xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 static cl::opt<bool> EnableBackedgeIndexing(
159   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160   cl::desc("Enable the generation of cross iteration indexed memops"));
161 
162 static cl::opt<unsigned> ComplexityLimit(
163   "lsr-complexity-limit", cl::Hidden,
164   cl::init(std::numeric_limits<uint16_t>::max()),
165   cl::desc("LSR search space complexity limit"));
166 
167 static cl::opt<unsigned> SetupCostDepthLimit(
168     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
169     cl::desc("The limit on recursion depth for LSRs setup cost"));
170 
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174   "stress-ivchain", cl::Hidden, cl::init(false),
175   cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
179 
180 namespace {
181 
182 struct MemAccessTy {
183   /// Used in situations where the accessed memory type is unknown.
184   static const unsigned UnknownAddressSpace =
185       std::numeric_limits<unsigned>::max();
186 
187   Type *MemTy = nullptr;
188   unsigned AddrSpace = UnknownAddressSpace;
189 
190   MemAccessTy() = default;
191   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
192 
193   bool operator==(MemAccessTy Other) const {
194     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
195   }
196 
197   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
198 
199   static MemAccessTy getUnknown(LLVMContext &Ctx,
200                                 unsigned AS = UnknownAddressSpace) {
201     return MemAccessTy(Type::getVoidTy(Ctx), AS);
202   }
203 
204   Type *getType() { return MemTy; }
205 };
206 
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210   /// This represents the set of LSRUse indices which reference
211   /// a particular register.
212   SmallBitVector UsedByIndices;
213 
214   void print(raw_ostream &OS) const;
215   void dump() const;
216 };
217 
218 } // end anonymous namespace
219 
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222   OS << "[NumUses=" << UsedByIndices.count() << ']';
223 }
224 
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226   print(errs()); errs() << '\n';
227 }
228 #endif
229 
230 namespace {
231 
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
235 
236   RegUsesTy RegUsesMap;
237   SmallVector<const SCEV *, 16> RegSequence;
238 
239 public:
240   void countRegister(const SCEV *Reg, size_t LUIdx);
241   void dropRegister(const SCEV *Reg, size_t LUIdx);
242   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
243 
244   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
245 
246   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
247 
248   void clear();
249 
250   using iterator = SmallVectorImpl<const SCEV *>::iterator;
251   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
252 
253   iterator begin() { return RegSequence.begin(); }
254   iterator end()   { return RegSequence.end(); }
255   const_iterator begin() const { return RegSequence.begin(); }
256   const_iterator end() const   { return RegSequence.end(); }
257 };
258 
259 } // end anonymous namespace
260 
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263   std::pair<RegUsesTy::iterator, bool> Pair =
264     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265   RegSortData &RSD = Pair.first->second;
266   if (Pair.second)
267     RegSequence.push_back(Reg);
268   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269   RSD.UsedByIndices.set(LUIdx);
270 }
271 
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274   RegUsesTy::iterator It = RegUsesMap.find(Reg);
275   assert(It != RegUsesMap.end());
276   RegSortData &RSD = It->second;
277   assert(RSD.UsedByIndices.size() > LUIdx);
278   RSD.UsedByIndices.reset(LUIdx);
279 }
280 
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283   assert(LUIdx <= LastLUIdx);
284 
285   // Update RegUses. The data structure is not optimized for this purpose;
286   // we must iterate through it and update each of the bit vectors.
287   for (auto &Pair : RegUsesMap) {
288     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289     if (LUIdx < UsedByIndices.size())
290       UsedByIndices[LUIdx] =
291         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
293   }
294 }
295 
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299   if (I == RegUsesMap.end())
300     return false;
301   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302   int i = UsedByIndices.find_first();
303   if (i == -1) return false;
304   if ((size_t)i != LUIdx) return true;
305   return UsedByIndices.find_next(i) != -1;
306 }
307 
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310   assert(I != RegUsesMap.end() && "Unknown register!");
311   return I->second.UsedByIndices;
312 }
313 
314 void RegUseTracker::clear() {
315   RegUsesMap.clear();
316   RegSequence.clear();
317 }
318 
319 namespace {
320 
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324   /// Global base address used for complex addressing.
325   GlobalValue *BaseGV = nullptr;
326 
327   /// Base offset for complex addressing.
328   int64_t BaseOffset = 0;
329 
330   /// Whether any complex addressing has a base register.
331   bool HasBaseReg = false;
332 
333   /// The scale of any complex addressing.
334   int64_t Scale = 0;
335 
336   /// The list of "base" registers for this use. When this is non-empty. The
337   /// canonical representation of a formula is
338   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340   /// 3. The reg containing recurrent expr related with currect loop in the
341   /// formula should be put in the ScaledReg.
342   /// #1 enforces that the scaled register is always used when at least two
343   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344   /// #2 enforces that 1 * reg is reg.
345   /// #3 ensures invariant regs with respect to current loop can be combined
346   /// together in LSR codegen.
347   /// This invariant can be temporarily broken while building a formula.
348   /// However, every formula inserted into the LSRInstance must be in canonical
349   /// form.
350   SmallVector<const SCEV *, 4> BaseRegs;
351 
352   /// The 'scaled' register for this use. This should be non-null when Scale is
353   /// not zero.
354   const SCEV *ScaledReg = nullptr;
355 
356   /// An additional constant offset which added near the use. This requires a
357   /// temporary register, but the offset itself can live in an add immediate
358   /// field rather than a register.
359   int64_t UnfoldedOffset = 0;
360 
361   Formula() = default;
362 
363   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
364 
365   bool isCanonical(const Loop &L) const;
366 
367   void canonicalize(const Loop &L);
368 
369   bool unscale();
370 
371   bool hasZeroEnd() const;
372 
373   size_t getNumRegs() const;
374   Type *getType() const;
375 
376   void deleteBaseReg(const SCEV *&S);
377 
378   bool referencesReg(const SCEV *S) const;
379   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380                                   const RegUseTracker &RegUses) const;
381 
382   void print(raw_ostream &OS) const;
383   void dump() const;
384 };
385 
386 } // end anonymous namespace
387 
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390                            SmallVectorImpl<const SCEV *> &Good,
391                            SmallVectorImpl<const SCEV *> &Bad,
392                            ScalarEvolution &SE) {
393   // Collect expressions which properly dominate the loop header.
394   if (SE.properlyDominates(S, L->getHeader())) {
395     Good.push_back(S);
396     return;
397   }
398 
399   // Look at add operands.
400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401     for (const SCEV *S : Add->operands())
402       DoInitialMatch(S, L, Good, Bad, SE);
403     return;
404   }
405 
406   // Look at addrec operands.
407   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408     if (!AR->getStart()->isZero() && AR->isAffine()) {
409       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411                                       AR->getStepRecurrence(SE),
412                                       // FIXME: AR->getNoWrapFlags()
413                                       AR->getLoop(), SCEV::FlagAnyWrap),
414                      L, Good, Bad, SE);
415       return;
416     }
417 
418   // Handle a multiplication by -1 (negation) if it didn't fold.
419   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420     if (Mul->getOperand(0)->isAllOnesValue()) {
421       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422       const SCEV *NewMul = SE.getMulExpr(Ops);
423 
424       SmallVector<const SCEV *, 4> MyGood;
425       SmallVector<const SCEV *, 4> MyBad;
426       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428         SE.getEffectiveSCEVType(NewMul->getType())));
429       for (const SCEV *S : MyGood)
430         Good.push_back(SE.getMulExpr(NegOne, S));
431       for (const SCEV *S : MyBad)
432         Bad.push_back(SE.getMulExpr(NegOne, S));
433       return;
434     }
435 
436   // Ok, we can't do anything interesting. Just stuff the whole thing into a
437   // register and hope for the best.
438   Bad.push_back(S);
439 }
440 
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444   SmallVector<const SCEV *, 4> Good;
445   SmallVector<const SCEV *, 4> Bad;
446   DoInitialMatch(S, L, Good, Bad, SE);
447   if (!Good.empty()) {
448     const SCEV *Sum = SE.getAddExpr(Good);
449     if (!Sum->isZero())
450       BaseRegs.push_back(Sum);
451     HasBaseReg = true;
452   }
453   if (!Bad.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Bad);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   canonicalize(*L);
460 }
461 
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466   if (!ScaledReg)
467     return BaseRegs.size() <= 1;
468 
469   if (Scale != 1)
470     return true;
471 
472   if (Scale == 1 && BaseRegs.empty())
473     return false;
474 
475   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476   if (SAR && SAR->getLoop() == &L)
477     return true;
478 
479   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481   // loop, we want to swap the reg in BaseRegs with ScaledReg.
482   auto I =
483       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484         return isa<const SCEVAddRecExpr>(S) &&
485                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
486       });
487   return I == BaseRegs.end();
488 }
489 
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497   if (isCanonical(L))
498     return;
499   // So far we did not need this case. This is easy to implement but it is
500   // useless to maintain dead code. Beside it could hurt compile time.
501   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
502 
503   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504   if (!ScaledReg) {
505     ScaledReg = BaseRegs.back();
506     BaseRegs.pop_back();
507     Scale = 1;
508   }
509 
510   // If ScaledReg is an invariant with respect to L, find the reg from
511   // BaseRegs containing the recurrent expr related with Loop L. Swap the
512   // reg with ScaledReg.
513   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514   if (!SAR || SAR->getLoop() != &L) {
515     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516                      [&](const SCEV *S) {
517                        return isa<const SCEVAddRecExpr>(S) &&
518                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
519                      });
520     if (I != BaseRegs.end())
521       std::swap(ScaledReg, *I);
522   }
523 }
524 
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530   if (Scale != 1)
531     return false;
532   Scale = 0;
533   BaseRegs.push_back(ScaledReg);
534   ScaledReg = nullptr;
535   return true;
536 }
537 
538 bool Formula::hasZeroEnd() const {
539   if (UnfoldedOffset || BaseOffset)
540     return false;
541   if (BaseRegs.size() != 1 || ScaledReg)
542     return false;
543   return true;
544 }
545 
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549   return !!ScaledReg + BaseRegs.size();
550 }
551 
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556          ScaledReg ? ScaledReg->getType() :
557          BaseGV ? BaseGV->getType() :
558          nullptr;
559 }
560 
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563   if (&S != &BaseRegs.back())
564     std::swap(S, BaseRegs.back());
565   BaseRegs.pop_back();
566 }
567 
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570   return S == ScaledReg || is_contained(BaseRegs, S);
571 }
572 
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576                                          const RegUseTracker &RegUses) const {
577   if (ScaledReg)
578     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579       return true;
580   for (const SCEV *BaseReg : BaseRegs)
581     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582       return true;
583   return false;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588   bool First = true;
589   if (BaseGV) {
590     if (!First) OS << " + "; else First = false;
591     BaseGV->printAsOperand(OS, /*PrintType=*/false);
592   }
593   if (BaseOffset != 0) {
594     if (!First) OS << " + "; else First = false;
595     OS << BaseOffset;
596   }
597   for (const SCEV *BaseReg : BaseRegs) {
598     if (!First) OS << " + "; else First = false;
599     OS << "reg(" << *BaseReg << ')';
600   }
601   if (HasBaseReg && BaseRegs.empty()) {
602     if (!First) OS << " + "; else First = false;
603     OS << "**error: HasBaseReg**";
604   } else if (!HasBaseReg && !BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: !HasBaseReg**";
607   }
608   if (Scale != 0) {
609     if (!First) OS << " + "; else First = false;
610     OS << Scale << "*reg(";
611     if (ScaledReg)
612       OS << *ScaledReg;
613     else
614       OS << "<unknown>";
615     OS << ')';
616   }
617   if (UnfoldedOffset != 0) {
618     if (!First) OS << " + ";
619     OS << "imm(" << UnfoldedOffset << ')';
620   }
621 }
622 
623 LLVM_DUMP_METHOD void Formula::dump() const {
624   print(errs()); errs() << '\n';
625 }
626 #endif
627 
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631   Type *WideTy =
632     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
634 }
635 
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639   Type *WideTy =
640     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
642 }
643 
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647   Type *WideTy =
648     IntegerType::get(SE.getContext(),
649                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
651 }
652 
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659                                 ScalarEvolution &SE,
660                                 bool IgnoreSignificantBits = false) {
661   // Handle the trivial case, which works for any SCEV type.
662   if (LHS == RHS)
663     return SE.getConstant(LHS->getType(), 1);
664 
665   // Handle a few RHS special cases.
666   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667   if (RC) {
668     const APInt &RA = RC->getAPInt();
669     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670     // some folding.
671     if (RA.isAllOnesValue())
672       return SE.getMulExpr(LHS, RC);
673     // Handle x /s 1 as x.
674     if (RA == 1)
675       return LHS;
676   }
677 
678   // Check for a division of a constant by a constant.
679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680     if (!RC)
681       return nullptr;
682     const APInt &LA = C->getAPInt();
683     const APInt &RA = RC->getAPInt();
684     if (LA.srem(RA) != 0)
685       return nullptr;
686     return SE.getConstant(LA.sdiv(RA));
687   }
688 
689   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693                                       IgnoreSignificantBits);
694       if (!Step) return nullptr;
695       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696                                        IgnoreSignificantBits);
697       if (!Start) return nullptr;
698       // FlagNW is independent of the start value, step direction, and is
699       // preserved with smaller magnitude steps.
700       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
702     }
703     return nullptr;
704   }
705 
706   // Distribute the sdiv over add operands, if the add doesn't overflow.
707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709       SmallVector<const SCEV *, 8> Ops;
710       for (const SCEV *S : Add->operands()) {
711         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712         if (!Op) return nullptr;
713         Ops.push_back(Op);
714       }
715       return SE.getAddExpr(Ops);
716     }
717     return nullptr;
718   }
719 
720   // Check for a multiply operand that we can pull RHS out of.
721   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723       SmallVector<const SCEV *, 4> Ops;
724       bool Found = false;
725       for (const SCEV *S : Mul->operands()) {
726         if (!Found)
727           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728                                            IgnoreSignificantBits)) {
729             S = Q;
730             Found = true;
731           }
732         Ops.push_back(S);
733       }
734       return Found ? SE.getMulExpr(Ops) : nullptr;
735     }
736     return nullptr;
737   }
738 
739   // Otherwise we don't know.
740   return nullptr;
741 }
742 
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747     if (C->getAPInt().getMinSignedBits() <= 64) {
748       S = SE.getConstant(C->getType(), 0);
749       return C->getValue()->getSExtValue();
750     }
751   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753     int64_t Result = ExtractImmediate(NewOps.front(), SE);
754     if (Result != 0)
755       S = SE.getAddExpr(NewOps);
756     return Result;
757   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763                            SCEV::FlagAnyWrap);
764     return Result;
765   }
766   return 0;
767 }
768 
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774       S = SE.getConstant(GV->getType(), 0);
775       return GV;
776     }
777   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780     if (Result)
781       S = SE.getAddExpr(NewOps);
782     return Result;
783   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786     if (Result)
787       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789                            SCEV::FlagAnyWrap);
790     return Result;
791   }
792   return nullptr;
793 }
794 
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798                          Instruction *Inst, Value *OperandVal) {
799   bool isAddress = isa<LoadInst>(Inst);
800   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801     if (SI->getPointerOperand() == OperandVal)
802       isAddress = true;
803   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804     // Addressing modes can also be folded into prefetches and a variety
805     // of intrinsics.
806     switch (II->getIntrinsicID()) {
807     case Intrinsic::memset:
808     case Intrinsic::prefetch:
809       if (II->getArgOperand(0) == OperandVal)
810         isAddress = true;
811       break;
812     case Intrinsic::memmove:
813     case Intrinsic::memcpy:
814       if (II->getArgOperand(0) == OperandVal ||
815           II->getArgOperand(1) == OperandVal)
816         isAddress = true;
817       break;
818     default: {
819       MemIntrinsicInfo IntrInfo;
820       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821         if (IntrInfo.PtrVal == OperandVal)
822           isAddress = true;
823       }
824     }
825     }
826   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827     if (RMW->getPointerOperand() == OperandVal)
828       isAddress = true;
829   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830     if (CmpX->getPointerOperand() == OperandVal)
831       isAddress = true;
832   }
833   return isAddress;
834 }
835 
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838                                  Instruction *Inst, Value *OperandVal) {
839   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841     AccessTy.MemTy = SI->getOperand(0)->getType();
842     AccessTy.AddrSpace = SI->getPointerAddressSpace();
843   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844     AccessTy.AddrSpace = LI->getPointerAddressSpace();
845   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850     switch (II->getIntrinsicID()) {
851     case Intrinsic::prefetch:
852     case Intrinsic::memset:
853       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859       AccessTy.MemTy = OperandVal->getType();
860       break;
861     default: {
862       MemIntrinsicInfo IntrInfo;
863       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864         AccessTy.AddrSpace
865           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
866       }
867 
868       break;
869     }
870     }
871   }
872 
873   // All pointers have the same requirements, so canonicalize them to an
874   // arbitrary pointer type to minimize variation.
875   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877                                       PTy->getAddressSpace());
878 
879   return AccessTy;
880 }
881 
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885     if (SE.isSCEVable(PN.getType()) &&
886         (SE.getEffectiveSCEVType(PN.getType()) ==
887          SE.getEffectiveSCEVType(AR->getType())) &&
888         SE.getSCEV(&PN) == AR)
889       return true;
890   }
891   return false;
892 }
893 
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
897 ///
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
900 ///
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904                                 SmallPtrSetImpl<const SCEV*> &Processed,
905                                 ScalarEvolution &SE) {
906   // Zero/One operand expressions
907   switch (S->getSCEVType()) {
908   case scUnknown:
909   case scConstant:
910     return false;
911   case scTruncate:
912     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913                                Processed, SE);
914   case scZeroExtend:
915     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scSignExtend:
918     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   }
921 
922   if (!Processed.insert(S).second)
923     return false;
924 
925   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926     for (const SCEV *S : Add->operands()) {
927       if (isHighCostExpansion(S, Processed, SE))
928         return true;
929     }
930     return false;
931   }
932 
933   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934     if (Mul->getNumOperands() == 2) {
935       // Multiplication by a constant is ok
936       if (isa<SCEVConstant>(Mul->getOperand(0)))
937         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
938 
939       // If we have the value of one operand, check if an existing
940       // multiplication already generates this expression.
941       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942         Value *UVal = U->getValue();
943         for (User *UR : UVal->users()) {
944           // If U is a constant, it may be used by a ConstantExpr.
945           Instruction *UI = dyn_cast<Instruction>(UR);
946           if (UI && UI->getOpcode() == Instruction::Mul &&
947               SE.isSCEVable(UI->getType())) {
948             return SE.getSCEV(UI) == Mul;
949           }
950         }
951       }
952     }
953   }
954 
955   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956     if (isExistingPhi(AR, SE))
957       return false;
958   }
959 
960   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961   return true;
962 }
963 
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968   bool Changed = false;
969 
970   while (!DeadInsts.empty()) {
971     Value *V = DeadInsts.pop_back_val();
972     Instruction *I = dyn_cast_or_null<Instruction>(V);
973 
974     if (!I || !isInstructionTriviallyDead(I))
975       continue;
976 
977     for (Use &O : I->operands())
978       if (Instruction *U = dyn_cast<Instruction>(O)) {
979         O = nullptr;
980         if (U->use_empty())
981           DeadInsts.emplace_back(U);
982       }
983 
984     I->eraseFromParent();
985     Changed = true;
986   }
987 
988   return Changed;
989 }
990 
991 namespace {
992 
993 class LSRUse;
994 
995 } // end anonymous namespace
996 
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007                                  const LSRUse &LU, const Formula &F);
1008 
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011                                      const LSRUse &LU, const Formula &F,
1012                                      const Loop &L);
1013 
1014 namespace {
1015 
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018   const Loop *L = nullptr;
1019   ScalarEvolution *SE = nullptr;
1020   const TargetTransformInfo *TTI = nullptr;
1021   TargetTransformInfo::LSRCost C;
1022 
1023 public:
1024   Cost() = delete;
1025   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1026     L(L), SE(&SE), TTI(&TTI) {
1027     C.Insns = 0;
1028     C.NumRegs = 0;
1029     C.AddRecCost = 0;
1030     C.NumIVMuls = 0;
1031     C.NumBaseAdds = 0;
1032     C.ImmCost = 0;
1033     C.SetupCost = 0;
1034     C.ScaleCost = 0;
1035   }
1036 
1037   bool isLess(Cost &Other);
1038 
1039   void Lose();
1040 
1041 #ifndef NDEBUG
1042   // Once any of the metrics loses, they must all remain losers.
1043   bool isValid() {
1044     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1045              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1046       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1047            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1048   }
1049 #endif
1050 
1051   bool isLoser() {
1052     assert(isValid() && "invalid cost");
1053     return C.NumRegs == ~0u;
1054   }
1055 
1056   void RateFormula(const Formula &F,
1057                    SmallPtrSetImpl<const SCEV *> &Regs,
1058                    const DenseSet<const SCEV *> &VisitedRegs,
1059                    const LSRUse &LU,
1060                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1061 
1062   void print(raw_ostream &OS) const;
1063   void dump() const;
1064 
1065 private:
1066   void RateRegister(const Formula &F, const SCEV *Reg,
1067                     SmallPtrSetImpl<const SCEV *> &Regs);
1068   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1069                            SmallPtrSetImpl<const SCEV *> &Regs,
1070                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1071 };
1072 
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1075 struct LSRFixup {
1076   /// The instruction which will be updated.
1077   Instruction *UserInst = nullptr;
1078 
1079   /// The operand of the instruction which will be replaced. The operand may be
1080   /// used more than once; every instance will be replaced.
1081   Value *OperandValToReplace = nullptr;
1082 
1083   /// If this user is to use the post-incremented value of an induction
1084   /// variable, this set is non-empty and holds the loops associated with the
1085   /// induction variable.
1086   PostIncLoopSet PostIncLoops;
1087 
1088   /// A constant offset to be added to the LSRUse expression.  This allows
1089   /// multiple fixups to share the same LSRUse with different offsets, for
1090   /// example in an unrolled loop.
1091   int64_t Offset = 0;
1092 
1093   LSRFixup() = default;
1094 
1095   bool isUseFullyOutsideLoop(const Loop *L) const;
1096 
1097   void print(raw_ostream &OS) const;
1098   void dump() const;
1099 };
1100 
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo {
1104   static SmallVector<const SCEV *, 4> getEmptyKey() {
1105     SmallVector<const SCEV *, 4>  V;
1106     V.push_back(reinterpret_cast<const SCEV *>(-1));
1107     return V;
1108   }
1109 
1110   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1111     SmallVector<const SCEV *, 4> V;
1112     V.push_back(reinterpret_cast<const SCEV *>(-2));
1113     return V;
1114   }
1115 
1116   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1117     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1118   }
1119 
1120   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1121                       const SmallVector<const SCEV *, 4> &RHS) {
1122     return LHS == RHS;
1123   }
1124 };
1125 
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied.  TODO: Represent multiple
1130 /// users of the same expression in common?
1131 class LSRUse {
1132   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1133 
1134 public:
1135   /// An enum for a kind of use, indicating what types of scaled and immediate
1136   /// operands it might support.
1137   enum KindType {
1138     Basic,   ///< A normal use, with no folding.
1139     Special, ///< A special case of basic, allowing -1 scales.
1140     Address, ///< An address use; folding according to TargetLowering
1141     ICmpZero ///< An equality icmp with both operands folded into one.
1142     // TODO: Add a generic icmp too?
1143   };
1144 
1145   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1146 
1147   KindType Kind;
1148   MemAccessTy AccessTy;
1149 
1150   /// The list of operands which are to be replaced.
1151   SmallVector<LSRFixup, 8> Fixups;
1152 
1153   /// Keep track of the min and max offsets of the fixups.
1154   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1155   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1156 
1157   /// This records whether all of the fixups using this LSRUse are outside of
1158   /// the loop, in which case some special-case heuristics may be used.
1159   bool AllFixupsOutsideLoop = true;
1160 
1161   /// RigidFormula is set to true to guarantee that this use will be associated
1162   /// with a single formula--the one that initially matched. Some SCEV
1163   /// expressions cannot be expanded. This allows LSR to consider the registers
1164   /// used by those expressions without the need to expand them later after
1165   /// changing the formula.
1166   bool RigidFormula = false;
1167 
1168   /// This records the widest use type for any fixup using this
1169   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170   /// fixup widths to be equivalent, because the narrower one may be relying on
1171   /// the implicit truncation to truncate away bogus bits.
1172   Type *WidestFixupType = nullptr;
1173 
1174   /// A list of ways to build a value that can satisfy this user.  After the
1175   /// list is populated, one of these is selected heuristically and used to
1176   /// formulate a replacement for OperandValToReplace in UserInst.
1177   SmallVector<Formula, 12> Formulae;
1178 
1179   /// The set of register candidates used by all formulae in this LSRUse.
1180   SmallPtrSet<const SCEV *, 4> Regs;
1181 
1182   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1183 
1184   LSRFixup &getNewFixup() {
1185     Fixups.push_back(LSRFixup());
1186     return Fixups.back();
1187   }
1188 
1189   void pushFixup(LSRFixup &f) {
1190     Fixups.push_back(f);
1191     if (f.Offset > MaxOffset)
1192       MaxOffset = f.Offset;
1193     if (f.Offset < MinOffset)
1194       MinOffset = f.Offset;
1195   }
1196 
1197   bool HasFormulaWithSameRegs(const Formula &F) const;
1198   float getNotSelectedProbability(const SCEV *Reg) const;
1199   bool InsertFormula(const Formula &F, const Loop &L);
1200   void DeleteFormula(Formula &F);
1201   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1202 
1203   void print(raw_ostream &OS) const;
1204   void dump() const;
1205 };
1206 
1207 } // end anonymous namespace
1208 
1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1210                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1211                                  GlobalValue *BaseGV, int64_t BaseOffset,
1212                                  bool HasBaseReg, int64_t Scale,
1213                                  Instruction *Fixup = nullptr);
1214 
1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1216   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1217     return 1;
1218   if (Depth == 0)
1219     return 0;
1220   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1221     return getSetupCost(S->getStart(), Depth - 1);
1222   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1223     return getSetupCost(S->getOperand(), Depth - 1);
1224   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1225     return std::accumulate(S->op_begin(), S->op_end(), 0,
1226                            [&](unsigned i, const SCEV *Reg) {
1227                              return i + getSetupCost(Reg, Depth - 1);
1228                            });
1229   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1230     return getSetupCost(S->getLHS(), Depth - 1) +
1231            getSetupCost(S->getRHS(), Depth - 1);
1232   return 0;
1233 }
1234 
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1237                         SmallPtrSetImpl<const SCEV *> &Regs) {
1238   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1239     // If this is an addrec for another loop, it should be an invariant
1240     // with respect to L since L is the innermost loop (at least
1241     // for now LSR only handles innermost loops).
1242     if (AR->getLoop() != L) {
1243       // If the AddRec exists, consider it's register free and leave it alone.
1244       if (isExistingPhi(AR, *SE))
1245         return;
1246 
1247       // It is bad to allow LSR for current loop to add induction variables
1248       // for its sibling loops.
1249       if (!AR->getLoop()->contains(L)) {
1250         Lose();
1251         return;
1252       }
1253 
1254       // Otherwise, it will be an invariant with respect to Loop L.
1255       ++C.NumRegs;
1256       return;
1257     }
1258 
1259     unsigned LoopCost = 1;
1260     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1261         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1262 
1263       // If the step size matches the base offset, we could use pre-indexed
1264       // addressing.
1265       if (TTI->shouldFavorBackedgeIndex(L)) {
1266         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1267           if (Step->getAPInt() == F.BaseOffset)
1268             LoopCost = 0;
1269       }
1270 
1271       if (TTI->shouldFavorPostInc()) {
1272         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1273         if (isa<SCEVConstant>(LoopStep)) {
1274           const SCEV *LoopStart = AR->getStart();
1275           if (!isa<SCEVConstant>(LoopStart) &&
1276               SE->isLoopInvariant(LoopStart, L))
1277             LoopCost = 0;
1278         }
1279       }
1280     }
1281     C.AddRecCost += LoopCost;
1282 
1283     // Add the step value register, if it needs one.
1284     // TODO: The non-affine case isn't precisely modeled here.
1285     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1286       if (!Regs.count(AR->getOperand(1))) {
1287         RateRegister(F, AR->getOperand(1), Regs);
1288         if (isLoser())
1289           return;
1290       }
1291     }
1292   }
1293   ++C.NumRegs;
1294 
1295   // Rough heuristic; favor registers which don't require extra setup
1296   // instructions in the preheader.
1297   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1298   // Ensure we don't, even with the recusion limit, produce invalid costs.
1299   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1300 
1301   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1302                SE->hasComputableLoopEvolution(Reg, L);
1303 }
1304 
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1309                                SmallPtrSetImpl<const SCEV *> &Regs,
1310                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1311   if (LoserRegs && LoserRegs->count(Reg)) {
1312     Lose();
1313     return;
1314   }
1315   if (Regs.insert(Reg).second) {
1316     RateRegister(F, Reg, Regs);
1317     if (LoserRegs && isLoser())
1318       LoserRegs->insert(Reg);
1319   }
1320 }
1321 
1322 void Cost::RateFormula(const Formula &F,
1323                        SmallPtrSetImpl<const SCEV *> &Regs,
1324                        const DenseSet<const SCEV *> &VisitedRegs,
1325                        const LSRUse &LU,
1326                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1327   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1328   // Tally up the registers.
1329   unsigned PrevAddRecCost = C.AddRecCost;
1330   unsigned PrevNumRegs = C.NumRegs;
1331   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1332   if (const SCEV *ScaledReg = F.ScaledReg) {
1333     if (VisitedRegs.count(ScaledReg)) {
1334       Lose();
1335       return;
1336     }
1337     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1338     if (isLoser())
1339       return;
1340   }
1341   for (const SCEV *BaseReg : F.BaseRegs) {
1342     if (VisitedRegs.count(BaseReg)) {
1343       Lose();
1344       return;
1345     }
1346     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1347     if (isLoser())
1348       return;
1349   }
1350 
1351   // Determine how many (unfolded) adds we'll need inside the loop.
1352   size_t NumBaseParts = F.getNumRegs();
1353   if (NumBaseParts > 1)
1354     // Do not count the base and a possible second register if the target
1355     // allows to fold 2 registers.
1356     C.NumBaseAdds +=
1357         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1358   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1359 
1360   // Accumulate non-free scaling amounts.
1361   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1362 
1363   // Tally up the non-zero immediates.
1364   for (const LSRFixup &Fixup : LU.Fixups) {
1365     int64_t O = Fixup.Offset;
1366     int64_t Offset = (uint64_t)O + F.BaseOffset;
1367     if (F.BaseGV)
1368       C.ImmCost += 64; // Handle symbolic values conservatively.
1369                      // TODO: This should probably be the pointer size.
1370     else if (Offset != 0)
1371       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1372 
1373     // Check with target if this offset with this instruction is
1374     // specifically not supported.
1375     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1376         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1377                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1378       C.NumBaseAdds++;
1379   }
1380 
1381   // If we don't count instruction cost exit here.
1382   if (!InsnsCost) {
1383     assert(isValid() && "invalid cost");
1384     return;
1385   }
1386 
1387   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388   // additional instruction (at least fill).
1389   // TODO: Need distinguish register class?
1390   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1391                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1392   if (C.NumRegs > TTIRegNum) {
1393     // Cost already exceeded TTIRegNum, then only newly added register can add
1394     // new instructions.
1395     if (PrevNumRegs > TTIRegNum)
1396       C.Insns += (C.NumRegs - PrevNumRegs);
1397     else
1398       C.Insns += (C.NumRegs - TTIRegNum);
1399   }
1400 
1401   // If ICmpZero formula ends with not 0, it could not be replaced by
1402   // just add or sub. We'll need to compare final result of AddRec.
1403   // That means we'll need an additional instruction. But if the target can
1404   // macro-fuse a compare with a branch, don't count this extra instruction.
1405   // For -10 + {0, +, 1}:
1406   // i = i + 1;
1407   // cmp i, 10
1408   //
1409   // For {-10, +, 1}:
1410   // i = i + 1;
1411   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1412       !TTI->canMacroFuseCmp())
1413     C.Insns++;
1414   // Each new AddRec adds 1 instruction to calculation.
1415   C.Insns += (C.AddRecCost - PrevAddRecCost);
1416 
1417   // BaseAdds adds instructions for unfolded registers.
1418   if (LU.Kind != LSRUse::ICmpZero)
1419     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1420   assert(isValid() && "invalid cost");
1421 }
1422 
1423 /// Set this cost to a losing value.
1424 void Cost::Lose() {
1425   C.Insns = std::numeric_limits<unsigned>::max();
1426   C.NumRegs = std::numeric_limits<unsigned>::max();
1427   C.AddRecCost = std::numeric_limits<unsigned>::max();
1428   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1429   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1430   C.ImmCost = std::numeric_limits<unsigned>::max();
1431   C.SetupCost = std::numeric_limits<unsigned>::max();
1432   C.ScaleCost = std::numeric_limits<unsigned>::max();
1433 }
1434 
1435 /// Choose the lower cost.
1436 bool Cost::isLess(Cost &Other) {
1437   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1438       C.Insns != Other.C.Insns)
1439     return C.Insns < Other.C.Insns;
1440   return TTI->isLSRCostLess(C, Other.C);
1441 }
1442 
1443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1444 void Cost::print(raw_ostream &OS) const {
1445   if (InsnsCost)
1446     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1447   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1448   if (C.AddRecCost != 0)
1449     OS << ", with addrec cost " << C.AddRecCost;
1450   if (C.NumIVMuls != 0)
1451     OS << ", plus " << C.NumIVMuls << " IV mul"
1452        << (C.NumIVMuls == 1 ? "" : "s");
1453   if (C.NumBaseAdds != 0)
1454     OS << ", plus " << C.NumBaseAdds << " base add"
1455        << (C.NumBaseAdds == 1 ? "" : "s");
1456   if (C.ScaleCost != 0)
1457     OS << ", plus " << C.ScaleCost << " scale cost";
1458   if (C.ImmCost != 0)
1459     OS << ", plus " << C.ImmCost << " imm cost";
1460   if (C.SetupCost != 0)
1461     OS << ", plus " << C.SetupCost << " setup cost";
1462 }
1463 
1464 LLVM_DUMP_METHOD void Cost::dump() const {
1465   print(errs()); errs() << '\n';
1466 }
1467 #endif
1468 
1469 /// Test whether this fixup always uses its value outside of the given loop.
1470 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1471   // PHI nodes use their value in their incoming blocks.
1472   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1473     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1474       if (PN->getIncomingValue(i) == OperandValToReplace &&
1475           L->contains(PN->getIncomingBlock(i)))
1476         return false;
1477     return true;
1478   }
1479 
1480   return !L->contains(UserInst);
1481 }
1482 
1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1484 void LSRFixup::print(raw_ostream &OS) const {
1485   OS << "UserInst=";
1486   // Store is common and interesting enough to be worth special-casing.
1487   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1488     OS << "store ";
1489     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1490   } else if (UserInst->getType()->isVoidTy())
1491     OS << UserInst->getOpcodeName();
1492   else
1493     UserInst->printAsOperand(OS, /*PrintType=*/false);
1494 
1495   OS << ", OperandValToReplace=";
1496   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1497 
1498   for (const Loop *PIL : PostIncLoops) {
1499     OS << ", PostIncLoop=";
1500     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1501   }
1502 
1503   if (Offset != 0)
1504     OS << ", Offset=" << Offset;
1505 }
1506 
1507 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1508   print(errs()); errs() << '\n';
1509 }
1510 #endif
1511 
1512 /// Test whether this use as a formula which has the same registers as the given
1513 /// formula.
1514 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1515   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1516   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1517   // Unstable sort by host order ok, because this is only used for uniquifying.
1518   llvm::sort(Key);
1519   return Uniquifier.count(Key);
1520 }
1521 
1522 /// The function returns a probability of selecting formula without Reg.
1523 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1524   unsigned FNum = 0;
1525   for (const Formula &F : Formulae)
1526     if (F.referencesReg(Reg))
1527       FNum++;
1528   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1529 }
1530 
1531 /// If the given formula has not yet been inserted, add it to the list, and
1532 /// return true. Return false otherwise.  The formula must be in canonical form.
1533 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1534   assert(F.isCanonical(L) && "Invalid canonical representation");
1535 
1536   if (!Formulae.empty() && RigidFormula)
1537     return false;
1538 
1539   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1540   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1541   // Unstable sort by host order ok, because this is only used for uniquifying.
1542   llvm::sort(Key);
1543 
1544   if (!Uniquifier.insert(Key).second)
1545     return false;
1546 
1547   // Using a register to hold the value of 0 is not profitable.
1548   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1549          "Zero allocated in a scaled register!");
1550 #ifndef NDEBUG
1551   for (const SCEV *BaseReg : F.BaseRegs)
1552     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1553 #endif
1554 
1555   // Add the formula to the list.
1556   Formulae.push_back(F);
1557 
1558   // Record registers now being used by this use.
1559   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1560   if (F.ScaledReg)
1561     Regs.insert(F.ScaledReg);
1562 
1563   return true;
1564 }
1565 
1566 /// Remove the given formula from this use's list.
1567 void LSRUse::DeleteFormula(Formula &F) {
1568   if (&F != &Formulae.back())
1569     std::swap(F, Formulae.back());
1570   Formulae.pop_back();
1571 }
1572 
1573 /// Recompute the Regs field, and update RegUses.
1574 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1575   // Now that we've filtered out some formulae, recompute the Regs set.
1576   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1577   Regs.clear();
1578   for (const Formula &F : Formulae) {
1579     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1580     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1581   }
1582 
1583   // Update the RegTracker.
1584   for (const SCEV *S : OldRegs)
1585     if (!Regs.count(S))
1586       RegUses.dropRegister(S, LUIdx);
1587 }
1588 
1589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1590 void LSRUse::print(raw_ostream &OS) const {
1591   OS << "LSR Use: Kind=";
1592   switch (Kind) {
1593   case Basic:    OS << "Basic"; break;
1594   case Special:  OS << "Special"; break;
1595   case ICmpZero: OS << "ICmpZero"; break;
1596   case Address:
1597     OS << "Address of ";
1598     if (AccessTy.MemTy->isPointerTy())
1599       OS << "pointer"; // the full pointer type could be really verbose
1600     else {
1601       OS << *AccessTy.MemTy;
1602     }
1603 
1604     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1605   }
1606 
1607   OS << ", Offsets={";
1608   bool NeedComma = false;
1609   for (const LSRFixup &Fixup : Fixups) {
1610     if (NeedComma) OS << ',';
1611     OS << Fixup.Offset;
1612     NeedComma = true;
1613   }
1614   OS << '}';
1615 
1616   if (AllFixupsOutsideLoop)
1617     OS << ", all-fixups-outside-loop";
1618 
1619   if (WidestFixupType)
1620     OS << ", widest fixup type: " << *WidestFixupType;
1621 }
1622 
1623 LLVM_DUMP_METHOD void LSRUse::dump() const {
1624   print(errs()); errs() << '\n';
1625 }
1626 #endif
1627 
1628 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1629                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1630                                  GlobalValue *BaseGV, int64_t BaseOffset,
1631                                  bool HasBaseReg, int64_t Scale,
1632                                  Instruction *Fixup/*= nullptr*/) {
1633   switch (Kind) {
1634   case LSRUse::Address:
1635     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1636                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1637 
1638   case LSRUse::ICmpZero:
1639     // There's not even a target hook for querying whether it would be legal to
1640     // fold a GV into an ICmp.
1641     if (BaseGV)
1642       return false;
1643 
1644     // ICmp only has two operands; don't allow more than two non-trivial parts.
1645     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1646       return false;
1647 
1648     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1649     // putting the scaled register in the other operand of the icmp.
1650     if (Scale != 0 && Scale != -1)
1651       return false;
1652 
1653     // If we have low-level target information, ask the target if it can fold an
1654     // integer immediate on an icmp.
1655     if (BaseOffset != 0) {
1656       // We have one of:
1657       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1658       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1659       // Offs is the ICmp immediate.
1660       if (Scale == 0)
1661         // The cast does the right thing with
1662         // std::numeric_limits<int64_t>::min().
1663         BaseOffset = -(uint64_t)BaseOffset;
1664       return TTI.isLegalICmpImmediate(BaseOffset);
1665     }
1666 
1667     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1668     return true;
1669 
1670   case LSRUse::Basic:
1671     // Only handle single-register values.
1672     return !BaseGV && Scale == 0 && BaseOffset == 0;
1673 
1674   case LSRUse::Special:
1675     // Special case Basic to handle -1 scales.
1676     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1677   }
1678 
1679   llvm_unreachable("Invalid LSRUse Kind!");
1680 }
1681 
1682 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1683                                  int64_t MinOffset, int64_t MaxOffset,
1684                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1685                                  GlobalValue *BaseGV, int64_t BaseOffset,
1686                                  bool HasBaseReg, int64_t Scale) {
1687   // Check for overflow.
1688   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1689       (MinOffset > 0))
1690     return false;
1691   MinOffset = (uint64_t)BaseOffset + MinOffset;
1692   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1693       (MaxOffset > 0))
1694     return false;
1695   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1696 
1697   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1698                               HasBaseReg, Scale) &&
1699          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1700                               HasBaseReg, Scale);
1701 }
1702 
1703 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1704                                  int64_t MinOffset, int64_t MaxOffset,
1705                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1706                                  const Formula &F, const Loop &L) {
1707   // For the purpose of isAMCompletelyFolded either having a canonical formula
1708   // or a scale not equal to zero is correct.
1709   // Problems may arise from non canonical formulae having a scale == 0.
1710   // Strictly speaking it would best to just rely on canonical formulae.
1711   // However, when we generate the scaled formulae, we first check that the
1712   // scaling factor is profitable before computing the actual ScaledReg for
1713   // compile time sake.
1714   assert((F.isCanonical(L) || F.Scale != 0));
1715   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1716                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1717 }
1718 
1719 /// Test whether we know how to expand the current formula.
1720 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1721                        int64_t MaxOffset, LSRUse::KindType Kind,
1722                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1723                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1724   // We know how to expand completely foldable formulae.
1725   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1726                               BaseOffset, HasBaseReg, Scale) ||
1727          // Or formulae that use a base register produced by a sum of base
1728          // registers.
1729          (Scale == 1 &&
1730           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1731                                BaseGV, BaseOffset, true, 0));
1732 }
1733 
1734 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1735                        int64_t MaxOffset, LSRUse::KindType Kind,
1736                        MemAccessTy AccessTy, const Formula &F) {
1737   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1738                     F.BaseOffset, F.HasBaseReg, F.Scale);
1739 }
1740 
1741 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1742                                  const LSRUse &LU, const Formula &F) {
1743   // Target may want to look at the user instructions.
1744   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1745     for (const LSRFixup &Fixup : LU.Fixups)
1746       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1747                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1748                                 F.Scale, Fixup.UserInst))
1749         return false;
1750     return true;
1751   }
1752 
1753   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1754                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1755                               F.Scale);
1756 }
1757 
1758 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1759                                      const LSRUse &LU, const Formula &F,
1760                                      const Loop &L) {
1761   if (!F.Scale)
1762     return 0;
1763 
1764   // If the use is not completely folded in that instruction, we will have to
1765   // pay an extra cost only for scale != 1.
1766   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1767                             LU.AccessTy, F, L))
1768     return F.Scale != 1;
1769 
1770   switch (LU.Kind) {
1771   case LSRUse::Address: {
1772     // Check the scaling factor cost with both the min and max offsets.
1773     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1774         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1775         F.Scale, LU.AccessTy.AddrSpace);
1776     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1777         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1778         F.Scale, LU.AccessTy.AddrSpace);
1779 
1780     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1781            "Legal addressing mode has an illegal cost!");
1782     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1783   }
1784   case LSRUse::ICmpZero:
1785   case LSRUse::Basic:
1786   case LSRUse::Special:
1787     // The use is completely folded, i.e., everything is folded into the
1788     // instruction.
1789     return 0;
1790   }
1791 
1792   llvm_unreachable("Invalid LSRUse Kind!");
1793 }
1794 
1795 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1796                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1797                              GlobalValue *BaseGV, int64_t BaseOffset,
1798                              bool HasBaseReg) {
1799   // Fast-path: zero is always foldable.
1800   if (BaseOffset == 0 && !BaseGV) return true;
1801 
1802   // Conservatively, create an address with an immediate and a
1803   // base and a scale.
1804   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1805 
1806   // Canonicalize a scale of 1 to a base register if the formula doesn't
1807   // already have a base register.
1808   if (!HasBaseReg && Scale == 1) {
1809     Scale = 0;
1810     HasBaseReg = true;
1811   }
1812 
1813   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1814                               HasBaseReg, Scale);
1815 }
1816 
1817 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1818                              ScalarEvolution &SE, int64_t MinOffset,
1819                              int64_t MaxOffset, LSRUse::KindType Kind,
1820                              MemAccessTy AccessTy, const SCEV *S,
1821                              bool HasBaseReg) {
1822   // Fast-path: zero is always foldable.
1823   if (S->isZero()) return true;
1824 
1825   // Conservatively, create an address with an immediate and a
1826   // base and a scale.
1827   int64_t BaseOffset = ExtractImmediate(S, SE);
1828   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1829 
1830   // If there's anything else involved, it's not foldable.
1831   if (!S->isZero()) return false;
1832 
1833   // Fast-path: zero is always foldable.
1834   if (BaseOffset == 0 && !BaseGV) return true;
1835 
1836   // Conservatively, create an address with an immediate and a
1837   // base and a scale.
1838   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1839 
1840   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1841                               BaseOffset, HasBaseReg, Scale);
1842 }
1843 
1844 namespace {
1845 
1846 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1847 /// an expression that computes the IV it uses from the IV used by the previous
1848 /// link in the Chain.
1849 ///
1850 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1851 /// original IVOperand. The head of the chain's IVOperand is only valid during
1852 /// chain collection, before LSR replaces IV users. During chain generation,
1853 /// IncExpr can be used to find the new IVOperand that computes the same
1854 /// expression.
1855 struct IVInc {
1856   Instruction *UserInst;
1857   Value* IVOperand;
1858   const SCEV *IncExpr;
1859 
1860   IVInc(Instruction *U, Value *O, const SCEV *E)
1861       : UserInst(U), IVOperand(O), IncExpr(E) {}
1862 };
1863 
1864 // The list of IV increments in program order.  We typically add the head of a
1865 // chain without finding subsequent links.
1866 struct IVChain {
1867   SmallVector<IVInc, 1> Incs;
1868   const SCEV *ExprBase = nullptr;
1869 
1870   IVChain() = default;
1871   IVChain(const IVInc &Head, const SCEV *Base)
1872       : Incs(1, Head), ExprBase(Base) {}
1873 
1874   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1875 
1876   // Return the first increment in the chain.
1877   const_iterator begin() const {
1878     assert(!Incs.empty());
1879     return std::next(Incs.begin());
1880   }
1881   const_iterator end() const {
1882     return Incs.end();
1883   }
1884 
1885   // Returns true if this chain contains any increments.
1886   bool hasIncs() const { return Incs.size() >= 2; }
1887 
1888   // Add an IVInc to the end of this chain.
1889   void add(const IVInc &X) { Incs.push_back(X); }
1890 
1891   // Returns the last UserInst in the chain.
1892   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1893 
1894   // Returns true if IncExpr can be profitably added to this chain.
1895   bool isProfitableIncrement(const SCEV *OperExpr,
1896                              const SCEV *IncExpr,
1897                              ScalarEvolution&);
1898 };
1899 
1900 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1901 /// between FarUsers that definitely cross IV increments and NearUsers that may
1902 /// be used between IV increments.
1903 struct ChainUsers {
1904   SmallPtrSet<Instruction*, 4> FarUsers;
1905   SmallPtrSet<Instruction*, 4> NearUsers;
1906 };
1907 
1908 /// This class holds state for the main loop strength reduction logic.
1909 class LSRInstance {
1910   IVUsers &IU;
1911   ScalarEvolution &SE;
1912   DominatorTree &DT;
1913   LoopInfo &LI;
1914   AssumptionCache &AC;
1915   TargetLibraryInfo &LibInfo;
1916   const TargetTransformInfo &TTI;
1917   Loop *const L;
1918   bool FavorBackedgeIndex = false;
1919   bool Changed = false;
1920 
1921   /// This is the insert position that the current loop's induction variable
1922   /// increment should be placed. In simple loops, this is the latch block's
1923   /// terminator. But in more complicated cases, this is a position which will
1924   /// dominate all the in-loop post-increment users.
1925   Instruction *IVIncInsertPos = nullptr;
1926 
1927   /// Interesting factors between use strides.
1928   ///
1929   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1930   /// default, a SmallDenseSet, because we need to use the full range of
1931   /// int64_ts, and there's currently no good way of doing that with
1932   /// SmallDenseSet.
1933   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1934 
1935   /// Interesting use types, to facilitate truncation reuse.
1936   SmallSetVector<Type *, 4> Types;
1937 
1938   /// The list of interesting uses.
1939   mutable SmallVector<LSRUse, 16> Uses;
1940 
1941   /// Track which uses use which register candidates.
1942   RegUseTracker RegUses;
1943 
1944   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1945   // have more than a few IV increment chains in a loop. Missing a Chain falls
1946   // back to normal LSR behavior for those uses.
1947   static const unsigned MaxChains = 8;
1948 
1949   /// IV users can form a chain of IV increments.
1950   SmallVector<IVChain, MaxChains> IVChainVec;
1951 
1952   /// IV users that belong to profitable IVChains.
1953   SmallPtrSet<Use*, MaxChains> IVIncSet;
1954 
1955   void OptimizeShadowIV();
1956   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1957   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1958   void OptimizeLoopTermCond();
1959 
1960   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1961                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1962   void FinalizeChain(IVChain &Chain);
1963   void CollectChains();
1964   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1965                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1966 
1967   void CollectInterestingTypesAndFactors();
1968   void CollectFixupsAndInitialFormulae();
1969 
1970   // Support for sharing of LSRUses between LSRFixups.
1971   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1972   UseMapTy UseMap;
1973 
1974   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1975                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1976 
1977   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1978                                     MemAccessTy AccessTy);
1979 
1980   void DeleteUse(LSRUse &LU, size_t LUIdx);
1981 
1982   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1983 
1984   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1985   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1986   void CountRegisters(const Formula &F, size_t LUIdx);
1987   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1988 
1989   void CollectLoopInvariantFixupsAndFormulae();
1990 
1991   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1992                               unsigned Depth = 0);
1993 
1994   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1995                                   const Formula &Base, unsigned Depth,
1996                                   size_t Idx, bool IsScaledReg = false);
1997   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1998   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1999                                    const Formula &Base, size_t Idx,
2000                                    bool IsScaledReg = false);
2001   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2003                                    const Formula &Base,
2004                                    const SmallVectorImpl<int64_t> &Worklist,
2005                                    size_t Idx, bool IsScaledReg = false);
2006   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2007   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2008   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2009   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2010   void GenerateCrossUseConstantOffsets();
2011   void GenerateAllReuseFormulae();
2012 
2013   void FilterOutUndesirableDedicatedRegisters();
2014 
2015   size_t EstimateSearchSpaceComplexity() const;
2016   void NarrowSearchSpaceByDetectingSupersets();
2017   void NarrowSearchSpaceByCollapsingUnrolledCode();
2018   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2019   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2020   void NarrowSearchSpaceByDeletingCostlyFormulas();
2021   void NarrowSearchSpaceByPickingWinnerRegs();
2022   void NarrowSearchSpaceUsingHeuristics();
2023 
2024   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2025                     Cost &SolutionCost,
2026                     SmallVectorImpl<const Formula *> &Workspace,
2027                     const Cost &CurCost,
2028                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2029                     DenseSet<const SCEV *> &VisitedRegs) const;
2030   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2031 
2032   BasicBlock::iterator
2033     HoistInsertPosition(BasicBlock::iterator IP,
2034                         const SmallVectorImpl<Instruction *> &Inputs) const;
2035   BasicBlock::iterator
2036     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2037                                   const LSRFixup &LF,
2038                                   const LSRUse &LU,
2039                                   SCEVExpander &Rewriter) const;
2040 
2041   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2042                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2043                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2044   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2045                      const Formula &F, SCEVExpander &Rewriter,
2046                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2047   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2048                SCEVExpander &Rewriter,
2049                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2050   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2051 
2052 public:
2053   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2054               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2055               TargetLibraryInfo &LibInfo);
2056 
2057   bool getChanged() const { return Changed; }
2058 
2059   void print_factors_and_types(raw_ostream &OS) const;
2060   void print_fixups(raw_ostream &OS) const;
2061   void print_uses(raw_ostream &OS) const;
2062   void print(raw_ostream &OS) const;
2063   void dump() const;
2064 };
2065 
2066 } // end anonymous namespace
2067 
2068 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2069 /// the cast operation.
2070 void LSRInstance::OptimizeShadowIV() {
2071   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2072   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2073     return;
2074 
2075   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2076        UI != E; /* empty */) {
2077     IVUsers::const_iterator CandidateUI = UI;
2078     ++UI;
2079     Instruction *ShadowUse = CandidateUI->getUser();
2080     Type *DestTy = nullptr;
2081     bool IsSigned = false;
2082 
2083     /* If shadow use is a int->float cast then insert a second IV
2084        to eliminate this cast.
2085 
2086          for (unsigned i = 0; i < n; ++i)
2087            foo((double)i);
2088 
2089        is transformed into
2090 
2091          double d = 0.0;
2092          for (unsigned i = 0; i < n; ++i, ++d)
2093            foo(d);
2094     */
2095     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2096       IsSigned = false;
2097       DestTy = UCast->getDestTy();
2098     }
2099     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2100       IsSigned = true;
2101       DestTy = SCast->getDestTy();
2102     }
2103     if (!DestTy) continue;
2104 
2105     // If target does not support DestTy natively then do not apply
2106     // this transformation.
2107     if (!TTI.isTypeLegal(DestTy)) continue;
2108 
2109     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2110     if (!PH) continue;
2111     if (PH->getNumIncomingValues() != 2) continue;
2112 
2113     // If the calculation in integers overflows, the result in FP type will
2114     // differ. So we only can do this transformation if we are guaranteed to not
2115     // deal with overflowing values
2116     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2117     if (!AR) continue;
2118     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2119     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2120 
2121     Type *SrcTy = PH->getType();
2122     int Mantissa = DestTy->getFPMantissaWidth();
2123     if (Mantissa == -1) continue;
2124     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2125       continue;
2126 
2127     unsigned Entry, Latch;
2128     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2129       Entry = 0;
2130       Latch = 1;
2131     } else {
2132       Entry = 1;
2133       Latch = 0;
2134     }
2135 
2136     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2137     if (!Init) continue;
2138     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2139                                         (double)Init->getSExtValue() :
2140                                         (double)Init->getZExtValue());
2141 
2142     BinaryOperator *Incr =
2143       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2144     if (!Incr) continue;
2145     if (Incr->getOpcode() != Instruction::Add
2146         && Incr->getOpcode() != Instruction::Sub)
2147       continue;
2148 
2149     /* Initialize new IV, double d = 0.0 in above example. */
2150     ConstantInt *C = nullptr;
2151     if (Incr->getOperand(0) == PH)
2152       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2153     else if (Incr->getOperand(1) == PH)
2154       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2155     else
2156       continue;
2157 
2158     if (!C) continue;
2159 
2160     // Ignore negative constants, as the code below doesn't handle them
2161     // correctly. TODO: Remove this restriction.
2162     if (!C->getValue().isStrictlyPositive()) continue;
2163 
2164     /* Add new PHINode. */
2165     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2166 
2167     /* create new increment. '++d' in above example. */
2168     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2169     BinaryOperator *NewIncr =
2170       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2171                                Instruction::FAdd : Instruction::FSub,
2172                              NewPH, CFP, "IV.S.next.", Incr);
2173 
2174     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2175     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2176 
2177     /* Remove cast operation */
2178     ShadowUse->replaceAllUsesWith(NewPH);
2179     ShadowUse->eraseFromParent();
2180     Changed = true;
2181     break;
2182   }
2183 }
2184 
2185 /// If Cond has an operand that is an expression of an IV, set the IV user and
2186 /// stride information and return true, otherwise return false.
2187 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2188   for (IVStrideUse &U : IU)
2189     if (U.getUser() == Cond) {
2190       // NOTE: we could handle setcc instructions with multiple uses here, but
2191       // InstCombine does it as well for simple uses, it's not clear that it
2192       // occurs enough in real life to handle.
2193       CondUse = &U;
2194       return true;
2195     }
2196   return false;
2197 }
2198 
2199 /// Rewrite the loop's terminating condition if it uses a max computation.
2200 ///
2201 /// This is a narrow solution to a specific, but acute, problem. For loops
2202 /// like this:
2203 ///
2204 ///   i = 0;
2205 ///   do {
2206 ///     p[i] = 0.0;
2207 ///   } while (++i < n);
2208 ///
2209 /// the trip count isn't just 'n', because 'n' might not be positive. And
2210 /// unfortunately this can come up even for loops where the user didn't use
2211 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2212 /// will commonly be lowered like this:
2213 ///
2214 ///   if (n > 0) {
2215 ///     i = 0;
2216 ///     do {
2217 ///       p[i] = 0.0;
2218 ///     } while (++i < n);
2219 ///   }
2220 ///
2221 /// and then it's possible for subsequent optimization to obscure the if
2222 /// test in such a way that indvars can't find it.
2223 ///
2224 /// When indvars can't find the if test in loops like this, it creates a
2225 /// max expression, which allows it to give the loop a canonical
2226 /// induction variable:
2227 ///
2228 ///   i = 0;
2229 ///   max = n < 1 ? 1 : n;
2230 ///   do {
2231 ///     p[i] = 0.0;
2232 ///   } while (++i != max);
2233 ///
2234 /// Canonical induction variables are necessary because the loop passes
2235 /// are designed around them. The most obvious example of this is the
2236 /// LoopInfo analysis, which doesn't remember trip count values. It
2237 /// expects to be able to rediscover the trip count each time it is
2238 /// needed, and it does this using a simple analysis that only succeeds if
2239 /// the loop has a canonical induction variable.
2240 ///
2241 /// However, when it comes time to generate code, the maximum operation
2242 /// can be quite costly, especially if it's inside of an outer loop.
2243 ///
2244 /// This function solves this problem by detecting this type of loop and
2245 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2246 /// the instructions for the maximum computation.
2247 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2248   // Check that the loop matches the pattern we're looking for.
2249   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2250       Cond->getPredicate() != CmpInst::ICMP_NE)
2251     return Cond;
2252 
2253   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2254   if (!Sel || !Sel->hasOneUse()) return Cond;
2255 
2256   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2257   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2258     return Cond;
2259   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2260 
2261   // Add one to the backedge-taken count to get the trip count.
2262   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2263   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2264 
2265   // Check for a max calculation that matches the pattern. There's no check
2266   // for ICMP_ULE here because the comparison would be with zero, which
2267   // isn't interesting.
2268   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2269   const SCEVNAryExpr *Max = nullptr;
2270   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2271     Pred = ICmpInst::ICMP_SLE;
2272     Max = S;
2273   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2274     Pred = ICmpInst::ICMP_SLT;
2275     Max = S;
2276   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2277     Pred = ICmpInst::ICMP_ULT;
2278     Max = U;
2279   } else {
2280     // No match; bail.
2281     return Cond;
2282   }
2283 
2284   // To handle a max with more than two operands, this optimization would
2285   // require additional checking and setup.
2286   if (Max->getNumOperands() != 2)
2287     return Cond;
2288 
2289   const SCEV *MaxLHS = Max->getOperand(0);
2290   const SCEV *MaxRHS = Max->getOperand(1);
2291 
2292   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2293   // for a comparison with 1. For <= and >=, a comparison with zero.
2294   if (!MaxLHS ||
2295       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2296     return Cond;
2297 
2298   // Check the relevant induction variable for conformance to
2299   // the pattern.
2300   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2301   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2302   if (!AR || !AR->isAffine() ||
2303       AR->getStart() != One ||
2304       AR->getStepRecurrence(SE) != One)
2305     return Cond;
2306 
2307   assert(AR->getLoop() == L &&
2308          "Loop condition operand is an addrec in a different loop!");
2309 
2310   // Check the right operand of the select, and remember it, as it will
2311   // be used in the new comparison instruction.
2312   Value *NewRHS = nullptr;
2313   if (ICmpInst::isTrueWhenEqual(Pred)) {
2314     // Look for n+1, and grab n.
2315     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2316       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2317          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2318            NewRHS = BO->getOperand(0);
2319     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2320       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2321         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2322           NewRHS = BO->getOperand(0);
2323     if (!NewRHS)
2324       return Cond;
2325   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2326     NewRHS = Sel->getOperand(1);
2327   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2328     NewRHS = Sel->getOperand(2);
2329   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2330     NewRHS = SU->getValue();
2331   else
2332     // Max doesn't match expected pattern.
2333     return Cond;
2334 
2335   // Determine the new comparison opcode. It may be signed or unsigned,
2336   // and the original comparison may be either equality or inequality.
2337   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2338     Pred = CmpInst::getInversePredicate(Pred);
2339 
2340   // Ok, everything looks ok to change the condition into an SLT or SGE and
2341   // delete the max calculation.
2342   ICmpInst *NewCond =
2343     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2344 
2345   // Delete the max calculation instructions.
2346   Cond->replaceAllUsesWith(NewCond);
2347   CondUse->setUser(NewCond);
2348   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2349   Cond->eraseFromParent();
2350   Sel->eraseFromParent();
2351   if (Cmp->use_empty())
2352     Cmp->eraseFromParent();
2353   return NewCond;
2354 }
2355 
2356 /// Change loop terminating condition to use the postinc iv when possible.
2357 void
2358 LSRInstance::OptimizeLoopTermCond() {
2359   SmallPtrSet<Instruction *, 4> PostIncs;
2360 
2361   // We need a different set of heuristics for rotated and non-rotated loops.
2362   // If a loop is rotated then the latch is also the backedge, so inserting
2363   // post-inc expressions just before the latch is ideal. To reduce live ranges
2364   // it also makes sense to rewrite terminating conditions to use post-inc
2365   // expressions.
2366   //
2367   // If the loop is not rotated then the latch is not a backedge; the latch
2368   // check is done in the loop head. Adding post-inc expressions before the
2369   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2370   // in the loop body. In this case we do *not* want to use post-inc expressions
2371   // in the latch check, and we want to insert post-inc expressions before
2372   // the backedge.
2373   BasicBlock *LatchBlock = L->getLoopLatch();
2374   SmallVector<BasicBlock*, 8> ExitingBlocks;
2375   L->getExitingBlocks(ExitingBlocks);
2376   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2377         return LatchBlock != BB;
2378       })) {
2379     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2380     IVIncInsertPos = LatchBlock->getTerminator();
2381     return;
2382   }
2383 
2384   // Otherwise treat this as a rotated loop.
2385   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2386     // Get the terminating condition for the loop if possible.  If we
2387     // can, we want to change it to use a post-incremented version of its
2388     // induction variable, to allow coalescing the live ranges for the IV into
2389     // one register value.
2390 
2391     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2392     if (!TermBr)
2393       continue;
2394     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2395     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2396       continue;
2397 
2398     // Search IVUsesByStride to find Cond's IVUse if there is one.
2399     IVStrideUse *CondUse = nullptr;
2400     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2401     if (!FindIVUserForCond(Cond, CondUse))
2402       continue;
2403 
2404     // If the trip count is computed in terms of a max (due to ScalarEvolution
2405     // being unable to find a sufficient guard, for example), change the loop
2406     // comparison to use SLT or ULT instead of NE.
2407     // One consequence of doing this now is that it disrupts the count-down
2408     // optimization. That's not always a bad thing though, because in such
2409     // cases it may still be worthwhile to avoid a max.
2410     Cond = OptimizeMax(Cond, CondUse);
2411 
2412     // If this exiting block dominates the latch block, it may also use
2413     // the post-inc value if it won't be shared with other uses.
2414     // Check for dominance.
2415     if (!DT.dominates(ExitingBlock, LatchBlock))
2416       continue;
2417 
2418     // Conservatively avoid trying to use the post-inc value in non-latch
2419     // exits if there may be pre-inc users in intervening blocks.
2420     if (LatchBlock != ExitingBlock)
2421       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2422         // Test if the use is reachable from the exiting block. This dominator
2423         // query is a conservative approximation of reachability.
2424         if (&*UI != CondUse &&
2425             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2426           // Conservatively assume there may be reuse if the quotient of their
2427           // strides could be a legal scale.
2428           const SCEV *A = IU.getStride(*CondUse, L);
2429           const SCEV *B = IU.getStride(*UI, L);
2430           if (!A || !B) continue;
2431           if (SE.getTypeSizeInBits(A->getType()) !=
2432               SE.getTypeSizeInBits(B->getType())) {
2433             if (SE.getTypeSizeInBits(A->getType()) >
2434                 SE.getTypeSizeInBits(B->getType()))
2435               B = SE.getSignExtendExpr(B, A->getType());
2436             else
2437               A = SE.getSignExtendExpr(A, B->getType());
2438           }
2439           if (const SCEVConstant *D =
2440                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2441             const ConstantInt *C = D->getValue();
2442             // Stride of one or negative one can have reuse with non-addresses.
2443             if (C->isOne() || C->isMinusOne())
2444               goto decline_post_inc;
2445             // Avoid weird situations.
2446             if (C->getValue().getMinSignedBits() >= 64 ||
2447                 C->getValue().isMinSignedValue())
2448               goto decline_post_inc;
2449             // Check for possible scaled-address reuse.
2450             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2451               MemAccessTy AccessTy = getAccessType(
2452                   TTI, UI->getUser(), UI->getOperandValToReplace());
2453               int64_t Scale = C->getSExtValue();
2454               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2455                                             /*BaseOffset=*/0,
2456                                             /*HasBaseReg=*/false, Scale,
2457                                             AccessTy.AddrSpace))
2458                 goto decline_post_inc;
2459               Scale = -Scale;
2460               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2461                                             /*BaseOffset=*/0,
2462                                             /*HasBaseReg=*/false, Scale,
2463                                             AccessTy.AddrSpace))
2464                 goto decline_post_inc;
2465             }
2466           }
2467         }
2468 
2469     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2470                       << *Cond << '\n');
2471 
2472     // It's possible for the setcc instruction to be anywhere in the loop, and
2473     // possible for it to have multiple users.  If it is not immediately before
2474     // the exiting block branch, move it.
2475     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2476       if (Cond->hasOneUse()) {
2477         Cond->moveBefore(TermBr);
2478       } else {
2479         // Clone the terminating condition and insert into the loopend.
2480         ICmpInst *OldCond = Cond;
2481         Cond = cast<ICmpInst>(Cond->clone());
2482         Cond->setName(L->getHeader()->getName() + ".termcond");
2483         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2484 
2485         // Clone the IVUse, as the old use still exists!
2486         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2487         TermBr->replaceUsesOfWith(OldCond, Cond);
2488       }
2489     }
2490 
2491     // If we get to here, we know that we can transform the setcc instruction to
2492     // use the post-incremented version of the IV, allowing us to coalesce the
2493     // live ranges for the IV correctly.
2494     CondUse->transformToPostInc(L);
2495     Changed = true;
2496 
2497     PostIncs.insert(Cond);
2498   decline_post_inc:;
2499   }
2500 
2501   // Determine an insertion point for the loop induction variable increment. It
2502   // must dominate all the post-inc comparisons we just set up, and it must
2503   // dominate the loop latch edge.
2504   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2505   for (Instruction *Inst : PostIncs) {
2506     BasicBlock *BB =
2507       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2508                                     Inst->getParent());
2509     if (BB == Inst->getParent())
2510       IVIncInsertPos = Inst;
2511     else if (BB != IVIncInsertPos->getParent())
2512       IVIncInsertPos = BB->getTerminator();
2513   }
2514 }
2515 
2516 /// Determine if the given use can accommodate a fixup at the given offset and
2517 /// other details. If so, update the use and return true.
2518 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2519                                      bool HasBaseReg, LSRUse::KindType Kind,
2520                                      MemAccessTy AccessTy) {
2521   int64_t NewMinOffset = LU.MinOffset;
2522   int64_t NewMaxOffset = LU.MaxOffset;
2523   MemAccessTy NewAccessTy = AccessTy;
2524 
2525   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2526   // something conservative, however this can pessimize in the case that one of
2527   // the uses will have all its uses outside the loop, for example.
2528   if (LU.Kind != Kind)
2529     return false;
2530 
2531   // Check for a mismatched access type, and fall back conservatively as needed.
2532   // TODO: Be less conservative when the type is similar and can use the same
2533   // addressing modes.
2534   if (Kind == LSRUse::Address) {
2535     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2536       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2537                                             AccessTy.AddrSpace);
2538     }
2539   }
2540 
2541   // Conservatively assume HasBaseReg is true for now.
2542   if (NewOffset < LU.MinOffset) {
2543     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2544                           LU.MaxOffset - NewOffset, HasBaseReg))
2545       return false;
2546     NewMinOffset = NewOffset;
2547   } else if (NewOffset > LU.MaxOffset) {
2548     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2549                           NewOffset - LU.MinOffset, HasBaseReg))
2550       return false;
2551     NewMaxOffset = NewOffset;
2552   }
2553 
2554   // Update the use.
2555   LU.MinOffset = NewMinOffset;
2556   LU.MaxOffset = NewMaxOffset;
2557   LU.AccessTy = NewAccessTy;
2558   return true;
2559 }
2560 
2561 /// Return an LSRUse index and an offset value for a fixup which needs the given
2562 /// expression, with the given kind and optional access type.  Either reuse an
2563 /// existing use or create a new one, as needed.
2564 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2565                                                LSRUse::KindType Kind,
2566                                                MemAccessTy AccessTy) {
2567   const SCEV *Copy = Expr;
2568   int64_t Offset = ExtractImmediate(Expr, SE);
2569 
2570   // Basic uses can't accept any offset, for example.
2571   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2572                         Offset, /*HasBaseReg=*/ true)) {
2573     Expr = Copy;
2574     Offset = 0;
2575   }
2576 
2577   std::pair<UseMapTy::iterator, bool> P =
2578     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2579   if (!P.second) {
2580     // A use already existed with this base.
2581     size_t LUIdx = P.first->second;
2582     LSRUse &LU = Uses[LUIdx];
2583     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2584       // Reuse this use.
2585       return std::make_pair(LUIdx, Offset);
2586   }
2587 
2588   // Create a new use.
2589   size_t LUIdx = Uses.size();
2590   P.first->second = LUIdx;
2591   Uses.push_back(LSRUse(Kind, AccessTy));
2592   LSRUse &LU = Uses[LUIdx];
2593 
2594   LU.MinOffset = Offset;
2595   LU.MaxOffset = Offset;
2596   return std::make_pair(LUIdx, Offset);
2597 }
2598 
2599 /// Delete the given use from the Uses list.
2600 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2601   if (&LU != &Uses.back())
2602     std::swap(LU, Uses.back());
2603   Uses.pop_back();
2604 
2605   // Update RegUses.
2606   RegUses.swapAndDropUse(LUIdx, Uses.size());
2607 }
2608 
2609 /// Look for a use distinct from OrigLU which is has a formula that has the same
2610 /// registers as the given formula.
2611 LSRUse *
2612 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2613                                        const LSRUse &OrigLU) {
2614   // Search all uses for the formula. This could be more clever.
2615   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2616     LSRUse &LU = Uses[LUIdx];
2617     // Check whether this use is close enough to OrigLU, to see whether it's
2618     // worthwhile looking through its formulae.
2619     // Ignore ICmpZero uses because they may contain formulae generated by
2620     // GenerateICmpZeroScales, in which case adding fixup offsets may
2621     // be invalid.
2622     if (&LU != &OrigLU &&
2623         LU.Kind != LSRUse::ICmpZero &&
2624         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2625         LU.WidestFixupType == OrigLU.WidestFixupType &&
2626         LU.HasFormulaWithSameRegs(OrigF)) {
2627       // Scan through this use's formulae.
2628       for (const Formula &F : LU.Formulae) {
2629         // Check to see if this formula has the same registers and symbols
2630         // as OrigF.
2631         if (F.BaseRegs == OrigF.BaseRegs &&
2632             F.ScaledReg == OrigF.ScaledReg &&
2633             F.BaseGV == OrigF.BaseGV &&
2634             F.Scale == OrigF.Scale &&
2635             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2636           if (F.BaseOffset == 0)
2637             return &LU;
2638           // This is the formula where all the registers and symbols matched;
2639           // there aren't going to be any others. Since we declined it, we
2640           // can skip the rest of the formulae and proceed to the next LSRUse.
2641           break;
2642         }
2643       }
2644     }
2645   }
2646 
2647   // Nothing looked good.
2648   return nullptr;
2649 }
2650 
2651 void LSRInstance::CollectInterestingTypesAndFactors() {
2652   SmallSetVector<const SCEV *, 4> Strides;
2653 
2654   // Collect interesting types and strides.
2655   SmallVector<const SCEV *, 4> Worklist;
2656   for (const IVStrideUse &U : IU) {
2657     const SCEV *Expr = IU.getExpr(U);
2658 
2659     // Collect interesting types.
2660     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2661 
2662     // Add strides for mentioned loops.
2663     Worklist.push_back(Expr);
2664     do {
2665       const SCEV *S = Worklist.pop_back_val();
2666       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2667         if (AR->getLoop() == L)
2668           Strides.insert(AR->getStepRecurrence(SE));
2669         Worklist.push_back(AR->getStart());
2670       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2671         Worklist.append(Add->op_begin(), Add->op_end());
2672       }
2673     } while (!Worklist.empty());
2674   }
2675 
2676   // Compute interesting factors from the set of interesting strides.
2677   for (SmallSetVector<const SCEV *, 4>::const_iterator
2678        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2679     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2680          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2681       const SCEV *OldStride = *I;
2682       const SCEV *NewStride = *NewStrideIter;
2683 
2684       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2685           SE.getTypeSizeInBits(NewStride->getType())) {
2686         if (SE.getTypeSizeInBits(OldStride->getType()) >
2687             SE.getTypeSizeInBits(NewStride->getType()))
2688           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2689         else
2690           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2691       }
2692       if (const SCEVConstant *Factor =
2693             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2694                                                         SE, true))) {
2695         if (Factor->getAPInt().getMinSignedBits() <= 64)
2696           Factors.insert(Factor->getAPInt().getSExtValue());
2697       } else if (const SCEVConstant *Factor =
2698                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2699                                                                NewStride,
2700                                                                SE, true))) {
2701         if (Factor->getAPInt().getMinSignedBits() <= 64)
2702           Factors.insert(Factor->getAPInt().getSExtValue());
2703       }
2704     }
2705 
2706   // If all uses use the same type, don't bother looking for truncation-based
2707   // reuse.
2708   if (Types.size() == 1)
2709     Types.clear();
2710 
2711   LLVM_DEBUG(print_factors_and_types(dbgs()));
2712 }
2713 
2714 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2715 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2716 /// IVStrideUses, we could partially skip this.
2717 static User::op_iterator
2718 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2719               Loop *L, ScalarEvolution &SE) {
2720   for(; OI != OE; ++OI) {
2721     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2722       if (!SE.isSCEVable(Oper->getType()))
2723         continue;
2724 
2725       if (const SCEVAddRecExpr *AR =
2726           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2727         if (AR->getLoop() == L)
2728           break;
2729       }
2730     }
2731   }
2732   return OI;
2733 }
2734 
2735 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2736 /// a convenient helper.
2737 static Value *getWideOperand(Value *Oper) {
2738   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2739     return Trunc->getOperand(0);
2740   return Oper;
2741 }
2742 
2743 /// Return true if we allow an IV chain to include both types.
2744 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2745   Type *LType = LVal->getType();
2746   Type *RType = RVal->getType();
2747   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2748                               // Different address spaces means (possibly)
2749                               // different types of the pointer implementation,
2750                               // e.g. i16 vs i32 so disallow that.
2751                               (LType->getPointerAddressSpace() ==
2752                                RType->getPointerAddressSpace()));
2753 }
2754 
2755 /// Return an approximation of this SCEV expression's "base", or NULL for any
2756 /// constant. Returning the expression itself is conservative. Returning a
2757 /// deeper subexpression is more precise and valid as long as it isn't less
2758 /// complex than another subexpression. For expressions involving multiple
2759 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2760 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2761 /// IVInc==b-a.
2762 ///
2763 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2764 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2765 static const SCEV *getExprBase(const SCEV *S) {
2766   switch (S->getSCEVType()) {
2767   default: // uncluding scUnknown.
2768     return S;
2769   case scConstant:
2770     return nullptr;
2771   case scTruncate:
2772     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2773   case scZeroExtend:
2774     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2775   case scSignExtend:
2776     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2777   case scAddExpr: {
2778     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2779     // there's nothing more complex.
2780     // FIXME: not sure if we want to recognize negation.
2781     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2782     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2783            E(Add->op_begin()); I != E; ++I) {
2784       const SCEV *SubExpr = *I;
2785       if (SubExpr->getSCEVType() == scAddExpr)
2786         return getExprBase(SubExpr);
2787 
2788       if (SubExpr->getSCEVType() != scMulExpr)
2789         return SubExpr;
2790     }
2791     return S; // all operands are scaled, be conservative.
2792   }
2793   case scAddRecExpr:
2794     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2795   }
2796 }
2797 
2798 /// Return true if the chain increment is profitable to expand into a loop
2799 /// invariant value, which may require its own register. A profitable chain
2800 /// increment will be an offset relative to the same base. We allow such offsets
2801 /// to potentially be used as chain increment as long as it's not obviously
2802 /// expensive to expand using real instructions.
2803 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2804                                     const SCEV *IncExpr,
2805                                     ScalarEvolution &SE) {
2806   // Aggressively form chains when -stress-ivchain.
2807   if (StressIVChain)
2808     return true;
2809 
2810   // Do not replace a constant offset from IV head with a nonconstant IV
2811   // increment.
2812   if (!isa<SCEVConstant>(IncExpr)) {
2813     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2814     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2815       return false;
2816   }
2817 
2818   SmallPtrSet<const SCEV*, 8> Processed;
2819   return !isHighCostExpansion(IncExpr, Processed, SE);
2820 }
2821 
2822 /// Return true if the number of registers needed for the chain is estimated to
2823 /// be less than the number required for the individual IV users. First prohibit
2824 /// any IV users that keep the IV live across increments (the Users set should
2825 /// be empty). Next count the number and type of increments in the chain.
2826 ///
2827 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2828 /// effectively use postinc addressing modes. Only consider it profitable it the
2829 /// increments can be computed in fewer registers when chained.
2830 ///
2831 /// TODO: Consider IVInc free if it's already used in another chains.
2832 static bool
2833 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2834                   ScalarEvolution &SE) {
2835   if (StressIVChain)
2836     return true;
2837 
2838   if (!Chain.hasIncs())
2839     return false;
2840 
2841   if (!Users.empty()) {
2842     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2843                for (Instruction *Inst
2844                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2845     return false;
2846   }
2847   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2848 
2849   // The chain itself may require a register, so intialize cost to 1.
2850   int cost = 1;
2851 
2852   // A complete chain likely eliminates the need for keeping the original IV in
2853   // a register. LSR does not currently know how to form a complete chain unless
2854   // the header phi already exists.
2855   if (isa<PHINode>(Chain.tailUserInst())
2856       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2857     --cost;
2858   }
2859   const SCEV *LastIncExpr = nullptr;
2860   unsigned NumConstIncrements = 0;
2861   unsigned NumVarIncrements = 0;
2862   unsigned NumReusedIncrements = 0;
2863   for (const IVInc &Inc : Chain) {
2864     if (Inc.IncExpr->isZero())
2865       continue;
2866 
2867     // Incrementing by zero or some constant is neutral. We assume constants can
2868     // be folded into an addressing mode or an add's immediate operand.
2869     if (isa<SCEVConstant>(Inc.IncExpr)) {
2870       ++NumConstIncrements;
2871       continue;
2872     }
2873 
2874     if (Inc.IncExpr == LastIncExpr)
2875       ++NumReusedIncrements;
2876     else
2877       ++NumVarIncrements;
2878 
2879     LastIncExpr = Inc.IncExpr;
2880   }
2881   // An IV chain with a single increment is handled by LSR's postinc
2882   // uses. However, a chain with multiple increments requires keeping the IV's
2883   // value live longer than it needs to be if chained.
2884   if (NumConstIncrements > 1)
2885     --cost;
2886 
2887   // Materializing increment expressions in the preheader that didn't exist in
2888   // the original code may cost a register. For example, sign-extended array
2889   // indices can produce ridiculous increments like this:
2890   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2891   cost += NumVarIncrements;
2892 
2893   // Reusing variable increments likely saves a register to hold the multiple of
2894   // the stride.
2895   cost -= NumReusedIncrements;
2896 
2897   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2898                     << "\n");
2899 
2900   return cost < 0;
2901 }
2902 
2903 /// Add this IV user to an existing chain or make it the head of a new chain.
2904 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2905                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2906   // When IVs are used as types of varying widths, they are generally converted
2907   // to a wider type with some uses remaining narrow under a (free) trunc.
2908   Value *const NextIV = getWideOperand(IVOper);
2909   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2910   const SCEV *const OperExprBase = getExprBase(OperExpr);
2911 
2912   // Visit all existing chains. Check if its IVOper can be computed as a
2913   // profitable loop invariant increment from the last link in the Chain.
2914   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2915   const SCEV *LastIncExpr = nullptr;
2916   for (; ChainIdx < NChains; ++ChainIdx) {
2917     IVChain &Chain = IVChainVec[ChainIdx];
2918 
2919     // Prune the solution space aggressively by checking that both IV operands
2920     // are expressions that operate on the same unscaled SCEVUnknown. This
2921     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2922     // first avoids creating extra SCEV expressions.
2923     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2924       continue;
2925 
2926     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2927     if (!isCompatibleIVType(PrevIV, NextIV))
2928       continue;
2929 
2930     // A phi node terminates a chain.
2931     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2932       continue;
2933 
2934     // The increment must be loop-invariant so it can be kept in a register.
2935     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2936     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2937     if (!SE.isLoopInvariant(IncExpr, L))
2938       continue;
2939 
2940     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2941       LastIncExpr = IncExpr;
2942       break;
2943     }
2944   }
2945   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2946   // bother for phi nodes, because they must be last in the chain.
2947   if (ChainIdx == NChains) {
2948     if (isa<PHINode>(UserInst))
2949       return;
2950     if (NChains >= MaxChains && !StressIVChain) {
2951       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2952       return;
2953     }
2954     LastIncExpr = OperExpr;
2955     // IVUsers may have skipped over sign/zero extensions. We don't currently
2956     // attempt to form chains involving extensions unless they can be hoisted
2957     // into this loop's AddRec.
2958     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2959       return;
2960     ++NChains;
2961     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2962                                  OperExprBase));
2963     ChainUsersVec.resize(NChains);
2964     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2965                       << ") IV=" << *LastIncExpr << "\n");
2966   } else {
2967     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2968                       << ") IV+" << *LastIncExpr << "\n");
2969     // Add this IV user to the end of the chain.
2970     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2971   }
2972   IVChain &Chain = IVChainVec[ChainIdx];
2973 
2974   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2975   // This chain's NearUsers become FarUsers.
2976   if (!LastIncExpr->isZero()) {
2977     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2978                                             NearUsers.end());
2979     NearUsers.clear();
2980   }
2981 
2982   // All other uses of IVOperand become near uses of the chain.
2983   // We currently ignore intermediate values within SCEV expressions, assuming
2984   // they will eventually be used be the current chain, or can be computed
2985   // from one of the chain increments. To be more precise we could
2986   // transitively follow its user and only add leaf IV users to the set.
2987   for (User *U : IVOper->users()) {
2988     Instruction *OtherUse = dyn_cast<Instruction>(U);
2989     if (!OtherUse)
2990       continue;
2991     // Uses in the chain will no longer be uses if the chain is formed.
2992     // Include the head of the chain in this iteration (not Chain.begin()).
2993     IVChain::const_iterator IncIter = Chain.Incs.begin();
2994     IVChain::const_iterator IncEnd = Chain.Incs.end();
2995     for( ; IncIter != IncEnd; ++IncIter) {
2996       if (IncIter->UserInst == OtherUse)
2997         break;
2998     }
2999     if (IncIter != IncEnd)
3000       continue;
3001 
3002     if (SE.isSCEVable(OtherUse->getType())
3003         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3004         && IU.isIVUserOrOperand(OtherUse)) {
3005       continue;
3006     }
3007     NearUsers.insert(OtherUse);
3008   }
3009 
3010   // Since this user is part of the chain, it's no longer considered a use
3011   // of the chain.
3012   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3013 }
3014 
3015 /// Populate the vector of Chains.
3016 ///
3017 /// This decreases ILP at the architecture level. Targets with ample registers,
3018 /// multiple memory ports, and no register renaming probably don't want
3019 /// this. However, such targets should probably disable LSR altogether.
3020 ///
3021 /// The job of LSR is to make a reasonable choice of induction variables across
3022 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3023 /// ILP *within the loop* if the target wants it.
3024 ///
3025 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3026 /// will not reorder memory operations, it will recognize this as a chain, but
3027 /// will generate redundant IV increments. Ideally this would be corrected later
3028 /// by a smart scheduler:
3029 ///        = A[i]
3030 ///        = A[i+x]
3031 /// A[i]   =
3032 /// A[i+x] =
3033 ///
3034 /// TODO: Walk the entire domtree within this loop, not just the path to the
3035 /// loop latch. This will discover chains on side paths, but requires
3036 /// maintaining multiple copies of the Chains state.
3037 void LSRInstance::CollectChains() {
3038   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3039   SmallVector<ChainUsers, 8> ChainUsersVec;
3040 
3041   SmallVector<BasicBlock *,8> LatchPath;
3042   BasicBlock *LoopHeader = L->getHeader();
3043   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3044        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3045     LatchPath.push_back(Rung->getBlock());
3046   }
3047   LatchPath.push_back(LoopHeader);
3048 
3049   // Walk the instruction stream from the loop header to the loop latch.
3050   for (BasicBlock *BB : reverse(LatchPath)) {
3051     for (Instruction &I : *BB) {
3052       // Skip instructions that weren't seen by IVUsers analysis.
3053       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3054         continue;
3055 
3056       // Ignore users that are part of a SCEV expression. This way we only
3057       // consider leaf IV Users. This effectively rediscovers a portion of
3058       // IVUsers analysis but in program order this time.
3059       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3060           continue;
3061 
3062       // Remove this instruction from any NearUsers set it may be in.
3063       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3064            ChainIdx < NChains; ++ChainIdx) {
3065         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3066       }
3067       // Search for operands that can be chained.
3068       SmallPtrSet<Instruction*, 4> UniqueOperands;
3069       User::op_iterator IVOpEnd = I.op_end();
3070       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3071       while (IVOpIter != IVOpEnd) {
3072         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3073         if (UniqueOperands.insert(IVOpInst).second)
3074           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3075         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3076       }
3077     } // Continue walking down the instructions.
3078   } // Continue walking down the domtree.
3079   // Visit phi backedges to determine if the chain can generate the IV postinc.
3080   for (PHINode &PN : L->getHeader()->phis()) {
3081     if (!SE.isSCEVable(PN.getType()))
3082       continue;
3083 
3084     Instruction *IncV =
3085         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3086     if (IncV)
3087       ChainInstruction(&PN, IncV, ChainUsersVec);
3088   }
3089   // Remove any unprofitable chains.
3090   unsigned ChainIdx = 0;
3091   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3092        UsersIdx < NChains; ++UsersIdx) {
3093     if (!isProfitableChain(IVChainVec[UsersIdx],
3094                            ChainUsersVec[UsersIdx].FarUsers, SE))
3095       continue;
3096     // Preserve the chain at UsesIdx.
3097     if (ChainIdx != UsersIdx)
3098       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3099     FinalizeChain(IVChainVec[ChainIdx]);
3100     ++ChainIdx;
3101   }
3102   IVChainVec.resize(ChainIdx);
3103 }
3104 
3105 void LSRInstance::FinalizeChain(IVChain &Chain) {
3106   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3107   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3108 
3109   for (const IVInc &Inc : Chain) {
3110     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3111     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3112     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3113     IVIncSet.insert(UseI);
3114   }
3115 }
3116 
3117 /// Return true if the IVInc can be folded into an addressing mode.
3118 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3119                              Value *Operand, const TargetTransformInfo &TTI) {
3120   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3121   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3122     return false;
3123 
3124   if (IncConst->getAPInt().getMinSignedBits() > 64)
3125     return false;
3126 
3127   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3128   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3129   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3130                         IncOffset, /*HasBaseReg=*/false))
3131     return false;
3132 
3133   return true;
3134 }
3135 
3136 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3137 /// user's operand from the previous IV user's operand.
3138 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3139                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3140   // Find the new IVOperand for the head of the chain. It may have been replaced
3141   // by LSR.
3142   const IVInc &Head = Chain.Incs[0];
3143   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3144   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3145   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3146                                              IVOpEnd, L, SE);
3147   Value *IVSrc = nullptr;
3148   while (IVOpIter != IVOpEnd) {
3149     IVSrc = getWideOperand(*IVOpIter);
3150 
3151     // If this operand computes the expression that the chain needs, we may use
3152     // it. (Check this after setting IVSrc which is used below.)
3153     //
3154     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3155     // narrow for the chain, so we can no longer use it. We do allow using a
3156     // wider phi, assuming the LSR checked for free truncation. In that case we
3157     // should already have a truncate on this operand such that
3158     // getSCEV(IVSrc) == IncExpr.
3159     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3160         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3161       break;
3162     }
3163     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3164   }
3165   if (IVOpIter == IVOpEnd) {
3166     // Gracefully give up on this chain.
3167     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3168     return;
3169   }
3170   assert(IVSrc && "Failed to find IV chain source");
3171 
3172   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3173   Type *IVTy = IVSrc->getType();
3174   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3175   const SCEV *LeftOverExpr = nullptr;
3176   for (const IVInc &Inc : Chain) {
3177     Instruction *InsertPt = Inc.UserInst;
3178     if (isa<PHINode>(InsertPt))
3179       InsertPt = L->getLoopLatch()->getTerminator();
3180 
3181     // IVOper will replace the current IV User's operand. IVSrc is the IV
3182     // value currently held in a register.
3183     Value *IVOper = IVSrc;
3184     if (!Inc.IncExpr->isZero()) {
3185       // IncExpr was the result of subtraction of two narrow values, so must
3186       // be signed.
3187       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3188       LeftOverExpr = LeftOverExpr ?
3189         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3190     }
3191     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3192       // Expand the IV increment.
3193       Rewriter.clearPostInc();
3194       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3195       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3196                                              SE.getUnknown(IncV));
3197       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3198 
3199       // If an IV increment can't be folded, use it as the next IV value.
3200       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3201         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3202         IVSrc = IVOper;
3203         LeftOverExpr = nullptr;
3204       }
3205     }
3206     Type *OperTy = Inc.IVOperand->getType();
3207     if (IVTy != OperTy) {
3208       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3209              "cannot extend a chained IV");
3210       IRBuilder<> Builder(InsertPt);
3211       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3212     }
3213     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3214     DeadInsts.emplace_back(Inc.IVOperand);
3215   }
3216   // If LSR created a new, wider phi, we may also replace its postinc. We only
3217   // do this if we also found a wide value for the head of the chain.
3218   if (isa<PHINode>(Chain.tailUserInst())) {
3219     for (PHINode &Phi : L->getHeader()->phis()) {
3220       if (!isCompatibleIVType(&Phi, IVSrc))
3221         continue;
3222       Instruction *PostIncV = dyn_cast<Instruction>(
3223           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3224       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3225         continue;
3226       Value *IVOper = IVSrc;
3227       Type *PostIncTy = PostIncV->getType();
3228       if (IVTy != PostIncTy) {
3229         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3230         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3231         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3232         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3233       }
3234       Phi.replaceUsesOfWith(PostIncV, IVOper);
3235       DeadInsts.emplace_back(PostIncV);
3236     }
3237   }
3238 }
3239 
3240 void LSRInstance::CollectFixupsAndInitialFormulae() {
3241   BranchInst *ExitBranch = nullptr;
3242   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
3243 
3244   for (const IVStrideUse &U : IU) {
3245     Instruction *UserInst = U.getUser();
3246     // Skip IV users that are part of profitable IV Chains.
3247     User::op_iterator UseI =
3248         find(UserInst->operands(), U.getOperandValToReplace());
3249     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3250     if (IVIncSet.count(UseI)) {
3251       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3252       continue;
3253     }
3254 
3255     LSRUse::KindType Kind = LSRUse::Basic;
3256     MemAccessTy AccessTy;
3257     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3258       Kind = LSRUse::Address;
3259       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3260     }
3261 
3262     const SCEV *S = IU.getExpr(U);
3263     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3264 
3265     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3266     // (N - i == 0), and this allows (N - i) to be the expression that we work
3267     // with rather than just N or i, so we can consider the register
3268     // requirements for both N and i at the same time. Limiting this code to
3269     // equality icmps is not a problem because all interesting loops use
3270     // equality icmps, thanks to IndVarSimplify.
3271     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3272       // If CI can be saved in some target, like replaced inside hardware loop
3273       // in PowerPC, no need to generate initial formulae for it.
3274       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3275         continue;
3276       if (CI->isEquality()) {
3277         // Swap the operands if needed to put the OperandValToReplace on the
3278         // left, for consistency.
3279         Value *NV = CI->getOperand(1);
3280         if (NV == U.getOperandValToReplace()) {
3281           CI->setOperand(1, CI->getOperand(0));
3282           CI->setOperand(0, NV);
3283           NV = CI->getOperand(1);
3284           Changed = true;
3285         }
3286 
3287         // x == y  -->  x - y == 0
3288         const SCEV *N = SE.getSCEV(NV);
3289         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3290           // S is normalized, so normalize N before folding it into S
3291           // to keep the result normalized.
3292           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3293           Kind = LSRUse::ICmpZero;
3294           S = SE.getMinusSCEV(N, S);
3295         }
3296 
3297         // -1 and the negations of all interesting strides (except the negation
3298         // of -1) are now also interesting.
3299         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3300           if (Factors[i] != -1)
3301             Factors.insert(-(uint64_t)Factors[i]);
3302         Factors.insert(-1);
3303       }
3304     }
3305 
3306     // Get or create an LSRUse.
3307     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3308     size_t LUIdx = P.first;
3309     int64_t Offset = P.second;
3310     LSRUse &LU = Uses[LUIdx];
3311 
3312     // Record the fixup.
3313     LSRFixup &LF = LU.getNewFixup();
3314     LF.UserInst = UserInst;
3315     LF.OperandValToReplace = U.getOperandValToReplace();
3316     LF.PostIncLoops = TmpPostIncLoops;
3317     LF.Offset = Offset;
3318     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3319 
3320     if (!LU.WidestFixupType ||
3321         SE.getTypeSizeInBits(LU.WidestFixupType) <
3322         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3323       LU.WidestFixupType = LF.OperandValToReplace->getType();
3324 
3325     // If this is the first use of this LSRUse, give it a formula.
3326     if (LU.Formulae.empty()) {
3327       InsertInitialFormula(S, LU, LUIdx);
3328       CountRegisters(LU.Formulae.back(), LUIdx);
3329     }
3330   }
3331 
3332   LLVM_DEBUG(print_fixups(dbgs()));
3333 }
3334 
3335 /// Insert a formula for the given expression into the given use, separating out
3336 /// loop-variant portions from loop-invariant and loop-computable portions.
3337 void
3338 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3339   // Mark uses whose expressions cannot be expanded.
3340   if (!isSafeToExpand(S, SE))
3341     LU.RigidFormula = true;
3342 
3343   Formula F;
3344   F.initialMatch(S, L, SE);
3345   bool Inserted = InsertFormula(LU, LUIdx, F);
3346   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3347 }
3348 
3349 /// Insert a simple single-register formula for the given expression into the
3350 /// given use.
3351 void
3352 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3353                                        LSRUse &LU, size_t LUIdx) {
3354   Formula F;
3355   F.BaseRegs.push_back(S);
3356   F.HasBaseReg = true;
3357   bool Inserted = InsertFormula(LU, LUIdx, F);
3358   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3359 }
3360 
3361 /// Note which registers are used by the given formula, updating RegUses.
3362 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3363   if (F.ScaledReg)
3364     RegUses.countRegister(F.ScaledReg, LUIdx);
3365   for (const SCEV *BaseReg : F.BaseRegs)
3366     RegUses.countRegister(BaseReg, LUIdx);
3367 }
3368 
3369 /// If the given formula has not yet been inserted, add it to the list, and
3370 /// return true. Return false otherwise.
3371 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3372   // Do not insert formula that we will not be able to expand.
3373   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3374          "Formula is illegal");
3375 
3376   if (!LU.InsertFormula(F, *L))
3377     return false;
3378 
3379   CountRegisters(F, LUIdx);
3380   return true;
3381 }
3382 
3383 /// Check for other uses of loop-invariant values which we're tracking. These
3384 /// other uses will pin these values in registers, making them less profitable
3385 /// for elimination.
3386 /// TODO: This currently misses non-constant addrec step registers.
3387 /// TODO: Should this give more weight to users inside the loop?
3388 void
3389 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3390   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3391   SmallPtrSet<const SCEV *, 32> Visited;
3392 
3393   while (!Worklist.empty()) {
3394     const SCEV *S = Worklist.pop_back_val();
3395 
3396     // Don't process the same SCEV twice
3397     if (!Visited.insert(S).second)
3398       continue;
3399 
3400     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3401       Worklist.append(N->op_begin(), N->op_end());
3402     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3403       Worklist.push_back(C->getOperand());
3404     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3405       Worklist.push_back(D->getLHS());
3406       Worklist.push_back(D->getRHS());
3407     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3408       const Value *V = US->getValue();
3409       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3410         // Look for instructions defined outside the loop.
3411         if (L->contains(Inst)) continue;
3412       } else if (isa<UndefValue>(V))
3413         // Undef doesn't have a live range, so it doesn't matter.
3414         continue;
3415       for (const Use &U : V->uses()) {
3416         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3417         // Ignore non-instructions.
3418         if (!UserInst)
3419           continue;
3420         // Ignore instructions in other functions (as can happen with
3421         // Constants).
3422         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3423           continue;
3424         // Ignore instructions not dominated by the loop.
3425         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3426           UserInst->getParent() :
3427           cast<PHINode>(UserInst)->getIncomingBlock(
3428             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3429         if (!DT.dominates(L->getHeader(), UseBB))
3430           continue;
3431         // Don't bother if the instruction is in a BB which ends in an EHPad.
3432         if (UseBB->getTerminator()->isEHPad())
3433           continue;
3434         // Don't bother rewriting PHIs in catchswitch blocks.
3435         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3436           continue;
3437         // Ignore uses which are part of other SCEV expressions, to avoid
3438         // analyzing them multiple times.
3439         if (SE.isSCEVable(UserInst->getType())) {
3440           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3441           // If the user is a no-op, look through to its uses.
3442           if (!isa<SCEVUnknown>(UserS))
3443             continue;
3444           if (UserS == US) {
3445             Worklist.push_back(
3446               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3447             continue;
3448           }
3449         }
3450         // Ignore icmp instructions which are already being analyzed.
3451         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3452           unsigned OtherIdx = !U.getOperandNo();
3453           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3454           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3455             continue;
3456         }
3457 
3458         std::pair<size_t, int64_t> P = getUse(
3459             S, LSRUse::Basic, MemAccessTy());
3460         size_t LUIdx = P.first;
3461         int64_t Offset = P.second;
3462         LSRUse &LU = Uses[LUIdx];
3463         LSRFixup &LF = LU.getNewFixup();
3464         LF.UserInst = const_cast<Instruction *>(UserInst);
3465         LF.OperandValToReplace = U;
3466         LF.Offset = Offset;
3467         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3468         if (!LU.WidestFixupType ||
3469             SE.getTypeSizeInBits(LU.WidestFixupType) <
3470             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3471           LU.WidestFixupType = LF.OperandValToReplace->getType();
3472         InsertSupplementalFormula(US, LU, LUIdx);
3473         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3474         break;
3475       }
3476     }
3477   }
3478 }
3479 
3480 /// Split S into subexpressions which can be pulled out into separate
3481 /// registers. If C is non-null, multiply each subexpression by C.
3482 ///
3483 /// Return remainder expression after factoring the subexpressions captured by
3484 /// Ops. If Ops is complete, return NULL.
3485 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3486                                    SmallVectorImpl<const SCEV *> &Ops,
3487                                    const Loop *L,
3488                                    ScalarEvolution &SE,
3489                                    unsigned Depth = 0) {
3490   // Arbitrarily cap recursion to protect compile time.
3491   if (Depth >= 3)
3492     return S;
3493 
3494   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3495     // Break out add operands.
3496     for (const SCEV *S : Add->operands()) {
3497       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3498       if (Remainder)
3499         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3500     }
3501     return nullptr;
3502   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3503     // Split a non-zero base out of an addrec.
3504     if (AR->getStart()->isZero() || !AR->isAffine())
3505       return S;
3506 
3507     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3508                                             C, Ops, L, SE, Depth+1);
3509     // Split the non-zero AddRec unless it is part of a nested recurrence that
3510     // does not pertain to this loop.
3511     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3512       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3513       Remainder = nullptr;
3514     }
3515     if (Remainder != AR->getStart()) {
3516       if (!Remainder)
3517         Remainder = SE.getConstant(AR->getType(), 0);
3518       return SE.getAddRecExpr(Remainder,
3519                               AR->getStepRecurrence(SE),
3520                               AR->getLoop(),
3521                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3522                               SCEV::FlagAnyWrap);
3523     }
3524   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3525     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3526     if (Mul->getNumOperands() != 2)
3527       return S;
3528     if (const SCEVConstant *Op0 =
3529         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3530       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3531       const SCEV *Remainder =
3532         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3533       if (Remainder)
3534         Ops.push_back(SE.getMulExpr(C, Remainder));
3535       return nullptr;
3536     }
3537   }
3538   return S;
3539 }
3540 
3541 /// Return true if the SCEV represents a value that may end up as a
3542 /// post-increment operation.
3543 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3544                               LSRUse &LU, const SCEV *S, const Loop *L,
3545                               ScalarEvolution &SE) {
3546   if (LU.Kind != LSRUse::Address ||
3547       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3548     return false;
3549   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3550   if (!AR)
3551     return false;
3552   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3553   if (!isa<SCEVConstant>(LoopStep))
3554     return false;
3555   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3556       LoopStep->getType()->getScalarSizeInBits())
3557     return false;
3558   // Check if a post-indexed load/store can be used.
3559   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3560       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3561     const SCEV *LoopStart = AR->getStart();
3562     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3563       return true;
3564   }
3565   return false;
3566 }
3567 
3568 /// Helper function for LSRInstance::GenerateReassociations.
3569 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3570                                              const Formula &Base,
3571                                              unsigned Depth, size_t Idx,
3572                                              bool IsScaledReg) {
3573   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3574   // Don't generate reassociations for the base register of a value that
3575   // may generate a post-increment operator. The reason is that the
3576   // reassociations cause extra base+register formula to be created,
3577   // and possibly chosen, but the post-increment is more efficient.
3578   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3579     return;
3580   SmallVector<const SCEV *, 8> AddOps;
3581   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3582   if (Remainder)
3583     AddOps.push_back(Remainder);
3584 
3585   if (AddOps.size() == 1)
3586     return;
3587 
3588   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3589                                                      JE = AddOps.end();
3590        J != JE; ++J) {
3591     // Loop-variant "unknown" values are uninteresting; we won't be able to
3592     // do anything meaningful with them.
3593     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3594       continue;
3595 
3596     // Don't pull a constant into a register if the constant could be folded
3597     // into an immediate field.
3598     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3599                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3600       continue;
3601 
3602     // Collect all operands except *J.
3603     SmallVector<const SCEV *, 8> InnerAddOps(
3604         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3605     InnerAddOps.append(std::next(J),
3606                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3607 
3608     // Don't leave just a constant behind in a register if the constant could
3609     // be folded into an immediate field.
3610     if (InnerAddOps.size() == 1 &&
3611         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3612                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3613       continue;
3614 
3615     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3616     if (InnerSum->isZero())
3617       continue;
3618     Formula F = Base;
3619 
3620     // Add the remaining pieces of the add back into the new formula.
3621     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3622     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3623         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3624                                 InnerSumSC->getValue()->getZExtValue())) {
3625       F.UnfoldedOffset =
3626           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3627       if (IsScaledReg)
3628         F.ScaledReg = nullptr;
3629       else
3630         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3631     } else if (IsScaledReg)
3632       F.ScaledReg = InnerSum;
3633     else
3634       F.BaseRegs[Idx] = InnerSum;
3635 
3636     // Add J as its own register, or an unfolded immediate.
3637     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3638     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3639         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3640                                 SC->getValue()->getZExtValue()))
3641       F.UnfoldedOffset =
3642           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3643     else
3644       F.BaseRegs.push_back(*J);
3645     // We may have changed the number of register in base regs, adjust the
3646     // formula accordingly.
3647     F.canonicalize(*L);
3648 
3649     if (InsertFormula(LU, LUIdx, F))
3650       // If that formula hadn't been seen before, recurse to find more like
3651       // it.
3652       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3653       // Because just Depth is not enough to bound compile time.
3654       // This means that every time AddOps.size() is greater 16^x we will add
3655       // x to Depth.
3656       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3657                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3658   }
3659 }
3660 
3661 /// Split out subexpressions from adds and the bases of addrecs.
3662 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3663                                          Formula Base, unsigned Depth) {
3664   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3665   // Arbitrarily cap recursion to protect compile time.
3666   if (Depth >= 3)
3667     return;
3668 
3669   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3670     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3671 
3672   if (Base.Scale == 1)
3673     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3674                                /* Idx */ -1, /* IsScaledReg */ true);
3675 }
3676 
3677 ///  Generate a formula consisting of all of the loop-dominating registers added
3678 /// into a single register.
3679 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3680                                        Formula Base) {
3681   // This method is only interesting on a plurality of registers.
3682   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3683       (Base.UnfoldedOffset != 0) <= 1)
3684     return;
3685 
3686   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3687   // processing the formula.
3688   Base.unscale();
3689   SmallVector<const SCEV *, 4> Ops;
3690   Formula NewBase = Base;
3691   NewBase.BaseRegs.clear();
3692   Type *CombinedIntegerType = nullptr;
3693   for (const SCEV *BaseReg : Base.BaseRegs) {
3694     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3695         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3696       if (!CombinedIntegerType)
3697         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3698       Ops.push_back(BaseReg);
3699     }
3700     else
3701       NewBase.BaseRegs.push_back(BaseReg);
3702   }
3703 
3704   // If no register is relevant, we're done.
3705   if (Ops.size() == 0)
3706     return;
3707 
3708   // Utility function for generating the required variants of the combined
3709   // registers.
3710   auto GenerateFormula = [&](const SCEV *Sum) {
3711     Formula F = NewBase;
3712 
3713     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3714     // opportunity to fold something. For now, just ignore such cases
3715     // rather than proceed with zero in a register.
3716     if (Sum->isZero())
3717       return;
3718 
3719     F.BaseRegs.push_back(Sum);
3720     F.canonicalize(*L);
3721     (void)InsertFormula(LU, LUIdx, F);
3722   };
3723 
3724   // If we collected at least two registers, generate a formula combining them.
3725   if (Ops.size() > 1) {
3726     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3727     GenerateFormula(SE.getAddExpr(OpsCopy));
3728   }
3729 
3730   // If we have an unfolded offset, generate a formula combining it with the
3731   // registers collected.
3732   if (NewBase.UnfoldedOffset) {
3733     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3734     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3735                                  true));
3736     NewBase.UnfoldedOffset = 0;
3737     GenerateFormula(SE.getAddExpr(Ops));
3738   }
3739 }
3740 
3741 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3742 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3743                                               const Formula &Base, size_t Idx,
3744                                               bool IsScaledReg) {
3745   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3746   GlobalValue *GV = ExtractSymbol(G, SE);
3747   if (G->isZero() || !GV)
3748     return;
3749   Formula F = Base;
3750   F.BaseGV = GV;
3751   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3752     return;
3753   if (IsScaledReg)
3754     F.ScaledReg = G;
3755   else
3756     F.BaseRegs[Idx] = G;
3757   (void)InsertFormula(LU, LUIdx, F);
3758 }
3759 
3760 /// Generate reuse formulae using symbolic offsets.
3761 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3762                                           Formula Base) {
3763   // We can't add a symbolic offset if the address already contains one.
3764   if (Base.BaseGV) return;
3765 
3766   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3767     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3768   if (Base.Scale == 1)
3769     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3770                                 /* IsScaledReg */ true);
3771 }
3772 
3773 /// Helper function for LSRInstance::GenerateConstantOffsets.
3774 void LSRInstance::GenerateConstantOffsetsImpl(
3775     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3776     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3777 
3778   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3779     Formula F = Base;
3780     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3781 
3782     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3783                    LU.AccessTy, F)) {
3784       // Add the offset to the base register.
3785       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3786       // If it cancelled out, drop the base register, otherwise update it.
3787       if (NewG->isZero()) {
3788         if (IsScaledReg) {
3789           F.Scale = 0;
3790           F.ScaledReg = nullptr;
3791         } else
3792           F.deleteBaseReg(F.BaseRegs[Idx]);
3793         F.canonicalize(*L);
3794       } else if (IsScaledReg)
3795         F.ScaledReg = NewG;
3796       else
3797         F.BaseRegs[Idx] = NewG;
3798 
3799       (void)InsertFormula(LU, LUIdx, F);
3800     }
3801   };
3802 
3803   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3804 
3805   // With constant offsets and constant steps, we can generate pre-inc
3806   // accesses by having the offset equal the step. So, for access #0 with a
3807   // step of 8, we generate a G - 8 base which would require the first access
3808   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3809   // for itself and hopefully becomes the base for other accesses. This means
3810   // means that a single pre-indexed access can be generated to become the new
3811   // base pointer for each iteration of the loop, resulting in no extra add/sub
3812   // instructions for pointer updating.
3813   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3814     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3815       if (auto *StepRec =
3816           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3817         const APInt &StepInt = StepRec->getAPInt();
3818         int64_t Step = StepInt.isNegative() ?
3819           StepInt.getSExtValue() : StepInt.getZExtValue();
3820 
3821         for (int64_t Offset : Worklist) {
3822           Offset -= Step;
3823           GenerateOffset(G, Offset);
3824         }
3825       }
3826     }
3827   }
3828   for (int64_t Offset : Worklist)
3829     GenerateOffset(G, Offset);
3830 
3831   int64_t Imm = ExtractImmediate(G, SE);
3832   if (G->isZero() || Imm == 0)
3833     return;
3834   Formula F = Base;
3835   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3836   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3837     return;
3838   if (IsScaledReg)
3839     F.ScaledReg = G;
3840   else
3841     F.BaseRegs[Idx] = G;
3842   (void)InsertFormula(LU, LUIdx, F);
3843 }
3844 
3845 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3846 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3847                                           Formula Base) {
3848   // TODO: For now, just add the min and max offset, because it usually isn't
3849   // worthwhile looking at everything inbetween.
3850   SmallVector<int64_t, 2> Worklist;
3851   Worklist.push_back(LU.MinOffset);
3852   if (LU.MaxOffset != LU.MinOffset)
3853     Worklist.push_back(LU.MaxOffset);
3854 
3855   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3856     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3857   if (Base.Scale == 1)
3858     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3859                                 /* IsScaledReg */ true);
3860 }
3861 
3862 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3863 /// == y -> x*c == y*c.
3864 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3865                                          Formula Base) {
3866   if (LU.Kind != LSRUse::ICmpZero) return;
3867 
3868   // Determine the integer type for the base formula.
3869   Type *IntTy = Base.getType();
3870   if (!IntTy) return;
3871   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3872 
3873   // Don't do this if there is more than one offset.
3874   if (LU.MinOffset != LU.MaxOffset) return;
3875 
3876   // Check if transformation is valid. It is illegal to multiply pointer.
3877   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3878     return;
3879   for (const SCEV *BaseReg : Base.BaseRegs)
3880     if (BaseReg->getType()->isPointerTy())
3881       return;
3882   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3883 
3884   // Check each interesting stride.
3885   for (int64_t Factor : Factors) {
3886     // Check that the multiplication doesn't overflow.
3887     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3888       continue;
3889     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3890     if (NewBaseOffset / Factor != Base.BaseOffset)
3891       continue;
3892     // If the offset will be truncated at this use, check that it is in bounds.
3893     if (!IntTy->isPointerTy() &&
3894         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3895       continue;
3896 
3897     // Check that multiplying with the use offset doesn't overflow.
3898     int64_t Offset = LU.MinOffset;
3899     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3900       continue;
3901     Offset = (uint64_t)Offset * Factor;
3902     if (Offset / Factor != LU.MinOffset)
3903       continue;
3904     // If the offset will be truncated at this use, check that it is in bounds.
3905     if (!IntTy->isPointerTy() &&
3906         !ConstantInt::isValueValidForType(IntTy, Offset))
3907       continue;
3908 
3909     Formula F = Base;
3910     F.BaseOffset = NewBaseOffset;
3911 
3912     // Check that this scale is legal.
3913     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3914       continue;
3915 
3916     // Compensate for the use having MinOffset built into it.
3917     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3918 
3919     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3920 
3921     // Check that multiplying with each base register doesn't overflow.
3922     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3923       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3924       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3925         goto next;
3926     }
3927 
3928     // Check that multiplying with the scaled register doesn't overflow.
3929     if (F.ScaledReg) {
3930       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3931       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3932         continue;
3933     }
3934 
3935     // Check that multiplying with the unfolded offset doesn't overflow.
3936     if (F.UnfoldedOffset != 0) {
3937       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3938           Factor == -1)
3939         continue;
3940       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3941       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3942         continue;
3943       // If the offset will be truncated, check that it is in bounds.
3944       if (!IntTy->isPointerTy() &&
3945           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3946         continue;
3947     }
3948 
3949     // If we make it here and it's legal, add it.
3950     (void)InsertFormula(LU, LUIdx, F);
3951   next:;
3952   }
3953 }
3954 
3955 /// Generate stride factor reuse formulae by making use of scaled-offset address
3956 /// modes, for example.
3957 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3958   // Determine the integer type for the base formula.
3959   Type *IntTy = Base.getType();
3960   if (!IntTy) return;
3961 
3962   // If this Formula already has a scaled register, we can't add another one.
3963   // Try to unscale the formula to generate a better scale.
3964   if (Base.Scale != 0 && !Base.unscale())
3965     return;
3966 
3967   assert(Base.Scale == 0 && "unscale did not did its job!");
3968 
3969   // Check each interesting stride.
3970   for (int64_t Factor : Factors) {
3971     Base.Scale = Factor;
3972     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3973     // Check whether this scale is going to be legal.
3974     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3975                     Base)) {
3976       // As a special-case, handle special out-of-loop Basic users specially.
3977       // TODO: Reconsider this special case.
3978       if (LU.Kind == LSRUse::Basic &&
3979           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3980                      LU.AccessTy, Base) &&
3981           LU.AllFixupsOutsideLoop)
3982         LU.Kind = LSRUse::Special;
3983       else
3984         continue;
3985     }
3986     // For an ICmpZero, negating a solitary base register won't lead to
3987     // new solutions.
3988     if (LU.Kind == LSRUse::ICmpZero &&
3989         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3990       continue;
3991     // For each addrec base reg, if its loop is current loop, apply the scale.
3992     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3993       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3994       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3995         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3996         if (FactorS->isZero())
3997           continue;
3998         // Divide out the factor, ignoring high bits, since we'll be
3999         // scaling the value back up in the end.
4000         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4001           // TODO: This could be optimized to avoid all the copying.
4002           Formula F = Base;
4003           F.ScaledReg = Quotient;
4004           F.deleteBaseReg(F.BaseRegs[i]);
4005           // The canonical representation of 1*reg is reg, which is already in
4006           // Base. In that case, do not try to insert the formula, it will be
4007           // rejected anyway.
4008           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4009                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4010             continue;
4011           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4012           // non canonical Formula with ScaledReg's loop not being L.
4013           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4014             F.canonicalize(*L);
4015           (void)InsertFormula(LU, LUIdx, F);
4016         }
4017       }
4018     }
4019   }
4020 }
4021 
4022 /// Generate reuse formulae from different IV types.
4023 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4024   // Don't bother truncating symbolic values.
4025   if (Base.BaseGV) return;
4026 
4027   // Determine the integer type for the base formula.
4028   Type *DstTy = Base.getType();
4029   if (!DstTy) return;
4030   DstTy = SE.getEffectiveSCEVType(DstTy);
4031 
4032   for (Type *SrcTy : Types) {
4033     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4034       Formula F = Base;
4035 
4036       // Sometimes SCEV is able to prove zero during ext transform. It may
4037       // happen if SCEV did not do all possible transforms while creating the
4038       // initial node (maybe due to depth limitations), but it can do them while
4039       // taking ext.
4040       if (F.ScaledReg) {
4041         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4042         if (NewScaledReg->isZero())
4043          continue;
4044         F.ScaledReg = NewScaledReg;
4045       }
4046       bool HasZeroBaseReg = false;
4047       for (const SCEV *&BaseReg : F.BaseRegs) {
4048         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4049         if (NewBaseReg->isZero()) {
4050           HasZeroBaseReg = true;
4051           break;
4052         }
4053         BaseReg = NewBaseReg;
4054       }
4055       if (HasZeroBaseReg)
4056         continue;
4057 
4058       // TODO: This assumes we've done basic processing on all uses and
4059       // have an idea what the register usage is.
4060       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4061         continue;
4062 
4063       F.canonicalize(*L);
4064       (void)InsertFormula(LU, LUIdx, F);
4065     }
4066   }
4067 }
4068 
4069 namespace {
4070 
4071 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4072 /// modifications so that the search phase doesn't have to worry about the data
4073 /// structures moving underneath it.
4074 struct WorkItem {
4075   size_t LUIdx;
4076   int64_t Imm;
4077   const SCEV *OrigReg;
4078 
4079   WorkItem(size_t LI, int64_t I, const SCEV *R)
4080       : LUIdx(LI), Imm(I), OrigReg(R) {}
4081 
4082   void print(raw_ostream &OS) const;
4083   void dump() const;
4084 };
4085 
4086 } // end anonymous namespace
4087 
4088 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4089 void WorkItem::print(raw_ostream &OS) const {
4090   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4091      << " , add offset " << Imm;
4092 }
4093 
4094 LLVM_DUMP_METHOD void WorkItem::dump() const {
4095   print(errs()); errs() << '\n';
4096 }
4097 #endif
4098 
4099 /// Look for registers which are a constant distance apart and try to form reuse
4100 /// opportunities between them.
4101 void LSRInstance::GenerateCrossUseConstantOffsets() {
4102   // Group the registers by their value without any added constant offset.
4103   using ImmMapTy = std::map<int64_t, const SCEV *>;
4104 
4105   DenseMap<const SCEV *, ImmMapTy> Map;
4106   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4107   SmallVector<const SCEV *, 8> Sequence;
4108   for (const SCEV *Use : RegUses) {
4109     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4110     int64_t Imm = ExtractImmediate(Reg, SE);
4111     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4112     if (Pair.second)
4113       Sequence.push_back(Reg);
4114     Pair.first->second.insert(std::make_pair(Imm, Use));
4115     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4116   }
4117 
4118   // Now examine each set of registers with the same base value. Build up
4119   // a list of work to do and do the work in a separate step so that we're
4120   // not adding formulae and register counts while we're searching.
4121   SmallVector<WorkItem, 32> WorkItems;
4122   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4123   for (const SCEV *Reg : Sequence) {
4124     const ImmMapTy &Imms = Map.find(Reg)->second;
4125 
4126     // It's not worthwhile looking for reuse if there's only one offset.
4127     if (Imms.size() == 1)
4128       continue;
4129 
4130     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4131                for (const auto &Entry
4132                     : Imms) dbgs()
4133                << ' ' << Entry.first;
4134                dbgs() << '\n');
4135 
4136     // Examine each offset.
4137     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4138          J != JE; ++J) {
4139       const SCEV *OrigReg = J->second;
4140 
4141       int64_t JImm = J->first;
4142       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4143 
4144       if (!isa<SCEVConstant>(OrigReg) &&
4145           UsedByIndicesMap[Reg].count() == 1) {
4146         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4147                           << '\n');
4148         continue;
4149       }
4150 
4151       // Conservatively examine offsets between this orig reg a few selected
4152       // other orig regs.
4153       int64_t First = Imms.begin()->first;
4154       int64_t Last = std::prev(Imms.end())->first;
4155       // Compute (First + Last)  / 2 without overflow using the fact that
4156       // First + Last = 2 * (First + Last) + (First ^ Last).
4157       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4158       // If the result is negative and First is odd and Last even (or vice versa),
4159       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4160       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4161       ImmMapTy::const_iterator OtherImms[] = {
4162           Imms.begin(), std::prev(Imms.end()),
4163          Imms.lower_bound(Avg)};
4164       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4165         ImmMapTy::const_iterator M = OtherImms[i];
4166         if (M == J || M == JE) continue;
4167 
4168         // Compute the difference between the two.
4169         int64_t Imm = (uint64_t)JImm - M->first;
4170         for (unsigned LUIdx : UsedByIndices.set_bits())
4171           // Make a memo of this use, offset, and register tuple.
4172           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4173             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4174       }
4175     }
4176   }
4177 
4178   Map.clear();
4179   Sequence.clear();
4180   UsedByIndicesMap.clear();
4181   UniqueItems.clear();
4182 
4183   // Now iterate through the worklist and add new formulae.
4184   for (const WorkItem &WI : WorkItems) {
4185     size_t LUIdx = WI.LUIdx;
4186     LSRUse &LU = Uses[LUIdx];
4187     int64_t Imm = WI.Imm;
4188     const SCEV *OrigReg = WI.OrigReg;
4189 
4190     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4191     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4192     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4193 
4194     // TODO: Use a more targeted data structure.
4195     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4196       Formula F = LU.Formulae[L];
4197       // FIXME: The code for the scaled and unscaled registers looks
4198       // very similar but slightly different. Investigate if they
4199       // could be merged. That way, we would not have to unscale the
4200       // Formula.
4201       F.unscale();
4202       // Use the immediate in the scaled register.
4203       if (F.ScaledReg == OrigReg) {
4204         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4205         // Don't create 50 + reg(-50).
4206         if (F.referencesReg(SE.getSCEV(
4207                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4208           continue;
4209         Formula NewF = F;
4210         NewF.BaseOffset = Offset;
4211         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4212                         NewF))
4213           continue;
4214         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4215 
4216         // If the new scale is a constant in a register, and adding the constant
4217         // value to the immediate would produce a value closer to zero than the
4218         // immediate itself, then the formula isn't worthwhile.
4219         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4220           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4221               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4222                   .ule(std::abs(NewF.BaseOffset)))
4223             continue;
4224 
4225         // OK, looks good.
4226         NewF.canonicalize(*this->L);
4227         (void)InsertFormula(LU, LUIdx, NewF);
4228       } else {
4229         // Use the immediate in a base register.
4230         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4231           const SCEV *BaseReg = F.BaseRegs[N];
4232           if (BaseReg != OrigReg)
4233             continue;
4234           Formula NewF = F;
4235           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4236           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4237                           LU.Kind, LU.AccessTy, NewF)) {
4238             if (TTI.shouldFavorPostInc() &&
4239                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4240               continue;
4241             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4242               continue;
4243             NewF = F;
4244             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4245           }
4246           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4247 
4248           // If the new formula has a constant in a register, and adding the
4249           // constant value to the immediate would produce a value closer to
4250           // zero than the immediate itself, then the formula isn't worthwhile.
4251           for (const SCEV *NewReg : NewF.BaseRegs)
4252             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4253               if ((C->getAPInt() + NewF.BaseOffset)
4254                       .abs()
4255                       .slt(std::abs(NewF.BaseOffset)) &&
4256                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4257                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4258                 goto skip_formula;
4259 
4260           // Ok, looks good.
4261           NewF.canonicalize(*this->L);
4262           (void)InsertFormula(LU, LUIdx, NewF);
4263           break;
4264         skip_formula:;
4265         }
4266       }
4267     }
4268   }
4269 }
4270 
4271 /// Generate formulae for each use.
4272 void
4273 LSRInstance::GenerateAllReuseFormulae() {
4274   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4275   // queries are more precise.
4276   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4277     LSRUse &LU = Uses[LUIdx];
4278     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4280     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4281       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4282   }
4283   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4284     LSRUse &LU = Uses[LUIdx];
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4287     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4288       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4289     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4290       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4291     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4292       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4293   }
4294   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4295     LSRUse &LU = Uses[LUIdx];
4296     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4297       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4298   }
4299 
4300   GenerateCrossUseConstantOffsets();
4301 
4302   LLVM_DEBUG(dbgs() << "\n"
4303                        "After generating reuse formulae:\n";
4304              print_uses(dbgs()));
4305 }
4306 
4307 /// If there are multiple formulae with the same set of registers used
4308 /// by other uses, pick the best one and delete the others.
4309 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4310   DenseSet<const SCEV *> VisitedRegs;
4311   SmallPtrSet<const SCEV *, 16> Regs;
4312   SmallPtrSet<const SCEV *, 16> LoserRegs;
4313 #ifndef NDEBUG
4314   bool ChangedFormulae = false;
4315 #endif
4316 
4317   // Collect the best formula for each unique set of shared registers. This
4318   // is reset for each use.
4319   using BestFormulaeTy =
4320       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4321 
4322   BestFormulaeTy BestFormulae;
4323 
4324   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4325     LSRUse &LU = Uses[LUIdx];
4326     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4327                dbgs() << '\n');
4328 
4329     bool Any = false;
4330     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4331          FIdx != NumForms; ++FIdx) {
4332       Formula &F = LU.Formulae[FIdx];
4333 
4334       // Some formulas are instant losers. For example, they may depend on
4335       // nonexistent AddRecs from other loops. These need to be filtered
4336       // immediately, otherwise heuristics could choose them over others leading
4337       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4338       // avoids the need to recompute this information across formulae using the
4339       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4340       // the corresponding bad register from the Regs set.
4341       Cost CostF(L, SE, TTI);
4342       Regs.clear();
4343       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4344       if (CostF.isLoser()) {
4345         // During initial formula generation, undesirable formulae are generated
4346         // by uses within other loops that have some non-trivial address mode or
4347         // use the postinc form of the IV. LSR needs to provide these formulae
4348         // as the basis of rediscovering the desired formula that uses an AddRec
4349         // corresponding to the existing phi. Once all formulae have been
4350         // generated, these initial losers may be pruned.
4351         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4352                    dbgs() << "\n");
4353       }
4354       else {
4355         SmallVector<const SCEV *, 4> Key;
4356         for (const SCEV *Reg : F.BaseRegs) {
4357           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4358             Key.push_back(Reg);
4359         }
4360         if (F.ScaledReg &&
4361             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4362           Key.push_back(F.ScaledReg);
4363         // Unstable sort by host order ok, because this is only used for
4364         // uniquifying.
4365         llvm::sort(Key);
4366 
4367         std::pair<BestFormulaeTy::const_iterator, bool> P =
4368           BestFormulae.insert(std::make_pair(Key, FIdx));
4369         if (P.second)
4370           continue;
4371 
4372         Formula &Best = LU.Formulae[P.first->second];
4373 
4374         Cost CostBest(L, SE, TTI);
4375         Regs.clear();
4376         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4377         if (CostF.isLess(CostBest))
4378           std::swap(F, Best);
4379         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4380                    dbgs() << "\n"
4381                              "    in favor of formula ";
4382                    Best.print(dbgs()); dbgs() << '\n');
4383       }
4384 #ifndef NDEBUG
4385       ChangedFormulae = true;
4386 #endif
4387       LU.DeleteFormula(F);
4388       --FIdx;
4389       --NumForms;
4390       Any = true;
4391     }
4392 
4393     // Now that we've filtered out some formulae, recompute the Regs set.
4394     if (Any)
4395       LU.RecomputeRegs(LUIdx, RegUses);
4396 
4397     // Reset this to prepare for the next use.
4398     BestFormulae.clear();
4399   }
4400 
4401   LLVM_DEBUG(if (ChangedFormulae) {
4402     dbgs() << "\n"
4403               "After filtering out undesirable candidates:\n";
4404     print_uses(dbgs());
4405   });
4406 }
4407 
4408 /// Estimate the worst-case number of solutions the solver might have to
4409 /// consider. It almost never considers this many solutions because it prune the
4410 /// search space, but the pruning isn't always sufficient.
4411 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4412   size_t Power = 1;
4413   for (const LSRUse &LU : Uses) {
4414     size_t FSize = LU.Formulae.size();
4415     if (FSize >= ComplexityLimit) {
4416       Power = ComplexityLimit;
4417       break;
4418     }
4419     Power *= FSize;
4420     if (Power >= ComplexityLimit)
4421       break;
4422   }
4423   return Power;
4424 }
4425 
4426 /// When one formula uses a superset of the registers of another formula, it
4427 /// won't help reduce register pressure (though it may not necessarily hurt
4428 /// register pressure); remove it to simplify the system.
4429 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4430   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4431     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4432 
4433     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4434                          "which use a superset of registers used by other "
4435                          "formulae.\n");
4436 
4437     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4438       LSRUse &LU = Uses[LUIdx];
4439       bool Any = false;
4440       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4441         Formula &F = LU.Formulae[i];
4442         // Look for a formula with a constant or GV in a register. If the use
4443         // also has a formula with that same value in an immediate field,
4444         // delete the one that uses a register.
4445         for (SmallVectorImpl<const SCEV *>::const_iterator
4446              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4447           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4448             Formula NewF = F;
4449             //FIXME: Formulas should store bitwidth to do wrapping properly.
4450             //       See PR41034.
4451             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4452             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4453                                 (I - F.BaseRegs.begin()));
4454             if (LU.HasFormulaWithSameRegs(NewF)) {
4455               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4456                          dbgs() << '\n');
4457               LU.DeleteFormula(F);
4458               --i;
4459               --e;
4460               Any = true;
4461               break;
4462             }
4463           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4464             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4465               if (!F.BaseGV) {
4466                 Formula NewF = F;
4467                 NewF.BaseGV = GV;
4468                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4469                                     (I - F.BaseRegs.begin()));
4470                 if (LU.HasFormulaWithSameRegs(NewF)) {
4471                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4472                              dbgs() << '\n');
4473                   LU.DeleteFormula(F);
4474                   --i;
4475                   --e;
4476                   Any = true;
4477                   break;
4478                 }
4479               }
4480           }
4481         }
4482       }
4483       if (Any)
4484         LU.RecomputeRegs(LUIdx, RegUses);
4485     }
4486 
4487     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4488   }
4489 }
4490 
4491 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4492 /// allocate a single register for them.
4493 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4494   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4495     return;
4496 
4497   LLVM_DEBUG(
4498       dbgs() << "The search space is too complex.\n"
4499                 "Narrowing the search space by assuming that uses separated "
4500                 "by a constant offset will use the same registers.\n");
4501 
4502   // This is especially useful for unrolled loops.
4503 
4504   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4505     LSRUse &LU = Uses[LUIdx];
4506     for (const Formula &F : LU.Formulae) {
4507       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4508         continue;
4509 
4510       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4511       if (!LUThatHas)
4512         continue;
4513 
4514       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4515                               LU.Kind, LU.AccessTy))
4516         continue;
4517 
4518       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4519 
4520       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4521 
4522       // Transfer the fixups of LU to LUThatHas.
4523       for (LSRFixup &Fixup : LU.Fixups) {
4524         Fixup.Offset += F.BaseOffset;
4525         LUThatHas->pushFixup(Fixup);
4526         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4527       }
4528 
4529       // Delete formulae from the new use which are no longer legal.
4530       bool Any = false;
4531       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4532         Formula &F = LUThatHas->Formulae[i];
4533         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4534                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4535           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4536           LUThatHas->DeleteFormula(F);
4537           --i;
4538           --e;
4539           Any = true;
4540         }
4541       }
4542 
4543       if (Any)
4544         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4545 
4546       // Delete the old use.
4547       DeleteUse(LU, LUIdx);
4548       --LUIdx;
4549       --NumUses;
4550       break;
4551     }
4552   }
4553 
4554   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4555 }
4556 
4557 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4558 /// we've done more filtering, as it may be able to find more formulae to
4559 /// eliminate.
4560 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4561   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4562     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4563 
4564     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4565                          "undesirable dedicated registers.\n");
4566 
4567     FilterOutUndesirableDedicatedRegisters();
4568 
4569     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4570   }
4571 }
4572 
4573 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4574 /// Pick the best one and delete the others.
4575 /// This narrowing heuristic is to keep as many formulae with different
4576 /// Scale and ScaledReg pair as possible while narrowing the search space.
4577 /// The benefit is that it is more likely to find out a better solution
4578 /// from a formulae set with more Scale and ScaledReg variations than
4579 /// a formulae set with the same Scale and ScaledReg. The picking winner
4580 /// reg heuristic will often keep the formulae with the same Scale and
4581 /// ScaledReg and filter others, and we want to avoid that if possible.
4582 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4583   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4584     return;
4585 
4586   LLVM_DEBUG(
4587       dbgs() << "The search space is too complex.\n"
4588                 "Narrowing the search space by choosing the best Formula "
4589                 "from the Formulae with the same Scale and ScaledReg.\n");
4590 
4591   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4592   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4593 
4594   BestFormulaeTy BestFormulae;
4595 #ifndef NDEBUG
4596   bool ChangedFormulae = false;
4597 #endif
4598   DenseSet<const SCEV *> VisitedRegs;
4599   SmallPtrSet<const SCEV *, 16> Regs;
4600 
4601   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4602     LSRUse &LU = Uses[LUIdx];
4603     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4604                dbgs() << '\n');
4605 
4606     // Return true if Formula FA is better than Formula FB.
4607     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4608       // First we will try to choose the Formula with fewer new registers.
4609       // For a register used by current Formula, the more the register is
4610       // shared among LSRUses, the less we increase the register number
4611       // counter of the formula.
4612       size_t FARegNum = 0;
4613       for (const SCEV *Reg : FA.BaseRegs) {
4614         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4615         FARegNum += (NumUses - UsedByIndices.count() + 1);
4616       }
4617       size_t FBRegNum = 0;
4618       for (const SCEV *Reg : FB.BaseRegs) {
4619         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4620         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4621       }
4622       if (FARegNum != FBRegNum)
4623         return FARegNum < FBRegNum;
4624 
4625       // If the new register numbers are the same, choose the Formula with
4626       // less Cost.
4627       Cost CostFA(L, SE, TTI);
4628       Cost CostFB(L, SE, TTI);
4629       Regs.clear();
4630       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4631       Regs.clear();
4632       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4633       return CostFA.isLess(CostFB);
4634     };
4635 
4636     bool Any = false;
4637     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4638          ++FIdx) {
4639       Formula &F = LU.Formulae[FIdx];
4640       if (!F.ScaledReg)
4641         continue;
4642       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4643       if (P.second)
4644         continue;
4645 
4646       Formula &Best = LU.Formulae[P.first->second];
4647       if (IsBetterThan(F, Best))
4648         std::swap(F, Best);
4649       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4650                  dbgs() << "\n"
4651                            "    in favor of formula ";
4652                  Best.print(dbgs()); dbgs() << '\n');
4653 #ifndef NDEBUG
4654       ChangedFormulae = true;
4655 #endif
4656       LU.DeleteFormula(F);
4657       --FIdx;
4658       --NumForms;
4659       Any = true;
4660     }
4661     if (Any)
4662       LU.RecomputeRegs(LUIdx, RegUses);
4663 
4664     // Reset this to prepare for the next use.
4665     BestFormulae.clear();
4666   }
4667 
4668   LLVM_DEBUG(if (ChangedFormulae) {
4669     dbgs() << "\n"
4670               "After filtering out undesirable candidates:\n";
4671     print_uses(dbgs());
4672   });
4673 }
4674 
4675 /// The function delete formulas with high registers number expectation.
4676 /// Assuming we don't know the value of each formula (already delete
4677 /// all inefficient), generate probability of not selecting for each
4678 /// register.
4679 /// For example,
4680 /// Use1:
4681 ///  reg(a) + reg({0,+,1})
4682 ///  reg(a) + reg({-1,+,1}) + 1
4683 ///  reg({a,+,1})
4684 /// Use2:
4685 ///  reg(b) + reg({0,+,1})
4686 ///  reg(b) + reg({-1,+,1}) + 1
4687 ///  reg({b,+,1})
4688 /// Use3:
4689 ///  reg(c) + reg(b) + reg({0,+,1})
4690 ///  reg(c) + reg({b,+,1})
4691 ///
4692 /// Probability of not selecting
4693 ///                 Use1   Use2    Use3
4694 /// reg(a)         (1/3) *   1   *   1
4695 /// reg(b)           1   * (1/3) * (1/2)
4696 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4697 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4698 /// reg({a,+,1})   (2/3) *   1   *   1
4699 /// reg({b,+,1})     1   * (2/3) * (2/3)
4700 /// reg(c)           1   *   1   *   0
4701 ///
4702 /// Now count registers number mathematical expectation for each formula:
4703 /// Note that for each use we exclude probability if not selecting for the use.
4704 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4705 /// probabilty 1/3 of not selecting for Use1).
4706 /// Use1:
4707 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4708 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4709 ///  reg({a,+,1})                   1
4710 /// Use2:
4711 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4712 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4713 ///  reg({b,+,1})                   2/3
4714 /// Use3:
4715 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4716 ///  reg(c) + reg({b,+,1})          1 + 2/3
4717 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4718   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4719     return;
4720   // Ok, we have too many of formulae on our hands to conveniently handle.
4721   // Use a rough heuristic to thin out the list.
4722 
4723   // Set of Regs wich will be 100% used in final solution.
4724   // Used in each formula of a solution (in example above this is reg(c)).
4725   // We can skip them in calculations.
4726   SmallPtrSet<const SCEV *, 4> UniqRegs;
4727   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4728 
4729   // Map each register to probability of not selecting
4730   DenseMap <const SCEV *, float> RegNumMap;
4731   for (const SCEV *Reg : RegUses) {
4732     if (UniqRegs.count(Reg))
4733       continue;
4734     float PNotSel = 1;
4735     for (const LSRUse &LU : Uses) {
4736       if (!LU.Regs.count(Reg))
4737         continue;
4738       float P = LU.getNotSelectedProbability(Reg);
4739       if (P != 0.0)
4740         PNotSel *= P;
4741       else
4742         UniqRegs.insert(Reg);
4743     }
4744     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4745   }
4746 
4747   LLVM_DEBUG(
4748       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4749 
4750   // Delete formulas where registers number expectation is high.
4751   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4752     LSRUse &LU = Uses[LUIdx];
4753     // If nothing to delete - continue.
4754     if (LU.Formulae.size() < 2)
4755       continue;
4756     // This is temporary solution to test performance. Float should be
4757     // replaced with round independent type (based on integers) to avoid
4758     // different results for different target builds.
4759     float FMinRegNum = LU.Formulae[0].getNumRegs();
4760     float FMinARegNum = LU.Formulae[0].getNumRegs();
4761     size_t MinIdx = 0;
4762     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4763       Formula &F = LU.Formulae[i];
4764       float FRegNum = 0;
4765       float FARegNum = 0;
4766       for (const SCEV *BaseReg : F.BaseRegs) {
4767         if (UniqRegs.count(BaseReg))
4768           continue;
4769         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4770         if (isa<SCEVAddRecExpr>(BaseReg))
4771           FARegNum +=
4772               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4773       }
4774       if (const SCEV *ScaledReg = F.ScaledReg) {
4775         if (!UniqRegs.count(ScaledReg)) {
4776           FRegNum +=
4777               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4778           if (isa<SCEVAddRecExpr>(ScaledReg))
4779             FARegNum +=
4780                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4781         }
4782       }
4783       if (FMinRegNum > FRegNum ||
4784           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4785         FMinRegNum = FRegNum;
4786         FMinARegNum = FARegNum;
4787         MinIdx = i;
4788       }
4789     }
4790     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4791                dbgs() << " with min reg num " << FMinRegNum << '\n');
4792     if (MinIdx != 0)
4793       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4794     while (LU.Formulae.size() != 1) {
4795       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4796                  dbgs() << '\n');
4797       LU.Formulae.pop_back();
4798     }
4799     LU.RecomputeRegs(LUIdx, RegUses);
4800     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4801     Formula &F = LU.Formulae[0];
4802     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4803     // When we choose the formula, the regs become unique.
4804     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4805     if (F.ScaledReg)
4806       UniqRegs.insert(F.ScaledReg);
4807   }
4808   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4809 }
4810 
4811 /// Pick a register which seems likely to be profitable, and then in any use
4812 /// which has any reference to that register, delete all formulae which do not
4813 /// reference that register.
4814 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4815   // With all other options exhausted, loop until the system is simple
4816   // enough to handle.
4817   SmallPtrSet<const SCEV *, 4> Taken;
4818   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4819     // Ok, we have too many of formulae on our hands to conveniently handle.
4820     // Use a rough heuristic to thin out the list.
4821     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4822 
4823     // Pick the register which is used by the most LSRUses, which is likely
4824     // to be a good reuse register candidate.
4825     const SCEV *Best = nullptr;
4826     unsigned BestNum = 0;
4827     for (const SCEV *Reg : RegUses) {
4828       if (Taken.count(Reg))
4829         continue;
4830       if (!Best) {
4831         Best = Reg;
4832         BestNum = RegUses.getUsedByIndices(Reg).count();
4833       } else {
4834         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4835         if (Count > BestNum) {
4836           Best = Reg;
4837           BestNum = Count;
4838         }
4839       }
4840     }
4841     assert(Best && "Failed to find best LSRUse candidate");
4842 
4843     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4844                       << " will yield profitable reuse.\n");
4845     Taken.insert(Best);
4846 
4847     // In any use with formulae which references this register, delete formulae
4848     // which don't reference it.
4849     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4850       LSRUse &LU = Uses[LUIdx];
4851       if (!LU.Regs.count(Best)) continue;
4852 
4853       bool Any = false;
4854       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4855         Formula &F = LU.Formulae[i];
4856         if (!F.referencesReg(Best)) {
4857           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4858           LU.DeleteFormula(F);
4859           --e;
4860           --i;
4861           Any = true;
4862           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4863           continue;
4864         }
4865       }
4866 
4867       if (Any)
4868         LU.RecomputeRegs(LUIdx, RegUses);
4869     }
4870 
4871     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4872   }
4873 }
4874 
4875 /// If there are an extraordinary number of formulae to choose from, use some
4876 /// rough heuristics to prune down the number of formulae. This keeps the main
4877 /// solver from taking an extraordinary amount of time in some worst-case
4878 /// scenarios.
4879 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4880   NarrowSearchSpaceByDetectingSupersets();
4881   NarrowSearchSpaceByCollapsingUnrolledCode();
4882   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4883   if (FilterSameScaledReg)
4884     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4885   if (LSRExpNarrow)
4886     NarrowSearchSpaceByDeletingCostlyFormulas();
4887   else
4888     NarrowSearchSpaceByPickingWinnerRegs();
4889 }
4890 
4891 /// This is the recursive solver.
4892 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4893                                Cost &SolutionCost,
4894                                SmallVectorImpl<const Formula *> &Workspace,
4895                                const Cost &CurCost,
4896                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4897                                DenseSet<const SCEV *> &VisitedRegs) const {
4898   // Some ideas:
4899   //  - prune more:
4900   //    - use more aggressive filtering
4901   //    - sort the formula so that the most profitable solutions are found first
4902   //    - sort the uses too
4903   //  - search faster:
4904   //    - don't compute a cost, and then compare. compare while computing a cost
4905   //      and bail early.
4906   //    - track register sets with SmallBitVector
4907 
4908   const LSRUse &LU = Uses[Workspace.size()];
4909 
4910   // If this use references any register that's already a part of the
4911   // in-progress solution, consider it a requirement that a formula must
4912   // reference that register in order to be considered. This prunes out
4913   // unprofitable searching.
4914   SmallSetVector<const SCEV *, 4> ReqRegs;
4915   for (const SCEV *S : CurRegs)
4916     if (LU.Regs.count(S))
4917       ReqRegs.insert(S);
4918 
4919   SmallPtrSet<const SCEV *, 16> NewRegs;
4920   Cost NewCost(L, SE, TTI);
4921   for (const Formula &F : LU.Formulae) {
4922     // Ignore formulae which may not be ideal in terms of register reuse of
4923     // ReqRegs.  The formula should use all required registers before
4924     // introducing new ones.
4925     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4926     for (const SCEV *Reg : ReqRegs) {
4927       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4928           is_contained(F.BaseRegs, Reg)) {
4929         --NumReqRegsToFind;
4930         if (NumReqRegsToFind == 0)
4931           break;
4932       }
4933     }
4934     if (NumReqRegsToFind != 0) {
4935       // If none of the formulae satisfied the required registers, then we could
4936       // clear ReqRegs and try again. Currently, we simply give up in this case.
4937       continue;
4938     }
4939 
4940     // Evaluate the cost of the current formula. If it's already worse than
4941     // the current best, prune the search at that point.
4942     NewCost = CurCost;
4943     NewRegs = CurRegs;
4944     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4945     if (NewCost.isLess(SolutionCost)) {
4946       Workspace.push_back(&F);
4947       if (Workspace.size() != Uses.size()) {
4948         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4949                      NewRegs, VisitedRegs);
4950         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4951           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4952       } else {
4953         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4954                    dbgs() << ".\nRegs:\n";
4955                    for (const SCEV *S : NewRegs) dbgs()
4956                       << "- " << *S << "\n";
4957                    dbgs() << '\n');
4958 
4959         SolutionCost = NewCost;
4960         Solution = Workspace;
4961       }
4962       Workspace.pop_back();
4963     }
4964   }
4965 }
4966 
4967 /// Choose one formula from each use. Return the results in the given Solution
4968 /// vector.
4969 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4970   SmallVector<const Formula *, 8> Workspace;
4971   Cost SolutionCost(L, SE, TTI);
4972   SolutionCost.Lose();
4973   Cost CurCost(L, SE, TTI);
4974   SmallPtrSet<const SCEV *, 16> CurRegs;
4975   DenseSet<const SCEV *> VisitedRegs;
4976   Workspace.reserve(Uses.size());
4977 
4978   // SolveRecurse does all the work.
4979   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4980                CurRegs, VisitedRegs);
4981   if (Solution.empty()) {
4982     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4983     return;
4984   }
4985 
4986   // Ok, we've now made all our decisions.
4987   LLVM_DEBUG(dbgs() << "\n"
4988                        "The chosen solution requires ";
4989              SolutionCost.print(dbgs()); dbgs() << ":\n";
4990              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4991                dbgs() << "  ";
4992                Uses[i].print(dbgs());
4993                dbgs() << "\n"
4994                          "    ";
4995                Solution[i]->print(dbgs());
4996                dbgs() << '\n';
4997              });
4998 
4999   assert(Solution.size() == Uses.size() && "Malformed solution!");
5000 }
5001 
5002 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5003 /// we can go while still being dominated by the input positions. This helps
5004 /// canonicalize the insert position, which encourages sharing.
5005 BasicBlock::iterator
5006 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5007                                  const SmallVectorImpl<Instruction *> &Inputs)
5008                                                                          const {
5009   Instruction *Tentative = &*IP;
5010   while (true) {
5011     bool AllDominate = true;
5012     Instruction *BetterPos = nullptr;
5013     // Don't bother attempting to insert before a catchswitch, their basic block
5014     // cannot have other non-PHI instructions.
5015     if (isa<CatchSwitchInst>(Tentative))
5016       return IP;
5017 
5018     for (Instruction *Inst : Inputs) {
5019       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5020         AllDominate = false;
5021         break;
5022       }
5023       // Attempt to find an insert position in the middle of the block,
5024       // instead of at the end, so that it can be used for other expansions.
5025       if (Tentative->getParent() == Inst->getParent() &&
5026           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5027         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5028     }
5029     if (!AllDominate)
5030       break;
5031     if (BetterPos)
5032       IP = BetterPos->getIterator();
5033     else
5034       IP = Tentative->getIterator();
5035 
5036     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5037     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5038 
5039     BasicBlock *IDom;
5040     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5041       if (!Rung) return IP;
5042       Rung = Rung->getIDom();
5043       if (!Rung) return IP;
5044       IDom = Rung->getBlock();
5045 
5046       // Don't climb into a loop though.
5047       const Loop *IDomLoop = LI.getLoopFor(IDom);
5048       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5049       if (IDomDepth <= IPLoopDepth &&
5050           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5051         break;
5052     }
5053 
5054     Tentative = IDom->getTerminator();
5055   }
5056 
5057   return IP;
5058 }
5059 
5060 /// Determine an input position which will be dominated by the operands and
5061 /// which will dominate the result.
5062 BasicBlock::iterator
5063 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5064                                            const LSRFixup &LF,
5065                                            const LSRUse &LU,
5066                                            SCEVExpander &Rewriter) const {
5067   // Collect some instructions which must be dominated by the
5068   // expanding replacement. These must be dominated by any operands that
5069   // will be required in the expansion.
5070   SmallVector<Instruction *, 4> Inputs;
5071   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5072     Inputs.push_back(I);
5073   if (LU.Kind == LSRUse::ICmpZero)
5074     if (Instruction *I =
5075           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5076       Inputs.push_back(I);
5077   if (LF.PostIncLoops.count(L)) {
5078     if (LF.isUseFullyOutsideLoop(L))
5079       Inputs.push_back(L->getLoopLatch()->getTerminator());
5080     else
5081       Inputs.push_back(IVIncInsertPos);
5082   }
5083   // The expansion must also be dominated by the increment positions of any
5084   // loops it for which it is using post-inc mode.
5085   for (const Loop *PIL : LF.PostIncLoops) {
5086     if (PIL == L) continue;
5087 
5088     // Be dominated by the loop exit.
5089     SmallVector<BasicBlock *, 4> ExitingBlocks;
5090     PIL->getExitingBlocks(ExitingBlocks);
5091     if (!ExitingBlocks.empty()) {
5092       BasicBlock *BB = ExitingBlocks[0];
5093       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5094         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5095       Inputs.push_back(BB->getTerminator());
5096     }
5097   }
5098 
5099   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5100          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5101          "Insertion point must be a normal instruction");
5102 
5103   // Then, climb up the immediate dominator tree as far as we can go while
5104   // still being dominated by the input positions.
5105   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5106 
5107   // Don't insert instructions before PHI nodes.
5108   while (isa<PHINode>(IP)) ++IP;
5109 
5110   // Ignore landingpad instructions.
5111   while (IP->isEHPad()) ++IP;
5112 
5113   // Ignore debug intrinsics.
5114   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5115 
5116   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5117   // IP consistent across expansions and allows the previously inserted
5118   // instructions to be reused by subsequent expansion.
5119   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5120     ++IP;
5121 
5122   return IP;
5123 }
5124 
5125 /// Emit instructions for the leading candidate expression for this LSRUse (this
5126 /// is called "expanding").
5127 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5128                            const Formula &F, BasicBlock::iterator IP,
5129                            SCEVExpander &Rewriter,
5130                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5131   if (LU.RigidFormula)
5132     return LF.OperandValToReplace;
5133 
5134   // Determine an input position which will be dominated by the operands and
5135   // which will dominate the result.
5136   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5137   Rewriter.setInsertPoint(&*IP);
5138 
5139   // Inform the Rewriter if we have a post-increment use, so that it can
5140   // perform an advantageous expansion.
5141   Rewriter.setPostInc(LF.PostIncLoops);
5142 
5143   // This is the type that the user actually needs.
5144   Type *OpTy = LF.OperandValToReplace->getType();
5145   // This will be the type that we'll initially expand to.
5146   Type *Ty = F.getType();
5147   if (!Ty)
5148     // No type known; just expand directly to the ultimate type.
5149     Ty = OpTy;
5150   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5151     // Expand directly to the ultimate type if it's the right size.
5152     Ty = OpTy;
5153   // This is the type to do integer arithmetic in.
5154   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5155 
5156   // Build up a list of operands to add together to form the full base.
5157   SmallVector<const SCEV *, 8> Ops;
5158 
5159   // Expand the BaseRegs portion.
5160   for (const SCEV *Reg : F.BaseRegs) {
5161     assert(!Reg->isZero() && "Zero allocated in a base register!");
5162 
5163     // If we're expanding for a post-inc user, make the post-inc adjustment.
5164     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5165     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5166   }
5167 
5168   // Expand the ScaledReg portion.
5169   Value *ICmpScaledV = nullptr;
5170   if (F.Scale != 0) {
5171     const SCEV *ScaledS = F.ScaledReg;
5172 
5173     // If we're expanding for a post-inc user, make the post-inc adjustment.
5174     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5175     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5176 
5177     if (LU.Kind == LSRUse::ICmpZero) {
5178       // Expand ScaleReg as if it was part of the base regs.
5179       if (F.Scale == 1)
5180         Ops.push_back(
5181             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5182       else {
5183         // An interesting way of "folding" with an icmp is to use a negated
5184         // scale, which we'll implement by inserting it into the other operand
5185         // of the icmp.
5186         assert(F.Scale == -1 &&
5187                "The only scale supported by ICmpZero uses is -1!");
5188         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5189       }
5190     } else {
5191       // Otherwise just expand the scaled register and an explicit scale,
5192       // which is expected to be matched as part of the address.
5193 
5194       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5195       // Unless the addressing mode will not be folded.
5196       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5197           isAMCompletelyFolded(TTI, LU, F)) {
5198         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5199         Ops.clear();
5200         Ops.push_back(SE.getUnknown(FullV));
5201       }
5202       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5203       if (F.Scale != 1)
5204         ScaledS =
5205             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5206       Ops.push_back(ScaledS);
5207     }
5208   }
5209 
5210   // Expand the GV portion.
5211   if (F.BaseGV) {
5212     // Flush the operand list to suppress SCEVExpander hoisting.
5213     if (!Ops.empty()) {
5214       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5215       Ops.clear();
5216       Ops.push_back(SE.getUnknown(FullV));
5217     }
5218     Ops.push_back(SE.getUnknown(F.BaseGV));
5219   }
5220 
5221   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5222   // unfolded offsets. LSR assumes they both live next to their uses.
5223   if (!Ops.empty()) {
5224     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5225     Ops.clear();
5226     Ops.push_back(SE.getUnknown(FullV));
5227   }
5228 
5229   // Expand the immediate portion.
5230   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5231   if (Offset != 0) {
5232     if (LU.Kind == LSRUse::ICmpZero) {
5233       // The other interesting way of "folding" with an ICmpZero is to use a
5234       // negated immediate.
5235       if (!ICmpScaledV)
5236         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5237       else {
5238         Ops.push_back(SE.getUnknown(ICmpScaledV));
5239         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5240       }
5241     } else {
5242       // Just add the immediate values. These again are expected to be matched
5243       // as part of the address.
5244       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5245     }
5246   }
5247 
5248   // Expand the unfolded offset portion.
5249   int64_t UnfoldedOffset = F.UnfoldedOffset;
5250   if (UnfoldedOffset != 0) {
5251     // Just add the immediate values.
5252     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5253                                                        UnfoldedOffset)));
5254   }
5255 
5256   // Emit instructions summing all the operands.
5257   const SCEV *FullS = Ops.empty() ?
5258                       SE.getConstant(IntTy, 0) :
5259                       SE.getAddExpr(Ops);
5260   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5261 
5262   // We're done expanding now, so reset the rewriter.
5263   Rewriter.clearPostInc();
5264 
5265   // An ICmpZero Formula represents an ICmp which we're handling as a
5266   // comparison against zero. Now that we've expanded an expression for that
5267   // form, update the ICmp's other operand.
5268   if (LU.Kind == LSRUse::ICmpZero) {
5269     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5270     DeadInsts.emplace_back(CI->getOperand(1));
5271     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5272                            "a scale at the same time!");
5273     if (F.Scale == -1) {
5274       if (ICmpScaledV->getType() != OpTy) {
5275         Instruction *Cast =
5276           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5277                                                    OpTy, false),
5278                            ICmpScaledV, OpTy, "tmp", CI);
5279         ICmpScaledV = Cast;
5280       }
5281       CI->setOperand(1, ICmpScaledV);
5282     } else {
5283       // A scale of 1 means that the scale has been expanded as part of the
5284       // base regs.
5285       assert((F.Scale == 0 || F.Scale == 1) &&
5286              "ICmp does not support folding a global value and "
5287              "a scale at the same time!");
5288       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5289                                            -(uint64_t)Offset);
5290       if (C->getType() != OpTy)
5291         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5292                                                           OpTy, false),
5293                                   C, OpTy);
5294 
5295       CI->setOperand(1, C);
5296     }
5297   }
5298 
5299   return FullV;
5300 }
5301 
5302 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5303 /// effectively happens in their predecessor blocks, so the expression may need
5304 /// to be expanded in multiple places.
5305 void LSRInstance::RewriteForPHI(
5306     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5307     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5308   DenseMap<BasicBlock *, Value *> Inserted;
5309   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5310     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5311       bool needUpdateFixups = false;
5312       BasicBlock *BB = PN->getIncomingBlock(i);
5313 
5314       // If this is a critical edge, split the edge so that we do not insert
5315       // the code on all predecessor/successor paths.  We do this unless this
5316       // is the canonical backedge for this loop, which complicates post-inc
5317       // users.
5318       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5319           !isa<IndirectBrInst>(BB->getTerminator()) &&
5320           !isa<CatchSwitchInst>(BB->getTerminator())) {
5321         BasicBlock *Parent = PN->getParent();
5322         Loop *PNLoop = LI.getLoopFor(Parent);
5323         if (!PNLoop || Parent != PNLoop->getHeader()) {
5324           // Split the critical edge.
5325           BasicBlock *NewBB = nullptr;
5326           if (!Parent->isLandingPad()) {
5327             NewBB = SplitCriticalEdge(BB, Parent,
5328                                       CriticalEdgeSplittingOptions(&DT, &LI)
5329                                           .setMergeIdenticalEdges()
5330                                           .setKeepOneInputPHIs());
5331           } else {
5332             SmallVector<BasicBlock*, 2> NewBBs;
5333             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5334             NewBB = NewBBs[0];
5335           }
5336           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5337           // phi predecessors are identical. The simple thing to do is skip
5338           // splitting in this case rather than complicate the API.
5339           if (NewBB) {
5340             // If PN is outside of the loop and BB is in the loop, we want to
5341             // move the block to be immediately before the PHI block, not
5342             // immediately after BB.
5343             if (L->contains(BB) && !L->contains(PN))
5344               NewBB->moveBefore(PN->getParent());
5345 
5346             // Splitting the edge can reduce the number of PHI entries we have.
5347             e = PN->getNumIncomingValues();
5348             BB = NewBB;
5349             i = PN->getBasicBlockIndex(BB);
5350 
5351             needUpdateFixups = true;
5352           }
5353         }
5354       }
5355 
5356       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5357         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5358       if (!Pair.second)
5359         PN->setIncomingValue(i, Pair.first->second);
5360       else {
5361         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5362                               Rewriter, DeadInsts);
5363 
5364         // If this is reuse-by-noop-cast, insert the noop cast.
5365         Type *OpTy = LF.OperandValToReplace->getType();
5366         if (FullV->getType() != OpTy)
5367           FullV =
5368             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5369                                                      OpTy, false),
5370                              FullV, LF.OperandValToReplace->getType(),
5371                              "tmp", BB->getTerminator());
5372 
5373         PN->setIncomingValue(i, FullV);
5374         Pair.first->second = FullV;
5375       }
5376 
5377       // If LSR splits critical edge and phi node has other pending
5378       // fixup operands, we need to update those pending fixups. Otherwise
5379       // formulae will not be implemented completely and some instructions
5380       // will not be eliminated.
5381       if (needUpdateFixups) {
5382         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5383           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5384             // If fixup is supposed to rewrite some operand in the phi
5385             // that was just updated, it may be already moved to
5386             // another phi node. Such fixup requires update.
5387             if (Fixup.UserInst == PN) {
5388               // Check if the operand we try to replace still exists in the
5389               // original phi.
5390               bool foundInOriginalPHI = false;
5391               for (const auto &val : PN->incoming_values())
5392                 if (val == Fixup.OperandValToReplace) {
5393                   foundInOriginalPHI = true;
5394                   break;
5395                 }
5396 
5397               // If fixup operand found in original PHI - nothing to do.
5398               if (foundInOriginalPHI)
5399                 continue;
5400 
5401               // Otherwise it might be moved to another PHI and requires update.
5402               // If fixup operand not found in any of the incoming blocks that
5403               // means we have already rewritten it - nothing to do.
5404               for (const auto &Block : PN->blocks())
5405                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5406                      ++I) {
5407                   PHINode *NewPN = cast<PHINode>(I);
5408                   for (const auto &val : NewPN->incoming_values())
5409                     if (val == Fixup.OperandValToReplace)
5410                       Fixup.UserInst = NewPN;
5411                 }
5412             }
5413       }
5414     }
5415 }
5416 
5417 /// Emit instructions for the leading candidate expression for this LSRUse (this
5418 /// is called "expanding"), and update the UserInst to reference the newly
5419 /// expanded value.
5420 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5421                           const Formula &F, SCEVExpander &Rewriter,
5422                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5423   // First, find an insertion point that dominates UserInst. For PHI nodes,
5424   // find the nearest block which dominates all the relevant uses.
5425   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5426     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5427   } else {
5428     Value *FullV =
5429       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5430 
5431     // If this is reuse-by-noop-cast, insert the noop cast.
5432     Type *OpTy = LF.OperandValToReplace->getType();
5433     if (FullV->getType() != OpTy) {
5434       Instruction *Cast =
5435         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5436                          FullV, OpTy, "tmp", LF.UserInst);
5437       FullV = Cast;
5438     }
5439 
5440     // Update the user. ICmpZero is handled specially here (for now) because
5441     // Expand may have updated one of the operands of the icmp already, and
5442     // its new value may happen to be equal to LF.OperandValToReplace, in
5443     // which case doing replaceUsesOfWith leads to replacing both operands
5444     // with the same value. TODO: Reorganize this.
5445     if (LU.Kind == LSRUse::ICmpZero)
5446       LF.UserInst->setOperand(0, FullV);
5447     else
5448       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5449   }
5450 
5451   DeadInsts.emplace_back(LF.OperandValToReplace);
5452 }
5453 
5454 /// Rewrite all the fixup locations with new values, following the chosen
5455 /// solution.
5456 void LSRInstance::ImplementSolution(
5457     const SmallVectorImpl<const Formula *> &Solution) {
5458   // Keep track of instructions we may have made dead, so that
5459   // we can remove them after we are done working.
5460   SmallVector<WeakTrackingVH, 16> DeadInsts;
5461 
5462   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5463                         "lsr");
5464 #ifndef NDEBUG
5465   Rewriter.setDebugType(DEBUG_TYPE);
5466 #endif
5467   Rewriter.disableCanonicalMode();
5468   Rewriter.enableLSRMode();
5469   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5470 
5471   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5472   for (const IVChain &Chain : IVChainVec) {
5473     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5474       Rewriter.setChainedPhi(PN);
5475   }
5476 
5477   // Expand the new value definitions and update the users.
5478   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5479     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5480       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5481       Changed = true;
5482     }
5483 
5484   for (const IVChain &Chain : IVChainVec) {
5485     GenerateIVChain(Chain, Rewriter, DeadInsts);
5486     Changed = true;
5487   }
5488   // Clean up after ourselves. This must be done before deleting any
5489   // instructions.
5490   Rewriter.clear();
5491 
5492   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5493 }
5494 
5495 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5496                          DominatorTree &DT, LoopInfo &LI,
5497                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5498                          TargetLibraryInfo &LibInfo)
5499     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
5500       FavorBackedgeIndex(EnableBackedgeIndexing &&
5501                          TTI.shouldFavorBackedgeIndex(L)) {
5502   // If LoopSimplify form is not available, stay out of trouble.
5503   if (!L->isLoopSimplifyForm())
5504     return;
5505 
5506   // If there's no interesting work to be done, bail early.
5507   if (IU.empty()) return;
5508 
5509   // If there's too much analysis to be done, bail early. We won't be able to
5510   // model the problem anyway.
5511   unsigned NumUsers = 0;
5512   for (const IVStrideUse &U : IU) {
5513     if (++NumUsers > MaxIVUsers) {
5514       (void)U;
5515       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5516                         << "\n");
5517       return;
5518     }
5519     // Bail out if we have a PHI on an EHPad that gets a value from a
5520     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5521     // no good place to stick any instructions.
5522     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5523        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5524        if (isa<FuncletPadInst>(FirstNonPHI) ||
5525            isa<CatchSwitchInst>(FirstNonPHI))
5526          for (BasicBlock *PredBB : PN->blocks())
5527            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5528              return;
5529     }
5530   }
5531 
5532 #ifndef NDEBUG
5533   // All dominating loops must have preheaders, or SCEVExpander may not be able
5534   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5535   //
5536   // IVUsers analysis should only create users that are dominated by simple loop
5537   // headers. Since this loop should dominate all of its users, its user list
5538   // should be empty if this loop itself is not within a simple loop nest.
5539   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5540        Rung; Rung = Rung->getIDom()) {
5541     BasicBlock *BB = Rung->getBlock();
5542     const Loop *DomLoop = LI.getLoopFor(BB);
5543     if (DomLoop && DomLoop->getHeader() == BB) {
5544       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5545     }
5546   }
5547 #endif // DEBUG
5548 
5549   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5550              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5551              dbgs() << ":\n");
5552 
5553   // First, perform some low-level loop optimizations.
5554   OptimizeShadowIV();
5555   OptimizeLoopTermCond();
5556 
5557   // If loop preparation eliminates all interesting IV users, bail.
5558   if (IU.empty()) return;
5559 
5560   // Skip nested loops until we can model them better with formulae.
5561   if (!L->empty()) {
5562     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5563     return;
5564   }
5565 
5566   // Start collecting data and preparing for the solver.
5567   CollectChains();
5568   CollectInterestingTypesAndFactors();
5569   CollectFixupsAndInitialFormulae();
5570   CollectLoopInvariantFixupsAndFormulae();
5571 
5572   if (Uses.empty())
5573     return;
5574 
5575   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5576              print_uses(dbgs()));
5577 
5578   // Now use the reuse data to generate a bunch of interesting ways
5579   // to formulate the values needed for the uses.
5580   GenerateAllReuseFormulae();
5581 
5582   FilterOutUndesirableDedicatedRegisters();
5583   NarrowSearchSpaceUsingHeuristics();
5584 
5585   SmallVector<const Formula *, 8> Solution;
5586   Solve(Solution);
5587 
5588   // Release memory that is no longer needed.
5589   Factors.clear();
5590   Types.clear();
5591   RegUses.clear();
5592 
5593   if (Solution.empty())
5594     return;
5595 
5596 #ifndef NDEBUG
5597   // Formulae should be legal.
5598   for (const LSRUse &LU : Uses) {
5599     for (const Formula &F : LU.Formulae)
5600       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5601                         F) && "Illegal formula generated!");
5602   };
5603 #endif
5604 
5605   // Now that we've decided what we want, make it so.
5606   ImplementSolution(Solution);
5607 }
5608 
5609 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5610 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5611   if (Factors.empty() && Types.empty()) return;
5612 
5613   OS << "LSR has identified the following interesting factors and types: ";
5614   bool First = true;
5615 
5616   for (int64_t Factor : Factors) {
5617     if (!First) OS << ", ";
5618     First = false;
5619     OS << '*' << Factor;
5620   }
5621 
5622   for (Type *Ty : Types) {
5623     if (!First) OS << ", ";
5624     First = false;
5625     OS << '(' << *Ty << ')';
5626   }
5627   OS << '\n';
5628 }
5629 
5630 void LSRInstance::print_fixups(raw_ostream &OS) const {
5631   OS << "LSR is examining the following fixup sites:\n";
5632   for (const LSRUse &LU : Uses)
5633     for (const LSRFixup &LF : LU.Fixups) {
5634       dbgs() << "  ";
5635       LF.print(OS);
5636       OS << '\n';
5637     }
5638 }
5639 
5640 void LSRInstance::print_uses(raw_ostream &OS) const {
5641   OS << "LSR is examining the following uses:\n";
5642   for (const LSRUse &LU : Uses) {
5643     dbgs() << "  ";
5644     LU.print(OS);
5645     OS << '\n';
5646     for (const Formula &F : LU.Formulae) {
5647       OS << "    ";
5648       F.print(OS);
5649       OS << '\n';
5650     }
5651   }
5652 }
5653 
5654 void LSRInstance::print(raw_ostream &OS) const {
5655   print_factors_and_types(OS);
5656   print_fixups(OS);
5657   print_uses(OS);
5658 }
5659 
5660 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5661   print(errs()); errs() << '\n';
5662 }
5663 #endif
5664 
5665 namespace {
5666 
5667 class LoopStrengthReduce : public LoopPass {
5668 public:
5669   static char ID; // Pass ID, replacement for typeid
5670 
5671   LoopStrengthReduce();
5672 
5673 private:
5674   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5675   void getAnalysisUsage(AnalysisUsage &AU) const override;
5676 };
5677 
5678 } // end anonymous namespace
5679 
5680 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5681   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5682 }
5683 
5684 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5685   // We split critical edges, so we change the CFG.  However, we do update
5686   // many analyses if they are around.
5687   AU.addPreservedID(LoopSimplifyID);
5688 
5689   AU.addRequired<LoopInfoWrapperPass>();
5690   AU.addPreserved<LoopInfoWrapperPass>();
5691   AU.addRequiredID(LoopSimplifyID);
5692   AU.addRequired<DominatorTreeWrapperPass>();
5693   AU.addPreserved<DominatorTreeWrapperPass>();
5694   AU.addRequired<ScalarEvolutionWrapperPass>();
5695   AU.addPreserved<ScalarEvolutionWrapperPass>();
5696   AU.addRequired<AssumptionCacheTracker>();
5697   AU.addRequired<TargetLibraryInfoWrapperPass>();
5698   // Requiring LoopSimplify a second time here prevents IVUsers from running
5699   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5700   AU.addRequiredID(LoopSimplifyID);
5701   AU.addRequired<IVUsersWrapperPass>();
5702   AU.addPreserved<IVUsersWrapperPass>();
5703   AU.addRequired<TargetTransformInfoWrapperPass>();
5704 }
5705 
5706 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5707                                DominatorTree &DT, LoopInfo &LI,
5708                                const TargetTransformInfo &TTI,
5709                                AssumptionCache &AC,
5710                                TargetLibraryInfo &LibInfo) {
5711 
5712   bool Changed = false;
5713 
5714   // Run the main LSR transformation.
5715   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
5716 
5717   // Remove any extra phis created by processing inner loops.
5718   Changed |= DeleteDeadPHIs(L->getHeader());
5719   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5720     SmallVector<WeakTrackingVH, 16> DeadInsts;
5721     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5722     SCEVExpander Rewriter(SE, DL, "lsr");
5723 #ifndef NDEBUG
5724     Rewriter.setDebugType(DEBUG_TYPE);
5725 #endif
5726     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5727     if (numFolded) {
5728       Changed = true;
5729       DeleteTriviallyDeadInstructions(DeadInsts);
5730       DeleteDeadPHIs(L->getHeader());
5731     }
5732   }
5733   return Changed;
5734 }
5735 
5736 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5737   if (skipLoop(L))
5738     return false;
5739 
5740   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5741   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5742   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5743   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5744   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5745       *L->getHeader()->getParent());
5746   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5747       *L->getHeader()->getParent());
5748   auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5749       *L->getHeader()->getParent());
5750   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
5751 }
5752 
5753 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5754                                               LoopStandardAnalysisResults &AR,
5755                                               LPMUpdater &) {
5756   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5757                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
5758     return PreservedAnalyses::all();
5759 
5760   return getLoopPassPreservedAnalyses();
5761 }
5762 
5763 char LoopStrengthReduce::ID = 0;
5764 
5765 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5766                       "Loop Strength Reduction", false, false)
5767 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5769 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5770 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5771 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5772 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5773 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5774                     "Loop Strength Reduction", false, false)
5775 
5776 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5777