922 // first avoids creating extra SCEV expressions. 2923 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2924 continue; 2925 2926 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2927 if (!isCompatibleIVType(PrevIV, NextIV)) 2928 continue; 2929 2930 // A phi node terminates a chain. 2931 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2932 continue; 2933 2934 // The increment must be loop-invariant so it can be kept in a register. 2935 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2936 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2937 if (!SE.isLoopInvariant(IncExpr, L)) 2938 continue; 2939 2940 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2941 LastIncExpr = IncExpr; 2942 break; 2943 } 2944 } 2945 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2946 // bother for phi nodes, because they must be last in the chain. 2947 if (ChainIdx == NChains) { 2948 if (isa<PHINode>(UserInst)) 2949 return; 2950 if (NChains >= MaxChains && !StressIVChain) { 2951 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2952 return; 2953 } 2954 LastIncExpr = OperExpr; 2955 // IVUsers may have skipped over sign/zero extensions. We don't currently 2956 // attempt to form chains involving extensions unless they can be hoisted 2957 // into this loop's AddRec. 2958 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2959 return; 2960 ++NChains; 2961 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2962 OperExprBase)); 2963 ChainUsersVec.resize(NChains); 2964 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2965 << ") IV=" << *LastIncExpr << "\n"); 2966 } else { 2967 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2968 << ") IV+" << *LastIncExpr << "\n"); 2969 // Add this IV user to the end of the chain. 2970 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2971 } 2972 IVChain &Chain = IVChainVec[ChainIdx]; 2973 2974 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2975 // This chain's NearUsers become FarUsers. 2976 if (!LastIncExpr->isZero()) { 2977 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2978 NearUsers.end()); 2979 NearUsers.clear(); 2980 } 2981 2982 // All other uses of IVOperand become near uses of the chain. 2983 // We currently ignore intermediate values within SCEV expressions, assuming 2984 // they will eventually be used be the current chain, or can be computed 2985 // from one of the chain increments. To be more precise we could 2986 // transitively follow its user and only add leaf IV users to the set. 2987 for (User *U : IVOper->users()) { 2988 Instruction *OtherUse = dyn_cast<Instruction>(U); 2989 if (!OtherUse) 2990 continue; 2991 // Uses in the chain will no longer be uses if the chain is formed. 2992 // Include the head of the chain in this iteration (not Chain.begin()). 2993 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2994 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2995 for( ; IncIter != IncEnd; ++IncIter) { 2996 if (IncIter->UserInst == OtherUse) 2997 break; 2998 } 2999 if (IncIter != IncEnd) 3000 continue; 3001 3002 if (SE.isSCEVable(OtherUse->getType()) 3003 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3004 && IU.isIVUserOrOperand(OtherUse)) { 3005 continue; 3006 } 3007 NearUsers.insert(OtherUse); 3008 } 3009 3010 // Since this user is part of the chain, it's no longer considered a use 3011 // of the chain. 3012 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3013 } 3014 3015 /// Populate the vector of Chains. 3016 /// 3017 /// This decreases ILP at the architecture level. Targets with ample registers, 3018 /// multiple memory ports, and no register renaming probably don't want 3019 /// this. However, such targets should probably disable LSR altogether. 3020 /// 3021 /// The job of LSR is to make a reasonable choice of induction variables across 3022 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3023 /// ILP *within the loop* if the target wants it. 3024 /// 3025 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3026 /// will not reorder memory operations, it will recognize this as a chain, but 3027 /// will generate redundant IV increments. Ideally this would be corrected later 3028 /// by a smart scheduler: 3029 /// = A[i] 3030 /// = A[i+x] 3031 /// A[i] = 3032 /// A[i+x] = 3033 /// 3034 /// TODO: Walk the entire domtree within this loop, not just the path to the 3035 /// loop latch. This will discover chains on side paths, but requires 3036 /// maintaining multiple copies of the Chains state. 3037 void LSRInstance::CollectChains() { 3038 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3039 SmallVector<ChainUsers, 8> ChainUsersVec; 3040 3041 SmallVector<BasicBlock *,8> LatchPath; 3042 BasicBlock *LoopHeader = L->getHeader(); 3043 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3044 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3045 LatchPath.push_back(Rung->getBlock()); 3046 } 3047 LatchPath.push_back(LoopHeader); 3048 3049 // Walk the instruction stream from the loop header to the loop latch. 3050 for (BasicBlock *BB : reverse(LatchPath)) { 3051 for (Instruction &I : *BB) { 3052 // Skip instructions that weren't seen by IVUsers analysis. 3053 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3054 continue; 3055 3056 // Ignore users that are part of a SCEV expression. This way we only 3057 // consider leaf IV Users. This effectively rediscovers a portion of 3058 // IVUsers analysis but in program order this time. 3059 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3060 continue; 3061 3062 // Remove this instruction from any NearUsers set it may be in. 3063 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3064 ChainIdx < NChains; ++ChainIdx) { 3065 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3066 } 3067 // Search for operands that can be chained. 3068 SmallPtrSet<Instruction*, 4> UniqueOperands; 3069 User::op_iterator IVOpEnd = I.op_end(); 3070 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3071 while (IVOpIter != IVOpEnd) { 3072 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3073 if (UniqueOperands.insert(IVOpInst).second) 3074 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3075 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3076 } 3077 } // Continue walking down the instructions. 3078 } // Continue walking down the domtree. 3079 // Visit phi backedges to determine if the chain can generate the IV postinc. 3080 for (PHINode &PN : L->getHeader()->phis()) { 3081 if (!SE.isSCEVable(PN.getType())) 3082 continue; 3083 3084 Instruction *IncV = 3085 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3086 if (IncV) 3087 ChainInstruction(&PN, IncV, ChainUsersVec); 3088 } 3089 // Remove any unprofitable chains. 3090 unsigned ChainIdx = 0; 3091 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3092 UsersIdx < NChains; ++UsersIdx) { 3093 if (!isProfitableChain(IVChainVec[UsersIdx], 3094 ChainUsersVec[UsersIdx].FarUsers, SE)) 3095 continue; 3096 // Preserve the chain at UsesIdx. 3097 if (ChainIdx != UsersIdx) 3098 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3099 FinalizeChain(IVChainVec[ChainIdx]); 3100 ++ChainIdx; 3101 } 3102 IVChainVec.resize(ChainIdx); 3103 } 3104 3105 void LSRInstance::FinalizeChain(IVChain &Chain) { 3106 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3107 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3108 3109 for (const IVInc &Inc : Chain) { 3110 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3111 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3112 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3113 IVIncSet.insert(UseI); 3114 } 3115 } 3116 3117 /// Return true if the IVInc can be folded into an addressing mode. 3118 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3119 Value *Operand, const TargetTransformInfo &TTI) { 3120 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3121 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3122 return false; 3123 3124 if (IncConst->getAPInt().getMinSignedBits() > 64) 3125 return false; 3126 3127 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3128 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3129 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3130 IncOffset, /*HasBaseReg=*/false)) 3131 return false; 3132 3133 return true; 3134 } 3135 3136 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3137 /// user's operand from the previous IV user's operand. 3138 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3139 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3140 // Find the new IVOperand for the head of the chain. It may have been replaced 3141 // by LSR. 3142 const IVInc &Head = Chain.Incs[0]; 3143 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3144 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3145 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3146 IVOpEnd, L, SE); 3147 Value *IVSrc = nullptr; 3148 while (IVOpIter != IVOpEnd) { 3149 IVSrc = getWideOperand(*IVOpIter); 3150 3151 // If this operand computes the expression that the chain needs, we may use 3152 // it. (Check this after setting IVSrc which is used below.) 3153 // 3154 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3155 // narrow for the chain, so we can no longer use it. We do allow using a 3156 // wider phi, assuming the LSR checked for free truncation. In that case we 3157 // should already have a truncate on this operand such that 3158 // getSCEV(IVSrc) == IncExpr. 3159 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3160 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3161 break; 3162 } 3163 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3164 } 3165 if (IVOpIter == IVOpEnd) { 3166 // Gracefully give up on this chain. 3167 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3168 return; 3169 } 3170 assert(IVSrc && "Failed to find IV chain source"); 3171 3172 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3173 Type *IVTy = IVSrc->getType(); 3174 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3175 const SCEV *LeftOverExpr = nullptr; 3176 for (const IVInc &Inc : Chain) { 3177 Instruction *InsertPt = Inc.UserInst; 3178 if (isa<PHINode>(InsertPt)) 3179 InsertPt = L->getLoopLatch()->getTerminator(); 3180 3181 // IVOper will replace the current IV User's operand. IVSrc is the IV 3182 // value currently held in a register. 3183 Value *IVOper = IVSrc; 3184 if (!Inc.IncExpr->isZero()) { 3185 // IncExpr was the result of subtraction of two narrow values, so must 3186 // be signed. 3187 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3188 LeftOverExpr = LeftOverExpr ? 3189 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3190 } 3191 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3192 // Expand the IV increment. 3193 Rewriter.clearPostInc(); 3194 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3195 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3196 SE.getUnknown(IncV)); 3197 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3198 3199 // If an IV increment can't be folded, use it as the next IV value. 3200 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3201 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3202 IVSrc = IVOper; 3203 LeftOverExpr = nullptr; 3204 } 3205 } 3206 Type *OperTy = Inc.IVOperand->getType(); 3207 if (IVTy != OperTy) { 3208 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3209 "cannot extend a chained IV"); 3210 IRBuilder<> Builder(InsertPt); 3211 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3212 } 3213 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3214 DeadInsts.emplace_back(Inc.IVOperand); 3215 } 3216 // If LSR created a new, wider phi, we may also replace its postinc. We only 3217 // do this if we also found a wide value for the head of the chain. 3218 if (isa<PHINode>(Chain.tailUserInst())) { 3219 for (PHINode &Phi : L->getHeader()->phis()) { 3220 if (!isCompatibleIVType(&Phi, IVSrc)) 3221 continue; 3222 Instruction *PostIncV = dyn_cast<Instruction>( 3223 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3224 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3225 continue; 3226 Value *IVOper = IVSrc; 3227 Type *PostIncTy = PostIncV->getType(); 3228 if (IVTy != PostIncTy) { 3229 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3230 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3231 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3232 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3233 } 3234 Phi.replaceUsesOfWith(PostIncV, IVOper); 3235 DeadInsts.emplace_back(PostIncV); 3236 } 3237 } 3238 } 3239 3240 void LSRInstance::CollectFixupsAndInitialFormulae() { 3241 BranchInst *ExitBranch = nullptr; 3242 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo); 3243 3244 for (const IVStrideUse &U : IU) { 3245 Instruction *UserInst = U.getUser(); 3246 // Skip IV users that are part of profitable IV Chains. 3247 User::op_iterator UseI = 3248 find(UserInst->operands(), U.getOperandValToReplace()); 3249 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3250 if (IVIncSet.count(UseI)) { 3251 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3252 continue; 3253 } 3254 3255 LSRUse::KindType Kind = LSRUse::Basic; 3256 MemAccessTy AccessTy; 3257 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3258 Kind = LSRUse::Address; 3259 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3260 } 3261 3262 const SCEV *S = IU.getExpr(U); 3263 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3264 3265 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3266 // (N - i == 0), and this allows (N - i) to be the expression that we work 3267 // with rather than just N or i, so we can consider the register 3268 // requirements for both N and i at the same time. Limiting this code to 3269 // equality icmps is not a problem because all interesting loops use 3270 // equality icmps, thanks to IndVarSimplify. 3271 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3272 // If CI can be saved in some target, like replaced inside hardware loop 3273 // in PowerPC, no need to generate initial formulae for it. 3274 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3275 continue; 3276 if (CI->isEquality()) { 3277 // Swap the operands if needed to put the OperandValToReplace on the 3278 // left, for consistency. 3279 Value *NV = CI->getOperand(1); 3280 if (NV == U.getOperandValToReplace()) { 3281 CI->setOperand(1, CI->getOperand(0)); 3282 CI->setOperand(0, NV); 3283 NV = CI->getOperand(1); 3284 Changed = true; 3285 } 3286 3287 // x == y --> x - y == 0 3288 const SCEV *N = SE.getSCEV(NV); 3289 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3290 // S is normalized, so normalize N before folding it into S 3291 // to keep the result normalized. 3292 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3293 Kind = LSRUse::ICmpZero; 3294 S = SE.getMinusSCEV(N, S); 3295 } 3296 3297 // -1 and the negations of all interesting strides (except the negation 3298 // of -1) are now also interesting. 3299 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3300 if (Factors[i] != -1) 3301 Factors.insert(-(uint64_t)Factors[i]); 3302 Factors.insert(-1); 3303 } 3304 } 3305 3306 // Get or create an LSRUse. 3307 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3308 size_t LUIdx = P.first; 3309 int64_t Offset = P.second; 3310 LSRUse &LU = Uses[LUIdx]; 3311 3312 // Record the fixup. 3313 LSRFixup &LF = LU.getNewFixup(); 3314 LF.UserInst = UserInst; 3315 LF.OperandValToReplace = U.getOperandValToReplace(); 3316 LF.PostIncLoops = TmpPostIncLoops; 3317 LF.Offset = Offset; 3318 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3319 3320 if (!LU.WidestFixupType || 3321 SE.getTypeSizeInBits(LU.WidestFixupType) < 3322 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3323 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3324 3325 // If this is the first use of this LSRUse, give it a formula. 3326 if (LU.Formulae.empty()) { 3327 InsertInitialFormula(S, LU, LUIdx); 3328 CountRegisters(LU.Formulae.back(), LUIdx); 3329 } 3330 } 3331 3332 LLVM_DEBUG(print_fixups(dbgs())); 3333 } 3334 3335 /// Insert a formula for the given expression into the given use, separating out 3336 /// loop-variant portions from loop-invariant and loop-computable portions. 3337 void 3338 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3339 // Mark uses whose expressions cannot be expanded. 3340 if (!isSafeToExpand(S, SE)) 3341 LU.RigidFormula = true; 3342 3343 Formula F; 3344 F.initialMatch(S, L, SE); 3345 bool Inserted = InsertFormula(LU, LUIdx, F); 3346 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3347 } 3348 3349 /// Insert a simple single-register formula for the given expression into the 3350 /// given use. 3351 void 3352 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3353 LSRUse &LU, size_t LUIdx) { 3354 Formula F; 3355 F.BaseRegs.push_back(S); 3356 F.HasBaseReg = true; 3357 bool Inserted = InsertFormula(LU, LUIdx, F); 3358 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3359 } 3360 3361 /// Note which registers are used by the given formula, updating RegUses. 3362 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3363 if (F.ScaledReg) 3364 RegUses.countRegister(F.ScaledReg, LUIdx); 3365 for (const SCEV *BaseReg : F.BaseRegs) 3366 RegUses.countRegister(BaseReg, LUIdx); 3367 } 3368 3369 /// If the given formula has not yet been inserted, add it to the list, and 3370 /// return true. Return false otherwise. 3371 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3372 // Do not insert formula that we will not be able to expand. 3373 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3374 "Formula is illegal"); 3375 3376 if (!LU.InsertFormula(F, *L)) 3377 return false; 3378 3379 CountRegisters(F, LUIdx); 3380 return true; 3381 } 3382 3383 /// Check for other uses of loop-invariant values which we're tracking. These 3384 /// other uses will pin these values in registers, making them less profitable 3385 /// for elimination. 3386 /// TODO: This currently misses non-constant addrec step registers. 3387 /// TODO: Should this give more weight to users inside the loop? 3388 void 3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3390 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3391 SmallPtrSet<const SCEV *, 32> Visited; 3392 3393 while (!Worklist.empty()) { 3394 const SCEV *S = Worklist.pop_back_val(); 3395 3396 // Don't process the same SCEV twice 3397 if (!Visited.insert(S).second) 3398 continue; 3399 3400 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3401 Worklist.append(N->op_begin(), N->op_end()); 3402 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3403 Worklist.push_back(C->getOperand()); 3404 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3405 Worklist.push_back(D->getLHS()); 3406 Worklist.push_back(D->getRHS()); 3407 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3408 const Value *V = US->getValue(); 3409 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3410 // Look for instructions defined outside the loop. 3411 if (L->contains(Inst)) continue; 3412 } else if (isa<UndefValue>(V)) 3413 // Undef doesn't have a live range, so it doesn't matter. 3414 continue; 3415 for (const Use &U : V->uses()) { 3416 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3417 // Ignore non-instructions. 3418 if (!UserInst) 3419 continue; 3420 // Ignore instructions in other functions (as can happen with 3421 // Constants). 3422 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3423 continue; 3424 // Ignore instructions not dominated by the loop. 3425 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3426 UserInst->getParent() : 3427 cast<PHINode>(UserInst)->getIncomingBlock( 3428 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3429 if (!DT.dominates(L->getHeader(), UseBB)) 3430 continue; 3431 // Don't bother if the instruction is in a BB which ends in an EHPad. 3432 if (UseBB->getTerminator()->isEHPad()) 3433 continue; 3434 // Don't bother rewriting PHIs in catchswitch blocks. 3435 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3436 continue; 3437 // Ignore uses which are part of other SCEV expressions, to avoid 3438 // analyzing them multiple times. 3439 if (SE.isSCEVable(UserInst->getType())) { 3440 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3441 // If the user is a no-op, look through to its uses. 3442 if (!isa<SCEVUnknown>(UserS)) 3443 continue; 3444 if (UserS == US) { 3445 Worklist.push_back( 3446 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3447 continue; 3448 } 3449 } 3450 // Ignore icmp instructions which are already being analyzed. 3451 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3452 unsigned OtherIdx = !U.getOperandNo(); 3453 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3454 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3455 continue; 3456 } 3457 3458 std::pair<size_t, int64_t> P = getUse( 3459 S, LSRUse::Basic, MemAccessTy()); 3460 size_t LUIdx = P.first; 3461 int64_t Offset = P.second; 3462 LSRUse &LU = Uses[LUIdx]; 3463 LSRFixup &LF = LU.getNewFixup(); 3464 LF.UserInst = const_cast<Instruction *>(UserInst); 3465 LF.OperandValToReplace = U; 3466 LF.Offset = Offset; 3467 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3468 if (!LU.WidestFixupType || 3469 SE.getTypeSizeInBits(LU.WidestFixupType) < 3470 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3471 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3472 InsertSupplementalFormula(US, LU, LUIdx); 3473 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3474 break; 3475 } 3476 } 3477 } 3478 } 3479 3480 /// Split S into subexpressions which can be pulled out into separate 3481 /// registers. If C is non-null, multiply each subexpression by C. 3482 /// 3483 /// Return remainder expression after factoring the subexpressions captured by 3484 /// Ops. If Ops is complete, return NULL. 3485 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3486 SmallVectorImpl<const SCEV *> &Ops, 3487 const Loop *L, 3488 ScalarEvolution &SE, 3489 unsigned Depth = 0) { 3490 // Arbitrarily cap recursion to protect compile time. 3491 if (Depth >= 3) 3492 return S; 3493 3494 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3495 // Break out add operands. 3496 for (const SCEV *S : Add->operands()) { 3497 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3498 if (Remainder) 3499 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3500 } 3501 return nullptr; 3502 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3503 // Split a non-zero base out of an addrec. 3504 if (AR->getStart()->isZero() || !AR->isAffine()) 3505 return S; 3506 3507 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3508 C, Ops, L, SE, Depth+1); 3509 // Split the non-zero AddRec unless it is part of a nested recurrence that 3510 // does not pertain to this loop. 3511 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3512 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3513 Remainder = nullptr; 3514 } 3515 if (Remainder != AR->getStart()) { 3516 if (!Remainder) 3517 Remainder = SE.getConstant(AR->getType(), 0); 3518 return SE.getAddRecExpr(Remainder, 3519 AR->getStepRecurrence(SE), 3520 AR->getLoop(), 3521 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3522 SCEV::FlagAnyWrap); 3523 } 3524 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3525 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3526 if (Mul->getNumOperands() != 2) 3527 return S; 3528 if (const SCEVConstant *Op0 = 3529 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3530 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3531 const SCEV *Remainder = 3532 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3533 if (Remainder) 3534 Ops.push_back(SE.getMulExpr(C, Remainder)); 3535 return nullptr; 3536 } 3537 } 3538 return S; 3539 } 3540 3541 /// Return true if the SCEV represents a value that may end up as a 3542 /// post-increment operation. 3543 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3544 LSRUse &LU, const SCEV *S, const Loop *L, 3545 ScalarEvolution &SE) { 3546 if (LU.Kind != LSRUse::Address || 3547 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3548 return false; 3549 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3550 if (!AR) 3551 return false; 3552 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3553 if (!isa<SCEVConstant>(LoopStep)) 3554 return false; 3555 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3556 LoopStep->getType()->getScalarSizeInBits()) 3557 return false; 3558 // Check if a post-indexed load/store can be used. 3559 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3560 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3561 const SCEV *LoopStart = AR->getStart(); 3562 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3563 return true; 3564 } 3565 return false; 3566 } 3567 3568 /// Helper function for LSRInstance::GenerateReassociations. 3569 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3570 const Formula &Base, 3571 unsigned Depth, size_t Idx, 3572 bool IsScaledReg) { 3573 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3574 // Don't generate reassociations for the base register of a value that 3575 // may generate a post-increment operator. The reason is that the 3576 // reassociations cause extra base+register formula to be created, 3577 // and possibly chosen, but the post-increment is more efficient. 3578 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3579 return; 3580 SmallVector<const SCEV *, 8> AddOps; 3581 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3582 if (Remainder) 3583 AddOps.push_back(Remainder); 3584 3585 if (AddOps.size() == 1) 3586 return; 3587 3588 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3589 JE = AddOps.end(); 3590 J != JE; ++J) { 3591 // Loop-variant "unknown" values are uninteresting; we won't be able to 3592 // do anything meaningful with them. 3593 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3594 continue; 3595 3596 // Don't pull a constant into a register if the constant could be folded 3597 // into an immediate field. 3598 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3599 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3600 continue; 3601 3602 // Collect all operands except *J. 3603 SmallVector<const SCEV *, 8> InnerAddOps( 3604 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3605 InnerAddOps.append(std::next(J), 3606 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3607 3608 // Don't leave just a constant behind in a register if the constant could 3609 // be folded into an immediate field. 3610 if (InnerAddOps.size() == 1 && 3611 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3612 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3613 continue; 3614 3615 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3616 if (InnerSum->isZero()) 3617 continue; 3618 Formula F = Base; 3619 3620 // Add the remaining pieces of the add back into the new formula. 3621 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3622 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3623 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3624 InnerSumSC->getValue()->getZExtValue())) { 3625 F.UnfoldedOffset = 3626 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3627 if (IsScaledReg) 3628 F.ScaledReg = nullptr; 3629 else 3630 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3631 } else if (IsScaledReg) 3632 F.ScaledReg = InnerSum; 3633 else 3634 F.BaseRegs[Idx] = InnerSum; 3635 3636 // Add J as its own register, or an unfolded immediate. 3637 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3638 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3639 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3640 SC->getValue()->getZExtValue())) 3641 F.UnfoldedOffset = 3642 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3643 else 3644 F.BaseRegs.push_back(*J); 3645 // We may have changed the number of register in base regs, adjust the 3646 // formula accordingly. 3647 F.canonicalize(*L); 3648 3649 if (InsertFormula(LU, LUIdx, F)) 3650 // If that formula hadn't been seen before, recurse to find more like 3651 // it. 3652 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3653 // Because just Depth is not enough to bound compile time. 3654 // This means that every time AddOps.size() is greater 16^x we will add 3655 // x to Depth. 3656 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3657 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3658 } 3659 } 3660 3661 /// Split out subexpressions from adds and the bases of addrecs. 3662 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3663 Formula Base, unsigned Depth) { 3664 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3665 // Arbitrarily cap recursion to protect compile time. 3666 if (Depth >= 3) 3667 return; 3668 3669 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3670 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3671 3672 if (Base.Scale == 1) 3673 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3674 /* Idx */ -1, /* IsScaledReg */ true); 3675 } 3676 3677 /// Generate a formula consisting of all of the loop-dominating registers added 3678 /// into a single register. 3679 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3680 Formula Base) { 3681 // This method is only interesting on a plurality of registers. 3682 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3683 (Base.UnfoldedOffset != 0) <= 1) 3684 return; 3685 3686 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3687 // processing the formula. 3688 Base.unscale(); 3689 SmallVector<const SCEV *, 4> Ops; 3690 Formula NewBase = Base; 3691 NewBase.BaseRegs.clear(); 3692 Type *CombinedIntegerType = nullptr; 3693 for (const SCEV *BaseReg : Base.BaseRegs) { 3694 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3695 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3696 if (!CombinedIntegerType) 3697 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3698 Ops.push_back(BaseReg); 3699 } 3700 else 3701 NewBase.BaseRegs.push_back(BaseReg); 3702 } 3703 3704 // If no register is relevant, we're done. 3705 if (Ops.size() == 0) 3706 return; 3707 3708 // Utility function for generating the required variants of the combined 3709 // registers. 3710 auto GenerateFormula = [&](const SCEV *Sum) { 3711 Formula F = NewBase; 3712 3713 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3714 // opportunity to fold something. For now, just ignore such cases 3715 // rather than proceed with zero in a register. 3716 if (Sum->isZero()) 3717 return; 3718 3719 F.BaseRegs.push_back(Sum); 3720 F.canonicalize(*L); 3721 (void)InsertFormula(LU, LUIdx, F); 3722 }; 3723 3724 // If we collected at least two registers, generate a formula combining them. 3725 if (Ops.size() > 1) { 3726 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3727 GenerateFormula(SE.getAddExpr(OpsCopy)); 3728 } 3729 3730 // If we have an unfolded offset, generate a formula combining it with the 3731 // registers collected. 3732 if (NewBase.UnfoldedOffset) { 3733 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3734 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3735 true)); 3736 NewBase.UnfoldedOffset = 0; 3737 GenerateFormula(SE.getAddExpr(Ops)); 3738 } 3739 } 3740 3741 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3742 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3743 const Formula &Base, size_t Idx, 3744 bool IsScaledReg) { 3745 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3746 GlobalValue *GV = ExtractSymbol(G, SE); 3747 if (G->isZero() || !GV) 3748 return; 3749 Formula F = Base; 3750 F.BaseGV = GV; 3751 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3752 return; 3753 if (IsScaledReg) 3754 F.ScaledReg = G; 3755 else 3756 F.BaseRegs[Idx] = G; 3757 (void)InsertFormula(LU, LUIdx, F); 3758 } 3759 3760 /// Generate reuse formulae using symbolic offsets. 3761 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3762 Formula Base) { 3763 // We can't add a symbolic offset if the address already contains one. 3764 if (Base.BaseGV) return; 3765 3766 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3767 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3768 if (Base.Scale == 1) 3769 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3770 /* IsScaledReg */ true); 3771 } 3772 3773 /// Helper function for LSRInstance::GenerateConstantOffsets. 3774 void LSRInstance::GenerateConstantOffsetsImpl( 3775 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3776 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3777 3778 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3779 Formula F = Base; 3780 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3781 3782 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3783 LU.AccessTy, F)) { 3784 // Add the offset to the base register. 3785 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3786 // If it cancelled out, drop the base register, otherwise update it. 3787 if (NewG->isZero()) { 3788 if (IsScaledReg) { 3789 F.Scale = 0; 3790 F.ScaledReg = nullptr; 3791 } else 3792 F.deleteBaseReg(F.BaseRegs[Idx]); 3793 F.canonicalize(*L); 3794 } else if (IsScaledReg) 3795 F.ScaledReg = NewG; 3796 else 3797 F.BaseRegs[Idx] = NewG; 3798 3799 (void)InsertFormula(LU, LUIdx, F); 3800 } 3801 }; 3802 3803 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3804 3805 // With constant offsets and constant steps, we can generate pre-inc 3806 // accesses by having the offset equal the step. So, for access #0 with a 3807 // step of 8, we generate a G - 8 base which would require the first access 3808 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3809 // for itself and hopefully becomes the base for other accesses. This means 3810 // means that a single pre-indexed access can be generated to become the new 3811 // base pointer for each iteration of the loop, resulting in no extra add/sub 3812 // instructions for pointer updating. 3813 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3814 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3815 if (auto *StepRec = 3816 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3817 const APInt &StepInt = StepRec->getAPInt(); 3818 int64_t Step = StepInt.isNegative() ? 3819 StepInt.getSExtValue() : StepInt.getZExtValue(); 3820 3821 for (int64_t Offset : Worklist) { 3822 Offset -= Step; 3823 GenerateOffset(G, Offset); 3824 } 3825 } 3826 } 3827 } 3828 for (int64_t Offset : Worklist) 3829 GenerateOffset(G, Offset); 3830 3831 int64_t Imm = ExtractImmediate(G, SE); 3832 if (G->isZero() || Imm == 0) 3833 return; 3834 Formula F = Base; 3835 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3836 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3837 return; 3838 if (IsScaledReg) 3839 F.ScaledReg = G; 3840 else 3841 F.BaseRegs[Idx] = G; 3842 (void)InsertFormula(LU, LUIdx, F); 3843 } 3844 3845 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3846 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3847 Formula Base) { 3848 // TODO: For now, just add the min and max offset, because it usually isn't 3849 // worthwhile looking at everything inbetween. 3850 SmallVector<int64_t, 2> Worklist; 3851 Worklist.push_back(LU.MinOffset); 3852 if (LU.MaxOffset != LU.MinOffset) 3853 Worklist.push_back(LU.MaxOffset); 3854 3855 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3856 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3857 if (Base.Scale == 1) 3858 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3859 /* IsScaledReg */ true); 3860 } 3861 3862 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3863 /// == y -> x*c == y*c. 3864 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3865 Formula Base) { 3866 if (LU.Kind != LSRUse::ICmpZero) return; 3867 3868 // Determine the integer type for the base formula. 3869 Type *IntTy = Base.getType(); 3870 if (!IntTy) return; 3871 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3872 3873 // Don't do this if there is more than one offset. 3874 if (LU.MinOffset != LU.MaxOffset) return; 3875 3876 // Check if transformation is valid. It is illegal to multiply pointer. 3877 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3878 return; 3879 for (const SCEV *BaseReg : Base.BaseRegs) 3880 if (BaseReg->getType()->isPointerTy()) 3881 return; 3882 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3883 3884 // Check each interesting stride. 3885 for (int64_t Factor : Factors) { 3886 // Check that the multiplication doesn't overflow. 3887 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3888 continue; 3889 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3890 if (NewBaseOffset / Factor != Base.BaseOffset) 3891 continue; 3892 // If the offset will be truncated at this use, check that it is in bounds. 3893 if (!IntTy->isPointerTy() && 3894 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3895 continue; 3896 3897 // Check that multiplying with the use offset doesn't overflow. 3898 int64_t Offset = LU.MinOffset; 3899 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3900 continue; 3901 Offset = (uint64_t)Offset * Factor; 3902 if (Offset / Factor != LU.MinOffset) 3903 continue; 3904 // If the offset will be truncated at this use, check that it is in bounds. 3905 if (!IntTy->isPointerTy() && 3906 !ConstantInt::isValueValidForType(IntTy, Offset)) 3907 continue; 3908 3909 Formula F = Base; 3910 F.BaseOffset = NewBaseOffset; 3911 3912 // Check that this scale is legal. 3913 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3914 continue; 3915 3916 // Compensate for the use having MinOffset built into it. 3917 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3918 3919 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3920 3921 // Check that multiplying with each base register doesn't overflow. 3922 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3923 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3924 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3925 goto next; 3926 } 3927 3928 // Check that multiplying with the scaled register doesn't overflow. 3929 if (F.ScaledReg) { 3930 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3931 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3932 continue; 3933 } 3934 3935 // Check that multiplying with the unfolded offset doesn't overflow. 3936 if (F.UnfoldedOffset != 0) { 3937 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3938 Factor == -1) 3939 continue; 3940 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3941 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3942 continue; 3943 // If the offset will be truncated, check that it is in bounds. 3944 if (!IntTy->isPointerTy() && 3945 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3946 continue; 3947 } 3948 3949 // If we make it here and it's legal, add it. 3950 (void)InsertFormula(LU, LUIdx, F); 3951 next:; 3952 } 3953 } 3954 3955 /// Generate stride factor reuse formulae by making use of scaled-offset address 3956 /// modes, for example. 3957 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3958 // Determine the integer type for the base formula. 3959 Type *IntTy = Base.getType(); 3960 if (!IntTy) return; 3961 3962 // If this Formula already has a scaled register, we can't add another one. 3963 // Try to unscale the formula to generate a better scale. 3964 if (Base.Scale != 0 && !Base.unscale()) 3965 return; 3966 3967 assert(Base.Scale == 0 && "unscale did not did its job!"); 3968 3969 // Check each interesting stride. 3970 for (int64_t Factor : Factors) { 3971 Base.Scale = Factor; 3972 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3973 // Check whether this scale is going to be legal. 3974 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3975 Base)) { 3976 // As a special-case, handle special out-of-loop Basic users specially. 3977 // TODO: Reconsider this special case. 3978 if (LU.Kind == LSRUse::Basic && 3979 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3980 LU.AccessTy, Base) && 3981 LU.AllFixupsOutsideLoop) 3982 LU.Kind = LSRUse::Special; 3983 else 3984 continue; 3985 } 3986 // For an ICmpZero, negating a solitary base register won't lead to 3987 // new solutions. 3988 if (LU.Kind == LSRUse::ICmpZero && 3989 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3990 continue; 3991 // For each addrec base reg, if its loop is current loop, apply the scale. 3992 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3993 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3994 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3995 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3996 if (FactorS->isZero()) 3997 continue; 3998 // Divide out the factor, ignoring high bits, since we'll be 3999 // scaling the value back up in the end. 4000 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4001 // TODO: This could be optimized to avoid all the copying. 4002 Formula F = Base; 4003 F.ScaledReg = Quotient; 4004 F.deleteBaseReg(F.BaseRegs[i]); 4005 // The canonical representation of 1*reg is reg, which is already in 4006 // Base. In that case, do not try to insert the formula, it will be 4007 // rejected anyway. 4008 if (F.Scale == 1 && (F.BaseRegs.empty() || 4009 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4010 continue; 4011 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4012 // non canonical Formula with ScaledReg's loop not being L. 4013 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4014 F.canonicalize(*L); 4015 (void)InsertFormula(LU, LUIdx, F); 4016 } 4017 } 4018 } 4019 } 4020 } 4021 4022 /// Generate reuse formulae from different IV types. 4023 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4024 // Don't bother truncating symbolic values. 4025 if (Base.BaseGV) return; 4026 4027 // Determine the integer type for the base formula. 4028 Type *DstTy = Base.getType(); 4029 if (!DstTy) return; 4030 DstTy = SE.getEffectiveSCEVType(DstTy); 4031 4032 for (Type *SrcTy : Types) { 4033 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4034 Formula F = Base; 4035 4036 // Sometimes SCEV is able to prove zero during ext transform. It may 4037 // happen if SCEV did not do all possible transforms while creating the 4038 // initial node (maybe due to depth limitations), but it can do them while 4039 // taking ext. 4040 if (F.ScaledReg) { 4041 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4042 if (NewScaledReg->isZero()) 4043 continue; 4044 F.ScaledReg = NewScaledReg; 4045 } 4046 bool HasZeroBaseReg = false; 4047 for (const SCEV *&BaseReg : F.BaseRegs) { 4048 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4049 if (NewBaseReg->isZero()) { 4050 HasZeroBaseReg = true; 4051 break; 4052 } 4053 BaseReg = NewBaseReg; 4054 } 4055 if (HasZeroBaseReg) 4056 continue; 4057 4058 // TODO: This assumes we've done basic processing on all uses and 4059 // have an idea what the register usage is. 4060 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4061 continue; 4062 4063 F.canonicalize(*L); 4064 (void)InsertFormula(LU, LUIdx, F); 4065 } 4066 } 4067 } 4068 4069 namespace { 4070 4071 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4072 /// modifications so that the search phase doesn't have to worry about the data 4073 /// structures moving underneath it. 4074 struct WorkItem { 4075 size_t LUIdx; 4076 int64_t Imm; 4077 const SCEV *OrigReg; 4078 4079 WorkItem(size_t LI, int64_t I, const SCEV *R) 4080 : LUIdx(LI), Imm(I), OrigReg(R) {} 4081 4082 void print(raw_ostream &OS) const; 4083 void dump() const; 4084 }; 4085 4086 } // end anonymous namespace 4087 4088 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4089 void WorkItem::print(raw_ostream &OS) const { 4090 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4091 << " , add offset " << Imm; 4092 } 4093 4094 LLVM_DUMP_METHOD void WorkItem::dump() const { 4095 print(errs()); errs() << '\n'; 4096 } 4097 #endif 4098 4099 /// Look for registers which are a constant distance apart and try to form reuse 4100 /// opportunities between them. 4101 void LSRInstance::GenerateCrossUseConstantOffsets() { 4102 // Group the registers by their value without any added constant offset. 4103 using ImmMapTy = std::map<int64_t, const SCEV *>; 4104 4105 DenseMap<const SCEV *, ImmMapTy> Map; 4106 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4107 SmallVector<const SCEV *, 8> Sequence; 4108 for (const SCEV *Use : RegUses) { 4109 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4110 int64_t Imm = ExtractImmediate(Reg, SE); 4111 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4112 if (Pair.second) 4113 Sequence.push_back(Reg); 4114 Pair.first->second.insert(std::make_pair(Imm, Use)); 4115 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4116 } 4117 4118 // Now examine each set of registers with the same base value. Build up 4119 // a list of work to do and do the work in a separate step so that we're 4120 // not adding formulae and register counts while we're searching. 4121 SmallVector<WorkItem, 32> WorkItems; 4122 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4123 for (const SCEV *Reg : Sequence) { 4124 const ImmMapTy &Imms = Map.find(Reg)->second; 4125 4126 // It's not worthwhile looking for reuse if there's only one offset. 4127 if (Imms.size() == 1) 4128 continue; 4129 4130 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4131 for (const auto &Entry 4132 : Imms) dbgs() 4133 << ' ' << Entry.first; 4134 dbgs() << '\n'); 4135 4136 // Examine each offset. 4137 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4138 J != JE; ++J) { 4139 const SCEV *OrigReg = J->second; 4140 4141 int64_t JImm = J->first; 4142 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4143 4144 if (!isa<SCEVConstant>(OrigReg) && 4145 UsedByIndicesMap[Reg].count() == 1) { 4146 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4147 << '\n'); 4148 continue; 4149 } 4150 4151 // Conservatively examine offsets between this orig reg a few selected 4152 // other orig regs. 4153 int64_t First = Imms.begin()->first; 4154 int64_t Last = std::prev(Imms.end())->first; 4155 // Compute (First + Last) / 2 without overflow using the fact that 4156 // First + Last = 2 * (First + Last) + (First ^ Last). 4157 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4158 // If the result is negative and First is odd and Last even (or vice versa), 4159 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4160 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4161 ImmMapTy::const_iterator OtherImms[] = { 4162 Imms.begin(), std::prev(Imms.end()), 4163 Imms.lower_bound(Avg)}; 4164 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4165 ImmMapTy::const_iterator M = OtherImms[i]; 4166 if (M == J || M == JE) continue; 4167 4168 // Compute the difference between the two. 4169 int64_t Imm = (uint64_t)JImm - M->first; 4170 for (unsigned LUIdx : UsedByIndices.set_bits()) 4171 // Make a memo of this use, offset, and register tuple. 4172 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4173 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4174 } 4175 } 4176 } 4177 4178 Map.clear(); 4179 Sequence.clear(); 4180 UsedByIndicesMap.clear(); 4181 UniqueItems.clear(); 4182 4183 // Now iterate through the worklist and add new formulae. 4184 for (const WorkItem &WI : WorkItems) { 4185 size_t LUIdx = WI.LUIdx; 4186 LSRUse &LU = Uses[LUIdx]; 4187 int64_t Imm = WI.Imm; 4188 const SCEV *OrigReg = WI.OrigReg; 4189 4190 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4191 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4192 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4193 4194 // TODO: Use a more targeted data structure. 4195 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4196 Formula F = LU.Formulae[L]; 4197 // FIXME: The code for the scaled and unscaled registers looks 4198 // very similar but slightly different. Investigate if they 4199 // could be merged. That way, we would not have to unscale the 4200 // Formula. 4201 F.unscale(); 4202 // Use the immediate in the scaled register. 4203 if (F.ScaledReg == OrigReg) { 4204 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4205 // Don't create 50 + reg(-50). 4206 if (F.referencesReg(SE.getSCEV( 4207 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4208 continue; 4209 Formula NewF = F; 4210 NewF.BaseOffset = Offset; 4211 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4212 NewF)) 4213 continue; 4214 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4215 4216 // If the new scale is a constant in a register, and adding the constant 4217 // value to the immediate would produce a value closer to zero than the 4218 // immediate itself, then the formula isn't worthwhile. 4219 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4220 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4221 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4222 .ule(std::abs(NewF.BaseOffset))) 4223 continue; 4224 4225 // OK, looks good. 4226 NewF.canonicalize(*this->L); 4227 (void)InsertFormula(LU, LUIdx, NewF); 4228 } else { 4229 // Use the immediate in a base register. 4230 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4231 const SCEV *BaseReg = F.BaseRegs[N]; 4232 if (BaseReg != OrigReg) 4233 continue; 4234 Formula NewF = F; 4235 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4236 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4237 LU.Kind, LU.AccessTy, NewF)) { 4238 if (TTI.shouldFavorPostInc() && 4239 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4240 continue; 4241 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4242 continue; 4243 NewF = F; 4244 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4245 } 4246 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4247 4248 // If the new formula has a constant in a register, and adding the 4249 // constant value to the immediate would produce a value closer to 4250 // zero than the immediate itself, then the formula isn't worthwhile. 4251 for (const SCEV *NewReg : NewF.BaseRegs) 4252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4253 if ((C->getAPInt() + NewF.BaseOffset) 4254 .abs() 4255 .slt(std::abs(NewF.BaseOffset)) && 4256 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4257 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4258 goto skip_formula; 4259 4260 // Ok, looks good. 4261 NewF.canonicalize(*this->L); 4262 (void)InsertFormula(LU, LUIdx, NewF); 4263 break; 4264 skip_formula:; 4265 } 4266 } 4267 } 4268 } 4269 } 4270 4271 /// Generate formulae for each use. 4272 void 4273 LSRInstance::GenerateAllReuseFormulae() { 4274 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4275 // queries are more precise. 4276 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4277 LSRUse &LU = Uses[LUIdx]; 4278 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4279 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4280 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4281 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4282 } 4283 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4284 LSRUse &LU = Uses[LUIdx]; 4285 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4286 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4287 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4288 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4289 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4290 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4291 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4292 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4293 } 4294 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4295 LSRUse &LU = Uses[LUIdx]; 4296 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4297 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4298 } 4299 4300 GenerateCrossUseConstantOffsets(); 4301 4302 LLVM_DEBUG(dbgs() << "\n" 4303 "After generating reuse formulae:\n"; 4304 print_uses(dbgs())); 4305 } 4306 4307 /// If there are multiple formulae with the same set of registers used 4308 /// by other uses, pick the best one and delete the others. 4309 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4310 DenseSet<const SCEV *> VisitedRegs; 4311 SmallPtrSet<const SCEV *, 16> Regs; 4312 SmallPtrSet<const SCEV *, 16> LoserRegs; 4313 #ifndef NDEBUG 4314 bool ChangedFormulae = false; 4315 #endif 4316 4317 // Collect the best formula for each unique set of shared registers. This 4318 // is reset for each use. 4319 using BestFormulaeTy = 4320 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4321 4322 BestFormulaeTy BestFormulae; 4323 4324 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4325 LSRUse &LU = Uses[LUIdx]; 4326 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4327 dbgs() << '\n'); 4328 4329 bool Any = false; 4330 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4331 FIdx != NumForms; ++FIdx) { 4332 Formula &F = LU.Formulae[FIdx]; 4333 4334 // Some formulas are instant losers. For example, they may depend on 4335 // nonexistent AddRecs from other loops. These need to be filtered 4336 // immediately, otherwise heuristics could choose them over others leading 4337 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4338 // avoids the need to recompute this information across formulae using the 4339 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4340 // the corresponding bad register from the Regs set. 4341 Cost CostF(L, SE, TTI); 4342 Regs.clear(); 4343 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4344 if (CostF.isLoser()) { 4345 // During initial formula generation, undesirable formulae are generated 4346 // by uses within other loops that have some non-trivial address mode or 4347 // use the postinc form of the IV. LSR needs to provide these formulae 4348 // as the basis of rediscovering the desired formula that uses an AddRec 4349 // corresponding to the existing phi. Once all formulae have been 4350 // generated, these initial losers may be pruned. 4351 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4352 dbgs() << "\n"); 4353 } 4354 else { 4355 SmallVector<const SCEV *, 4> Key; 4356 for (const SCEV *Reg : F.BaseRegs) { 4357 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4358 Key.push_back(Reg); 4359 } 4360 if (F.ScaledReg && 4361 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4362 Key.push_back(F.ScaledReg); 4363 // Unstable sort by host order ok, because this is only used for 4364 // uniquifying. 4365 llvm::sort(Key); 4366 4367 std::pair<BestFormulaeTy::const_iterator, bool> P = 4368 BestFormulae.insert(std::make_pair(Key, FIdx)); 4369 if (P.second) 4370 continue; 4371 4372 Formula &Best = LU.Formulae[P.first->second]; 4373 4374 Cost CostBest(L, SE, TTI); 4375 Regs.clear(); 4376 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4377 if (CostF.isLess(CostBest)) 4378 std::swap(F, Best); 4379 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4380 dbgs() << "\n" 4381 " in favor of formula "; 4382 Best.print(dbgs()); dbgs() << '\n'); 4383 } 4384 #ifndef NDEBUG 4385 ChangedFormulae = true; 4386 #endif 4387 LU.DeleteFormula(F); 4388 --FIdx; 4389 --NumForms; 4390 Any = true; 4391 } 4392 4393 // Now that we've filtered out some formulae, recompute the Regs set. 4394 if (Any) 4395 LU.RecomputeRegs(LUIdx, RegUses); 4396 4397 // Reset this to prepare for the next use. 4398 BestFormulae.clear(); 4399 } 4400 4401 LLVM_DEBUG(if (ChangedFormulae) { 4402 dbgs() << "\n" 4403 "After filtering out undesirable candidates:\n"; 4404 print_uses(dbgs()); 4405 }); 4406 } 4407 4408 /// Estimate the worst-case number of solutions the solver might have to 4409 /// consider. It almost never considers this many solutions because it prune the 4410 /// search space, but the pruning isn't always sufficient. 4411 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4412 size_t Power = 1; 4413 for (const LSRUse &LU : Uses) { 4414 size_t FSize = LU.Formulae.size(); 4415 if (FSize >= ComplexityLimit) { 4416 Power = ComplexityLimit; 4417 break; 4418 } 4419 Power *= FSize; 4420 if (Power >= ComplexityLimit) 4421 break; 4422 } 4423 return Power; 4424 } 4425 4426 /// When one formula uses a superset of the registers of another formula, it 4427 /// won't help reduce register pressure (though it may not necessarily hurt 4428 /// register pressure); remove it to simplify the system. 4429 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4430 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4431 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4432 4433 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4434 "which use a superset of registers used by other " 4435 "formulae.\n"); 4436 4437 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4438 LSRUse &LU = Uses[LUIdx]; 4439 bool Any = false; 4440 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4441 Formula &F = LU.Formulae[i]; 4442 // Look for a formula with a constant or GV in a register. If the use 4443 // also has a formula with that same value in an immediate field, 4444 // delete the one that uses a register. 4445 for (SmallVectorImpl<const SCEV *>::const_iterator 4446 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4447 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4448 Formula NewF = F; 4449 //FIXME: Formulas should store bitwidth to do wrapping properly. 4450 // See PR41034. 4451 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4452 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4453 (I - F.BaseRegs.begin())); 4454 if (LU.HasFormulaWithSameRegs(NewF)) { 4455 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4456 dbgs() << '\n'); 4457 LU.DeleteFormula(F); 4458 --i; 4459 --e; 4460 Any = true; 4461 break; 4462 } 4463 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4464 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4465 if (!F.BaseGV) { 4466 Formula NewF = F; 4467 NewF.BaseGV = GV; 4468 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4469 (I - F.BaseRegs.begin())); 4470 if (LU.HasFormulaWithSameRegs(NewF)) { 4471 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4472 dbgs() << '\n'); 4473 LU.DeleteFormula(F); 4474 --i; 4475 --e; 4476 Any = true; 4477 break; 4478 } 4479 } 4480 } 4481 } 4482 } 4483 if (Any) 4484 LU.RecomputeRegs(LUIdx, RegUses); 4485 } 4486 4487 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4488 } 4489 } 4490 4491 /// When there are many registers for expressions like A, A+1, A+2, etc., 4492 /// allocate a single register for them. 4493 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4494 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4495 return; 4496 4497 LLVM_DEBUG( 4498 dbgs() << "The search space is too complex.\n" 4499 "Narrowing the search space by assuming that uses separated " 4500 "by a constant offset will use the same registers.\n"); 4501 4502 // This is especially useful for unrolled loops. 4503 4504 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4505 LSRUse &LU = Uses[LUIdx]; 4506 for (const Formula &F : LU.Formulae) { 4507 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4508 continue; 4509 4510 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4511 if (!LUThatHas) 4512 continue; 4513 4514 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4515 LU.Kind, LU.AccessTy)) 4516 continue; 4517 4518 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4519 4520 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4521 4522 // Transfer the fixups of LU to LUThatHas. 4523 for (LSRFixup &Fixup : LU.Fixups) { 4524 Fixup.Offset += F.BaseOffset; 4525 LUThatHas->pushFixup(Fixup); 4526 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4527 } 4528 4529 // Delete formulae from the new use which are no longer legal. 4530 bool Any = false; 4531 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4532 Formula &F = LUThatHas->Formulae[i]; 4533 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4534 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4535 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4536 LUThatHas->DeleteFormula(F); 4537 --i; 4538 --e; 4539 Any = true; 4540 } 4541 } 4542 4543 if (Any) 4544 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4545 4546 // Delete the old use. 4547 DeleteUse(LU, LUIdx); 4548 --LUIdx; 4549 --NumUses; 4550 break; 4551 } 4552 } 4553 4554 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4555 } 4556 4557 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4558 /// we've done more filtering, as it may be able to find more formulae to 4559 /// eliminate. 4560 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4561 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4562 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4563 4564 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4565 "undesirable dedicated registers.\n"); 4566 4567 FilterOutUndesirableDedicatedRegisters(); 4568 4569 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4570 } 4571 } 4572 4573 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4574 /// Pick the best one and delete the others. 4575 /// This narrowing heuristic is to keep as many formulae with different 4576 /// Scale and ScaledReg pair as possible while narrowing the search space. 4577 /// The benefit is that it is more likely to find out a better solution 4578 /// from a formulae set with more Scale and ScaledReg variations than 4579 /// a formulae set with the same Scale and ScaledReg. The picking winner 4580 /// reg heuristic will often keep the formulae with the same Scale and 4581 /// ScaledReg and filter others, and we want to avoid that if possible. 4582 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4583 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4584 return; 4585 4586 LLVM_DEBUG( 4587 dbgs() << "The search space is too complex.\n" 4588 "Narrowing the search space by choosing the best Formula " 4589 "from the Formulae with the same Scale and ScaledReg.\n"); 4590 4591 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4592 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4593 4594 BestFormulaeTy BestFormulae; 4595 #ifndef NDEBUG 4596 bool ChangedFormulae = false; 4597 #endif 4598 DenseSet<const SCEV *> VisitedRegs; 4599 SmallPtrSet<const SCEV *, 16> Regs; 4600 4601 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4602 LSRUse &LU = Uses[LUIdx]; 4603 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4604 dbgs() << '\n'); 4605 4606 // Return true if Formula FA is better than Formula FB. 4607 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4608 // First we will try to choose the Formula with fewer new registers. 4609 // For a register used by current Formula, the more the register is 4610 // shared among LSRUses, the less we increase the register number 4611 // counter of the formula. 4612 size_t FARegNum = 0; 4613 for (const SCEV *Reg : FA.BaseRegs) { 4614 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4615 FARegNum += (NumUses - UsedByIndices.count() + 1); 4616 } 4617 size_t FBRegNum = 0; 4618 for (const SCEV *Reg : FB.BaseRegs) { 4619 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4620 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4621 } 4622 if (FARegNum != FBRegNum) 4623 return FARegNum < FBRegNum; 4624 4625 // If the new register numbers are the same, choose the Formula with 4626 // less Cost. 4627 Cost CostFA(L, SE, TTI); 4628 Cost CostFB(L, SE, TTI); 4629 Regs.clear(); 4630 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4631 Regs.clear(); 4632 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4633 return CostFA.isLess(CostFB); 4634 }; 4635 4636 bool Any = false; 4637 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4638 ++FIdx) { 4639 Formula &F = LU.Formulae[FIdx]; 4640 if (!F.ScaledReg) 4641 continue; 4642 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4643 if (P.second) 4644 continue; 4645 4646 Formula &Best = LU.Formulae[P.first->second]; 4647 if (IsBetterThan(F, Best)) 4648 std::swap(F, Best); 4649 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4650 dbgs() << "\n" 4651 " in favor of formula "; 4652 Best.print(dbgs()); dbgs() << '\n'); 4653 #ifndef NDEBUG 4654 ChangedFormulae = true; 4655 #endif 4656 LU.DeleteFormula(F); 4657 --FIdx; 4658 --NumForms; 4659 Any = true; 4660 } 4661 if (Any) 4662 LU.RecomputeRegs(LUIdx, RegUses); 4663 4664 // Reset this to prepare for the next use. 4665 BestFormulae.clear(); 4666 } 4667 4668 LLVM_DEBUG(if (ChangedFormulae) { 4669 dbgs() << "\n" 4670 "After filtering out undesirable candidates:\n"; 4671 print_uses(dbgs()); 4672 }); 4673 } 4674 4675 /// The function delete formulas with high registers number expectation. 4676 /// Assuming we don't know the value of each formula (already delete 4677 /// all inefficient), generate probability of not selecting for each 4678 /// register. 4679 /// For example, 4680 /// Use1: 4681 /// reg(a) + reg({0,+,1}) 4682 /// reg(a) + reg({-1,+,1}) + 1 4683 /// reg({a,+,1}) 4684 /// Use2: 4685 /// reg(b) + reg({0,+,1}) 4686 /// reg(b) + reg({-1,+,1}) + 1 4687 /// reg({b,+,1}) 4688 /// Use3: 4689 /// reg(c) + reg(b) + reg({0,+,1}) 4690 /// reg(c) + reg({b,+,1}) 4691 /// 4692 /// Probability of not selecting 4693 /// Use1 Use2 Use3 4694 /// reg(a) (1/3) * 1 * 1 4695 /// reg(b) 1 * (1/3) * (1/2) 4696 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4697 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4698 /// reg({a,+,1}) (2/3) * 1 * 1 4699 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4700 /// reg(c) 1 * 1 * 0 4701 /// 4702 /// Now count registers number mathematical expectation for each formula: 4703 /// Note that for each use we exclude probability if not selecting for the use. 4704 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4705 /// probabilty 1/3 of not selecting for Use1). 4706 /// Use1: 4707 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4708 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4709 /// reg({a,+,1}) 1 4710 /// Use2: 4711 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4712 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4713 /// reg({b,+,1}) 2/3 4714 /// Use3: 4715 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4716 /// reg(c) + reg({b,+,1}) 1 + 2/3 4717 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4718 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4719 return; 4720 // Ok, we have too many of formulae on our hands to conveniently handle. 4721 // Use a rough heuristic to thin out the list. 4722 4723 // Set of Regs wich will be 100% used in final solution. 4724 // Used in each formula of a solution (in example above this is reg(c)). 4725 // We can skip them in calculations. 4726 SmallPtrSet<const SCEV *, 4> UniqRegs; 4727 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4728 4729 // Map each register to probability of not selecting 4730 DenseMap <const SCEV *, float> RegNumMap; 4731 for (const SCEV *Reg : RegUses) { 4732 if (UniqRegs.count(Reg)) 4733 continue; 4734 float PNotSel = 1; 4735 for (const LSRUse &LU : Uses) { 4736 if (!LU.Regs.count(Reg)) 4737 continue; 4738 float P = LU.getNotSelectedProbability(Reg); 4739 if (P != 0.0) 4740 PNotSel *= P; 4741 else 4742 UniqRegs.insert(Reg); 4743 } 4744 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4745 } 4746 4747 LLVM_DEBUG( 4748 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4749 4750 // Delete formulas where registers number expectation is high. 4751 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4752 LSRUse &LU = Uses[LUIdx]; 4753 // If nothing to delete - continue. 4754 if (LU.Formulae.size() < 2) 4755 continue; 4756 // This is temporary solution to test performance. Float should be 4757 // replaced with round independent type (based on integers) to avoid 4758 // different results for different target builds. 4759 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4760 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4761 size_t MinIdx = 0; 4762 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4763 Formula &F = LU.Formulae[i]; 4764 float FRegNum = 0; 4765 float FARegNum = 0; 4766 for (const SCEV *BaseReg : F.BaseRegs) { 4767 if (UniqRegs.count(BaseReg)) 4768 continue; 4769 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4770 if (isa<SCEVAddRecExpr>(BaseReg)) 4771 FARegNum += 4772 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4773 } 4774 if (const SCEV *ScaledReg = F.ScaledReg) { 4775 if (!UniqRegs.count(ScaledReg)) { 4776 FRegNum += 4777 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4778 if (isa<SCEVAddRecExpr>(ScaledReg)) 4779 FARegNum += 4780 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4781 } 4782 } 4783 if (FMinRegNum > FRegNum || 4784 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4785 FMinRegNum = FRegNum; 4786 FMinARegNum = FARegNum; 4787 MinIdx = i; 4788 } 4789 } 4790 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4791 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4792 if (MinIdx != 0) 4793 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4794 while (LU.Formulae.size() != 1) { 4795 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4796 dbgs() << '\n'); 4797 LU.Formulae.pop_back(); 4798 } 4799 LU.RecomputeRegs(LUIdx, RegUses); 4800 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4801 Formula &F = LU.Formulae[0]; 4802 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4803 // When we choose the formula, the regs become unique. 4804 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4805 if (F.ScaledReg) 4806 UniqRegs.insert(F.ScaledReg); 4807 } 4808 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4809 } 4810 4811 /// Pick a register which seems likely to be profitable, and then in any use 4812 /// which has any reference to that register, delete all formulae which do not 4813 /// reference that register. 4814 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4815 // With all other options exhausted, loop until the system is simple 4816 // enough to handle. 4817 SmallPtrSet<const SCEV *, 4> Taken; 4818 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4819 // Ok, we have too many of formulae on our hands to conveniently handle. 4820 // Use a rough heuristic to thin out the list. 4821 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4822 4823 // Pick the register which is used by the most LSRUses, which is likely 4824 // to be a good reuse register candidate. 4825 const SCEV *Best = nullptr; 4826 unsigned BestNum = 0; 4827 for (const SCEV *Reg : RegUses) { 4828 if (Taken.count(Reg)) 4829 continue; 4830 if (!Best) { 4831 Best = Reg; 4832 BestNum = RegUses.getUsedByIndices(Reg).count(); 4833 } else { 4834 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4835 if (Count > BestNum) { 4836 Best = Reg; 4837 BestNum = Count; 4838 } 4839 } 4840 } 4841 assert(Best && "Failed to find best LSRUse candidate"); 4842 4843 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4844 << " will yield profitable reuse.\n"); 4845 Taken.insert(Best); 4846 4847 // In any use with formulae which references this register, delete formulae 4848 // which don't reference it. 4849 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4850 LSRUse &LU = Uses[LUIdx]; 4851 if (!LU.Regs.count(Best)) continue; 4852 4853 bool Any = false; 4854 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4855 Formula &F = LU.Formulae[i]; 4856 if (!F.referencesReg(Best)) { 4857 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4858 LU.DeleteFormula(F); 4859 --e; 4860 --i; 4861 Any = true; 4862 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4863 continue; 4864 } 4865 } 4866 4867 if (Any) 4868 LU.RecomputeRegs(LUIdx, RegUses); 4869 } 4870 4871 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4872 } 4873 } 4874 4875 /// If there are an extraordinary number of formulae to choose from, use some 4876 /// rough heuristics to prune down the number of formulae. This keeps the main 4877 /// solver from taking an extraordinary amount of time in some worst-case 4878 /// scenarios. 4879 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4880 NarrowSearchSpaceByDetectingSupersets(); 4881 NarrowSearchSpaceByCollapsingUnrolledCode(); 4882 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4883 if (FilterSameScaledReg) 4884 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4885 if (LSRExpNarrow) 4886 NarrowSearchSpaceByDeletingCostlyFormulas(); 4887 else 4888 NarrowSearchSpaceByPickingWinnerRegs(); 4889 } 4890 4891 /// This is the recursive solver. 4892 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4893 Cost &SolutionCost, 4894 SmallVectorImpl<const Formula *> &Workspace, 4895 const Cost &CurCost, 4896 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4897 DenseSet<const SCEV *> &VisitedRegs) const { 4898 // Some ideas: 4899 // - prune more: 4900 // - use more aggressive filtering 4901 // - sort the formula so that the most profitable solutions are found first 4902 // - sort the uses too 4903 // - search faster: 4904 // - don't compute a cost, and then compare. compare while computing a cost 4905 // and bail early. 4906 // - track register sets with SmallBitVector 4907 4908 const LSRUse &LU = Uses[Workspace.size()]; 4909 4910 // If this use references any register that's already a part of the 4911 // in-progress solution, consider it a requirement that a formula must 4912 // reference that register in order to be considered. This prunes out 4913 // unprofitable searching. 4914 SmallSetVector<const SCEV *, 4> ReqRegs; 4915 for (const SCEV *S : CurRegs) 4916 if (LU.Regs.count(S)) 4917 ReqRegs.insert(S); 4918 4919 SmallPtrSet<const SCEV *, 16> NewRegs; 4920 Cost NewCost(L, SE, TTI); 4921 for (const Formula &F : LU.Formulae) { 4922 // Ignore formulae which may not be ideal in terms of register reuse of 4923 // ReqRegs. The formula should use all required registers before 4924 // introducing new ones. 4925 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4926 for (const SCEV *Reg : ReqRegs) { 4927 if ((F.ScaledReg && F.ScaledReg == Reg) || 4928 is_contained(F.BaseRegs, Reg)) { 4929 --NumReqRegsToFind; 4930 if (NumReqRegsToFind == 0) 4931 break; 4932 } 4933 } 4934 if (NumReqRegsToFind != 0) { 4935 // If none of the formulae satisfied the required registers, then we could 4936 // clear ReqRegs and try again. Currently, we simply give up in this case. 4937 continue; 4938 } 4939 4940 // Evaluate the cost of the current formula. If it's already worse than 4941 // the current best, prune the search at that point. 4942 NewCost = CurCost; 4943 NewRegs = CurRegs; 4944 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4945 if (NewCost.isLess(SolutionCost)) { 4946 Workspace.push_back(&F); 4947 if (Workspace.size() != Uses.size()) { 4948 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4949 NewRegs, VisitedRegs); 4950 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4951 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4952 } else { 4953 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4954 dbgs() << ".\nRegs:\n"; 4955 for (const SCEV *S : NewRegs) dbgs() 4956 << "- " << *S << "\n"; 4957 dbgs() << '\n'); 4958 4959 SolutionCost = NewCost; 4960 Solution = Workspace; 4961 } 4962 Workspace.pop_back(); 4963 } 4964 } 4965 } 4966 4967 /// Choose one formula from each use. Return the results in the given Solution 4968 /// vector. 4969 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4970 SmallVector<const Formula *, 8> Workspace; 4971 Cost SolutionCost(L, SE, TTI); 4972 SolutionCost.Lose(); 4973 Cost CurCost(L, SE, TTI); 4974 SmallPtrSet<const SCEV *, 16> CurRegs; 4975 DenseSet<const SCEV *> VisitedRegs; 4976 Workspace.reserve(Uses.size()); 4977 4978 // SolveRecurse does all the work. 4979 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4980 CurRegs, VisitedRegs); 4981 if (Solution.empty()) { 4982 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4983 return; 4984 } 4985 4986 // Ok, we've now made all our decisions. 4987 LLVM_DEBUG(dbgs() << "\n" 4988 "The chosen solution requires "; 4989 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4990 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4991 dbgs() << " "; 4992 Uses[i].print(dbgs()); 4993 dbgs() << "\n" 4994 " "; 4995 Solution[i]->print(dbgs()); 4996 dbgs() << '\n'; 4997 }); 4998 4999 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5000 } 5001 5002 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5003 /// we can go while still being dominated by the input positions. This helps 5004 /// canonicalize the insert position, which encourages sharing. 5005 BasicBlock::iterator 5006 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5007 const SmallVectorImpl<Instruction *> &Inputs) 5008 const { 5009 Instruction *Tentative = &*IP; 5010 while (true) { 5011 bool AllDominate = true; 5012 Instruction *BetterPos = nullptr; 5013 // Don't bother attempting to insert before a catchswitch, their basic block 5014 // cannot have other non-PHI instructions. 5015 if (isa<CatchSwitchInst>(Tentative)) 5016 return IP; 5017 5018 for (Instruction *Inst : Inputs) { 5019 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5020 AllDominate = false; 5021 break; 5022 } 5023 // Attempt to find an insert position in the middle of the block, 5024 // instead of at the end, so that it can be used for other expansions. 5025 if (Tentative->getParent() == Inst->getParent() && 5026 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5027 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5028 } 5029 if (!AllDominate) 5030 break; 5031 if (BetterPos) 5032 IP = BetterPos->getIterator(); 5033 else 5034 IP = Tentative->getIterator(); 5035 5036 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5037 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5038 5039 BasicBlock *IDom; 5040 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5041 if (!Rung) return IP; 5042 Rung = Rung->getIDom(); 5043 if (!Rung) return IP; 5044 IDom = Rung->getBlock(); 5045 5046 // Don't climb into a loop though. 5047 const Loop *IDomLoop = LI.getLoopFor(IDom); 5048 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5049 if (IDomDepth <= IPLoopDepth && 5050 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5051 break; 5052 } 5053 5054 Tentative = IDom->getTerminator(); 5055 } 5056 5057 return IP; 5058 } 5059 5060 /// Determine an input position which will be dominated by the operands and 5061 /// which will dominate the result. 5062 BasicBlock::iterator 5063 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5064 const LSRFixup &LF, 5065 const LSRUse &LU, 5066 SCEVExpander &Rewriter) const { 5067 // Collect some instructions which must be dominated by the 5068 // expanding replacement. These must be dominated by any operands that 5069 // will be required in the expansion. 5070 SmallVector<Instruction *, 4> Inputs; 5071 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5072 Inputs.push_back(I); 5073 if (LU.Kind == LSRUse::ICmpZero) 5074 if (Instruction *I = 5075 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5076 Inputs.push_back(I); 5077 if (LF.PostIncLoops.count(L)) { 5078 if (LF.isUseFullyOutsideLoop(L)) 5079 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5080 else 5081 Inputs.push_back(IVIncInsertPos); 5082 } 5083 // The expansion must also be dominated by the increment positions of any 5084 // loops it for which it is using post-inc mode. 5085 for (const Loop *PIL : LF.PostIncLoops) { 5086 if (PIL == L) continue; 5087 5088 // Be dominated by the loop exit. 5089 SmallVector<BasicBlock *, 4> ExitingBlocks; 5090 PIL->getExitingBlocks(ExitingBlocks); 5091 if (!ExitingBlocks.empty()) { 5092 BasicBlock *BB = ExitingBlocks[0]; 5093 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5094 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5095 Inputs.push_back(BB->getTerminator()); 5096 } 5097 } 5098 5099 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5100 && !isa<DbgInfoIntrinsic>(LowestIP) && 5101 "Insertion point must be a normal instruction"); 5102 5103 // Then, climb up the immediate dominator tree as far as we can go while 5104 // still being dominated by the input positions. 5105 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5106 5107 // Don't insert instructions before PHI nodes. 5108 while (isa<PHINode>(IP)) ++IP; 5109 5110 // Ignore landingpad instructions. 5111 while (IP->isEHPad()) ++IP; 5112 5113 // Ignore debug intrinsics. 5114 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5115 5116 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5117 // IP consistent across expansions and allows the previously inserted 5118 // instructions to be reused by subsequent expansion. 5119 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5120 ++IP; 5121 5122 return IP; 5123 } 5124 5125 /// Emit instructions for the leading candidate expression for this LSRUse (this 5126 /// is called "expanding"). 5127 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5128 const Formula &F, BasicBlock::iterator IP, 5129 SCEVExpander &Rewriter, 5130 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5131 if (LU.RigidFormula) 5132 return LF.OperandValToReplace; 5133 5134 // Determine an input position which will be dominated by the operands and 5135 // which will dominate the result. 5136 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5137 Rewriter.setInsertPoint(&*IP); 5138 5139 // Inform the Rewriter if we have a post-increment use, so that it can 5140 // perform an advantageous expansion. 5141 Rewriter.setPostInc(LF.PostIncLoops); 5142 5143 // This is the type that the user actually needs. 5144 Type *OpTy = LF.OperandValToReplace->getType(); 5145 // This will be the type that we'll initially expand to. 5146 Type *Ty = F.getType(); 5147 if (!Ty) 5148 // No type known; just expand directly to the ultimate type. 5149 Ty = OpTy; 5150 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5151 // Expand directly to the ultimate type if it's the right size. 5152 Ty = OpTy; 5153 // This is the type to do integer arithmetic in. 5154 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5155 5156 // Build up a list of operands to add together to form the full base. 5157 SmallVector<const SCEV *, 8> Ops; 5158 5159 // Expand the BaseRegs portion. 5160 for (const SCEV *Reg : F.BaseRegs) { 5161 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5162 5163 // If we're expanding for a post-inc user, make the post-inc adjustment. 5164 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5165 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5166 } 5167 5168 // Expand the ScaledReg portion. 5169 Value *ICmpScaledV = nullptr; 5170 if (F.Scale != 0) { 5171 const SCEV *ScaledS = F.ScaledReg; 5172 5173 // If we're expanding for a post-inc user, make the post-inc adjustment. 5174 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5175 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5176 5177 if (LU.Kind == LSRUse::ICmpZero) { 5178 // Expand ScaleReg as if it was part of the base regs. 5179 if (F.Scale == 1) 5180 Ops.push_back( 5181 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5182 else { 5183 // An interesting way of "folding" with an icmp is to use a negated 5184 // scale, which we'll implement by inserting it into the other operand 5185 // of the icmp. 5186 assert(F.Scale == -1 && 5187 "The only scale supported by ICmpZero uses is -1!"); 5188 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5189 } 5190 } else { 5191 // Otherwise just expand the scaled register and an explicit scale, 5192 // which is expected to be matched as part of the address. 5193 5194 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5195 // Unless the addressing mode will not be folded. 5196 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5197 isAMCompletelyFolded(TTI, LU, F)) { 5198 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5199 Ops.clear(); 5200 Ops.push_back(SE.getUnknown(FullV)); 5201 } 5202 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5203 if (F.Scale != 1) 5204 ScaledS = 5205 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5206 Ops.push_back(ScaledS); 5207 } 5208 } 5209 5210 // Expand the GV portion. 5211 if (F.BaseGV) { 5212 // Flush the operand list to suppress SCEVExpander hoisting. 5213 if (!Ops.empty()) { 5214 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5215 Ops.clear(); 5216 Ops.push_back(SE.getUnknown(FullV)); 5217 } 5218 Ops.push_back(SE.getUnknown(F.BaseGV)); 5219 } 5220 5221 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5222 // unfolded offsets. LSR assumes they both live next to their uses. 5223 if (!Ops.empty()) { 5224 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5225 Ops.clear(); 5226 Ops.push_back(SE.getUnknown(FullV)); 5227 } 5228 5229 // Expand the immediate portion. 5230 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5231 if (Offset != 0) { 5232 if (LU.Kind == LSRUse::ICmpZero) { 5233 // The other interesting way of "folding" with an ICmpZero is to use a 5234 // negated immediate. 5235 if (!ICmpScaledV) 5236 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5237 else { 5238 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5239 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5240 } 5241 } else { 5242 // Just add the immediate values. These again are expected to be matched 5243 // as part of the address. 5244 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5245 } 5246 } 5247 5248 // Expand the unfolded offset portion. 5249 int64_t UnfoldedOffset = F.UnfoldedOffset; 5250 if (UnfoldedOffset != 0) { 5251 // Just add the immediate values. 5252 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5253 UnfoldedOffset))); 5254 } 5255 5256 // Emit instructions summing all the operands. 5257 const SCEV *FullS = Ops.empty() ? 5258 SE.getConstant(IntTy, 0) : 5259 SE.getAddExpr(Ops); 5260 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5261 5262 // We're done expanding now, so reset the rewriter. 5263 Rewriter.clearPostInc(); 5264 5265 // An ICmpZero Formula represents an ICmp which we're handling as a 5266 // comparison against zero. Now that we've expanded an expression for that 5267 // form, update the ICmp's other operand. 5268 if (LU.Kind == LSRUse::ICmpZero) { 5269 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5270 DeadInsts.emplace_back(CI->getOperand(1)); 5271 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5272 "a scale at the same time!"); 5273 if (F.Scale == -1) { 5274 if (ICmpScaledV->getType() != OpTy) { 5275 Instruction *Cast = 5276 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5277 OpTy, false), 5278 ICmpScaledV, OpTy, "tmp", CI); 5279 ICmpScaledV = Cast; 5280 } 5281 CI->setOperand(1, ICmpScaledV); 5282 } else { 5283 // A scale of 1 means that the scale has been expanded as part of the 5284 // base regs. 5285 assert((F.Scale == 0 || F.Scale == 1) && 5286 "ICmp does not support folding a global value and " 5287 "a scale at the same time!"); 5288 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5289 -(uint64_t)Offset); 5290 if (C->getType() != OpTy) 5291 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5292 OpTy, false), 5293 C, OpTy); 5294 5295 CI->setOperand(1, C); 5296 } 5297 } 5298 5299 return FullV; 5300 } 5301 5302 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5303 /// effectively happens in their predecessor blocks, so the expression may need 5304 /// to be expanded in multiple places. 5305 void LSRInstance::RewriteForPHI( 5306 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5307 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5308 DenseMap<BasicBlock *, Value *> Inserted; 5309 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5310 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5311 bool needUpdateFixups = false; 5312 BasicBlock *BB = PN->getIncomingBlock(i); 5313 5314 // If this is a critical edge, split the edge so that we do not insert 5315 // the code on all predecessor/successor paths. We do this unless this 5316 // is the canonical backedge for this loop, which complicates post-inc 5317 // users. 5318 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5319 !isa<IndirectBrInst>(BB->getTerminator()) && 5320 !isa<CatchSwitchInst>(BB->getTerminator())) { 5321 BasicBlock *Parent = PN->getParent(); 5322 Loop *PNLoop = LI.getLoopFor(Parent); 5323 if (!PNLoop || Parent != PNLoop->getHeader()) { 5324 // Split the critical edge. 5325 BasicBlock *NewBB = nullptr; 5326 if (!Parent->isLandingPad()) { 5327 NewBB = SplitCriticalEdge(BB, Parent, 5328 CriticalEdgeSplittingOptions(&DT, &LI) 5329 .setMergeIdenticalEdges() 5330 .setKeepOneInputPHIs()); 5331 } else { 5332 SmallVector<BasicBlock*, 2> NewBBs; 5333 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5334 NewBB = NewBBs[0]; 5335 } 5336 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5337 // phi predecessors are identical. The simple thing to do is skip 5338 // splitting in this case rather than complicate the API. 5339 if (NewBB) { 5340 // If PN is outside of the loop and BB is in the loop, we want to 5341 // move the block to be immediately before the PHI block, not 5342 // immediately after BB. 5343 if (L->contains(BB) && !L->contains(PN)) 5344 NewBB->moveBefore(PN->getParent()); 5345 5346 // Splitting the edge can reduce the number of PHI entries we have. 5347 e = PN->getNumIncomingValues(); 5348 BB = NewBB; 5349 i = PN->getBasicBlockIndex(BB); 5350 5351 needUpdateFixups = true; 5352 } 5353 } 5354 } 5355 5356 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5357 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5358 if (!Pair.second) 5359 PN->setIncomingValue(i, Pair.first->second); 5360 else { 5361 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5362 Rewriter, DeadInsts); 5363 5364 // If this is reuse-by-noop-cast, insert the noop cast. 5365 Type *OpTy = LF.OperandValToReplace->getType(); 5366 if (FullV->getType() != OpTy) 5367 FullV = 5368 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5369 OpTy, false), 5370 FullV, LF.OperandValToReplace->getType(), 5371 "tmp", BB->getTerminator()); 5372 5373 PN->setIncomingValue(i, FullV); 5374 Pair.first->second = FullV; 5375 } 5376 5377 // If LSR splits critical edge and phi node has other pending 5378 // fixup operands, we need to update those pending fixups. Otherwise 5379 // formulae will not be implemented completely and some instructions 5380 // will not be eliminated. 5381 if (needUpdateFixups) { 5382 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5383 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5384 // If fixup is supposed to rewrite some operand in the phi 5385 // that was just updated, it may be already moved to 5386 // another phi node. Such fixup requires update. 5387 if (Fixup.UserInst == PN) { 5388 // Check if the operand we try to replace still exists in the 5389 // original phi. 5390 bool foundInOriginalPHI = false; 5391 for (const auto &val : PN->incoming_values()) 5392 if (val == Fixup.OperandValToReplace) { 5393 foundInOriginalPHI = true; 5394 break; 5395 } 5396 5397 // If fixup operand found in original PHI - nothing to do. 5398 if (foundInOriginalPHI) 5399 continue; 5400 5401 // Otherwise it might be moved to another PHI and requires update. 5402 // If fixup operand not found in any of the incoming blocks that 5403 // means we have already rewritten it - nothing to do. 5404 for (const auto &Block : PN->blocks()) 5405 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5406 ++I) { 5407 PHINode *NewPN = cast<PHINode>(I); 5408 for (const auto &val : NewPN->incoming_values()) 5409 if (val == Fixup.OperandValToReplace) 5410 Fixup.UserInst = NewPN; 5411 } 5412 } 5413 } 5414 } 5415 } 5416 5417 /// Emit instructions for the leading candidate expression for this LSRUse (this 5418 /// is called "expanding"), and update the UserInst to reference the newly 5419 /// expanded value. 5420 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5421 const Formula &F, SCEVExpander &Rewriter, 5422 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5423 // First, find an insertion point that dominates UserInst. For PHI nodes, 5424 // find the nearest block which dominates all the relevant uses. 5425 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5426 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5427 } else { 5428 Value *FullV = 5429 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5430 5431 // If this is reuse-by-noop-cast, insert the noop cast. 5432 Type *OpTy = LF.OperandValToReplace->getType(); 5433 if (FullV->getType() != OpTy) { 5434 Instruction *Cast = 5435 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5436 FullV, OpTy, "tmp", LF.UserInst); 5437 FullV = Cast; 5438 } 5439 5440 // Update the user. ICmpZero is handled specially here (for now) because 5441 // Expand may have updated one of the operands of the icmp already, and 5442 // its new value may happen to be equal to LF.OperandValToReplace, in 5443 // which case doing replaceUsesOfWith leads to replacing both operands 5444 // with the same value. TODO: Reorganize this. 5445 if (LU.Kind == LSRUse::ICmpZero) 5446 LF.UserInst->setOperand(0, FullV); 5447 else 5448 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5449 } 5450 5451 DeadInsts.emplace_back(LF.OperandValToReplace); 5452 } 5453 5454 /// Rewrite all the fixup locations with new values, following the chosen 5455 /// solution. 5456 void LSRInstance::ImplementSolution( 5457 const SmallVectorImpl<const Formula *> &Solution) { 5458 // Keep track of instructions we may have made dead, so that 5459 // we can remove them after we are done working. 5460 SmallVector<WeakTrackingVH, 16> DeadInsts; 5461 5462 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5463 "lsr"); 5464 #ifndef NDEBUG 5465 Rewriter.setDebugType(DEBUG_TYPE); 5466 #endif 5467 Rewriter.disableCanonicalMode(); 5468 Rewriter.enableLSRMode(); 5469 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5470 5471 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5472 for (const IVChain &Chain : IVChainVec) { 5473 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5474 Rewriter.setChainedPhi(PN); 5475 } 5476 5477 // Expand the new value definitions and update the users. 5478 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5479 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5480 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5481 Changed = true; 5482 } 5483 5484 for (const IVChain &Chain : IVChainVec) { 5485 GenerateIVChain(Chain, Rewriter, DeadInsts); 5486 Changed = true; 5487 } 5488 // Clean up after ourselves. This must be done before deleting any 5489 // instructions. 5490 Rewriter.clear(); 5491 5492 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5493 } 5494 5495 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5496 DominatorTree &DT, LoopInfo &LI, 5497 const TargetTransformInfo &TTI, AssumptionCache &AC, 5498 TargetLibraryInfo &LibInfo) 5499 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L), 5500 FavorBackedgeIndex(EnableBackedgeIndexing && 5501 TTI.shouldFavorBackedgeIndex(L)) { 5502 // If LoopSimplify form is not available, stay out of trouble. 5503 if (!L->isLoopSimplifyForm()) 5504 return; 5505 5506 // If there's no interesting work to be done, bail early. 5507 if (IU.empty()) return; 5508 5509 // If there's too much analysis to be done, bail early. We won't be able to 5510 // model the problem anyway. 5511 unsigned NumUsers = 0; 5512 for (const IVStrideUse &U : IU) { 5513 if (++NumUsers > MaxIVUsers) { 5514 (void)U; 5515 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5516 << "\n"); 5517 return; 5518 } 5519 // Bail out if we have a PHI on an EHPad that gets a value from a 5520 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5521 // no good place to stick any instructions. 5522 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5523 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5524 if (isa<FuncletPadInst>(FirstNonPHI) || 5525 isa<CatchSwitchInst>(FirstNonPHI)) 5526 for (BasicBlock *PredBB : PN->blocks()) 5527 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5528 return; 5529 } 5530 } 5531 5532 #ifndef NDEBUG 5533 // All dominating loops must have preheaders, or SCEVExpander may not be able 5534 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5535 // 5536 // IVUsers analysis should only create users that are dominated by simple loop 5537 // headers. Since this loop should dominate all of its users, its user list 5538 // should be empty if this loop itself is not within a simple loop nest. 5539 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5540 Rung; Rung = Rung->getIDom()) { 5541 BasicBlock *BB = Rung->getBlock(); 5542 const Loop *DomLoop = LI.getLoopFor(BB); 5543 if (DomLoop && DomLoop->getHeader() == BB) { 5544 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5545 } 5546 } 5547 #endif // DEBUG 5548 5549 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5550 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5551 dbgs() << ":\n"); 5552 5553 // First, perform some low-level loop optimizations. 5554 OptimizeShadowIV(); 5555 OptimizeLoopTermCond(); 5556 5557 // If loop preparation eliminates all interesting IV users, bail. 5558 if (IU.empty()) return; 5559 5560 // Skip nested loops until we can model them better with formulae. 5561 if (!L->empty()) { 5562 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5563 return; 5564 } 5565 5566 // Start collecting data and preparing for the solver. 5567 CollectChains(); 5568 CollectInterestingTypesAndFactors(); 5569 CollectFixupsAndInitialFormulae(); 5570 CollectLoopInvariantFixupsAndFormulae(); 5571 5572 if (Uses.empty()) 5573 return; 5574 5575 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5576 print_uses(dbgs())); 5577 5578 // Now use the reuse data to generate a bunch of interesting ways 5579 // to formulate the values needed for the uses. 5580 GenerateAllReuseFormulae(); 5581 5582 FilterOutUndesirableDedicatedRegisters(); 5583 NarrowSearchSpaceUsingHeuristics(); 5584 5585 SmallVector<const Formula *, 8> Solution; 5586 Solve(Solution); 5587 5588 // Release memory that is no longer needed. 5589 Factors.clear(); 5590 Types.clear(); 5591 RegUses.clear(); 5592 5593 if (Solution.empty()) 5594 return; 5595 5596 #ifndef NDEBUG 5597 // Formulae should be legal. 5598 for (const LSRUse &LU : Uses) { 5599 for (const Formula &F : LU.Formulae) 5600 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5601 F) && "Illegal formula generated!"); 5602 }; 5603 #endif 5604 5605 // Now that we've decided what we want, make it so. 5606 ImplementSolution(Solution); 5607 } 5608 5609 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5610 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5611 if (Factors.empty() && Types.empty()) return; 5612 5613 OS << "LSR has identified the following interesting factors and types: "; 5614 bool First = true; 5615 5616 for (int64_t Factor : Factors) { 5617 if (!First) OS << ", "; 5618 First = false; 5619 OS << '*' << Factor; 5620 } 5621 5622 for (Type *Ty : Types) { 5623 if (!First) OS << ", "; 5624 First = false; 5625 OS << '(' << *Ty << ')'; 5626 } 5627 OS << '\n'; 5628 } 5629 5630 void LSRInstance::print_fixups(raw_ostream &OS) const { 5631 OS << "LSR is examining the following fixup sites:\n"; 5632 for (const LSRUse &LU : Uses) 5633 for (const LSRFixup &LF : LU.Fixups) { 5634 dbgs() << " "; 5635 LF.print(OS); 5636 OS << '\n'; 5637 } 5638 } 5639 5640 void LSRInstance::print_uses(raw_ostream &OS) const { 5641 OS << "LSR is examining the following uses:\n"; 5642 for (const LSRUse &LU : Uses) { 5643 dbgs() << " "; 5644 LU.print(OS); 5645 OS << '\n'; 5646 for (const Formula &F : LU.Formulae) { 5647 OS << " "; 5648 F.print(OS); 5649 OS << '\n'; 5650 } 5651 } 5652 } 5653 5654 void LSRInstance::print(raw_ostream &OS) const { 5655 print_factors_and_types(OS); 5656 print_fixups(OS); 5657 print_uses(OS); 5658 } 5659 5660 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5661 print(errs()); errs() << '\n'; 5662 } 5663 #endif 5664 5665 namespace { 5666 5667 class LoopStrengthReduce : public LoopPass { 5668 public: 5669 static char ID; // Pass ID, replacement for typeid 5670 5671 LoopStrengthReduce(); 5672 5673 private: 5674 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5675 void getAnalysisUsage(AnalysisUsage &AU) const override; 5676 }; 5677 5678 } // end anonymous namespace 5679 5680 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5681 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5682 } 5683 5684 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5685 // We split critical edges, so we change the CFG. However, we do update 5686 // many analyses if they are around. 5687 AU.addPreservedID(LoopSimplifyID); 5688 5689 AU.addRequired<LoopInfoWrapperPass>(); 5690 AU.addPreserved<LoopInfoWrapperPass>(); 5691 AU.addRequiredID(LoopSimplifyID); 5692 AU.addRequired<DominatorTreeWrapperPass>(); 5693 AU.addPreserved<DominatorTreeWrapperPass>(); 5694 AU.addRequired<ScalarEvolutionWrapperPass>(); 5695 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5696 AU.addRequired<AssumptionCacheTracker>(); 5697 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5698 // Requiring LoopSimplify a second time here prevents IVUsers from running 5699 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5700 AU.addRequiredID(LoopSimplifyID); 5701 AU.addRequired<IVUsersWrapperPass>(); 5702 AU.addPreserved<IVUsersWrapperPass>(); 5703 AU.addRequired<TargetTransformInfoWrapperPass>(); 5704 } 5705 5706 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5707 DominatorTree &DT, LoopInfo &LI, 5708 const TargetTransformInfo &TTI, 5709 AssumptionCache &AC, 5710 TargetLibraryInfo &LibInfo) { 5711 5712 bool Changed = false; 5713 5714 // Run the main LSR transformation. 5715 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged(); 5716 5717 // Remove any extra phis created by processing inner loops. 5718 Changed |= DeleteDeadPHIs(L->getHeader()); 5719 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5720 SmallVector<WeakTrackingVH, 16> DeadInsts; 5721 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5722 SCEVExpander Rewriter(SE, DL, "lsr"); 5723 #ifndef NDEBUG 5724 Rewriter.setDebugType(DEBUG_TYPE); 5725 #endif 5726 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5727 if (numFolded) { 5728 Changed = true; 5729 DeleteTriviallyDeadInstructions(DeadInsts); 5730 DeleteDeadPHIs(L->getHeader()); 5731 } 5732 } 5733 return Changed; 5734 } 5735 5736 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5737 if (skipLoop(L)) 5738 return false; 5739 5740 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5741 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5742 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5743 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5744 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5745 *L->getHeader()->getParent()); 5746 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5747 *L->getHeader()->getParent()); 5748 auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5749 *L->getHeader()->getParent()); 5750 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo); 5751 } 5752 5753 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5754 LoopStandardAnalysisResults &AR, 5755 LPMUpdater &) { 5756 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5757 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI)) 5758 return PreservedAnalyses::all(); 5759 5760 return getLoopPassPreservedAnalyses(); 5761 } 5762 5763 char LoopStrengthReduce::ID = 0; 5764 5765 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5766 "Loop Strength Reduction", false, false) 5767 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5769 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5770 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5771 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5772 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5773 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5774 "Loop Strength Reduction", false, false) 5775 5776 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5777