1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/LoopUtils.h" 119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstddef> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <optional> 129 #include <utility> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "loop-reduce" 134 135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 136 /// bail out. This threshold is far beyond the number of users that LSR can 137 /// conceivably solve, so it should not affect generated code, but catches the 138 /// worst cases before LSR burns too much compile time and stack space. 139 static const unsigned MaxIVUsers = 200; 140 141 /// Limit the size of expression that SCEV-based salvaging will attempt to 142 /// translate into a DIExpression. 143 /// Choose a maximum size such that debuginfo is not excessively increased and 144 /// the salvaging is not too expensive for the compiler. 145 static const unsigned MaxSCEVSalvageExpressionSize = 64; 146 147 // Cleanup congruent phis after LSR phi expansion. 148 static cl::opt<bool> EnablePhiElim( 149 "enable-lsr-phielim", cl::Hidden, cl::init(true), 150 cl::desc("Enable LSR phi elimination")); 151 152 // The flag adds instruction count to solutions cost comparison. 153 static cl::opt<bool> InsnsCost( 154 "lsr-insns-cost", cl::Hidden, cl::init(true), 155 cl::desc("Add instruction count to a LSR cost model")); 156 157 // Flag to choose how to narrow complex lsr solution 158 static cl::opt<bool> LSRExpNarrow( 159 "lsr-exp-narrow", cl::Hidden, cl::init(false), 160 cl::desc("Narrow LSR complex solution using" 161 " expectation of registers number")); 162 163 // Flag to narrow search space by filtering non-optimal formulae with 164 // the same ScaledReg and Scale. 165 static cl::opt<bool> FilterSameScaledReg( 166 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 167 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 168 " with the same ScaledReg and Scale")); 169 170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 171 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 172 cl::desc("A flag that overrides the target's preferred addressing mode."), 173 cl::values(clEnumValN(TTI::AMK_None, 174 "none", 175 "Don't prefer any addressing mode"), 176 clEnumValN(TTI::AMK_PreIndexed, 177 "preindexed", 178 "Prefer pre-indexed addressing mode"), 179 clEnumValN(TTI::AMK_PostIndexed, 180 "postindexed", 181 "Prefer post-indexed addressing mode"))); 182 183 static cl::opt<unsigned> ComplexityLimit( 184 "lsr-complexity-limit", cl::Hidden, 185 cl::init(std::numeric_limits<uint16_t>::max()), 186 cl::desc("LSR search space complexity limit")); 187 188 static cl::opt<unsigned> SetupCostDepthLimit( 189 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 190 cl::desc("The limit on recursion depth for LSRs setup cost")); 191 192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR( 193 "lsr-term-fold", cl::Hidden, 194 cl::desc("Attempt to replace primary IV with other IV.")); 195 196 static cl::opt<bool> AllowDropSolutionIfLessProfitable( 197 "lsr-drop-solution", cl::Hidden, cl::init(false), 198 cl::desc("Attempt to drop solution if it is less profitable")); 199 200 STATISTIC(NumTermFold, 201 "Number of terminating condition fold recognized and performed"); 202 203 #ifndef NDEBUG 204 // Stress test IV chain generation. 205 static cl::opt<bool> StressIVChain( 206 "stress-ivchain", cl::Hidden, cl::init(false), 207 cl::desc("Stress test LSR IV chains")); 208 #else 209 static bool StressIVChain = false; 210 #endif 211 212 namespace { 213 214 struct MemAccessTy { 215 /// Used in situations where the accessed memory type is unknown. 216 static const unsigned UnknownAddressSpace = 217 std::numeric_limits<unsigned>::max(); 218 219 Type *MemTy = nullptr; 220 unsigned AddrSpace = UnknownAddressSpace; 221 222 MemAccessTy() = default; 223 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 224 225 bool operator==(MemAccessTy Other) const { 226 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 227 } 228 229 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 230 231 static MemAccessTy getUnknown(LLVMContext &Ctx, 232 unsigned AS = UnknownAddressSpace) { 233 return MemAccessTy(Type::getVoidTy(Ctx), AS); 234 } 235 236 Type *getType() { return MemTy; } 237 }; 238 239 /// This class holds data which is used to order reuse candidates. 240 class RegSortData { 241 public: 242 /// This represents the set of LSRUse indices which reference 243 /// a particular register. 244 SmallBitVector UsedByIndices; 245 246 void print(raw_ostream &OS) const; 247 void dump() const; 248 }; 249 250 } // end anonymous namespace 251 252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 253 void RegSortData::print(raw_ostream &OS) const { 254 OS << "[NumUses=" << UsedByIndices.count() << ']'; 255 } 256 257 LLVM_DUMP_METHOD void RegSortData::dump() const { 258 print(errs()); errs() << '\n'; 259 } 260 #endif 261 262 namespace { 263 264 /// Map register candidates to information about how they are used. 265 class RegUseTracker { 266 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 267 268 RegUsesTy RegUsesMap; 269 SmallVector<const SCEV *, 16> RegSequence; 270 271 public: 272 void countRegister(const SCEV *Reg, size_t LUIdx); 273 void dropRegister(const SCEV *Reg, size_t LUIdx); 274 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 275 276 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 277 278 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 279 280 void clear(); 281 282 using iterator = SmallVectorImpl<const SCEV *>::iterator; 283 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 284 285 iterator begin() { return RegSequence.begin(); } 286 iterator end() { return RegSequence.end(); } 287 const_iterator begin() const { return RegSequence.begin(); } 288 const_iterator end() const { return RegSequence.end(); } 289 }; 290 291 } // end anonymous namespace 292 293 void 294 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 295 std::pair<RegUsesTy::iterator, bool> Pair = 296 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 297 RegSortData &RSD = Pair.first->second; 298 if (Pair.second) 299 RegSequence.push_back(Reg); 300 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 301 RSD.UsedByIndices.set(LUIdx); 302 } 303 304 void 305 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 306 RegUsesTy::iterator It = RegUsesMap.find(Reg); 307 assert(It != RegUsesMap.end()); 308 RegSortData &RSD = It->second; 309 assert(RSD.UsedByIndices.size() > LUIdx); 310 RSD.UsedByIndices.reset(LUIdx); 311 } 312 313 void 314 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 315 assert(LUIdx <= LastLUIdx); 316 317 // Update RegUses. The data structure is not optimized for this purpose; 318 // we must iterate through it and update each of the bit vectors. 319 for (auto &Pair : RegUsesMap) { 320 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 321 if (LUIdx < UsedByIndices.size()) 322 UsedByIndices[LUIdx] = 323 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 324 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 325 } 326 } 327 328 bool 329 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 330 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 331 if (I == RegUsesMap.end()) 332 return false; 333 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 334 int i = UsedByIndices.find_first(); 335 if (i == -1) return false; 336 if ((size_t)i != LUIdx) return true; 337 return UsedByIndices.find_next(i) != -1; 338 } 339 340 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 341 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 342 assert(I != RegUsesMap.end() && "Unknown register!"); 343 return I->second.UsedByIndices; 344 } 345 346 void RegUseTracker::clear() { 347 RegUsesMap.clear(); 348 RegSequence.clear(); 349 } 350 351 namespace { 352 353 /// This class holds information that describes a formula for computing 354 /// satisfying a use. It may include broken-out immediates and scaled registers. 355 struct Formula { 356 /// Global base address used for complex addressing. 357 GlobalValue *BaseGV = nullptr; 358 359 /// Base offset for complex addressing. 360 int64_t BaseOffset = 0; 361 362 /// Whether any complex addressing has a base register. 363 bool HasBaseReg = false; 364 365 /// The scale of any complex addressing. 366 int64_t Scale = 0; 367 368 /// The list of "base" registers for this use. When this is non-empty. The 369 /// canonical representation of a formula is 370 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 371 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 372 /// 3. The reg containing recurrent expr related with currect loop in the 373 /// formula should be put in the ScaledReg. 374 /// #1 enforces that the scaled register is always used when at least two 375 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 376 /// #2 enforces that 1 * reg is reg. 377 /// #3 ensures invariant regs with respect to current loop can be combined 378 /// together in LSR codegen. 379 /// This invariant can be temporarily broken while building a formula. 380 /// However, every formula inserted into the LSRInstance must be in canonical 381 /// form. 382 SmallVector<const SCEV *, 4> BaseRegs; 383 384 /// The 'scaled' register for this use. This should be non-null when Scale is 385 /// not zero. 386 const SCEV *ScaledReg = nullptr; 387 388 /// An additional constant offset which added near the use. This requires a 389 /// temporary register, but the offset itself can live in an add immediate 390 /// field rather than a register. 391 int64_t UnfoldedOffset = 0; 392 393 Formula() = default; 394 395 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 396 397 bool isCanonical(const Loop &L) const; 398 399 void canonicalize(const Loop &L); 400 401 bool unscale(); 402 403 bool hasZeroEnd() const; 404 405 size_t getNumRegs() const; 406 Type *getType() const; 407 408 void deleteBaseReg(const SCEV *&S); 409 410 bool referencesReg(const SCEV *S) const; 411 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 412 const RegUseTracker &RegUses) const; 413 414 void print(raw_ostream &OS) const; 415 void dump() const; 416 }; 417 418 } // end anonymous namespace 419 420 /// Recursion helper for initialMatch. 421 static void DoInitialMatch(const SCEV *S, Loop *L, 422 SmallVectorImpl<const SCEV *> &Good, 423 SmallVectorImpl<const SCEV *> &Bad, 424 ScalarEvolution &SE) { 425 // Collect expressions which properly dominate the loop header. 426 if (SE.properlyDominates(S, L->getHeader())) { 427 Good.push_back(S); 428 return; 429 } 430 431 // Look at add operands. 432 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 433 for (const SCEV *S : Add->operands()) 434 DoInitialMatch(S, L, Good, Bad, SE); 435 return; 436 } 437 438 // Look at addrec operands. 439 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 440 if (!AR->getStart()->isZero() && AR->isAffine()) { 441 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 442 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 443 AR->getStepRecurrence(SE), 444 // FIXME: AR->getNoWrapFlags() 445 AR->getLoop(), SCEV::FlagAnyWrap), 446 L, Good, Bad, SE); 447 return; 448 } 449 450 // Handle a multiplication by -1 (negation) if it didn't fold. 451 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 452 if (Mul->getOperand(0)->isAllOnesValue()) { 453 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 454 const SCEV *NewMul = SE.getMulExpr(Ops); 455 456 SmallVector<const SCEV *, 4> MyGood; 457 SmallVector<const SCEV *, 4> MyBad; 458 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 459 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 460 SE.getEffectiveSCEVType(NewMul->getType()))); 461 for (const SCEV *S : MyGood) 462 Good.push_back(SE.getMulExpr(NegOne, S)); 463 for (const SCEV *S : MyBad) 464 Bad.push_back(SE.getMulExpr(NegOne, S)); 465 return; 466 } 467 468 // Ok, we can't do anything interesting. Just stuff the whole thing into a 469 // register and hope for the best. 470 Bad.push_back(S); 471 } 472 473 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 474 /// all loop-invariant and loop-computable values in a single base register. 475 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 476 SmallVector<const SCEV *, 4> Good; 477 SmallVector<const SCEV *, 4> Bad; 478 DoInitialMatch(S, L, Good, Bad, SE); 479 if (!Good.empty()) { 480 const SCEV *Sum = SE.getAddExpr(Good); 481 if (!Sum->isZero()) 482 BaseRegs.push_back(Sum); 483 HasBaseReg = true; 484 } 485 if (!Bad.empty()) { 486 const SCEV *Sum = SE.getAddExpr(Bad); 487 if (!Sum->isZero()) 488 BaseRegs.push_back(Sum); 489 HasBaseReg = true; 490 } 491 canonicalize(*L); 492 } 493 494 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 495 return SCEVExprContains(S, [&L](const SCEV *S) { 496 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 497 }); 498 } 499 500 /// Check whether or not this formula satisfies the canonical 501 /// representation. 502 /// \see Formula::BaseRegs. 503 bool Formula::isCanonical(const Loop &L) const { 504 if (!ScaledReg) 505 return BaseRegs.size() <= 1; 506 507 if (Scale != 1) 508 return true; 509 510 if (Scale == 1 && BaseRegs.empty()) 511 return false; 512 513 if (containsAddRecDependentOnLoop(ScaledReg, L)) 514 return true; 515 516 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 517 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 518 // loop, we want to swap the reg in BaseRegs with ScaledReg. 519 return none_of(BaseRegs, [&L](const SCEV *S) { 520 return containsAddRecDependentOnLoop(S, L); 521 }); 522 } 523 524 /// Helper method to morph a formula into its canonical representation. 525 /// \see Formula::BaseRegs. 526 /// Every formula having more than one base register, must use the ScaledReg 527 /// field. Otherwise, we would have to do special cases everywhere in LSR 528 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 529 /// On the other hand, 1*reg should be canonicalized into reg. 530 void Formula::canonicalize(const Loop &L) { 531 if (isCanonical(L)) 532 return; 533 534 if (BaseRegs.empty()) { 535 // No base reg? Use scale reg with scale = 1 as such. 536 assert(ScaledReg && "Expected 1*reg => reg"); 537 assert(Scale == 1 && "Expected 1*reg => reg"); 538 BaseRegs.push_back(ScaledReg); 539 Scale = 0; 540 ScaledReg = nullptr; 541 return; 542 } 543 544 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 545 if (!ScaledReg) { 546 ScaledReg = BaseRegs.pop_back_val(); 547 Scale = 1; 548 } 549 550 // If ScaledReg is an invariant with respect to L, find the reg from 551 // BaseRegs containing the recurrent expr related with Loop L. Swap the 552 // reg with ScaledReg. 553 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 554 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 555 return containsAddRecDependentOnLoop(S, L); 556 }); 557 if (I != BaseRegs.end()) 558 std::swap(ScaledReg, *I); 559 } 560 assert(isCanonical(L) && "Failed to canonicalize?"); 561 } 562 563 /// Get rid of the scale in the formula. 564 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 565 /// \return true if it was possible to get rid of the scale, false otherwise. 566 /// \note After this operation the formula may not be in the canonical form. 567 bool Formula::unscale() { 568 if (Scale != 1) 569 return false; 570 Scale = 0; 571 BaseRegs.push_back(ScaledReg); 572 ScaledReg = nullptr; 573 return true; 574 } 575 576 bool Formula::hasZeroEnd() const { 577 if (UnfoldedOffset || BaseOffset) 578 return false; 579 if (BaseRegs.size() != 1 || ScaledReg) 580 return false; 581 return true; 582 } 583 584 /// Return the total number of register operands used by this formula. This does 585 /// not include register uses implied by non-constant addrec strides. 586 size_t Formula::getNumRegs() const { 587 return !!ScaledReg + BaseRegs.size(); 588 } 589 590 /// Return the type of this formula, if it has one, or null otherwise. This type 591 /// is meaningless except for the bit size. 592 Type *Formula::getType() const { 593 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 594 ScaledReg ? ScaledReg->getType() : 595 BaseGV ? BaseGV->getType() : 596 nullptr; 597 } 598 599 /// Delete the given base reg from the BaseRegs list. 600 void Formula::deleteBaseReg(const SCEV *&S) { 601 if (&S != &BaseRegs.back()) 602 std::swap(S, BaseRegs.back()); 603 BaseRegs.pop_back(); 604 } 605 606 /// Test if this formula references the given register. 607 bool Formula::referencesReg(const SCEV *S) const { 608 return S == ScaledReg || is_contained(BaseRegs, S); 609 } 610 611 /// Test whether this formula uses registers which are used by uses other than 612 /// the use with the given index. 613 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 614 const RegUseTracker &RegUses) const { 615 if (ScaledReg) 616 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 617 return true; 618 for (const SCEV *BaseReg : BaseRegs) 619 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 620 return true; 621 return false; 622 } 623 624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 625 void Formula::print(raw_ostream &OS) const { 626 bool First = true; 627 if (BaseGV) { 628 if (!First) OS << " + "; else First = false; 629 BaseGV->printAsOperand(OS, /*PrintType=*/false); 630 } 631 if (BaseOffset != 0) { 632 if (!First) OS << " + "; else First = false; 633 OS << BaseOffset; 634 } 635 for (const SCEV *BaseReg : BaseRegs) { 636 if (!First) OS << " + "; else First = false; 637 OS << "reg(" << *BaseReg << ')'; 638 } 639 if (HasBaseReg && BaseRegs.empty()) { 640 if (!First) OS << " + "; else First = false; 641 OS << "**error: HasBaseReg**"; 642 } else if (!HasBaseReg && !BaseRegs.empty()) { 643 if (!First) OS << " + "; else First = false; 644 OS << "**error: !HasBaseReg**"; 645 } 646 if (Scale != 0) { 647 if (!First) OS << " + "; else First = false; 648 OS << Scale << "*reg("; 649 if (ScaledReg) 650 OS << *ScaledReg; 651 else 652 OS << "<unknown>"; 653 OS << ')'; 654 } 655 if (UnfoldedOffset != 0) { 656 if (!First) OS << " + "; 657 OS << "imm(" << UnfoldedOffset << ')'; 658 } 659 } 660 661 LLVM_DUMP_METHOD void Formula::dump() const { 662 print(errs()); errs() << '\n'; 663 } 664 #endif 665 666 /// Return true if the given addrec can be sign-extended without changing its 667 /// value. 668 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 669 Type *WideTy = 670 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 671 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 672 } 673 674 /// Return true if the given add can be sign-extended without changing its 675 /// value. 676 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 677 Type *WideTy = 678 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 679 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 680 } 681 682 /// Return true if the given mul can be sign-extended without changing its 683 /// value. 684 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 685 Type *WideTy = 686 IntegerType::get(SE.getContext(), 687 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 688 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 689 } 690 691 /// Return an expression for LHS /s RHS, if it can be determined and if the 692 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 693 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 694 /// the multiplication may overflow, which is useful when the result will be 695 /// used in a context where the most significant bits are ignored. 696 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 697 ScalarEvolution &SE, 698 bool IgnoreSignificantBits = false) { 699 // Handle the trivial case, which works for any SCEV type. 700 if (LHS == RHS) 701 return SE.getConstant(LHS->getType(), 1); 702 703 // Handle a few RHS special cases. 704 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 705 if (RC) { 706 const APInt &RA = RC->getAPInt(); 707 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 708 // some folding. 709 if (RA.isAllOnes()) { 710 if (LHS->getType()->isPointerTy()) 711 return nullptr; 712 return SE.getMulExpr(LHS, RC); 713 } 714 // Handle x /s 1 as x. 715 if (RA == 1) 716 return LHS; 717 } 718 719 // Check for a division of a constant by a constant. 720 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 721 if (!RC) 722 return nullptr; 723 const APInt &LA = C->getAPInt(); 724 const APInt &RA = RC->getAPInt(); 725 if (LA.srem(RA) != 0) 726 return nullptr; 727 return SE.getConstant(LA.sdiv(RA)); 728 } 729 730 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 731 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 732 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 733 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 734 IgnoreSignificantBits); 735 if (!Step) return nullptr; 736 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 737 IgnoreSignificantBits); 738 if (!Start) return nullptr; 739 // FlagNW is independent of the start value, step direction, and is 740 // preserved with smaller magnitude steps. 741 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 742 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 743 } 744 return nullptr; 745 } 746 747 // Distribute the sdiv over add operands, if the add doesn't overflow. 748 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 749 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 750 SmallVector<const SCEV *, 8> Ops; 751 for (const SCEV *S : Add->operands()) { 752 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 753 if (!Op) return nullptr; 754 Ops.push_back(Op); 755 } 756 return SE.getAddExpr(Ops); 757 } 758 return nullptr; 759 } 760 761 // Check for a multiply operand that we can pull RHS out of. 762 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 763 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 764 // Handle special case C1*X*Y /s C2*X*Y. 765 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 766 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 767 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 768 const SCEVConstant *RC = 769 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 770 if (LC && RC) { 771 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 772 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 773 if (LOps == ROps) 774 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 775 } 776 } 777 } 778 779 SmallVector<const SCEV *, 4> Ops; 780 bool Found = false; 781 for (const SCEV *S : Mul->operands()) { 782 if (!Found) 783 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 784 IgnoreSignificantBits)) { 785 S = Q; 786 Found = true; 787 } 788 Ops.push_back(S); 789 } 790 return Found ? SE.getMulExpr(Ops) : nullptr; 791 } 792 return nullptr; 793 } 794 795 // Otherwise we don't know. 796 return nullptr; 797 } 798 799 /// If S involves the addition of a constant integer value, return that integer 800 /// value, and mutate S to point to a new SCEV with that value excluded. 801 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 802 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 803 if (C->getAPInt().getSignificantBits() <= 64) { 804 S = SE.getConstant(C->getType(), 0); 805 return C->getValue()->getSExtValue(); 806 } 807 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 808 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 809 int64_t Result = ExtractImmediate(NewOps.front(), SE); 810 if (Result != 0) 811 S = SE.getAddExpr(NewOps); 812 return Result; 813 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 814 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 815 int64_t Result = ExtractImmediate(NewOps.front(), SE); 816 if (Result != 0) 817 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 818 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 819 SCEV::FlagAnyWrap); 820 return Result; 821 } 822 return 0; 823 } 824 825 /// If S involves the addition of a GlobalValue address, return that symbol, and 826 /// mutate S to point to a new SCEV with that value excluded. 827 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 828 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 829 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 830 S = SE.getConstant(GV->getType(), 0); 831 return GV; 832 } 833 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 834 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 835 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 836 if (Result) 837 S = SE.getAddExpr(NewOps); 838 return Result; 839 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 840 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 841 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 842 if (Result) 843 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 844 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 845 SCEV::FlagAnyWrap); 846 return Result; 847 } 848 return nullptr; 849 } 850 851 /// Returns true if the specified instruction is using the specified value as an 852 /// address. 853 static bool isAddressUse(const TargetTransformInfo &TTI, 854 Instruction *Inst, Value *OperandVal) { 855 bool isAddress = isa<LoadInst>(Inst); 856 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 857 if (SI->getPointerOperand() == OperandVal) 858 isAddress = true; 859 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 860 // Addressing modes can also be folded into prefetches and a variety 861 // of intrinsics. 862 switch (II->getIntrinsicID()) { 863 case Intrinsic::memset: 864 case Intrinsic::prefetch: 865 case Intrinsic::masked_load: 866 if (II->getArgOperand(0) == OperandVal) 867 isAddress = true; 868 break; 869 case Intrinsic::masked_store: 870 if (II->getArgOperand(1) == OperandVal) 871 isAddress = true; 872 break; 873 case Intrinsic::memmove: 874 case Intrinsic::memcpy: 875 if (II->getArgOperand(0) == OperandVal || 876 II->getArgOperand(1) == OperandVal) 877 isAddress = true; 878 break; 879 default: { 880 MemIntrinsicInfo IntrInfo; 881 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 882 if (IntrInfo.PtrVal == OperandVal) 883 isAddress = true; 884 } 885 } 886 } 887 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 888 if (RMW->getPointerOperand() == OperandVal) 889 isAddress = true; 890 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 891 if (CmpX->getPointerOperand() == OperandVal) 892 isAddress = true; 893 } 894 return isAddress; 895 } 896 897 /// Return the type of the memory being accessed. 898 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 899 Instruction *Inst, Value *OperandVal) { 900 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 901 902 // First get the type of memory being accessed. 903 if (Type *Ty = Inst->getAccessType()) 904 AccessTy.MemTy = Ty; 905 906 // Then get the pointer address space. 907 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 908 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 909 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 910 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 911 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 912 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 913 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 914 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 915 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 916 switch (II->getIntrinsicID()) { 917 case Intrinsic::prefetch: 918 case Intrinsic::memset: 919 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 920 AccessTy.MemTy = OperandVal->getType(); 921 break; 922 case Intrinsic::memmove: 923 case Intrinsic::memcpy: 924 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 925 AccessTy.MemTy = OperandVal->getType(); 926 break; 927 case Intrinsic::masked_load: 928 AccessTy.AddrSpace = 929 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 930 break; 931 case Intrinsic::masked_store: 932 AccessTy.AddrSpace = 933 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 934 break; 935 default: { 936 MemIntrinsicInfo IntrInfo; 937 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 938 AccessTy.AddrSpace 939 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 940 } 941 942 break; 943 } 944 } 945 } 946 947 return AccessTy; 948 } 949 950 /// Return true if this AddRec is already a phi in its loop. 951 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 952 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 953 if (SE.isSCEVable(PN.getType()) && 954 (SE.getEffectiveSCEVType(PN.getType()) == 955 SE.getEffectiveSCEVType(AR->getType())) && 956 SE.getSCEV(&PN) == AR) 957 return true; 958 } 959 return false; 960 } 961 962 /// Check if expanding this expression is likely to incur significant cost. This 963 /// is tricky because SCEV doesn't track which expressions are actually computed 964 /// by the current IR. 965 /// 966 /// We currently allow expansion of IV increments that involve adds, 967 /// multiplication by constants, and AddRecs from existing phis. 968 /// 969 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 970 /// obvious multiple of the UDivExpr. 971 static bool isHighCostExpansion(const SCEV *S, 972 SmallPtrSetImpl<const SCEV*> &Processed, 973 ScalarEvolution &SE) { 974 // Zero/One operand expressions 975 switch (S->getSCEVType()) { 976 case scUnknown: 977 case scConstant: 978 case scVScale: 979 return false; 980 case scTruncate: 981 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 982 Processed, SE); 983 case scZeroExtend: 984 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 985 Processed, SE); 986 case scSignExtend: 987 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 988 Processed, SE); 989 default: 990 break; 991 } 992 993 if (!Processed.insert(S).second) 994 return false; 995 996 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 997 for (const SCEV *S : Add->operands()) { 998 if (isHighCostExpansion(S, Processed, SE)) 999 return true; 1000 } 1001 return false; 1002 } 1003 1004 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1005 if (Mul->getNumOperands() == 2) { 1006 // Multiplication by a constant is ok 1007 if (isa<SCEVConstant>(Mul->getOperand(0))) 1008 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1009 1010 // If we have the value of one operand, check if an existing 1011 // multiplication already generates this expression. 1012 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1013 Value *UVal = U->getValue(); 1014 for (User *UR : UVal->users()) { 1015 // If U is a constant, it may be used by a ConstantExpr. 1016 Instruction *UI = dyn_cast<Instruction>(UR); 1017 if (UI && UI->getOpcode() == Instruction::Mul && 1018 SE.isSCEVable(UI->getType())) { 1019 return SE.getSCEV(UI) == Mul; 1020 } 1021 } 1022 } 1023 } 1024 } 1025 1026 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1027 if (isExistingPhi(AR, SE)) 1028 return false; 1029 } 1030 1031 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1032 return true; 1033 } 1034 1035 namespace { 1036 1037 class LSRUse; 1038 1039 } // end anonymous namespace 1040 1041 /// Check if the addressing mode defined by \p F is completely 1042 /// folded in \p LU at isel time. 1043 /// This includes address-mode folding and special icmp tricks. 1044 /// This function returns true if \p LU can accommodate what \p F 1045 /// defines and up to 1 base + 1 scaled + offset. 1046 /// In other words, if \p F has several base registers, this function may 1047 /// still return true. Therefore, users still need to account for 1048 /// additional base registers and/or unfolded offsets to derive an 1049 /// accurate cost model. 1050 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1051 const LSRUse &LU, const Formula &F); 1052 1053 // Get the cost of the scaling factor used in F for LU. 1054 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1055 const LSRUse &LU, const Formula &F, 1056 const Loop &L); 1057 1058 namespace { 1059 1060 /// This class is used to measure and compare candidate formulae. 1061 class Cost { 1062 const Loop *L = nullptr; 1063 ScalarEvolution *SE = nullptr; 1064 const TargetTransformInfo *TTI = nullptr; 1065 TargetTransformInfo::LSRCost C; 1066 TTI::AddressingModeKind AMK = TTI::AMK_None; 1067 1068 public: 1069 Cost() = delete; 1070 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1071 TTI::AddressingModeKind AMK) : 1072 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1073 C.Insns = 0; 1074 C.NumRegs = 0; 1075 C.AddRecCost = 0; 1076 C.NumIVMuls = 0; 1077 C.NumBaseAdds = 0; 1078 C.ImmCost = 0; 1079 C.SetupCost = 0; 1080 C.ScaleCost = 0; 1081 } 1082 1083 bool isLess(const Cost &Other) const; 1084 1085 void Lose(); 1086 1087 #ifndef NDEBUG 1088 // Once any of the metrics loses, they must all remain losers. 1089 bool isValid() { 1090 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1091 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1092 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1093 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1094 } 1095 #endif 1096 1097 bool isLoser() { 1098 assert(isValid() && "invalid cost"); 1099 return C.NumRegs == ~0u; 1100 } 1101 1102 void RateFormula(const Formula &F, 1103 SmallPtrSetImpl<const SCEV *> &Regs, 1104 const DenseSet<const SCEV *> &VisitedRegs, 1105 const LSRUse &LU, 1106 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1107 1108 void print(raw_ostream &OS) const; 1109 void dump() const; 1110 1111 private: 1112 void RateRegister(const Formula &F, const SCEV *Reg, 1113 SmallPtrSetImpl<const SCEV *> &Regs); 1114 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1115 SmallPtrSetImpl<const SCEV *> &Regs, 1116 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1117 }; 1118 1119 /// An operand value in an instruction which is to be replaced with some 1120 /// equivalent, possibly strength-reduced, replacement. 1121 struct LSRFixup { 1122 /// The instruction which will be updated. 1123 Instruction *UserInst = nullptr; 1124 1125 /// The operand of the instruction which will be replaced. The operand may be 1126 /// used more than once; every instance will be replaced. 1127 Value *OperandValToReplace = nullptr; 1128 1129 /// If this user is to use the post-incremented value of an induction 1130 /// variable, this set is non-empty and holds the loops associated with the 1131 /// induction variable. 1132 PostIncLoopSet PostIncLoops; 1133 1134 /// A constant offset to be added to the LSRUse expression. This allows 1135 /// multiple fixups to share the same LSRUse with different offsets, for 1136 /// example in an unrolled loop. 1137 int64_t Offset = 0; 1138 1139 LSRFixup() = default; 1140 1141 bool isUseFullyOutsideLoop(const Loop *L) const; 1142 1143 void print(raw_ostream &OS) const; 1144 void dump() const; 1145 }; 1146 1147 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1148 /// SmallVectors of const SCEV*. 1149 struct UniquifierDenseMapInfo { 1150 static SmallVector<const SCEV *, 4> getEmptyKey() { 1151 SmallVector<const SCEV *, 4> V; 1152 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1153 return V; 1154 } 1155 1156 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1157 SmallVector<const SCEV *, 4> V; 1158 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1159 return V; 1160 } 1161 1162 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1163 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1164 } 1165 1166 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1167 const SmallVector<const SCEV *, 4> &RHS) { 1168 return LHS == RHS; 1169 } 1170 }; 1171 1172 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1173 /// as uses invented by LSR itself. It includes information about what kinds of 1174 /// things can be folded into the user, information about the user itself, and 1175 /// information about how the use may be satisfied. TODO: Represent multiple 1176 /// users of the same expression in common? 1177 class LSRUse { 1178 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1179 1180 public: 1181 /// An enum for a kind of use, indicating what types of scaled and immediate 1182 /// operands it might support. 1183 enum KindType { 1184 Basic, ///< A normal use, with no folding. 1185 Special, ///< A special case of basic, allowing -1 scales. 1186 Address, ///< An address use; folding according to TargetLowering 1187 ICmpZero ///< An equality icmp with both operands folded into one. 1188 // TODO: Add a generic icmp too? 1189 }; 1190 1191 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1192 1193 KindType Kind; 1194 MemAccessTy AccessTy; 1195 1196 /// The list of operands which are to be replaced. 1197 SmallVector<LSRFixup, 8> Fixups; 1198 1199 /// Keep track of the min and max offsets of the fixups. 1200 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1201 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1202 1203 /// This records whether all of the fixups using this LSRUse are outside of 1204 /// the loop, in which case some special-case heuristics may be used. 1205 bool AllFixupsOutsideLoop = true; 1206 1207 /// RigidFormula is set to true to guarantee that this use will be associated 1208 /// with a single formula--the one that initially matched. Some SCEV 1209 /// expressions cannot be expanded. This allows LSR to consider the registers 1210 /// used by those expressions without the need to expand them later after 1211 /// changing the formula. 1212 bool RigidFormula = false; 1213 1214 /// This records the widest use type for any fixup using this 1215 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1216 /// fixup widths to be equivalent, because the narrower one may be relying on 1217 /// the implicit truncation to truncate away bogus bits. 1218 Type *WidestFixupType = nullptr; 1219 1220 /// A list of ways to build a value that can satisfy this user. After the 1221 /// list is populated, one of these is selected heuristically and used to 1222 /// formulate a replacement for OperandValToReplace in UserInst. 1223 SmallVector<Formula, 12> Formulae; 1224 1225 /// The set of register candidates used by all formulae in this LSRUse. 1226 SmallPtrSet<const SCEV *, 4> Regs; 1227 1228 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1229 1230 LSRFixup &getNewFixup() { 1231 Fixups.push_back(LSRFixup()); 1232 return Fixups.back(); 1233 } 1234 1235 void pushFixup(LSRFixup &f) { 1236 Fixups.push_back(f); 1237 if (f.Offset > MaxOffset) 1238 MaxOffset = f.Offset; 1239 if (f.Offset < MinOffset) 1240 MinOffset = f.Offset; 1241 } 1242 1243 bool HasFormulaWithSameRegs(const Formula &F) const; 1244 float getNotSelectedProbability(const SCEV *Reg) const; 1245 bool InsertFormula(const Formula &F, const Loop &L); 1246 void DeleteFormula(Formula &F); 1247 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1248 1249 void print(raw_ostream &OS) const; 1250 void dump() const; 1251 }; 1252 1253 } // end anonymous namespace 1254 1255 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1256 LSRUse::KindType Kind, MemAccessTy AccessTy, 1257 GlobalValue *BaseGV, int64_t BaseOffset, 1258 bool HasBaseReg, int64_t Scale, 1259 Instruction *Fixup = nullptr); 1260 1261 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1262 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1263 return 1; 1264 if (Depth == 0) 1265 return 0; 1266 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1267 return getSetupCost(S->getStart(), Depth - 1); 1268 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1269 return getSetupCost(S->getOperand(), Depth - 1); 1270 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1271 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1272 [&](unsigned i, const SCEV *Reg) { 1273 return i + getSetupCost(Reg, Depth - 1); 1274 }); 1275 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1276 return getSetupCost(S->getLHS(), Depth - 1) + 1277 getSetupCost(S->getRHS(), Depth - 1); 1278 return 0; 1279 } 1280 1281 /// Tally up interesting quantities from the given register. 1282 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1283 SmallPtrSetImpl<const SCEV *> &Regs) { 1284 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1285 // If this is an addrec for another loop, it should be an invariant 1286 // with respect to L since L is the innermost loop (at least 1287 // for now LSR only handles innermost loops). 1288 if (AR->getLoop() != L) { 1289 // If the AddRec exists, consider it's register free and leave it alone. 1290 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1291 return; 1292 1293 // It is bad to allow LSR for current loop to add induction variables 1294 // for its sibling loops. 1295 if (!AR->getLoop()->contains(L)) { 1296 Lose(); 1297 return; 1298 } 1299 1300 // Otherwise, it will be an invariant with respect to Loop L. 1301 ++C.NumRegs; 1302 return; 1303 } 1304 1305 unsigned LoopCost = 1; 1306 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1307 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1308 1309 // If the step size matches the base offset, we could use pre-indexed 1310 // addressing. 1311 if (AMK == TTI::AMK_PreIndexed) { 1312 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1313 if (Step->getAPInt() == F.BaseOffset) 1314 LoopCost = 0; 1315 } else if (AMK == TTI::AMK_PostIndexed) { 1316 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1317 if (isa<SCEVConstant>(LoopStep)) { 1318 const SCEV *LoopStart = AR->getStart(); 1319 if (!isa<SCEVConstant>(LoopStart) && 1320 SE->isLoopInvariant(LoopStart, L)) 1321 LoopCost = 0; 1322 } 1323 } 1324 } 1325 C.AddRecCost += LoopCost; 1326 1327 // Add the step value register, if it needs one. 1328 // TODO: The non-affine case isn't precisely modeled here. 1329 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1330 if (!Regs.count(AR->getOperand(1))) { 1331 RateRegister(F, AR->getOperand(1), Regs); 1332 if (isLoser()) 1333 return; 1334 } 1335 } 1336 } 1337 ++C.NumRegs; 1338 1339 // Rough heuristic; favor registers which don't require extra setup 1340 // instructions in the preheader. 1341 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1342 // Ensure we don't, even with the recusion limit, produce invalid costs. 1343 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1344 1345 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1346 SE->hasComputableLoopEvolution(Reg, L); 1347 } 1348 1349 /// Record this register in the set. If we haven't seen it before, rate 1350 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1351 /// one of those regs an instant loser. 1352 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1353 SmallPtrSetImpl<const SCEV *> &Regs, 1354 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1355 if (LoserRegs && LoserRegs->count(Reg)) { 1356 Lose(); 1357 return; 1358 } 1359 if (Regs.insert(Reg).second) { 1360 RateRegister(F, Reg, Regs); 1361 if (LoserRegs && isLoser()) 1362 LoserRegs->insert(Reg); 1363 } 1364 } 1365 1366 void Cost::RateFormula(const Formula &F, 1367 SmallPtrSetImpl<const SCEV *> &Regs, 1368 const DenseSet<const SCEV *> &VisitedRegs, 1369 const LSRUse &LU, 1370 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1371 if (isLoser()) 1372 return; 1373 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1374 // Tally up the registers. 1375 unsigned PrevAddRecCost = C.AddRecCost; 1376 unsigned PrevNumRegs = C.NumRegs; 1377 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1378 if (const SCEV *ScaledReg = F.ScaledReg) { 1379 if (VisitedRegs.count(ScaledReg)) { 1380 Lose(); 1381 return; 1382 } 1383 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1384 if (isLoser()) 1385 return; 1386 } 1387 for (const SCEV *BaseReg : F.BaseRegs) { 1388 if (VisitedRegs.count(BaseReg)) { 1389 Lose(); 1390 return; 1391 } 1392 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1393 if (isLoser()) 1394 return; 1395 } 1396 1397 // Determine how many (unfolded) adds we'll need inside the loop. 1398 size_t NumBaseParts = F.getNumRegs(); 1399 if (NumBaseParts > 1) 1400 // Do not count the base and a possible second register if the target 1401 // allows to fold 2 registers. 1402 C.NumBaseAdds += 1403 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1404 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1405 1406 // Accumulate non-free scaling amounts. 1407 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1408 1409 // Tally up the non-zero immediates. 1410 for (const LSRFixup &Fixup : LU.Fixups) { 1411 int64_t O = Fixup.Offset; 1412 int64_t Offset = (uint64_t)O + F.BaseOffset; 1413 if (F.BaseGV) 1414 C.ImmCost += 64; // Handle symbolic values conservatively. 1415 // TODO: This should probably be the pointer size. 1416 else if (Offset != 0) 1417 C.ImmCost += APInt(64, Offset, true).getSignificantBits(); 1418 1419 // Check with target if this offset with this instruction is 1420 // specifically not supported. 1421 if (LU.Kind == LSRUse::Address && Offset != 0 && 1422 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1423 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1424 C.NumBaseAdds++; 1425 } 1426 1427 // If we don't count instruction cost exit here. 1428 if (!InsnsCost) { 1429 assert(isValid() && "invalid cost"); 1430 return; 1431 } 1432 1433 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1434 // additional instruction (at least fill). 1435 // TODO: Need distinguish register class? 1436 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1437 TTI->getRegisterClassForType(false, F.getType())) - 1; 1438 if (C.NumRegs > TTIRegNum) { 1439 // Cost already exceeded TTIRegNum, then only newly added register can add 1440 // new instructions. 1441 if (PrevNumRegs > TTIRegNum) 1442 C.Insns += (C.NumRegs - PrevNumRegs); 1443 else 1444 C.Insns += (C.NumRegs - TTIRegNum); 1445 } 1446 1447 // If ICmpZero formula ends with not 0, it could not be replaced by 1448 // just add or sub. We'll need to compare final result of AddRec. 1449 // That means we'll need an additional instruction. But if the target can 1450 // macro-fuse a compare with a branch, don't count this extra instruction. 1451 // For -10 + {0, +, 1}: 1452 // i = i + 1; 1453 // cmp i, 10 1454 // 1455 // For {-10, +, 1}: 1456 // i = i + 1; 1457 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1458 !TTI->canMacroFuseCmp()) 1459 C.Insns++; 1460 // Each new AddRec adds 1 instruction to calculation. 1461 C.Insns += (C.AddRecCost - PrevAddRecCost); 1462 1463 // BaseAdds adds instructions for unfolded registers. 1464 if (LU.Kind != LSRUse::ICmpZero) 1465 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1466 assert(isValid() && "invalid cost"); 1467 } 1468 1469 /// Set this cost to a losing value. 1470 void Cost::Lose() { 1471 C.Insns = std::numeric_limits<unsigned>::max(); 1472 C.NumRegs = std::numeric_limits<unsigned>::max(); 1473 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1474 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1475 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1476 C.ImmCost = std::numeric_limits<unsigned>::max(); 1477 C.SetupCost = std::numeric_limits<unsigned>::max(); 1478 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1479 } 1480 1481 /// Choose the lower cost. 1482 bool Cost::isLess(const Cost &Other) const { 1483 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1484 C.Insns != Other.C.Insns) 1485 return C.Insns < Other.C.Insns; 1486 return TTI->isLSRCostLess(C, Other.C); 1487 } 1488 1489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1490 void Cost::print(raw_ostream &OS) const { 1491 if (InsnsCost) 1492 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1493 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1494 if (C.AddRecCost != 0) 1495 OS << ", with addrec cost " << C.AddRecCost; 1496 if (C.NumIVMuls != 0) 1497 OS << ", plus " << C.NumIVMuls << " IV mul" 1498 << (C.NumIVMuls == 1 ? "" : "s"); 1499 if (C.NumBaseAdds != 0) 1500 OS << ", plus " << C.NumBaseAdds << " base add" 1501 << (C.NumBaseAdds == 1 ? "" : "s"); 1502 if (C.ScaleCost != 0) 1503 OS << ", plus " << C.ScaleCost << " scale cost"; 1504 if (C.ImmCost != 0) 1505 OS << ", plus " << C.ImmCost << " imm cost"; 1506 if (C.SetupCost != 0) 1507 OS << ", plus " << C.SetupCost << " setup cost"; 1508 } 1509 1510 LLVM_DUMP_METHOD void Cost::dump() const { 1511 print(errs()); errs() << '\n'; 1512 } 1513 #endif 1514 1515 /// Test whether this fixup always uses its value outside of the given loop. 1516 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1517 // PHI nodes use their value in their incoming blocks. 1518 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1519 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1520 if (PN->getIncomingValue(i) == OperandValToReplace && 1521 L->contains(PN->getIncomingBlock(i))) 1522 return false; 1523 return true; 1524 } 1525 1526 return !L->contains(UserInst); 1527 } 1528 1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1530 void LSRFixup::print(raw_ostream &OS) const { 1531 OS << "UserInst="; 1532 // Store is common and interesting enough to be worth special-casing. 1533 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1534 OS << "store "; 1535 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1536 } else if (UserInst->getType()->isVoidTy()) 1537 OS << UserInst->getOpcodeName(); 1538 else 1539 UserInst->printAsOperand(OS, /*PrintType=*/false); 1540 1541 OS << ", OperandValToReplace="; 1542 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1543 1544 for (const Loop *PIL : PostIncLoops) { 1545 OS << ", PostIncLoop="; 1546 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1547 } 1548 1549 if (Offset != 0) 1550 OS << ", Offset=" << Offset; 1551 } 1552 1553 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1554 print(errs()); errs() << '\n'; 1555 } 1556 #endif 1557 1558 /// Test whether this use as a formula which has the same registers as the given 1559 /// formula. 1560 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1561 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1562 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1563 // Unstable sort by host order ok, because this is only used for uniquifying. 1564 llvm::sort(Key); 1565 return Uniquifier.count(Key); 1566 } 1567 1568 /// The function returns a probability of selecting formula without Reg. 1569 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1570 unsigned FNum = 0; 1571 for (const Formula &F : Formulae) 1572 if (F.referencesReg(Reg)) 1573 FNum++; 1574 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1575 } 1576 1577 /// If the given formula has not yet been inserted, add it to the list, and 1578 /// return true. Return false otherwise. The formula must be in canonical form. 1579 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1580 assert(F.isCanonical(L) && "Invalid canonical representation"); 1581 1582 if (!Formulae.empty() && RigidFormula) 1583 return false; 1584 1585 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1586 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1587 // Unstable sort by host order ok, because this is only used for uniquifying. 1588 llvm::sort(Key); 1589 1590 if (!Uniquifier.insert(Key).second) 1591 return false; 1592 1593 // Using a register to hold the value of 0 is not profitable. 1594 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1595 "Zero allocated in a scaled register!"); 1596 #ifndef NDEBUG 1597 for (const SCEV *BaseReg : F.BaseRegs) 1598 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1599 #endif 1600 1601 // Add the formula to the list. 1602 Formulae.push_back(F); 1603 1604 // Record registers now being used by this use. 1605 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1606 if (F.ScaledReg) 1607 Regs.insert(F.ScaledReg); 1608 1609 return true; 1610 } 1611 1612 /// Remove the given formula from this use's list. 1613 void LSRUse::DeleteFormula(Formula &F) { 1614 if (&F != &Formulae.back()) 1615 std::swap(F, Formulae.back()); 1616 Formulae.pop_back(); 1617 } 1618 1619 /// Recompute the Regs field, and update RegUses. 1620 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1621 // Now that we've filtered out some formulae, recompute the Regs set. 1622 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1623 Regs.clear(); 1624 for (const Formula &F : Formulae) { 1625 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1626 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1627 } 1628 1629 // Update the RegTracker. 1630 for (const SCEV *S : OldRegs) 1631 if (!Regs.count(S)) 1632 RegUses.dropRegister(S, LUIdx); 1633 } 1634 1635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1636 void LSRUse::print(raw_ostream &OS) const { 1637 OS << "LSR Use: Kind="; 1638 switch (Kind) { 1639 case Basic: OS << "Basic"; break; 1640 case Special: OS << "Special"; break; 1641 case ICmpZero: OS << "ICmpZero"; break; 1642 case Address: 1643 OS << "Address of "; 1644 if (AccessTy.MemTy->isPointerTy()) 1645 OS << "pointer"; // the full pointer type could be really verbose 1646 else { 1647 OS << *AccessTy.MemTy; 1648 } 1649 1650 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1651 } 1652 1653 OS << ", Offsets={"; 1654 bool NeedComma = false; 1655 for (const LSRFixup &Fixup : Fixups) { 1656 if (NeedComma) OS << ','; 1657 OS << Fixup.Offset; 1658 NeedComma = true; 1659 } 1660 OS << '}'; 1661 1662 if (AllFixupsOutsideLoop) 1663 OS << ", all-fixups-outside-loop"; 1664 1665 if (WidestFixupType) 1666 OS << ", widest fixup type: " << *WidestFixupType; 1667 } 1668 1669 LLVM_DUMP_METHOD void LSRUse::dump() const { 1670 print(errs()); errs() << '\n'; 1671 } 1672 #endif 1673 1674 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1675 LSRUse::KindType Kind, MemAccessTy AccessTy, 1676 GlobalValue *BaseGV, int64_t BaseOffset, 1677 bool HasBaseReg, int64_t Scale, 1678 Instruction *Fixup/*= nullptr*/) { 1679 switch (Kind) { 1680 case LSRUse::Address: 1681 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1682 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1683 1684 case LSRUse::ICmpZero: 1685 // There's not even a target hook for querying whether it would be legal to 1686 // fold a GV into an ICmp. 1687 if (BaseGV) 1688 return false; 1689 1690 // ICmp only has two operands; don't allow more than two non-trivial parts. 1691 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1692 return false; 1693 1694 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1695 // putting the scaled register in the other operand of the icmp. 1696 if (Scale != 0 && Scale != -1) 1697 return false; 1698 1699 // If we have low-level target information, ask the target if it can fold an 1700 // integer immediate on an icmp. 1701 if (BaseOffset != 0) { 1702 // We have one of: 1703 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1704 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1705 // Offs is the ICmp immediate. 1706 if (Scale == 0) 1707 // The cast does the right thing with 1708 // std::numeric_limits<int64_t>::min(). 1709 BaseOffset = -(uint64_t)BaseOffset; 1710 return TTI.isLegalICmpImmediate(BaseOffset); 1711 } 1712 1713 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1714 return true; 1715 1716 case LSRUse::Basic: 1717 // Only handle single-register values. 1718 return !BaseGV && Scale == 0 && BaseOffset == 0; 1719 1720 case LSRUse::Special: 1721 // Special case Basic to handle -1 scales. 1722 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1723 } 1724 1725 llvm_unreachable("Invalid LSRUse Kind!"); 1726 } 1727 1728 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1729 int64_t MinOffset, int64_t MaxOffset, 1730 LSRUse::KindType Kind, MemAccessTy AccessTy, 1731 GlobalValue *BaseGV, int64_t BaseOffset, 1732 bool HasBaseReg, int64_t Scale) { 1733 // Check for overflow. 1734 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1735 (MinOffset > 0)) 1736 return false; 1737 MinOffset = (uint64_t)BaseOffset + MinOffset; 1738 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1739 (MaxOffset > 0)) 1740 return false; 1741 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1742 1743 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1744 HasBaseReg, Scale) && 1745 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1746 HasBaseReg, Scale); 1747 } 1748 1749 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1750 int64_t MinOffset, int64_t MaxOffset, 1751 LSRUse::KindType Kind, MemAccessTy AccessTy, 1752 const Formula &F, const Loop &L) { 1753 // For the purpose of isAMCompletelyFolded either having a canonical formula 1754 // or a scale not equal to zero is correct. 1755 // Problems may arise from non canonical formulae having a scale == 0. 1756 // Strictly speaking it would best to just rely on canonical formulae. 1757 // However, when we generate the scaled formulae, we first check that the 1758 // scaling factor is profitable before computing the actual ScaledReg for 1759 // compile time sake. 1760 assert((F.isCanonical(L) || F.Scale != 0)); 1761 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1762 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1763 } 1764 1765 /// Test whether we know how to expand the current formula. 1766 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1767 int64_t MaxOffset, LSRUse::KindType Kind, 1768 MemAccessTy AccessTy, GlobalValue *BaseGV, 1769 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1770 // We know how to expand completely foldable formulae. 1771 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1772 BaseOffset, HasBaseReg, Scale) || 1773 // Or formulae that use a base register produced by a sum of base 1774 // registers. 1775 (Scale == 1 && 1776 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1777 BaseGV, BaseOffset, true, 0)); 1778 } 1779 1780 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1781 int64_t MaxOffset, LSRUse::KindType Kind, 1782 MemAccessTy AccessTy, const Formula &F) { 1783 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1784 F.BaseOffset, F.HasBaseReg, F.Scale); 1785 } 1786 1787 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1788 const LSRUse &LU, const Formula &F) { 1789 // Target may want to look at the user instructions. 1790 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1791 for (const LSRFixup &Fixup : LU.Fixups) 1792 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1793 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1794 F.Scale, Fixup.UserInst)) 1795 return false; 1796 return true; 1797 } 1798 1799 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1800 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1801 F.Scale); 1802 } 1803 1804 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1805 const LSRUse &LU, const Formula &F, 1806 const Loop &L) { 1807 if (!F.Scale) 1808 return 0; 1809 1810 // If the use is not completely folded in that instruction, we will have to 1811 // pay an extra cost only for scale != 1. 1812 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1813 LU.AccessTy, F, L)) 1814 return F.Scale != 1; 1815 1816 switch (LU.Kind) { 1817 case LSRUse::Address: { 1818 // Check the scaling factor cost with both the min and max offsets. 1819 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1820 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1821 F.Scale, LU.AccessTy.AddrSpace); 1822 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1823 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1824 F.Scale, LU.AccessTy.AddrSpace); 1825 1826 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1827 "Legal addressing mode has an illegal cost!"); 1828 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1829 } 1830 case LSRUse::ICmpZero: 1831 case LSRUse::Basic: 1832 case LSRUse::Special: 1833 // The use is completely folded, i.e., everything is folded into the 1834 // instruction. 1835 return 0; 1836 } 1837 1838 llvm_unreachable("Invalid LSRUse Kind!"); 1839 } 1840 1841 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1842 LSRUse::KindType Kind, MemAccessTy AccessTy, 1843 GlobalValue *BaseGV, int64_t BaseOffset, 1844 bool HasBaseReg) { 1845 // Fast-path: zero is always foldable. 1846 if (BaseOffset == 0 && !BaseGV) return true; 1847 1848 // Conservatively, create an address with an immediate and a 1849 // base and a scale. 1850 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1851 1852 // Canonicalize a scale of 1 to a base register if the formula doesn't 1853 // already have a base register. 1854 if (!HasBaseReg && Scale == 1) { 1855 Scale = 0; 1856 HasBaseReg = true; 1857 } 1858 1859 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1860 HasBaseReg, Scale); 1861 } 1862 1863 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1864 ScalarEvolution &SE, int64_t MinOffset, 1865 int64_t MaxOffset, LSRUse::KindType Kind, 1866 MemAccessTy AccessTy, const SCEV *S, 1867 bool HasBaseReg) { 1868 // Fast-path: zero is always foldable. 1869 if (S->isZero()) return true; 1870 1871 // Conservatively, create an address with an immediate and a 1872 // base and a scale. 1873 int64_t BaseOffset = ExtractImmediate(S, SE); 1874 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1875 1876 // If there's anything else involved, it's not foldable. 1877 if (!S->isZero()) return false; 1878 1879 // Fast-path: zero is always foldable. 1880 if (BaseOffset == 0 && !BaseGV) return true; 1881 1882 // Conservatively, create an address with an immediate and a 1883 // base and a scale. 1884 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1885 1886 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1887 BaseOffset, HasBaseReg, Scale); 1888 } 1889 1890 namespace { 1891 1892 /// An individual increment in a Chain of IV increments. Relate an IV user to 1893 /// an expression that computes the IV it uses from the IV used by the previous 1894 /// link in the Chain. 1895 /// 1896 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1897 /// original IVOperand. The head of the chain's IVOperand is only valid during 1898 /// chain collection, before LSR replaces IV users. During chain generation, 1899 /// IncExpr can be used to find the new IVOperand that computes the same 1900 /// expression. 1901 struct IVInc { 1902 Instruction *UserInst; 1903 Value* IVOperand; 1904 const SCEV *IncExpr; 1905 1906 IVInc(Instruction *U, Value *O, const SCEV *E) 1907 : UserInst(U), IVOperand(O), IncExpr(E) {} 1908 }; 1909 1910 // The list of IV increments in program order. We typically add the head of a 1911 // chain without finding subsequent links. 1912 struct IVChain { 1913 SmallVector<IVInc, 1> Incs; 1914 const SCEV *ExprBase = nullptr; 1915 1916 IVChain() = default; 1917 IVChain(const IVInc &Head, const SCEV *Base) 1918 : Incs(1, Head), ExprBase(Base) {} 1919 1920 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1921 1922 // Return the first increment in the chain. 1923 const_iterator begin() const { 1924 assert(!Incs.empty()); 1925 return std::next(Incs.begin()); 1926 } 1927 const_iterator end() const { 1928 return Incs.end(); 1929 } 1930 1931 // Returns true if this chain contains any increments. 1932 bool hasIncs() const { return Incs.size() >= 2; } 1933 1934 // Add an IVInc to the end of this chain. 1935 void add(const IVInc &X) { Incs.push_back(X); } 1936 1937 // Returns the last UserInst in the chain. 1938 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1939 1940 // Returns true if IncExpr can be profitably added to this chain. 1941 bool isProfitableIncrement(const SCEV *OperExpr, 1942 const SCEV *IncExpr, 1943 ScalarEvolution&); 1944 }; 1945 1946 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1947 /// between FarUsers that definitely cross IV increments and NearUsers that may 1948 /// be used between IV increments. 1949 struct ChainUsers { 1950 SmallPtrSet<Instruction*, 4> FarUsers; 1951 SmallPtrSet<Instruction*, 4> NearUsers; 1952 }; 1953 1954 /// This class holds state for the main loop strength reduction logic. 1955 class LSRInstance { 1956 IVUsers &IU; 1957 ScalarEvolution &SE; 1958 DominatorTree &DT; 1959 LoopInfo &LI; 1960 AssumptionCache &AC; 1961 TargetLibraryInfo &TLI; 1962 const TargetTransformInfo &TTI; 1963 Loop *const L; 1964 MemorySSAUpdater *MSSAU; 1965 TTI::AddressingModeKind AMK; 1966 mutable SCEVExpander Rewriter; 1967 bool Changed = false; 1968 1969 /// This is the insert position that the current loop's induction variable 1970 /// increment should be placed. In simple loops, this is the latch block's 1971 /// terminator. But in more complicated cases, this is a position which will 1972 /// dominate all the in-loop post-increment users. 1973 Instruction *IVIncInsertPos = nullptr; 1974 1975 /// Interesting factors between use strides. 1976 /// 1977 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1978 /// default, a SmallDenseSet, because we need to use the full range of 1979 /// int64_ts, and there's currently no good way of doing that with 1980 /// SmallDenseSet. 1981 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1982 1983 /// The cost of the current SCEV, the best solution by LSR will be dropped if 1984 /// the solution is not profitable. 1985 Cost BaselineCost; 1986 1987 /// Interesting use types, to facilitate truncation reuse. 1988 SmallSetVector<Type *, 4> Types; 1989 1990 /// The list of interesting uses. 1991 mutable SmallVector<LSRUse, 16> Uses; 1992 1993 /// Track which uses use which register candidates. 1994 RegUseTracker RegUses; 1995 1996 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1997 // have more than a few IV increment chains in a loop. Missing a Chain falls 1998 // back to normal LSR behavior for those uses. 1999 static const unsigned MaxChains = 8; 2000 2001 /// IV users can form a chain of IV increments. 2002 SmallVector<IVChain, MaxChains> IVChainVec; 2003 2004 /// IV users that belong to profitable IVChains. 2005 SmallPtrSet<Use*, MaxChains> IVIncSet; 2006 2007 /// Induction variables that were generated and inserted by the SCEV Expander. 2008 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2009 2010 void OptimizeShadowIV(); 2011 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2012 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2013 void OptimizeLoopTermCond(); 2014 2015 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2016 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2017 void FinalizeChain(IVChain &Chain); 2018 void CollectChains(); 2019 void GenerateIVChain(const IVChain &Chain, 2020 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2021 2022 void CollectInterestingTypesAndFactors(); 2023 void CollectFixupsAndInitialFormulae(); 2024 2025 // Support for sharing of LSRUses between LSRFixups. 2026 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2027 UseMapTy UseMap; 2028 2029 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2030 LSRUse::KindType Kind, MemAccessTy AccessTy); 2031 2032 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2033 MemAccessTy AccessTy); 2034 2035 void DeleteUse(LSRUse &LU, size_t LUIdx); 2036 2037 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2038 2039 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2040 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2041 void CountRegisters(const Formula &F, size_t LUIdx); 2042 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2043 2044 void CollectLoopInvariantFixupsAndFormulae(); 2045 2046 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2047 unsigned Depth = 0); 2048 2049 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2050 const Formula &Base, unsigned Depth, 2051 size_t Idx, bool IsScaledReg = false); 2052 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2053 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2054 const Formula &Base, size_t Idx, 2055 bool IsScaledReg = false); 2056 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2057 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2058 const Formula &Base, 2059 const SmallVectorImpl<int64_t> &Worklist, 2060 size_t Idx, bool IsScaledReg = false); 2061 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2062 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2063 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2064 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2065 void GenerateCrossUseConstantOffsets(); 2066 void GenerateAllReuseFormulae(); 2067 2068 void FilterOutUndesirableDedicatedRegisters(); 2069 2070 size_t EstimateSearchSpaceComplexity() const; 2071 void NarrowSearchSpaceByDetectingSupersets(); 2072 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2073 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2074 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2075 void NarrowSearchSpaceByFilterPostInc(); 2076 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2077 void NarrowSearchSpaceByPickingWinnerRegs(); 2078 void NarrowSearchSpaceUsingHeuristics(); 2079 2080 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2081 Cost &SolutionCost, 2082 SmallVectorImpl<const Formula *> &Workspace, 2083 const Cost &CurCost, 2084 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2085 DenseSet<const SCEV *> &VisitedRegs) const; 2086 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2087 2088 BasicBlock::iterator 2089 HoistInsertPosition(BasicBlock::iterator IP, 2090 const SmallVectorImpl<Instruction *> &Inputs) const; 2091 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2092 const LSRFixup &LF, 2093 const LSRUse &LU) const; 2094 2095 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2096 BasicBlock::iterator IP, 2097 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2098 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2099 const Formula &F, 2100 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2101 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2102 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2103 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2104 2105 public: 2106 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2107 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2108 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2109 2110 bool getChanged() const { return Changed; } 2111 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2112 return ScalarEvolutionIVs; 2113 } 2114 2115 void print_factors_and_types(raw_ostream &OS) const; 2116 void print_fixups(raw_ostream &OS) const; 2117 void print_uses(raw_ostream &OS) const; 2118 void print(raw_ostream &OS) const; 2119 void dump() const; 2120 }; 2121 2122 } // end anonymous namespace 2123 2124 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2125 /// the cast operation. 2126 void LSRInstance::OptimizeShadowIV() { 2127 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2128 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2129 return; 2130 2131 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2132 UI != E; /* empty */) { 2133 IVUsers::const_iterator CandidateUI = UI; 2134 ++UI; 2135 Instruction *ShadowUse = CandidateUI->getUser(); 2136 Type *DestTy = nullptr; 2137 bool IsSigned = false; 2138 2139 /* If shadow use is a int->float cast then insert a second IV 2140 to eliminate this cast. 2141 2142 for (unsigned i = 0; i < n; ++i) 2143 foo((double)i); 2144 2145 is transformed into 2146 2147 double d = 0.0; 2148 for (unsigned i = 0; i < n; ++i, ++d) 2149 foo(d); 2150 */ 2151 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2152 IsSigned = false; 2153 DestTy = UCast->getDestTy(); 2154 } 2155 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2156 IsSigned = true; 2157 DestTy = SCast->getDestTy(); 2158 } 2159 if (!DestTy) continue; 2160 2161 // If target does not support DestTy natively then do not apply 2162 // this transformation. 2163 if (!TTI.isTypeLegal(DestTy)) continue; 2164 2165 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2166 if (!PH) continue; 2167 if (PH->getNumIncomingValues() != 2) continue; 2168 2169 // If the calculation in integers overflows, the result in FP type will 2170 // differ. So we only can do this transformation if we are guaranteed to not 2171 // deal with overflowing values 2172 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2173 if (!AR) continue; 2174 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2175 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2176 2177 Type *SrcTy = PH->getType(); 2178 int Mantissa = DestTy->getFPMantissaWidth(); 2179 if (Mantissa == -1) continue; 2180 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2181 continue; 2182 2183 unsigned Entry, Latch; 2184 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2185 Entry = 0; 2186 Latch = 1; 2187 } else { 2188 Entry = 1; 2189 Latch = 0; 2190 } 2191 2192 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2193 if (!Init) continue; 2194 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2195 (double)Init->getSExtValue() : 2196 (double)Init->getZExtValue()); 2197 2198 BinaryOperator *Incr = 2199 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2200 if (!Incr) continue; 2201 if (Incr->getOpcode() != Instruction::Add 2202 && Incr->getOpcode() != Instruction::Sub) 2203 continue; 2204 2205 /* Initialize new IV, double d = 0.0 in above example. */ 2206 ConstantInt *C = nullptr; 2207 if (Incr->getOperand(0) == PH) 2208 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2209 else if (Incr->getOperand(1) == PH) 2210 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2211 else 2212 continue; 2213 2214 if (!C) continue; 2215 2216 // Ignore negative constants, as the code below doesn't handle them 2217 // correctly. TODO: Remove this restriction. 2218 if (!C->getValue().isStrictlyPositive()) continue; 2219 2220 /* Add new PHINode. */ 2221 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2222 2223 /* create new increment. '++d' in above example. */ 2224 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2225 BinaryOperator *NewIncr = 2226 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2227 Instruction::FAdd : Instruction::FSub, 2228 NewPH, CFP, "IV.S.next.", Incr); 2229 2230 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2231 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2232 2233 /* Remove cast operation */ 2234 ShadowUse->replaceAllUsesWith(NewPH); 2235 ShadowUse->eraseFromParent(); 2236 Changed = true; 2237 break; 2238 } 2239 } 2240 2241 /// If Cond has an operand that is an expression of an IV, set the IV user and 2242 /// stride information and return true, otherwise return false. 2243 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2244 for (IVStrideUse &U : IU) 2245 if (U.getUser() == Cond) { 2246 // NOTE: we could handle setcc instructions with multiple uses here, but 2247 // InstCombine does it as well for simple uses, it's not clear that it 2248 // occurs enough in real life to handle. 2249 CondUse = &U; 2250 return true; 2251 } 2252 return false; 2253 } 2254 2255 /// Rewrite the loop's terminating condition if it uses a max computation. 2256 /// 2257 /// This is a narrow solution to a specific, but acute, problem. For loops 2258 /// like this: 2259 /// 2260 /// i = 0; 2261 /// do { 2262 /// p[i] = 0.0; 2263 /// } while (++i < n); 2264 /// 2265 /// the trip count isn't just 'n', because 'n' might not be positive. And 2266 /// unfortunately this can come up even for loops where the user didn't use 2267 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2268 /// will commonly be lowered like this: 2269 /// 2270 /// if (n > 0) { 2271 /// i = 0; 2272 /// do { 2273 /// p[i] = 0.0; 2274 /// } while (++i < n); 2275 /// } 2276 /// 2277 /// and then it's possible for subsequent optimization to obscure the if 2278 /// test in such a way that indvars can't find it. 2279 /// 2280 /// When indvars can't find the if test in loops like this, it creates a 2281 /// max expression, which allows it to give the loop a canonical 2282 /// induction variable: 2283 /// 2284 /// i = 0; 2285 /// max = n < 1 ? 1 : n; 2286 /// do { 2287 /// p[i] = 0.0; 2288 /// } while (++i != max); 2289 /// 2290 /// Canonical induction variables are necessary because the loop passes 2291 /// are designed around them. The most obvious example of this is the 2292 /// LoopInfo analysis, which doesn't remember trip count values. It 2293 /// expects to be able to rediscover the trip count each time it is 2294 /// needed, and it does this using a simple analysis that only succeeds if 2295 /// the loop has a canonical induction variable. 2296 /// 2297 /// However, when it comes time to generate code, the maximum operation 2298 /// can be quite costly, especially if it's inside of an outer loop. 2299 /// 2300 /// This function solves this problem by detecting this type of loop and 2301 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2302 /// the instructions for the maximum computation. 2303 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2304 // Check that the loop matches the pattern we're looking for. 2305 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2306 Cond->getPredicate() != CmpInst::ICMP_NE) 2307 return Cond; 2308 2309 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2310 if (!Sel || !Sel->hasOneUse()) return Cond; 2311 2312 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2313 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2314 return Cond; 2315 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2316 2317 // Add one to the backedge-taken count to get the trip count. 2318 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2319 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2320 2321 // Check for a max calculation that matches the pattern. There's no check 2322 // for ICMP_ULE here because the comparison would be with zero, which 2323 // isn't interesting. 2324 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2325 const SCEVNAryExpr *Max = nullptr; 2326 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2327 Pred = ICmpInst::ICMP_SLE; 2328 Max = S; 2329 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2330 Pred = ICmpInst::ICMP_SLT; 2331 Max = S; 2332 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2333 Pred = ICmpInst::ICMP_ULT; 2334 Max = U; 2335 } else { 2336 // No match; bail. 2337 return Cond; 2338 } 2339 2340 // To handle a max with more than two operands, this optimization would 2341 // require additional checking and setup. 2342 if (Max->getNumOperands() != 2) 2343 return Cond; 2344 2345 const SCEV *MaxLHS = Max->getOperand(0); 2346 const SCEV *MaxRHS = Max->getOperand(1); 2347 2348 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2349 // for a comparison with 1. For <= and >=, a comparison with zero. 2350 if (!MaxLHS || 2351 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2352 return Cond; 2353 2354 // Check the relevant induction variable for conformance to 2355 // the pattern. 2356 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2357 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2358 if (!AR || !AR->isAffine() || 2359 AR->getStart() != One || 2360 AR->getStepRecurrence(SE) != One) 2361 return Cond; 2362 2363 assert(AR->getLoop() == L && 2364 "Loop condition operand is an addrec in a different loop!"); 2365 2366 // Check the right operand of the select, and remember it, as it will 2367 // be used in the new comparison instruction. 2368 Value *NewRHS = nullptr; 2369 if (ICmpInst::isTrueWhenEqual(Pred)) { 2370 // Look for n+1, and grab n. 2371 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2372 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2373 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2374 NewRHS = BO->getOperand(0); 2375 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2376 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2377 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2378 NewRHS = BO->getOperand(0); 2379 if (!NewRHS) 2380 return Cond; 2381 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2382 NewRHS = Sel->getOperand(1); 2383 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2384 NewRHS = Sel->getOperand(2); 2385 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2386 NewRHS = SU->getValue(); 2387 else 2388 // Max doesn't match expected pattern. 2389 return Cond; 2390 2391 // Determine the new comparison opcode. It may be signed or unsigned, 2392 // and the original comparison may be either equality or inequality. 2393 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2394 Pred = CmpInst::getInversePredicate(Pred); 2395 2396 // Ok, everything looks ok to change the condition into an SLT or SGE and 2397 // delete the max calculation. 2398 ICmpInst *NewCond = 2399 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2400 2401 // Delete the max calculation instructions. 2402 NewCond->setDebugLoc(Cond->getDebugLoc()); 2403 Cond->replaceAllUsesWith(NewCond); 2404 CondUse->setUser(NewCond); 2405 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2406 Cond->eraseFromParent(); 2407 Sel->eraseFromParent(); 2408 if (Cmp->use_empty()) 2409 Cmp->eraseFromParent(); 2410 return NewCond; 2411 } 2412 2413 /// Change loop terminating condition to use the postinc iv when possible. 2414 void 2415 LSRInstance::OptimizeLoopTermCond() { 2416 SmallPtrSet<Instruction *, 4> PostIncs; 2417 2418 // We need a different set of heuristics for rotated and non-rotated loops. 2419 // If a loop is rotated then the latch is also the backedge, so inserting 2420 // post-inc expressions just before the latch is ideal. To reduce live ranges 2421 // it also makes sense to rewrite terminating conditions to use post-inc 2422 // expressions. 2423 // 2424 // If the loop is not rotated then the latch is not a backedge; the latch 2425 // check is done in the loop head. Adding post-inc expressions before the 2426 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2427 // in the loop body. In this case we do *not* want to use post-inc expressions 2428 // in the latch check, and we want to insert post-inc expressions before 2429 // the backedge. 2430 BasicBlock *LatchBlock = L->getLoopLatch(); 2431 SmallVector<BasicBlock*, 8> ExitingBlocks; 2432 L->getExitingBlocks(ExitingBlocks); 2433 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2434 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2435 IVIncInsertPos = LatchBlock->getTerminator(); 2436 return; 2437 } 2438 2439 // Otherwise treat this as a rotated loop. 2440 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2441 // Get the terminating condition for the loop if possible. If we 2442 // can, we want to change it to use a post-incremented version of its 2443 // induction variable, to allow coalescing the live ranges for the IV into 2444 // one register value. 2445 2446 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2447 if (!TermBr) 2448 continue; 2449 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2450 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2451 continue; 2452 2453 // Search IVUsesByStride to find Cond's IVUse if there is one. 2454 IVStrideUse *CondUse = nullptr; 2455 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2456 if (!FindIVUserForCond(Cond, CondUse)) 2457 continue; 2458 2459 // If the trip count is computed in terms of a max (due to ScalarEvolution 2460 // being unable to find a sufficient guard, for example), change the loop 2461 // comparison to use SLT or ULT instead of NE. 2462 // One consequence of doing this now is that it disrupts the count-down 2463 // optimization. That's not always a bad thing though, because in such 2464 // cases it may still be worthwhile to avoid a max. 2465 Cond = OptimizeMax(Cond, CondUse); 2466 2467 // If this exiting block dominates the latch block, it may also use 2468 // the post-inc value if it won't be shared with other uses. 2469 // Check for dominance. 2470 if (!DT.dominates(ExitingBlock, LatchBlock)) 2471 continue; 2472 2473 // Conservatively avoid trying to use the post-inc value in non-latch 2474 // exits if there may be pre-inc users in intervening blocks. 2475 if (LatchBlock != ExitingBlock) 2476 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2477 // Test if the use is reachable from the exiting block. This dominator 2478 // query is a conservative approximation of reachability. 2479 if (&*UI != CondUse && 2480 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2481 // Conservatively assume there may be reuse if the quotient of their 2482 // strides could be a legal scale. 2483 const SCEV *A = IU.getStride(*CondUse, L); 2484 const SCEV *B = IU.getStride(*UI, L); 2485 if (!A || !B) continue; 2486 if (SE.getTypeSizeInBits(A->getType()) != 2487 SE.getTypeSizeInBits(B->getType())) { 2488 if (SE.getTypeSizeInBits(A->getType()) > 2489 SE.getTypeSizeInBits(B->getType())) 2490 B = SE.getSignExtendExpr(B, A->getType()); 2491 else 2492 A = SE.getSignExtendExpr(A, B->getType()); 2493 } 2494 if (const SCEVConstant *D = 2495 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2496 const ConstantInt *C = D->getValue(); 2497 // Stride of one or negative one can have reuse with non-addresses. 2498 if (C->isOne() || C->isMinusOne()) 2499 goto decline_post_inc; 2500 // Avoid weird situations. 2501 if (C->getValue().getSignificantBits() >= 64 || 2502 C->getValue().isMinSignedValue()) 2503 goto decline_post_inc; 2504 // Check for possible scaled-address reuse. 2505 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2506 MemAccessTy AccessTy = getAccessType( 2507 TTI, UI->getUser(), UI->getOperandValToReplace()); 2508 int64_t Scale = C->getSExtValue(); 2509 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2510 /*BaseOffset=*/0, 2511 /*HasBaseReg=*/true, Scale, 2512 AccessTy.AddrSpace)) 2513 goto decline_post_inc; 2514 Scale = -Scale; 2515 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2516 /*BaseOffset=*/0, 2517 /*HasBaseReg=*/true, Scale, 2518 AccessTy.AddrSpace)) 2519 goto decline_post_inc; 2520 } 2521 } 2522 } 2523 2524 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2525 << *Cond << '\n'); 2526 2527 // It's possible for the setcc instruction to be anywhere in the loop, and 2528 // possible for it to have multiple users. If it is not immediately before 2529 // the exiting block branch, move it. 2530 if (Cond->getNextNonDebugInstruction() != TermBr) { 2531 if (Cond->hasOneUse()) { 2532 Cond->moveBefore(TermBr); 2533 } else { 2534 // Clone the terminating condition and insert into the loopend. 2535 ICmpInst *OldCond = Cond; 2536 Cond = cast<ICmpInst>(Cond->clone()); 2537 Cond->setName(L->getHeader()->getName() + ".termcond"); 2538 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2539 2540 // Clone the IVUse, as the old use still exists! 2541 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2542 TermBr->replaceUsesOfWith(OldCond, Cond); 2543 } 2544 } 2545 2546 // If we get to here, we know that we can transform the setcc instruction to 2547 // use the post-incremented version of the IV, allowing us to coalesce the 2548 // live ranges for the IV correctly. 2549 CondUse->transformToPostInc(L); 2550 Changed = true; 2551 2552 PostIncs.insert(Cond); 2553 decline_post_inc:; 2554 } 2555 2556 // Determine an insertion point for the loop induction variable increment. It 2557 // must dominate all the post-inc comparisons we just set up, and it must 2558 // dominate the loop latch edge. 2559 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2560 for (Instruction *Inst : PostIncs) 2561 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2562 } 2563 2564 /// Determine if the given use can accommodate a fixup at the given offset and 2565 /// other details. If so, update the use and return true. 2566 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2567 bool HasBaseReg, LSRUse::KindType Kind, 2568 MemAccessTy AccessTy) { 2569 int64_t NewMinOffset = LU.MinOffset; 2570 int64_t NewMaxOffset = LU.MaxOffset; 2571 MemAccessTy NewAccessTy = AccessTy; 2572 2573 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2574 // something conservative, however this can pessimize in the case that one of 2575 // the uses will have all its uses outside the loop, for example. 2576 if (LU.Kind != Kind) 2577 return false; 2578 2579 // Check for a mismatched access type, and fall back conservatively as needed. 2580 // TODO: Be less conservative when the type is similar and can use the same 2581 // addressing modes. 2582 if (Kind == LSRUse::Address) { 2583 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2584 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2585 AccessTy.AddrSpace); 2586 } 2587 } 2588 2589 // Conservatively assume HasBaseReg is true for now. 2590 if (NewOffset < LU.MinOffset) { 2591 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2592 LU.MaxOffset - NewOffset, HasBaseReg)) 2593 return false; 2594 NewMinOffset = NewOffset; 2595 } else if (NewOffset > LU.MaxOffset) { 2596 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2597 NewOffset - LU.MinOffset, HasBaseReg)) 2598 return false; 2599 NewMaxOffset = NewOffset; 2600 } 2601 2602 // Update the use. 2603 LU.MinOffset = NewMinOffset; 2604 LU.MaxOffset = NewMaxOffset; 2605 LU.AccessTy = NewAccessTy; 2606 return true; 2607 } 2608 2609 /// Return an LSRUse index and an offset value for a fixup which needs the given 2610 /// expression, with the given kind and optional access type. Either reuse an 2611 /// existing use or create a new one, as needed. 2612 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2613 LSRUse::KindType Kind, 2614 MemAccessTy AccessTy) { 2615 const SCEV *Copy = Expr; 2616 int64_t Offset = ExtractImmediate(Expr, SE); 2617 2618 // Basic uses can't accept any offset, for example. 2619 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2620 Offset, /*HasBaseReg=*/ true)) { 2621 Expr = Copy; 2622 Offset = 0; 2623 } 2624 2625 std::pair<UseMapTy::iterator, bool> P = 2626 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2627 if (!P.second) { 2628 // A use already existed with this base. 2629 size_t LUIdx = P.first->second; 2630 LSRUse &LU = Uses[LUIdx]; 2631 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2632 // Reuse this use. 2633 return std::make_pair(LUIdx, Offset); 2634 } 2635 2636 // Create a new use. 2637 size_t LUIdx = Uses.size(); 2638 P.first->second = LUIdx; 2639 Uses.push_back(LSRUse(Kind, AccessTy)); 2640 LSRUse &LU = Uses[LUIdx]; 2641 2642 LU.MinOffset = Offset; 2643 LU.MaxOffset = Offset; 2644 return std::make_pair(LUIdx, Offset); 2645 } 2646 2647 /// Delete the given use from the Uses list. 2648 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2649 if (&LU != &Uses.back()) 2650 std::swap(LU, Uses.back()); 2651 Uses.pop_back(); 2652 2653 // Update RegUses. 2654 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2655 } 2656 2657 /// Look for a use distinct from OrigLU which is has a formula that has the same 2658 /// registers as the given formula. 2659 LSRUse * 2660 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2661 const LSRUse &OrigLU) { 2662 // Search all uses for the formula. This could be more clever. 2663 for (LSRUse &LU : Uses) { 2664 // Check whether this use is close enough to OrigLU, to see whether it's 2665 // worthwhile looking through its formulae. 2666 // Ignore ICmpZero uses because they may contain formulae generated by 2667 // GenerateICmpZeroScales, in which case adding fixup offsets may 2668 // be invalid. 2669 if (&LU != &OrigLU && 2670 LU.Kind != LSRUse::ICmpZero && 2671 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2672 LU.WidestFixupType == OrigLU.WidestFixupType && 2673 LU.HasFormulaWithSameRegs(OrigF)) { 2674 // Scan through this use's formulae. 2675 for (const Formula &F : LU.Formulae) { 2676 // Check to see if this formula has the same registers and symbols 2677 // as OrigF. 2678 if (F.BaseRegs == OrigF.BaseRegs && 2679 F.ScaledReg == OrigF.ScaledReg && 2680 F.BaseGV == OrigF.BaseGV && 2681 F.Scale == OrigF.Scale && 2682 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2683 if (F.BaseOffset == 0) 2684 return &LU; 2685 // This is the formula where all the registers and symbols matched; 2686 // there aren't going to be any others. Since we declined it, we 2687 // can skip the rest of the formulae and proceed to the next LSRUse. 2688 break; 2689 } 2690 } 2691 } 2692 } 2693 2694 // Nothing looked good. 2695 return nullptr; 2696 } 2697 2698 void LSRInstance::CollectInterestingTypesAndFactors() { 2699 SmallSetVector<const SCEV *, 4> Strides; 2700 2701 // Collect interesting types and strides. 2702 SmallVector<const SCEV *, 4> Worklist; 2703 for (const IVStrideUse &U : IU) { 2704 const SCEV *Expr = IU.getExpr(U); 2705 if (!Expr) 2706 continue; 2707 2708 // Collect interesting types. 2709 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2710 2711 // Add strides for mentioned loops. 2712 Worklist.push_back(Expr); 2713 do { 2714 const SCEV *S = Worklist.pop_back_val(); 2715 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2716 if (AR->getLoop() == L) 2717 Strides.insert(AR->getStepRecurrence(SE)); 2718 Worklist.push_back(AR->getStart()); 2719 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2720 append_range(Worklist, Add->operands()); 2721 } 2722 } while (!Worklist.empty()); 2723 } 2724 2725 // Compute interesting factors from the set of interesting strides. 2726 for (SmallSetVector<const SCEV *, 4>::const_iterator 2727 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2728 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2729 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2730 const SCEV *OldStride = *I; 2731 const SCEV *NewStride = *NewStrideIter; 2732 2733 if (SE.getTypeSizeInBits(OldStride->getType()) != 2734 SE.getTypeSizeInBits(NewStride->getType())) { 2735 if (SE.getTypeSizeInBits(OldStride->getType()) > 2736 SE.getTypeSizeInBits(NewStride->getType())) 2737 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2738 else 2739 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2740 } 2741 if (const SCEVConstant *Factor = 2742 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2743 SE, true))) { 2744 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2745 Factors.insert(Factor->getAPInt().getSExtValue()); 2746 } else if (const SCEVConstant *Factor = 2747 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2748 NewStride, 2749 SE, true))) { 2750 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2751 Factors.insert(Factor->getAPInt().getSExtValue()); 2752 } 2753 } 2754 2755 // If all uses use the same type, don't bother looking for truncation-based 2756 // reuse. 2757 if (Types.size() == 1) 2758 Types.clear(); 2759 2760 LLVM_DEBUG(print_factors_and_types(dbgs())); 2761 } 2762 2763 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2764 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2765 /// IVStrideUses, we could partially skip this. 2766 static User::op_iterator 2767 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2768 Loop *L, ScalarEvolution &SE) { 2769 for(; OI != OE; ++OI) { 2770 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2771 if (!SE.isSCEVable(Oper->getType())) 2772 continue; 2773 2774 if (const SCEVAddRecExpr *AR = 2775 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2776 if (AR->getLoop() == L) 2777 break; 2778 } 2779 } 2780 } 2781 return OI; 2782 } 2783 2784 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2785 /// a convenient helper. 2786 static Value *getWideOperand(Value *Oper) { 2787 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2788 return Trunc->getOperand(0); 2789 return Oper; 2790 } 2791 2792 /// Return an approximation of this SCEV expression's "base", or NULL for any 2793 /// constant. Returning the expression itself is conservative. Returning a 2794 /// deeper subexpression is more precise and valid as long as it isn't less 2795 /// complex than another subexpression. For expressions involving multiple 2796 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2797 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2798 /// IVInc==b-a. 2799 /// 2800 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2801 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2802 static const SCEV *getExprBase(const SCEV *S) { 2803 switch (S->getSCEVType()) { 2804 default: // including scUnknown. 2805 return S; 2806 case scConstant: 2807 case scVScale: 2808 return nullptr; 2809 case scTruncate: 2810 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2811 case scZeroExtend: 2812 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2813 case scSignExtend: 2814 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2815 case scAddExpr: { 2816 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2817 // there's nothing more complex. 2818 // FIXME: not sure if we want to recognize negation. 2819 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2820 for (const SCEV *SubExpr : reverse(Add->operands())) { 2821 if (SubExpr->getSCEVType() == scAddExpr) 2822 return getExprBase(SubExpr); 2823 2824 if (SubExpr->getSCEVType() != scMulExpr) 2825 return SubExpr; 2826 } 2827 return S; // all operands are scaled, be conservative. 2828 } 2829 case scAddRecExpr: 2830 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2831 } 2832 llvm_unreachable("Unknown SCEV kind!"); 2833 } 2834 2835 /// Return true if the chain increment is profitable to expand into a loop 2836 /// invariant value, which may require its own register. A profitable chain 2837 /// increment will be an offset relative to the same base. We allow such offsets 2838 /// to potentially be used as chain increment as long as it's not obviously 2839 /// expensive to expand using real instructions. 2840 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2841 const SCEV *IncExpr, 2842 ScalarEvolution &SE) { 2843 // Aggressively form chains when -stress-ivchain. 2844 if (StressIVChain) 2845 return true; 2846 2847 // Do not replace a constant offset from IV head with a nonconstant IV 2848 // increment. 2849 if (!isa<SCEVConstant>(IncExpr)) { 2850 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2851 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2852 return false; 2853 } 2854 2855 SmallPtrSet<const SCEV*, 8> Processed; 2856 return !isHighCostExpansion(IncExpr, Processed, SE); 2857 } 2858 2859 /// Return true if the number of registers needed for the chain is estimated to 2860 /// be less than the number required for the individual IV users. First prohibit 2861 /// any IV users that keep the IV live across increments (the Users set should 2862 /// be empty). Next count the number and type of increments in the chain. 2863 /// 2864 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2865 /// effectively use postinc addressing modes. Only consider it profitable it the 2866 /// increments can be computed in fewer registers when chained. 2867 /// 2868 /// TODO: Consider IVInc free if it's already used in another chains. 2869 static bool isProfitableChain(IVChain &Chain, 2870 SmallPtrSetImpl<Instruction *> &Users, 2871 ScalarEvolution &SE, 2872 const TargetTransformInfo &TTI) { 2873 if (StressIVChain) 2874 return true; 2875 2876 if (!Chain.hasIncs()) 2877 return false; 2878 2879 if (!Users.empty()) { 2880 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2881 for (Instruction *Inst 2882 : Users) { dbgs() << " " << *Inst << "\n"; }); 2883 return false; 2884 } 2885 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2886 2887 // The chain itself may require a register, so intialize cost to 1. 2888 int cost = 1; 2889 2890 // A complete chain likely eliminates the need for keeping the original IV in 2891 // a register. LSR does not currently know how to form a complete chain unless 2892 // the header phi already exists. 2893 if (isa<PHINode>(Chain.tailUserInst()) 2894 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2895 --cost; 2896 } 2897 const SCEV *LastIncExpr = nullptr; 2898 unsigned NumConstIncrements = 0; 2899 unsigned NumVarIncrements = 0; 2900 unsigned NumReusedIncrements = 0; 2901 2902 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2903 return true; 2904 2905 for (const IVInc &Inc : Chain) { 2906 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2907 return true; 2908 if (Inc.IncExpr->isZero()) 2909 continue; 2910 2911 // Incrementing by zero or some constant is neutral. We assume constants can 2912 // be folded into an addressing mode or an add's immediate operand. 2913 if (isa<SCEVConstant>(Inc.IncExpr)) { 2914 ++NumConstIncrements; 2915 continue; 2916 } 2917 2918 if (Inc.IncExpr == LastIncExpr) 2919 ++NumReusedIncrements; 2920 else 2921 ++NumVarIncrements; 2922 2923 LastIncExpr = Inc.IncExpr; 2924 } 2925 // An IV chain with a single increment is handled by LSR's postinc 2926 // uses. However, a chain with multiple increments requires keeping the IV's 2927 // value live longer than it needs to be if chained. 2928 if (NumConstIncrements > 1) 2929 --cost; 2930 2931 // Materializing increment expressions in the preheader that didn't exist in 2932 // the original code may cost a register. For example, sign-extended array 2933 // indices can produce ridiculous increments like this: 2934 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2935 cost += NumVarIncrements; 2936 2937 // Reusing variable increments likely saves a register to hold the multiple of 2938 // the stride. 2939 cost -= NumReusedIncrements; 2940 2941 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2942 << "\n"); 2943 2944 return cost < 0; 2945 } 2946 2947 /// Add this IV user to an existing chain or make it the head of a new chain. 2948 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2949 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2950 // When IVs are used as types of varying widths, they are generally converted 2951 // to a wider type with some uses remaining narrow under a (free) trunc. 2952 Value *const NextIV = getWideOperand(IVOper); 2953 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2954 const SCEV *const OperExprBase = getExprBase(OperExpr); 2955 2956 // Visit all existing chains. Check if its IVOper can be computed as a 2957 // profitable loop invariant increment from the last link in the Chain. 2958 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2959 const SCEV *LastIncExpr = nullptr; 2960 for (; ChainIdx < NChains; ++ChainIdx) { 2961 IVChain &Chain = IVChainVec[ChainIdx]; 2962 2963 // Prune the solution space aggressively by checking that both IV operands 2964 // are expressions that operate on the same unscaled SCEVUnknown. This 2965 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2966 // first avoids creating extra SCEV expressions. 2967 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2968 continue; 2969 2970 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2971 if (PrevIV->getType() != NextIV->getType()) 2972 continue; 2973 2974 // A phi node terminates a chain. 2975 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2976 continue; 2977 2978 // The increment must be loop-invariant so it can be kept in a register. 2979 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2980 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2981 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2982 continue; 2983 2984 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2985 LastIncExpr = IncExpr; 2986 break; 2987 } 2988 } 2989 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2990 // bother for phi nodes, because they must be last in the chain. 2991 if (ChainIdx == NChains) { 2992 if (isa<PHINode>(UserInst)) 2993 return; 2994 if (NChains >= MaxChains && !StressIVChain) { 2995 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2996 return; 2997 } 2998 LastIncExpr = OperExpr; 2999 // IVUsers may have skipped over sign/zero extensions. We don't currently 3000 // attempt to form chains involving extensions unless they can be hoisted 3001 // into this loop's AddRec. 3002 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3003 return; 3004 ++NChains; 3005 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3006 OperExprBase)); 3007 ChainUsersVec.resize(NChains); 3008 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3009 << ") IV=" << *LastIncExpr << "\n"); 3010 } else { 3011 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3012 << ") IV+" << *LastIncExpr << "\n"); 3013 // Add this IV user to the end of the chain. 3014 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3015 } 3016 IVChain &Chain = IVChainVec[ChainIdx]; 3017 3018 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3019 // This chain's NearUsers become FarUsers. 3020 if (!LastIncExpr->isZero()) { 3021 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3022 NearUsers.end()); 3023 NearUsers.clear(); 3024 } 3025 3026 // All other uses of IVOperand become near uses of the chain. 3027 // We currently ignore intermediate values within SCEV expressions, assuming 3028 // they will eventually be used be the current chain, or can be computed 3029 // from one of the chain increments. To be more precise we could 3030 // transitively follow its user and only add leaf IV users to the set. 3031 for (User *U : IVOper->users()) { 3032 Instruction *OtherUse = dyn_cast<Instruction>(U); 3033 if (!OtherUse) 3034 continue; 3035 // Uses in the chain will no longer be uses if the chain is formed. 3036 // Include the head of the chain in this iteration (not Chain.begin()). 3037 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3038 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3039 for( ; IncIter != IncEnd; ++IncIter) { 3040 if (IncIter->UserInst == OtherUse) 3041 break; 3042 } 3043 if (IncIter != IncEnd) 3044 continue; 3045 3046 if (SE.isSCEVable(OtherUse->getType()) 3047 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3048 && IU.isIVUserOrOperand(OtherUse)) { 3049 continue; 3050 } 3051 NearUsers.insert(OtherUse); 3052 } 3053 3054 // Since this user is part of the chain, it's no longer considered a use 3055 // of the chain. 3056 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3057 } 3058 3059 /// Populate the vector of Chains. 3060 /// 3061 /// This decreases ILP at the architecture level. Targets with ample registers, 3062 /// multiple memory ports, and no register renaming probably don't want 3063 /// this. However, such targets should probably disable LSR altogether. 3064 /// 3065 /// The job of LSR is to make a reasonable choice of induction variables across 3066 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3067 /// ILP *within the loop* if the target wants it. 3068 /// 3069 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3070 /// will not reorder memory operations, it will recognize this as a chain, but 3071 /// will generate redundant IV increments. Ideally this would be corrected later 3072 /// by a smart scheduler: 3073 /// = A[i] 3074 /// = A[i+x] 3075 /// A[i] = 3076 /// A[i+x] = 3077 /// 3078 /// TODO: Walk the entire domtree within this loop, not just the path to the 3079 /// loop latch. This will discover chains on side paths, but requires 3080 /// maintaining multiple copies of the Chains state. 3081 void LSRInstance::CollectChains() { 3082 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3083 SmallVector<ChainUsers, 8> ChainUsersVec; 3084 3085 SmallVector<BasicBlock *,8> LatchPath; 3086 BasicBlock *LoopHeader = L->getHeader(); 3087 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3088 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3089 LatchPath.push_back(Rung->getBlock()); 3090 } 3091 LatchPath.push_back(LoopHeader); 3092 3093 // Walk the instruction stream from the loop header to the loop latch. 3094 for (BasicBlock *BB : reverse(LatchPath)) { 3095 for (Instruction &I : *BB) { 3096 // Skip instructions that weren't seen by IVUsers analysis. 3097 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3098 continue; 3099 3100 // Ignore users that are part of a SCEV expression. This way we only 3101 // consider leaf IV Users. This effectively rediscovers a portion of 3102 // IVUsers analysis but in program order this time. 3103 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3104 continue; 3105 3106 // Remove this instruction from any NearUsers set it may be in. 3107 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3108 ChainIdx < NChains; ++ChainIdx) { 3109 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3110 } 3111 // Search for operands that can be chained. 3112 SmallPtrSet<Instruction*, 4> UniqueOperands; 3113 User::op_iterator IVOpEnd = I.op_end(); 3114 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3115 while (IVOpIter != IVOpEnd) { 3116 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3117 if (UniqueOperands.insert(IVOpInst).second) 3118 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3119 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3120 } 3121 } // Continue walking down the instructions. 3122 } // Continue walking down the domtree. 3123 // Visit phi backedges to determine if the chain can generate the IV postinc. 3124 for (PHINode &PN : L->getHeader()->phis()) { 3125 if (!SE.isSCEVable(PN.getType())) 3126 continue; 3127 3128 Instruction *IncV = 3129 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3130 if (IncV) 3131 ChainInstruction(&PN, IncV, ChainUsersVec); 3132 } 3133 // Remove any unprofitable chains. 3134 unsigned ChainIdx = 0; 3135 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3136 UsersIdx < NChains; ++UsersIdx) { 3137 if (!isProfitableChain(IVChainVec[UsersIdx], 3138 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3139 continue; 3140 // Preserve the chain at UsesIdx. 3141 if (ChainIdx != UsersIdx) 3142 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3143 FinalizeChain(IVChainVec[ChainIdx]); 3144 ++ChainIdx; 3145 } 3146 IVChainVec.resize(ChainIdx); 3147 } 3148 3149 void LSRInstance::FinalizeChain(IVChain &Chain) { 3150 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3151 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3152 3153 for (const IVInc &Inc : Chain) { 3154 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3155 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3156 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3157 IVIncSet.insert(UseI); 3158 } 3159 } 3160 3161 /// Return true if the IVInc can be folded into an addressing mode. 3162 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3163 Value *Operand, const TargetTransformInfo &TTI) { 3164 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3165 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3166 return false; 3167 3168 if (IncConst->getAPInt().getSignificantBits() > 64) 3169 return false; 3170 3171 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3172 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3173 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3174 IncOffset, /*HasBaseReg=*/false)) 3175 return false; 3176 3177 return true; 3178 } 3179 3180 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3181 /// user's operand from the previous IV user's operand. 3182 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3183 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3184 // Find the new IVOperand for the head of the chain. It may have been replaced 3185 // by LSR. 3186 const IVInc &Head = Chain.Incs[0]; 3187 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3188 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3189 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3190 IVOpEnd, L, SE); 3191 Value *IVSrc = nullptr; 3192 while (IVOpIter != IVOpEnd) { 3193 IVSrc = getWideOperand(*IVOpIter); 3194 3195 // If this operand computes the expression that the chain needs, we may use 3196 // it. (Check this after setting IVSrc which is used below.) 3197 // 3198 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3199 // narrow for the chain, so we can no longer use it. We do allow using a 3200 // wider phi, assuming the LSR checked for free truncation. In that case we 3201 // should already have a truncate on this operand such that 3202 // getSCEV(IVSrc) == IncExpr. 3203 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3204 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3205 break; 3206 } 3207 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3208 } 3209 if (IVOpIter == IVOpEnd) { 3210 // Gracefully give up on this chain. 3211 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3212 return; 3213 } 3214 assert(IVSrc && "Failed to find IV chain source"); 3215 3216 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3217 Type *IVTy = IVSrc->getType(); 3218 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3219 const SCEV *LeftOverExpr = nullptr; 3220 for (const IVInc &Inc : Chain) { 3221 Instruction *InsertPt = Inc.UserInst; 3222 if (isa<PHINode>(InsertPt)) 3223 InsertPt = L->getLoopLatch()->getTerminator(); 3224 3225 // IVOper will replace the current IV User's operand. IVSrc is the IV 3226 // value currently held in a register. 3227 Value *IVOper = IVSrc; 3228 if (!Inc.IncExpr->isZero()) { 3229 // IncExpr was the result of subtraction of two narrow values, so must 3230 // be signed. 3231 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3232 LeftOverExpr = LeftOverExpr ? 3233 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3234 } 3235 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3236 // Expand the IV increment. 3237 Rewriter.clearPostInc(); 3238 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3239 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3240 SE.getUnknown(IncV)); 3241 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3242 3243 // If an IV increment can't be folded, use it as the next IV value. 3244 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3245 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3246 IVSrc = IVOper; 3247 LeftOverExpr = nullptr; 3248 } 3249 } 3250 Type *OperTy = Inc.IVOperand->getType(); 3251 if (IVTy != OperTy) { 3252 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3253 "cannot extend a chained IV"); 3254 IRBuilder<> Builder(InsertPt); 3255 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3256 } 3257 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3258 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3259 DeadInsts.emplace_back(OperandIsInstr); 3260 } 3261 // If LSR created a new, wider phi, we may also replace its postinc. We only 3262 // do this if we also found a wide value for the head of the chain. 3263 if (isa<PHINode>(Chain.tailUserInst())) { 3264 for (PHINode &Phi : L->getHeader()->phis()) { 3265 if (Phi.getType() != IVSrc->getType()) 3266 continue; 3267 Instruction *PostIncV = dyn_cast<Instruction>( 3268 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3269 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3270 continue; 3271 Value *IVOper = IVSrc; 3272 Type *PostIncTy = PostIncV->getType(); 3273 if (IVTy != PostIncTy) { 3274 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3275 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3276 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3277 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3278 } 3279 Phi.replaceUsesOfWith(PostIncV, IVOper); 3280 DeadInsts.emplace_back(PostIncV); 3281 } 3282 } 3283 } 3284 3285 void LSRInstance::CollectFixupsAndInitialFormulae() { 3286 BranchInst *ExitBranch = nullptr; 3287 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3288 3289 // For calculating baseline cost 3290 SmallPtrSet<const SCEV *, 16> Regs; 3291 DenseSet<const SCEV *> VisitedRegs; 3292 DenseSet<size_t> VisitedLSRUse; 3293 3294 for (const IVStrideUse &U : IU) { 3295 Instruction *UserInst = U.getUser(); 3296 // Skip IV users that are part of profitable IV Chains. 3297 User::op_iterator UseI = 3298 find(UserInst->operands(), U.getOperandValToReplace()); 3299 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3300 if (IVIncSet.count(UseI)) { 3301 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3302 continue; 3303 } 3304 3305 LSRUse::KindType Kind = LSRUse::Basic; 3306 MemAccessTy AccessTy; 3307 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3308 Kind = LSRUse::Address; 3309 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3310 } 3311 3312 const SCEV *S = IU.getExpr(U); 3313 if (!S) 3314 continue; 3315 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3316 3317 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3318 // (N - i == 0), and this allows (N - i) to be the expression that we work 3319 // with rather than just N or i, so we can consider the register 3320 // requirements for both N and i at the same time. Limiting this code to 3321 // equality icmps is not a problem because all interesting loops use 3322 // equality icmps, thanks to IndVarSimplify. 3323 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3324 // If CI can be saved in some target, like replaced inside hardware loop 3325 // in PowerPC, no need to generate initial formulae for it. 3326 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3327 continue; 3328 if (CI->isEquality()) { 3329 // Swap the operands if needed to put the OperandValToReplace on the 3330 // left, for consistency. 3331 Value *NV = CI->getOperand(1); 3332 if (NV == U.getOperandValToReplace()) { 3333 CI->setOperand(1, CI->getOperand(0)); 3334 CI->setOperand(0, NV); 3335 NV = CI->getOperand(1); 3336 Changed = true; 3337 } 3338 3339 // x == y --> x - y == 0 3340 const SCEV *N = SE.getSCEV(NV); 3341 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3342 (!NV->getType()->isPointerTy() || 3343 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3344 // S is normalized, so normalize N before folding it into S 3345 // to keep the result normalized. 3346 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3347 if (!N) 3348 continue; 3349 Kind = LSRUse::ICmpZero; 3350 S = SE.getMinusSCEV(N, S); 3351 } else if (L->isLoopInvariant(NV) && 3352 (!isa<Instruction>(NV) || 3353 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3354 !NV->getType()->isPointerTy()) { 3355 // If we can't generally expand the expression (e.g. it contains 3356 // a divide), but it is already at a loop invariant point before the 3357 // loop, wrap it in an unknown (to prevent the expander from trying 3358 // to re-expand in a potentially unsafe way.) The restriction to 3359 // integer types is required because the unknown hides the base, and 3360 // SCEV can't compute the difference of two unknown pointers. 3361 N = SE.getUnknown(NV); 3362 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3363 if (!N) 3364 continue; 3365 Kind = LSRUse::ICmpZero; 3366 S = SE.getMinusSCEV(N, S); 3367 assert(!isa<SCEVCouldNotCompute>(S)); 3368 } 3369 3370 // -1 and the negations of all interesting strides (except the negation 3371 // of -1) are now also interesting. 3372 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3373 if (Factors[i] != -1) 3374 Factors.insert(-(uint64_t)Factors[i]); 3375 Factors.insert(-1); 3376 } 3377 } 3378 3379 // Get or create an LSRUse. 3380 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3381 size_t LUIdx = P.first; 3382 int64_t Offset = P.second; 3383 LSRUse &LU = Uses[LUIdx]; 3384 3385 // Record the fixup. 3386 LSRFixup &LF = LU.getNewFixup(); 3387 LF.UserInst = UserInst; 3388 LF.OperandValToReplace = U.getOperandValToReplace(); 3389 LF.PostIncLoops = TmpPostIncLoops; 3390 LF.Offset = Offset; 3391 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3392 3393 // Create SCEV as Formula for calculating baseline cost 3394 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3395 Formula F; 3396 F.initialMatch(S, L, SE); 3397 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3398 VisitedLSRUse.insert(LUIdx); 3399 } 3400 3401 if (!LU.WidestFixupType || 3402 SE.getTypeSizeInBits(LU.WidestFixupType) < 3403 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3404 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3405 3406 // If this is the first use of this LSRUse, give it a formula. 3407 if (LU.Formulae.empty()) { 3408 InsertInitialFormula(S, LU, LUIdx); 3409 CountRegisters(LU.Formulae.back(), LUIdx); 3410 } 3411 } 3412 3413 LLVM_DEBUG(print_fixups(dbgs())); 3414 } 3415 3416 /// Insert a formula for the given expression into the given use, separating out 3417 /// loop-variant portions from loop-invariant and loop-computable portions. 3418 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3419 size_t LUIdx) { 3420 // Mark uses whose expressions cannot be expanded. 3421 if (!Rewriter.isSafeToExpand(S)) 3422 LU.RigidFormula = true; 3423 3424 Formula F; 3425 F.initialMatch(S, L, SE); 3426 bool Inserted = InsertFormula(LU, LUIdx, F); 3427 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3428 } 3429 3430 /// Insert a simple single-register formula for the given expression into the 3431 /// given use. 3432 void 3433 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3434 LSRUse &LU, size_t LUIdx) { 3435 Formula F; 3436 F.BaseRegs.push_back(S); 3437 F.HasBaseReg = true; 3438 bool Inserted = InsertFormula(LU, LUIdx, F); 3439 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3440 } 3441 3442 /// Note which registers are used by the given formula, updating RegUses. 3443 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3444 if (F.ScaledReg) 3445 RegUses.countRegister(F.ScaledReg, LUIdx); 3446 for (const SCEV *BaseReg : F.BaseRegs) 3447 RegUses.countRegister(BaseReg, LUIdx); 3448 } 3449 3450 /// If the given formula has not yet been inserted, add it to the list, and 3451 /// return true. Return false otherwise. 3452 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3453 // Do not insert formula that we will not be able to expand. 3454 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3455 "Formula is illegal"); 3456 3457 if (!LU.InsertFormula(F, *L)) 3458 return false; 3459 3460 CountRegisters(F, LUIdx); 3461 return true; 3462 } 3463 3464 /// Check for other uses of loop-invariant values which we're tracking. These 3465 /// other uses will pin these values in registers, making them less profitable 3466 /// for elimination. 3467 /// TODO: This currently misses non-constant addrec step registers. 3468 /// TODO: Should this give more weight to users inside the loop? 3469 void 3470 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3471 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3472 SmallPtrSet<const SCEV *, 32> Visited; 3473 3474 // Don't collect outside uses if we are favoring postinc - the instructions in 3475 // the loop are more important than the ones outside of it. 3476 if (AMK == TTI::AMK_PostIndexed) 3477 return; 3478 3479 while (!Worklist.empty()) { 3480 const SCEV *S = Worklist.pop_back_val(); 3481 3482 // Don't process the same SCEV twice 3483 if (!Visited.insert(S).second) 3484 continue; 3485 3486 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3487 append_range(Worklist, N->operands()); 3488 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3489 Worklist.push_back(C->getOperand()); 3490 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3491 Worklist.push_back(D->getLHS()); 3492 Worklist.push_back(D->getRHS()); 3493 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3494 const Value *V = US->getValue(); 3495 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3496 // Look for instructions defined outside the loop. 3497 if (L->contains(Inst)) continue; 3498 } else if (isa<Constant>(V)) 3499 // Constants can be re-materialized. 3500 continue; 3501 for (const Use &U : V->uses()) { 3502 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3503 // Ignore non-instructions. 3504 if (!UserInst) 3505 continue; 3506 // Don't bother if the instruction is an EHPad. 3507 if (UserInst->isEHPad()) 3508 continue; 3509 // Ignore instructions in other functions (as can happen with 3510 // Constants). 3511 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3512 continue; 3513 // Ignore instructions not dominated by the loop. 3514 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3515 UserInst->getParent() : 3516 cast<PHINode>(UserInst)->getIncomingBlock( 3517 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3518 if (!DT.dominates(L->getHeader(), UseBB)) 3519 continue; 3520 // Don't bother if the instruction is in a BB which ends in an EHPad. 3521 if (UseBB->getTerminator()->isEHPad()) 3522 continue; 3523 3524 // Ignore cases in which the currently-examined value could come from 3525 // a basic block terminated with an EHPad. This checks all incoming 3526 // blocks of the phi node since it is possible that the same incoming 3527 // value comes from multiple basic blocks, only some of which may end 3528 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3529 // pass would try to insert instructions into an EHPad, hitting an 3530 // assertion. 3531 if (isa<PHINode>(UserInst)) { 3532 const auto *PhiNode = cast<PHINode>(UserInst); 3533 bool HasIncompatibleEHPTerminatedBlock = false; 3534 llvm::Value *ExpectedValue = U; 3535 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3536 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3537 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3538 HasIncompatibleEHPTerminatedBlock = true; 3539 break; 3540 } 3541 } 3542 } 3543 if (HasIncompatibleEHPTerminatedBlock) { 3544 continue; 3545 } 3546 } 3547 3548 // Don't bother rewriting PHIs in catchswitch blocks. 3549 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3550 continue; 3551 // Ignore uses which are part of other SCEV expressions, to avoid 3552 // analyzing them multiple times. 3553 if (SE.isSCEVable(UserInst->getType())) { 3554 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3555 // If the user is a no-op, look through to its uses. 3556 if (!isa<SCEVUnknown>(UserS)) 3557 continue; 3558 if (UserS == US) { 3559 Worklist.push_back( 3560 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3561 continue; 3562 } 3563 } 3564 // Ignore icmp instructions which are already being analyzed. 3565 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3566 unsigned OtherIdx = !U.getOperandNo(); 3567 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3568 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3569 continue; 3570 } 3571 3572 std::pair<size_t, int64_t> P = getUse( 3573 S, LSRUse::Basic, MemAccessTy()); 3574 size_t LUIdx = P.first; 3575 int64_t Offset = P.second; 3576 LSRUse &LU = Uses[LUIdx]; 3577 LSRFixup &LF = LU.getNewFixup(); 3578 LF.UserInst = const_cast<Instruction *>(UserInst); 3579 LF.OperandValToReplace = U; 3580 LF.Offset = Offset; 3581 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3582 if (!LU.WidestFixupType || 3583 SE.getTypeSizeInBits(LU.WidestFixupType) < 3584 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3585 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3586 InsertSupplementalFormula(US, LU, LUIdx); 3587 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3588 break; 3589 } 3590 } 3591 } 3592 } 3593 3594 /// Split S into subexpressions which can be pulled out into separate 3595 /// registers. If C is non-null, multiply each subexpression by C. 3596 /// 3597 /// Return remainder expression after factoring the subexpressions captured by 3598 /// Ops. If Ops is complete, return NULL. 3599 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3600 SmallVectorImpl<const SCEV *> &Ops, 3601 const Loop *L, 3602 ScalarEvolution &SE, 3603 unsigned Depth = 0) { 3604 // Arbitrarily cap recursion to protect compile time. 3605 if (Depth >= 3) 3606 return S; 3607 3608 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3609 // Break out add operands. 3610 for (const SCEV *S : Add->operands()) { 3611 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3612 if (Remainder) 3613 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3614 } 3615 return nullptr; 3616 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3617 // Split a non-zero base out of an addrec. 3618 if (AR->getStart()->isZero() || !AR->isAffine()) 3619 return S; 3620 3621 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3622 C, Ops, L, SE, Depth+1); 3623 // Split the non-zero AddRec unless it is part of a nested recurrence that 3624 // does not pertain to this loop. 3625 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3626 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3627 Remainder = nullptr; 3628 } 3629 if (Remainder != AR->getStart()) { 3630 if (!Remainder) 3631 Remainder = SE.getConstant(AR->getType(), 0); 3632 return SE.getAddRecExpr(Remainder, 3633 AR->getStepRecurrence(SE), 3634 AR->getLoop(), 3635 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3636 SCEV::FlagAnyWrap); 3637 } 3638 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3639 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3640 if (Mul->getNumOperands() != 2) 3641 return S; 3642 if (const SCEVConstant *Op0 = 3643 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3644 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3645 const SCEV *Remainder = 3646 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3647 if (Remainder) 3648 Ops.push_back(SE.getMulExpr(C, Remainder)); 3649 return nullptr; 3650 } 3651 } 3652 return S; 3653 } 3654 3655 /// Return true if the SCEV represents a value that may end up as a 3656 /// post-increment operation. 3657 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3658 LSRUse &LU, const SCEV *S, const Loop *L, 3659 ScalarEvolution &SE) { 3660 if (LU.Kind != LSRUse::Address || 3661 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3662 return false; 3663 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3664 if (!AR) 3665 return false; 3666 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3667 if (!isa<SCEVConstant>(LoopStep)) 3668 return false; 3669 // Check if a post-indexed load/store can be used. 3670 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3671 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3672 const SCEV *LoopStart = AR->getStart(); 3673 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3674 return true; 3675 } 3676 return false; 3677 } 3678 3679 /// Helper function for LSRInstance::GenerateReassociations. 3680 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3681 const Formula &Base, 3682 unsigned Depth, size_t Idx, 3683 bool IsScaledReg) { 3684 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3685 // Don't generate reassociations for the base register of a value that 3686 // may generate a post-increment operator. The reason is that the 3687 // reassociations cause extra base+register formula to be created, 3688 // and possibly chosen, but the post-increment is more efficient. 3689 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3690 return; 3691 SmallVector<const SCEV *, 8> AddOps; 3692 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3693 if (Remainder) 3694 AddOps.push_back(Remainder); 3695 3696 if (AddOps.size() == 1) 3697 return; 3698 3699 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3700 JE = AddOps.end(); 3701 J != JE; ++J) { 3702 // Loop-variant "unknown" values are uninteresting; we won't be able to 3703 // do anything meaningful with them. 3704 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3705 continue; 3706 3707 // Don't pull a constant into a register if the constant could be folded 3708 // into an immediate field. 3709 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3710 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3711 continue; 3712 3713 // Collect all operands except *J. 3714 SmallVector<const SCEV *, 8> InnerAddOps( 3715 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3716 InnerAddOps.append(std::next(J), 3717 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3718 3719 // Don't leave just a constant behind in a register if the constant could 3720 // be folded into an immediate field. 3721 if (InnerAddOps.size() == 1 && 3722 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3723 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3724 continue; 3725 3726 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3727 if (InnerSum->isZero()) 3728 continue; 3729 Formula F = Base; 3730 3731 // Add the remaining pieces of the add back into the new formula. 3732 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3733 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3734 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3735 InnerSumSC->getValue()->getZExtValue())) { 3736 F.UnfoldedOffset = 3737 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3738 if (IsScaledReg) 3739 F.ScaledReg = nullptr; 3740 else 3741 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3742 } else if (IsScaledReg) 3743 F.ScaledReg = InnerSum; 3744 else 3745 F.BaseRegs[Idx] = InnerSum; 3746 3747 // Add J as its own register, or an unfolded immediate. 3748 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3749 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3750 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3751 SC->getValue()->getZExtValue())) 3752 F.UnfoldedOffset = 3753 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3754 else 3755 F.BaseRegs.push_back(*J); 3756 // We may have changed the number of register in base regs, adjust the 3757 // formula accordingly. 3758 F.canonicalize(*L); 3759 3760 if (InsertFormula(LU, LUIdx, F)) 3761 // If that formula hadn't been seen before, recurse to find more like 3762 // it. 3763 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3764 // Because just Depth is not enough to bound compile time. 3765 // This means that every time AddOps.size() is greater 16^x we will add 3766 // x to Depth. 3767 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3768 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3769 } 3770 } 3771 3772 /// Split out subexpressions from adds and the bases of addrecs. 3773 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3774 Formula Base, unsigned Depth) { 3775 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3776 // Arbitrarily cap recursion to protect compile time. 3777 if (Depth >= 3) 3778 return; 3779 3780 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3781 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3782 3783 if (Base.Scale == 1) 3784 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3785 /* Idx */ -1, /* IsScaledReg */ true); 3786 } 3787 3788 /// Generate a formula consisting of all of the loop-dominating registers added 3789 /// into a single register. 3790 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3791 Formula Base) { 3792 // This method is only interesting on a plurality of registers. 3793 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3794 (Base.UnfoldedOffset != 0) <= 1) 3795 return; 3796 3797 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3798 // processing the formula. 3799 Base.unscale(); 3800 SmallVector<const SCEV *, 4> Ops; 3801 Formula NewBase = Base; 3802 NewBase.BaseRegs.clear(); 3803 Type *CombinedIntegerType = nullptr; 3804 for (const SCEV *BaseReg : Base.BaseRegs) { 3805 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3806 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3807 if (!CombinedIntegerType) 3808 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3809 Ops.push_back(BaseReg); 3810 } 3811 else 3812 NewBase.BaseRegs.push_back(BaseReg); 3813 } 3814 3815 // If no register is relevant, we're done. 3816 if (Ops.size() == 0) 3817 return; 3818 3819 // Utility function for generating the required variants of the combined 3820 // registers. 3821 auto GenerateFormula = [&](const SCEV *Sum) { 3822 Formula F = NewBase; 3823 3824 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3825 // opportunity to fold something. For now, just ignore such cases 3826 // rather than proceed with zero in a register. 3827 if (Sum->isZero()) 3828 return; 3829 3830 F.BaseRegs.push_back(Sum); 3831 F.canonicalize(*L); 3832 (void)InsertFormula(LU, LUIdx, F); 3833 }; 3834 3835 // If we collected at least two registers, generate a formula combining them. 3836 if (Ops.size() > 1) { 3837 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3838 GenerateFormula(SE.getAddExpr(OpsCopy)); 3839 } 3840 3841 // If we have an unfolded offset, generate a formula combining it with the 3842 // registers collected. 3843 if (NewBase.UnfoldedOffset) { 3844 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3845 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3846 true)); 3847 NewBase.UnfoldedOffset = 0; 3848 GenerateFormula(SE.getAddExpr(Ops)); 3849 } 3850 } 3851 3852 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3853 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3854 const Formula &Base, size_t Idx, 3855 bool IsScaledReg) { 3856 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3857 GlobalValue *GV = ExtractSymbol(G, SE); 3858 if (G->isZero() || !GV) 3859 return; 3860 Formula F = Base; 3861 F.BaseGV = GV; 3862 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3863 return; 3864 if (IsScaledReg) 3865 F.ScaledReg = G; 3866 else 3867 F.BaseRegs[Idx] = G; 3868 (void)InsertFormula(LU, LUIdx, F); 3869 } 3870 3871 /// Generate reuse formulae using symbolic offsets. 3872 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3873 Formula Base) { 3874 // We can't add a symbolic offset if the address already contains one. 3875 if (Base.BaseGV) return; 3876 3877 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3878 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3879 if (Base.Scale == 1) 3880 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3881 /* IsScaledReg */ true); 3882 } 3883 3884 /// Helper function for LSRInstance::GenerateConstantOffsets. 3885 void LSRInstance::GenerateConstantOffsetsImpl( 3886 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3887 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3888 3889 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3890 Formula F = Base; 3891 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3892 3893 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3894 // Add the offset to the base register. 3895 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3896 // If it cancelled out, drop the base register, otherwise update it. 3897 if (NewG->isZero()) { 3898 if (IsScaledReg) { 3899 F.Scale = 0; 3900 F.ScaledReg = nullptr; 3901 } else 3902 F.deleteBaseReg(F.BaseRegs[Idx]); 3903 F.canonicalize(*L); 3904 } else if (IsScaledReg) 3905 F.ScaledReg = NewG; 3906 else 3907 F.BaseRegs[Idx] = NewG; 3908 3909 (void)InsertFormula(LU, LUIdx, F); 3910 } 3911 }; 3912 3913 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3914 3915 // With constant offsets and constant steps, we can generate pre-inc 3916 // accesses by having the offset equal the step. So, for access #0 with a 3917 // step of 8, we generate a G - 8 base which would require the first access 3918 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3919 // for itself and hopefully becomes the base for other accesses. This means 3920 // means that a single pre-indexed access can be generated to become the new 3921 // base pointer for each iteration of the loop, resulting in no extra add/sub 3922 // instructions for pointer updating. 3923 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3924 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3925 if (auto *StepRec = 3926 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3927 const APInt &StepInt = StepRec->getAPInt(); 3928 int64_t Step = StepInt.isNegative() ? 3929 StepInt.getSExtValue() : StepInt.getZExtValue(); 3930 3931 for (int64_t Offset : Worklist) { 3932 Offset -= Step; 3933 GenerateOffset(G, Offset); 3934 } 3935 } 3936 } 3937 } 3938 for (int64_t Offset : Worklist) 3939 GenerateOffset(G, Offset); 3940 3941 int64_t Imm = ExtractImmediate(G, SE); 3942 if (G->isZero() || Imm == 0) 3943 return; 3944 Formula F = Base; 3945 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3946 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3947 return; 3948 if (IsScaledReg) { 3949 F.ScaledReg = G; 3950 } else { 3951 F.BaseRegs[Idx] = G; 3952 // We may generate non canonical Formula if G is a recurrent expr reg 3953 // related with current loop while F.ScaledReg is not. 3954 F.canonicalize(*L); 3955 } 3956 (void)InsertFormula(LU, LUIdx, F); 3957 } 3958 3959 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3960 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3961 Formula Base) { 3962 // TODO: For now, just add the min and max offset, because it usually isn't 3963 // worthwhile looking at everything inbetween. 3964 SmallVector<int64_t, 2> Worklist; 3965 Worklist.push_back(LU.MinOffset); 3966 if (LU.MaxOffset != LU.MinOffset) 3967 Worklist.push_back(LU.MaxOffset); 3968 3969 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3970 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3971 if (Base.Scale == 1) 3972 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3973 /* IsScaledReg */ true); 3974 } 3975 3976 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3977 /// == y -> x*c == y*c. 3978 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3979 Formula Base) { 3980 if (LU.Kind != LSRUse::ICmpZero) return; 3981 3982 // Determine the integer type for the base formula. 3983 Type *IntTy = Base.getType(); 3984 if (!IntTy) return; 3985 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3986 3987 // Don't do this if there is more than one offset. 3988 if (LU.MinOffset != LU.MaxOffset) return; 3989 3990 // Check if transformation is valid. It is illegal to multiply pointer. 3991 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3992 return; 3993 for (const SCEV *BaseReg : Base.BaseRegs) 3994 if (BaseReg->getType()->isPointerTy()) 3995 return; 3996 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3997 3998 // Check each interesting stride. 3999 for (int64_t Factor : Factors) { 4000 // Check that Factor can be represented by IntTy 4001 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4002 continue; 4003 // Check that the multiplication doesn't overflow. 4004 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 4005 continue; 4006 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 4007 assert(Factor != 0 && "Zero factor not expected!"); 4008 if (NewBaseOffset / Factor != Base.BaseOffset) 4009 continue; 4010 // If the offset will be truncated at this use, check that it is in bounds. 4011 if (!IntTy->isPointerTy() && 4012 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 4013 continue; 4014 4015 // Check that multiplying with the use offset doesn't overflow. 4016 int64_t Offset = LU.MinOffset; 4017 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 4018 continue; 4019 Offset = (uint64_t)Offset * Factor; 4020 if (Offset / Factor != LU.MinOffset) 4021 continue; 4022 // If the offset will be truncated at this use, check that it is in bounds. 4023 if (!IntTy->isPointerTy() && 4024 !ConstantInt::isValueValidForType(IntTy, Offset)) 4025 continue; 4026 4027 Formula F = Base; 4028 F.BaseOffset = NewBaseOffset; 4029 4030 // Check that this scale is legal. 4031 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4032 continue; 4033 4034 // Compensate for the use having MinOffset built into it. 4035 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 4036 4037 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4038 4039 // Check that multiplying with each base register doesn't overflow. 4040 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4041 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4042 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4043 goto next; 4044 } 4045 4046 // Check that multiplying with the scaled register doesn't overflow. 4047 if (F.ScaledReg) { 4048 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4049 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4050 continue; 4051 } 4052 4053 // Check that multiplying with the unfolded offset doesn't overflow. 4054 if (F.UnfoldedOffset != 0) { 4055 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 4056 Factor == -1) 4057 continue; 4058 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 4059 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 4060 continue; 4061 // If the offset will be truncated, check that it is in bounds. 4062 if (!IntTy->isPointerTy() && 4063 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 4064 continue; 4065 } 4066 4067 // If we make it here and it's legal, add it. 4068 (void)InsertFormula(LU, LUIdx, F); 4069 next:; 4070 } 4071 } 4072 4073 /// Generate stride factor reuse formulae by making use of scaled-offset address 4074 /// modes, for example. 4075 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4076 // Determine the integer type for the base formula. 4077 Type *IntTy = Base.getType(); 4078 if (!IntTy) return; 4079 4080 // If this Formula already has a scaled register, we can't add another one. 4081 // Try to unscale the formula to generate a better scale. 4082 if (Base.Scale != 0 && !Base.unscale()) 4083 return; 4084 4085 assert(Base.Scale == 0 && "unscale did not did its job!"); 4086 4087 // Check each interesting stride. 4088 for (int64_t Factor : Factors) { 4089 Base.Scale = Factor; 4090 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4091 // Check whether this scale is going to be legal. 4092 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4093 Base)) { 4094 // As a special-case, handle special out-of-loop Basic users specially. 4095 // TODO: Reconsider this special case. 4096 if (LU.Kind == LSRUse::Basic && 4097 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4098 LU.AccessTy, Base) && 4099 LU.AllFixupsOutsideLoop) 4100 LU.Kind = LSRUse::Special; 4101 else 4102 continue; 4103 } 4104 // For an ICmpZero, negating a solitary base register won't lead to 4105 // new solutions. 4106 if (LU.Kind == LSRUse::ICmpZero && 4107 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4108 continue; 4109 // For each addrec base reg, if its loop is current loop, apply the scale. 4110 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4111 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4112 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4113 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4114 if (FactorS->isZero()) 4115 continue; 4116 // Divide out the factor, ignoring high bits, since we'll be 4117 // scaling the value back up in the end. 4118 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4119 if (!Quotient->isZero()) { 4120 // TODO: This could be optimized to avoid all the copying. 4121 Formula F = Base; 4122 F.ScaledReg = Quotient; 4123 F.deleteBaseReg(F.BaseRegs[i]); 4124 // The canonical representation of 1*reg is reg, which is already in 4125 // Base. In that case, do not try to insert the formula, it will be 4126 // rejected anyway. 4127 if (F.Scale == 1 && (F.BaseRegs.empty() || 4128 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4129 continue; 4130 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4131 // non canonical Formula with ScaledReg's loop not being L. 4132 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4133 F.canonicalize(*L); 4134 (void)InsertFormula(LU, LUIdx, F); 4135 } 4136 } 4137 } 4138 } 4139 } 4140 4141 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4142 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4143 /// perform the extension/truncate and normalize again, as the normalized form 4144 /// can result in folds that are not valid in the post-inc use contexts. The 4145 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4146 static const SCEV * 4147 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4148 const SCEV *Expr, Type *ToTy, 4149 ScalarEvolution &SE) { 4150 const SCEV *Result = nullptr; 4151 for (auto &L : Loops) { 4152 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4153 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4154 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4155 if (!New || (Result && New != Result)) 4156 return nullptr; 4157 Result = New; 4158 } 4159 4160 assert(Result && "failed to create expression"); 4161 return Result; 4162 } 4163 4164 /// Generate reuse formulae from different IV types. 4165 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4166 // Don't bother truncating symbolic values. 4167 if (Base.BaseGV) return; 4168 4169 // Determine the integer type for the base formula. 4170 Type *DstTy = Base.getType(); 4171 if (!DstTy) return; 4172 if (DstTy->isPointerTy()) 4173 return; 4174 4175 // It is invalid to extend a pointer type so exit early if ScaledReg or 4176 // any of the BaseRegs are pointers. 4177 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4178 return; 4179 if (any_of(Base.BaseRegs, 4180 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4181 return; 4182 4183 SmallVector<PostIncLoopSet> Loops; 4184 for (auto &LF : LU.Fixups) 4185 Loops.push_back(LF.PostIncLoops); 4186 4187 for (Type *SrcTy : Types) { 4188 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4189 Formula F = Base; 4190 4191 // Sometimes SCEV is able to prove zero during ext transform. It may 4192 // happen if SCEV did not do all possible transforms while creating the 4193 // initial node (maybe due to depth limitations), but it can do them while 4194 // taking ext. 4195 if (F.ScaledReg) { 4196 const SCEV *NewScaledReg = 4197 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4198 if (!NewScaledReg || NewScaledReg->isZero()) 4199 continue; 4200 F.ScaledReg = NewScaledReg; 4201 } 4202 bool HasZeroBaseReg = false; 4203 for (const SCEV *&BaseReg : F.BaseRegs) { 4204 const SCEV *NewBaseReg = 4205 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4206 if (!NewBaseReg || NewBaseReg->isZero()) { 4207 HasZeroBaseReg = true; 4208 break; 4209 } 4210 BaseReg = NewBaseReg; 4211 } 4212 if (HasZeroBaseReg) 4213 continue; 4214 4215 // TODO: This assumes we've done basic processing on all uses and 4216 // have an idea what the register usage is. 4217 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4218 continue; 4219 4220 F.canonicalize(*L); 4221 (void)InsertFormula(LU, LUIdx, F); 4222 } 4223 } 4224 } 4225 4226 namespace { 4227 4228 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4229 /// modifications so that the search phase doesn't have to worry about the data 4230 /// structures moving underneath it. 4231 struct WorkItem { 4232 size_t LUIdx; 4233 int64_t Imm; 4234 const SCEV *OrigReg; 4235 4236 WorkItem(size_t LI, int64_t I, const SCEV *R) 4237 : LUIdx(LI), Imm(I), OrigReg(R) {} 4238 4239 void print(raw_ostream &OS) const; 4240 void dump() const; 4241 }; 4242 4243 } // end anonymous namespace 4244 4245 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4246 void WorkItem::print(raw_ostream &OS) const { 4247 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4248 << " , add offset " << Imm; 4249 } 4250 4251 LLVM_DUMP_METHOD void WorkItem::dump() const { 4252 print(errs()); errs() << '\n'; 4253 } 4254 #endif 4255 4256 /// Look for registers which are a constant distance apart and try to form reuse 4257 /// opportunities between them. 4258 void LSRInstance::GenerateCrossUseConstantOffsets() { 4259 // Group the registers by their value without any added constant offset. 4260 using ImmMapTy = std::map<int64_t, const SCEV *>; 4261 4262 DenseMap<const SCEV *, ImmMapTy> Map; 4263 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4264 SmallVector<const SCEV *, 8> Sequence; 4265 for (const SCEV *Use : RegUses) { 4266 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4267 int64_t Imm = ExtractImmediate(Reg, SE); 4268 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4269 if (Pair.second) 4270 Sequence.push_back(Reg); 4271 Pair.first->second.insert(std::make_pair(Imm, Use)); 4272 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4273 } 4274 4275 // Now examine each set of registers with the same base value. Build up 4276 // a list of work to do and do the work in a separate step so that we're 4277 // not adding formulae and register counts while we're searching. 4278 SmallVector<WorkItem, 32> WorkItems; 4279 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4280 for (const SCEV *Reg : Sequence) { 4281 const ImmMapTy &Imms = Map.find(Reg)->second; 4282 4283 // It's not worthwhile looking for reuse if there's only one offset. 4284 if (Imms.size() == 1) 4285 continue; 4286 4287 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4288 for (const auto &Entry 4289 : Imms) dbgs() 4290 << ' ' << Entry.first; 4291 dbgs() << '\n'); 4292 4293 // Examine each offset. 4294 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4295 J != JE; ++J) { 4296 const SCEV *OrigReg = J->second; 4297 4298 int64_t JImm = J->first; 4299 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4300 4301 if (!isa<SCEVConstant>(OrigReg) && 4302 UsedByIndicesMap[Reg].count() == 1) { 4303 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4304 << '\n'); 4305 continue; 4306 } 4307 4308 // Conservatively examine offsets between this orig reg a few selected 4309 // other orig regs. 4310 int64_t First = Imms.begin()->first; 4311 int64_t Last = std::prev(Imms.end())->first; 4312 // Compute (First + Last) / 2 without overflow using the fact that 4313 // First + Last = 2 * (First + Last) + (First ^ Last). 4314 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4315 // If the result is negative and First is odd and Last even (or vice versa), 4316 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4317 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4318 ImmMapTy::const_iterator OtherImms[] = { 4319 Imms.begin(), std::prev(Imms.end()), 4320 Imms.lower_bound(Avg)}; 4321 for (const auto &M : OtherImms) { 4322 if (M == J || M == JE) continue; 4323 4324 // Compute the difference between the two. 4325 int64_t Imm = (uint64_t)JImm - M->first; 4326 for (unsigned LUIdx : UsedByIndices.set_bits()) 4327 // Make a memo of this use, offset, and register tuple. 4328 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4329 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4330 } 4331 } 4332 } 4333 4334 Map.clear(); 4335 Sequence.clear(); 4336 UsedByIndicesMap.clear(); 4337 UniqueItems.clear(); 4338 4339 // Now iterate through the worklist and add new formulae. 4340 for (const WorkItem &WI : WorkItems) { 4341 size_t LUIdx = WI.LUIdx; 4342 LSRUse &LU = Uses[LUIdx]; 4343 int64_t Imm = WI.Imm; 4344 const SCEV *OrigReg = WI.OrigReg; 4345 4346 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4347 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4348 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4349 4350 // TODO: Use a more targeted data structure. 4351 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4352 Formula F = LU.Formulae[L]; 4353 // FIXME: The code for the scaled and unscaled registers looks 4354 // very similar but slightly different. Investigate if they 4355 // could be merged. That way, we would not have to unscale the 4356 // Formula. 4357 F.unscale(); 4358 // Use the immediate in the scaled register. 4359 if (F.ScaledReg == OrigReg) { 4360 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4361 // Don't create 50 + reg(-50). 4362 if (F.referencesReg(SE.getSCEV( 4363 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4364 continue; 4365 Formula NewF = F; 4366 NewF.BaseOffset = Offset; 4367 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4368 NewF)) 4369 continue; 4370 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4371 4372 // If the new scale is a constant in a register, and adding the constant 4373 // value to the immediate would produce a value closer to zero than the 4374 // immediate itself, then the formula isn't worthwhile. 4375 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4376 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4377 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4378 .ule(std::abs(NewF.BaseOffset))) 4379 continue; 4380 4381 // OK, looks good. 4382 NewF.canonicalize(*this->L); 4383 (void)InsertFormula(LU, LUIdx, NewF); 4384 } else { 4385 // Use the immediate in a base register. 4386 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4387 const SCEV *BaseReg = F.BaseRegs[N]; 4388 if (BaseReg != OrigReg) 4389 continue; 4390 Formula NewF = F; 4391 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4392 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4393 LU.Kind, LU.AccessTy, NewF)) { 4394 if (AMK == TTI::AMK_PostIndexed && 4395 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4396 continue; 4397 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4398 continue; 4399 NewF = F; 4400 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4401 } 4402 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4403 4404 // If the new formula has a constant in a register, and adding the 4405 // constant value to the immediate would produce a value closer to 4406 // zero than the immediate itself, then the formula isn't worthwhile. 4407 for (const SCEV *NewReg : NewF.BaseRegs) 4408 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4409 if ((C->getAPInt() + NewF.BaseOffset) 4410 .abs() 4411 .slt(std::abs(NewF.BaseOffset)) && 4412 (C->getAPInt() + NewF.BaseOffset).countr_zero() >= 4413 (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset)) 4414 goto skip_formula; 4415 4416 // Ok, looks good. 4417 NewF.canonicalize(*this->L); 4418 (void)InsertFormula(LU, LUIdx, NewF); 4419 break; 4420 skip_formula:; 4421 } 4422 } 4423 } 4424 } 4425 } 4426 4427 /// Generate formulae for each use. 4428 void 4429 LSRInstance::GenerateAllReuseFormulae() { 4430 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4431 // queries are more precise. 4432 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4433 LSRUse &LU = Uses[LUIdx]; 4434 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4435 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4436 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4437 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4438 } 4439 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4440 LSRUse &LU = Uses[LUIdx]; 4441 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4442 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4443 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4444 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4445 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4446 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4447 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4448 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4449 } 4450 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4451 LSRUse &LU = Uses[LUIdx]; 4452 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4453 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4454 } 4455 4456 GenerateCrossUseConstantOffsets(); 4457 4458 LLVM_DEBUG(dbgs() << "\n" 4459 "After generating reuse formulae:\n"; 4460 print_uses(dbgs())); 4461 } 4462 4463 /// If there are multiple formulae with the same set of registers used 4464 /// by other uses, pick the best one and delete the others. 4465 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4466 DenseSet<const SCEV *> VisitedRegs; 4467 SmallPtrSet<const SCEV *, 16> Regs; 4468 SmallPtrSet<const SCEV *, 16> LoserRegs; 4469 #ifndef NDEBUG 4470 bool ChangedFormulae = false; 4471 #endif 4472 4473 // Collect the best formula for each unique set of shared registers. This 4474 // is reset for each use. 4475 using BestFormulaeTy = 4476 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4477 4478 BestFormulaeTy BestFormulae; 4479 4480 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4481 LSRUse &LU = Uses[LUIdx]; 4482 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4483 dbgs() << '\n'); 4484 4485 bool Any = false; 4486 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4487 FIdx != NumForms; ++FIdx) { 4488 Formula &F = LU.Formulae[FIdx]; 4489 4490 // Some formulas are instant losers. For example, they may depend on 4491 // nonexistent AddRecs from other loops. These need to be filtered 4492 // immediately, otherwise heuristics could choose them over others leading 4493 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4494 // avoids the need to recompute this information across formulae using the 4495 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4496 // the corresponding bad register from the Regs set. 4497 Cost CostF(L, SE, TTI, AMK); 4498 Regs.clear(); 4499 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4500 if (CostF.isLoser()) { 4501 // During initial formula generation, undesirable formulae are generated 4502 // by uses within other loops that have some non-trivial address mode or 4503 // use the postinc form of the IV. LSR needs to provide these formulae 4504 // as the basis of rediscovering the desired formula that uses an AddRec 4505 // corresponding to the existing phi. Once all formulae have been 4506 // generated, these initial losers may be pruned. 4507 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4508 dbgs() << "\n"); 4509 } 4510 else { 4511 SmallVector<const SCEV *, 4> Key; 4512 for (const SCEV *Reg : F.BaseRegs) { 4513 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4514 Key.push_back(Reg); 4515 } 4516 if (F.ScaledReg && 4517 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4518 Key.push_back(F.ScaledReg); 4519 // Unstable sort by host order ok, because this is only used for 4520 // uniquifying. 4521 llvm::sort(Key); 4522 4523 std::pair<BestFormulaeTy::const_iterator, bool> P = 4524 BestFormulae.insert(std::make_pair(Key, FIdx)); 4525 if (P.second) 4526 continue; 4527 4528 Formula &Best = LU.Formulae[P.first->second]; 4529 4530 Cost CostBest(L, SE, TTI, AMK); 4531 Regs.clear(); 4532 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4533 if (CostF.isLess(CostBest)) 4534 std::swap(F, Best); 4535 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4536 dbgs() << "\n" 4537 " in favor of formula "; 4538 Best.print(dbgs()); dbgs() << '\n'); 4539 } 4540 #ifndef NDEBUG 4541 ChangedFormulae = true; 4542 #endif 4543 LU.DeleteFormula(F); 4544 --FIdx; 4545 --NumForms; 4546 Any = true; 4547 } 4548 4549 // Now that we've filtered out some formulae, recompute the Regs set. 4550 if (Any) 4551 LU.RecomputeRegs(LUIdx, RegUses); 4552 4553 // Reset this to prepare for the next use. 4554 BestFormulae.clear(); 4555 } 4556 4557 LLVM_DEBUG(if (ChangedFormulae) { 4558 dbgs() << "\n" 4559 "After filtering out undesirable candidates:\n"; 4560 print_uses(dbgs()); 4561 }); 4562 } 4563 4564 /// Estimate the worst-case number of solutions the solver might have to 4565 /// consider. It almost never considers this many solutions because it prune the 4566 /// search space, but the pruning isn't always sufficient. 4567 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4568 size_t Power = 1; 4569 for (const LSRUse &LU : Uses) { 4570 size_t FSize = LU.Formulae.size(); 4571 if (FSize >= ComplexityLimit) { 4572 Power = ComplexityLimit; 4573 break; 4574 } 4575 Power *= FSize; 4576 if (Power >= ComplexityLimit) 4577 break; 4578 } 4579 return Power; 4580 } 4581 4582 /// When one formula uses a superset of the registers of another formula, it 4583 /// won't help reduce register pressure (though it may not necessarily hurt 4584 /// register pressure); remove it to simplify the system. 4585 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4586 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4587 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4588 4589 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4590 "which use a superset of registers used by other " 4591 "formulae.\n"); 4592 4593 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4594 LSRUse &LU = Uses[LUIdx]; 4595 bool Any = false; 4596 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4597 Formula &F = LU.Formulae[i]; 4598 // Look for a formula with a constant or GV in a register. If the use 4599 // also has a formula with that same value in an immediate field, 4600 // delete the one that uses a register. 4601 for (SmallVectorImpl<const SCEV *>::const_iterator 4602 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4603 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4604 Formula NewF = F; 4605 //FIXME: Formulas should store bitwidth to do wrapping properly. 4606 // See PR41034. 4607 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4608 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4609 (I - F.BaseRegs.begin())); 4610 if (LU.HasFormulaWithSameRegs(NewF)) { 4611 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4612 dbgs() << '\n'); 4613 LU.DeleteFormula(F); 4614 --i; 4615 --e; 4616 Any = true; 4617 break; 4618 } 4619 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4620 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4621 if (!F.BaseGV) { 4622 Formula NewF = F; 4623 NewF.BaseGV = GV; 4624 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4625 (I - F.BaseRegs.begin())); 4626 if (LU.HasFormulaWithSameRegs(NewF)) { 4627 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4628 dbgs() << '\n'); 4629 LU.DeleteFormula(F); 4630 --i; 4631 --e; 4632 Any = true; 4633 break; 4634 } 4635 } 4636 } 4637 } 4638 } 4639 if (Any) 4640 LU.RecomputeRegs(LUIdx, RegUses); 4641 } 4642 4643 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4644 } 4645 } 4646 4647 /// When there are many registers for expressions like A, A+1, A+2, etc., 4648 /// allocate a single register for them. 4649 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4650 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4651 return; 4652 4653 LLVM_DEBUG( 4654 dbgs() << "The search space is too complex.\n" 4655 "Narrowing the search space by assuming that uses separated " 4656 "by a constant offset will use the same registers.\n"); 4657 4658 // This is especially useful for unrolled loops. 4659 4660 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4661 LSRUse &LU = Uses[LUIdx]; 4662 for (const Formula &F : LU.Formulae) { 4663 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4664 continue; 4665 4666 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4667 if (!LUThatHas) 4668 continue; 4669 4670 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4671 LU.Kind, LU.AccessTy)) 4672 continue; 4673 4674 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4675 4676 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4677 4678 // Transfer the fixups of LU to LUThatHas. 4679 for (LSRFixup &Fixup : LU.Fixups) { 4680 Fixup.Offset += F.BaseOffset; 4681 LUThatHas->pushFixup(Fixup); 4682 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4683 } 4684 4685 // Delete formulae from the new use which are no longer legal. 4686 bool Any = false; 4687 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4688 Formula &F = LUThatHas->Formulae[i]; 4689 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4690 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4691 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4692 LUThatHas->DeleteFormula(F); 4693 --i; 4694 --e; 4695 Any = true; 4696 } 4697 } 4698 4699 if (Any) 4700 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4701 4702 // Delete the old use. 4703 DeleteUse(LU, LUIdx); 4704 --LUIdx; 4705 --NumUses; 4706 break; 4707 } 4708 } 4709 4710 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4711 } 4712 4713 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4714 /// we've done more filtering, as it may be able to find more formulae to 4715 /// eliminate. 4716 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4717 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4718 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4719 4720 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4721 "undesirable dedicated registers.\n"); 4722 4723 FilterOutUndesirableDedicatedRegisters(); 4724 4725 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4726 } 4727 } 4728 4729 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4730 /// Pick the best one and delete the others. 4731 /// This narrowing heuristic is to keep as many formulae with different 4732 /// Scale and ScaledReg pair as possible while narrowing the search space. 4733 /// The benefit is that it is more likely to find out a better solution 4734 /// from a formulae set with more Scale and ScaledReg variations than 4735 /// a formulae set with the same Scale and ScaledReg. The picking winner 4736 /// reg heuristic will often keep the formulae with the same Scale and 4737 /// ScaledReg and filter others, and we want to avoid that if possible. 4738 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4739 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4740 return; 4741 4742 LLVM_DEBUG( 4743 dbgs() << "The search space is too complex.\n" 4744 "Narrowing the search space by choosing the best Formula " 4745 "from the Formulae with the same Scale and ScaledReg.\n"); 4746 4747 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4748 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4749 4750 BestFormulaeTy BestFormulae; 4751 #ifndef NDEBUG 4752 bool ChangedFormulae = false; 4753 #endif 4754 DenseSet<const SCEV *> VisitedRegs; 4755 SmallPtrSet<const SCEV *, 16> Regs; 4756 4757 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4758 LSRUse &LU = Uses[LUIdx]; 4759 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4760 dbgs() << '\n'); 4761 4762 // Return true if Formula FA is better than Formula FB. 4763 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4764 // First we will try to choose the Formula with fewer new registers. 4765 // For a register used by current Formula, the more the register is 4766 // shared among LSRUses, the less we increase the register number 4767 // counter of the formula. 4768 size_t FARegNum = 0; 4769 for (const SCEV *Reg : FA.BaseRegs) { 4770 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4771 FARegNum += (NumUses - UsedByIndices.count() + 1); 4772 } 4773 size_t FBRegNum = 0; 4774 for (const SCEV *Reg : FB.BaseRegs) { 4775 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4776 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4777 } 4778 if (FARegNum != FBRegNum) 4779 return FARegNum < FBRegNum; 4780 4781 // If the new register numbers are the same, choose the Formula with 4782 // less Cost. 4783 Cost CostFA(L, SE, TTI, AMK); 4784 Cost CostFB(L, SE, TTI, AMK); 4785 Regs.clear(); 4786 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4787 Regs.clear(); 4788 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4789 return CostFA.isLess(CostFB); 4790 }; 4791 4792 bool Any = false; 4793 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4794 ++FIdx) { 4795 Formula &F = LU.Formulae[FIdx]; 4796 if (!F.ScaledReg) 4797 continue; 4798 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4799 if (P.second) 4800 continue; 4801 4802 Formula &Best = LU.Formulae[P.first->second]; 4803 if (IsBetterThan(F, Best)) 4804 std::swap(F, Best); 4805 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4806 dbgs() << "\n" 4807 " in favor of formula "; 4808 Best.print(dbgs()); dbgs() << '\n'); 4809 #ifndef NDEBUG 4810 ChangedFormulae = true; 4811 #endif 4812 LU.DeleteFormula(F); 4813 --FIdx; 4814 --NumForms; 4815 Any = true; 4816 } 4817 if (Any) 4818 LU.RecomputeRegs(LUIdx, RegUses); 4819 4820 // Reset this to prepare for the next use. 4821 BestFormulae.clear(); 4822 } 4823 4824 LLVM_DEBUG(if (ChangedFormulae) { 4825 dbgs() << "\n" 4826 "After filtering out undesirable candidates:\n"; 4827 print_uses(dbgs()); 4828 }); 4829 } 4830 4831 /// If we are over the complexity limit, filter out any post-inc prefering 4832 /// variables to only post-inc values. 4833 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4834 if (AMK != TTI::AMK_PostIndexed) 4835 return; 4836 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4837 return; 4838 4839 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4840 "Narrowing the search space by choosing the lowest " 4841 "register Formula for PostInc Uses.\n"); 4842 4843 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4844 LSRUse &LU = Uses[LUIdx]; 4845 4846 if (LU.Kind != LSRUse::Address) 4847 continue; 4848 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4849 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4850 continue; 4851 4852 size_t MinRegs = std::numeric_limits<size_t>::max(); 4853 for (const Formula &F : LU.Formulae) 4854 MinRegs = std::min(F.getNumRegs(), MinRegs); 4855 4856 bool Any = false; 4857 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4858 ++FIdx) { 4859 Formula &F = LU.Formulae[FIdx]; 4860 if (F.getNumRegs() > MinRegs) { 4861 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4862 dbgs() << "\n"); 4863 LU.DeleteFormula(F); 4864 --FIdx; 4865 --NumForms; 4866 Any = true; 4867 } 4868 } 4869 if (Any) 4870 LU.RecomputeRegs(LUIdx, RegUses); 4871 4872 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4873 break; 4874 } 4875 4876 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4877 } 4878 4879 /// The function delete formulas with high registers number expectation. 4880 /// Assuming we don't know the value of each formula (already delete 4881 /// all inefficient), generate probability of not selecting for each 4882 /// register. 4883 /// For example, 4884 /// Use1: 4885 /// reg(a) + reg({0,+,1}) 4886 /// reg(a) + reg({-1,+,1}) + 1 4887 /// reg({a,+,1}) 4888 /// Use2: 4889 /// reg(b) + reg({0,+,1}) 4890 /// reg(b) + reg({-1,+,1}) + 1 4891 /// reg({b,+,1}) 4892 /// Use3: 4893 /// reg(c) + reg(b) + reg({0,+,1}) 4894 /// reg(c) + reg({b,+,1}) 4895 /// 4896 /// Probability of not selecting 4897 /// Use1 Use2 Use3 4898 /// reg(a) (1/3) * 1 * 1 4899 /// reg(b) 1 * (1/3) * (1/2) 4900 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4901 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4902 /// reg({a,+,1}) (2/3) * 1 * 1 4903 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4904 /// reg(c) 1 * 1 * 0 4905 /// 4906 /// Now count registers number mathematical expectation for each formula: 4907 /// Note that for each use we exclude probability if not selecting for the use. 4908 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4909 /// probabilty 1/3 of not selecting for Use1). 4910 /// Use1: 4911 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4912 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4913 /// reg({a,+,1}) 1 4914 /// Use2: 4915 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4916 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4917 /// reg({b,+,1}) 2/3 4918 /// Use3: 4919 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4920 /// reg(c) + reg({b,+,1}) 1 + 2/3 4921 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4922 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4923 return; 4924 // Ok, we have too many of formulae on our hands to conveniently handle. 4925 // Use a rough heuristic to thin out the list. 4926 4927 // Set of Regs wich will be 100% used in final solution. 4928 // Used in each formula of a solution (in example above this is reg(c)). 4929 // We can skip them in calculations. 4930 SmallPtrSet<const SCEV *, 4> UniqRegs; 4931 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4932 4933 // Map each register to probability of not selecting 4934 DenseMap <const SCEV *, float> RegNumMap; 4935 for (const SCEV *Reg : RegUses) { 4936 if (UniqRegs.count(Reg)) 4937 continue; 4938 float PNotSel = 1; 4939 for (const LSRUse &LU : Uses) { 4940 if (!LU.Regs.count(Reg)) 4941 continue; 4942 float P = LU.getNotSelectedProbability(Reg); 4943 if (P != 0.0) 4944 PNotSel *= P; 4945 else 4946 UniqRegs.insert(Reg); 4947 } 4948 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4949 } 4950 4951 LLVM_DEBUG( 4952 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4953 4954 // Delete formulas where registers number expectation is high. 4955 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4956 LSRUse &LU = Uses[LUIdx]; 4957 // If nothing to delete - continue. 4958 if (LU.Formulae.size() < 2) 4959 continue; 4960 // This is temporary solution to test performance. Float should be 4961 // replaced with round independent type (based on integers) to avoid 4962 // different results for different target builds. 4963 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4964 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4965 size_t MinIdx = 0; 4966 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4967 Formula &F = LU.Formulae[i]; 4968 float FRegNum = 0; 4969 float FARegNum = 0; 4970 for (const SCEV *BaseReg : F.BaseRegs) { 4971 if (UniqRegs.count(BaseReg)) 4972 continue; 4973 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4974 if (isa<SCEVAddRecExpr>(BaseReg)) 4975 FARegNum += 4976 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4977 } 4978 if (const SCEV *ScaledReg = F.ScaledReg) { 4979 if (!UniqRegs.count(ScaledReg)) { 4980 FRegNum += 4981 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4982 if (isa<SCEVAddRecExpr>(ScaledReg)) 4983 FARegNum += 4984 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4985 } 4986 } 4987 if (FMinRegNum > FRegNum || 4988 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4989 FMinRegNum = FRegNum; 4990 FMinARegNum = FARegNum; 4991 MinIdx = i; 4992 } 4993 } 4994 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4995 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4996 if (MinIdx != 0) 4997 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4998 while (LU.Formulae.size() != 1) { 4999 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5000 dbgs() << '\n'); 5001 LU.Formulae.pop_back(); 5002 } 5003 LU.RecomputeRegs(LUIdx, RegUses); 5004 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5005 Formula &F = LU.Formulae[0]; 5006 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5007 // When we choose the formula, the regs become unique. 5008 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5009 if (F.ScaledReg) 5010 UniqRegs.insert(F.ScaledReg); 5011 } 5012 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5013 } 5014 5015 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5016 // would the addressing offset +C would be legal where the negative offset -C is 5017 // not. 5018 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5019 ScalarEvolution &SE, const SCEV *Best, 5020 const SCEV *Reg, 5021 MemAccessTy AccessType) { 5022 if (Best->getType() != Reg->getType() || 5023 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5024 cast<SCEVAddRecExpr>(Best)->getLoop() != 5025 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5026 return false; 5027 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg)); 5028 if (!Diff) 5029 return false; 5030 5031 return TTI.isLegalAddressingMode( 5032 AccessType.MemTy, /*BaseGV=*/nullptr, 5033 /*BaseOffset=*/Diff->getAPInt().getSExtValue(), 5034 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5035 !TTI.isLegalAddressingMode( 5036 AccessType.MemTy, /*BaseGV=*/nullptr, 5037 /*BaseOffset=*/-Diff->getAPInt().getSExtValue(), 5038 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5039 } 5040 5041 /// Pick a register which seems likely to be profitable, and then in any use 5042 /// which has any reference to that register, delete all formulae which do not 5043 /// reference that register. 5044 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5045 // With all other options exhausted, loop until the system is simple 5046 // enough to handle. 5047 SmallPtrSet<const SCEV *, 4> Taken; 5048 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5049 // Ok, we have too many of formulae on our hands to conveniently handle. 5050 // Use a rough heuristic to thin out the list. 5051 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5052 5053 // Pick the register which is used by the most LSRUses, which is likely 5054 // to be a good reuse register candidate. 5055 const SCEV *Best = nullptr; 5056 unsigned BestNum = 0; 5057 for (const SCEV *Reg : RegUses) { 5058 if (Taken.count(Reg)) 5059 continue; 5060 if (!Best) { 5061 Best = Reg; 5062 BestNum = RegUses.getUsedByIndices(Reg).count(); 5063 } else { 5064 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5065 if (Count > BestNum) { 5066 Best = Reg; 5067 BestNum = Count; 5068 } 5069 5070 // If the scores are the same, but the Reg is simpler for the target 5071 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5072 // handle +C but not -C), opt for the simpler formula. 5073 if (Count == BestNum) { 5074 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5075 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5076 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5077 Uses[LUIdx].AccessTy)) { 5078 Best = Reg; 5079 BestNum = Count; 5080 } 5081 } 5082 } 5083 } 5084 assert(Best && "Failed to find best LSRUse candidate"); 5085 5086 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5087 << " will yield profitable reuse.\n"); 5088 Taken.insert(Best); 5089 5090 // In any use with formulae which references this register, delete formulae 5091 // which don't reference it. 5092 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5093 LSRUse &LU = Uses[LUIdx]; 5094 if (!LU.Regs.count(Best)) continue; 5095 5096 bool Any = false; 5097 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5098 Formula &F = LU.Formulae[i]; 5099 if (!F.referencesReg(Best)) { 5100 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5101 LU.DeleteFormula(F); 5102 --e; 5103 --i; 5104 Any = true; 5105 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5106 continue; 5107 } 5108 } 5109 5110 if (Any) 5111 LU.RecomputeRegs(LUIdx, RegUses); 5112 } 5113 5114 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5115 } 5116 } 5117 5118 /// If there are an extraordinary number of formulae to choose from, use some 5119 /// rough heuristics to prune down the number of formulae. This keeps the main 5120 /// solver from taking an extraordinary amount of time in some worst-case 5121 /// scenarios. 5122 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5123 NarrowSearchSpaceByDetectingSupersets(); 5124 NarrowSearchSpaceByCollapsingUnrolledCode(); 5125 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5126 if (FilterSameScaledReg) 5127 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5128 NarrowSearchSpaceByFilterPostInc(); 5129 if (LSRExpNarrow) 5130 NarrowSearchSpaceByDeletingCostlyFormulas(); 5131 else 5132 NarrowSearchSpaceByPickingWinnerRegs(); 5133 } 5134 5135 /// This is the recursive solver. 5136 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5137 Cost &SolutionCost, 5138 SmallVectorImpl<const Formula *> &Workspace, 5139 const Cost &CurCost, 5140 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5141 DenseSet<const SCEV *> &VisitedRegs) const { 5142 // Some ideas: 5143 // - prune more: 5144 // - use more aggressive filtering 5145 // - sort the formula so that the most profitable solutions are found first 5146 // - sort the uses too 5147 // - search faster: 5148 // - don't compute a cost, and then compare. compare while computing a cost 5149 // and bail early. 5150 // - track register sets with SmallBitVector 5151 5152 const LSRUse &LU = Uses[Workspace.size()]; 5153 5154 // If this use references any register that's already a part of the 5155 // in-progress solution, consider it a requirement that a formula must 5156 // reference that register in order to be considered. This prunes out 5157 // unprofitable searching. 5158 SmallSetVector<const SCEV *, 4> ReqRegs; 5159 for (const SCEV *S : CurRegs) 5160 if (LU.Regs.count(S)) 5161 ReqRegs.insert(S); 5162 5163 SmallPtrSet<const SCEV *, 16> NewRegs; 5164 Cost NewCost(L, SE, TTI, AMK); 5165 for (const Formula &F : LU.Formulae) { 5166 // Ignore formulae which may not be ideal in terms of register reuse of 5167 // ReqRegs. The formula should use all required registers before 5168 // introducing new ones. 5169 // This can sometimes (notably when trying to favour postinc) lead to 5170 // sub-optimial decisions. There it is best left to the cost modelling to 5171 // get correct. 5172 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5173 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5174 for (const SCEV *Reg : ReqRegs) { 5175 if ((F.ScaledReg && F.ScaledReg == Reg) || 5176 is_contained(F.BaseRegs, Reg)) { 5177 --NumReqRegsToFind; 5178 if (NumReqRegsToFind == 0) 5179 break; 5180 } 5181 } 5182 if (NumReqRegsToFind != 0) { 5183 // If none of the formulae satisfied the required registers, then we could 5184 // clear ReqRegs and try again. Currently, we simply give up in this case. 5185 continue; 5186 } 5187 } 5188 5189 // Evaluate the cost of the current formula. If it's already worse than 5190 // the current best, prune the search at that point. 5191 NewCost = CurCost; 5192 NewRegs = CurRegs; 5193 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5194 if (NewCost.isLess(SolutionCost)) { 5195 Workspace.push_back(&F); 5196 if (Workspace.size() != Uses.size()) { 5197 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5198 NewRegs, VisitedRegs); 5199 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5200 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5201 } else { 5202 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5203 dbgs() << ".\nRegs:\n"; 5204 for (const SCEV *S : NewRegs) dbgs() 5205 << "- " << *S << "\n"; 5206 dbgs() << '\n'); 5207 5208 SolutionCost = NewCost; 5209 Solution = Workspace; 5210 } 5211 Workspace.pop_back(); 5212 } 5213 } 5214 } 5215 5216 /// Choose one formula from each use. Return the results in the given Solution 5217 /// vector. 5218 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5219 SmallVector<const Formula *, 8> Workspace; 5220 Cost SolutionCost(L, SE, TTI, AMK); 5221 SolutionCost.Lose(); 5222 Cost CurCost(L, SE, TTI, AMK); 5223 SmallPtrSet<const SCEV *, 16> CurRegs; 5224 DenseSet<const SCEV *> VisitedRegs; 5225 Workspace.reserve(Uses.size()); 5226 5227 // SolveRecurse does all the work. 5228 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5229 CurRegs, VisitedRegs); 5230 if (Solution.empty()) { 5231 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5232 return; 5233 } 5234 5235 // Ok, we've now made all our decisions. 5236 LLVM_DEBUG(dbgs() << "\n" 5237 "The chosen solution requires "; 5238 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5239 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5240 dbgs() << " "; 5241 Uses[i].print(dbgs()); 5242 dbgs() << "\n" 5243 " "; 5244 Solution[i]->print(dbgs()); 5245 dbgs() << '\n'; 5246 }); 5247 5248 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5249 5250 if (BaselineCost.isLess(SolutionCost)) { 5251 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 5252 BaselineCost.print(dbgs()); dbgs() << "\n"); 5253 if (!AllowDropSolutionIfLessProfitable) 5254 LLVM_DEBUG( 5255 dbgs() << "Baseline is more profitable than chosen solution, " 5256 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5257 else { 5258 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5259 "solution, dropping LSR solution.\n";); 5260 Solution.clear(); 5261 } 5262 } 5263 } 5264 5265 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5266 /// we can go while still being dominated by the input positions. This helps 5267 /// canonicalize the insert position, which encourages sharing. 5268 BasicBlock::iterator 5269 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5270 const SmallVectorImpl<Instruction *> &Inputs) 5271 const { 5272 Instruction *Tentative = &*IP; 5273 while (true) { 5274 bool AllDominate = true; 5275 Instruction *BetterPos = nullptr; 5276 // Don't bother attempting to insert before a catchswitch, their basic block 5277 // cannot have other non-PHI instructions. 5278 if (isa<CatchSwitchInst>(Tentative)) 5279 return IP; 5280 5281 for (Instruction *Inst : Inputs) { 5282 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5283 AllDominate = false; 5284 break; 5285 } 5286 // Attempt to find an insert position in the middle of the block, 5287 // instead of at the end, so that it can be used for other expansions. 5288 if (Tentative->getParent() == Inst->getParent() && 5289 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5290 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5291 } 5292 if (!AllDominate) 5293 break; 5294 if (BetterPos) 5295 IP = BetterPos->getIterator(); 5296 else 5297 IP = Tentative->getIterator(); 5298 5299 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5300 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5301 5302 BasicBlock *IDom; 5303 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5304 if (!Rung) return IP; 5305 Rung = Rung->getIDom(); 5306 if (!Rung) return IP; 5307 IDom = Rung->getBlock(); 5308 5309 // Don't climb into a loop though. 5310 const Loop *IDomLoop = LI.getLoopFor(IDom); 5311 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5312 if (IDomDepth <= IPLoopDepth && 5313 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5314 break; 5315 } 5316 5317 Tentative = IDom->getTerminator(); 5318 } 5319 5320 return IP; 5321 } 5322 5323 /// Determine an input position which will be dominated by the operands and 5324 /// which will dominate the result. 5325 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5326 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5327 // Collect some instructions which must be dominated by the 5328 // expanding replacement. These must be dominated by any operands that 5329 // will be required in the expansion. 5330 SmallVector<Instruction *, 4> Inputs; 5331 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5332 Inputs.push_back(I); 5333 if (LU.Kind == LSRUse::ICmpZero) 5334 if (Instruction *I = 5335 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5336 Inputs.push_back(I); 5337 if (LF.PostIncLoops.count(L)) { 5338 if (LF.isUseFullyOutsideLoop(L)) 5339 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5340 else 5341 Inputs.push_back(IVIncInsertPos); 5342 } 5343 // The expansion must also be dominated by the increment positions of any 5344 // loops it for which it is using post-inc mode. 5345 for (const Loop *PIL : LF.PostIncLoops) { 5346 if (PIL == L) continue; 5347 5348 // Be dominated by the loop exit. 5349 SmallVector<BasicBlock *, 4> ExitingBlocks; 5350 PIL->getExitingBlocks(ExitingBlocks); 5351 if (!ExitingBlocks.empty()) { 5352 BasicBlock *BB = ExitingBlocks[0]; 5353 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5354 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5355 Inputs.push_back(BB->getTerminator()); 5356 } 5357 } 5358 5359 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5360 && !isa<DbgInfoIntrinsic>(LowestIP) && 5361 "Insertion point must be a normal instruction"); 5362 5363 // Then, climb up the immediate dominator tree as far as we can go while 5364 // still being dominated by the input positions. 5365 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5366 5367 // Don't insert instructions before PHI nodes. 5368 while (isa<PHINode>(IP)) ++IP; 5369 5370 // Ignore landingpad instructions. 5371 while (IP->isEHPad()) ++IP; 5372 5373 // Ignore debug intrinsics. 5374 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5375 5376 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5377 // IP consistent across expansions and allows the previously inserted 5378 // instructions to be reused by subsequent expansion. 5379 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5380 ++IP; 5381 5382 return IP; 5383 } 5384 5385 /// Emit instructions for the leading candidate expression for this LSRUse (this 5386 /// is called "expanding"). 5387 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5388 const Formula &F, BasicBlock::iterator IP, 5389 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5390 if (LU.RigidFormula) 5391 return LF.OperandValToReplace; 5392 5393 // Determine an input position which will be dominated by the operands and 5394 // which will dominate the result. 5395 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5396 Rewriter.setInsertPoint(&*IP); 5397 5398 // Inform the Rewriter if we have a post-increment use, so that it can 5399 // perform an advantageous expansion. 5400 Rewriter.setPostInc(LF.PostIncLoops); 5401 5402 // This is the type that the user actually needs. 5403 Type *OpTy = LF.OperandValToReplace->getType(); 5404 // This will be the type that we'll initially expand to. 5405 Type *Ty = F.getType(); 5406 if (!Ty) 5407 // No type known; just expand directly to the ultimate type. 5408 Ty = OpTy; 5409 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5410 // Expand directly to the ultimate type if it's the right size. 5411 Ty = OpTy; 5412 // This is the type to do integer arithmetic in. 5413 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5414 5415 // Build up a list of operands to add together to form the full base. 5416 SmallVector<const SCEV *, 8> Ops; 5417 5418 // Expand the BaseRegs portion. 5419 for (const SCEV *Reg : F.BaseRegs) { 5420 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5421 5422 // If we're expanding for a post-inc user, make the post-inc adjustment. 5423 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5424 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5425 } 5426 5427 // Expand the ScaledReg portion. 5428 Value *ICmpScaledV = nullptr; 5429 if (F.Scale != 0) { 5430 const SCEV *ScaledS = F.ScaledReg; 5431 5432 // If we're expanding for a post-inc user, make the post-inc adjustment. 5433 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5434 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5435 5436 if (LU.Kind == LSRUse::ICmpZero) { 5437 // Expand ScaleReg as if it was part of the base regs. 5438 if (F.Scale == 1) 5439 Ops.push_back( 5440 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5441 else { 5442 // An interesting way of "folding" with an icmp is to use a negated 5443 // scale, which we'll implement by inserting it into the other operand 5444 // of the icmp. 5445 assert(F.Scale == -1 && 5446 "The only scale supported by ICmpZero uses is -1!"); 5447 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5448 } 5449 } else { 5450 // Otherwise just expand the scaled register and an explicit scale, 5451 // which is expected to be matched as part of the address. 5452 5453 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5454 // Unless the addressing mode will not be folded. 5455 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5456 isAMCompletelyFolded(TTI, LU, F)) { 5457 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5458 Ops.clear(); 5459 Ops.push_back(SE.getUnknown(FullV)); 5460 } 5461 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5462 if (F.Scale != 1) 5463 ScaledS = 5464 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5465 Ops.push_back(ScaledS); 5466 } 5467 } 5468 5469 // Expand the GV portion. 5470 if (F.BaseGV) { 5471 // Flush the operand list to suppress SCEVExpander hoisting. 5472 if (!Ops.empty()) { 5473 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5474 Ops.clear(); 5475 Ops.push_back(SE.getUnknown(FullV)); 5476 } 5477 Ops.push_back(SE.getUnknown(F.BaseGV)); 5478 } 5479 5480 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5481 // unfolded offsets. LSR assumes they both live next to their uses. 5482 if (!Ops.empty()) { 5483 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5484 Ops.clear(); 5485 Ops.push_back(SE.getUnknown(FullV)); 5486 } 5487 5488 // Expand the immediate portion. 5489 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5490 if (Offset != 0) { 5491 if (LU.Kind == LSRUse::ICmpZero) { 5492 // The other interesting way of "folding" with an ICmpZero is to use a 5493 // negated immediate. 5494 if (!ICmpScaledV) 5495 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5496 else { 5497 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5498 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5499 } 5500 } else { 5501 // Just add the immediate values. These again are expected to be matched 5502 // as part of the address. 5503 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5504 } 5505 } 5506 5507 // Expand the unfolded offset portion. 5508 int64_t UnfoldedOffset = F.UnfoldedOffset; 5509 if (UnfoldedOffset != 0) { 5510 // Just add the immediate values. 5511 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5512 UnfoldedOffset))); 5513 } 5514 5515 // Emit instructions summing all the operands. 5516 const SCEV *FullS = Ops.empty() ? 5517 SE.getConstant(IntTy, 0) : 5518 SE.getAddExpr(Ops); 5519 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5520 5521 // We're done expanding now, so reset the rewriter. 5522 Rewriter.clearPostInc(); 5523 5524 // An ICmpZero Formula represents an ICmp which we're handling as a 5525 // comparison against zero. Now that we've expanded an expression for that 5526 // form, update the ICmp's other operand. 5527 if (LU.Kind == LSRUse::ICmpZero) { 5528 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5529 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5530 DeadInsts.emplace_back(OperandIsInstr); 5531 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5532 "a scale at the same time!"); 5533 if (F.Scale == -1) { 5534 if (ICmpScaledV->getType() != OpTy) { 5535 Instruction *Cast = 5536 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5537 OpTy, false), 5538 ICmpScaledV, OpTy, "tmp", CI); 5539 ICmpScaledV = Cast; 5540 } 5541 CI->setOperand(1, ICmpScaledV); 5542 } else { 5543 // A scale of 1 means that the scale has been expanded as part of the 5544 // base regs. 5545 assert((F.Scale == 0 || F.Scale == 1) && 5546 "ICmp does not support folding a global value and " 5547 "a scale at the same time!"); 5548 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5549 -(uint64_t)Offset); 5550 if (C->getType() != OpTy) { 5551 C = ConstantFoldCastOperand( 5552 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5553 CI->getModule()->getDataLayout()); 5554 assert(C && "Cast of ConstantInt should have folded"); 5555 } 5556 5557 CI->setOperand(1, C); 5558 } 5559 } 5560 5561 return FullV; 5562 } 5563 5564 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5565 /// effectively happens in their predecessor blocks, so the expression may need 5566 /// to be expanded in multiple places. 5567 void LSRInstance::RewriteForPHI( 5568 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5569 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5570 DenseMap<BasicBlock *, Value *> Inserted; 5571 5572 // Inserting instructions in the loop and using them as PHI's input could 5573 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 5574 // corresponding incoming block is not loop exiting). So collect all such 5575 // instructions to form LCSSA for them later. 5576 SmallVector<Instruction *, 4> InsertedNonLCSSAInsts; 5577 5578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5579 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5580 bool needUpdateFixups = false; 5581 BasicBlock *BB = PN->getIncomingBlock(i); 5582 5583 // If this is a critical edge, split the edge so that we do not insert 5584 // the code on all predecessor/successor paths. We do this unless this 5585 // is the canonical backedge for this loop, which complicates post-inc 5586 // users. 5587 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5588 !isa<IndirectBrInst>(BB->getTerminator()) && 5589 !isa<CatchSwitchInst>(BB->getTerminator())) { 5590 BasicBlock *Parent = PN->getParent(); 5591 Loop *PNLoop = LI.getLoopFor(Parent); 5592 if (!PNLoop || Parent != PNLoop->getHeader()) { 5593 // Split the critical edge. 5594 BasicBlock *NewBB = nullptr; 5595 if (!Parent->isLandingPad()) { 5596 NewBB = 5597 SplitCriticalEdge(BB, Parent, 5598 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5599 .setMergeIdenticalEdges() 5600 .setKeepOneInputPHIs()); 5601 } else { 5602 SmallVector<BasicBlock*, 2> NewBBs; 5603 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5604 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5605 NewBB = NewBBs[0]; 5606 } 5607 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5608 // phi predecessors are identical. The simple thing to do is skip 5609 // splitting in this case rather than complicate the API. 5610 if (NewBB) { 5611 // If PN is outside of the loop and BB is in the loop, we want to 5612 // move the block to be immediately before the PHI block, not 5613 // immediately after BB. 5614 if (L->contains(BB) && !L->contains(PN)) 5615 NewBB->moveBefore(PN->getParent()); 5616 5617 // Splitting the edge can reduce the number of PHI entries we have. 5618 e = PN->getNumIncomingValues(); 5619 BB = NewBB; 5620 i = PN->getBasicBlockIndex(BB); 5621 5622 needUpdateFixups = true; 5623 } 5624 } 5625 } 5626 5627 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5628 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5629 if (!Pair.second) 5630 PN->setIncomingValue(i, Pair.first->second); 5631 else { 5632 Value *FullV = 5633 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5634 5635 // If this is reuse-by-noop-cast, insert the noop cast. 5636 Type *OpTy = LF.OperandValToReplace->getType(); 5637 if (FullV->getType() != OpTy) 5638 FullV = 5639 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5640 OpTy, false), 5641 FullV, LF.OperandValToReplace->getType(), 5642 "tmp", BB->getTerminator()); 5643 5644 // If the incoming block for this value is not in the loop, it means the 5645 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5646 // the inserted value. 5647 if (auto *I = dyn_cast<Instruction>(FullV)) 5648 if (L->contains(I) && !L->contains(BB)) 5649 InsertedNonLCSSAInsts.push_back(I); 5650 5651 PN->setIncomingValue(i, FullV); 5652 Pair.first->second = FullV; 5653 } 5654 5655 // If LSR splits critical edge and phi node has other pending 5656 // fixup operands, we need to update those pending fixups. Otherwise 5657 // formulae will not be implemented completely and some instructions 5658 // will not be eliminated. 5659 if (needUpdateFixups) { 5660 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5661 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5662 // If fixup is supposed to rewrite some operand in the phi 5663 // that was just updated, it may be already moved to 5664 // another phi node. Such fixup requires update. 5665 if (Fixup.UserInst == PN) { 5666 // Check if the operand we try to replace still exists in the 5667 // original phi. 5668 bool foundInOriginalPHI = false; 5669 for (const auto &val : PN->incoming_values()) 5670 if (val == Fixup.OperandValToReplace) { 5671 foundInOriginalPHI = true; 5672 break; 5673 } 5674 5675 // If fixup operand found in original PHI - nothing to do. 5676 if (foundInOriginalPHI) 5677 continue; 5678 5679 // Otherwise it might be moved to another PHI and requires update. 5680 // If fixup operand not found in any of the incoming blocks that 5681 // means we have already rewritten it - nothing to do. 5682 for (const auto &Block : PN->blocks()) 5683 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5684 ++I) { 5685 PHINode *NewPN = cast<PHINode>(I); 5686 for (const auto &val : NewPN->incoming_values()) 5687 if (val == Fixup.OperandValToReplace) 5688 Fixup.UserInst = NewPN; 5689 } 5690 } 5691 } 5692 } 5693 5694 formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE); 5695 } 5696 5697 /// Emit instructions for the leading candidate expression for this LSRUse (this 5698 /// is called "expanding"), and update the UserInst to reference the newly 5699 /// expanded value. 5700 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5701 const Formula &F, 5702 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5703 // First, find an insertion point that dominates UserInst. For PHI nodes, 5704 // find the nearest block which dominates all the relevant uses. 5705 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5706 RewriteForPHI(PN, LU, LF, F, DeadInsts); 5707 } else { 5708 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 5709 5710 // If this is reuse-by-noop-cast, insert the noop cast. 5711 Type *OpTy = LF.OperandValToReplace->getType(); 5712 if (FullV->getType() != OpTy) { 5713 Instruction *Cast = 5714 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5715 FullV, OpTy, "tmp", LF.UserInst); 5716 FullV = Cast; 5717 } 5718 5719 // Update the user. ICmpZero is handled specially here (for now) because 5720 // Expand may have updated one of the operands of the icmp already, and 5721 // its new value may happen to be equal to LF.OperandValToReplace, in 5722 // which case doing replaceUsesOfWith leads to replacing both operands 5723 // with the same value. TODO: Reorganize this. 5724 if (LU.Kind == LSRUse::ICmpZero) 5725 LF.UserInst->setOperand(0, FullV); 5726 else 5727 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5728 } 5729 5730 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5731 DeadInsts.emplace_back(OperandIsInstr); 5732 } 5733 5734 // Trying to hoist the IVInc to loop header if all IVInc users are in 5735 // the loop header. It will help backend to generate post index load/store 5736 // when the latch block is different from loop header block. 5737 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 5738 const LSRUse &LU, Instruction *IVIncInsertPos, 5739 Loop *L) { 5740 if (LU.Kind != LSRUse::Address) 5741 return false; 5742 5743 // For now this code do the conservative optimization, only work for 5744 // the header block. Later we can hoist the IVInc to the block post 5745 // dominate all users. 5746 BasicBlock *LHeader = L->getHeader(); 5747 if (IVIncInsertPos->getParent() == LHeader) 5748 return false; 5749 5750 if (!Fixup.OperandValToReplace || 5751 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 5752 Instruction *UI = cast<Instruction>(U); 5753 return UI->getParent() != LHeader; 5754 })) 5755 return false; 5756 5757 Instruction *I = Fixup.UserInst; 5758 Type *Ty = I->getType(); 5759 return Ty->isIntegerTy() && 5760 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 5761 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 5762 } 5763 5764 /// Rewrite all the fixup locations with new values, following the chosen 5765 /// solution. 5766 void LSRInstance::ImplementSolution( 5767 const SmallVectorImpl<const Formula *> &Solution) { 5768 // Keep track of instructions we may have made dead, so that 5769 // we can remove them after we are done working. 5770 SmallVector<WeakTrackingVH, 16> DeadInsts; 5771 5772 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5773 for (const IVChain &Chain : IVChainVec) { 5774 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5775 Rewriter.setChainedPhi(PN); 5776 } 5777 5778 // Expand the new value definitions and update the users. 5779 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5780 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5781 Instruction *InsertPos = 5782 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 5783 ? L->getHeader()->getTerminator() 5784 : IVIncInsertPos; 5785 Rewriter.setIVIncInsertPos(L, InsertPos); 5786 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 5787 Changed = true; 5788 } 5789 5790 for (const IVChain &Chain : IVChainVec) { 5791 GenerateIVChain(Chain, DeadInsts); 5792 Changed = true; 5793 } 5794 5795 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5796 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5797 ScalarEvolutionIVs.push_back(IV); 5798 5799 // Clean up after ourselves. This must be done before deleting any 5800 // instructions. 5801 Rewriter.clear(); 5802 5803 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5804 &TLI, MSSAU); 5805 5806 // In our cost analysis above, we assume that each addrec consumes exactly 5807 // one register, and arrange to have increments inserted just before the 5808 // latch to maximimize the chance this is true. However, if we reused 5809 // existing IVs, we now need to move the increments to match our 5810 // expectations. Otherwise, our cost modeling results in us having a 5811 // chosen a non-optimal result for the actual schedule. (And yes, this 5812 // scheduling decision does impact later codegen.) 5813 for (PHINode &PN : L->getHeader()->phis()) { 5814 BinaryOperator *BO = nullptr; 5815 Value *Start = nullptr, *Step = nullptr; 5816 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5817 continue; 5818 5819 switch (BO->getOpcode()) { 5820 case Instruction::Sub: 5821 if (BO->getOperand(0) != &PN) 5822 // sub is non-commutative - match handling elsewhere in LSR 5823 continue; 5824 break; 5825 case Instruction::Add: 5826 break; 5827 default: 5828 continue; 5829 }; 5830 5831 if (!isa<Constant>(Step)) 5832 // If not a constant step, might increase register pressure 5833 // (We assume constants have been canonicalized to RHS) 5834 continue; 5835 5836 if (BO->getParent() == IVIncInsertPos->getParent()) 5837 // Only bother moving across blocks. Isel can handle block local case. 5838 continue; 5839 5840 // Can we legally schedule inc at the desired point? 5841 if (!llvm::all_of(BO->uses(), 5842 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5843 continue; 5844 BO->moveBefore(IVIncInsertPos); 5845 Changed = true; 5846 } 5847 5848 5849 } 5850 5851 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5852 DominatorTree &DT, LoopInfo &LI, 5853 const TargetTransformInfo &TTI, AssumptionCache &AC, 5854 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5855 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5856 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 5857 ? PreferredAddresingMode 5858 : TTI.getPreferredAddressingMode(L, &SE)), 5859 Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false), 5860 BaselineCost(L, SE, TTI, AMK) { 5861 // If LoopSimplify form is not available, stay out of trouble. 5862 if (!L->isLoopSimplifyForm()) 5863 return; 5864 5865 // If there's no interesting work to be done, bail early. 5866 if (IU.empty()) return; 5867 5868 // If there's too much analysis to be done, bail early. We won't be able to 5869 // model the problem anyway. 5870 unsigned NumUsers = 0; 5871 for (const IVStrideUse &U : IU) { 5872 if (++NumUsers > MaxIVUsers) { 5873 (void)U; 5874 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5875 << "\n"); 5876 return; 5877 } 5878 // Bail out if we have a PHI on an EHPad that gets a value from a 5879 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5880 // no good place to stick any instructions. 5881 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5882 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5883 if (isa<FuncletPadInst>(FirstNonPHI) || 5884 isa<CatchSwitchInst>(FirstNonPHI)) 5885 for (BasicBlock *PredBB : PN->blocks()) 5886 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5887 return; 5888 } 5889 } 5890 5891 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5892 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5893 dbgs() << ":\n"); 5894 5895 // Configure SCEVExpander already now, so the correct mode is used for 5896 // isSafeToExpand() checks. 5897 #ifndef NDEBUG 5898 Rewriter.setDebugType(DEBUG_TYPE); 5899 #endif 5900 Rewriter.disableCanonicalMode(); 5901 Rewriter.enableLSRMode(); 5902 5903 // First, perform some low-level loop optimizations. 5904 OptimizeShadowIV(); 5905 OptimizeLoopTermCond(); 5906 5907 // If loop preparation eliminates all interesting IV users, bail. 5908 if (IU.empty()) return; 5909 5910 // Skip nested loops until we can model them better with formulae. 5911 if (!L->isInnermost()) { 5912 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5913 return; 5914 } 5915 5916 // Start collecting data and preparing for the solver. 5917 // If number of registers is not the major cost, we cannot benefit from the 5918 // current profitable chain optimization which is based on number of 5919 // registers. 5920 // FIXME: add profitable chain optimization for other kinds major cost, for 5921 // example number of instructions. 5922 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5923 CollectChains(); 5924 CollectInterestingTypesAndFactors(); 5925 CollectFixupsAndInitialFormulae(); 5926 CollectLoopInvariantFixupsAndFormulae(); 5927 5928 if (Uses.empty()) 5929 return; 5930 5931 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5932 print_uses(dbgs())); 5933 5934 // Now use the reuse data to generate a bunch of interesting ways 5935 // to formulate the values needed for the uses. 5936 GenerateAllReuseFormulae(); 5937 5938 FilterOutUndesirableDedicatedRegisters(); 5939 NarrowSearchSpaceUsingHeuristics(); 5940 5941 SmallVector<const Formula *, 8> Solution; 5942 Solve(Solution); 5943 5944 // Release memory that is no longer needed. 5945 Factors.clear(); 5946 Types.clear(); 5947 RegUses.clear(); 5948 5949 if (Solution.empty()) 5950 return; 5951 5952 #ifndef NDEBUG 5953 // Formulae should be legal. 5954 for (const LSRUse &LU : Uses) { 5955 for (const Formula &F : LU.Formulae) 5956 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5957 F) && "Illegal formula generated!"); 5958 }; 5959 #endif 5960 5961 // Now that we've decided what we want, make it so. 5962 ImplementSolution(Solution); 5963 } 5964 5965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5966 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5967 if (Factors.empty() && Types.empty()) return; 5968 5969 OS << "LSR has identified the following interesting factors and types: "; 5970 bool First = true; 5971 5972 for (int64_t Factor : Factors) { 5973 if (!First) OS << ", "; 5974 First = false; 5975 OS << '*' << Factor; 5976 } 5977 5978 for (Type *Ty : Types) { 5979 if (!First) OS << ", "; 5980 First = false; 5981 OS << '(' << *Ty << ')'; 5982 } 5983 OS << '\n'; 5984 } 5985 5986 void LSRInstance::print_fixups(raw_ostream &OS) const { 5987 OS << "LSR is examining the following fixup sites:\n"; 5988 for (const LSRUse &LU : Uses) 5989 for (const LSRFixup &LF : LU.Fixups) { 5990 dbgs() << " "; 5991 LF.print(OS); 5992 OS << '\n'; 5993 } 5994 } 5995 5996 void LSRInstance::print_uses(raw_ostream &OS) const { 5997 OS << "LSR is examining the following uses:\n"; 5998 for (const LSRUse &LU : Uses) { 5999 dbgs() << " "; 6000 LU.print(OS); 6001 OS << '\n'; 6002 for (const Formula &F : LU.Formulae) { 6003 OS << " "; 6004 F.print(OS); 6005 OS << '\n'; 6006 } 6007 } 6008 } 6009 6010 void LSRInstance::print(raw_ostream &OS) const { 6011 print_factors_and_types(OS); 6012 print_fixups(OS); 6013 print_uses(OS); 6014 } 6015 6016 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6017 print(errs()); errs() << '\n'; 6018 } 6019 #endif 6020 6021 namespace { 6022 6023 class LoopStrengthReduce : public LoopPass { 6024 public: 6025 static char ID; // Pass ID, replacement for typeid 6026 6027 LoopStrengthReduce(); 6028 6029 private: 6030 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6031 void getAnalysisUsage(AnalysisUsage &AU) const override; 6032 }; 6033 6034 } // end anonymous namespace 6035 6036 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6037 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6038 } 6039 6040 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6041 // We split critical edges, so we change the CFG. However, we do update 6042 // many analyses if they are around. 6043 AU.addPreservedID(LoopSimplifyID); 6044 6045 AU.addRequired<LoopInfoWrapperPass>(); 6046 AU.addPreserved<LoopInfoWrapperPass>(); 6047 AU.addRequiredID(LoopSimplifyID); 6048 AU.addRequired<DominatorTreeWrapperPass>(); 6049 AU.addPreserved<DominatorTreeWrapperPass>(); 6050 AU.addRequired<ScalarEvolutionWrapperPass>(); 6051 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6052 AU.addRequired<AssumptionCacheTracker>(); 6053 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6054 // Requiring LoopSimplify a second time here prevents IVUsers from running 6055 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6056 AU.addRequiredID(LoopSimplifyID); 6057 AU.addRequired<IVUsersWrapperPass>(); 6058 AU.addPreserved<IVUsersWrapperPass>(); 6059 AU.addRequired<TargetTransformInfoWrapperPass>(); 6060 AU.addPreserved<MemorySSAWrapperPass>(); 6061 } 6062 6063 namespace { 6064 6065 /// Enables more convenient iteration over a DWARF expression vector. 6066 static iterator_range<llvm::DIExpression::expr_op_iterator> 6067 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6068 llvm::DIExpression::expr_op_iterator Begin = 6069 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6070 llvm::DIExpression::expr_op_iterator End = 6071 llvm::DIExpression::expr_op_iterator(Expr.end()); 6072 return {Begin, End}; 6073 } 6074 6075 struct SCEVDbgValueBuilder { 6076 SCEVDbgValueBuilder() = default; 6077 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6078 6079 void clone(const SCEVDbgValueBuilder &Base) { 6080 LocationOps = Base.LocationOps; 6081 Expr = Base.Expr; 6082 } 6083 6084 void clear() { 6085 LocationOps.clear(); 6086 Expr.clear(); 6087 } 6088 6089 /// The DIExpression as we translate the SCEV. 6090 SmallVector<uint64_t, 6> Expr; 6091 /// The location ops of the DIExpression. 6092 SmallVector<Value *, 2> LocationOps; 6093 6094 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6095 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6096 6097 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6098 /// in the set of values referenced by the expression. 6099 void pushLocation(llvm::Value *V) { 6100 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6101 auto *It = llvm::find(LocationOps, V); 6102 unsigned ArgIndex = 0; 6103 if (It != LocationOps.end()) { 6104 ArgIndex = std::distance(LocationOps.begin(), It); 6105 } else { 6106 ArgIndex = LocationOps.size(); 6107 LocationOps.push_back(V); 6108 } 6109 Expr.push_back(ArgIndex); 6110 } 6111 6112 void pushValue(const SCEVUnknown *U) { 6113 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6114 pushLocation(V); 6115 } 6116 6117 bool pushConst(const SCEVConstant *C) { 6118 if (C->getAPInt().getSignificantBits() > 64) 6119 return false; 6120 Expr.push_back(llvm::dwarf::DW_OP_consts); 6121 Expr.push_back(C->getAPInt().getSExtValue()); 6122 return true; 6123 } 6124 6125 // Iterating the expression as DWARF ops is convenient when updating 6126 // DWARF_OP_LLVM_args. 6127 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6128 return ToDwarfOpIter(Expr); 6129 } 6130 6131 /// Several SCEV types are sequences of the same arithmetic operator applied 6132 /// to constants and values that may be extended or truncated. 6133 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6134 uint64_t DwarfOp) { 6135 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6136 "Expected arithmetic SCEV type"); 6137 bool Success = true; 6138 unsigned EmitOperator = 0; 6139 for (const auto &Op : CommExpr->operands()) { 6140 Success &= pushSCEV(Op); 6141 6142 if (EmitOperator >= 1) 6143 pushOperator(DwarfOp); 6144 ++EmitOperator; 6145 } 6146 return Success; 6147 } 6148 6149 // TODO: Identify and omit noop casts. 6150 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6151 const llvm::SCEV *Inner = C->getOperand(0); 6152 const llvm::Type *Type = C->getType(); 6153 uint64_t ToWidth = Type->getIntegerBitWidth(); 6154 bool Success = pushSCEV(Inner); 6155 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6156 IsSigned ? llvm::dwarf::DW_ATE_signed 6157 : llvm::dwarf::DW_ATE_unsigned}; 6158 for (const auto &Op : CastOps) 6159 pushOperator(Op); 6160 return Success; 6161 } 6162 6163 // TODO: MinMax - although these haven't been encountered in the test suite. 6164 bool pushSCEV(const llvm::SCEV *S) { 6165 bool Success = true; 6166 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6167 Success &= pushConst(StartInt); 6168 6169 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6170 if (!U->getValue()) 6171 return false; 6172 pushLocation(U->getValue()); 6173 6174 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6175 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6176 6177 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6178 Success &= pushSCEV(UDiv->getLHS()); 6179 Success &= pushSCEV(UDiv->getRHS()); 6180 pushOperator(llvm::dwarf::DW_OP_div); 6181 6182 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6183 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6184 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6185 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6186 "Unexpected cast type in SCEV."); 6187 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6188 6189 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6190 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6191 6192 } else if (isa<SCEVAddRecExpr>(S)) { 6193 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6194 // unsupported. 6195 return false; 6196 6197 } else { 6198 return false; 6199 } 6200 return Success; 6201 } 6202 6203 /// Return true if the combination of arithmetic operator and underlying 6204 /// SCEV constant value is an identity function. 6205 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6206 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6207 if (C->getAPInt().getSignificantBits() > 64) 6208 return false; 6209 int64_t I = C->getAPInt().getSExtValue(); 6210 switch (Op) { 6211 case llvm::dwarf::DW_OP_plus: 6212 case llvm::dwarf::DW_OP_minus: 6213 return I == 0; 6214 case llvm::dwarf::DW_OP_mul: 6215 case llvm::dwarf::DW_OP_div: 6216 return I == 1; 6217 } 6218 } 6219 return false; 6220 } 6221 6222 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6223 /// builder's expression stack. The stack should already contain an 6224 /// expression for the iteration count, so that it can be multiplied by 6225 /// the stride and added to the start. 6226 /// Components of the expression are omitted if they are an identity function. 6227 /// Chain (non-affine) SCEVs are not supported. 6228 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6229 assert(SAR.isAffine() && "Expected affine SCEV"); 6230 // TODO: Is this check needed? 6231 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6232 return false; 6233 6234 const SCEV *Start = SAR.getStart(); 6235 const SCEV *Stride = SAR.getStepRecurrence(SE); 6236 6237 // Skip pushing arithmetic noops. 6238 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6239 if (!pushSCEV(Stride)) 6240 return false; 6241 pushOperator(llvm::dwarf::DW_OP_mul); 6242 } 6243 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6244 if (!pushSCEV(Start)) 6245 return false; 6246 pushOperator(llvm::dwarf::DW_OP_plus); 6247 } 6248 return true; 6249 } 6250 6251 /// Create an expression that is an offset from a value (usually the IV). 6252 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6253 pushLocation(OffsetValue); 6254 DIExpression::appendOffset(Expr, Offset); 6255 LLVM_DEBUG( 6256 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6257 << std::to_string(Offset) << "\n"); 6258 } 6259 6260 /// Combine a translation of the SCEV and the IV to create an expression that 6261 /// recovers a location's value. 6262 /// returns true if an expression was created. 6263 bool createIterCountExpr(const SCEV *S, 6264 const SCEVDbgValueBuilder &IterationCount, 6265 ScalarEvolution &SE) { 6266 // SCEVs for SSA values are most frquently of the form 6267 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6268 // This is because %a is a PHI node that is not the IV. However, these 6269 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6270 // so its not expected this point will be reached. 6271 if (!isa<SCEVAddRecExpr>(S)) 6272 return false; 6273 6274 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6275 << '\n'); 6276 6277 const auto *Rec = cast<SCEVAddRecExpr>(S); 6278 if (!Rec->isAffine()) 6279 return false; 6280 6281 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6282 return false; 6283 6284 // Initialise a new builder with the iteration count expression. In 6285 // combination with the value's SCEV this enables recovery. 6286 clone(IterationCount); 6287 if (!SCEVToValueExpr(*Rec, SE)) 6288 return false; 6289 6290 return true; 6291 } 6292 6293 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6294 /// builder's expression stack. The stack should already contain an 6295 /// expression for the iteration count, so that it can be multiplied by 6296 /// the stride and added to the start. 6297 /// Components of the expression are omitted if they are an identity function. 6298 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6299 ScalarEvolution &SE) { 6300 assert(SAR.isAffine() && "Expected affine SCEV"); 6301 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6302 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6303 << SAR << '\n'); 6304 return false; 6305 } 6306 const SCEV *Start = SAR.getStart(); 6307 const SCEV *Stride = SAR.getStepRecurrence(SE); 6308 6309 // Skip pushing arithmetic noops. 6310 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6311 if (!pushSCEV(Start)) 6312 return false; 6313 pushOperator(llvm::dwarf::DW_OP_minus); 6314 } 6315 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6316 if (!pushSCEV(Stride)) 6317 return false; 6318 pushOperator(llvm::dwarf::DW_OP_div); 6319 } 6320 return true; 6321 } 6322 6323 // Append the current expression and locations to a location list and an 6324 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6325 // the locations already present in the destination list. 6326 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6327 SmallVectorImpl<Value *> &DestLocations) { 6328 assert(!DestLocations.empty() && 6329 "Expected the locations vector to contain the IV"); 6330 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6331 // modified to account for the locations already in the destination vector. 6332 // All builders contain the IV as the first location op. 6333 assert(!LocationOps.empty() && 6334 "Expected the location ops to contain the IV."); 6335 // DestIndexMap[n] contains the index in DestLocations for the nth 6336 // location in this SCEVDbgValueBuilder. 6337 SmallVector<uint64_t, 2> DestIndexMap; 6338 for (const auto &Op : LocationOps) { 6339 auto It = find(DestLocations, Op); 6340 if (It != DestLocations.end()) { 6341 // Location already exists in DestLocations, reuse existing ArgIndex. 6342 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6343 continue; 6344 } 6345 // Location is not in DestLocations, add it. 6346 DestIndexMap.push_back(DestLocations.size()); 6347 DestLocations.push_back(Op); 6348 } 6349 6350 for (const auto &Op : expr_ops()) { 6351 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6352 Op.appendToVector(DestExpr); 6353 continue; 6354 } 6355 6356 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6357 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6358 // DestIndexMap[n] contains its new index in DestLocations. 6359 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6360 DestExpr.push_back(NewIndex); 6361 } 6362 } 6363 }; 6364 6365 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6366 /// and DIExpression. 6367 struct DVIRecoveryRec { 6368 DVIRecoveryRec(DbgValueInst *DbgValue) 6369 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6370 HadLocationArgList(false) {} 6371 DVIRecoveryRec(DPValue *DPV) 6372 : DbgRef(DPV), Expr(DPV->getExpression()), HadLocationArgList(false) {} 6373 6374 PointerUnion<DbgValueInst *, DPValue *> DbgRef; 6375 DIExpression *Expr; 6376 bool HadLocationArgList; 6377 SmallVector<WeakVH, 2> LocationOps; 6378 SmallVector<const llvm::SCEV *, 2> SCEVs; 6379 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6380 6381 void clear() { 6382 for (auto &RE : RecoveryExprs) 6383 RE.reset(); 6384 RecoveryExprs.clear(); 6385 } 6386 6387 ~DVIRecoveryRec() { clear(); } 6388 }; 6389 } // namespace 6390 6391 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6392 /// This helps in determining if a DIArglist is necessary or can be omitted from 6393 /// the dbg.value. 6394 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6395 auto expr_ops = ToDwarfOpIter(Expr); 6396 unsigned Count = 0; 6397 for (auto Op : expr_ops) 6398 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6399 Count++; 6400 return Count; 6401 } 6402 6403 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6404 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6405 /// because a DIArglist is not created for the first argument of the dbg.value. 6406 template <typename T> 6407 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6408 SmallVectorImpl<uint64_t> &Ops) { 6409 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6410 "contain any DW_OP_llvm_arg operands."); 6411 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6412 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6413 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6414 } 6415 6416 /// Overwrite DVI with locations placed into a DIArglist. 6417 template <typename T> 6418 static void updateDVIWithLocations(T &DbgVal, 6419 SmallVectorImpl<Value *> &Locations, 6420 SmallVectorImpl<uint64_t> &Ops) { 6421 assert(numLLVMArgOps(Ops) != 0 && 6422 "Expected expression that references DIArglist locations using " 6423 "DW_OP_llvm_arg operands."); 6424 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6425 for (Value *V : Locations) 6426 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6427 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6428 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6429 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6430 } 6431 6432 /// Write the new expression and new location ops for the dbg.value. If possible 6433 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6434 /// can be omitted if: 6435 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6436 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6437 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6438 SmallVectorImpl<Value *> &NewLocationOps, 6439 SmallVectorImpl<uint64_t> &NewExpr) { 6440 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6441 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6442 if (NumLLVMArgs == 0) { 6443 // Location assumed to be on the stack. 6444 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6445 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6446 // There is only a single DW_OP_llvm_arg at the start of the expression, 6447 // so it can be omitted along with DIArglist. 6448 assert(NewExpr[1] == 0 && 6449 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6450 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6451 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6452 } else { 6453 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6454 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6455 } 6456 6457 // If the DIExpression was previously empty then add the stack terminator. 6458 // Non-empty expressions have only had elements inserted into them and so 6459 // the terminator should already be present e.g. stack_value or fragment. 6460 DIExpression *SalvageExpr = DbgVal->getExpression(); 6461 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6462 SalvageExpr = 6463 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6464 DbgVal->setExpression(SalvageExpr); 6465 } 6466 }; 6467 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6468 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6469 else 6470 UpdateDbgValueInstImpl(cast<DPValue *>(DVIRec.DbgRef)); 6471 } 6472 6473 /// Cached location ops may be erased during LSR, in which case a poison is 6474 /// required when restoring from the cache. The type of that location is no 6475 /// longer available, so just use int8. The poison will be replaced by one or 6476 /// more locations later when a SCEVDbgValueBuilder selects alternative 6477 /// locations to use for the salvage. 6478 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6479 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6480 } 6481 6482 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6483 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6484 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6485 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6486 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6487 assert(DVIRec.Expr && "Expected an expression"); 6488 DbgVal->setExpression(DVIRec.Expr); 6489 6490 // Even a single location-op may be inside a DIArgList and referenced with 6491 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6492 if (!DVIRec.HadLocationArgList) { 6493 assert(DVIRec.LocationOps.size() == 1 && 6494 "Unexpected number of location ops."); 6495 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6496 // this case was not present before, so force the location back to a 6497 // single uncontained Value. 6498 Value *CachedValue = 6499 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6500 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6501 } else { 6502 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6503 for (WeakVH VH : DVIRec.LocationOps) { 6504 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6505 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6506 } 6507 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6508 DbgVal->setRawLocation( 6509 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6510 } 6511 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6512 }; 6513 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6514 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6515 else 6516 RestorePreTransformStateImpl(cast<DPValue *>(DVIRec.DbgRef)); 6517 } 6518 6519 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6520 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6521 const SCEV *SCEVInductionVar, 6522 SCEVDbgValueBuilder IterCountExpr) { 6523 6524 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6525 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6526 : !cast<DPValue *>(DVIRec.DbgRef)->isKillLocation()) 6527 return false; 6528 6529 // LSR may have caused several changes to the dbg.value in the failed salvage 6530 // attempt. So restore the DIExpression, the location ops and also the 6531 // location ops format, which is always DIArglist for multiple ops, but only 6532 // sometimes for a single op. 6533 restorePreTransformState(DVIRec); 6534 6535 // LocationOpIndexMap[i] will store the post-LSR location index of 6536 // the non-optimised out location at pre-LSR index i. 6537 SmallVector<int64_t, 2> LocationOpIndexMap; 6538 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6539 SmallVector<Value *, 2> NewLocationOps; 6540 NewLocationOps.push_back(LSRInductionVar); 6541 6542 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6543 WeakVH VH = DVIRec.LocationOps[i]; 6544 // Place the locations not optimised out in the list first, avoiding 6545 // inserts later. The map is used to update the DIExpression's 6546 // DW_OP_LLVM_arg arguments as the expression is updated. 6547 if (VH && !isa<UndefValue>(VH)) { 6548 NewLocationOps.push_back(VH); 6549 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6550 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6551 << " now at index " << LocationOpIndexMap[i] << "\n"); 6552 continue; 6553 } 6554 6555 // It's possible that a value referred to in the SCEV may have been 6556 // optimised out by LSR. 6557 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6558 SE.containsUndefs(DVIRec.SCEVs[i])) { 6559 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6560 << " refers to a location that is now undef or erased. " 6561 "Salvage abandoned.\n"); 6562 return false; 6563 } 6564 6565 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6566 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6567 6568 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6569 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6570 6571 // Create an offset-based salvage expression if possible, as it requires 6572 // less DWARF ops than an iteration count-based expression. 6573 if (std::optional<APInt> Offset = 6574 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6575 if (Offset->getSignificantBits() <= 64) 6576 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6577 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6578 SE)) 6579 return false; 6580 } 6581 6582 // Merge the DbgValueBuilder generated expressions and the original 6583 // DIExpression, place the result into an new vector. 6584 SmallVector<uint64_t, 3> NewExpr; 6585 if (DVIRec.Expr->getNumElements() == 0) { 6586 assert(DVIRec.RecoveryExprs.size() == 1 && 6587 "Expected only a single recovery expression for an empty " 6588 "DIExpression."); 6589 assert(DVIRec.RecoveryExprs[0] && 6590 "Expected a SCEVDbgSalvageBuilder for location 0"); 6591 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6592 B->appendToVectors(NewExpr, NewLocationOps); 6593 } 6594 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6595 // Most Ops needn't be updated. 6596 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6597 Op.appendToVector(NewExpr); 6598 continue; 6599 } 6600 6601 uint64_t LocationArgIndex = Op.getArg(0); 6602 SCEVDbgValueBuilder *DbgBuilder = 6603 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6604 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6605 // optimise it away. So just translate the argument to the updated 6606 // location index. 6607 if (!DbgBuilder) { 6608 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6609 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6610 "Expected a positive index for the location-op position."); 6611 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6612 continue; 6613 } 6614 // The location has a recovery expression. 6615 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6616 } 6617 6618 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6619 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6620 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6621 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6622 else 6623 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6624 << *cast<DPValue *>(DVIRec.DbgRef) << "\n"); 6625 return true; 6626 } 6627 6628 /// Obtain an expression for the iteration count, then attempt to salvage the 6629 /// dbg.value intrinsics. 6630 static void DbgRewriteSalvageableDVIs( 6631 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6632 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6633 if (DVIToUpdate.empty()) 6634 return; 6635 6636 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6637 assert(SCEVInductionVar && 6638 "Anticipated a SCEV for the post-LSR induction variable"); 6639 6640 if (const SCEVAddRecExpr *IVAddRec = 6641 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6642 if (!IVAddRec->isAffine()) 6643 return; 6644 6645 // Prevent translation using excessive resources. 6646 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6647 return; 6648 6649 // The iteration count is required to recover location values. 6650 SCEVDbgValueBuilder IterCountExpr; 6651 IterCountExpr.pushLocation(LSRInductionVar); 6652 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6653 return; 6654 6655 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6656 << '\n'); 6657 6658 for (auto &DVIRec : DVIToUpdate) { 6659 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6660 IterCountExpr); 6661 } 6662 } 6663 } 6664 6665 /// Identify and cache salvageable DVI locations and expressions along with the 6666 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6667 /// cacheing and salvaging. 6668 static void DbgGatherSalvagableDVI( 6669 Loop *L, ScalarEvolution &SE, 6670 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6671 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6672 for (const auto &B : L->getBlocks()) { 6673 for (auto &I : *B) { 6674 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6675 // Ensure that if any location op is undef that the dbg.vlue is not 6676 // cached. 6677 if (DbgVal->isKillLocation()) 6678 return false; 6679 6680 // Check that the location op SCEVs are suitable for translation to 6681 // DIExpression. 6682 const auto &HasTranslatableLocationOps = 6683 [&](const auto *DbgValToTranslate) -> bool { 6684 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6685 if (!LocOp) 6686 return false; 6687 6688 if (!SE.isSCEVable(LocOp->getType())) 6689 return false; 6690 6691 const SCEV *S = SE.getSCEV(LocOp); 6692 if (SE.containsUndefs(S)) 6693 return false; 6694 } 6695 return true; 6696 }; 6697 6698 if (!HasTranslatableLocationOps(DbgVal)) 6699 return false; 6700 6701 std::unique_ptr<DVIRecoveryRec> NewRec = 6702 std::make_unique<DVIRecoveryRec>(DbgVal); 6703 // Each location Op may need a SCEVDbgValueBuilder in order to recover 6704 // it. Pre-allocating a vector will enable quick lookups of the builder 6705 // later during the salvage. 6706 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 6707 for (const auto LocOp : DbgVal->location_ops()) { 6708 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 6709 NewRec->LocationOps.push_back(LocOp); 6710 NewRec->HadLocationArgList = DbgVal->hasArgList(); 6711 } 6712 SalvageableDVISCEVs.push_back(std::move(NewRec)); 6713 return true; 6714 }; 6715 for (auto &DPV : I.getDbgValueRange()) { 6716 if (DPV.isDbgValue() || DPV.isDbgAssign()) 6717 ProcessDbgValue(&DPV); 6718 } 6719 auto DVI = dyn_cast<DbgValueInst>(&I); 6720 if (!DVI) 6721 continue; 6722 if (ProcessDbgValue(DVI)) 6723 DVIHandles.insert(DVI); 6724 } 6725 } 6726 } 6727 6728 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6729 /// any PHi from the loop header is usable, but may have less chance of 6730 /// surviving subsequent transforms. 6731 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6732 const LSRInstance &LSR) { 6733 6734 auto IsSuitableIV = [&](PHINode *P) { 6735 if (!SE.isSCEVable(P->getType())) 6736 return false; 6737 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 6738 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 6739 return false; 6740 }; 6741 6742 // For now, just pick the first IV that was generated and inserted by 6743 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 6744 // by subsequent transforms. 6745 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6746 if (!IV) 6747 continue; 6748 6749 // There should only be PHI node IVs. 6750 PHINode *P = cast<PHINode>(&*IV); 6751 6752 if (IsSuitableIV(P)) 6753 return P; 6754 } 6755 6756 for (PHINode &P : L.getHeader()->phis()) { 6757 if (IsSuitableIV(&P)) 6758 return &P; 6759 } 6760 return nullptr; 6761 } 6762 6763 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>> 6764 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT, 6765 const LoopInfo &LI) { 6766 if (!L->isInnermost()) { 6767 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n"); 6768 return std::nullopt; 6769 } 6770 // Only inspect on simple loop structure 6771 if (!L->isLoopSimplifyForm()) { 6772 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n"); 6773 return std::nullopt; 6774 } 6775 6776 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 6777 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n"); 6778 return std::nullopt; 6779 } 6780 6781 BasicBlock *LoopLatch = L->getLoopLatch(); 6782 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 6783 if (!BI || BI->isUnconditional()) 6784 return std::nullopt; 6785 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition()); 6786 if (!TermCond) { 6787 LLVM_DEBUG( 6788 dbgs() << "Cannot fold on branching condition that is not an ICmpInst"); 6789 return std::nullopt; 6790 } 6791 if (!TermCond->hasOneUse()) { 6792 LLVM_DEBUG( 6793 dbgs() 6794 << "Cannot replace terminating condition with more than one use\n"); 6795 return std::nullopt; 6796 } 6797 6798 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0)); 6799 Value *RHS = TermCond->getOperand(1); 6800 if (!LHS || !L->isLoopInvariant(RHS)) 6801 // We could pattern match the inverse form of the icmp, but that is 6802 // non-canonical, and this pass is running *very* late in the pipeline. 6803 return std::nullopt; 6804 6805 // Find the IV used by the current exit condition. 6806 PHINode *ToFold; 6807 Value *ToFoldStart, *ToFoldStep; 6808 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep)) 6809 return std::nullopt; 6810 6811 // If that IV isn't dead after we rewrite the exit condition in terms of 6812 // another IV, there's no point in doing the transform. 6813 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond)) 6814 return std::nullopt; 6815 6816 const SCEV *BECount = SE.getBackedgeTakenCount(L); 6817 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6818 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 6819 6820 PHINode *ToHelpFold = nullptr; 6821 const SCEV *TermValueS = nullptr; 6822 bool MustDropPoison = false; 6823 for (PHINode &PN : L->getHeader()->phis()) { 6824 if (ToFold == &PN) 6825 continue; 6826 6827 if (!SE.isSCEVable(PN.getType())) { 6828 LLVM_DEBUG(dbgs() << "IV of phi '" << PN 6829 << "' is not SCEV-able, not qualified for the " 6830 "terminating condition folding.\n"); 6831 continue; 6832 } 6833 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 6834 // Only speculate on affine AddRec 6835 if (!AddRec || !AddRec->isAffine()) { 6836 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN 6837 << "' is not an affine add recursion, not qualified " 6838 "for the terminating condition folding.\n"); 6839 continue; 6840 } 6841 6842 // Check that we can compute the value of AddRec on the exiting iteration 6843 // without soundness problems. evaluateAtIteration internally needs 6844 // to multiply the stride of the iteration number - which may wrap around. 6845 // The issue here is subtle because computing the result accounting for 6846 // wrap is insufficient. In order to use the result in an exit test, we 6847 // must also know that AddRec doesn't take the same value on any previous 6848 // iteration. The simplest case to consider is a candidate IV which is 6849 // narrower than the trip count (and thus original IV), but this can 6850 // also happen due to non-unit strides on the candidate IVs. 6851 if (!AddRec->hasNoSelfWrap() || 6852 !SE.isKnownNonZero(AddRec->getStepRecurrence(SE))) 6853 continue; 6854 6855 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE); 6856 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE); 6857 if (!Expander.isSafeToExpand(TermValueSLocal)) { 6858 LLVM_DEBUG( 6859 dbgs() << "Is not safe to expand terminating value for phi node" << PN 6860 << "\n"); 6861 continue; 6862 } 6863 6864 // The candidate IV may have been otherwise dead and poison from the 6865 // very first iteration. If we can't disprove that, we can't use the IV. 6866 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) { 6867 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV " 6868 << PN << "\n"); 6869 continue; 6870 } 6871 6872 // The candidate IV may become poison on the last iteration. If this 6873 // value is not branched on, this is a well defined program. We're 6874 // about to add a new use to this IV, and we have to ensure we don't 6875 // insert UB which didn't previously exist. 6876 bool MustDropPoisonLocal = false; 6877 Instruction *PostIncV = 6878 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch)); 6879 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(), 6880 &DT)) { 6881 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use" 6882 << PN << "\n"); 6883 6884 // If this is a complex recurrance with multiple instructions computing 6885 // the backedge value, we might need to strip poison flags from all of 6886 // them. 6887 if (PostIncV->getOperand(0) != &PN) 6888 continue; 6889 6890 // In order to perform the transform, we need to drop the poison generating 6891 // flags on this instruction (if any). 6892 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags(); 6893 } 6894 6895 // We pick the last legal alternate IV. We could expore choosing an optimal 6896 // alternate IV if we had a decent heuristic to do so. 6897 ToHelpFold = &PN; 6898 TermValueS = TermValueSLocal; 6899 MustDropPoison = MustDropPoisonLocal; 6900 } 6901 6902 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs() 6903 << "Cannot find other AddRec IV to help folding\n";); 6904 6905 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs() 6906 << "\nFound loop that can fold terminating condition\n" 6907 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n" 6908 << " TermCond: " << *TermCond << "\n" 6909 << " BrandInst: " << *BI << "\n" 6910 << " ToFold: " << *ToFold << "\n" 6911 << " ToHelpFold: " << *ToHelpFold << "\n"); 6912 6913 if (!ToFold || !ToHelpFold) 6914 return std::nullopt; 6915 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison); 6916 } 6917 6918 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6919 DominatorTree &DT, LoopInfo &LI, 6920 const TargetTransformInfo &TTI, 6921 AssumptionCache &AC, TargetLibraryInfo &TLI, 6922 MemorySSA *MSSA) { 6923 6924 // Debug preservation - before we start removing anything identify which DVI 6925 // meet the salvageable criteria and store their DIExpression and SCEVs. 6926 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 6927 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6928 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 6929 6930 bool Changed = false; 6931 std::unique_ptr<MemorySSAUpdater> MSSAU; 6932 if (MSSA) 6933 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6934 6935 // Run the main LSR transformation. 6936 const LSRInstance &Reducer = 6937 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6938 Changed |= Reducer.getChanged(); 6939 6940 // Remove any extra phis created by processing inner loops. 6941 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6942 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6943 SmallVector<WeakTrackingVH, 16> DeadInsts; 6944 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6945 SCEVExpander Rewriter(SE, DL, "lsr", false); 6946 #ifndef NDEBUG 6947 Rewriter.setDebugType(DEBUG_TYPE); 6948 #endif 6949 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6950 if (numFolded) { 6951 Changed = true; 6952 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6953 MSSAU.get()); 6954 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6955 } 6956 } 6957 // LSR may at times remove all uses of an induction variable from a loop. 6958 // The only remaining use is the PHI in the exit block. 6959 // When this is the case, if the exit value of the IV can be calculated using 6960 // SCEV, we can replace the exit block PHI with the final value of the IV and 6961 // skip the updates in each loop iteration. 6962 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 6963 SmallVector<WeakTrackingVH, 16> DeadInsts; 6964 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6965 SCEVExpander Rewriter(SE, DL, "lsr", true); 6966 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 6967 UnusedIndVarInLoop, DeadInsts); 6968 if (Rewrites) { 6969 Changed = true; 6970 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6971 MSSAU.get()); 6972 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6973 } 6974 } 6975 6976 const bool EnableFormTerm = [&] { 6977 switch (AllowTerminatingConditionFoldingAfterLSR) { 6978 case cl::BOU_TRUE: 6979 return true; 6980 case cl::BOU_FALSE: 6981 return false; 6982 case cl::BOU_UNSET: 6983 return TTI.shouldFoldTerminatingConditionAfterLSR(); 6984 } 6985 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 6986 }(); 6987 6988 if (EnableFormTerm) { 6989 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) { 6990 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt; 6991 6992 Changed = true; 6993 NumTermFold++; 6994 6995 BasicBlock *LoopPreheader = L->getLoopPreheader(); 6996 BasicBlock *LoopLatch = L->getLoopLatch(); 6997 6998 (void)ToFold; 6999 LLVM_DEBUG(dbgs() << "To fold phi-node:\n" 7000 << *ToFold << "\n" 7001 << "New term-cond phi-node:\n" 7002 << *ToHelpFold << "\n"); 7003 7004 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader); 7005 (void)StartValue; 7006 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch); 7007 7008 // See comment in canFoldTermCondOfLoop on why this is sufficient. 7009 if (MustDrop) 7010 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags(); 7011 7012 // SCEVExpander for both use in preheader and latch 7013 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 7014 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7015 SCEVExpanderCleaner ExpCleaner(Expander); 7016 7017 assert(Expander.isSafeToExpand(TermValueS) && 7018 "Terminating value was checked safe in canFoldTerminatingCondition"); 7019 7020 // Create new terminating value at loop preheader 7021 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(), 7022 LoopPreheader->getTerminator()); 7023 7024 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n" 7025 << *StartValue << "\n" 7026 << "Terminating value of new term-cond phi-node:\n" 7027 << *TermValue << "\n"); 7028 7029 // Create new terminating condition at loop latch 7030 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator()); 7031 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition()); 7032 IRBuilder<> LatchBuilder(LoopLatch->getTerminator()); 7033 Value *NewTermCond = 7034 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue, 7035 "lsr_fold_term_cond.replaced_term_cond"); 7036 // Swap successors to exit loop body if IV equals to new TermValue 7037 if (BI->getSuccessor(0) == L->getHeader()) 7038 BI->swapSuccessors(); 7039 7040 LLVM_DEBUG(dbgs() << "Old term-cond:\n" 7041 << *OldTermCond << "\n" 7042 << "New term-cond:\n" << *NewTermCond << "\n"); 7043 7044 BI->setCondition(NewTermCond); 7045 7046 OldTermCond->eraseFromParent(); 7047 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7048 7049 ExpCleaner.markResultUsed(); 7050 } 7051 } 7052 7053 if (SalvageableDVIRecords.empty()) 7054 return Changed; 7055 7056 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7057 // expressions composed using the derived iteration count. 7058 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7059 for (const auto &L : LI) { 7060 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7061 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7062 else { 7063 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7064 "could not be identified.\n"); 7065 } 7066 } 7067 7068 for (auto &Rec : SalvageableDVIRecords) 7069 Rec->clear(); 7070 SalvageableDVIRecords.clear(); 7071 DVIHandles.clear(); 7072 return Changed; 7073 } 7074 7075 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7076 if (skipLoop(L)) 7077 return false; 7078 7079 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7080 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7081 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7082 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7083 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7084 *L->getHeader()->getParent()); 7085 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7086 *L->getHeader()->getParent()); 7087 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7088 *L->getHeader()->getParent()); 7089 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7090 MemorySSA *MSSA = nullptr; 7091 if (MSSAAnalysis) 7092 MSSA = &MSSAAnalysis->getMSSA(); 7093 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7094 } 7095 7096 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7097 LoopStandardAnalysisResults &AR, 7098 LPMUpdater &) { 7099 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7100 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7101 return PreservedAnalyses::all(); 7102 7103 auto PA = getLoopPassPreservedAnalyses(); 7104 if (AR.MSSA) 7105 PA.preserve<MemorySSAAnalysis>(); 7106 return PA; 7107 } 7108 7109 char LoopStrengthReduce::ID = 0; 7110 7111 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7112 "Loop Strength Reduction", false, false) 7113 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7114 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7115 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7116 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7117 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7118 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7119 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7120 "Loop Strength Reduction", false, false) 7121 7122 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7123