1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/LoopUtils.h" 119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cstddef> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <optional> 129 #include <utility> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "loop-reduce" 134 135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 136 /// bail out. This threshold is far beyond the number of users that LSR can 137 /// conceivably solve, so it should not affect generated code, but catches the 138 /// worst cases before LSR burns too much compile time and stack space. 139 static const unsigned MaxIVUsers = 200; 140 141 /// Limit the size of expression that SCEV-based salvaging will attempt to 142 /// translate into a DIExpression. 143 /// Choose a maximum size such that debuginfo is not excessively increased and 144 /// the salvaging is not too expensive for the compiler. 145 static const unsigned MaxSCEVSalvageExpressionSize = 64; 146 147 // Cleanup congruent phis after LSR phi expansion. 148 static cl::opt<bool> EnablePhiElim( 149 "enable-lsr-phielim", cl::Hidden, cl::init(true), 150 cl::desc("Enable LSR phi elimination")); 151 152 // The flag adds instruction count to solutions cost comparison. 153 static cl::opt<bool> InsnsCost( 154 "lsr-insns-cost", cl::Hidden, cl::init(true), 155 cl::desc("Add instruction count to a LSR cost model")); 156 157 // Flag to choose how to narrow complex lsr solution 158 static cl::opt<bool> LSRExpNarrow( 159 "lsr-exp-narrow", cl::Hidden, cl::init(false), 160 cl::desc("Narrow LSR complex solution using" 161 " expectation of registers number")); 162 163 // Flag to narrow search space by filtering non-optimal formulae with 164 // the same ScaledReg and Scale. 165 static cl::opt<bool> FilterSameScaledReg( 166 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 167 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 168 " with the same ScaledReg and Scale")); 169 170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 171 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 172 cl::desc("A flag that overrides the target's preferred addressing mode."), 173 cl::values(clEnumValN(TTI::AMK_None, 174 "none", 175 "Don't prefer any addressing mode"), 176 clEnumValN(TTI::AMK_PreIndexed, 177 "preindexed", 178 "Prefer pre-indexed addressing mode"), 179 clEnumValN(TTI::AMK_PostIndexed, 180 "postindexed", 181 "Prefer post-indexed addressing mode"))); 182 183 static cl::opt<unsigned> ComplexityLimit( 184 "lsr-complexity-limit", cl::Hidden, 185 cl::init(std::numeric_limits<uint16_t>::max()), 186 cl::desc("LSR search space complexity limit")); 187 188 static cl::opt<unsigned> SetupCostDepthLimit( 189 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 190 cl::desc("The limit on recursion depth for LSRs setup cost")); 191 192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR( 193 "lsr-term-fold", cl::Hidden, 194 cl::desc("Attempt to replace primary IV with other IV.")); 195 196 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( 197 "lsr-drop-solution", cl::Hidden, 198 cl::desc("Attempt to drop solution if it is less profitable")); 199 200 static cl::opt<bool> EnableVScaleImmediates( 201 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true), 202 cl::desc("Enable analysis of vscale-relative immediates in LSR")); 203 204 static cl::opt<bool> DropScaledForVScale( 205 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true), 206 cl::desc("Avoid using scaled registers with vscale-relative addressing")); 207 208 STATISTIC(NumTermFold, 209 "Number of terminating condition fold recognized and performed"); 210 211 #ifndef NDEBUG 212 // Stress test IV chain generation. 213 static cl::opt<bool> StressIVChain( 214 "stress-ivchain", cl::Hidden, cl::init(false), 215 cl::desc("Stress test LSR IV chains")); 216 #else 217 static bool StressIVChain = false; 218 #endif 219 220 namespace { 221 222 struct MemAccessTy { 223 /// Used in situations where the accessed memory type is unknown. 224 static const unsigned UnknownAddressSpace = 225 std::numeric_limits<unsigned>::max(); 226 227 Type *MemTy = nullptr; 228 unsigned AddrSpace = UnknownAddressSpace; 229 230 MemAccessTy() = default; 231 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 232 233 bool operator==(MemAccessTy Other) const { 234 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 235 } 236 237 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 238 239 static MemAccessTy getUnknown(LLVMContext &Ctx, 240 unsigned AS = UnknownAddressSpace) { 241 return MemAccessTy(Type::getVoidTy(Ctx), AS); 242 } 243 244 Type *getType() { return MemTy; } 245 }; 246 247 /// This class holds data which is used to order reuse candidates. 248 class RegSortData { 249 public: 250 /// This represents the set of LSRUse indices which reference 251 /// a particular register. 252 SmallBitVector UsedByIndices; 253 254 void print(raw_ostream &OS) const; 255 void dump() const; 256 }; 257 258 // An offset from an address that is either scalable or fixed. Used for 259 // per-target optimizations of addressing modes. 260 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { 261 constexpr Immediate(ScalarTy MinVal, bool Scalable) 262 : FixedOrScalableQuantity(MinVal, Scalable) {} 263 264 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) 265 : FixedOrScalableQuantity(V) {} 266 267 public: 268 constexpr Immediate() = delete; 269 270 static constexpr Immediate getFixed(ScalarTy MinVal) { 271 return {MinVal, false}; 272 } 273 static constexpr Immediate getScalable(ScalarTy MinVal) { 274 return {MinVal, true}; 275 } 276 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { 277 return {MinVal, Scalable}; 278 } 279 static constexpr Immediate getZero() { return {0, false}; } 280 static constexpr Immediate getFixedMin() { 281 return {std::numeric_limits<int64_t>::min(), false}; 282 } 283 static constexpr Immediate getFixedMax() { 284 return {std::numeric_limits<int64_t>::max(), false}; 285 } 286 static constexpr Immediate getScalableMin() { 287 return {std::numeric_limits<int64_t>::min(), true}; 288 } 289 static constexpr Immediate getScalableMax() { 290 return {std::numeric_limits<int64_t>::max(), true}; 291 } 292 293 constexpr bool isLessThanZero() const { return Quantity < 0; } 294 295 constexpr bool isGreaterThanZero() const { return Quantity > 0; } 296 297 constexpr bool isCompatibleImmediate(const Immediate &Imm) const { 298 return isZero() || Imm.isZero() || Imm.Scalable == Scalable; 299 } 300 301 constexpr bool isMin() const { 302 return Quantity == std::numeric_limits<ScalarTy>::min(); 303 } 304 305 constexpr bool isMax() const { 306 return Quantity == std::numeric_limits<ScalarTy>::max(); 307 } 308 309 // Arithmetic 'operators' that cast to unsigned types first. 310 constexpr Immediate addUnsigned(const Immediate &RHS) const { 311 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 312 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); 313 return {Value, Scalable || RHS.isScalable()}; 314 } 315 316 constexpr Immediate subUnsigned(const Immediate &RHS) const { 317 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 318 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); 319 return {Value, Scalable || RHS.isScalable()}; 320 } 321 322 // Scale the quantity by a constant without caring about runtime scalability. 323 constexpr Immediate mulUnsigned(const ScalarTy RHS) const { 324 ScalarTy Value = (uint64_t)Quantity * RHS; 325 return {Value, Scalable}; 326 } 327 328 // Helpers for generating SCEVs with vscale terms where needed. 329 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { 330 const SCEV *S = SE.getConstant(Ty, Quantity); 331 if (Scalable) 332 S = SE.getMulExpr(S, SE.getVScale(S->getType())); 333 return S; 334 } 335 336 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { 337 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity); 338 if (Scalable) 339 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType())); 340 return NegS; 341 } 342 343 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { 344 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity)); 345 if (Scalable) 346 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType())); 347 return SU; 348 } 349 }; 350 351 // This is needed for the Compare type of std::map when Immediate is used 352 // as a key. We don't need it to be fully correct against any value of vscale, 353 // just to make sure that vscale-related terms in the map are considered against 354 // each other rather than being mixed up and potentially missing opportunities. 355 struct KeyOrderTargetImmediate { 356 bool operator()(const Immediate &LHS, const Immediate &RHS) const { 357 if (LHS.isScalable() && !RHS.isScalable()) 358 return false; 359 if (!LHS.isScalable() && RHS.isScalable()) 360 return true; 361 return LHS.getKnownMinValue() < RHS.getKnownMinValue(); 362 } 363 }; 364 365 // This would be nicer if we could be generic instead of directly using size_t, 366 // but there doesn't seem to be a type trait for is_orderable or 367 // is_lessthan_comparable or similar. 368 struct KeyOrderSizeTAndImmediate { 369 bool operator()(const std::pair<size_t, Immediate> &LHS, 370 const std::pair<size_t, Immediate> &RHS) const { 371 size_t LSize = LHS.first; 372 size_t RSize = RHS.first; 373 if (LSize != RSize) 374 return LSize < RSize; 375 return KeyOrderTargetImmediate()(LHS.second, RHS.second); 376 } 377 }; 378 } // end anonymous namespace 379 380 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 381 void RegSortData::print(raw_ostream &OS) const { 382 OS << "[NumUses=" << UsedByIndices.count() << ']'; 383 } 384 385 LLVM_DUMP_METHOD void RegSortData::dump() const { 386 print(errs()); errs() << '\n'; 387 } 388 #endif 389 390 namespace { 391 392 /// Map register candidates to information about how they are used. 393 class RegUseTracker { 394 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 395 396 RegUsesTy RegUsesMap; 397 SmallVector<const SCEV *, 16> RegSequence; 398 399 public: 400 void countRegister(const SCEV *Reg, size_t LUIdx); 401 void dropRegister(const SCEV *Reg, size_t LUIdx); 402 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 403 404 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 405 406 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 407 408 void clear(); 409 410 using iterator = SmallVectorImpl<const SCEV *>::iterator; 411 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 412 413 iterator begin() { return RegSequence.begin(); } 414 iterator end() { return RegSequence.end(); } 415 const_iterator begin() const { return RegSequence.begin(); } 416 const_iterator end() const { return RegSequence.end(); } 417 }; 418 419 } // end anonymous namespace 420 421 void 422 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 423 std::pair<RegUsesTy::iterator, bool> Pair = 424 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 425 RegSortData &RSD = Pair.first->second; 426 if (Pair.second) 427 RegSequence.push_back(Reg); 428 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 429 RSD.UsedByIndices.set(LUIdx); 430 } 431 432 void 433 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 434 RegUsesTy::iterator It = RegUsesMap.find(Reg); 435 assert(It != RegUsesMap.end()); 436 RegSortData &RSD = It->second; 437 assert(RSD.UsedByIndices.size() > LUIdx); 438 RSD.UsedByIndices.reset(LUIdx); 439 } 440 441 void 442 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 443 assert(LUIdx <= LastLUIdx); 444 445 // Update RegUses. The data structure is not optimized for this purpose; 446 // we must iterate through it and update each of the bit vectors. 447 for (auto &Pair : RegUsesMap) { 448 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 449 if (LUIdx < UsedByIndices.size()) 450 UsedByIndices[LUIdx] = 451 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 452 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 453 } 454 } 455 456 bool 457 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 458 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 459 if (I == RegUsesMap.end()) 460 return false; 461 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 462 int i = UsedByIndices.find_first(); 463 if (i == -1) return false; 464 if ((size_t)i != LUIdx) return true; 465 return UsedByIndices.find_next(i) != -1; 466 } 467 468 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 469 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 470 assert(I != RegUsesMap.end() && "Unknown register!"); 471 return I->second.UsedByIndices; 472 } 473 474 void RegUseTracker::clear() { 475 RegUsesMap.clear(); 476 RegSequence.clear(); 477 } 478 479 namespace { 480 481 /// This class holds information that describes a formula for computing 482 /// satisfying a use. It may include broken-out immediates and scaled registers. 483 struct Formula { 484 /// Global base address used for complex addressing. 485 GlobalValue *BaseGV = nullptr; 486 487 /// Base offset for complex addressing. 488 Immediate BaseOffset = Immediate::getZero(); 489 490 /// Whether any complex addressing has a base register. 491 bool HasBaseReg = false; 492 493 /// The scale of any complex addressing. 494 int64_t Scale = 0; 495 496 /// The list of "base" registers for this use. When this is non-empty. The 497 /// canonical representation of a formula is 498 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 499 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 500 /// 3. The reg containing recurrent expr related with currect loop in the 501 /// formula should be put in the ScaledReg. 502 /// #1 enforces that the scaled register is always used when at least two 503 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 504 /// #2 enforces that 1 * reg is reg. 505 /// #3 ensures invariant regs with respect to current loop can be combined 506 /// together in LSR codegen. 507 /// This invariant can be temporarily broken while building a formula. 508 /// However, every formula inserted into the LSRInstance must be in canonical 509 /// form. 510 SmallVector<const SCEV *, 4> BaseRegs; 511 512 /// The 'scaled' register for this use. This should be non-null when Scale is 513 /// not zero. 514 const SCEV *ScaledReg = nullptr; 515 516 /// An additional constant offset which added near the use. This requires a 517 /// temporary register, but the offset itself can live in an add immediate 518 /// field rather than a register. 519 Immediate UnfoldedOffset = Immediate::getZero(); 520 521 Formula() = default; 522 523 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 524 525 bool isCanonical(const Loop &L) const; 526 527 void canonicalize(const Loop &L); 528 529 bool unscale(); 530 531 bool hasZeroEnd() const; 532 533 size_t getNumRegs() const; 534 Type *getType() const; 535 536 void deleteBaseReg(const SCEV *&S); 537 538 bool referencesReg(const SCEV *S) const; 539 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 540 const RegUseTracker &RegUses) const; 541 542 void print(raw_ostream &OS) const; 543 void dump() const; 544 }; 545 546 } // end anonymous namespace 547 548 /// Recursion helper for initialMatch. 549 static void DoInitialMatch(const SCEV *S, Loop *L, 550 SmallVectorImpl<const SCEV *> &Good, 551 SmallVectorImpl<const SCEV *> &Bad, 552 ScalarEvolution &SE) { 553 // Collect expressions which properly dominate the loop header. 554 if (SE.properlyDominates(S, L->getHeader())) { 555 Good.push_back(S); 556 return; 557 } 558 559 // Look at add operands. 560 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 561 for (const SCEV *S : Add->operands()) 562 DoInitialMatch(S, L, Good, Bad, SE); 563 return; 564 } 565 566 // Look at addrec operands. 567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 568 if (!AR->getStart()->isZero() && AR->isAffine()) { 569 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 570 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 571 AR->getStepRecurrence(SE), 572 // FIXME: AR->getNoWrapFlags() 573 AR->getLoop(), SCEV::FlagAnyWrap), 574 L, Good, Bad, SE); 575 return; 576 } 577 578 // Handle a multiplication by -1 (negation) if it didn't fold. 579 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 580 if (Mul->getOperand(0)->isAllOnesValue()) { 581 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 582 const SCEV *NewMul = SE.getMulExpr(Ops); 583 584 SmallVector<const SCEV *, 4> MyGood; 585 SmallVector<const SCEV *, 4> MyBad; 586 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 587 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 588 SE.getEffectiveSCEVType(NewMul->getType()))); 589 for (const SCEV *S : MyGood) 590 Good.push_back(SE.getMulExpr(NegOne, S)); 591 for (const SCEV *S : MyBad) 592 Bad.push_back(SE.getMulExpr(NegOne, S)); 593 return; 594 } 595 596 // Ok, we can't do anything interesting. Just stuff the whole thing into a 597 // register and hope for the best. 598 Bad.push_back(S); 599 } 600 601 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 602 /// all loop-invariant and loop-computable values in a single base register. 603 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 604 SmallVector<const SCEV *, 4> Good; 605 SmallVector<const SCEV *, 4> Bad; 606 DoInitialMatch(S, L, Good, Bad, SE); 607 if (!Good.empty()) { 608 const SCEV *Sum = SE.getAddExpr(Good); 609 if (!Sum->isZero()) 610 BaseRegs.push_back(Sum); 611 HasBaseReg = true; 612 } 613 if (!Bad.empty()) { 614 const SCEV *Sum = SE.getAddExpr(Bad); 615 if (!Sum->isZero()) 616 BaseRegs.push_back(Sum); 617 HasBaseReg = true; 618 } 619 canonicalize(*L); 620 } 621 622 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 623 return SCEVExprContains(S, [&L](const SCEV *S) { 624 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 625 }); 626 } 627 628 /// Check whether or not this formula satisfies the canonical 629 /// representation. 630 /// \see Formula::BaseRegs. 631 bool Formula::isCanonical(const Loop &L) const { 632 if (!ScaledReg) 633 return BaseRegs.size() <= 1; 634 635 if (Scale != 1) 636 return true; 637 638 if (Scale == 1 && BaseRegs.empty()) 639 return false; 640 641 if (containsAddRecDependentOnLoop(ScaledReg, L)) 642 return true; 643 644 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 645 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 646 // loop, we want to swap the reg in BaseRegs with ScaledReg. 647 return none_of(BaseRegs, [&L](const SCEV *S) { 648 return containsAddRecDependentOnLoop(S, L); 649 }); 650 } 651 652 /// Helper method to morph a formula into its canonical representation. 653 /// \see Formula::BaseRegs. 654 /// Every formula having more than one base register, must use the ScaledReg 655 /// field. Otherwise, we would have to do special cases everywhere in LSR 656 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 657 /// On the other hand, 1*reg should be canonicalized into reg. 658 void Formula::canonicalize(const Loop &L) { 659 if (isCanonical(L)) 660 return; 661 662 if (BaseRegs.empty()) { 663 // No base reg? Use scale reg with scale = 1 as such. 664 assert(ScaledReg && "Expected 1*reg => reg"); 665 assert(Scale == 1 && "Expected 1*reg => reg"); 666 BaseRegs.push_back(ScaledReg); 667 Scale = 0; 668 ScaledReg = nullptr; 669 return; 670 } 671 672 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 673 if (!ScaledReg) { 674 ScaledReg = BaseRegs.pop_back_val(); 675 Scale = 1; 676 } 677 678 // If ScaledReg is an invariant with respect to L, find the reg from 679 // BaseRegs containing the recurrent expr related with Loop L. Swap the 680 // reg with ScaledReg. 681 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 682 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 683 return containsAddRecDependentOnLoop(S, L); 684 }); 685 if (I != BaseRegs.end()) 686 std::swap(ScaledReg, *I); 687 } 688 assert(isCanonical(L) && "Failed to canonicalize?"); 689 } 690 691 /// Get rid of the scale in the formula. 692 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 693 /// \return true if it was possible to get rid of the scale, false otherwise. 694 /// \note After this operation the formula may not be in the canonical form. 695 bool Formula::unscale() { 696 if (Scale != 1) 697 return false; 698 Scale = 0; 699 BaseRegs.push_back(ScaledReg); 700 ScaledReg = nullptr; 701 return true; 702 } 703 704 bool Formula::hasZeroEnd() const { 705 if (UnfoldedOffset || BaseOffset) 706 return false; 707 if (BaseRegs.size() != 1 || ScaledReg) 708 return false; 709 return true; 710 } 711 712 /// Return the total number of register operands used by this formula. This does 713 /// not include register uses implied by non-constant addrec strides. 714 size_t Formula::getNumRegs() const { 715 return !!ScaledReg + BaseRegs.size(); 716 } 717 718 /// Return the type of this formula, if it has one, or null otherwise. This type 719 /// is meaningless except for the bit size. 720 Type *Formula::getType() const { 721 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 722 ScaledReg ? ScaledReg->getType() : 723 BaseGV ? BaseGV->getType() : 724 nullptr; 725 } 726 727 /// Delete the given base reg from the BaseRegs list. 728 void Formula::deleteBaseReg(const SCEV *&S) { 729 if (&S != &BaseRegs.back()) 730 std::swap(S, BaseRegs.back()); 731 BaseRegs.pop_back(); 732 } 733 734 /// Test if this formula references the given register. 735 bool Formula::referencesReg(const SCEV *S) const { 736 return S == ScaledReg || is_contained(BaseRegs, S); 737 } 738 739 /// Test whether this formula uses registers which are used by uses other than 740 /// the use with the given index. 741 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 742 const RegUseTracker &RegUses) const { 743 if (ScaledReg) 744 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 745 return true; 746 for (const SCEV *BaseReg : BaseRegs) 747 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 748 return true; 749 return false; 750 } 751 752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 753 void Formula::print(raw_ostream &OS) const { 754 bool First = true; 755 if (BaseGV) { 756 if (!First) OS << " + "; else First = false; 757 BaseGV->printAsOperand(OS, /*PrintType=*/false); 758 } 759 if (BaseOffset.isNonZero()) { 760 if (!First) OS << " + "; else First = false; 761 OS << BaseOffset; 762 } 763 for (const SCEV *BaseReg : BaseRegs) { 764 if (!First) OS << " + "; else First = false; 765 OS << "reg(" << *BaseReg << ')'; 766 } 767 if (HasBaseReg && BaseRegs.empty()) { 768 if (!First) OS << " + "; else First = false; 769 OS << "**error: HasBaseReg**"; 770 } else if (!HasBaseReg && !BaseRegs.empty()) { 771 if (!First) OS << " + "; else First = false; 772 OS << "**error: !HasBaseReg**"; 773 } 774 if (Scale != 0) { 775 if (!First) OS << " + "; else First = false; 776 OS << Scale << "*reg("; 777 if (ScaledReg) 778 OS << *ScaledReg; 779 else 780 OS << "<unknown>"; 781 OS << ')'; 782 } 783 if (UnfoldedOffset.isNonZero()) { 784 if (!First) OS << " + "; 785 OS << "imm(" << UnfoldedOffset << ')'; 786 } 787 } 788 789 LLVM_DUMP_METHOD void Formula::dump() const { 790 print(errs()); errs() << '\n'; 791 } 792 #endif 793 794 /// Return true if the given addrec can be sign-extended without changing its 795 /// value. 796 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 797 Type *WideTy = 798 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 799 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 800 } 801 802 /// Return true if the given add can be sign-extended without changing its 803 /// value. 804 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 805 Type *WideTy = 806 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 807 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 808 } 809 810 /// Return true if the given mul can be sign-extended without changing its 811 /// value. 812 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 813 Type *WideTy = 814 IntegerType::get(SE.getContext(), 815 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 816 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 817 } 818 819 /// Return an expression for LHS /s RHS, if it can be determined and if the 820 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 821 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 822 /// the multiplication may overflow, which is useful when the result will be 823 /// used in a context where the most significant bits are ignored. 824 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 825 ScalarEvolution &SE, 826 bool IgnoreSignificantBits = false) { 827 // Handle the trivial case, which works for any SCEV type. 828 if (LHS == RHS) 829 return SE.getConstant(LHS->getType(), 1); 830 831 // Handle a few RHS special cases. 832 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 833 if (RC) { 834 const APInt &RA = RC->getAPInt(); 835 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 836 // some folding. 837 if (RA.isAllOnes()) { 838 if (LHS->getType()->isPointerTy()) 839 return nullptr; 840 return SE.getMulExpr(LHS, RC); 841 } 842 // Handle x /s 1 as x. 843 if (RA == 1) 844 return LHS; 845 } 846 847 // Check for a division of a constant by a constant. 848 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 849 if (!RC) 850 return nullptr; 851 const APInt &LA = C->getAPInt(); 852 const APInt &RA = RC->getAPInt(); 853 if (LA.srem(RA) != 0) 854 return nullptr; 855 return SE.getConstant(LA.sdiv(RA)); 856 } 857 858 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 859 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 860 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 861 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 862 IgnoreSignificantBits); 863 if (!Step) return nullptr; 864 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 865 IgnoreSignificantBits); 866 if (!Start) return nullptr; 867 // FlagNW is independent of the start value, step direction, and is 868 // preserved with smaller magnitude steps. 869 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 870 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 871 } 872 return nullptr; 873 } 874 875 // Distribute the sdiv over add operands, if the add doesn't overflow. 876 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 877 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 878 SmallVector<const SCEV *, 8> Ops; 879 for (const SCEV *S : Add->operands()) { 880 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 881 if (!Op) return nullptr; 882 Ops.push_back(Op); 883 } 884 return SE.getAddExpr(Ops); 885 } 886 return nullptr; 887 } 888 889 // Check for a multiply operand that we can pull RHS out of. 890 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 891 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 892 // Handle special case C1*X*Y /s C2*X*Y. 893 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 894 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 895 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 896 const SCEVConstant *RC = 897 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 898 if (LC && RC) { 899 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 900 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 901 if (LOps == ROps) 902 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 903 } 904 } 905 } 906 907 SmallVector<const SCEV *, 4> Ops; 908 bool Found = false; 909 for (const SCEV *S : Mul->operands()) { 910 if (!Found) 911 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 912 IgnoreSignificantBits)) { 913 S = Q; 914 Found = true; 915 } 916 Ops.push_back(S); 917 } 918 return Found ? SE.getMulExpr(Ops) : nullptr; 919 } 920 return nullptr; 921 } 922 923 // Otherwise we don't know. 924 return nullptr; 925 } 926 927 /// If S involves the addition of a constant integer value, return that integer 928 /// value, and mutate S to point to a new SCEV with that value excluded. 929 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 931 if (C->getAPInt().getSignificantBits() <= 64) { 932 S = SE.getConstant(C->getType(), 0); 933 return Immediate::getFixed(C->getValue()->getSExtValue()); 934 } 935 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 936 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 937 Immediate Result = ExtractImmediate(NewOps.front(), SE); 938 if (Result.isNonZero()) 939 S = SE.getAddExpr(NewOps); 940 return Result; 941 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 942 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 943 Immediate Result = ExtractImmediate(NewOps.front(), SE); 944 if (Result.isNonZero()) 945 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 946 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 947 SCEV::FlagAnyWrap); 948 return Result; 949 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 950 if (EnableVScaleImmediates && M->getNumOperands() == 2) { 951 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 952 if (isa<SCEVVScale>(M->getOperand(1))) { 953 S = SE.getConstant(M->getType(), 0); 954 return Immediate::getScalable(C->getValue()->getSExtValue()); 955 } 956 } 957 } 958 return Immediate::getZero(); 959 } 960 961 /// If S involves the addition of a GlobalValue address, return that symbol, and 962 /// mutate S to point to a new SCEV with that value excluded. 963 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 964 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 965 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 966 S = SE.getConstant(GV->getType(), 0); 967 return GV; 968 } 969 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 970 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 971 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 972 if (Result) 973 S = SE.getAddExpr(NewOps); 974 return Result; 975 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 976 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 977 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 978 if (Result) 979 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 980 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 981 SCEV::FlagAnyWrap); 982 return Result; 983 } 984 return nullptr; 985 } 986 987 /// Returns true if the specified instruction is using the specified value as an 988 /// address. 989 static bool isAddressUse(const TargetTransformInfo &TTI, 990 Instruction *Inst, Value *OperandVal) { 991 bool isAddress = isa<LoadInst>(Inst); 992 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 993 if (SI->getPointerOperand() == OperandVal) 994 isAddress = true; 995 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 996 // Addressing modes can also be folded into prefetches and a variety 997 // of intrinsics. 998 switch (II->getIntrinsicID()) { 999 case Intrinsic::memset: 1000 case Intrinsic::prefetch: 1001 case Intrinsic::masked_load: 1002 if (II->getArgOperand(0) == OperandVal) 1003 isAddress = true; 1004 break; 1005 case Intrinsic::masked_store: 1006 if (II->getArgOperand(1) == OperandVal) 1007 isAddress = true; 1008 break; 1009 case Intrinsic::memmove: 1010 case Intrinsic::memcpy: 1011 if (II->getArgOperand(0) == OperandVal || 1012 II->getArgOperand(1) == OperandVal) 1013 isAddress = true; 1014 break; 1015 default: { 1016 MemIntrinsicInfo IntrInfo; 1017 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 1018 if (IntrInfo.PtrVal == OperandVal) 1019 isAddress = true; 1020 } 1021 } 1022 } 1023 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1024 if (RMW->getPointerOperand() == OperandVal) 1025 isAddress = true; 1026 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1027 if (CmpX->getPointerOperand() == OperandVal) 1028 isAddress = true; 1029 } 1030 return isAddress; 1031 } 1032 1033 /// Return the type of the memory being accessed. 1034 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 1035 Instruction *Inst, Value *OperandVal) { 1036 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 1037 1038 // First get the type of memory being accessed. 1039 if (Type *Ty = Inst->getAccessType()) 1040 AccessTy.MemTy = Ty; 1041 1042 // Then get the pointer address space. 1043 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1044 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 1045 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 1046 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 1047 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1048 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 1049 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1050 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 1051 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1052 switch (II->getIntrinsicID()) { 1053 case Intrinsic::prefetch: 1054 case Intrinsic::memset: 1055 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1056 AccessTy.MemTy = OperandVal->getType(); 1057 break; 1058 case Intrinsic::memmove: 1059 case Intrinsic::memcpy: 1060 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 1061 AccessTy.MemTy = OperandVal->getType(); 1062 break; 1063 case Intrinsic::masked_load: 1064 AccessTy.AddrSpace = 1065 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1066 break; 1067 case Intrinsic::masked_store: 1068 AccessTy.AddrSpace = 1069 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 1070 break; 1071 default: { 1072 MemIntrinsicInfo IntrInfo; 1073 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 1074 AccessTy.AddrSpace 1075 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 1076 } 1077 1078 break; 1079 } 1080 } 1081 } 1082 1083 return AccessTy; 1084 } 1085 1086 /// Return true if this AddRec is already a phi in its loop. 1087 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 1088 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 1089 if (SE.isSCEVable(PN.getType()) && 1090 (SE.getEffectiveSCEVType(PN.getType()) == 1091 SE.getEffectiveSCEVType(AR->getType())) && 1092 SE.getSCEV(&PN) == AR) 1093 return true; 1094 } 1095 return false; 1096 } 1097 1098 /// Check if expanding this expression is likely to incur significant cost. This 1099 /// is tricky because SCEV doesn't track which expressions are actually computed 1100 /// by the current IR. 1101 /// 1102 /// We currently allow expansion of IV increments that involve adds, 1103 /// multiplication by constants, and AddRecs from existing phis. 1104 /// 1105 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 1106 /// obvious multiple of the UDivExpr. 1107 static bool isHighCostExpansion(const SCEV *S, 1108 SmallPtrSetImpl<const SCEV*> &Processed, 1109 ScalarEvolution &SE) { 1110 // Zero/One operand expressions 1111 switch (S->getSCEVType()) { 1112 case scUnknown: 1113 case scConstant: 1114 case scVScale: 1115 return false; 1116 case scTruncate: 1117 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 1118 Processed, SE); 1119 case scZeroExtend: 1120 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1121 Processed, SE); 1122 case scSignExtend: 1123 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 1124 Processed, SE); 1125 default: 1126 break; 1127 } 1128 1129 if (!Processed.insert(S).second) 1130 return false; 1131 1132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1133 for (const SCEV *S : Add->operands()) { 1134 if (isHighCostExpansion(S, Processed, SE)) 1135 return true; 1136 } 1137 return false; 1138 } 1139 1140 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1141 if (Mul->getNumOperands() == 2) { 1142 // Multiplication by a constant is ok 1143 if (isa<SCEVConstant>(Mul->getOperand(0))) 1144 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1145 1146 // If we have the value of one operand, check if an existing 1147 // multiplication already generates this expression. 1148 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1149 Value *UVal = U->getValue(); 1150 for (User *UR : UVal->users()) { 1151 // If U is a constant, it may be used by a ConstantExpr. 1152 Instruction *UI = dyn_cast<Instruction>(UR); 1153 if (UI && UI->getOpcode() == Instruction::Mul && 1154 SE.isSCEVable(UI->getType())) { 1155 return SE.getSCEV(UI) == Mul; 1156 } 1157 } 1158 } 1159 } 1160 } 1161 1162 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1163 if (isExistingPhi(AR, SE)) 1164 return false; 1165 } 1166 1167 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1168 return true; 1169 } 1170 1171 namespace { 1172 1173 class LSRUse; 1174 1175 } // end anonymous namespace 1176 1177 /// Check if the addressing mode defined by \p F is completely 1178 /// folded in \p LU at isel time. 1179 /// This includes address-mode folding and special icmp tricks. 1180 /// This function returns true if \p LU can accommodate what \p F 1181 /// defines and up to 1 base + 1 scaled + offset. 1182 /// In other words, if \p F has several base registers, this function may 1183 /// still return true. Therefore, users still need to account for 1184 /// additional base registers and/or unfolded offsets to derive an 1185 /// accurate cost model. 1186 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1187 const LSRUse &LU, const Formula &F); 1188 1189 // Get the cost of the scaling factor used in F for LU. 1190 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1191 const LSRUse &LU, const Formula &F, 1192 const Loop &L); 1193 1194 namespace { 1195 1196 /// This class is used to measure and compare candidate formulae. 1197 class Cost { 1198 const Loop *L = nullptr; 1199 ScalarEvolution *SE = nullptr; 1200 const TargetTransformInfo *TTI = nullptr; 1201 TargetTransformInfo::LSRCost C; 1202 TTI::AddressingModeKind AMK = TTI::AMK_None; 1203 1204 public: 1205 Cost() = delete; 1206 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1207 TTI::AddressingModeKind AMK) : 1208 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1209 C.Insns = 0; 1210 C.NumRegs = 0; 1211 C.AddRecCost = 0; 1212 C.NumIVMuls = 0; 1213 C.NumBaseAdds = 0; 1214 C.ImmCost = 0; 1215 C.SetupCost = 0; 1216 C.ScaleCost = 0; 1217 } 1218 1219 bool isLess(const Cost &Other) const; 1220 1221 void Lose(); 1222 1223 #ifndef NDEBUG 1224 // Once any of the metrics loses, they must all remain losers. 1225 bool isValid() { 1226 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1227 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1228 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1229 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1230 } 1231 #endif 1232 1233 bool isLoser() { 1234 assert(isValid() && "invalid cost"); 1235 return C.NumRegs == ~0u; 1236 } 1237 1238 void RateFormula(const Formula &F, 1239 SmallPtrSetImpl<const SCEV *> &Regs, 1240 const DenseSet<const SCEV *> &VisitedRegs, 1241 const LSRUse &LU, 1242 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1243 1244 void print(raw_ostream &OS) const; 1245 void dump() const; 1246 1247 private: 1248 void RateRegister(const Formula &F, const SCEV *Reg, 1249 SmallPtrSetImpl<const SCEV *> &Regs); 1250 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1251 SmallPtrSetImpl<const SCEV *> &Regs, 1252 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1253 }; 1254 1255 /// An operand value in an instruction which is to be replaced with some 1256 /// equivalent, possibly strength-reduced, replacement. 1257 struct LSRFixup { 1258 /// The instruction which will be updated. 1259 Instruction *UserInst = nullptr; 1260 1261 /// The operand of the instruction which will be replaced. The operand may be 1262 /// used more than once; every instance will be replaced. 1263 Value *OperandValToReplace = nullptr; 1264 1265 /// If this user is to use the post-incremented value of an induction 1266 /// variable, this set is non-empty and holds the loops associated with the 1267 /// induction variable. 1268 PostIncLoopSet PostIncLoops; 1269 1270 /// A constant offset to be added to the LSRUse expression. This allows 1271 /// multiple fixups to share the same LSRUse with different offsets, for 1272 /// example in an unrolled loop. 1273 Immediate Offset = Immediate::getZero(); 1274 1275 LSRFixup() = default; 1276 1277 bool isUseFullyOutsideLoop(const Loop *L) const; 1278 1279 void print(raw_ostream &OS) const; 1280 void dump() const; 1281 }; 1282 1283 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1284 /// SmallVectors of const SCEV*. 1285 struct UniquifierDenseMapInfo { 1286 static SmallVector<const SCEV *, 4> getEmptyKey() { 1287 SmallVector<const SCEV *, 4> V; 1288 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1289 return V; 1290 } 1291 1292 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1293 SmallVector<const SCEV *, 4> V; 1294 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1295 return V; 1296 } 1297 1298 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1299 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1300 } 1301 1302 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1303 const SmallVector<const SCEV *, 4> &RHS) { 1304 return LHS == RHS; 1305 } 1306 }; 1307 1308 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1309 /// as uses invented by LSR itself. It includes information about what kinds of 1310 /// things can be folded into the user, information about the user itself, and 1311 /// information about how the use may be satisfied. TODO: Represent multiple 1312 /// users of the same expression in common? 1313 class LSRUse { 1314 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1315 1316 public: 1317 /// An enum for a kind of use, indicating what types of scaled and immediate 1318 /// operands it might support. 1319 enum KindType { 1320 Basic, ///< A normal use, with no folding. 1321 Special, ///< A special case of basic, allowing -1 scales. 1322 Address, ///< An address use; folding according to TargetLowering 1323 ICmpZero ///< An equality icmp with both operands folded into one. 1324 // TODO: Add a generic icmp too? 1325 }; 1326 1327 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1328 1329 KindType Kind; 1330 MemAccessTy AccessTy; 1331 1332 /// The list of operands which are to be replaced. 1333 SmallVector<LSRFixup, 8> Fixups; 1334 1335 /// Keep track of the min and max offsets of the fixups. 1336 Immediate MinOffset = Immediate::getFixedMax(); 1337 Immediate MaxOffset = Immediate::getFixedMin(); 1338 1339 /// This records whether all of the fixups using this LSRUse are outside of 1340 /// the loop, in which case some special-case heuristics may be used. 1341 bool AllFixupsOutsideLoop = true; 1342 1343 /// RigidFormula is set to true to guarantee that this use will be associated 1344 /// with a single formula--the one that initially matched. Some SCEV 1345 /// expressions cannot be expanded. This allows LSR to consider the registers 1346 /// used by those expressions without the need to expand them later after 1347 /// changing the formula. 1348 bool RigidFormula = false; 1349 1350 /// This records the widest use type for any fixup using this 1351 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1352 /// fixup widths to be equivalent, because the narrower one may be relying on 1353 /// the implicit truncation to truncate away bogus bits. 1354 Type *WidestFixupType = nullptr; 1355 1356 /// A list of ways to build a value that can satisfy this user. After the 1357 /// list is populated, one of these is selected heuristically and used to 1358 /// formulate a replacement for OperandValToReplace in UserInst. 1359 SmallVector<Formula, 12> Formulae; 1360 1361 /// The set of register candidates used by all formulae in this LSRUse. 1362 SmallPtrSet<const SCEV *, 4> Regs; 1363 1364 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1365 1366 LSRFixup &getNewFixup() { 1367 Fixups.push_back(LSRFixup()); 1368 return Fixups.back(); 1369 } 1370 1371 void pushFixup(LSRFixup &f) { 1372 Fixups.push_back(f); 1373 if (Immediate::isKnownGT(f.Offset, MaxOffset)) 1374 MaxOffset = f.Offset; 1375 if (Immediate::isKnownLT(f.Offset, MinOffset)) 1376 MinOffset = f.Offset; 1377 } 1378 1379 bool HasFormulaWithSameRegs(const Formula &F) const; 1380 float getNotSelectedProbability(const SCEV *Reg) const; 1381 bool InsertFormula(const Formula &F, const Loop &L); 1382 void DeleteFormula(Formula &F); 1383 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1384 1385 void print(raw_ostream &OS) const; 1386 void dump() const; 1387 }; 1388 1389 } // end anonymous namespace 1390 1391 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1392 LSRUse::KindType Kind, MemAccessTy AccessTy, 1393 GlobalValue *BaseGV, Immediate BaseOffset, 1394 bool HasBaseReg, int64_t Scale, 1395 Instruction *Fixup = nullptr); 1396 1397 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1398 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1399 return 1; 1400 if (Depth == 0) 1401 return 0; 1402 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1403 return getSetupCost(S->getStart(), Depth - 1); 1404 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1405 return getSetupCost(S->getOperand(), Depth - 1); 1406 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1407 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1408 [&](unsigned i, const SCEV *Reg) { 1409 return i + getSetupCost(Reg, Depth - 1); 1410 }); 1411 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1412 return getSetupCost(S->getLHS(), Depth - 1) + 1413 getSetupCost(S->getRHS(), Depth - 1); 1414 return 0; 1415 } 1416 1417 /// Tally up interesting quantities from the given register. 1418 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1419 SmallPtrSetImpl<const SCEV *> &Regs) { 1420 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1421 // If this is an addrec for another loop, it should be an invariant 1422 // with respect to L since L is the innermost loop (at least 1423 // for now LSR only handles innermost loops). 1424 if (AR->getLoop() != L) { 1425 // If the AddRec exists, consider it's register free and leave it alone. 1426 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1427 return; 1428 1429 // It is bad to allow LSR for current loop to add induction variables 1430 // for its sibling loops. 1431 if (!AR->getLoop()->contains(L)) { 1432 Lose(); 1433 return; 1434 } 1435 1436 // Otherwise, it will be an invariant with respect to Loop L. 1437 ++C.NumRegs; 1438 return; 1439 } 1440 1441 unsigned LoopCost = 1; 1442 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1443 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1444 1445 // If the step size matches the base offset, we could use pre-indexed 1446 // addressing. 1447 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) { 1448 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1449 if (Step->getAPInt() == F.BaseOffset.getFixedValue()) 1450 LoopCost = 0; 1451 } else if (AMK == TTI::AMK_PostIndexed) { 1452 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1453 if (isa<SCEVConstant>(LoopStep)) { 1454 const SCEV *LoopStart = AR->getStart(); 1455 if (!isa<SCEVConstant>(LoopStart) && 1456 SE->isLoopInvariant(LoopStart, L)) 1457 LoopCost = 0; 1458 } 1459 } 1460 } 1461 C.AddRecCost += LoopCost; 1462 1463 // Add the step value register, if it needs one. 1464 // TODO: The non-affine case isn't precisely modeled here. 1465 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1466 if (!Regs.count(AR->getOperand(1))) { 1467 RateRegister(F, AR->getOperand(1), Regs); 1468 if (isLoser()) 1469 return; 1470 } 1471 } 1472 } 1473 ++C.NumRegs; 1474 1475 // Rough heuristic; favor registers which don't require extra setup 1476 // instructions in the preheader. 1477 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1478 // Ensure we don't, even with the recusion limit, produce invalid costs. 1479 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1480 1481 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1482 SE->hasComputableLoopEvolution(Reg, L); 1483 } 1484 1485 /// Record this register in the set. If we haven't seen it before, rate 1486 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1487 /// one of those regs an instant loser. 1488 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1489 SmallPtrSetImpl<const SCEV *> &Regs, 1490 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1491 if (LoserRegs && LoserRegs->count(Reg)) { 1492 Lose(); 1493 return; 1494 } 1495 if (Regs.insert(Reg).second) { 1496 RateRegister(F, Reg, Regs); 1497 if (LoserRegs && isLoser()) 1498 LoserRegs->insert(Reg); 1499 } 1500 } 1501 1502 void Cost::RateFormula(const Formula &F, 1503 SmallPtrSetImpl<const SCEV *> &Regs, 1504 const DenseSet<const SCEV *> &VisitedRegs, 1505 const LSRUse &LU, 1506 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1507 if (isLoser()) 1508 return; 1509 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1510 // Tally up the registers. 1511 unsigned PrevAddRecCost = C.AddRecCost; 1512 unsigned PrevNumRegs = C.NumRegs; 1513 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1514 if (const SCEV *ScaledReg = F.ScaledReg) { 1515 if (VisitedRegs.count(ScaledReg)) { 1516 Lose(); 1517 return; 1518 } 1519 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1520 if (isLoser()) 1521 return; 1522 } 1523 for (const SCEV *BaseReg : F.BaseRegs) { 1524 if (VisitedRegs.count(BaseReg)) { 1525 Lose(); 1526 return; 1527 } 1528 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1529 if (isLoser()) 1530 return; 1531 } 1532 1533 // Determine how many (unfolded) adds we'll need inside the loop. 1534 size_t NumBaseParts = F.getNumRegs(); 1535 if (NumBaseParts > 1) 1536 // Do not count the base and a possible second register if the target 1537 // allows to fold 2 registers. 1538 C.NumBaseAdds += 1539 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1540 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); 1541 1542 // Accumulate non-free scaling amounts. 1543 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1544 1545 // Tally up the non-zero immediates. 1546 for (const LSRFixup &Fixup : LU.Fixups) { 1547 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) { 1548 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset); 1549 if (F.BaseGV) 1550 C.ImmCost += 64; // Handle symbolic values conservatively. 1551 // TODO: This should probably be the pointer size. 1552 else if (Offset.isNonZero()) 1553 C.ImmCost += 1554 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); 1555 1556 // Check with target if this offset with this instruction is 1557 // specifically not supported. 1558 if (LU.Kind == LSRUse::Address && Offset.isNonZero() && 1559 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1560 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1561 C.NumBaseAdds++; 1562 } else { 1563 // Incompatible immediate type, increase cost to avoid using 1564 C.ImmCost += 2048; 1565 } 1566 } 1567 1568 // If we don't count instruction cost exit here. 1569 if (!InsnsCost) { 1570 assert(isValid() && "invalid cost"); 1571 return; 1572 } 1573 1574 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1575 // additional instruction (at least fill). 1576 // TODO: Need distinguish register class? 1577 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1578 TTI->getRegisterClassForType(false, F.getType())) - 1; 1579 if (C.NumRegs > TTIRegNum) { 1580 // Cost already exceeded TTIRegNum, then only newly added register can add 1581 // new instructions. 1582 if (PrevNumRegs > TTIRegNum) 1583 C.Insns += (C.NumRegs - PrevNumRegs); 1584 else 1585 C.Insns += (C.NumRegs - TTIRegNum); 1586 } 1587 1588 // If ICmpZero formula ends with not 0, it could not be replaced by 1589 // just add or sub. We'll need to compare final result of AddRec. 1590 // That means we'll need an additional instruction. But if the target can 1591 // macro-fuse a compare with a branch, don't count this extra instruction. 1592 // For -10 + {0, +, 1}: 1593 // i = i + 1; 1594 // cmp i, 10 1595 // 1596 // For {-10, +, 1}: 1597 // i = i + 1; 1598 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1599 !TTI->canMacroFuseCmp()) 1600 C.Insns++; 1601 // Each new AddRec adds 1 instruction to calculation. 1602 C.Insns += (C.AddRecCost - PrevAddRecCost); 1603 1604 // BaseAdds adds instructions for unfolded registers. 1605 if (LU.Kind != LSRUse::ICmpZero) 1606 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1607 assert(isValid() && "invalid cost"); 1608 } 1609 1610 /// Set this cost to a losing value. 1611 void Cost::Lose() { 1612 C.Insns = std::numeric_limits<unsigned>::max(); 1613 C.NumRegs = std::numeric_limits<unsigned>::max(); 1614 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1615 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1616 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1617 C.ImmCost = std::numeric_limits<unsigned>::max(); 1618 C.SetupCost = std::numeric_limits<unsigned>::max(); 1619 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1620 } 1621 1622 /// Choose the lower cost. 1623 bool Cost::isLess(const Cost &Other) const { 1624 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1625 C.Insns != Other.C.Insns) 1626 return C.Insns < Other.C.Insns; 1627 return TTI->isLSRCostLess(C, Other.C); 1628 } 1629 1630 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1631 void Cost::print(raw_ostream &OS) const { 1632 if (InsnsCost) 1633 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1634 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1635 if (C.AddRecCost != 0) 1636 OS << ", with addrec cost " << C.AddRecCost; 1637 if (C.NumIVMuls != 0) 1638 OS << ", plus " << C.NumIVMuls << " IV mul" 1639 << (C.NumIVMuls == 1 ? "" : "s"); 1640 if (C.NumBaseAdds != 0) 1641 OS << ", plus " << C.NumBaseAdds << " base add" 1642 << (C.NumBaseAdds == 1 ? "" : "s"); 1643 if (C.ScaleCost != 0) 1644 OS << ", plus " << C.ScaleCost << " scale cost"; 1645 if (C.ImmCost != 0) 1646 OS << ", plus " << C.ImmCost << " imm cost"; 1647 if (C.SetupCost != 0) 1648 OS << ", plus " << C.SetupCost << " setup cost"; 1649 } 1650 1651 LLVM_DUMP_METHOD void Cost::dump() const { 1652 print(errs()); errs() << '\n'; 1653 } 1654 #endif 1655 1656 /// Test whether this fixup always uses its value outside of the given loop. 1657 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1658 // PHI nodes use their value in their incoming blocks. 1659 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1660 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1661 if (PN->getIncomingValue(i) == OperandValToReplace && 1662 L->contains(PN->getIncomingBlock(i))) 1663 return false; 1664 return true; 1665 } 1666 1667 return !L->contains(UserInst); 1668 } 1669 1670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1671 void LSRFixup::print(raw_ostream &OS) const { 1672 OS << "UserInst="; 1673 // Store is common and interesting enough to be worth special-casing. 1674 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1675 OS << "store "; 1676 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1677 } else if (UserInst->getType()->isVoidTy()) 1678 OS << UserInst->getOpcodeName(); 1679 else 1680 UserInst->printAsOperand(OS, /*PrintType=*/false); 1681 1682 OS << ", OperandValToReplace="; 1683 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1684 1685 for (const Loop *PIL : PostIncLoops) { 1686 OS << ", PostIncLoop="; 1687 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1688 } 1689 1690 if (Offset.isNonZero()) 1691 OS << ", Offset=" << Offset; 1692 } 1693 1694 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1695 print(errs()); errs() << '\n'; 1696 } 1697 #endif 1698 1699 /// Test whether this use as a formula which has the same registers as the given 1700 /// formula. 1701 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1702 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1703 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1704 // Unstable sort by host order ok, because this is only used for uniquifying. 1705 llvm::sort(Key); 1706 return Uniquifier.count(Key); 1707 } 1708 1709 /// The function returns a probability of selecting formula without Reg. 1710 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1711 unsigned FNum = 0; 1712 for (const Formula &F : Formulae) 1713 if (F.referencesReg(Reg)) 1714 FNum++; 1715 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1716 } 1717 1718 /// If the given formula has not yet been inserted, add it to the list, and 1719 /// return true. Return false otherwise. The formula must be in canonical form. 1720 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1721 assert(F.isCanonical(L) && "Invalid canonical representation"); 1722 1723 if (!Formulae.empty() && RigidFormula) 1724 return false; 1725 1726 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1727 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1728 // Unstable sort by host order ok, because this is only used for uniquifying. 1729 llvm::sort(Key); 1730 1731 if (!Uniquifier.insert(Key).second) 1732 return false; 1733 1734 // Using a register to hold the value of 0 is not profitable. 1735 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1736 "Zero allocated in a scaled register!"); 1737 #ifndef NDEBUG 1738 for (const SCEV *BaseReg : F.BaseRegs) 1739 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1740 #endif 1741 1742 // Add the formula to the list. 1743 Formulae.push_back(F); 1744 1745 // Record registers now being used by this use. 1746 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1747 if (F.ScaledReg) 1748 Regs.insert(F.ScaledReg); 1749 1750 return true; 1751 } 1752 1753 /// Remove the given formula from this use's list. 1754 void LSRUse::DeleteFormula(Formula &F) { 1755 if (&F != &Formulae.back()) 1756 std::swap(F, Formulae.back()); 1757 Formulae.pop_back(); 1758 } 1759 1760 /// Recompute the Regs field, and update RegUses. 1761 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1762 // Now that we've filtered out some formulae, recompute the Regs set. 1763 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1764 Regs.clear(); 1765 for (const Formula &F : Formulae) { 1766 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1767 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1768 } 1769 1770 // Update the RegTracker. 1771 for (const SCEV *S : OldRegs) 1772 if (!Regs.count(S)) 1773 RegUses.dropRegister(S, LUIdx); 1774 } 1775 1776 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1777 void LSRUse::print(raw_ostream &OS) const { 1778 OS << "LSR Use: Kind="; 1779 switch (Kind) { 1780 case Basic: OS << "Basic"; break; 1781 case Special: OS << "Special"; break; 1782 case ICmpZero: OS << "ICmpZero"; break; 1783 case Address: 1784 OS << "Address of "; 1785 if (AccessTy.MemTy->isPointerTy()) 1786 OS << "pointer"; // the full pointer type could be really verbose 1787 else { 1788 OS << *AccessTy.MemTy; 1789 } 1790 1791 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1792 } 1793 1794 OS << ", Offsets={"; 1795 bool NeedComma = false; 1796 for (const LSRFixup &Fixup : Fixups) { 1797 if (NeedComma) OS << ','; 1798 OS << Fixup.Offset; 1799 NeedComma = true; 1800 } 1801 OS << '}'; 1802 1803 if (AllFixupsOutsideLoop) 1804 OS << ", all-fixups-outside-loop"; 1805 1806 if (WidestFixupType) 1807 OS << ", widest fixup type: " << *WidestFixupType; 1808 } 1809 1810 LLVM_DUMP_METHOD void LSRUse::dump() const { 1811 print(errs()); errs() << '\n'; 1812 } 1813 #endif 1814 1815 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1816 LSRUse::KindType Kind, MemAccessTy AccessTy, 1817 GlobalValue *BaseGV, Immediate BaseOffset, 1818 bool HasBaseReg, int64_t Scale, 1819 Instruction *Fixup /* = nullptr */) { 1820 switch (Kind) { 1821 case LSRUse::Address: { 1822 int64_t FixedOffset = 1823 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); 1824 int64_t ScalableOffset = 1825 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; 1826 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset, 1827 HasBaseReg, Scale, AccessTy.AddrSpace, 1828 Fixup, ScalableOffset); 1829 } 1830 case LSRUse::ICmpZero: 1831 // There's not even a target hook for querying whether it would be legal to 1832 // fold a GV into an ICmp. 1833 if (BaseGV) 1834 return false; 1835 1836 // ICmp only has two operands; don't allow more than two non-trivial parts. 1837 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) 1838 return false; 1839 1840 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1841 // putting the scaled register in the other operand of the icmp. 1842 if (Scale != 0 && Scale != -1) 1843 return false; 1844 1845 // If we have low-level target information, ask the target if it can fold an 1846 // integer immediate on an icmp. 1847 if (BaseOffset.isNonZero()) { 1848 // We don't have an interface to query whether the target supports 1849 // icmpzero against scalable quantities yet. 1850 if (BaseOffset.isScalable()) 1851 return false; 1852 1853 // We have one of: 1854 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1855 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1856 // Offs is the ICmp immediate. 1857 if (Scale == 0) 1858 // The cast does the right thing with 1859 // std::numeric_limits<int64_t>::min(). 1860 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue()); 1861 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue()); 1862 } 1863 1864 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1865 return true; 1866 1867 case LSRUse::Basic: 1868 // Only handle single-register values. 1869 return !BaseGV && Scale == 0 && BaseOffset.isZero(); 1870 1871 case LSRUse::Special: 1872 // Special case Basic to handle -1 scales. 1873 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); 1874 } 1875 1876 llvm_unreachable("Invalid LSRUse Kind!"); 1877 } 1878 1879 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1880 Immediate MinOffset, Immediate MaxOffset, 1881 LSRUse::KindType Kind, MemAccessTy AccessTy, 1882 GlobalValue *BaseGV, Immediate BaseOffset, 1883 bool HasBaseReg, int64_t Scale) { 1884 if (BaseOffset.isNonZero() && 1885 (BaseOffset.isScalable() != MinOffset.isScalable() || 1886 BaseOffset.isScalable() != MaxOffset.isScalable())) 1887 return false; 1888 // Check for overflow. 1889 int64_t Base = BaseOffset.getKnownMinValue(); 1890 int64_t Min = MinOffset.getKnownMinValue(); 1891 int64_t Max = MaxOffset.getKnownMinValue(); 1892 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) 1893 return false; 1894 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable()); 1895 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) 1896 return false; 1897 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable()); 1898 1899 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1900 HasBaseReg, Scale) && 1901 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1902 HasBaseReg, Scale); 1903 } 1904 1905 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1906 Immediate MinOffset, Immediate MaxOffset, 1907 LSRUse::KindType Kind, MemAccessTy AccessTy, 1908 const Formula &F, const Loop &L) { 1909 // For the purpose of isAMCompletelyFolded either having a canonical formula 1910 // or a scale not equal to zero is correct. 1911 // Problems may arise from non canonical formulae having a scale == 0. 1912 // Strictly speaking it would best to just rely on canonical formulae. 1913 // However, when we generate the scaled formulae, we first check that the 1914 // scaling factor is profitable before computing the actual ScaledReg for 1915 // compile time sake. 1916 assert((F.isCanonical(L) || F.Scale != 0)); 1917 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1918 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1919 } 1920 1921 /// Test whether we know how to expand the current formula. 1922 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1923 Immediate MaxOffset, LSRUse::KindType Kind, 1924 MemAccessTy AccessTy, GlobalValue *BaseGV, 1925 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { 1926 // We know how to expand completely foldable formulae. 1927 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1928 BaseOffset, HasBaseReg, Scale) || 1929 // Or formulae that use a base register produced by a sum of base 1930 // registers. 1931 (Scale == 1 && 1932 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1933 BaseGV, BaseOffset, true, 0)); 1934 } 1935 1936 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1937 Immediate MaxOffset, LSRUse::KindType Kind, 1938 MemAccessTy AccessTy, const Formula &F) { 1939 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1940 F.BaseOffset, F.HasBaseReg, F.Scale); 1941 } 1942 1943 static bool isLegalAddImmediate(const TargetTransformInfo &TTI, 1944 Immediate Offset) { 1945 if (Offset.isScalable()) 1946 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue()); 1947 1948 return TTI.isLegalAddImmediate(Offset.getFixedValue()); 1949 } 1950 1951 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1952 const LSRUse &LU, const Formula &F) { 1953 // Target may want to look at the user instructions. 1954 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1955 for (const LSRFixup &Fixup : LU.Fixups) 1956 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1957 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1958 F.Scale, Fixup.UserInst)) 1959 return false; 1960 return true; 1961 } 1962 1963 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1964 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1965 F.Scale); 1966 } 1967 1968 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1969 const LSRUse &LU, const Formula &F, 1970 const Loop &L) { 1971 if (!F.Scale) 1972 return 0; 1973 1974 // If the use is not completely folded in that instruction, we will have to 1975 // pay an extra cost only for scale != 1. 1976 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1977 LU.AccessTy, F, L)) 1978 return F.Scale != 1; 1979 1980 switch (LU.Kind) { 1981 case LSRUse::Address: { 1982 // Check the scaling factor cost with both the min and max offsets. 1983 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; 1984 if (F.BaseOffset.isScalable()) { 1985 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); 1986 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); 1987 } else { 1988 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); 1989 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); 1990 } 1991 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1992 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin), 1993 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1994 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1995 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax), 1996 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1997 1998 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1999 "Legal addressing mode has an illegal cost!"); 2000 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 2001 } 2002 case LSRUse::ICmpZero: 2003 case LSRUse::Basic: 2004 case LSRUse::Special: 2005 // The use is completely folded, i.e., everything is folded into the 2006 // instruction. 2007 return 0; 2008 } 2009 2010 llvm_unreachable("Invalid LSRUse Kind!"); 2011 } 2012 2013 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2014 LSRUse::KindType Kind, MemAccessTy AccessTy, 2015 GlobalValue *BaseGV, Immediate BaseOffset, 2016 bool HasBaseReg) { 2017 // Fast-path: zero is always foldable. 2018 if (BaseOffset.isZero() && !BaseGV) 2019 return true; 2020 2021 // Conservatively, create an address with an immediate and a 2022 // base and a scale. 2023 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2024 2025 // Canonicalize a scale of 1 to a base register if the formula doesn't 2026 // already have a base register. 2027 if (!HasBaseReg && Scale == 1) { 2028 Scale = 0; 2029 HasBaseReg = true; 2030 } 2031 2032 // FIXME: Try with + without a scale? Maybe based on TTI? 2033 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' 2034 // default for many architectures, not just AArch64 SVE. More investigation 2035 // needed later to determine if this should be used more widely than just 2036 // on scalable types. 2037 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && 2038 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) 2039 Scale = 0; 2040 2041 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 2042 HasBaseReg, Scale); 2043 } 2044 2045 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2046 ScalarEvolution &SE, Immediate MinOffset, 2047 Immediate MaxOffset, LSRUse::KindType Kind, 2048 MemAccessTy AccessTy, const SCEV *S, 2049 bool HasBaseReg) { 2050 // Fast-path: zero is always foldable. 2051 if (S->isZero()) return true; 2052 2053 // Conservatively, create an address with an immediate and a 2054 // base and a scale. 2055 Immediate BaseOffset = ExtractImmediate(S, SE); 2056 GlobalValue *BaseGV = ExtractSymbol(S, SE); 2057 2058 // If there's anything else involved, it's not foldable. 2059 if (!S->isZero()) return false; 2060 2061 // Fast-path: zero is always foldable. 2062 if (BaseOffset.isZero() && !BaseGV) 2063 return true; 2064 2065 if (BaseOffset.isScalable()) 2066 return false; 2067 2068 // Conservatively, create an address with an immediate and a 2069 // base and a scale. 2070 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2071 2072 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 2073 BaseOffset, HasBaseReg, Scale); 2074 } 2075 2076 namespace { 2077 2078 /// An individual increment in a Chain of IV increments. Relate an IV user to 2079 /// an expression that computes the IV it uses from the IV used by the previous 2080 /// link in the Chain. 2081 /// 2082 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 2083 /// original IVOperand. The head of the chain's IVOperand is only valid during 2084 /// chain collection, before LSR replaces IV users. During chain generation, 2085 /// IncExpr can be used to find the new IVOperand that computes the same 2086 /// expression. 2087 struct IVInc { 2088 Instruction *UserInst; 2089 Value* IVOperand; 2090 const SCEV *IncExpr; 2091 2092 IVInc(Instruction *U, Value *O, const SCEV *E) 2093 : UserInst(U), IVOperand(O), IncExpr(E) {} 2094 }; 2095 2096 // The list of IV increments in program order. We typically add the head of a 2097 // chain without finding subsequent links. 2098 struct IVChain { 2099 SmallVector<IVInc, 1> Incs; 2100 const SCEV *ExprBase = nullptr; 2101 2102 IVChain() = default; 2103 IVChain(const IVInc &Head, const SCEV *Base) 2104 : Incs(1, Head), ExprBase(Base) {} 2105 2106 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 2107 2108 // Return the first increment in the chain. 2109 const_iterator begin() const { 2110 assert(!Incs.empty()); 2111 return std::next(Incs.begin()); 2112 } 2113 const_iterator end() const { 2114 return Incs.end(); 2115 } 2116 2117 // Returns true if this chain contains any increments. 2118 bool hasIncs() const { return Incs.size() >= 2; } 2119 2120 // Add an IVInc to the end of this chain. 2121 void add(const IVInc &X) { Incs.push_back(X); } 2122 2123 // Returns the last UserInst in the chain. 2124 Instruction *tailUserInst() const { return Incs.back().UserInst; } 2125 2126 // Returns true if IncExpr can be profitably added to this chain. 2127 bool isProfitableIncrement(const SCEV *OperExpr, 2128 const SCEV *IncExpr, 2129 ScalarEvolution&); 2130 }; 2131 2132 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 2133 /// between FarUsers that definitely cross IV increments and NearUsers that may 2134 /// be used between IV increments. 2135 struct ChainUsers { 2136 SmallPtrSet<Instruction*, 4> FarUsers; 2137 SmallPtrSet<Instruction*, 4> NearUsers; 2138 }; 2139 2140 /// This class holds state for the main loop strength reduction logic. 2141 class LSRInstance { 2142 IVUsers &IU; 2143 ScalarEvolution &SE; 2144 DominatorTree &DT; 2145 LoopInfo &LI; 2146 AssumptionCache &AC; 2147 TargetLibraryInfo &TLI; 2148 const TargetTransformInfo &TTI; 2149 Loop *const L; 2150 MemorySSAUpdater *MSSAU; 2151 TTI::AddressingModeKind AMK; 2152 mutable SCEVExpander Rewriter; 2153 bool Changed = false; 2154 2155 /// This is the insert position that the current loop's induction variable 2156 /// increment should be placed. In simple loops, this is the latch block's 2157 /// terminator. But in more complicated cases, this is a position which will 2158 /// dominate all the in-loop post-increment users. 2159 Instruction *IVIncInsertPos = nullptr; 2160 2161 /// Interesting factors between use strides. 2162 /// 2163 /// We explicitly use a SetVector which contains a SmallSet, instead of the 2164 /// default, a SmallDenseSet, because we need to use the full range of 2165 /// int64_ts, and there's currently no good way of doing that with 2166 /// SmallDenseSet. 2167 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 2168 2169 /// The cost of the current SCEV, the best solution by LSR will be dropped if 2170 /// the solution is not profitable. 2171 Cost BaselineCost; 2172 2173 /// Interesting use types, to facilitate truncation reuse. 2174 SmallSetVector<Type *, 4> Types; 2175 2176 /// The list of interesting uses. 2177 mutable SmallVector<LSRUse, 16> Uses; 2178 2179 /// Track which uses use which register candidates. 2180 RegUseTracker RegUses; 2181 2182 // Limit the number of chains to avoid quadratic behavior. We don't expect to 2183 // have more than a few IV increment chains in a loop. Missing a Chain falls 2184 // back to normal LSR behavior for those uses. 2185 static const unsigned MaxChains = 8; 2186 2187 /// IV users can form a chain of IV increments. 2188 SmallVector<IVChain, MaxChains> IVChainVec; 2189 2190 /// IV users that belong to profitable IVChains. 2191 SmallPtrSet<Use*, MaxChains> IVIncSet; 2192 2193 /// Induction variables that were generated and inserted by the SCEV Expander. 2194 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2195 2196 void OptimizeShadowIV(); 2197 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2198 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2199 void OptimizeLoopTermCond(); 2200 2201 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2202 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2203 void FinalizeChain(IVChain &Chain); 2204 void CollectChains(); 2205 void GenerateIVChain(const IVChain &Chain, 2206 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2207 2208 void CollectInterestingTypesAndFactors(); 2209 void CollectFixupsAndInitialFormulae(); 2210 2211 // Support for sharing of LSRUses between LSRFixups. 2212 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2213 UseMapTy UseMap; 2214 2215 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, 2216 LSRUse::KindType Kind, MemAccessTy AccessTy); 2217 2218 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2219 MemAccessTy AccessTy); 2220 2221 void DeleteUse(LSRUse &LU, size_t LUIdx); 2222 2223 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2224 2225 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2226 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2227 void CountRegisters(const Formula &F, size_t LUIdx); 2228 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2229 2230 void CollectLoopInvariantFixupsAndFormulae(); 2231 2232 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2233 unsigned Depth = 0); 2234 2235 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2236 const Formula &Base, unsigned Depth, 2237 size_t Idx, bool IsScaledReg = false); 2238 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2239 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2240 const Formula &Base, size_t Idx, 2241 bool IsScaledReg = false); 2242 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2243 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2244 const Formula &Base, 2245 const SmallVectorImpl<Immediate> &Worklist, 2246 size_t Idx, bool IsScaledReg = false); 2247 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2248 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2249 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2250 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2251 void GenerateCrossUseConstantOffsets(); 2252 void GenerateAllReuseFormulae(); 2253 2254 void FilterOutUndesirableDedicatedRegisters(); 2255 2256 size_t EstimateSearchSpaceComplexity() const; 2257 void NarrowSearchSpaceByDetectingSupersets(); 2258 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2259 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2260 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2261 void NarrowSearchSpaceByFilterPostInc(); 2262 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2263 void NarrowSearchSpaceByPickingWinnerRegs(); 2264 void NarrowSearchSpaceUsingHeuristics(); 2265 2266 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2267 Cost &SolutionCost, 2268 SmallVectorImpl<const Formula *> &Workspace, 2269 const Cost &CurCost, 2270 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2271 DenseSet<const SCEV *> &VisitedRegs) const; 2272 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2273 2274 BasicBlock::iterator 2275 HoistInsertPosition(BasicBlock::iterator IP, 2276 const SmallVectorImpl<Instruction *> &Inputs) const; 2277 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2278 const LSRFixup &LF, 2279 const LSRUse &LU) const; 2280 2281 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2282 BasicBlock::iterator IP, 2283 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2284 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2285 const Formula &F, 2286 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2287 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2288 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2289 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2290 2291 public: 2292 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2293 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2294 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2295 2296 bool getChanged() const { return Changed; } 2297 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2298 return ScalarEvolutionIVs; 2299 } 2300 2301 void print_factors_and_types(raw_ostream &OS) const; 2302 void print_fixups(raw_ostream &OS) const; 2303 void print_uses(raw_ostream &OS) const; 2304 void print(raw_ostream &OS) const; 2305 void dump() const; 2306 }; 2307 2308 } // end anonymous namespace 2309 2310 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2311 /// the cast operation. 2312 void LSRInstance::OptimizeShadowIV() { 2313 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2314 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2315 return; 2316 2317 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2318 UI != E; /* empty */) { 2319 IVUsers::const_iterator CandidateUI = UI; 2320 ++UI; 2321 Instruction *ShadowUse = CandidateUI->getUser(); 2322 Type *DestTy = nullptr; 2323 bool IsSigned = false; 2324 2325 /* If shadow use is a int->float cast then insert a second IV 2326 to eliminate this cast. 2327 2328 for (unsigned i = 0; i < n; ++i) 2329 foo((double)i); 2330 2331 is transformed into 2332 2333 double d = 0.0; 2334 for (unsigned i = 0; i < n; ++i, ++d) 2335 foo(d); 2336 */ 2337 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2338 IsSigned = false; 2339 DestTy = UCast->getDestTy(); 2340 } 2341 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2342 IsSigned = true; 2343 DestTy = SCast->getDestTy(); 2344 } 2345 if (!DestTy) continue; 2346 2347 // If target does not support DestTy natively then do not apply 2348 // this transformation. 2349 if (!TTI.isTypeLegal(DestTy)) continue; 2350 2351 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2352 if (!PH) continue; 2353 if (PH->getNumIncomingValues() != 2) continue; 2354 2355 // If the calculation in integers overflows, the result in FP type will 2356 // differ. So we only can do this transformation if we are guaranteed to not 2357 // deal with overflowing values 2358 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2359 if (!AR) continue; 2360 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2361 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2362 2363 Type *SrcTy = PH->getType(); 2364 int Mantissa = DestTy->getFPMantissaWidth(); 2365 if (Mantissa == -1) continue; 2366 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2367 continue; 2368 2369 unsigned Entry, Latch; 2370 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2371 Entry = 0; 2372 Latch = 1; 2373 } else { 2374 Entry = 1; 2375 Latch = 0; 2376 } 2377 2378 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2379 if (!Init) continue; 2380 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2381 (double)Init->getSExtValue() : 2382 (double)Init->getZExtValue()); 2383 2384 BinaryOperator *Incr = 2385 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2386 if (!Incr) continue; 2387 if (Incr->getOpcode() != Instruction::Add 2388 && Incr->getOpcode() != Instruction::Sub) 2389 continue; 2390 2391 /* Initialize new IV, double d = 0.0 in above example. */ 2392 ConstantInt *C = nullptr; 2393 if (Incr->getOperand(0) == PH) 2394 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2395 else if (Incr->getOperand(1) == PH) 2396 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2397 else 2398 continue; 2399 2400 if (!C) continue; 2401 2402 // Ignore negative constants, as the code below doesn't handle them 2403 // correctly. TODO: Remove this restriction. 2404 if (!C->getValue().isStrictlyPositive()) 2405 continue; 2406 2407 /* Add new PHINode. */ 2408 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator()); 2409 NewPH->setDebugLoc(PH->getDebugLoc()); 2410 2411 /* create new increment. '++d' in above example. */ 2412 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2413 BinaryOperator *NewIncr = BinaryOperator::Create( 2414 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd 2415 : Instruction::FSub, 2416 NewPH, CFP, "IV.S.next.", Incr->getIterator()); 2417 NewIncr->setDebugLoc(Incr->getDebugLoc()); 2418 2419 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2420 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2421 2422 /* Remove cast operation */ 2423 ShadowUse->replaceAllUsesWith(NewPH); 2424 ShadowUse->eraseFromParent(); 2425 Changed = true; 2426 break; 2427 } 2428 } 2429 2430 /// If Cond has an operand that is an expression of an IV, set the IV user and 2431 /// stride information and return true, otherwise return false. 2432 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2433 for (IVStrideUse &U : IU) 2434 if (U.getUser() == Cond) { 2435 // NOTE: we could handle setcc instructions with multiple uses here, but 2436 // InstCombine does it as well for simple uses, it's not clear that it 2437 // occurs enough in real life to handle. 2438 CondUse = &U; 2439 return true; 2440 } 2441 return false; 2442 } 2443 2444 /// Rewrite the loop's terminating condition if it uses a max computation. 2445 /// 2446 /// This is a narrow solution to a specific, but acute, problem. For loops 2447 /// like this: 2448 /// 2449 /// i = 0; 2450 /// do { 2451 /// p[i] = 0.0; 2452 /// } while (++i < n); 2453 /// 2454 /// the trip count isn't just 'n', because 'n' might not be positive. And 2455 /// unfortunately this can come up even for loops where the user didn't use 2456 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2457 /// will commonly be lowered like this: 2458 /// 2459 /// if (n > 0) { 2460 /// i = 0; 2461 /// do { 2462 /// p[i] = 0.0; 2463 /// } while (++i < n); 2464 /// } 2465 /// 2466 /// and then it's possible for subsequent optimization to obscure the if 2467 /// test in such a way that indvars can't find it. 2468 /// 2469 /// When indvars can't find the if test in loops like this, it creates a 2470 /// max expression, which allows it to give the loop a canonical 2471 /// induction variable: 2472 /// 2473 /// i = 0; 2474 /// max = n < 1 ? 1 : n; 2475 /// do { 2476 /// p[i] = 0.0; 2477 /// } while (++i != max); 2478 /// 2479 /// Canonical induction variables are necessary because the loop passes 2480 /// are designed around them. The most obvious example of this is the 2481 /// LoopInfo analysis, which doesn't remember trip count values. It 2482 /// expects to be able to rediscover the trip count each time it is 2483 /// needed, and it does this using a simple analysis that only succeeds if 2484 /// the loop has a canonical induction variable. 2485 /// 2486 /// However, when it comes time to generate code, the maximum operation 2487 /// can be quite costly, especially if it's inside of an outer loop. 2488 /// 2489 /// This function solves this problem by detecting this type of loop and 2490 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2491 /// the instructions for the maximum computation. 2492 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2493 // Check that the loop matches the pattern we're looking for. 2494 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2495 Cond->getPredicate() != CmpInst::ICMP_NE) 2496 return Cond; 2497 2498 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2499 if (!Sel || !Sel->hasOneUse()) return Cond; 2500 2501 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2502 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2503 return Cond; 2504 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2505 2506 // Add one to the backedge-taken count to get the trip count. 2507 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2508 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2509 2510 // Check for a max calculation that matches the pattern. There's no check 2511 // for ICMP_ULE here because the comparison would be with zero, which 2512 // isn't interesting. 2513 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2514 const SCEVNAryExpr *Max = nullptr; 2515 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2516 Pred = ICmpInst::ICMP_SLE; 2517 Max = S; 2518 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2519 Pred = ICmpInst::ICMP_SLT; 2520 Max = S; 2521 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2522 Pred = ICmpInst::ICMP_ULT; 2523 Max = U; 2524 } else { 2525 // No match; bail. 2526 return Cond; 2527 } 2528 2529 // To handle a max with more than two operands, this optimization would 2530 // require additional checking and setup. 2531 if (Max->getNumOperands() != 2) 2532 return Cond; 2533 2534 const SCEV *MaxLHS = Max->getOperand(0); 2535 const SCEV *MaxRHS = Max->getOperand(1); 2536 2537 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2538 // for a comparison with 1. For <= and >=, a comparison with zero. 2539 if (!MaxLHS || 2540 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2541 return Cond; 2542 2543 // Check the relevant induction variable for conformance to 2544 // the pattern. 2545 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2546 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2547 if (!AR || !AR->isAffine() || 2548 AR->getStart() != One || 2549 AR->getStepRecurrence(SE) != One) 2550 return Cond; 2551 2552 assert(AR->getLoop() == L && 2553 "Loop condition operand is an addrec in a different loop!"); 2554 2555 // Check the right operand of the select, and remember it, as it will 2556 // be used in the new comparison instruction. 2557 Value *NewRHS = nullptr; 2558 if (ICmpInst::isTrueWhenEqual(Pred)) { 2559 // Look for n+1, and grab n. 2560 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2561 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2562 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2563 NewRHS = BO->getOperand(0); 2564 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2565 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2566 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2567 NewRHS = BO->getOperand(0); 2568 if (!NewRHS) 2569 return Cond; 2570 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2571 NewRHS = Sel->getOperand(1); 2572 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2573 NewRHS = Sel->getOperand(2); 2574 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2575 NewRHS = SU->getValue(); 2576 else 2577 // Max doesn't match expected pattern. 2578 return Cond; 2579 2580 // Determine the new comparison opcode. It may be signed or unsigned, 2581 // and the original comparison may be either equality or inequality. 2582 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2583 Pred = CmpInst::getInversePredicate(Pred); 2584 2585 // Ok, everything looks ok to change the condition into an SLT or SGE and 2586 // delete the max calculation. 2587 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, 2588 Cond->getOperand(0), NewRHS, "scmp"); 2589 2590 // Delete the max calculation instructions. 2591 NewCond->setDebugLoc(Cond->getDebugLoc()); 2592 Cond->replaceAllUsesWith(NewCond); 2593 CondUse->setUser(NewCond); 2594 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2595 Cond->eraseFromParent(); 2596 Sel->eraseFromParent(); 2597 if (Cmp->use_empty()) 2598 Cmp->eraseFromParent(); 2599 return NewCond; 2600 } 2601 2602 /// Change loop terminating condition to use the postinc iv when possible. 2603 void 2604 LSRInstance::OptimizeLoopTermCond() { 2605 SmallPtrSet<Instruction *, 4> PostIncs; 2606 2607 // We need a different set of heuristics for rotated and non-rotated loops. 2608 // If a loop is rotated then the latch is also the backedge, so inserting 2609 // post-inc expressions just before the latch is ideal. To reduce live ranges 2610 // it also makes sense to rewrite terminating conditions to use post-inc 2611 // expressions. 2612 // 2613 // If the loop is not rotated then the latch is not a backedge; the latch 2614 // check is done in the loop head. Adding post-inc expressions before the 2615 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2616 // in the loop body. In this case we do *not* want to use post-inc expressions 2617 // in the latch check, and we want to insert post-inc expressions before 2618 // the backedge. 2619 BasicBlock *LatchBlock = L->getLoopLatch(); 2620 SmallVector<BasicBlock*, 8> ExitingBlocks; 2621 L->getExitingBlocks(ExitingBlocks); 2622 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2623 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2624 IVIncInsertPos = LatchBlock->getTerminator(); 2625 return; 2626 } 2627 2628 // Otherwise treat this as a rotated loop. 2629 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2630 // Get the terminating condition for the loop if possible. If we 2631 // can, we want to change it to use a post-incremented version of its 2632 // induction variable, to allow coalescing the live ranges for the IV into 2633 // one register value. 2634 2635 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2636 if (!TermBr) 2637 continue; 2638 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2639 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2640 continue; 2641 2642 // Search IVUsesByStride to find Cond's IVUse if there is one. 2643 IVStrideUse *CondUse = nullptr; 2644 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2645 if (!FindIVUserForCond(Cond, CondUse)) 2646 continue; 2647 2648 // If the trip count is computed in terms of a max (due to ScalarEvolution 2649 // being unable to find a sufficient guard, for example), change the loop 2650 // comparison to use SLT or ULT instead of NE. 2651 // One consequence of doing this now is that it disrupts the count-down 2652 // optimization. That's not always a bad thing though, because in such 2653 // cases it may still be worthwhile to avoid a max. 2654 Cond = OptimizeMax(Cond, CondUse); 2655 2656 // If this exiting block dominates the latch block, it may also use 2657 // the post-inc value if it won't be shared with other uses. 2658 // Check for dominance. 2659 if (!DT.dominates(ExitingBlock, LatchBlock)) 2660 continue; 2661 2662 // Conservatively avoid trying to use the post-inc value in non-latch 2663 // exits if there may be pre-inc users in intervening blocks. 2664 if (LatchBlock != ExitingBlock) 2665 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2666 // Test if the use is reachable from the exiting block. This dominator 2667 // query is a conservative approximation of reachability. 2668 if (&*UI != CondUse && 2669 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2670 // Conservatively assume there may be reuse if the quotient of their 2671 // strides could be a legal scale. 2672 const SCEV *A = IU.getStride(*CondUse, L); 2673 const SCEV *B = IU.getStride(*UI, L); 2674 if (!A || !B) continue; 2675 if (SE.getTypeSizeInBits(A->getType()) != 2676 SE.getTypeSizeInBits(B->getType())) { 2677 if (SE.getTypeSizeInBits(A->getType()) > 2678 SE.getTypeSizeInBits(B->getType())) 2679 B = SE.getSignExtendExpr(B, A->getType()); 2680 else 2681 A = SE.getSignExtendExpr(A, B->getType()); 2682 } 2683 if (const SCEVConstant *D = 2684 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2685 const ConstantInt *C = D->getValue(); 2686 // Stride of one or negative one can have reuse with non-addresses. 2687 if (C->isOne() || C->isMinusOne()) 2688 goto decline_post_inc; 2689 // Avoid weird situations. 2690 if (C->getValue().getSignificantBits() >= 64 || 2691 C->getValue().isMinSignedValue()) 2692 goto decline_post_inc; 2693 // Check for possible scaled-address reuse. 2694 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2695 MemAccessTy AccessTy = getAccessType( 2696 TTI, UI->getUser(), UI->getOperandValToReplace()); 2697 int64_t Scale = C->getSExtValue(); 2698 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2699 /*BaseOffset=*/0, 2700 /*HasBaseReg=*/true, Scale, 2701 AccessTy.AddrSpace)) 2702 goto decline_post_inc; 2703 Scale = -Scale; 2704 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2705 /*BaseOffset=*/0, 2706 /*HasBaseReg=*/true, Scale, 2707 AccessTy.AddrSpace)) 2708 goto decline_post_inc; 2709 } 2710 } 2711 } 2712 2713 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2714 << *Cond << '\n'); 2715 2716 // It's possible for the setcc instruction to be anywhere in the loop, and 2717 // possible for it to have multiple users. If it is not immediately before 2718 // the exiting block branch, move it. 2719 if (Cond->getNextNonDebugInstruction() != TermBr) { 2720 if (Cond->hasOneUse()) { 2721 Cond->moveBefore(TermBr); 2722 } else { 2723 // Clone the terminating condition and insert into the loopend. 2724 ICmpInst *OldCond = Cond; 2725 Cond = cast<ICmpInst>(Cond->clone()); 2726 Cond->setName(L->getHeader()->getName() + ".termcond"); 2727 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2728 2729 // Clone the IVUse, as the old use still exists! 2730 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2731 TermBr->replaceUsesOfWith(OldCond, Cond); 2732 } 2733 } 2734 2735 // If we get to here, we know that we can transform the setcc instruction to 2736 // use the post-incremented version of the IV, allowing us to coalesce the 2737 // live ranges for the IV correctly. 2738 CondUse->transformToPostInc(L); 2739 Changed = true; 2740 2741 PostIncs.insert(Cond); 2742 decline_post_inc:; 2743 } 2744 2745 // Determine an insertion point for the loop induction variable increment. It 2746 // must dominate all the post-inc comparisons we just set up, and it must 2747 // dominate the loop latch edge. 2748 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2749 for (Instruction *Inst : PostIncs) 2750 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2751 } 2752 2753 /// Determine if the given use can accommodate a fixup at the given offset and 2754 /// other details. If so, update the use and return true. 2755 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, 2756 bool HasBaseReg, LSRUse::KindType Kind, 2757 MemAccessTy AccessTy) { 2758 Immediate NewMinOffset = LU.MinOffset; 2759 Immediate NewMaxOffset = LU.MaxOffset; 2760 MemAccessTy NewAccessTy = AccessTy; 2761 2762 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2763 // something conservative, however this can pessimize in the case that one of 2764 // the uses will have all its uses outside the loop, for example. 2765 if (LU.Kind != Kind) 2766 return false; 2767 2768 // Check for a mismatched access type, and fall back conservatively as needed. 2769 // TODO: Be less conservative when the type is similar and can use the same 2770 // addressing modes. 2771 if (Kind == LSRUse::Address) { 2772 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2773 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2774 AccessTy.AddrSpace); 2775 } 2776 } 2777 2778 // Conservatively assume HasBaseReg is true for now. 2779 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) { 2780 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2781 LU.MaxOffset - NewOffset, HasBaseReg)) 2782 return false; 2783 NewMinOffset = NewOffset; 2784 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) { 2785 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2786 NewOffset - LU.MinOffset, HasBaseReg)) 2787 return false; 2788 NewMaxOffset = NewOffset; 2789 } 2790 2791 // FIXME: We should be able to handle some level of scalable offset support 2792 // for 'void', but in order to get basic support up and running this is 2793 // being left out. 2794 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && 2795 (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) 2796 return false; 2797 2798 // Update the use. 2799 LU.MinOffset = NewMinOffset; 2800 LU.MaxOffset = NewMaxOffset; 2801 LU.AccessTy = NewAccessTy; 2802 return true; 2803 } 2804 2805 /// Return an LSRUse index and an offset value for a fixup which needs the given 2806 /// expression, with the given kind and optional access type. Either reuse an 2807 /// existing use or create a new one, as needed. 2808 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, 2809 LSRUse::KindType Kind, 2810 MemAccessTy AccessTy) { 2811 const SCEV *Copy = Expr; 2812 Immediate Offset = ExtractImmediate(Expr, SE); 2813 2814 // Basic uses can't accept any offset, for example. 2815 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2816 Offset, /*HasBaseReg=*/ true)) { 2817 Expr = Copy; 2818 Offset = Immediate::getFixed(0); 2819 } 2820 2821 std::pair<UseMapTy::iterator, bool> P = 2822 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2823 if (!P.second) { 2824 // A use already existed with this base. 2825 size_t LUIdx = P.first->second; 2826 LSRUse &LU = Uses[LUIdx]; 2827 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2828 // Reuse this use. 2829 return std::make_pair(LUIdx, Offset); 2830 } 2831 2832 // Create a new use. 2833 size_t LUIdx = Uses.size(); 2834 P.first->second = LUIdx; 2835 Uses.push_back(LSRUse(Kind, AccessTy)); 2836 LSRUse &LU = Uses[LUIdx]; 2837 2838 LU.MinOffset = Offset; 2839 LU.MaxOffset = Offset; 2840 return std::make_pair(LUIdx, Offset); 2841 } 2842 2843 /// Delete the given use from the Uses list. 2844 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2845 if (&LU != &Uses.back()) 2846 std::swap(LU, Uses.back()); 2847 Uses.pop_back(); 2848 2849 // Update RegUses. 2850 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2851 } 2852 2853 /// Look for a use distinct from OrigLU which is has a formula that has the same 2854 /// registers as the given formula. 2855 LSRUse * 2856 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2857 const LSRUse &OrigLU) { 2858 // Search all uses for the formula. This could be more clever. 2859 for (LSRUse &LU : Uses) { 2860 // Check whether this use is close enough to OrigLU, to see whether it's 2861 // worthwhile looking through its formulae. 2862 // Ignore ICmpZero uses because they may contain formulae generated by 2863 // GenerateICmpZeroScales, in which case adding fixup offsets may 2864 // be invalid. 2865 if (&LU != &OrigLU && 2866 LU.Kind != LSRUse::ICmpZero && 2867 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2868 LU.WidestFixupType == OrigLU.WidestFixupType && 2869 LU.HasFormulaWithSameRegs(OrigF)) { 2870 // Scan through this use's formulae. 2871 for (const Formula &F : LU.Formulae) { 2872 // Check to see if this formula has the same registers and symbols 2873 // as OrigF. 2874 if (F.BaseRegs == OrigF.BaseRegs && 2875 F.ScaledReg == OrigF.ScaledReg && 2876 F.BaseGV == OrigF.BaseGV && 2877 F.Scale == OrigF.Scale && 2878 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2879 if (F.BaseOffset.isZero()) 2880 return &LU; 2881 // This is the formula where all the registers and symbols matched; 2882 // there aren't going to be any others. Since we declined it, we 2883 // can skip the rest of the formulae and proceed to the next LSRUse. 2884 break; 2885 } 2886 } 2887 } 2888 } 2889 2890 // Nothing looked good. 2891 return nullptr; 2892 } 2893 2894 void LSRInstance::CollectInterestingTypesAndFactors() { 2895 SmallSetVector<const SCEV *, 4> Strides; 2896 2897 // Collect interesting types and strides. 2898 SmallVector<const SCEV *, 4> Worklist; 2899 for (const IVStrideUse &U : IU) { 2900 const SCEV *Expr = IU.getExpr(U); 2901 if (!Expr) 2902 continue; 2903 2904 // Collect interesting types. 2905 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2906 2907 // Add strides for mentioned loops. 2908 Worklist.push_back(Expr); 2909 do { 2910 const SCEV *S = Worklist.pop_back_val(); 2911 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2912 if (AR->getLoop() == L) 2913 Strides.insert(AR->getStepRecurrence(SE)); 2914 Worklist.push_back(AR->getStart()); 2915 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2916 append_range(Worklist, Add->operands()); 2917 } 2918 } while (!Worklist.empty()); 2919 } 2920 2921 // Compute interesting factors from the set of interesting strides. 2922 for (SmallSetVector<const SCEV *, 4>::const_iterator 2923 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2924 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2925 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2926 const SCEV *OldStride = *I; 2927 const SCEV *NewStride = *NewStrideIter; 2928 2929 if (SE.getTypeSizeInBits(OldStride->getType()) != 2930 SE.getTypeSizeInBits(NewStride->getType())) { 2931 if (SE.getTypeSizeInBits(OldStride->getType()) > 2932 SE.getTypeSizeInBits(NewStride->getType())) 2933 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2934 else 2935 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2936 } 2937 if (const SCEVConstant *Factor = 2938 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2939 SE, true))) { 2940 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2941 Factors.insert(Factor->getAPInt().getSExtValue()); 2942 } else if (const SCEVConstant *Factor = 2943 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2944 NewStride, 2945 SE, true))) { 2946 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2947 Factors.insert(Factor->getAPInt().getSExtValue()); 2948 } 2949 } 2950 2951 // If all uses use the same type, don't bother looking for truncation-based 2952 // reuse. 2953 if (Types.size() == 1) 2954 Types.clear(); 2955 2956 LLVM_DEBUG(print_factors_and_types(dbgs())); 2957 } 2958 2959 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2960 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2961 /// IVStrideUses, we could partially skip this. 2962 static User::op_iterator 2963 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2964 Loop *L, ScalarEvolution &SE) { 2965 for(; OI != OE; ++OI) { 2966 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2967 if (!SE.isSCEVable(Oper->getType())) 2968 continue; 2969 2970 if (const SCEVAddRecExpr *AR = 2971 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2972 if (AR->getLoop() == L) 2973 break; 2974 } 2975 } 2976 } 2977 return OI; 2978 } 2979 2980 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2981 /// a convenient helper. 2982 static Value *getWideOperand(Value *Oper) { 2983 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2984 return Trunc->getOperand(0); 2985 return Oper; 2986 } 2987 2988 /// Return an approximation of this SCEV expression's "base", or NULL for any 2989 /// constant. Returning the expression itself is conservative. Returning a 2990 /// deeper subexpression is more precise and valid as long as it isn't less 2991 /// complex than another subexpression. For expressions involving multiple 2992 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2993 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2994 /// IVInc==b-a. 2995 /// 2996 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2997 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2998 static const SCEV *getExprBase(const SCEV *S) { 2999 switch (S->getSCEVType()) { 3000 default: // including scUnknown. 3001 return S; 3002 case scConstant: 3003 case scVScale: 3004 return nullptr; 3005 case scTruncate: 3006 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 3007 case scZeroExtend: 3008 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 3009 case scSignExtend: 3010 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 3011 case scAddExpr: { 3012 // Skip over scaled operands (scMulExpr) to follow add operands as long as 3013 // there's nothing more complex. 3014 // FIXME: not sure if we want to recognize negation. 3015 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 3016 for (const SCEV *SubExpr : reverse(Add->operands())) { 3017 if (SubExpr->getSCEVType() == scAddExpr) 3018 return getExprBase(SubExpr); 3019 3020 if (SubExpr->getSCEVType() != scMulExpr) 3021 return SubExpr; 3022 } 3023 return S; // all operands are scaled, be conservative. 3024 } 3025 case scAddRecExpr: 3026 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 3027 } 3028 llvm_unreachable("Unknown SCEV kind!"); 3029 } 3030 3031 /// Return true if the chain increment is profitable to expand into a loop 3032 /// invariant value, which may require its own register. A profitable chain 3033 /// increment will be an offset relative to the same base. We allow such offsets 3034 /// to potentially be used as chain increment as long as it's not obviously 3035 /// expensive to expand using real instructions. 3036 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 3037 const SCEV *IncExpr, 3038 ScalarEvolution &SE) { 3039 // Aggressively form chains when -stress-ivchain. 3040 if (StressIVChain) 3041 return true; 3042 3043 // Do not replace a constant offset from IV head with a nonconstant IV 3044 // increment. 3045 if (!isa<SCEVConstant>(IncExpr)) { 3046 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 3047 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 3048 return false; 3049 } 3050 3051 SmallPtrSet<const SCEV*, 8> Processed; 3052 return !isHighCostExpansion(IncExpr, Processed, SE); 3053 } 3054 3055 /// Return true if the number of registers needed for the chain is estimated to 3056 /// be less than the number required for the individual IV users. First prohibit 3057 /// any IV users that keep the IV live across increments (the Users set should 3058 /// be empty). Next count the number and type of increments in the chain. 3059 /// 3060 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 3061 /// effectively use postinc addressing modes. Only consider it profitable it the 3062 /// increments can be computed in fewer registers when chained. 3063 /// 3064 /// TODO: Consider IVInc free if it's already used in another chains. 3065 static bool isProfitableChain(IVChain &Chain, 3066 SmallPtrSetImpl<Instruction *> &Users, 3067 ScalarEvolution &SE, 3068 const TargetTransformInfo &TTI) { 3069 if (StressIVChain) 3070 return true; 3071 3072 if (!Chain.hasIncs()) 3073 return false; 3074 3075 if (!Users.empty()) { 3076 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 3077 for (Instruction *Inst 3078 : Users) { dbgs() << " " << *Inst << "\n"; }); 3079 return false; 3080 } 3081 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3082 3083 // The chain itself may require a register, so intialize cost to 1. 3084 int cost = 1; 3085 3086 // A complete chain likely eliminates the need for keeping the original IV in 3087 // a register. LSR does not currently know how to form a complete chain unless 3088 // the header phi already exists. 3089 if (isa<PHINode>(Chain.tailUserInst()) 3090 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 3091 --cost; 3092 } 3093 const SCEV *LastIncExpr = nullptr; 3094 unsigned NumConstIncrements = 0; 3095 unsigned NumVarIncrements = 0; 3096 unsigned NumReusedIncrements = 0; 3097 3098 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 3099 return true; 3100 3101 for (const IVInc &Inc : Chain) { 3102 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 3103 return true; 3104 if (Inc.IncExpr->isZero()) 3105 continue; 3106 3107 // Incrementing by zero or some constant is neutral. We assume constants can 3108 // be folded into an addressing mode or an add's immediate operand. 3109 if (isa<SCEVConstant>(Inc.IncExpr)) { 3110 ++NumConstIncrements; 3111 continue; 3112 } 3113 3114 if (Inc.IncExpr == LastIncExpr) 3115 ++NumReusedIncrements; 3116 else 3117 ++NumVarIncrements; 3118 3119 LastIncExpr = Inc.IncExpr; 3120 } 3121 // An IV chain with a single increment is handled by LSR's postinc 3122 // uses. However, a chain with multiple increments requires keeping the IV's 3123 // value live longer than it needs to be if chained. 3124 if (NumConstIncrements > 1) 3125 --cost; 3126 3127 // Materializing increment expressions in the preheader that didn't exist in 3128 // the original code may cost a register. For example, sign-extended array 3129 // indices can produce ridiculous increments like this: 3130 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 3131 cost += NumVarIncrements; 3132 3133 // Reusing variable increments likely saves a register to hold the multiple of 3134 // the stride. 3135 cost -= NumReusedIncrements; 3136 3137 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 3138 << "\n"); 3139 3140 return cost < 0; 3141 } 3142 3143 /// Add this IV user to an existing chain or make it the head of a new chain. 3144 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 3145 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 3146 // When IVs are used as types of varying widths, they are generally converted 3147 // to a wider type with some uses remaining narrow under a (free) trunc. 3148 Value *const NextIV = getWideOperand(IVOper); 3149 const SCEV *const OperExpr = SE.getSCEV(NextIV); 3150 const SCEV *const OperExprBase = getExprBase(OperExpr); 3151 3152 // Visit all existing chains. Check if its IVOper can be computed as a 3153 // profitable loop invariant increment from the last link in the Chain. 3154 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3155 const SCEV *LastIncExpr = nullptr; 3156 for (; ChainIdx < NChains; ++ChainIdx) { 3157 IVChain &Chain = IVChainVec[ChainIdx]; 3158 3159 // Prune the solution space aggressively by checking that both IV operands 3160 // are expressions that operate on the same unscaled SCEVUnknown. This 3161 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 3162 // first avoids creating extra SCEV expressions. 3163 if (!StressIVChain && Chain.ExprBase != OperExprBase) 3164 continue; 3165 3166 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 3167 if (PrevIV->getType() != NextIV->getType()) 3168 continue; 3169 3170 // A phi node terminates a chain. 3171 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 3172 continue; 3173 3174 // The increment must be loop-invariant so it can be kept in a register. 3175 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 3176 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 3177 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 3178 continue; 3179 3180 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 3181 LastIncExpr = IncExpr; 3182 break; 3183 } 3184 } 3185 // If we haven't found a chain, create a new one, unless we hit the max. Don't 3186 // bother for phi nodes, because they must be last in the chain. 3187 if (ChainIdx == NChains) { 3188 if (isa<PHINode>(UserInst)) 3189 return; 3190 if (NChains >= MaxChains && !StressIVChain) { 3191 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3192 return; 3193 } 3194 LastIncExpr = OperExpr; 3195 // IVUsers may have skipped over sign/zero extensions. We don't currently 3196 // attempt to form chains involving extensions unless they can be hoisted 3197 // into this loop's AddRec. 3198 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3199 return; 3200 ++NChains; 3201 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3202 OperExprBase)); 3203 ChainUsersVec.resize(NChains); 3204 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3205 << ") IV=" << *LastIncExpr << "\n"); 3206 } else { 3207 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3208 << ") IV+" << *LastIncExpr << "\n"); 3209 // Add this IV user to the end of the chain. 3210 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3211 } 3212 IVChain &Chain = IVChainVec[ChainIdx]; 3213 3214 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3215 // This chain's NearUsers become FarUsers. 3216 if (!LastIncExpr->isZero()) { 3217 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3218 NearUsers.end()); 3219 NearUsers.clear(); 3220 } 3221 3222 // All other uses of IVOperand become near uses of the chain. 3223 // We currently ignore intermediate values within SCEV expressions, assuming 3224 // they will eventually be used be the current chain, or can be computed 3225 // from one of the chain increments. To be more precise we could 3226 // transitively follow its user and only add leaf IV users to the set. 3227 for (User *U : IVOper->users()) { 3228 Instruction *OtherUse = dyn_cast<Instruction>(U); 3229 if (!OtherUse) 3230 continue; 3231 // Uses in the chain will no longer be uses if the chain is formed. 3232 // Include the head of the chain in this iteration (not Chain.begin()). 3233 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3234 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3235 for( ; IncIter != IncEnd; ++IncIter) { 3236 if (IncIter->UserInst == OtherUse) 3237 break; 3238 } 3239 if (IncIter != IncEnd) 3240 continue; 3241 3242 if (SE.isSCEVable(OtherUse->getType()) 3243 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3244 && IU.isIVUserOrOperand(OtherUse)) { 3245 continue; 3246 } 3247 NearUsers.insert(OtherUse); 3248 } 3249 3250 // Since this user is part of the chain, it's no longer considered a use 3251 // of the chain. 3252 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3253 } 3254 3255 /// Populate the vector of Chains. 3256 /// 3257 /// This decreases ILP at the architecture level. Targets with ample registers, 3258 /// multiple memory ports, and no register renaming probably don't want 3259 /// this. However, such targets should probably disable LSR altogether. 3260 /// 3261 /// The job of LSR is to make a reasonable choice of induction variables across 3262 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3263 /// ILP *within the loop* if the target wants it. 3264 /// 3265 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3266 /// will not reorder memory operations, it will recognize this as a chain, but 3267 /// will generate redundant IV increments. Ideally this would be corrected later 3268 /// by a smart scheduler: 3269 /// = A[i] 3270 /// = A[i+x] 3271 /// A[i] = 3272 /// A[i+x] = 3273 /// 3274 /// TODO: Walk the entire domtree within this loop, not just the path to the 3275 /// loop latch. This will discover chains on side paths, but requires 3276 /// maintaining multiple copies of the Chains state. 3277 void LSRInstance::CollectChains() { 3278 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3279 SmallVector<ChainUsers, 8> ChainUsersVec; 3280 3281 SmallVector<BasicBlock *,8> LatchPath; 3282 BasicBlock *LoopHeader = L->getHeader(); 3283 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3284 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3285 LatchPath.push_back(Rung->getBlock()); 3286 } 3287 LatchPath.push_back(LoopHeader); 3288 3289 // Walk the instruction stream from the loop header to the loop latch. 3290 for (BasicBlock *BB : reverse(LatchPath)) { 3291 for (Instruction &I : *BB) { 3292 // Skip instructions that weren't seen by IVUsers analysis. 3293 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3294 continue; 3295 3296 // Ignore users that are part of a SCEV expression. This way we only 3297 // consider leaf IV Users. This effectively rediscovers a portion of 3298 // IVUsers analysis but in program order this time. 3299 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3300 continue; 3301 3302 // Remove this instruction from any NearUsers set it may be in. 3303 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3304 ChainIdx < NChains; ++ChainIdx) { 3305 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3306 } 3307 // Search for operands that can be chained. 3308 SmallPtrSet<Instruction*, 4> UniqueOperands; 3309 User::op_iterator IVOpEnd = I.op_end(); 3310 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3311 while (IVOpIter != IVOpEnd) { 3312 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3313 if (UniqueOperands.insert(IVOpInst).second) 3314 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3315 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3316 } 3317 } // Continue walking down the instructions. 3318 } // Continue walking down the domtree. 3319 // Visit phi backedges to determine if the chain can generate the IV postinc. 3320 for (PHINode &PN : L->getHeader()->phis()) { 3321 if (!SE.isSCEVable(PN.getType())) 3322 continue; 3323 3324 Instruction *IncV = 3325 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3326 if (IncV) 3327 ChainInstruction(&PN, IncV, ChainUsersVec); 3328 } 3329 // Remove any unprofitable chains. 3330 unsigned ChainIdx = 0; 3331 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3332 UsersIdx < NChains; ++UsersIdx) { 3333 if (!isProfitableChain(IVChainVec[UsersIdx], 3334 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3335 continue; 3336 // Preserve the chain at UsesIdx. 3337 if (ChainIdx != UsersIdx) 3338 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3339 FinalizeChain(IVChainVec[ChainIdx]); 3340 ++ChainIdx; 3341 } 3342 IVChainVec.resize(ChainIdx); 3343 } 3344 3345 void LSRInstance::FinalizeChain(IVChain &Chain) { 3346 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3347 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3348 3349 for (const IVInc &Inc : Chain) { 3350 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3351 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3352 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3353 IVIncSet.insert(UseI); 3354 } 3355 } 3356 3357 /// Return true if the IVInc can be folded into an addressing mode. 3358 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3359 Value *Operand, const TargetTransformInfo &TTI) { 3360 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3361 Immediate IncOffset = Immediate::getZero(); 3362 if (IncConst) { 3363 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) 3364 return false; 3365 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue()); 3366 } else { 3367 // Look for mul(vscale, constant), to detect a scalable offset. 3368 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr); 3369 if (!IncVScale || IncVScale->getNumOperands() != 2 || 3370 !isa<SCEVVScale>(IncVScale->getOperand(1))) 3371 return false; 3372 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0)); 3373 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64) 3374 return false; 3375 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue()); 3376 } 3377 3378 if (!isAddressUse(TTI, UserInst, Operand)) 3379 return false; 3380 3381 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3382 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3383 IncOffset, /*HasBaseReg=*/false)) 3384 return false; 3385 3386 return true; 3387 } 3388 3389 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3390 /// user's operand from the previous IV user's operand. 3391 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3392 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3393 // Find the new IVOperand for the head of the chain. It may have been replaced 3394 // by LSR. 3395 const IVInc &Head = Chain.Incs[0]; 3396 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3397 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3398 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3399 IVOpEnd, L, SE); 3400 Value *IVSrc = nullptr; 3401 while (IVOpIter != IVOpEnd) { 3402 IVSrc = getWideOperand(*IVOpIter); 3403 3404 // If this operand computes the expression that the chain needs, we may use 3405 // it. (Check this after setting IVSrc which is used below.) 3406 // 3407 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3408 // narrow for the chain, so we can no longer use it. We do allow using a 3409 // wider phi, assuming the LSR checked for free truncation. In that case we 3410 // should already have a truncate on this operand such that 3411 // getSCEV(IVSrc) == IncExpr. 3412 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3413 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3414 break; 3415 } 3416 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3417 } 3418 if (IVOpIter == IVOpEnd) { 3419 // Gracefully give up on this chain. 3420 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3421 return; 3422 } 3423 assert(IVSrc && "Failed to find IV chain source"); 3424 3425 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3426 Type *IVTy = IVSrc->getType(); 3427 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3428 const SCEV *LeftOverExpr = nullptr; 3429 const SCEV *Accum = SE.getZero(IntTy); 3430 SmallVector<std::pair<const SCEV *, Value *>> Bases; 3431 Bases.emplace_back(Accum, IVSrc); 3432 3433 for (const IVInc &Inc : Chain) { 3434 Instruction *InsertPt = Inc.UserInst; 3435 if (isa<PHINode>(InsertPt)) 3436 InsertPt = L->getLoopLatch()->getTerminator(); 3437 3438 // IVOper will replace the current IV User's operand. IVSrc is the IV 3439 // value currently held in a register. 3440 Value *IVOper = IVSrc; 3441 if (!Inc.IncExpr->isZero()) { 3442 // IncExpr was the result of subtraction of two narrow values, so must 3443 // be signed. 3444 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3445 Accum = SE.getAddExpr(Accum, IncExpr); 3446 LeftOverExpr = LeftOverExpr ? 3447 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3448 } 3449 3450 // Look through each base to see if any can produce a nice addressing mode. 3451 bool FoundBase = false; 3452 for (auto [MapScev, MapIVOper] : reverse(Bases)) { 3453 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev); 3454 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) { 3455 if (!Remainder->isZero()) { 3456 Rewriter.clearPostInc(); 3457 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt); 3458 const SCEV *IVOperExpr = 3459 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV)); 3460 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3461 } else { 3462 IVOper = MapIVOper; 3463 } 3464 3465 FoundBase = true; 3466 break; 3467 } 3468 } 3469 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { 3470 // Expand the IV increment. 3471 Rewriter.clearPostInc(); 3472 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3473 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3474 SE.getUnknown(IncV)); 3475 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3476 3477 // If an IV increment can't be folded, use it as the next IV value. 3478 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3479 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3480 Bases.emplace_back(Accum, IVOper); 3481 IVSrc = IVOper; 3482 LeftOverExpr = nullptr; 3483 } 3484 } 3485 Type *OperTy = Inc.IVOperand->getType(); 3486 if (IVTy != OperTy) { 3487 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3488 "cannot extend a chained IV"); 3489 IRBuilder<> Builder(InsertPt); 3490 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3491 } 3492 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3493 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3494 DeadInsts.emplace_back(OperandIsInstr); 3495 } 3496 // If LSR created a new, wider phi, we may also replace its postinc. We only 3497 // do this if we also found a wide value for the head of the chain. 3498 if (isa<PHINode>(Chain.tailUserInst())) { 3499 for (PHINode &Phi : L->getHeader()->phis()) { 3500 if (Phi.getType() != IVSrc->getType()) 3501 continue; 3502 Instruction *PostIncV = dyn_cast<Instruction>( 3503 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3504 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3505 continue; 3506 Value *IVOper = IVSrc; 3507 Type *PostIncTy = PostIncV->getType(); 3508 if (IVTy != PostIncTy) { 3509 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3510 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3511 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3512 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3513 } 3514 Phi.replaceUsesOfWith(PostIncV, IVOper); 3515 DeadInsts.emplace_back(PostIncV); 3516 } 3517 } 3518 } 3519 3520 void LSRInstance::CollectFixupsAndInitialFormulae() { 3521 BranchInst *ExitBranch = nullptr; 3522 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3523 3524 // For calculating baseline cost 3525 SmallPtrSet<const SCEV *, 16> Regs; 3526 DenseSet<const SCEV *> VisitedRegs; 3527 DenseSet<size_t> VisitedLSRUse; 3528 3529 for (const IVStrideUse &U : IU) { 3530 Instruction *UserInst = U.getUser(); 3531 // Skip IV users that are part of profitable IV Chains. 3532 User::op_iterator UseI = 3533 find(UserInst->operands(), U.getOperandValToReplace()); 3534 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3535 if (IVIncSet.count(UseI)) { 3536 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3537 continue; 3538 } 3539 3540 LSRUse::KindType Kind = LSRUse::Basic; 3541 MemAccessTy AccessTy; 3542 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3543 Kind = LSRUse::Address; 3544 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3545 } 3546 3547 const SCEV *S = IU.getExpr(U); 3548 if (!S) 3549 continue; 3550 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3551 3552 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3553 // (N - i == 0), and this allows (N - i) to be the expression that we work 3554 // with rather than just N or i, so we can consider the register 3555 // requirements for both N and i at the same time. Limiting this code to 3556 // equality icmps is not a problem because all interesting loops use 3557 // equality icmps, thanks to IndVarSimplify. 3558 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3559 // If CI can be saved in some target, like replaced inside hardware loop 3560 // in PowerPC, no need to generate initial formulae for it. 3561 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3562 continue; 3563 if (CI->isEquality()) { 3564 // Swap the operands if needed to put the OperandValToReplace on the 3565 // left, for consistency. 3566 Value *NV = CI->getOperand(1); 3567 if (NV == U.getOperandValToReplace()) { 3568 CI->setOperand(1, CI->getOperand(0)); 3569 CI->setOperand(0, NV); 3570 NV = CI->getOperand(1); 3571 Changed = true; 3572 } 3573 3574 // x == y --> x - y == 0 3575 const SCEV *N = SE.getSCEV(NV); 3576 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3577 (!NV->getType()->isPointerTy() || 3578 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3579 // S is normalized, so normalize N before folding it into S 3580 // to keep the result normalized. 3581 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3582 if (!N) 3583 continue; 3584 Kind = LSRUse::ICmpZero; 3585 S = SE.getMinusSCEV(N, S); 3586 } else if (L->isLoopInvariant(NV) && 3587 (!isa<Instruction>(NV) || 3588 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3589 !NV->getType()->isPointerTy()) { 3590 // If we can't generally expand the expression (e.g. it contains 3591 // a divide), but it is already at a loop invariant point before the 3592 // loop, wrap it in an unknown (to prevent the expander from trying 3593 // to re-expand in a potentially unsafe way.) The restriction to 3594 // integer types is required because the unknown hides the base, and 3595 // SCEV can't compute the difference of two unknown pointers. 3596 N = SE.getUnknown(NV); 3597 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3598 if (!N) 3599 continue; 3600 Kind = LSRUse::ICmpZero; 3601 S = SE.getMinusSCEV(N, S); 3602 assert(!isa<SCEVCouldNotCompute>(S)); 3603 } 3604 3605 // -1 and the negations of all interesting strides (except the negation 3606 // of -1) are now also interesting. 3607 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3608 if (Factors[i] != -1) 3609 Factors.insert(-(uint64_t)Factors[i]); 3610 Factors.insert(-1); 3611 } 3612 } 3613 3614 // Get or create an LSRUse. 3615 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy); 3616 size_t LUIdx = P.first; 3617 Immediate Offset = P.second; 3618 LSRUse &LU = Uses[LUIdx]; 3619 3620 // Record the fixup. 3621 LSRFixup &LF = LU.getNewFixup(); 3622 LF.UserInst = UserInst; 3623 LF.OperandValToReplace = U.getOperandValToReplace(); 3624 LF.PostIncLoops = TmpPostIncLoops; 3625 LF.Offset = Offset; 3626 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3627 3628 // Create SCEV as Formula for calculating baseline cost 3629 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3630 Formula F; 3631 F.initialMatch(S, L, SE); 3632 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3633 VisitedLSRUse.insert(LUIdx); 3634 } 3635 3636 if (!LU.WidestFixupType || 3637 SE.getTypeSizeInBits(LU.WidestFixupType) < 3638 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3639 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3640 3641 // If this is the first use of this LSRUse, give it a formula. 3642 if (LU.Formulae.empty()) { 3643 InsertInitialFormula(S, LU, LUIdx); 3644 CountRegisters(LU.Formulae.back(), LUIdx); 3645 } 3646 } 3647 3648 LLVM_DEBUG(print_fixups(dbgs())); 3649 } 3650 3651 /// Insert a formula for the given expression into the given use, separating out 3652 /// loop-variant portions from loop-invariant and loop-computable portions. 3653 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3654 size_t LUIdx) { 3655 // Mark uses whose expressions cannot be expanded. 3656 if (!Rewriter.isSafeToExpand(S)) 3657 LU.RigidFormula = true; 3658 3659 Formula F; 3660 F.initialMatch(S, L, SE); 3661 bool Inserted = InsertFormula(LU, LUIdx, F); 3662 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3663 } 3664 3665 /// Insert a simple single-register formula for the given expression into the 3666 /// given use. 3667 void 3668 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3669 LSRUse &LU, size_t LUIdx) { 3670 Formula F; 3671 F.BaseRegs.push_back(S); 3672 F.HasBaseReg = true; 3673 bool Inserted = InsertFormula(LU, LUIdx, F); 3674 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3675 } 3676 3677 /// Note which registers are used by the given formula, updating RegUses. 3678 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3679 if (F.ScaledReg) 3680 RegUses.countRegister(F.ScaledReg, LUIdx); 3681 for (const SCEV *BaseReg : F.BaseRegs) 3682 RegUses.countRegister(BaseReg, LUIdx); 3683 } 3684 3685 /// If the given formula has not yet been inserted, add it to the list, and 3686 /// return true. Return false otherwise. 3687 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3688 // Do not insert formula that we will not be able to expand. 3689 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3690 "Formula is illegal"); 3691 3692 if (!LU.InsertFormula(F, *L)) 3693 return false; 3694 3695 CountRegisters(F, LUIdx); 3696 return true; 3697 } 3698 3699 /// Check for other uses of loop-invariant values which we're tracking. These 3700 /// other uses will pin these values in registers, making them less profitable 3701 /// for elimination. 3702 /// TODO: This currently misses non-constant addrec step registers. 3703 /// TODO: Should this give more weight to users inside the loop? 3704 void 3705 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3706 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3707 SmallPtrSet<const SCEV *, 32> Visited; 3708 3709 // Don't collect outside uses if we are favoring postinc - the instructions in 3710 // the loop are more important than the ones outside of it. 3711 if (AMK == TTI::AMK_PostIndexed) 3712 return; 3713 3714 while (!Worklist.empty()) { 3715 const SCEV *S = Worklist.pop_back_val(); 3716 3717 // Don't process the same SCEV twice 3718 if (!Visited.insert(S).second) 3719 continue; 3720 3721 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3722 append_range(Worklist, N->operands()); 3723 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3724 Worklist.push_back(C->getOperand()); 3725 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3726 Worklist.push_back(D->getLHS()); 3727 Worklist.push_back(D->getRHS()); 3728 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3729 const Value *V = US->getValue(); 3730 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3731 // Look for instructions defined outside the loop. 3732 if (L->contains(Inst)) continue; 3733 } else if (isa<Constant>(V)) 3734 // Constants can be re-materialized. 3735 continue; 3736 for (const Use &U : V->uses()) { 3737 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3738 // Ignore non-instructions. 3739 if (!UserInst) 3740 continue; 3741 // Don't bother if the instruction is an EHPad. 3742 if (UserInst->isEHPad()) 3743 continue; 3744 // Ignore instructions in other functions (as can happen with 3745 // Constants). 3746 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3747 continue; 3748 // Ignore instructions not dominated by the loop. 3749 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3750 UserInst->getParent() : 3751 cast<PHINode>(UserInst)->getIncomingBlock( 3752 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3753 if (!DT.dominates(L->getHeader(), UseBB)) 3754 continue; 3755 // Don't bother if the instruction is in a BB which ends in an EHPad. 3756 if (UseBB->getTerminator()->isEHPad()) 3757 continue; 3758 3759 // Ignore cases in which the currently-examined value could come from 3760 // a basic block terminated with an EHPad. This checks all incoming 3761 // blocks of the phi node since it is possible that the same incoming 3762 // value comes from multiple basic blocks, only some of which may end 3763 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3764 // pass would try to insert instructions into an EHPad, hitting an 3765 // assertion. 3766 if (isa<PHINode>(UserInst)) { 3767 const auto *PhiNode = cast<PHINode>(UserInst); 3768 bool HasIncompatibleEHPTerminatedBlock = false; 3769 llvm::Value *ExpectedValue = U; 3770 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3771 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3772 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3773 HasIncompatibleEHPTerminatedBlock = true; 3774 break; 3775 } 3776 } 3777 } 3778 if (HasIncompatibleEHPTerminatedBlock) { 3779 continue; 3780 } 3781 } 3782 3783 // Don't bother rewriting PHIs in catchswitch blocks. 3784 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3785 continue; 3786 // Ignore uses which are part of other SCEV expressions, to avoid 3787 // analyzing them multiple times. 3788 if (SE.isSCEVable(UserInst->getType())) { 3789 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3790 // If the user is a no-op, look through to its uses. 3791 if (!isa<SCEVUnknown>(UserS)) 3792 continue; 3793 if (UserS == US) { 3794 Worklist.push_back( 3795 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3796 continue; 3797 } 3798 } 3799 // Ignore icmp instructions which are already being analyzed. 3800 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3801 unsigned OtherIdx = !U.getOperandNo(); 3802 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3803 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3804 continue; 3805 } 3806 3807 std::pair<size_t, Immediate> P = 3808 getUse(S, LSRUse::Basic, MemAccessTy()); 3809 size_t LUIdx = P.first; 3810 Immediate Offset = P.second; 3811 LSRUse &LU = Uses[LUIdx]; 3812 LSRFixup &LF = LU.getNewFixup(); 3813 LF.UserInst = const_cast<Instruction *>(UserInst); 3814 LF.OperandValToReplace = U; 3815 LF.Offset = Offset; 3816 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3817 if (!LU.WidestFixupType || 3818 SE.getTypeSizeInBits(LU.WidestFixupType) < 3819 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3820 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3821 InsertSupplementalFormula(US, LU, LUIdx); 3822 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3823 break; 3824 } 3825 } 3826 } 3827 } 3828 3829 /// Split S into subexpressions which can be pulled out into separate 3830 /// registers. If C is non-null, multiply each subexpression by C. 3831 /// 3832 /// Return remainder expression after factoring the subexpressions captured by 3833 /// Ops. If Ops is complete, return NULL. 3834 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3835 SmallVectorImpl<const SCEV *> &Ops, 3836 const Loop *L, 3837 ScalarEvolution &SE, 3838 unsigned Depth = 0) { 3839 // Arbitrarily cap recursion to protect compile time. 3840 if (Depth >= 3) 3841 return S; 3842 3843 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3844 // Break out add operands. 3845 for (const SCEV *S : Add->operands()) { 3846 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3847 if (Remainder) 3848 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3849 } 3850 return nullptr; 3851 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3852 // Split a non-zero base out of an addrec. 3853 if (AR->getStart()->isZero() || !AR->isAffine()) 3854 return S; 3855 3856 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3857 C, Ops, L, SE, Depth+1); 3858 // Split the non-zero AddRec unless it is part of a nested recurrence that 3859 // does not pertain to this loop. 3860 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3861 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3862 Remainder = nullptr; 3863 } 3864 if (Remainder != AR->getStart()) { 3865 if (!Remainder) 3866 Remainder = SE.getConstant(AR->getType(), 0); 3867 return SE.getAddRecExpr(Remainder, 3868 AR->getStepRecurrence(SE), 3869 AR->getLoop(), 3870 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3871 SCEV::FlagAnyWrap); 3872 } 3873 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3874 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3875 if (Mul->getNumOperands() != 2) 3876 return S; 3877 if (const SCEVConstant *Op0 = 3878 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3879 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3880 const SCEV *Remainder = 3881 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3882 if (Remainder) 3883 Ops.push_back(SE.getMulExpr(C, Remainder)); 3884 return nullptr; 3885 } 3886 } 3887 return S; 3888 } 3889 3890 /// Return true if the SCEV represents a value that may end up as a 3891 /// post-increment operation. 3892 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3893 LSRUse &LU, const SCEV *S, const Loop *L, 3894 ScalarEvolution &SE) { 3895 if (LU.Kind != LSRUse::Address || 3896 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3897 return false; 3898 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3899 if (!AR) 3900 return false; 3901 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3902 if (!isa<SCEVConstant>(LoopStep)) 3903 return false; 3904 // Check if a post-indexed load/store can be used. 3905 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3906 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3907 const SCEV *LoopStart = AR->getStart(); 3908 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3909 return true; 3910 } 3911 return false; 3912 } 3913 3914 /// Helper function for LSRInstance::GenerateReassociations. 3915 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3916 const Formula &Base, 3917 unsigned Depth, size_t Idx, 3918 bool IsScaledReg) { 3919 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3920 // Don't generate reassociations for the base register of a value that 3921 // may generate a post-increment operator. The reason is that the 3922 // reassociations cause extra base+register formula to be created, 3923 // and possibly chosen, but the post-increment is more efficient. 3924 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3925 return; 3926 SmallVector<const SCEV *, 8> AddOps; 3927 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3928 if (Remainder) 3929 AddOps.push_back(Remainder); 3930 3931 if (AddOps.size() == 1) 3932 return; 3933 3934 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3935 JE = AddOps.end(); 3936 J != JE; ++J) { 3937 // Loop-variant "unknown" values are uninteresting; we won't be able to 3938 // do anything meaningful with them. 3939 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3940 continue; 3941 3942 // Don't pull a constant into a register if the constant could be folded 3943 // into an immediate field. 3944 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3945 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3946 continue; 3947 3948 // Collect all operands except *J. 3949 SmallVector<const SCEV *, 8> InnerAddOps( 3950 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3951 InnerAddOps.append(std::next(J), 3952 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3953 3954 // Don't leave just a constant behind in a register if the constant could 3955 // be folded into an immediate field. 3956 if (InnerAddOps.size() == 1 && 3957 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3958 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3959 continue; 3960 3961 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3962 if (InnerSum->isZero()) 3963 continue; 3964 Formula F = Base; 3965 3966 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) 3967 continue; 3968 3969 // Add the remaining pieces of the add back into the new formula. 3970 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3971 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3972 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3973 InnerSumSC->getValue()->getZExtValue())) { 3974 F.UnfoldedOffset = 3975 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3976 InnerSumSC->getValue()->getZExtValue()); 3977 if (IsScaledReg) 3978 F.ScaledReg = nullptr; 3979 else 3980 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3981 } else if (IsScaledReg) 3982 F.ScaledReg = InnerSum; 3983 else 3984 F.BaseRegs[Idx] = InnerSum; 3985 3986 // Add J as its own register, or an unfolded immediate. 3987 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3988 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3989 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3990 SC->getValue()->getZExtValue())) 3991 F.UnfoldedOffset = 3992 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3993 SC->getValue()->getZExtValue()); 3994 else 3995 F.BaseRegs.push_back(*J); 3996 // We may have changed the number of register in base regs, adjust the 3997 // formula accordingly. 3998 F.canonicalize(*L); 3999 4000 if (InsertFormula(LU, LUIdx, F)) 4001 // If that formula hadn't been seen before, recurse to find more like 4002 // it. 4003 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 4004 // Because just Depth is not enough to bound compile time. 4005 // This means that every time AddOps.size() is greater 16^x we will add 4006 // x to Depth. 4007 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 4008 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 4009 } 4010 } 4011 4012 /// Split out subexpressions from adds and the bases of addrecs. 4013 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 4014 Formula Base, unsigned Depth) { 4015 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 4016 // Arbitrarily cap recursion to protect compile time. 4017 if (Depth >= 3) 4018 return; 4019 4020 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4021 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 4022 4023 if (Base.Scale == 1) 4024 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 4025 /* Idx */ -1, /* IsScaledReg */ true); 4026 } 4027 4028 /// Generate a formula consisting of all of the loop-dominating registers added 4029 /// into a single register. 4030 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 4031 Formula Base) { 4032 // This method is only interesting on a plurality of registers. 4033 if (Base.BaseRegs.size() + (Base.Scale == 1) + 4034 (Base.UnfoldedOffset.isNonZero()) <= 4035 1) 4036 return; 4037 4038 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 4039 // processing the formula. 4040 Base.unscale(); 4041 SmallVector<const SCEV *, 4> Ops; 4042 Formula NewBase = Base; 4043 NewBase.BaseRegs.clear(); 4044 Type *CombinedIntegerType = nullptr; 4045 for (const SCEV *BaseReg : Base.BaseRegs) { 4046 if (SE.properlyDominates(BaseReg, L->getHeader()) && 4047 !SE.hasComputableLoopEvolution(BaseReg, L)) { 4048 if (!CombinedIntegerType) 4049 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 4050 Ops.push_back(BaseReg); 4051 } 4052 else 4053 NewBase.BaseRegs.push_back(BaseReg); 4054 } 4055 4056 // If no register is relevant, we're done. 4057 if (Ops.size() == 0) 4058 return; 4059 4060 // Utility function for generating the required variants of the combined 4061 // registers. 4062 auto GenerateFormula = [&](const SCEV *Sum) { 4063 Formula F = NewBase; 4064 4065 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 4066 // opportunity to fold something. For now, just ignore such cases 4067 // rather than proceed with zero in a register. 4068 if (Sum->isZero()) 4069 return; 4070 4071 F.BaseRegs.push_back(Sum); 4072 F.canonicalize(*L); 4073 (void)InsertFormula(LU, LUIdx, F); 4074 }; 4075 4076 // If we collected at least two registers, generate a formula combining them. 4077 if (Ops.size() > 1) { 4078 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 4079 GenerateFormula(SE.getAddExpr(OpsCopy)); 4080 } 4081 4082 // If we have an unfolded offset, generate a formula combining it with the 4083 // registers collected. 4084 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { 4085 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 4086 Ops.push_back(SE.getConstant(CombinedIntegerType, 4087 NewBase.UnfoldedOffset.getFixedValue(), true)); 4088 NewBase.UnfoldedOffset = Immediate::getFixed(0); 4089 GenerateFormula(SE.getAddExpr(Ops)); 4090 } 4091 } 4092 4093 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 4094 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 4095 const Formula &Base, size_t Idx, 4096 bool IsScaledReg) { 4097 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4098 GlobalValue *GV = ExtractSymbol(G, SE); 4099 if (G->isZero() || !GV) 4100 return; 4101 Formula F = Base; 4102 F.BaseGV = GV; 4103 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4104 return; 4105 if (IsScaledReg) 4106 F.ScaledReg = G; 4107 else 4108 F.BaseRegs[Idx] = G; 4109 (void)InsertFormula(LU, LUIdx, F); 4110 } 4111 4112 /// Generate reuse formulae using symbolic offsets. 4113 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 4114 Formula Base) { 4115 // We can't add a symbolic offset if the address already contains one. 4116 if (Base.BaseGV) return; 4117 4118 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4119 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 4120 if (Base.Scale == 1) 4121 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 4122 /* IsScaledReg */ true); 4123 } 4124 4125 /// Helper function for LSRInstance::GenerateConstantOffsets. 4126 void LSRInstance::GenerateConstantOffsetsImpl( 4127 LSRUse &LU, unsigned LUIdx, const Formula &Base, 4128 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { 4129 4130 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { 4131 Formula F = Base; 4132 if (!Base.BaseOffset.isCompatibleImmediate(Offset)) 4133 return; 4134 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset); 4135 4136 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 4137 // Add the offset to the base register. 4138 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType()); 4139 const SCEV *NewG = SE.getAddExpr(NewOffset, G); 4140 // If it cancelled out, drop the base register, otherwise update it. 4141 if (NewG->isZero()) { 4142 if (IsScaledReg) { 4143 F.Scale = 0; 4144 F.ScaledReg = nullptr; 4145 } else 4146 F.deleteBaseReg(F.BaseRegs[Idx]); 4147 F.canonicalize(*L); 4148 } else if (IsScaledReg) 4149 F.ScaledReg = NewG; 4150 else 4151 F.BaseRegs[Idx] = NewG; 4152 4153 (void)InsertFormula(LU, LUIdx, F); 4154 } 4155 }; 4156 4157 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4158 4159 // With constant offsets and constant steps, we can generate pre-inc 4160 // accesses by having the offset equal the step. So, for access #0 with a 4161 // step of 8, we generate a G - 8 base which would require the first access 4162 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 4163 // for itself and hopefully becomes the base for other accesses. This means 4164 // means that a single pre-indexed access can be generated to become the new 4165 // base pointer for each iteration of the loop, resulting in no extra add/sub 4166 // instructions for pointer updating. 4167 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 4168 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 4169 if (auto *StepRec = 4170 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 4171 const APInt &StepInt = StepRec->getAPInt(); 4172 int64_t Step = StepInt.isNegative() ? 4173 StepInt.getSExtValue() : StepInt.getZExtValue(); 4174 4175 for (Immediate Offset : Worklist) { 4176 if (Offset.isFixed()) { 4177 Offset = Immediate::getFixed(Offset.getFixedValue() - Step); 4178 GenerateOffset(G, Offset); 4179 } 4180 } 4181 } 4182 } 4183 } 4184 for (Immediate Offset : Worklist) 4185 GenerateOffset(G, Offset); 4186 4187 Immediate Imm = ExtractImmediate(G, SE); 4188 if (G->isZero() || Imm.isZero() || 4189 !Base.BaseOffset.isCompatibleImmediate(Imm)) 4190 return; 4191 Formula F = Base; 4192 F.BaseOffset = F.BaseOffset.addUnsigned(Imm); 4193 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4194 return; 4195 if (IsScaledReg) { 4196 F.ScaledReg = G; 4197 } else { 4198 F.BaseRegs[Idx] = G; 4199 // We may generate non canonical Formula if G is a recurrent expr reg 4200 // related with current loop while F.ScaledReg is not. 4201 F.canonicalize(*L); 4202 } 4203 (void)InsertFormula(LU, LUIdx, F); 4204 } 4205 4206 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 4207 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 4208 Formula Base) { 4209 // TODO: For now, just add the min and max offset, because it usually isn't 4210 // worthwhile looking at everything inbetween. 4211 SmallVector<Immediate, 2> Worklist; 4212 Worklist.push_back(LU.MinOffset); 4213 if (LU.MaxOffset != LU.MinOffset) 4214 Worklist.push_back(LU.MaxOffset); 4215 4216 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4217 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 4218 if (Base.Scale == 1) 4219 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 4220 /* IsScaledReg */ true); 4221 } 4222 4223 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 4224 /// == y -> x*c == y*c. 4225 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 4226 Formula Base) { 4227 if (LU.Kind != LSRUse::ICmpZero) return; 4228 4229 // Determine the integer type for the base formula. 4230 Type *IntTy = Base.getType(); 4231 if (!IntTy) return; 4232 if (SE.getTypeSizeInBits(IntTy) > 64) return; 4233 4234 // Don't do this if there is more than one offset. 4235 if (LU.MinOffset != LU.MaxOffset) return; 4236 4237 // Check if transformation is valid. It is illegal to multiply pointer. 4238 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4239 return; 4240 for (const SCEV *BaseReg : Base.BaseRegs) 4241 if (BaseReg->getType()->isPointerTy()) 4242 return; 4243 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 4244 4245 // Check each interesting stride. 4246 for (int64_t Factor : Factors) { 4247 // Check that Factor can be represented by IntTy 4248 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4249 continue; 4250 // Check that the multiplication doesn't overflow. 4251 if (Base.BaseOffset.isMin() && Factor == -1) 4252 continue; 4253 // Not supporting scalable immediates. 4254 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) 4255 continue; 4256 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor); 4257 assert(Factor != 0 && "Zero factor not expected!"); 4258 if (NewBaseOffset.getFixedValue() / Factor != 4259 Base.BaseOffset.getFixedValue()) 4260 continue; 4261 // If the offset will be truncated at this use, check that it is in bounds. 4262 if (!IntTy->isPointerTy() && 4263 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue())) 4264 continue; 4265 4266 // Check that multiplying with the use offset doesn't overflow. 4267 Immediate Offset = LU.MinOffset; 4268 if (Offset.isMin() && Factor == -1) 4269 continue; 4270 Offset = Offset.mulUnsigned(Factor); 4271 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) 4272 continue; 4273 // If the offset will be truncated at this use, check that it is in bounds. 4274 if (!IntTy->isPointerTy() && 4275 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue())) 4276 continue; 4277 4278 Formula F = Base; 4279 F.BaseOffset = NewBaseOffset; 4280 4281 // Check that this scale is legal. 4282 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4283 continue; 4284 4285 // Compensate for the use having MinOffset built into it. 4286 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset); 4287 4288 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4289 4290 // Check that multiplying with each base register doesn't overflow. 4291 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4292 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4293 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4294 goto next; 4295 } 4296 4297 // Check that multiplying with the scaled register doesn't overflow. 4298 if (F.ScaledReg) { 4299 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4300 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4301 continue; 4302 } 4303 4304 // Check that multiplying with the unfolded offset doesn't overflow. 4305 if (F.UnfoldedOffset.isNonZero()) { 4306 if (F.UnfoldedOffset.isMin() && Factor == -1) 4307 continue; 4308 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor); 4309 if (F.UnfoldedOffset.getFixedValue() / Factor != 4310 Base.UnfoldedOffset.getFixedValue()) 4311 continue; 4312 // If the offset will be truncated, check that it is in bounds. 4313 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( 4314 IntTy, F.UnfoldedOffset.getFixedValue())) 4315 continue; 4316 } 4317 4318 // If we make it here and it's legal, add it. 4319 (void)InsertFormula(LU, LUIdx, F); 4320 next:; 4321 } 4322 } 4323 4324 /// Generate stride factor reuse formulae by making use of scaled-offset address 4325 /// modes, for example. 4326 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4327 // Determine the integer type for the base formula. 4328 Type *IntTy = Base.getType(); 4329 if (!IntTy) return; 4330 4331 // If this Formula already has a scaled register, we can't add another one. 4332 // Try to unscale the formula to generate a better scale. 4333 if (Base.Scale != 0 && !Base.unscale()) 4334 return; 4335 4336 assert(Base.Scale == 0 && "unscale did not did its job!"); 4337 4338 // Check each interesting stride. 4339 for (int64_t Factor : Factors) { 4340 Base.Scale = Factor; 4341 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4342 // Check whether this scale is going to be legal. 4343 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4344 Base)) { 4345 // As a special-case, handle special out-of-loop Basic users specially. 4346 // TODO: Reconsider this special case. 4347 if (LU.Kind == LSRUse::Basic && 4348 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4349 LU.AccessTy, Base) && 4350 LU.AllFixupsOutsideLoop) 4351 LU.Kind = LSRUse::Special; 4352 else 4353 continue; 4354 } 4355 // For an ICmpZero, negating a solitary base register won't lead to 4356 // new solutions. 4357 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && 4358 Base.BaseOffset.isZero() && !Base.BaseGV) 4359 continue; 4360 // For each addrec base reg, if its loop is current loop, apply the scale. 4361 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4362 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4363 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4364 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4365 if (FactorS->isZero()) 4366 continue; 4367 // Divide out the factor, ignoring high bits, since we'll be 4368 // scaling the value back up in the end. 4369 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4370 if (!Quotient->isZero()) { 4371 // TODO: This could be optimized to avoid all the copying. 4372 Formula F = Base; 4373 F.ScaledReg = Quotient; 4374 F.deleteBaseReg(F.BaseRegs[i]); 4375 // The canonical representation of 1*reg is reg, which is already in 4376 // Base. In that case, do not try to insert the formula, it will be 4377 // rejected anyway. 4378 if (F.Scale == 1 && (F.BaseRegs.empty() || 4379 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4380 continue; 4381 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4382 // non canonical Formula with ScaledReg's loop not being L. 4383 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4384 F.canonicalize(*L); 4385 (void)InsertFormula(LU, LUIdx, F); 4386 } 4387 } 4388 } 4389 } 4390 } 4391 4392 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4393 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4394 /// perform the extension/truncate and normalize again, as the normalized form 4395 /// can result in folds that are not valid in the post-inc use contexts. The 4396 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4397 static const SCEV * 4398 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4399 const SCEV *Expr, Type *ToTy, 4400 ScalarEvolution &SE) { 4401 const SCEV *Result = nullptr; 4402 for (auto &L : Loops) { 4403 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4404 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4405 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4406 if (!New || (Result && New != Result)) 4407 return nullptr; 4408 Result = New; 4409 } 4410 4411 assert(Result && "failed to create expression"); 4412 return Result; 4413 } 4414 4415 /// Generate reuse formulae from different IV types. 4416 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4417 // Don't bother truncating symbolic values. 4418 if (Base.BaseGV) return; 4419 4420 // Determine the integer type for the base formula. 4421 Type *DstTy = Base.getType(); 4422 if (!DstTy) return; 4423 if (DstTy->isPointerTy()) 4424 return; 4425 4426 // It is invalid to extend a pointer type so exit early if ScaledReg or 4427 // any of the BaseRegs are pointers. 4428 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4429 return; 4430 if (any_of(Base.BaseRegs, 4431 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4432 return; 4433 4434 SmallVector<PostIncLoopSet> Loops; 4435 for (auto &LF : LU.Fixups) 4436 Loops.push_back(LF.PostIncLoops); 4437 4438 for (Type *SrcTy : Types) { 4439 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4440 Formula F = Base; 4441 4442 // Sometimes SCEV is able to prove zero during ext transform. It may 4443 // happen if SCEV did not do all possible transforms while creating the 4444 // initial node (maybe due to depth limitations), but it can do them while 4445 // taking ext. 4446 if (F.ScaledReg) { 4447 const SCEV *NewScaledReg = 4448 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4449 if (!NewScaledReg || NewScaledReg->isZero()) 4450 continue; 4451 F.ScaledReg = NewScaledReg; 4452 } 4453 bool HasZeroBaseReg = false; 4454 for (const SCEV *&BaseReg : F.BaseRegs) { 4455 const SCEV *NewBaseReg = 4456 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4457 if (!NewBaseReg || NewBaseReg->isZero()) { 4458 HasZeroBaseReg = true; 4459 break; 4460 } 4461 BaseReg = NewBaseReg; 4462 } 4463 if (HasZeroBaseReg) 4464 continue; 4465 4466 // TODO: This assumes we've done basic processing on all uses and 4467 // have an idea what the register usage is. 4468 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4469 continue; 4470 4471 F.canonicalize(*L); 4472 (void)InsertFormula(LU, LUIdx, F); 4473 } 4474 } 4475 } 4476 4477 namespace { 4478 4479 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4480 /// modifications so that the search phase doesn't have to worry about the data 4481 /// structures moving underneath it. 4482 struct WorkItem { 4483 size_t LUIdx; 4484 Immediate Imm; 4485 const SCEV *OrigReg; 4486 4487 WorkItem(size_t LI, Immediate I, const SCEV *R) 4488 : LUIdx(LI), Imm(I), OrigReg(R) {} 4489 4490 void print(raw_ostream &OS) const; 4491 void dump() const; 4492 }; 4493 4494 } // end anonymous namespace 4495 4496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4497 void WorkItem::print(raw_ostream &OS) const { 4498 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4499 << " , add offset " << Imm; 4500 } 4501 4502 LLVM_DUMP_METHOD void WorkItem::dump() const { 4503 print(errs()); errs() << '\n'; 4504 } 4505 #endif 4506 4507 /// Look for registers which are a constant distance apart and try to form reuse 4508 /// opportunities between them. 4509 void LSRInstance::GenerateCrossUseConstantOffsets() { 4510 // Group the registers by their value without any added constant offset. 4511 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; 4512 4513 DenseMap<const SCEV *, ImmMapTy> Map; 4514 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4515 SmallVector<const SCEV *, 8> Sequence; 4516 for (const SCEV *Use : RegUses) { 4517 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4518 Immediate Imm = ExtractImmediate(Reg, SE); 4519 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4520 if (Pair.second) 4521 Sequence.push_back(Reg); 4522 Pair.first->second.insert(std::make_pair(Imm, Use)); 4523 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4524 } 4525 4526 // Now examine each set of registers with the same base value. Build up 4527 // a list of work to do and do the work in a separate step so that we're 4528 // not adding formulae and register counts while we're searching. 4529 SmallVector<WorkItem, 32> WorkItems; 4530 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> 4531 UniqueItems; 4532 for (const SCEV *Reg : Sequence) { 4533 const ImmMapTy &Imms = Map.find(Reg)->second; 4534 4535 // It's not worthwhile looking for reuse if there's only one offset. 4536 if (Imms.size() == 1) 4537 continue; 4538 4539 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4540 for (const auto &Entry 4541 : Imms) dbgs() 4542 << ' ' << Entry.first; 4543 dbgs() << '\n'); 4544 4545 // Examine each offset. 4546 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4547 J != JE; ++J) { 4548 const SCEV *OrigReg = J->second; 4549 4550 Immediate JImm = J->first; 4551 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4552 4553 if (!isa<SCEVConstant>(OrigReg) && 4554 UsedByIndicesMap[Reg].count() == 1) { 4555 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4556 << '\n'); 4557 continue; 4558 } 4559 4560 // Conservatively examine offsets between this orig reg a few selected 4561 // other orig regs. 4562 Immediate First = Imms.begin()->first; 4563 Immediate Last = std::prev(Imms.end())->first; 4564 if (!First.isCompatibleImmediate(Last)) { 4565 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4566 << "\n"); 4567 continue; 4568 } 4569 // Only scalable if both terms are scalable, or if one is scalable and 4570 // the other is 0. 4571 bool Scalable = First.isScalable() || Last.isScalable(); 4572 int64_t FI = First.getKnownMinValue(); 4573 int64_t LI = Last.getKnownMinValue(); 4574 // Compute (First + Last) / 2 without overflow using the fact that 4575 // First + Last = 2 * (First + Last) + (First ^ Last). 4576 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); 4577 // If the result is negative and FI is odd and LI even (or vice versa), 4578 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4579 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); 4580 ImmMapTy::const_iterator OtherImms[] = { 4581 Imms.begin(), std::prev(Imms.end()), 4582 Imms.lower_bound(Immediate::get(Avg, Scalable))}; 4583 for (const auto &M : OtherImms) { 4584 if (M == J || M == JE) continue; 4585 if (!JImm.isCompatibleImmediate(M->first)) 4586 continue; 4587 4588 // Compute the difference between the two. 4589 Immediate Imm = JImm.subUnsigned(M->first); 4590 for (unsigned LUIdx : UsedByIndices.set_bits()) 4591 // Make a memo of this use, offset, and register tuple. 4592 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4593 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4594 } 4595 } 4596 } 4597 4598 Map.clear(); 4599 Sequence.clear(); 4600 UsedByIndicesMap.clear(); 4601 UniqueItems.clear(); 4602 4603 // Now iterate through the worklist and add new formulae. 4604 for (const WorkItem &WI : WorkItems) { 4605 size_t LUIdx = WI.LUIdx; 4606 LSRUse &LU = Uses[LUIdx]; 4607 Immediate Imm = WI.Imm; 4608 const SCEV *OrigReg = WI.OrigReg; 4609 4610 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4611 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy); 4612 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4613 4614 // TODO: Use a more targeted data structure. 4615 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4616 Formula F = LU.Formulae[L]; 4617 // FIXME: The code for the scaled and unscaled registers looks 4618 // very similar but slightly different. Investigate if they 4619 // could be merged. That way, we would not have to unscale the 4620 // Formula. 4621 F.unscale(); 4622 // Use the immediate in the scaled register. 4623 if (F.ScaledReg == OrigReg) { 4624 if (!F.BaseOffset.isCompatibleImmediate(Imm)) 4625 continue; 4626 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale)); 4627 // Don't create 50 + reg(-50). 4628 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy); 4629 if (F.referencesReg(S)) 4630 continue; 4631 Formula NewF = F; 4632 NewF.BaseOffset = Offset; 4633 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4634 NewF)) 4635 continue; 4636 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4637 4638 // If the new scale is a constant in a register, and adding the constant 4639 // value to the immediate would produce a value closer to zero than the 4640 // immediate itself, then the formula isn't worthwhile. 4641 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) { 4642 // FIXME: Do we need to do something for scalable immediates here? 4643 // A scalable SCEV won't be constant, but we might still have 4644 // something in the offset? Bail out for now to be safe. 4645 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4646 continue; 4647 if (C->getValue()->isNegative() != 4648 (NewF.BaseOffset.isLessThanZero()) && 4649 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4650 .ule(std::abs(NewF.BaseOffset.getFixedValue()))) 4651 continue; 4652 } 4653 4654 // OK, looks good. 4655 NewF.canonicalize(*this->L); 4656 (void)InsertFormula(LU, LUIdx, NewF); 4657 } else { 4658 // Use the immediate in a base register. 4659 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4660 const SCEV *BaseReg = F.BaseRegs[N]; 4661 if (BaseReg != OrigReg) 4662 continue; 4663 Formula NewF = F; 4664 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || 4665 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || 4666 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset)) 4667 continue; 4668 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm); 4669 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4670 LU.Kind, LU.AccessTy, NewF)) { 4671 if (AMK == TTI::AMK_PostIndexed && 4672 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4673 continue; 4674 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm); 4675 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset)) 4676 continue; 4677 NewF = F; 4678 NewF.UnfoldedOffset = NewUnfoldedOffset; 4679 } 4680 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4681 4682 // If the new formula has a constant in a register, and adding the 4683 // constant value to the immediate would produce a value closer to 4684 // zero than the immediate itself, then the formula isn't worthwhile. 4685 for (const SCEV *NewReg : NewF.BaseRegs) 4686 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) { 4687 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4688 goto skip_formula; 4689 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4690 .abs() 4691 .slt(std::abs(NewF.BaseOffset.getFixedValue())) && 4692 (C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4693 .countr_zero() >= 4694 (unsigned)llvm::countr_zero<uint64_t>( 4695 NewF.BaseOffset.getFixedValue())) 4696 goto skip_formula; 4697 } 4698 4699 // Ok, looks good. 4700 NewF.canonicalize(*this->L); 4701 (void)InsertFormula(LU, LUIdx, NewF); 4702 break; 4703 skip_formula:; 4704 } 4705 } 4706 } 4707 } 4708 } 4709 4710 /// Generate formulae for each use. 4711 void 4712 LSRInstance::GenerateAllReuseFormulae() { 4713 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4714 // queries are more precise. 4715 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4716 LSRUse &LU = Uses[LUIdx]; 4717 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4718 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4719 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4720 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4721 } 4722 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4723 LSRUse &LU = Uses[LUIdx]; 4724 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4725 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4727 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4729 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4730 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4731 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4732 } 4733 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4734 LSRUse &LU = Uses[LUIdx]; 4735 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4736 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4737 } 4738 4739 GenerateCrossUseConstantOffsets(); 4740 4741 LLVM_DEBUG(dbgs() << "\n" 4742 "After generating reuse formulae:\n"; 4743 print_uses(dbgs())); 4744 } 4745 4746 /// If there are multiple formulae with the same set of registers used 4747 /// by other uses, pick the best one and delete the others. 4748 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4749 DenseSet<const SCEV *> VisitedRegs; 4750 SmallPtrSet<const SCEV *, 16> Regs; 4751 SmallPtrSet<const SCEV *, 16> LoserRegs; 4752 #ifndef NDEBUG 4753 bool ChangedFormulae = false; 4754 #endif 4755 4756 // Collect the best formula for each unique set of shared registers. This 4757 // is reset for each use. 4758 using BestFormulaeTy = 4759 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4760 4761 BestFormulaeTy BestFormulae; 4762 4763 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4764 LSRUse &LU = Uses[LUIdx]; 4765 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4766 dbgs() << '\n'); 4767 4768 bool Any = false; 4769 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4770 FIdx != NumForms; ++FIdx) { 4771 Formula &F = LU.Formulae[FIdx]; 4772 4773 // Some formulas are instant losers. For example, they may depend on 4774 // nonexistent AddRecs from other loops. These need to be filtered 4775 // immediately, otherwise heuristics could choose them over others leading 4776 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4777 // avoids the need to recompute this information across formulae using the 4778 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4779 // the corresponding bad register from the Regs set. 4780 Cost CostF(L, SE, TTI, AMK); 4781 Regs.clear(); 4782 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4783 if (CostF.isLoser()) { 4784 // During initial formula generation, undesirable formulae are generated 4785 // by uses within other loops that have some non-trivial address mode or 4786 // use the postinc form of the IV. LSR needs to provide these formulae 4787 // as the basis of rediscovering the desired formula that uses an AddRec 4788 // corresponding to the existing phi. Once all formulae have been 4789 // generated, these initial losers may be pruned. 4790 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4791 dbgs() << "\n"); 4792 } 4793 else { 4794 SmallVector<const SCEV *, 4> Key; 4795 for (const SCEV *Reg : F.BaseRegs) { 4796 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4797 Key.push_back(Reg); 4798 } 4799 if (F.ScaledReg && 4800 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4801 Key.push_back(F.ScaledReg); 4802 // Unstable sort by host order ok, because this is only used for 4803 // uniquifying. 4804 llvm::sort(Key); 4805 4806 std::pair<BestFormulaeTy::const_iterator, bool> P = 4807 BestFormulae.insert(std::make_pair(Key, FIdx)); 4808 if (P.second) 4809 continue; 4810 4811 Formula &Best = LU.Formulae[P.first->second]; 4812 4813 Cost CostBest(L, SE, TTI, AMK); 4814 Regs.clear(); 4815 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4816 if (CostF.isLess(CostBest)) 4817 std::swap(F, Best); 4818 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4819 dbgs() << "\n" 4820 " in favor of formula "; 4821 Best.print(dbgs()); dbgs() << '\n'); 4822 } 4823 #ifndef NDEBUG 4824 ChangedFormulae = true; 4825 #endif 4826 LU.DeleteFormula(F); 4827 --FIdx; 4828 --NumForms; 4829 Any = true; 4830 } 4831 4832 // Now that we've filtered out some formulae, recompute the Regs set. 4833 if (Any) 4834 LU.RecomputeRegs(LUIdx, RegUses); 4835 4836 // Reset this to prepare for the next use. 4837 BestFormulae.clear(); 4838 } 4839 4840 LLVM_DEBUG(if (ChangedFormulae) { 4841 dbgs() << "\n" 4842 "After filtering out undesirable candidates:\n"; 4843 print_uses(dbgs()); 4844 }); 4845 } 4846 4847 /// Estimate the worst-case number of solutions the solver might have to 4848 /// consider. It almost never considers this many solutions because it prune the 4849 /// search space, but the pruning isn't always sufficient. 4850 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4851 size_t Power = 1; 4852 for (const LSRUse &LU : Uses) { 4853 size_t FSize = LU.Formulae.size(); 4854 if (FSize >= ComplexityLimit) { 4855 Power = ComplexityLimit; 4856 break; 4857 } 4858 Power *= FSize; 4859 if (Power >= ComplexityLimit) 4860 break; 4861 } 4862 return Power; 4863 } 4864 4865 /// When one formula uses a superset of the registers of another formula, it 4866 /// won't help reduce register pressure (though it may not necessarily hurt 4867 /// register pressure); remove it to simplify the system. 4868 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4869 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4870 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4871 4872 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4873 "which use a superset of registers used by other " 4874 "formulae.\n"); 4875 4876 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4877 LSRUse &LU = Uses[LUIdx]; 4878 bool Any = false; 4879 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4880 Formula &F = LU.Formulae[i]; 4881 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) 4882 continue; 4883 // Look for a formula with a constant or GV in a register. If the use 4884 // also has a formula with that same value in an immediate field, 4885 // delete the one that uses a register. 4886 for (SmallVectorImpl<const SCEV *>::const_iterator 4887 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4888 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4889 Formula NewF = F; 4890 //FIXME: Formulas should store bitwidth to do wrapping properly. 4891 // See PR41034. 4892 NewF.BaseOffset = 4893 Immediate::getFixed(NewF.BaseOffset.getFixedValue() + 4894 (uint64_t)C->getValue()->getSExtValue()); 4895 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4896 (I - F.BaseRegs.begin())); 4897 if (LU.HasFormulaWithSameRegs(NewF)) { 4898 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4899 dbgs() << '\n'); 4900 LU.DeleteFormula(F); 4901 --i; 4902 --e; 4903 Any = true; 4904 break; 4905 } 4906 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4907 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4908 if (!F.BaseGV) { 4909 Formula NewF = F; 4910 NewF.BaseGV = GV; 4911 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4912 (I - F.BaseRegs.begin())); 4913 if (LU.HasFormulaWithSameRegs(NewF)) { 4914 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4915 dbgs() << '\n'); 4916 LU.DeleteFormula(F); 4917 --i; 4918 --e; 4919 Any = true; 4920 break; 4921 } 4922 } 4923 } 4924 } 4925 } 4926 if (Any) 4927 LU.RecomputeRegs(LUIdx, RegUses); 4928 } 4929 4930 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4931 } 4932 } 4933 4934 /// When there are many registers for expressions like A, A+1, A+2, etc., 4935 /// allocate a single register for them. 4936 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4937 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4938 return; 4939 4940 LLVM_DEBUG( 4941 dbgs() << "The search space is too complex.\n" 4942 "Narrowing the search space by assuming that uses separated " 4943 "by a constant offset will use the same registers.\n"); 4944 4945 // This is especially useful for unrolled loops. 4946 4947 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4948 LSRUse &LU = Uses[LUIdx]; 4949 for (const Formula &F : LU.Formulae) { 4950 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) 4951 continue; 4952 4953 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4954 if (!LUThatHas) 4955 continue; 4956 4957 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4958 LU.Kind, LU.AccessTy)) 4959 continue; 4960 4961 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4962 4963 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4964 4965 // Transfer the fixups of LU to LUThatHas. 4966 for (LSRFixup &Fixup : LU.Fixups) { 4967 Fixup.Offset += F.BaseOffset; 4968 LUThatHas->pushFixup(Fixup); 4969 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4970 } 4971 4972 // Delete formulae from the new use which are no longer legal. 4973 bool Any = false; 4974 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4975 Formula &F = LUThatHas->Formulae[i]; 4976 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4977 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4978 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4979 LUThatHas->DeleteFormula(F); 4980 --i; 4981 --e; 4982 Any = true; 4983 } 4984 } 4985 4986 if (Any) 4987 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4988 4989 // Delete the old use. 4990 DeleteUse(LU, LUIdx); 4991 --LUIdx; 4992 --NumUses; 4993 break; 4994 } 4995 } 4996 4997 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4998 } 4999 5000 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 5001 /// we've done more filtering, as it may be able to find more formulae to 5002 /// eliminate. 5003 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 5004 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5005 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5006 5007 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 5008 "undesirable dedicated registers.\n"); 5009 5010 FilterOutUndesirableDedicatedRegisters(); 5011 5012 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5013 } 5014 } 5015 5016 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 5017 /// Pick the best one and delete the others. 5018 /// This narrowing heuristic is to keep as many formulae with different 5019 /// Scale and ScaledReg pair as possible while narrowing the search space. 5020 /// The benefit is that it is more likely to find out a better solution 5021 /// from a formulae set with more Scale and ScaledReg variations than 5022 /// a formulae set with the same Scale and ScaledReg. The picking winner 5023 /// reg heuristic will often keep the formulae with the same Scale and 5024 /// ScaledReg and filter others, and we want to avoid that if possible. 5025 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 5026 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5027 return; 5028 5029 LLVM_DEBUG( 5030 dbgs() << "The search space is too complex.\n" 5031 "Narrowing the search space by choosing the best Formula " 5032 "from the Formulae with the same Scale and ScaledReg.\n"); 5033 5034 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 5035 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 5036 5037 BestFormulaeTy BestFormulae; 5038 #ifndef NDEBUG 5039 bool ChangedFormulae = false; 5040 #endif 5041 DenseSet<const SCEV *> VisitedRegs; 5042 SmallPtrSet<const SCEV *, 16> Regs; 5043 5044 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5045 LSRUse &LU = Uses[LUIdx]; 5046 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 5047 dbgs() << '\n'); 5048 5049 // Return true if Formula FA is better than Formula FB. 5050 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 5051 // First we will try to choose the Formula with fewer new registers. 5052 // For a register used by current Formula, the more the register is 5053 // shared among LSRUses, the less we increase the register number 5054 // counter of the formula. 5055 size_t FARegNum = 0; 5056 for (const SCEV *Reg : FA.BaseRegs) { 5057 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5058 FARegNum += (NumUses - UsedByIndices.count() + 1); 5059 } 5060 size_t FBRegNum = 0; 5061 for (const SCEV *Reg : FB.BaseRegs) { 5062 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5063 FBRegNum += (NumUses - UsedByIndices.count() + 1); 5064 } 5065 if (FARegNum != FBRegNum) 5066 return FARegNum < FBRegNum; 5067 5068 // If the new register numbers are the same, choose the Formula with 5069 // less Cost. 5070 Cost CostFA(L, SE, TTI, AMK); 5071 Cost CostFB(L, SE, TTI, AMK); 5072 Regs.clear(); 5073 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 5074 Regs.clear(); 5075 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 5076 return CostFA.isLess(CostFB); 5077 }; 5078 5079 bool Any = false; 5080 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5081 ++FIdx) { 5082 Formula &F = LU.Formulae[FIdx]; 5083 if (!F.ScaledReg) 5084 continue; 5085 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 5086 if (P.second) 5087 continue; 5088 5089 Formula &Best = LU.Formulae[P.first->second]; 5090 if (IsBetterThan(F, Best)) 5091 std::swap(F, Best); 5092 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5093 dbgs() << "\n" 5094 " in favor of formula "; 5095 Best.print(dbgs()); dbgs() << '\n'); 5096 #ifndef NDEBUG 5097 ChangedFormulae = true; 5098 #endif 5099 LU.DeleteFormula(F); 5100 --FIdx; 5101 --NumForms; 5102 Any = true; 5103 } 5104 if (Any) 5105 LU.RecomputeRegs(LUIdx, RegUses); 5106 5107 // Reset this to prepare for the next use. 5108 BestFormulae.clear(); 5109 } 5110 5111 LLVM_DEBUG(if (ChangedFormulae) { 5112 dbgs() << "\n" 5113 "After filtering out undesirable candidates:\n"; 5114 print_uses(dbgs()); 5115 }); 5116 } 5117 5118 /// If we are over the complexity limit, filter out any post-inc prefering 5119 /// variables to only post-inc values. 5120 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 5121 if (AMK != TTI::AMK_PostIndexed) 5122 return; 5123 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5124 return; 5125 5126 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 5127 "Narrowing the search space by choosing the lowest " 5128 "register Formula for PostInc Uses.\n"); 5129 5130 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5131 LSRUse &LU = Uses[LUIdx]; 5132 5133 if (LU.Kind != LSRUse::Address) 5134 continue; 5135 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 5136 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 5137 continue; 5138 5139 size_t MinRegs = std::numeric_limits<size_t>::max(); 5140 for (const Formula &F : LU.Formulae) 5141 MinRegs = std::min(F.getNumRegs(), MinRegs); 5142 5143 bool Any = false; 5144 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5145 ++FIdx) { 5146 Formula &F = LU.Formulae[FIdx]; 5147 if (F.getNumRegs() > MinRegs) { 5148 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5149 dbgs() << "\n"); 5150 LU.DeleteFormula(F); 5151 --FIdx; 5152 --NumForms; 5153 Any = true; 5154 } 5155 } 5156 if (Any) 5157 LU.RecomputeRegs(LUIdx, RegUses); 5158 5159 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5160 break; 5161 } 5162 5163 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5164 } 5165 5166 /// The function delete formulas with high registers number expectation. 5167 /// Assuming we don't know the value of each formula (already delete 5168 /// all inefficient), generate probability of not selecting for each 5169 /// register. 5170 /// For example, 5171 /// Use1: 5172 /// reg(a) + reg({0,+,1}) 5173 /// reg(a) + reg({-1,+,1}) + 1 5174 /// reg({a,+,1}) 5175 /// Use2: 5176 /// reg(b) + reg({0,+,1}) 5177 /// reg(b) + reg({-1,+,1}) + 1 5178 /// reg({b,+,1}) 5179 /// Use3: 5180 /// reg(c) + reg(b) + reg({0,+,1}) 5181 /// reg(c) + reg({b,+,1}) 5182 /// 5183 /// Probability of not selecting 5184 /// Use1 Use2 Use3 5185 /// reg(a) (1/3) * 1 * 1 5186 /// reg(b) 1 * (1/3) * (1/2) 5187 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 5188 /// reg({-1,+,1}) (2/3) * (2/3) * 1 5189 /// reg({a,+,1}) (2/3) * 1 * 1 5190 /// reg({b,+,1}) 1 * (2/3) * (2/3) 5191 /// reg(c) 1 * 1 * 0 5192 /// 5193 /// Now count registers number mathematical expectation for each formula: 5194 /// Note that for each use we exclude probability if not selecting for the use. 5195 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 5196 /// probabilty 1/3 of not selecting for Use1). 5197 /// Use1: 5198 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 5199 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 5200 /// reg({a,+,1}) 1 5201 /// Use2: 5202 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 5203 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 5204 /// reg({b,+,1}) 2/3 5205 /// Use3: 5206 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 5207 /// reg(c) + reg({b,+,1}) 1 + 2/3 5208 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 5209 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5210 return; 5211 // Ok, we have too many of formulae on our hands to conveniently handle. 5212 // Use a rough heuristic to thin out the list. 5213 5214 // Set of Regs wich will be 100% used in final solution. 5215 // Used in each formula of a solution (in example above this is reg(c)). 5216 // We can skip them in calculations. 5217 SmallPtrSet<const SCEV *, 4> UniqRegs; 5218 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5219 5220 // Map each register to probability of not selecting 5221 DenseMap <const SCEV *, float> RegNumMap; 5222 for (const SCEV *Reg : RegUses) { 5223 if (UniqRegs.count(Reg)) 5224 continue; 5225 float PNotSel = 1; 5226 for (const LSRUse &LU : Uses) { 5227 if (!LU.Regs.count(Reg)) 5228 continue; 5229 float P = LU.getNotSelectedProbability(Reg); 5230 if (P != 0.0) 5231 PNotSel *= P; 5232 else 5233 UniqRegs.insert(Reg); 5234 } 5235 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 5236 } 5237 5238 LLVM_DEBUG( 5239 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 5240 5241 // Delete formulas where registers number expectation is high. 5242 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5243 LSRUse &LU = Uses[LUIdx]; 5244 // If nothing to delete - continue. 5245 if (LU.Formulae.size() < 2) 5246 continue; 5247 // This is temporary solution to test performance. Float should be 5248 // replaced with round independent type (based on integers) to avoid 5249 // different results for different target builds. 5250 float FMinRegNum = LU.Formulae[0].getNumRegs(); 5251 float FMinARegNum = LU.Formulae[0].getNumRegs(); 5252 size_t MinIdx = 0; 5253 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5254 Formula &F = LU.Formulae[i]; 5255 float FRegNum = 0; 5256 float FARegNum = 0; 5257 for (const SCEV *BaseReg : F.BaseRegs) { 5258 if (UniqRegs.count(BaseReg)) 5259 continue; 5260 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5261 if (isa<SCEVAddRecExpr>(BaseReg)) 5262 FARegNum += 5263 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5264 } 5265 if (const SCEV *ScaledReg = F.ScaledReg) { 5266 if (!UniqRegs.count(ScaledReg)) { 5267 FRegNum += 5268 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5269 if (isa<SCEVAddRecExpr>(ScaledReg)) 5270 FARegNum += 5271 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5272 } 5273 } 5274 if (FMinRegNum > FRegNum || 5275 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 5276 FMinRegNum = FRegNum; 5277 FMinARegNum = FARegNum; 5278 MinIdx = i; 5279 } 5280 } 5281 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 5282 dbgs() << " with min reg num " << FMinRegNum << '\n'); 5283 if (MinIdx != 0) 5284 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 5285 while (LU.Formulae.size() != 1) { 5286 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5287 dbgs() << '\n'); 5288 LU.Formulae.pop_back(); 5289 } 5290 LU.RecomputeRegs(LUIdx, RegUses); 5291 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5292 Formula &F = LU.Formulae[0]; 5293 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5294 // When we choose the formula, the regs become unique. 5295 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5296 if (F.ScaledReg) 5297 UniqRegs.insert(F.ScaledReg); 5298 } 5299 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5300 } 5301 5302 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5303 // would the addressing offset +C would be legal where the negative offset -C is 5304 // not. 5305 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5306 ScalarEvolution &SE, const SCEV *Best, 5307 const SCEV *Reg, 5308 MemAccessTy AccessType) { 5309 if (Best->getType() != Reg->getType() || 5310 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5311 cast<SCEVAddRecExpr>(Best)->getLoop() != 5312 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5313 return false; 5314 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg)); 5315 if (!Diff) 5316 return false; 5317 5318 return TTI.isLegalAddressingMode( 5319 AccessType.MemTy, /*BaseGV=*/nullptr, 5320 /*BaseOffset=*/Diff->getAPInt().getSExtValue(), 5321 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5322 !TTI.isLegalAddressingMode( 5323 AccessType.MemTy, /*BaseGV=*/nullptr, 5324 /*BaseOffset=*/-Diff->getAPInt().getSExtValue(), 5325 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5326 } 5327 5328 /// Pick a register which seems likely to be profitable, and then in any use 5329 /// which has any reference to that register, delete all formulae which do not 5330 /// reference that register. 5331 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5332 // With all other options exhausted, loop until the system is simple 5333 // enough to handle. 5334 SmallPtrSet<const SCEV *, 4> Taken; 5335 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5336 // Ok, we have too many of formulae on our hands to conveniently handle. 5337 // Use a rough heuristic to thin out the list. 5338 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5339 5340 // Pick the register which is used by the most LSRUses, which is likely 5341 // to be a good reuse register candidate. 5342 const SCEV *Best = nullptr; 5343 unsigned BestNum = 0; 5344 for (const SCEV *Reg : RegUses) { 5345 if (Taken.count(Reg)) 5346 continue; 5347 if (!Best) { 5348 Best = Reg; 5349 BestNum = RegUses.getUsedByIndices(Reg).count(); 5350 } else { 5351 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5352 if (Count > BestNum) { 5353 Best = Reg; 5354 BestNum = Count; 5355 } 5356 5357 // If the scores are the same, but the Reg is simpler for the target 5358 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5359 // handle +C but not -C), opt for the simpler formula. 5360 if (Count == BestNum) { 5361 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5362 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5363 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5364 Uses[LUIdx].AccessTy)) { 5365 Best = Reg; 5366 BestNum = Count; 5367 } 5368 } 5369 } 5370 } 5371 assert(Best && "Failed to find best LSRUse candidate"); 5372 5373 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5374 << " will yield profitable reuse.\n"); 5375 Taken.insert(Best); 5376 5377 // In any use with formulae which references this register, delete formulae 5378 // which don't reference it. 5379 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5380 LSRUse &LU = Uses[LUIdx]; 5381 if (!LU.Regs.count(Best)) continue; 5382 5383 bool Any = false; 5384 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5385 Formula &F = LU.Formulae[i]; 5386 if (!F.referencesReg(Best)) { 5387 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5388 LU.DeleteFormula(F); 5389 --e; 5390 --i; 5391 Any = true; 5392 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5393 continue; 5394 } 5395 } 5396 5397 if (Any) 5398 LU.RecomputeRegs(LUIdx, RegUses); 5399 } 5400 5401 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5402 } 5403 } 5404 5405 /// If there are an extraordinary number of formulae to choose from, use some 5406 /// rough heuristics to prune down the number of formulae. This keeps the main 5407 /// solver from taking an extraordinary amount of time in some worst-case 5408 /// scenarios. 5409 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5410 NarrowSearchSpaceByDetectingSupersets(); 5411 NarrowSearchSpaceByCollapsingUnrolledCode(); 5412 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5413 if (FilterSameScaledReg) 5414 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5415 NarrowSearchSpaceByFilterPostInc(); 5416 if (LSRExpNarrow) 5417 NarrowSearchSpaceByDeletingCostlyFormulas(); 5418 else 5419 NarrowSearchSpaceByPickingWinnerRegs(); 5420 } 5421 5422 /// This is the recursive solver. 5423 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5424 Cost &SolutionCost, 5425 SmallVectorImpl<const Formula *> &Workspace, 5426 const Cost &CurCost, 5427 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5428 DenseSet<const SCEV *> &VisitedRegs) const { 5429 // Some ideas: 5430 // - prune more: 5431 // - use more aggressive filtering 5432 // - sort the formula so that the most profitable solutions are found first 5433 // - sort the uses too 5434 // - search faster: 5435 // - don't compute a cost, and then compare. compare while computing a cost 5436 // and bail early. 5437 // - track register sets with SmallBitVector 5438 5439 const LSRUse &LU = Uses[Workspace.size()]; 5440 5441 // If this use references any register that's already a part of the 5442 // in-progress solution, consider it a requirement that a formula must 5443 // reference that register in order to be considered. This prunes out 5444 // unprofitable searching. 5445 SmallSetVector<const SCEV *, 4> ReqRegs; 5446 for (const SCEV *S : CurRegs) 5447 if (LU.Regs.count(S)) 5448 ReqRegs.insert(S); 5449 5450 SmallPtrSet<const SCEV *, 16> NewRegs; 5451 Cost NewCost(L, SE, TTI, AMK); 5452 for (const Formula &F : LU.Formulae) { 5453 // Ignore formulae which may not be ideal in terms of register reuse of 5454 // ReqRegs. The formula should use all required registers before 5455 // introducing new ones. 5456 // This can sometimes (notably when trying to favour postinc) lead to 5457 // sub-optimial decisions. There it is best left to the cost modelling to 5458 // get correct. 5459 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5460 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5461 for (const SCEV *Reg : ReqRegs) { 5462 if ((F.ScaledReg && F.ScaledReg == Reg) || 5463 is_contained(F.BaseRegs, Reg)) { 5464 --NumReqRegsToFind; 5465 if (NumReqRegsToFind == 0) 5466 break; 5467 } 5468 } 5469 if (NumReqRegsToFind != 0) { 5470 // If none of the formulae satisfied the required registers, then we could 5471 // clear ReqRegs and try again. Currently, we simply give up in this case. 5472 continue; 5473 } 5474 } 5475 5476 // Evaluate the cost of the current formula. If it's already worse than 5477 // the current best, prune the search at that point. 5478 NewCost = CurCost; 5479 NewRegs = CurRegs; 5480 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5481 if (NewCost.isLess(SolutionCost)) { 5482 Workspace.push_back(&F); 5483 if (Workspace.size() != Uses.size()) { 5484 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5485 NewRegs, VisitedRegs); 5486 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5487 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5488 } else { 5489 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5490 dbgs() << ".\nRegs:\n"; 5491 for (const SCEV *S : NewRegs) dbgs() 5492 << "- " << *S << "\n"; 5493 dbgs() << '\n'); 5494 5495 SolutionCost = NewCost; 5496 Solution = Workspace; 5497 } 5498 Workspace.pop_back(); 5499 } 5500 } 5501 } 5502 5503 /// Choose one formula from each use. Return the results in the given Solution 5504 /// vector. 5505 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5506 SmallVector<const Formula *, 8> Workspace; 5507 Cost SolutionCost(L, SE, TTI, AMK); 5508 SolutionCost.Lose(); 5509 Cost CurCost(L, SE, TTI, AMK); 5510 SmallPtrSet<const SCEV *, 16> CurRegs; 5511 DenseSet<const SCEV *> VisitedRegs; 5512 Workspace.reserve(Uses.size()); 5513 5514 // SolveRecurse does all the work. 5515 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5516 CurRegs, VisitedRegs); 5517 if (Solution.empty()) { 5518 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5519 return; 5520 } 5521 5522 // Ok, we've now made all our decisions. 5523 LLVM_DEBUG(dbgs() << "\n" 5524 "The chosen solution requires "; 5525 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5526 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5527 dbgs() << " "; 5528 Uses[i].print(dbgs()); 5529 dbgs() << "\n" 5530 " "; 5531 Solution[i]->print(dbgs()); 5532 dbgs() << '\n'; 5533 }); 5534 5535 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5536 5537 const bool EnableDropUnprofitableSolution = [&] { 5538 switch (AllowDropSolutionIfLessProfitable) { 5539 case cl::BOU_TRUE: 5540 return true; 5541 case cl::BOU_FALSE: 5542 return false; 5543 case cl::BOU_UNSET: 5544 return TTI.shouldDropLSRSolutionIfLessProfitable(); 5545 } 5546 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 5547 }(); 5548 5549 if (BaselineCost.isLess(SolutionCost)) { 5550 if (!EnableDropUnprofitableSolution) 5551 LLVM_DEBUG( 5552 dbgs() << "Baseline is more profitable than chosen solution, " 5553 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5554 else { 5555 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5556 "solution, dropping LSR solution.\n";); 5557 Solution.clear(); 5558 } 5559 } 5560 } 5561 5562 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5563 /// we can go while still being dominated by the input positions. This helps 5564 /// canonicalize the insert position, which encourages sharing. 5565 BasicBlock::iterator 5566 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5567 const SmallVectorImpl<Instruction *> &Inputs) 5568 const { 5569 Instruction *Tentative = &*IP; 5570 while (true) { 5571 bool AllDominate = true; 5572 Instruction *BetterPos = nullptr; 5573 // Don't bother attempting to insert before a catchswitch, their basic block 5574 // cannot have other non-PHI instructions. 5575 if (isa<CatchSwitchInst>(Tentative)) 5576 return IP; 5577 5578 for (Instruction *Inst : Inputs) { 5579 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5580 AllDominate = false; 5581 break; 5582 } 5583 // Attempt to find an insert position in the middle of the block, 5584 // instead of at the end, so that it can be used for other expansions. 5585 if (Tentative->getParent() == Inst->getParent() && 5586 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5587 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5588 } 5589 if (!AllDominate) 5590 break; 5591 if (BetterPos) 5592 IP = BetterPos->getIterator(); 5593 else 5594 IP = Tentative->getIterator(); 5595 5596 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5597 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5598 5599 BasicBlock *IDom; 5600 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5601 if (!Rung) return IP; 5602 Rung = Rung->getIDom(); 5603 if (!Rung) return IP; 5604 IDom = Rung->getBlock(); 5605 5606 // Don't climb into a loop though. 5607 const Loop *IDomLoop = LI.getLoopFor(IDom); 5608 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5609 if (IDomDepth <= IPLoopDepth && 5610 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5611 break; 5612 } 5613 5614 Tentative = IDom->getTerminator(); 5615 } 5616 5617 return IP; 5618 } 5619 5620 /// Determine an input position which will be dominated by the operands and 5621 /// which will dominate the result. 5622 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5623 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5624 // Collect some instructions which must be dominated by the 5625 // expanding replacement. These must be dominated by any operands that 5626 // will be required in the expansion. 5627 SmallVector<Instruction *, 4> Inputs; 5628 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5629 Inputs.push_back(I); 5630 if (LU.Kind == LSRUse::ICmpZero) 5631 if (Instruction *I = 5632 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5633 Inputs.push_back(I); 5634 if (LF.PostIncLoops.count(L)) { 5635 if (LF.isUseFullyOutsideLoop(L)) 5636 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5637 else 5638 Inputs.push_back(IVIncInsertPos); 5639 } 5640 // The expansion must also be dominated by the increment positions of any 5641 // loops it for which it is using post-inc mode. 5642 for (const Loop *PIL : LF.PostIncLoops) { 5643 if (PIL == L) continue; 5644 5645 // Be dominated by the loop exit. 5646 SmallVector<BasicBlock *, 4> ExitingBlocks; 5647 PIL->getExitingBlocks(ExitingBlocks); 5648 if (!ExitingBlocks.empty()) { 5649 BasicBlock *BB = ExitingBlocks[0]; 5650 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5651 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5652 Inputs.push_back(BB->getTerminator()); 5653 } 5654 } 5655 5656 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5657 && !isa<DbgInfoIntrinsic>(LowestIP) && 5658 "Insertion point must be a normal instruction"); 5659 5660 // Then, climb up the immediate dominator tree as far as we can go while 5661 // still being dominated by the input positions. 5662 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5663 5664 // Don't insert instructions before PHI nodes. 5665 while (isa<PHINode>(IP)) ++IP; 5666 5667 // Ignore landingpad instructions. 5668 while (IP->isEHPad()) ++IP; 5669 5670 // Ignore debug intrinsics. 5671 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5672 5673 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5674 // IP consistent across expansions and allows the previously inserted 5675 // instructions to be reused by subsequent expansion. 5676 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5677 ++IP; 5678 5679 return IP; 5680 } 5681 5682 /// Emit instructions for the leading candidate expression for this LSRUse (this 5683 /// is called "expanding"). 5684 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5685 const Formula &F, BasicBlock::iterator IP, 5686 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5687 if (LU.RigidFormula) 5688 return LF.OperandValToReplace; 5689 5690 // Determine an input position which will be dominated by the operands and 5691 // which will dominate the result. 5692 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5693 Rewriter.setInsertPoint(&*IP); 5694 5695 // Inform the Rewriter if we have a post-increment use, so that it can 5696 // perform an advantageous expansion. 5697 Rewriter.setPostInc(LF.PostIncLoops); 5698 5699 // This is the type that the user actually needs. 5700 Type *OpTy = LF.OperandValToReplace->getType(); 5701 // This will be the type that we'll initially expand to. 5702 Type *Ty = F.getType(); 5703 if (!Ty) 5704 // No type known; just expand directly to the ultimate type. 5705 Ty = OpTy; 5706 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5707 // Expand directly to the ultimate type if it's the right size. 5708 Ty = OpTy; 5709 // This is the type to do integer arithmetic in. 5710 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5711 5712 // Build up a list of operands to add together to form the full base. 5713 SmallVector<const SCEV *, 8> Ops; 5714 5715 // Expand the BaseRegs portion. 5716 for (const SCEV *Reg : F.BaseRegs) { 5717 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5718 5719 // If we're expanding for a post-inc user, make the post-inc adjustment. 5720 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5721 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5722 } 5723 5724 // Expand the ScaledReg portion. 5725 Value *ICmpScaledV = nullptr; 5726 if (F.Scale != 0) { 5727 const SCEV *ScaledS = F.ScaledReg; 5728 5729 // If we're expanding for a post-inc user, make the post-inc adjustment. 5730 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5731 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5732 5733 if (LU.Kind == LSRUse::ICmpZero) { 5734 // Expand ScaleReg as if it was part of the base regs. 5735 if (F.Scale == 1) 5736 Ops.push_back( 5737 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5738 else { 5739 // An interesting way of "folding" with an icmp is to use a negated 5740 // scale, which we'll implement by inserting it into the other operand 5741 // of the icmp. 5742 assert(F.Scale == -1 && 5743 "The only scale supported by ICmpZero uses is -1!"); 5744 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5745 } 5746 } else { 5747 // Otherwise just expand the scaled register and an explicit scale, 5748 // which is expected to be matched as part of the address. 5749 5750 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5751 // Unless the addressing mode will not be folded. 5752 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5753 isAMCompletelyFolded(TTI, LU, F)) { 5754 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5755 Ops.clear(); 5756 Ops.push_back(SE.getUnknown(FullV)); 5757 } 5758 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5759 if (F.Scale != 1) 5760 ScaledS = 5761 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5762 Ops.push_back(ScaledS); 5763 } 5764 } 5765 5766 // Expand the GV portion. 5767 if (F.BaseGV) { 5768 // Flush the operand list to suppress SCEVExpander hoisting. 5769 if (!Ops.empty()) { 5770 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5771 Ops.clear(); 5772 Ops.push_back(SE.getUnknown(FullV)); 5773 } 5774 Ops.push_back(SE.getUnknown(F.BaseGV)); 5775 } 5776 5777 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5778 // unfolded offsets. LSR assumes they both live next to their uses. 5779 if (!Ops.empty()) { 5780 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5781 Ops.clear(); 5782 Ops.push_back(SE.getUnknown(FullV)); 5783 } 5784 5785 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail 5786 // out at this point, or should we generate a SCEV adding together mixed 5787 // offsets? 5788 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && 5789 "Expanding mismatched offsets\n"); 5790 // Expand the immediate portion. 5791 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset); 5792 if (Offset.isNonZero()) { 5793 if (LU.Kind == LSRUse::ICmpZero) { 5794 // The other interesting way of "folding" with an ICmpZero is to use a 5795 // negated immediate. 5796 if (!ICmpScaledV) 5797 ICmpScaledV = 5798 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue()); 5799 else { 5800 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5801 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue()); 5802 } 5803 } else { 5804 // Just add the immediate values. These again are expected to be matched 5805 // as part of the address. 5806 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy)); 5807 } 5808 } 5809 5810 // Expand the unfolded offset portion. 5811 Immediate UnfoldedOffset = F.UnfoldedOffset; 5812 if (UnfoldedOffset.isNonZero()) { 5813 // Just add the immediate values. 5814 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy)); 5815 } 5816 5817 // Emit instructions summing all the operands. 5818 const SCEV *FullS = Ops.empty() ? 5819 SE.getConstant(IntTy, 0) : 5820 SE.getAddExpr(Ops); 5821 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5822 5823 // We're done expanding now, so reset the rewriter. 5824 Rewriter.clearPostInc(); 5825 5826 // An ICmpZero Formula represents an ICmp which we're handling as a 5827 // comparison against zero. Now that we've expanded an expression for that 5828 // form, update the ICmp's other operand. 5829 if (LU.Kind == LSRUse::ICmpZero) { 5830 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5831 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5832 DeadInsts.emplace_back(OperandIsInstr); 5833 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5834 "a scale at the same time!"); 5835 if (F.Scale == -1) { 5836 if (ICmpScaledV->getType() != OpTy) { 5837 Instruction *Cast = CastInst::Create( 5838 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false), 5839 ICmpScaledV, OpTy, "tmp", CI->getIterator()); 5840 ICmpScaledV = Cast; 5841 } 5842 CI->setOperand(1, ICmpScaledV); 5843 } else { 5844 // A scale of 1 means that the scale has been expanded as part of the 5845 // base regs. 5846 assert((F.Scale == 0 || F.Scale == 1) && 5847 "ICmp does not support folding a global value and " 5848 "a scale at the same time!"); 5849 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5850 -(uint64_t)Offset.getFixedValue()); 5851 if (C->getType() != OpTy) { 5852 C = ConstantFoldCastOperand( 5853 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5854 CI->getDataLayout()); 5855 assert(C && "Cast of ConstantInt should have folded"); 5856 } 5857 5858 CI->setOperand(1, C); 5859 } 5860 } 5861 5862 return FullV; 5863 } 5864 5865 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5866 /// effectively happens in their predecessor blocks, so the expression may need 5867 /// to be expanded in multiple places. 5868 void LSRInstance::RewriteForPHI( 5869 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5870 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5871 DenseMap<BasicBlock *, Value *> Inserted; 5872 5873 // Inserting instructions in the loop and using them as PHI's input could 5874 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 5875 // corresponding incoming block is not loop exiting). So collect all such 5876 // instructions to form LCSSA for them later. 5877 SmallVector<Instruction *, 4> InsertedNonLCSSAInsts; 5878 5879 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5880 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5881 bool needUpdateFixups = false; 5882 BasicBlock *BB = PN->getIncomingBlock(i); 5883 5884 // If this is a critical edge, split the edge so that we do not insert 5885 // the code on all predecessor/successor paths. We do this unless this 5886 // is the canonical backedge for this loop, which complicates post-inc 5887 // users. 5888 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5889 !isa<IndirectBrInst>(BB->getTerminator()) && 5890 !isa<CatchSwitchInst>(BB->getTerminator())) { 5891 BasicBlock *Parent = PN->getParent(); 5892 Loop *PNLoop = LI.getLoopFor(Parent); 5893 if (!PNLoop || Parent != PNLoop->getHeader()) { 5894 // Split the critical edge. 5895 BasicBlock *NewBB = nullptr; 5896 if (!Parent->isLandingPad()) { 5897 NewBB = 5898 SplitCriticalEdge(BB, Parent, 5899 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5900 .setMergeIdenticalEdges() 5901 .setKeepOneInputPHIs()); 5902 } else { 5903 SmallVector<BasicBlock*, 2> NewBBs; 5904 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5905 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5906 NewBB = NewBBs[0]; 5907 } 5908 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5909 // phi predecessors are identical. The simple thing to do is skip 5910 // splitting in this case rather than complicate the API. 5911 if (NewBB) { 5912 // If PN is outside of the loop and BB is in the loop, we want to 5913 // move the block to be immediately before the PHI block, not 5914 // immediately after BB. 5915 if (L->contains(BB) && !L->contains(PN)) 5916 NewBB->moveBefore(PN->getParent()); 5917 5918 // Splitting the edge can reduce the number of PHI entries we have. 5919 e = PN->getNumIncomingValues(); 5920 BB = NewBB; 5921 i = PN->getBasicBlockIndex(BB); 5922 5923 needUpdateFixups = true; 5924 } 5925 } 5926 } 5927 5928 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5929 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5930 if (!Pair.second) 5931 PN->setIncomingValue(i, Pair.first->second); 5932 else { 5933 Value *FullV = 5934 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5935 5936 // If this is reuse-by-noop-cast, insert the noop cast. 5937 Type *OpTy = LF.OperandValToReplace->getType(); 5938 if (FullV->getType() != OpTy) 5939 FullV = CastInst::Create( 5940 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV, 5941 LF.OperandValToReplace->getType(), "tmp", 5942 BB->getTerminator()->getIterator()); 5943 5944 // If the incoming block for this value is not in the loop, it means the 5945 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5946 // the inserted value. 5947 if (auto *I = dyn_cast<Instruction>(FullV)) 5948 if (L->contains(I) && !L->contains(BB)) 5949 InsertedNonLCSSAInsts.push_back(I); 5950 5951 PN->setIncomingValue(i, FullV); 5952 Pair.first->second = FullV; 5953 } 5954 5955 // If LSR splits critical edge and phi node has other pending 5956 // fixup operands, we need to update those pending fixups. Otherwise 5957 // formulae will not be implemented completely and some instructions 5958 // will not be eliminated. 5959 if (needUpdateFixups) { 5960 for (LSRUse &LU : Uses) 5961 for (LSRFixup &Fixup : LU.Fixups) 5962 // If fixup is supposed to rewrite some operand in the phi 5963 // that was just updated, it may be already moved to 5964 // another phi node. Such fixup requires update. 5965 if (Fixup.UserInst == PN) { 5966 // Check if the operand we try to replace still exists in the 5967 // original phi. 5968 bool foundInOriginalPHI = false; 5969 for (const auto &val : PN->incoming_values()) 5970 if (val == Fixup.OperandValToReplace) { 5971 foundInOriginalPHI = true; 5972 break; 5973 } 5974 5975 // If fixup operand found in original PHI - nothing to do. 5976 if (foundInOriginalPHI) 5977 continue; 5978 5979 // Otherwise it might be moved to another PHI and requires update. 5980 // If fixup operand not found in any of the incoming blocks that 5981 // means we have already rewritten it - nothing to do. 5982 for (const auto &Block : PN->blocks()) 5983 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5984 ++I) { 5985 PHINode *NewPN = cast<PHINode>(I); 5986 for (const auto &val : NewPN->incoming_values()) 5987 if (val == Fixup.OperandValToReplace) 5988 Fixup.UserInst = NewPN; 5989 } 5990 } 5991 } 5992 } 5993 5994 formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE); 5995 } 5996 5997 /// Emit instructions for the leading candidate expression for this LSRUse (this 5998 /// is called "expanding"), and update the UserInst to reference the newly 5999 /// expanded value. 6000 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 6001 const Formula &F, 6002 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 6003 // First, find an insertion point that dominates UserInst. For PHI nodes, 6004 // find the nearest block which dominates all the relevant uses. 6005 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 6006 RewriteForPHI(PN, LU, LF, F, DeadInsts); 6007 } else { 6008 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 6009 6010 // If this is reuse-by-noop-cast, insert the noop cast. 6011 Type *OpTy = LF.OperandValToReplace->getType(); 6012 if (FullV->getType() != OpTy) { 6013 Instruction *Cast = 6014 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 6015 FullV, OpTy, "tmp", LF.UserInst->getIterator()); 6016 FullV = Cast; 6017 } 6018 6019 // Update the user. ICmpZero is handled specially here (for now) because 6020 // Expand may have updated one of the operands of the icmp already, and 6021 // its new value may happen to be equal to LF.OperandValToReplace, in 6022 // which case doing replaceUsesOfWith leads to replacing both operands 6023 // with the same value. TODO: Reorganize this. 6024 if (LU.Kind == LSRUse::ICmpZero) 6025 LF.UserInst->setOperand(0, FullV); 6026 else 6027 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 6028 } 6029 6030 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 6031 DeadInsts.emplace_back(OperandIsInstr); 6032 } 6033 6034 // Trying to hoist the IVInc to loop header if all IVInc users are in 6035 // the loop header. It will help backend to generate post index load/store 6036 // when the latch block is different from loop header block. 6037 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 6038 const LSRUse &LU, Instruction *IVIncInsertPos, 6039 Loop *L) { 6040 if (LU.Kind != LSRUse::Address) 6041 return false; 6042 6043 // For now this code do the conservative optimization, only work for 6044 // the header block. Later we can hoist the IVInc to the block post 6045 // dominate all users. 6046 BasicBlock *LHeader = L->getHeader(); 6047 if (IVIncInsertPos->getParent() == LHeader) 6048 return false; 6049 6050 if (!Fixup.OperandValToReplace || 6051 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 6052 Instruction *UI = cast<Instruction>(U); 6053 return UI->getParent() != LHeader; 6054 })) 6055 return false; 6056 6057 Instruction *I = Fixup.UserInst; 6058 Type *Ty = I->getType(); 6059 return Ty->isIntegerTy() && 6060 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 6061 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 6062 } 6063 6064 /// Rewrite all the fixup locations with new values, following the chosen 6065 /// solution. 6066 void LSRInstance::ImplementSolution( 6067 const SmallVectorImpl<const Formula *> &Solution) { 6068 // Keep track of instructions we may have made dead, so that 6069 // we can remove them after we are done working. 6070 SmallVector<WeakTrackingVH, 16> DeadInsts; 6071 6072 // Mark phi nodes that terminate chains so the expander tries to reuse them. 6073 for (const IVChain &Chain : IVChainVec) { 6074 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 6075 Rewriter.setChainedPhi(PN); 6076 } 6077 6078 // Expand the new value definitions and update the users. 6079 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 6080 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 6081 Instruction *InsertPos = 6082 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 6083 ? L->getHeader()->getTerminator() 6084 : IVIncInsertPos; 6085 Rewriter.setIVIncInsertPos(L, InsertPos); 6086 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 6087 Changed = true; 6088 } 6089 6090 for (const IVChain &Chain : IVChainVec) { 6091 GenerateIVChain(Chain, DeadInsts); 6092 Changed = true; 6093 } 6094 6095 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 6096 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 6097 ScalarEvolutionIVs.push_back(IV); 6098 6099 // Clean up after ourselves. This must be done before deleting any 6100 // instructions. 6101 Rewriter.clear(); 6102 6103 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 6104 &TLI, MSSAU); 6105 6106 // In our cost analysis above, we assume that each addrec consumes exactly 6107 // one register, and arrange to have increments inserted just before the 6108 // latch to maximimize the chance this is true. However, if we reused 6109 // existing IVs, we now need to move the increments to match our 6110 // expectations. Otherwise, our cost modeling results in us having a 6111 // chosen a non-optimal result for the actual schedule. (And yes, this 6112 // scheduling decision does impact later codegen.) 6113 for (PHINode &PN : L->getHeader()->phis()) { 6114 BinaryOperator *BO = nullptr; 6115 Value *Start = nullptr, *Step = nullptr; 6116 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 6117 continue; 6118 6119 switch (BO->getOpcode()) { 6120 case Instruction::Sub: 6121 if (BO->getOperand(0) != &PN) 6122 // sub is non-commutative - match handling elsewhere in LSR 6123 continue; 6124 break; 6125 case Instruction::Add: 6126 break; 6127 default: 6128 continue; 6129 }; 6130 6131 if (!isa<Constant>(Step)) 6132 // If not a constant step, might increase register pressure 6133 // (We assume constants have been canonicalized to RHS) 6134 continue; 6135 6136 if (BO->getParent() == IVIncInsertPos->getParent()) 6137 // Only bother moving across blocks. Isel can handle block local case. 6138 continue; 6139 6140 // Can we legally schedule inc at the desired point? 6141 if (!llvm::all_of(BO->uses(), 6142 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 6143 continue; 6144 BO->moveBefore(IVIncInsertPos); 6145 Changed = true; 6146 } 6147 6148 6149 } 6150 6151 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6152 DominatorTree &DT, LoopInfo &LI, 6153 const TargetTransformInfo &TTI, AssumptionCache &AC, 6154 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 6155 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 6156 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 6157 ? PreferredAddresingMode 6158 : TTI.getPreferredAddressingMode(L, &SE)), 6159 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false), 6160 BaselineCost(L, SE, TTI, AMK) { 6161 // If LoopSimplify form is not available, stay out of trouble. 6162 if (!L->isLoopSimplifyForm()) 6163 return; 6164 6165 // If there's no interesting work to be done, bail early. 6166 if (IU.empty()) return; 6167 6168 // If there's too much analysis to be done, bail early. We won't be able to 6169 // model the problem anyway. 6170 unsigned NumUsers = 0; 6171 for (const IVStrideUse &U : IU) { 6172 if (++NumUsers > MaxIVUsers) { 6173 (void)U; 6174 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 6175 << "\n"); 6176 return; 6177 } 6178 // Bail out if we have a PHI on an EHPad that gets a value from a 6179 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 6180 // no good place to stick any instructions. 6181 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 6182 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 6183 if (isa<FuncletPadInst>(FirstNonPHI) || 6184 isa<CatchSwitchInst>(FirstNonPHI)) 6185 for (BasicBlock *PredBB : PN->blocks()) 6186 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 6187 return; 6188 } 6189 } 6190 6191 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 6192 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 6193 dbgs() << ":\n"); 6194 6195 // Configure SCEVExpander already now, so the correct mode is used for 6196 // isSafeToExpand() checks. 6197 #ifndef NDEBUG 6198 Rewriter.setDebugType(DEBUG_TYPE); 6199 #endif 6200 Rewriter.disableCanonicalMode(); 6201 Rewriter.enableLSRMode(); 6202 6203 // First, perform some low-level loop optimizations. 6204 OptimizeShadowIV(); 6205 OptimizeLoopTermCond(); 6206 6207 // If loop preparation eliminates all interesting IV users, bail. 6208 if (IU.empty()) return; 6209 6210 // Skip nested loops until we can model them better with formulae. 6211 if (!L->isInnermost()) { 6212 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 6213 return; 6214 } 6215 6216 // Start collecting data and preparing for the solver. 6217 // If number of registers is not the major cost, we cannot benefit from the 6218 // current profitable chain optimization which is based on number of 6219 // registers. 6220 // FIXME: add profitable chain optimization for other kinds major cost, for 6221 // example number of instructions. 6222 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 6223 CollectChains(); 6224 CollectInterestingTypesAndFactors(); 6225 CollectFixupsAndInitialFormulae(); 6226 CollectLoopInvariantFixupsAndFormulae(); 6227 6228 if (Uses.empty()) 6229 return; 6230 6231 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 6232 print_uses(dbgs())); 6233 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 6234 BaselineCost.print(dbgs()); dbgs() << "\n"); 6235 6236 // Now use the reuse data to generate a bunch of interesting ways 6237 // to formulate the values needed for the uses. 6238 GenerateAllReuseFormulae(); 6239 6240 FilterOutUndesirableDedicatedRegisters(); 6241 NarrowSearchSpaceUsingHeuristics(); 6242 6243 SmallVector<const Formula *, 8> Solution; 6244 Solve(Solution); 6245 6246 // Release memory that is no longer needed. 6247 Factors.clear(); 6248 Types.clear(); 6249 RegUses.clear(); 6250 6251 if (Solution.empty()) 6252 return; 6253 6254 #ifndef NDEBUG 6255 // Formulae should be legal. 6256 for (const LSRUse &LU : Uses) { 6257 for (const Formula &F : LU.Formulae) 6258 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 6259 F) && "Illegal formula generated!"); 6260 }; 6261 #endif 6262 6263 // Now that we've decided what we want, make it so. 6264 ImplementSolution(Solution); 6265 } 6266 6267 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 6268 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 6269 if (Factors.empty() && Types.empty()) return; 6270 6271 OS << "LSR has identified the following interesting factors and types: "; 6272 bool First = true; 6273 6274 for (int64_t Factor : Factors) { 6275 if (!First) OS << ", "; 6276 First = false; 6277 OS << '*' << Factor; 6278 } 6279 6280 for (Type *Ty : Types) { 6281 if (!First) OS << ", "; 6282 First = false; 6283 OS << '(' << *Ty << ')'; 6284 } 6285 OS << '\n'; 6286 } 6287 6288 void LSRInstance::print_fixups(raw_ostream &OS) const { 6289 OS << "LSR is examining the following fixup sites:\n"; 6290 for (const LSRUse &LU : Uses) 6291 for (const LSRFixup &LF : LU.Fixups) { 6292 dbgs() << " "; 6293 LF.print(OS); 6294 OS << '\n'; 6295 } 6296 } 6297 6298 void LSRInstance::print_uses(raw_ostream &OS) const { 6299 OS << "LSR is examining the following uses:\n"; 6300 for (const LSRUse &LU : Uses) { 6301 dbgs() << " "; 6302 LU.print(OS); 6303 OS << '\n'; 6304 for (const Formula &F : LU.Formulae) { 6305 OS << " "; 6306 F.print(OS); 6307 OS << '\n'; 6308 } 6309 } 6310 } 6311 6312 void LSRInstance::print(raw_ostream &OS) const { 6313 print_factors_and_types(OS); 6314 print_fixups(OS); 6315 print_uses(OS); 6316 } 6317 6318 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6319 print(errs()); errs() << '\n'; 6320 } 6321 #endif 6322 6323 namespace { 6324 6325 class LoopStrengthReduce : public LoopPass { 6326 public: 6327 static char ID; // Pass ID, replacement for typeid 6328 6329 LoopStrengthReduce(); 6330 6331 private: 6332 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6333 void getAnalysisUsage(AnalysisUsage &AU) const override; 6334 }; 6335 6336 } // end anonymous namespace 6337 6338 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6339 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6340 } 6341 6342 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6343 // We split critical edges, so we change the CFG. However, we do update 6344 // many analyses if they are around. 6345 AU.addPreservedID(LoopSimplifyID); 6346 6347 AU.addRequired<LoopInfoWrapperPass>(); 6348 AU.addPreserved<LoopInfoWrapperPass>(); 6349 AU.addRequiredID(LoopSimplifyID); 6350 AU.addRequired<DominatorTreeWrapperPass>(); 6351 AU.addPreserved<DominatorTreeWrapperPass>(); 6352 AU.addRequired<ScalarEvolutionWrapperPass>(); 6353 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6354 AU.addRequired<AssumptionCacheTracker>(); 6355 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6356 // Requiring LoopSimplify a second time here prevents IVUsers from running 6357 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6358 AU.addRequiredID(LoopSimplifyID); 6359 AU.addRequired<IVUsersWrapperPass>(); 6360 AU.addPreserved<IVUsersWrapperPass>(); 6361 AU.addRequired<TargetTransformInfoWrapperPass>(); 6362 AU.addPreserved<MemorySSAWrapperPass>(); 6363 } 6364 6365 namespace { 6366 6367 /// Enables more convenient iteration over a DWARF expression vector. 6368 static iterator_range<llvm::DIExpression::expr_op_iterator> 6369 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6370 llvm::DIExpression::expr_op_iterator Begin = 6371 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6372 llvm::DIExpression::expr_op_iterator End = 6373 llvm::DIExpression::expr_op_iterator(Expr.end()); 6374 return {Begin, End}; 6375 } 6376 6377 struct SCEVDbgValueBuilder { 6378 SCEVDbgValueBuilder() = default; 6379 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6380 6381 void clone(const SCEVDbgValueBuilder &Base) { 6382 LocationOps = Base.LocationOps; 6383 Expr = Base.Expr; 6384 } 6385 6386 void clear() { 6387 LocationOps.clear(); 6388 Expr.clear(); 6389 } 6390 6391 /// The DIExpression as we translate the SCEV. 6392 SmallVector<uint64_t, 6> Expr; 6393 /// The location ops of the DIExpression. 6394 SmallVector<Value *, 2> LocationOps; 6395 6396 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6397 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6398 6399 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6400 /// in the set of values referenced by the expression. 6401 void pushLocation(llvm::Value *V) { 6402 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6403 auto *It = llvm::find(LocationOps, V); 6404 unsigned ArgIndex = 0; 6405 if (It != LocationOps.end()) { 6406 ArgIndex = std::distance(LocationOps.begin(), It); 6407 } else { 6408 ArgIndex = LocationOps.size(); 6409 LocationOps.push_back(V); 6410 } 6411 Expr.push_back(ArgIndex); 6412 } 6413 6414 void pushValue(const SCEVUnknown *U) { 6415 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6416 pushLocation(V); 6417 } 6418 6419 bool pushConst(const SCEVConstant *C) { 6420 if (C->getAPInt().getSignificantBits() > 64) 6421 return false; 6422 Expr.push_back(llvm::dwarf::DW_OP_consts); 6423 Expr.push_back(C->getAPInt().getSExtValue()); 6424 return true; 6425 } 6426 6427 // Iterating the expression as DWARF ops is convenient when updating 6428 // DWARF_OP_LLVM_args. 6429 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6430 return ToDwarfOpIter(Expr); 6431 } 6432 6433 /// Several SCEV types are sequences of the same arithmetic operator applied 6434 /// to constants and values that may be extended or truncated. 6435 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6436 uint64_t DwarfOp) { 6437 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6438 "Expected arithmetic SCEV type"); 6439 bool Success = true; 6440 unsigned EmitOperator = 0; 6441 for (const auto &Op : CommExpr->operands()) { 6442 Success &= pushSCEV(Op); 6443 6444 if (EmitOperator >= 1) 6445 pushOperator(DwarfOp); 6446 ++EmitOperator; 6447 } 6448 return Success; 6449 } 6450 6451 // TODO: Identify and omit noop casts. 6452 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6453 const llvm::SCEV *Inner = C->getOperand(0); 6454 const llvm::Type *Type = C->getType(); 6455 uint64_t ToWidth = Type->getIntegerBitWidth(); 6456 bool Success = pushSCEV(Inner); 6457 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6458 IsSigned ? llvm::dwarf::DW_ATE_signed 6459 : llvm::dwarf::DW_ATE_unsigned}; 6460 for (const auto &Op : CastOps) 6461 pushOperator(Op); 6462 return Success; 6463 } 6464 6465 // TODO: MinMax - although these haven't been encountered in the test suite. 6466 bool pushSCEV(const llvm::SCEV *S) { 6467 bool Success = true; 6468 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6469 Success &= pushConst(StartInt); 6470 6471 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6472 if (!U->getValue()) 6473 return false; 6474 pushLocation(U->getValue()); 6475 6476 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6477 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6478 6479 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6480 Success &= pushSCEV(UDiv->getLHS()); 6481 Success &= pushSCEV(UDiv->getRHS()); 6482 pushOperator(llvm::dwarf::DW_OP_div); 6483 6484 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6485 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6486 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6487 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6488 "Unexpected cast type in SCEV."); 6489 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6490 6491 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6492 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6493 6494 } else if (isa<SCEVAddRecExpr>(S)) { 6495 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6496 // unsupported. 6497 return false; 6498 6499 } else { 6500 return false; 6501 } 6502 return Success; 6503 } 6504 6505 /// Return true if the combination of arithmetic operator and underlying 6506 /// SCEV constant value is an identity function. 6507 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6508 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6509 if (C->getAPInt().getSignificantBits() > 64) 6510 return false; 6511 int64_t I = C->getAPInt().getSExtValue(); 6512 switch (Op) { 6513 case llvm::dwarf::DW_OP_plus: 6514 case llvm::dwarf::DW_OP_minus: 6515 return I == 0; 6516 case llvm::dwarf::DW_OP_mul: 6517 case llvm::dwarf::DW_OP_div: 6518 return I == 1; 6519 } 6520 } 6521 return false; 6522 } 6523 6524 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6525 /// builder's expression stack. The stack should already contain an 6526 /// expression for the iteration count, so that it can be multiplied by 6527 /// the stride and added to the start. 6528 /// Components of the expression are omitted if they are an identity function. 6529 /// Chain (non-affine) SCEVs are not supported. 6530 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6531 assert(SAR.isAffine() && "Expected affine SCEV"); 6532 // TODO: Is this check needed? 6533 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6534 return false; 6535 6536 const SCEV *Start = SAR.getStart(); 6537 const SCEV *Stride = SAR.getStepRecurrence(SE); 6538 6539 // Skip pushing arithmetic noops. 6540 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6541 if (!pushSCEV(Stride)) 6542 return false; 6543 pushOperator(llvm::dwarf::DW_OP_mul); 6544 } 6545 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6546 if (!pushSCEV(Start)) 6547 return false; 6548 pushOperator(llvm::dwarf::DW_OP_plus); 6549 } 6550 return true; 6551 } 6552 6553 /// Create an expression that is an offset from a value (usually the IV). 6554 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6555 pushLocation(OffsetValue); 6556 DIExpression::appendOffset(Expr, Offset); 6557 LLVM_DEBUG( 6558 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6559 << std::to_string(Offset) << "\n"); 6560 } 6561 6562 /// Combine a translation of the SCEV and the IV to create an expression that 6563 /// recovers a location's value. 6564 /// returns true if an expression was created. 6565 bool createIterCountExpr(const SCEV *S, 6566 const SCEVDbgValueBuilder &IterationCount, 6567 ScalarEvolution &SE) { 6568 // SCEVs for SSA values are most frquently of the form 6569 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6570 // This is because %a is a PHI node that is not the IV. However, these 6571 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6572 // so its not expected this point will be reached. 6573 if (!isa<SCEVAddRecExpr>(S)) 6574 return false; 6575 6576 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6577 << '\n'); 6578 6579 const auto *Rec = cast<SCEVAddRecExpr>(S); 6580 if (!Rec->isAffine()) 6581 return false; 6582 6583 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6584 return false; 6585 6586 // Initialise a new builder with the iteration count expression. In 6587 // combination with the value's SCEV this enables recovery. 6588 clone(IterationCount); 6589 if (!SCEVToValueExpr(*Rec, SE)) 6590 return false; 6591 6592 return true; 6593 } 6594 6595 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6596 /// builder's expression stack. The stack should already contain an 6597 /// expression for the iteration count, so that it can be multiplied by 6598 /// the stride and added to the start. 6599 /// Components of the expression are omitted if they are an identity function. 6600 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6601 ScalarEvolution &SE) { 6602 assert(SAR.isAffine() && "Expected affine SCEV"); 6603 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6604 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6605 << SAR << '\n'); 6606 return false; 6607 } 6608 const SCEV *Start = SAR.getStart(); 6609 const SCEV *Stride = SAR.getStepRecurrence(SE); 6610 6611 // Skip pushing arithmetic noops. 6612 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6613 if (!pushSCEV(Start)) 6614 return false; 6615 pushOperator(llvm::dwarf::DW_OP_minus); 6616 } 6617 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6618 if (!pushSCEV(Stride)) 6619 return false; 6620 pushOperator(llvm::dwarf::DW_OP_div); 6621 } 6622 return true; 6623 } 6624 6625 // Append the current expression and locations to a location list and an 6626 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6627 // the locations already present in the destination list. 6628 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6629 SmallVectorImpl<Value *> &DestLocations) { 6630 assert(!DestLocations.empty() && 6631 "Expected the locations vector to contain the IV"); 6632 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6633 // modified to account for the locations already in the destination vector. 6634 // All builders contain the IV as the first location op. 6635 assert(!LocationOps.empty() && 6636 "Expected the location ops to contain the IV."); 6637 // DestIndexMap[n] contains the index in DestLocations for the nth 6638 // location in this SCEVDbgValueBuilder. 6639 SmallVector<uint64_t, 2> DestIndexMap; 6640 for (const auto &Op : LocationOps) { 6641 auto It = find(DestLocations, Op); 6642 if (It != DestLocations.end()) { 6643 // Location already exists in DestLocations, reuse existing ArgIndex. 6644 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6645 continue; 6646 } 6647 // Location is not in DestLocations, add it. 6648 DestIndexMap.push_back(DestLocations.size()); 6649 DestLocations.push_back(Op); 6650 } 6651 6652 for (const auto &Op : expr_ops()) { 6653 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6654 Op.appendToVector(DestExpr); 6655 continue; 6656 } 6657 6658 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6659 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6660 // DestIndexMap[n] contains its new index in DestLocations. 6661 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6662 DestExpr.push_back(NewIndex); 6663 } 6664 } 6665 }; 6666 6667 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6668 /// and DIExpression. 6669 struct DVIRecoveryRec { 6670 DVIRecoveryRec(DbgValueInst *DbgValue) 6671 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6672 HadLocationArgList(false) {} 6673 DVIRecoveryRec(DbgVariableRecord *DVR) 6674 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} 6675 6676 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; 6677 DIExpression *Expr; 6678 bool HadLocationArgList; 6679 SmallVector<WeakVH, 2> LocationOps; 6680 SmallVector<const llvm::SCEV *, 2> SCEVs; 6681 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6682 6683 void clear() { 6684 for (auto &RE : RecoveryExprs) 6685 RE.reset(); 6686 RecoveryExprs.clear(); 6687 } 6688 6689 ~DVIRecoveryRec() { clear(); } 6690 }; 6691 } // namespace 6692 6693 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6694 /// This helps in determining if a DIArglist is necessary or can be omitted from 6695 /// the dbg.value. 6696 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6697 auto expr_ops = ToDwarfOpIter(Expr); 6698 unsigned Count = 0; 6699 for (auto Op : expr_ops) 6700 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6701 Count++; 6702 return Count; 6703 } 6704 6705 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6706 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6707 /// because a DIArglist is not created for the first argument of the dbg.value. 6708 template <typename T> 6709 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6710 SmallVectorImpl<uint64_t> &Ops) { 6711 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6712 "contain any DW_OP_llvm_arg operands."); 6713 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6714 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6715 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6716 } 6717 6718 /// Overwrite DVI with locations placed into a DIArglist. 6719 template <typename T> 6720 static void updateDVIWithLocations(T &DbgVal, 6721 SmallVectorImpl<Value *> &Locations, 6722 SmallVectorImpl<uint64_t> &Ops) { 6723 assert(numLLVMArgOps(Ops) != 0 && 6724 "Expected expression that references DIArglist locations using " 6725 "DW_OP_llvm_arg operands."); 6726 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6727 for (Value *V : Locations) 6728 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6729 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6730 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6731 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6732 } 6733 6734 /// Write the new expression and new location ops for the dbg.value. If possible 6735 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6736 /// can be omitted if: 6737 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6738 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6739 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6740 SmallVectorImpl<Value *> &NewLocationOps, 6741 SmallVectorImpl<uint64_t> &NewExpr) { 6742 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6743 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6744 if (NumLLVMArgs == 0) { 6745 // Location assumed to be on the stack. 6746 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6747 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6748 // There is only a single DW_OP_llvm_arg at the start of the expression, 6749 // so it can be omitted along with DIArglist. 6750 assert(NewExpr[1] == 0 && 6751 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6752 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6753 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6754 } else { 6755 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6756 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6757 } 6758 6759 // If the DIExpression was previously empty then add the stack terminator. 6760 // Non-empty expressions have only had elements inserted into them and so 6761 // the terminator should already be present e.g. stack_value or fragment. 6762 DIExpression *SalvageExpr = DbgVal->getExpression(); 6763 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6764 SalvageExpr = 6765 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6766 DbgVal->setExpression(SalvageExpr); 6767 } 6768 }; 6769 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6770 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6771 else 6772 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6773 } 6774 6775 /// Cached location ops may be erased during LSR, in which case a poison is 6776 /// required when restoring from the cache. The type of that location is no 6777 /// longer available, so just use int8. The poison will be replaced by one or 6778 /// more locations later when a SCEVDbgValueBuilder selects alternative 6779 /// locations to use for the salvage. 6780 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6781 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6782 } 6783 6784 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6785 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6786 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6787 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6788 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6789 assert(DVIRec.Expr && "Expected an expression"); 6790 DbgVal->setExpression(DVIRec.Expr); 6791 6792 // Even a single location-op may be inside a DIArgList and referenced with 6793 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6794 if (!DVIRec.HadLocationArgList) { 6795 assert(DVIRec.LocationOps.size() == 1 && 6796 "Unexpected number of location ops."); 6797 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6798 // this case was not present before, so force the location back to a 6799 // single uncontained Value. 6800 Value *CachedValue = 6801 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6802 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6803 } else { 6804 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6805 for (WeakVH VH : DVIRec.LocationOps) { 6806 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6807 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6808 } 6809 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6810 DbgVal->setRawLocation( 6811 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6812 } 6813 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6814 }; 6815 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6816 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6817 else 6818 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6819 } 6820 6821 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6822 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6823 const SCEV *SCEVInductionVar, 6824 SCEVDbgValueBuilder IterCountExpr) { 6825 6826 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6827 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6828 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation()) 6829 return false; 6830 6831 // LSR may have caused several changes to the dbg.value in the failed salvage 6832 // attempt. So restore the DIExpression, the location ops and also the 6833 // location ops format, which is always DIArglist for multiple ops, but only 6834 // sometimes for a single op. 6835 restorePreTransformState(DVIRec); 6836 6837 // LocationOpIndexMap[i] will store the post-LSR location index of 6838 // the non-optimised out location at pre-LSR index i. 6839 SmallVector<int64_t, 2> LocationOpIndexMap; 6840 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6841 SmallVector<Value *, 2> NewLocationOps; 6842 NewLocationOps.push_back(LSRInductionVar); 6843 6844 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6845 WeakVH VH = DVIRec.LocationOps[i]; 6846 // Place the locations not optimised out in the list first, avoiding 6847 // inserts later. The map is used to update the DIExpression's 6848 // DW_OP_LLVM_arg arguments as the expression is updated. 6849 if (VH && !isa<UndefValue>(VH)) { 6850 NewLocationOps.push_back(VH); 6851 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6852 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6853 << " now at index " << LocationOpIndexMap[i] << "\n"); 6854 continue; 6855 } 6856 6857 // It's possible that a value referred to in the SCEV may have been 6858 // optimised out by LSR. 6859 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6860 SE.containsUndefs(DVIRec.SCEVs[i])) { 6861 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6862 << " refers to a location that is now undef or erased. " 6863 "Salvage abandoned.\n"); 6864 return false; 6865 } 6866 6867 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6868 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6869 6870 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6871 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6872 6873 // Create an offset-based salvage expression if possible, as it requires 6874 // less DWARF ops than an iteration count-based expression. 6875 if (std::optional<APInt> Offset = 6876 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6877 if (Offset->getSignificantBits() <= 64) 6878 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6879 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6880 SE)) 6881 return false; 6882 } 6883 6884 // Merge the DbgValueBuilder generated expressions and the original 6885 // DIExpression, place the result into an new vector. 6886 SmallVector<uint64_t, 3> NewExpr; 6887 if (DVIRec.Expr->getNumElements() == 0) { 6888 assert(DVIRec.RecoveryExprs.size() == 1 && 6889 "Expected only a single recovery expression for an empty " 6890 "DIExpression."); 6891 assert(DVIRec.RecoveryExprs[0] && 6892 "Expected a SCEVDbgSalvageBuilder for location 0"); 6893 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6894 B->appendToVectors(NewExpr, NewLocationOps); 6895 } 6896 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6897 // Most Ops needn't be updated. 6898 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6899 Op.appendToVector(NewExpr); 6900 continue; 6901 } 6902 6903 uint64_t LocationArgIndex = Op.getArg(0); 6904 SCEVDbgValueBuilder *DbgBuilder = 6905 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6906 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6907 // optimise it away. So just translate the argument to the updated 6908 // location index. 6909 if (!DbgBuilder) { 6910 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6911 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6912 "Expected a positive index for the location-op position."); 6913 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6914 continue; 6915 } 6916 // The location has a recovery expression. 6917 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6918 } 6919 6920 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6921 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6922 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6923 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6924 else 6925 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6926 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n"); 6927 return true; 6928 } 6929 6930 /// Obtain an expression for the iteration count, then attempt to salvage the 6931 /// dbg.value intrinsics. 6932 static void DbgRewriteSalvageableDVIs( 6933 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6934 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6935 if (DVIToUpdate.empty()) 6936 return; 6937 6938 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6939 assert(SCEVInductionVar && 6940 "Anticipated a SCEV for the post-LSR induction variable"); 6941 6942 if (const SCEVAddRecExpr *IVAddRec = 6943 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6944 if (!IVAddRec->isAffine()) 6945 return; 6946 6947 // Prevent translation using excessive resources. 6948 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6949 return; 6950 6951 // The iteration count is required to recover location values. 6952 SCEVDbgValueBuilder IterCountExpr; 6953 IterCountExpr.pushLocation(LSRInductionVar); 6954 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6955 return; 6956 6957 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6958 << '\n'); 6959 6960 for (auto &DVIRec : DVIToUpdate) { 6961 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6962 IterCountExpr); 6963 } 6964 } 6965 } 6966 6967 /// Identify and cache salvageable DVI locations and expressions along with the 6968 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6969 /// cacheing and salvaging. 6970 static void DbgGatherSalvagableDVI( 6971 Loop *L, ScalarEvolution &SE, 6972 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6973 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6974 for (const auto &B : L->getBlocks()) { 6975 for (auto &I : *B) { 6976 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6977 // Ensure that if any location op is undef that the dbg.vlue is not 6978 // cached. 6979 if (DbgVal->isKillLocation()) 6980 return false; 6981 6982 // Check that the location op SCEVs are suitable for translation to 6983 // DIExpression. 6984 const auto &HasTranslatableLocationOps = 6985 [&](const auto *DbgValToTranslate) -> bool { 6986 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6987 if (!LocOp) 6988 return false; 6989 6990 if (!SE.isSCEVable(LocOp->getType())) 6991 return false; 6992 6993 const SCEV *S = SE.getSCEV(LocOp); 6994 if (SE.containsUndefs(S)) 6995 return false; 6996 } 6997 return true; 6998 }; 6999 7000 if (!HasTranslatableLocationOps(DbgVal)) 7001 return false; 7002 7003 std::unique_ptr<DVIRecoveryRec> NewRec = 7004 std::make_unique<DVIRecoveryRec>(DbgVal); 7005 // Each location Op may need a SCEVDbgValueBuilder in order to recover 7006 // it. Pre-allocating a vector will enable quick lookups of the builder 7007 // later during the salvage. 7008 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 7009 for (const auto LocOp : DbgVal->location_ops()) { 7010 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 7011 NewRec->LocationOps.push_back(LocOp); 7012 NewRec->HadLocationArgList = DbgVal->hasArgList(); 7013 } 7014 SalvageableDVISCEVs.push_back(std::move(NewRec)); 7015 return true; 7016 }; 7017 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 7018 if (DVR.isDbgValue() || DVR.isDbgAssign()) 7019 ProcessDbgValue(&DVR); 7020 } 7021 auto DVI = dyn_cast<DbgValueInst>(&I); 7022 if (!DVI) 7023 continue; 7024 if (ProcessDbgValue(DVI)) 7025 DVIHandles.insert(DVI); 7026 } 7027 } 7028 } 7029 7030 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 7031 /// any PHi from the loop header is usable, but may have less chance of 7032 /// surviving subsequent transforms. 7033 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 7034 const LSRInstance &LSR) { 7035 7036 auto IsSuitableIV = [&](PHINode *P) { 7037 if (!SE.isSCEVable(P->getType())) 7038 return false; 7039 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 7040 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 7041 return false; 7042 }; 7043 7044 // For now, just pick the first IV that was generated and inserted by 7045 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 7046 // by subsequent transforms. 7047 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 7048 if (!IV) 7049 continue; 7050 7051 // There should only be PHI node IVs. 7052 PHINode *P = cast<PHINode>(&*IV); 7053 7054 if (IsSuitableIV(P)) 7055 return P; 7056 } 7057 7058 for (PHINode &P : L.getHeader()->phis()) { 7059 if (IsSuitableIV(&P)) 7060 return &P; 7061 } 7062 return nullptr; 7063 } 7064 7065 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>> 7066 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT, 7067 const LoopInfo &LI, const TargetTransformInfo &TTI) { 7068 if (!L->isInnermost()) { 7069 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n"); 7070 return std::nullopt; 7071 } 7072 // Only inspect on simple loop structure 7073 if (!L->isLoopSimplifyForm()) { 7074 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n"); 7075 return std::nullopt; 7076 } 7077 7078 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 7079 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n"); 7080 return std::nullopt; 7081 } 7082 7083 BasicBlock *LoopLatch = L->getLoopLatch(); 7084 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 7085 if (!BI || BI->isUnconditional()) 7086 return std::nullopt; 7087 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition()); 7088 if (!TermCond) { 7089 LLVM_DEBUG( 7090 dbgs() << "Cannot fold on branching condition that is not an ICmpInst"); 7091 return std::nullopt; 7092 } 7093 if (!TermCond->hasOneUse()) { 7094 LLVM_DEBUG( 7095 dbgs() 7096 << "Cannot replace terminating condition with more than one use\n"); 7097 return std::nullopt; 7098 } 7099 7100 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0)); 7101 Value *RHS = TermCond->getOperand(1); 7102 if (!LHS || !L->isLoopInvariant(RHS)) 7103 // We could pattern match the inverse form of the icmp, but that is 7104 // non-canonical, and this pass is running *very* late in the pipeline. 7105 return std::nullopt; 7106 7107 // Find the IV used by the current exit condition. 7108 PHINode *ToFold; 7109 Value *ToFoldStart, *ToFoldStep; 7110 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep)) 7111 return std::nullopt; 7112 7113 // Ensure the simple recurrence is a part of the current loop. 7114 if (ToFold->getParent() != L->getHeader()) 7115 return std::nullopt; 7116 7117 // If that IV isn't dead after we rewrite the exit condition in terms of 7118 // another IV, there's no point in doing the transform. 7119 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond)) 7120 return std::nullopt; 7121 7122 // Inserting instructions in the preheader has a runtime cost, scale 7123 // the allowed cost with the loops trip count as best we can. 7124 const unsigned ExpansionBudget = [&]() { 7125 unsigned Budget = 2 * SCEVCheapExpansionBudget; 7126 if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L)) 7127 return std::min(Budget, SmallTC); 7128 if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L)) 7129 return std::min(Budget, *SmallTC); 7130 // Unknown trip count, assume long running by default. 7131 return Budget; 7132 }(); 7133 7134 const SCEV *BECount = SE.getBackedgeTakenCount(L); 7135 const DataLayout &DL = L->getHeader()->getDataLayout(); 7136 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7137 7138 PHINode *ToHelpFold = nullptr; 7139 const SCEV *TermValueS = nullptr; 7140 bool MustDropPoison = false; 7141 auto InsertPt = L->getLoopPreheader()->getTerminator(); 7142 for (PHINode &PN : L->getHeader()->phis()) { 7143 if (ToFold == &PN) 7144 continue; 7145 7146 if (!SE.isSCEVable(PN.getType())) { 7147 LLVM_DEBUG(dbgs() << "IV of phi '" << PN 7148 << "' is not SCEV-able, not qualified for the " 7149 "terminating condition folding.\n"); 7150 continue; 7151 } 7152 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 7153 // Only speculate on affine AddRec 7154 if (!AddRec || !AddRec->isAffine()) { 7155 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN 7156 << "' is not an affine add recursion, not qualified " 7157 "for the terminating condition folding.\n"); 7158 continue; 7159 } 7160 7161 // Check that we can compute the value of AddRec on the exiting iteration 7162 // without soundness problems. evaluateAtIteration internally needs 7163 // to multiply the stride of the iteration number - which may wrap around. 7164 // The issue here is subtle because computing the result accounting for 7165 // wrap is insufficient. In order to use the result in an exit test, we 7166 // must also know that AddRec doesn't take the same value on any previous 7167 // iteration. The simplest case to consider is a candidate IV which is 7168 // narrower than the trip count (and thus original IV), but this can 7169 // also happen due to non-unit strides on the candidate IVs. 7170 if (!AddRec->hasNoSelfWrap() || 7171 !SE.isKnownNonZero(AddRec->getStepRecurrence(SE))) 7172 continue; 7173 7174 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE); 7175 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE); 7176 if (!Expander.isSafeToExpand(TermValueSLocal)) { 7177 LLVM_DEBUG( 7178 dbgs() << "Is not safe to expand terminating value for phi node" << PN 7179 << "\n"); 7180 continue; 7181 } 7182 7183 if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget, 7184 &TTI, InsertPt)) { 7185 LLVM_DEBUG( 7186 dbgs() << "Is too expensive to expand terminating value for phi node" 7187 << PN << "\n"); 7188 continue; 7189 } 7190 7191 // The candidate IV may have been otherwise dead and poison from the 7192 // very first iteration. If we can't disprove that, we can't use the IV. 7193 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) { 7194 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV " 7195 << PN << "\n"); 7196 continue; 7197 } 7198 7199 // The candidate IV may become poison on the last iteration. If this 7200 // value is not branched on, this is a well defined program. We're 7201 // about to add a new use to this IV, and we have to ensure we don't 7202 // insert UB which didn't previously exist. 7203 bool MustDropPoisonLocal = false; 7204 Instruction *PostIncV = 7205 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch)); 7206 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(), 7207 &DT)) { 7208 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use" 7209 << PN << "\n"); 7210 7211 // If this is a complex recurrance with multiple instructions computing 7212 // the backedge value, we might need to strip poison flags from all of 7213 // them. 7214 if (PostIncV->getOperand(0) != &PN) 7215 continue; 7216 7217 // In order to perform the transform, we need to drop the poison generating 7218 // flags on this instruction (if any). 7219 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags(); 7220 } 7221 7222 // We pick the last legal alternate IV. We could expore choosing an optimal 7223 // alternate IV if we had a decent heuristic to do so. 7224 ToHelpFold = &PN; 7225 TermValueS = TermValueSLocal; 7226 MustDropPoison = MustDropPoisonLocal; 7227 } 7228 7229 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs() 7230 << "Cannot find other AddRec IV to help folding\n";); 7231 7232 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs() 7233 << "\nFound loop that can fold terminating condition\n" 7234 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n" 7235 << " TermCond: " << *TermCond << "\n" 7236 << " BrandInst: " << *BI << "\n" 7237 << " ToFold: " << *ToFold << "\n" 7238 << " ToHelpFold: " << *ToHelpFold << "\n"); 7239 7240 if (!ToFold || !ToHelpFold) 7241 return std::nullopt; 7242 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison); 7243 } 7244 7245 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 7246 DominatorTree &DT, LoopInfo &LI, 7247 const TargetTransformInfo &TTI, 7248 AssumptionCache &AC, TargetLibraryInfo &TLI, 7249 MemorySSA *MSSA) { 7250 7251 // Debug preservation - before we start removing anything identify which DVI 7252 // meet the salvageable criteria and store their DIExpression and SCEVs. 7253 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 7254 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 7255 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 7256 7257 bool Changed = false; 7258 std::unique_ptr<MemorySSAUpdater> MSSAU; 7259 if (MSSA) 7260 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 7261 7262 // Run the main LSR transformation. 7263 const LSRInstance &Reducer = 7264 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 7265 Changed |= Reducer.getChanged(); 7266 7267 // Remove any extra phis created by processing inner loops. 7268 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7269 if (EnablePhiElim && L->isLoopSimplifyForm()) { 7270 SmallVector<WeakTrackingVH, 16> DeadInsts; 7271 const DataLayout &DL = L->getHeader()->getDataLayout(); 7272 SCEVExpander Rewriter(SE, DL, "lsr", false); 7273 #ifndef NDEBUG 7274 Rewriter.setDebugType(DEBUG_TYPE); 7275 #endif 7276 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 7277 Rewriter.clear(); 7278 if (numFolded) { 7279 Changed = true; 7280 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7281 MSSAU.get()); 7282 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7283 } 7284 } 7285 // LSR may at times remove all uses of an induction variable from a loop. 7286 // The only remaining use is the PHI in the exit block. 7287 // When this is the case, if the exit value of the IV can be calculated using 7288 // SCEV, we can replace the exit block PHI with the final value of the IV and 7289 // skip the updates in each loop iteration. 7290 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 7291 SmallVector<WeakTrackingVH, 16> DeadInsts; 7292 const DataLayout &DL = L->getHeader()->getDataLayout(); 7293 SCEVExpander Rewriter(SE, DL, "lsr", true); 7294 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 7295 UnusedIndVarInLoop, DeadInsts); 7296 Rewriter.clear(); 7297 if (Rewrites) { 7298 Changed = true; 7299 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7300 MSSAU.get()); 7301 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7302 } 7303 } 7304 7305 const bool EnableFormTerm = [&] { 7306 switch (AllowTerminatingConditionFoldingAfterLSR) { 7307 case cl::BOU_TRUE: 7308 return true; 7309 case cl::BOU_FALSE: 7310 return false; 7311 case cl::BOU_UNSET: 7312 return TTI.shouldFoldTerminatingConditionAfterLSR(); 7313 } 7314 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 7315 }(); 7316 7317 if (EnableFormTerm) { 7318 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI)) { 7319 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt; 7320 7321 Changed = true; 7322 NumTermFold++; 7323 7324 BasicBlock *LoopPreheader = L->getLoopPreheader(); 7325 BasicBlock *LoopLatch = L->getLoopLatch(); 7326 7327 (void)ToFold; 7328 LLVM_DEBUG(dbgs() << "To fold phi-node:\n" 7329 << *ToFold << "\n" 7330 << "New term-cond phi-node:\n" 7331 << *ToHelpFold << "\n"); 7332 7333 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader); 7334 (void)StartValue; 7335 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch); 7336 7337 // See comment in canFoldTermCondOfLoop on why this is sufficient. 7338 if (MustDrop) 7339 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags(); 7340 7341 // SCEVExpander for both use in preheader and latch 7342 const DataLayout &DL = L->getHeader()->getDataLayout(); 7343 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond"); 7344 7345 assert(Expander.isSafeToExpand(TermValueS) && 7346 "Terminating value was checked safe in canFoldTerminatingCondition"); 7347 7348 // Create new terminating value at loop preheader 7349 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(), 7350 LoopPreheader->getTerminator()); 7351 7352 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n" 7353 << *StartValue << "\n" 7354 << "Terminating value of new term-cond phi-node:\n" 7355 << *TermValue << "\n"); 7356 7357 // Create new terminating condition at loop latch 7358 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator()); 7359 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition()); 7360 IRBuilder<> LatchBuilder(LoopLatch->getTerminator()); 7361 Value *NewTermCond = 7362 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue, 7363 "lsr_fold_term_cond.replaced_term_cond"); 7364 // Swap successors to exit loop body if IV equals to new TermValue 7365 if (BI->getSuccessor(0) == L->getHeader()) 7366 BI->swapSuccessors(); 7367 7368 LLVM_DEBUG(dbgs() << "Old term-cond:\n" 7369 << *OldTermCond << "\n" 7370 << "New term-cond:\n" << *NewTermCond << "\n"); 7371 7372 BI->setCondition(NewTermCond); 7373 7374 Expander.clear(); 7375 OldTermCond->eraseFromParent(); 7376 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7377 } 7378 } 7379 7380 if (SalvageableDVIRecords.empty()) 7381 return Changed; 7382 7383 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7384 // expressions composed using the derived iteration count. 7385 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7386 for (const auto &L : LI) { 7387 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7388 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7389 else { 7390 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7391 "could not be identified.\n"); 7392 } 7393 } 7394 7395 for (auto &Rec : SalvageableDVIRecords) 7396 Rec->clear(); 7397 SalvageableDVIRecords.clear(); 7398 DVIHandles.clear(); 7399 return Changed; 7400 } 7401 7402 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7403 if (skipLoop(L)) 7404 return false; 7405 7406 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7407 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7408 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7409 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7410 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7411 *L->getHeader()->getParent()); 7412 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7413 *L->getHeader()->getParent()); 7414 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7415 *L->getHeader()->getParent()); 7416 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7417 MemorySSA *MSSA = nullptr; 7418 if (MSSAAnalysis) 7419 MSSA = &MSSAAnalysis->getMSSA(); 7420 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7421 } 7422 7423 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7424 LoopStandardAnalysisResults &AR, 7425 LPMUpdater &) { 7426 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7427 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7428 return PreservedAnalyses::all(); 7429 7430 auto PA = getLoopPassPreservedAnalyses(); 7431 if (AR.MSSA) 7432 PA.preserve<MemorySSAAnalysis>(); 7433 return PA; 7434 } 7435 7436 char LoopStrengthReduce::ID = 0; 7437 7438 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7439 "Loop Strength Reduction", false, false) 7440 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7442 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7446 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7447 "Loop Strength Reduction", false, false) 7448 7449 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7450