1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 // Temporary flag to cleanup congruent phis after LSR phi expansion. 140 // It's currently disabled until we can determine whether it's truly useful or 141 // not. The flag should be removed after the v3.0 release. 142 // This is now needed for ivchains. 143 static cl::opt<bool> EnablePhiElim( 144 "enable-lsr-phielim", cl::Hidden, cl::init(true), 145 cl::desc("Enable LSR phi elimination")); 146 147 // The flag adds instruction count to solutions cost comparision. 148 static cl::opt<bool> InsnsCost( 149 "lsr-insns-cost", cl::Hidden, cl::init(true), 150 cl::desc("Add instruction count to a LSR cost model")); 151 152 // Flag to choose how to narrow complex lsr solution 153 static cl::opt<bool> LSRExpNarrow( 154 "lsr-exp-narrow", cl::Hidden, cl::init(false), 155 cl::desc("Narrow LSR complex solution using" 156 " expectation of registers number")); 157 158 // Flag to narrow search space by filtering non-optimal formulae with 159 // the same ScaledReg and Scale. 160 static cl::opt<bool> FilterSameScaledReg( 161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 162 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 163 " with the same ScaledReg and Scale")); 164 165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 167 cl::desc("A flag that overrides the target's preferred addressing mode."), 168 cl::values(clEnumValN(TTI::AMK_None, 169 "none", 170 "Don't prefer any addressing mode"), 171 clEnumValN(TTI::AMK_PreIndexed, 172 "preindexed", 173 "Prefer pre-indexed addressing mode"), 174 clEnumValN(TTI::AMK_PostIndexed, 175 "postindexed", 176 "Prefer post-indexed addressing mode"))); 177 178 static cl::opt<unsigned> ComplexityLimit( 179 "lsr-complexity-limit", cl::Hidden, 180 cl::init(std::numeric_limits<uint16_t>::max()), 181 cl::desc("LSR search space complexity limit")); 182 183 static cl::opt<unsigned> SetupCostDepthLimit( 184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 185 cl::desc("The limit on recursion depth for LSRs setup cost")); 186 187 #ifndef NDEBUG 188 // Stress test IV chain generation. 189 static cl::opt<bool> StressIVChain( 190 "stress-ivchain", cl::Hidden, cl::init(false), 191 cl::desc("Stress test LSR IV chains")); 192 #else 193 static bool StressIVChain = false; 194 #endif 195 196 namespace { 197 198 struct MemAccessTy { 199 /// Used in situations where the accessed memory type is unknown. 200 static const unsigned UnknownAddressSpace = 201 std::numeric_limits<unsigned>::max(); 202 203 Type *MemTy = nullptr; 204 unsigned AddrSpace = UnknownAddressSpace; 205 206 MemAccessTy() = default; 207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 208 209 bool operator==(MemAccessTy Other) const { 210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 211 } 212 213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 214 215 static MemAccessTy getUnknown(LLVMContext &Ctx, 216 unsigned AS = UnknownAddressSpace) { 217 return MemAccessTy(Type::getVoidTy(Ctx), AS); 218 } 219 220 Type *getType() { return MemTy; } 221 }; 222 223 /// This class holds data which is used to order reuse candidates. 224 class RegSortData { 225 public: 226 /// This represents the set of LSRUse indices which reference 227 /// a particular register. 228 SmallBitVector UsedByIndices; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } // end anonymous namespace 235 236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 237 void RegSortData::print(raw_ostream &OS) const { 238 OS << "[NumUses=" << UsedByIndices.count() << ']'; 239 } 240 241 LLVM_DUMP_METHOD void RegSortData::dump() const { 242 print(errs()); errs() << '\n'; 243 } 244 #endif 245 246 namespace { 247 248 /// Map register candidates to information about how they are used. 249 class RegUseTracker { 250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 251 252 RegUsesTy RegUsesMap; 253 SmallVector<const SCEV *, 16> RegSequence; 254 255 public: 256 void countRegister(const SCEV *Reg, size_t LUIdx); 257 void dropRegister(const SCEV *Reg, size_t LUIdx); 258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 259 260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 261 262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 263 264 void clear(); 265 266 using iterator = SmallVectorImpl<const SCEV *>::iterator; 267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 268 269 iterator begin() { return RegSequence.begin(); } 270 iterator end() { return RegSequence.end(); } 271 const_iterator begin() const { return RegSequence.begin(); } 272 const_iterator end() const { return RegSequence.end(); } 273 }; 274 275 } // end anonymous namespace 276 277 void 278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 279 std::pair<RegUsesTy::iterator, bool> Pair = 280 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 281 RegSortData &RSD = Pair.first->second; 282 if (Pair.second) 283 RegSequence.push_back(Reg); 284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 285 RSD.UsedByIndices.set(LUIdx); 286 } 287 288 void 289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 290 RegUsesTy::iterator It = RegUsesMap.find(Reg); 291 assert(It != RegUsesMap.end()); 292 RegSortData &RSD = It->second; 293 assert(RSD.UsedByIndices.size() > LUIdx); 294 RSD.UsedByIndices.reset(LUIdx); 295 } 296 297 void 298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 299 assert(LUIdx <= LastLUIdx); 300 301 // Update RegUses. The data structure is not optimized for this purpose; 302 // we must iterate through it and update each of the bit vectors. 303 for (auto &Pair : RegUsesMap) { 304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 305 if (LUIdx < UsedByIndices.size()) 306 UsedByIndices[LUIdx] = 307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 309 } 310 } 311 312 bool 313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 if (I == RegUsesMap.end()) 316 return false; 317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 318 int i = UsedByIndices.find_first(); 319 if (i == -1) return false; 320 if ((size_t)i != LUIdx) return true; 321 return UsedByIndices.find_next(i) != -1; 322 } 323 324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 326 assert(I != RegUsesMap.end() && "Unknown register!"); 327 return I->second.UsedByIndices; 328 } 329 330 void RegUseTracker::clear() { 331 RegUsesMap.clear(); 332 RegSequence.clear(); 333 } 334 335 namespace { 336 337 /// This class holds information that describes a formula for computing 338 /// satisfying a use. It may include broken-out immediates and scaled registers. 339 struct Formula { 340 /// Global base address used for complex addressing. 341 GlobalValue *BaseGV = nullptr; 342 343 /// Base offset for complex addressing. 344 int64_t BaseOffset = 0; 345 346 /// Whether any complex addressing has a base register. 347 bool HasBaseReg = false; 348 349 /// The scale of any complex addressing. 350 int64_t Scale = 0; 351 352 /// The list of "base" registers for this use. When this is non-empty. The 353 /// canonical representation of a formula is 354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 356 /// 3. The reg containing recurrent expr related with currect loop in the 357 /// formula should be put in the ScaledReg. 358 /// #1 enforces that the scaled register is always used when at least two 359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 360 /// #2 enforces that 1 * reg is reg. 361 /// #3 ensures invariant regs with respect to current loop can be combined 362 /// together in LSR codegen. 363 /// This invariant can be temporarily broken while building a formula. 364 /// However, every formula inserted into the LSRInstance must be in canonical 365 /// form. 366 SmallVector<const SCEV *, 4> BaseRegs; 367 368 /// The 'scaled' register for this use. This should be non-null when Scale is 369 /// not zero. 370 const SCEV *ScaledReg = nullptr; 371 372 /// An additional constant offset which added near the use. This requires a 373 /// temporary register, but the offset itself can live in an add immediate 374 /// field rather than a register. 375 int64_t UnfoldedOffset = 0; 376 377 Formula() = default; 378 379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 380 381 bool isCanonical(const Loop &L) const; 382 383 void canonicalize(const Loop &L); 384 385 bool unscale(); 386 387 bool hasZeroEnd() const; 388 389 size_t getNumRegs() const; 390 Type *getType() const; 391 392 void deleteBaseReg(const SCEV *&S); 393 394 bool referencesReg(const SCEV *S) const; 395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 396 const RegUseTracker &RegUses) const; 397 398 void print(raw_ostream &OS) const; 399 void dump() const; 400 }; 401 402 } // end anonymous namespace 403 404 /// Recursion helper for initialMatch. 405 static void DoInitialMatch(const SCEV *S, Loop *L, 406 SmallVectorImpl<const SCEV *> &Good, 407 SmallVectorImpl<const SCEV *> &Bad, 408 ScalarEvolution &SE) { 409 // Collect expressions which properly dominate the loop header. 410 if (SE.properlyDominates(S, L->getHeader())) { 411 Good.push_back(S); 412 return; 413 } 414 415 // Look at add operands. 416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 417 for (const SCEV *S : Add->operands()) 418 DoInitialMatch(S, L, Good, Bad, SE); 419 return; 420 } 421 422 // Look at addrec operands. 423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 424 if (!AR->getStart()->isZero() && AR->isAffine()) { 425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 427 AR->getStepRecurrence(SE), 428 // FIXME: AR->getNoWrapFlags() 429 AR->getLoop(), SCEV::FlagAnyWrap), 430 L, Good, Bad, SE); 431 return; 432 } 433 434 // Handle a multiplication by -1 (negation) if it didn't fold. 435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 436 if (Mul->getOperand(0)->isAllOnesValue()) { 437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 438 const SCEV *NewMul = SE.getMulExpr(Ops); 439 440 SmallVector<const SCEV *, 4> MyGood; 441 SmallVector<const SCEV *, 4> MyBad; 442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 444 SE.getEffectiveSCEVType(NewMul->getType()))); 445 for (const SCEV *S : MyGood) 446 Good.push_back(SE.getMulExpr(NegOne, S)); 447 for (const SCEV *S : MyBad) 448 Bad.push_back(SE.getMulExpr(NegOne, S)); 449 return; 450 } 451 452 // Ok, we can't do anything interesting. Just stuff the whole thing into a 453 // register and hope for the best. 454 Bad.push_back(S); 455 } 456 457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 458 /// all loop-invariant and loop-computable values in a single base register. 459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 460 SmallVector<const SCEV *, 4> Good; 461 SmallVector<const SCEV *, 4> Bad; 462 DoInitialMatch(S, L, Good, Bad, SE); 463 if (!Good.empty()) { 464 const SCEV *Sum = SE.getAddExpr(Good); 465 if (!Sum->isZero()) 466 BaseRegs.push_back(Sum); 467 HasBaseReg = true; 468 } 469 if (!Bad.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Bad); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 canonicalize(*L); 476 } 477 478 /// Check whether or not this formula satisfies the canonical 479 /// representation. 480 /// \see Formula::BaseRegs. 481 bool Formula::isCanonical(const Loop &L) const { 482 if (!ScaledReg) 483 return BaseRegs.size() <= 1; 484 485 if (Scale != 1) 486 return true; 487 488 if (Scale == 1 && BaseRegs.empty()) 489 return false; 490 491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 492 if (SAR && SAR->getLoop() == &L) 493 return true; 494 495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 497 // loop, we want to swap the reg in BaseRegs with ScaledReg. 498 auto I = find_if(BaseRegs, [&](const SCEV *S) { 499 return isa<const SCEVAddRecExpr>(S) && 500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 501 }); 502 return I == BaseRegs.end(); 503 } 504 505 /// Helper method to morph a formula into its canonical representation. 506 /// \see Formula::BaseRegs. 507 /// Every formula having more than one base register, must use the ScaledReg 508 /// field. Otherwise, we would have to do special cases everywhere in LSR 509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 510 /// On the other hand, 1*reg should be canonicalized into reg. 511 void Formula::canonicalize(const Loop &L) { 512 if (isCanonical(L)) 513 return; 514 515 if (BaseRegs.empty()) { 516 // No base reg? Use scale reg with scale = 1 as such. 517 assert(ScaledReg && "Expected 1*reg => reg"); 518 assert(Scale == 1 && "Expected 1*reg => reg"); 519 BaseRegs.push_back(ScaledReg); 520 Scale = 0; 521 ScaledReg = nullptr; 522 return; 523 } 524 525 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 526 if (!ScaledReg) { 527 ScaledReg = BaseRegs.pop_back_val(); 528 Scale = 1; 529 } 530 531 // If ScaledReg is an invariant with respect to L, find the reg from 532 // BaseRegs containing the recurrent expr related with Loop L. Swap the 533 // reg with ScaledReg. 534 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 535 if (!SAR || SAR->getLoop() != &L) { 536 auto I = find_if(BaseRegs, [&](const SCEV *S) { 537 return isa<const SCEVAddRecExpr>(S) && 538 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 539 }); 540 if (I != BaseRegs.end()) 541 std::swap(ScaledReg, *I); 542 } 543 assert(isCanonical(L) && "Failed to canonicalize?"); 544 } 545 546 /// Get rid of the scale in the formula. 547 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 548 /// \return true if it was possible to get rid of the scale, false otherwise. 549 /// \note After this operation the formula may not be in the canonical form. 550 bool Formula::unscale() { 551 if (Scale != 1) 552 return false; 553 Scale = 0; 554 BaseRegs.push_back(ScaledReg); 555 ScaledReg = nullptr; 556 return true; 557 } 558 559 bool Formula::hasZeroEnd() const { 560 if (UnfoldedOffset || BaseOffset) 561 return false; 562 if (BaseRegs.size() != 1 || ScaledReg) 563 return false; 564 return true; 565 } 566 567 /// Return the total number of register operands used by this formula. This does 568 /// not include register uses implied by non-constant addrec strides. 569 size_t Formula::getNumRegs() const { 570 return !!ScaledReg + BaseRegs.size(); 571 } 572 573 /// Return the type of this formula, if it has one, or null otherwise. This type 574 /// is meaningless except for the bit size. 575 Type *Formula::getType() const { 576 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 577 ScaledReg ? ScaledReg->getType() : 578 BaseGV ? BaseGV->getType() : 579 nullptr; 580 } 581 582 /// Delete the given base reg from the BaseRegs list. 583 void Formula::deleteBaseReg(const SCEV *&S) { 584 if (&S != &BaseRegs.back()) 585 std::swap(S, BaseRegs.back()); 586 BaseRegs.pop_back(); 587 } 588 589 /// Test if this formula references the given register. 590 bool Formula::referencesReg(const SCEV *S) const { 591 return S == ScaledReg || is_contained(BaseRegs, S); 592 } 593 594 /// Test whether this formula uses registers which are used by uses other than 595 /// the use with the given index. 596 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 597 const RegUseTracker &RegUses) const { 598 if (ScaledReg) 599 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 600 return true; 601 for (const SCEV *BaseReg : BaseRegs) 602 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 603 return true; 604 return false; 605 } 606 607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 608 void Formula::print(raw_ostream &OS) const { 609 bool First = true; 610 if (BaseGV) { 611 if (!First) OS << " + "; else First = false; 612 BaseGV->printAsOperand(OS, /*PrintType=*/false); 613 } 614 if (BaseOffset != 0) { 615 if (!First) OS << " + "; else First = false; 616 OS << BaseOffset; 617 } 618 for (const SCEV *BaseReg : BaseRegs) { 619 if (!First) OS << " + "; else First = false; 620 OS << "reg(" << *BaseReg << ')'; 621 } 622 if (HasBaseReg && BaseRegs.empty()) { 623 if (!First) OS << " + "; else First = false; 624 OS << "**error: HasBaseReg**"; 625 } else if (!HasBaseReg && !BaseRegs.empty()) { 626 if (!First) OS << " + "; else First = false; 627 OS << "**error: !HasBaseReg**"; 628 } 629 if (Scale != 0) { 630 if (!First) OS << " + "; else First = false; 631 OS << Scale << "*reg("; 632 if (ScaledReg) 633 OS << *ScaledReg; 634 else 635 OS << "<unknown>"; 636 OS << ')'; 637 } 638 if (UnfoldedOffset != 0) { 639 if (!First) OS << " + "; 640 OS << "imm(" << UnfoldedOffset << ')'; 641 } 642 } 643 644 LLVM_DUMP_METHOD void Formula::dump() const { 645 print(errs()); errs() << '\n'; 646 } 647 #endif 648 649 /// Return true if the given addrec can be sign-extended without changing its 650 /// value. 651 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 652 Type *WideTy = 653 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 654 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 655 } 656 657 /// Return true if the given add can be sign-extended without changing its 658 /// value. 659 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 660 Type *WideTy = 661 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 662 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 663 } 664 665 /// Return true if the given mul can be sign-extended without changing its 666 /// value. 667 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 668 Type *WideTy = 669 IntegerType::get(SE.getContext(), 670 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 671 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 672 } 673 674 /// Return an expression for LHS /s RHS, if it can be determined and if the 675 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 676 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 677 /// the multiplication may overflow, which is useful when the result will be 678 /// used in a context where the most significant bits are ignored. 679 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 680 ScalarEvolution &SE, 681 bool IgnoreSignificantBits = false) { 682 // Handle the trivial case, which works for any SCEV type. 683 if (LHS == RHS) 684 return SE.getConstant(LHS->getType(), 1); 685 686 // Handle a few RHS special cases. 687 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 688 if (RC) { 689 const APInt &RA = RC->getAPInt(); 690 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 691 // some folding. 692 if (RA.isAllOnesValue()) { 693 if (LHS->getType()->isPointerTy()) 694 return nullptr; 695 return SE.getMulExpr(LHS, RC); 696 } 697 // Handle x /s 1 as x. 698 if (RA == 1) 699 return LHS; 700 } 701 702 // Check for a division of a constant by a constant. 703 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 704 if (!RC) 705 return nullptr; 706 const APInt &LA = C->getAPInt(); 707 const APInt &RA = RC->getAPInt(); 708 if (LA.srem(RA) != 0) 709 return nullptr; 710 return SE.getConstant(LA.sdiv(RA)); 711 } 712 713 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 714 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 715 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 716 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 717 IgnoreSignificantBits); 718 if (!Step) return nullptr; 719 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 720 IgnoreSignificantBits); 721 if (!Start) return nullptr; 722 // FlagNW is independent of the start value, step direction, and is 723 // preserved with smaller magnitude steps. 724 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 725 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 726 } 727 return nullptr; 728 } 729 730 // Distribute the sdiv over add operands, if the add doesn't overflow. 731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 732 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 733 SmallVector<const SCEV *, 8> Ops; 734 for (const SCEV *S : Add->operands()) { 735 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 736 if (!Op) return nullptr; 737 Ops.push_back(Op); 738 } 739 return SE.getAddExpr(Ops); 740 } 741 return nullptr; 742 } 743 744 // Check for a multiply operand that we can pull RHS out of. 745 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 746 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 747 // Handle special case C1*X*Y /s C2*X*Y. 748 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 749 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 750 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 751 const SCEVConstant *RC = 752 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 753 if (LC && RC) { 754 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 755 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 756 if (LOps == ROps) 757 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 758 } 759 } 760 } 761 762 SmallVector<const SCEV *, 4> Ops; 763 bool Found = false; 764 for (const SCEV *S : Mul->operands()) { 765 if (!Found) 766 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 767 IgnoreSignificantBits)) { 768 S = Q; 769 Found = true; 770 } 771 Ops.push_back(S); 772 } 773 return Found ? SE.getMulExpr(Ops) : nullptr; 774 } 775 return nullptr; 776 } 777 778 // Otherwise we don't know. 779 return nullptr; 780 } 781 782 /// If S involves the addition of a constant integer value, return that integer 783 /// value, and mutate S to point to a new SCEV with that value excluded. 784 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 785 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 786 if (C->getAPInt().getMinSignedBits() <= 64) { 787 S = SE.getConstant(C->getType(), 0); 788 return C->getValue()->getSExtValue(); 789 } 790 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 791 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 792 int64_t Result = ExtractImmediate(NewOps.front(), SE); 793 if (Result != 0) 794 S = SE.getAddExpr(NewOps); 795 return Result; 796 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 797 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 798 int64_t Result = ExtractImmediate(NewOps.front(), SE); 799 if (Result != 0) 800 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 801 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 802 SCEV::FlagAnyWrap); 803 return Result; 804 } 805 return 0; 806 } 807 808 /// If S involves the addition of a GlobalValue address, return that symbol, and 809 /// mutate S to point to a new SCEV with that value excluded. 810 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 811 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 812 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 813 S = SE.getConstant(GV->getType(), 0); 814 return GV; 815 } 816 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 817 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 818 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 819 if (Result) 820 S = SE.getAddExpr(NewOps); 821 return Result; 822 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 823 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 824 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 825 if (Result) 826 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 827 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 828 SCEV::FlagAnyWrap); 829 return Result; 830 } 831 return nullptr; 832 } 833 834 /// Returns true if the specified instruction is using the specified value as an 835 /// address. 836 static bool isAddressUse(const TargetTransformInfo &TTI, 837 Instruction *Inst, Value *OperandVal) { 838 bool isAddress = isa<LoadInst>(Inst); 839 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 840 if (SI->getPointerOperand() == OperandVal) 841 isAddress = true; 842 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 843 // Addressing modes can also be folded into prefetches and a variety 844 // of intrinsics. 845 switch (II->getIntrinsicID()) { 846 case Intrinsic::memset: 847 case Intrinsic::prefetch: 848 case Intrinsic::masked_load: 849 if (II->getArgOperand(0) == OperandVal) 850 isAddress = true; 851 break; 852 case Intrinsic::masked_store: 853 if (II->getArgOperand(1) == OperandVal) 854 isAddress = true; 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 if (II->getArgOperand(0) == OperandVal || 859 II->getArgOperand(1) == OperandVal) 860 isAddress = true; 861 break; 862 default: { 863 MemIntrinsicInfo IntrInfo; 864 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 865 if (IntrInfo.PtrVal == OperandVal) 866 isAddress = true; 867 } 868 } 869 } 870 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 871 if (RMW->getPointerOperand() == OperandVal) 872 isAddress = true; 873 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 874 if (CmpX->getPointerOperand() == OperandVal) 875 isAddress = true; 876 } 877 return isAddress; 878 } 879 880 /// Return the type of the memory being accessed. 881 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 882 Instruction *Inst, Value *OperandVal) { 883 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 884 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 885 AccessTy.MemTy = SI->getOperand(0)->getType(); 886 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 887 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 888 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 889 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 890 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 891 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 892 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 893 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 894 switch (II->getIntrinsicID()) { 895 case Intrinsic::prefetch: 896 case Intrinsic::memset: 897 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 898 AccessTy.MemTy = OperandVal->getType(); 899 break; 900 case Intrinsic::memmove: 901 case Intrinsic::memcpy: 902 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 903 AccessTy.MemTy = OperandVal->getType(); 904 break; 905 case Intrinsic::masked_load: 906 AccessTy.AddrSpace = 907 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 908 break; 909 case Intrinsic::masked_store: 910 AccessTy.MemTy = II->getOperand(0)->getType(); 911 AccessTy.AddrSpace = 912 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 913 break; 914 default: { 915 MemIntrinsicInfo IntrInfo; 916 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 917 AccessTy.AddrSpace 918 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 919 } 920 921 break; 922 } 923 } 924 } 925 926 // All pointers have the same requirements, so canonicalize them to an 927 // arbitrary pointer type to minimize variation. 928 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 929 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 930 PTy->getAddressSpace()); 931 932 return AccessTy; 933 } 934 935 /// Return true if this AddRec is already a phi in its loop. 936 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 937 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 938 if (SE.isSCEVable(PN.getType()) && 939 (SE.getEffectiveSCEVType(PN.getType()) == 940 SE.getEffectiveSCEVType(AR->getType())) && 941 SE.getSCEV(&PN) == AR) 942 return true; 943 } 944 return false; 945 } 946 947 /// Check if expanding this expression is likely to incur significant cost. This 948 /// is tricky because SCEV doesn't track which expressions are actually computed 949 /// by the current IR. 950 /// 951 /// We currently allow expansion of IV increments that involve adds, 952 /// multiplication by constants, and AddRecs from existing phis. 953 /// 954 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 955 /// obvious multiple of the UDivExpr. 956 static bool isHighCostExpansion(const SCEV *S, 957 SmallPtrSetImpl<const SCEV*> &Processed, 958 ScalarEvolution &SE) { 959 // Zero/One operand expressions 960 switch (S->getSCEVType()) { 961 case scUnknown: 962 case scConstant: 963 return false; 964 case scTruncate: 965 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 966 Processed, SE); 967 case scZeroExtend: 968 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 969 Processed, SE); 970 case scSignExtend: 971 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 972 Processed, SE); 973 default: 974 break; 975 } 976 977 if (!Processed.insert(S).second) 978 return false; 979 980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 981 for (const SCEV *S : Add->operands()) { 982 if (isHighCostExpansion(S, Processed, SE)) 983 return true; 984 } 985 return false; 986 } 987 988 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 989 if (Mul->getNumOperands() == 2) { 990 // Multiplication by a constant is ok 991 if (isa<SCEVConstant>(Mul->getOperand(0))) 992 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 993 994 // If we have the value of one operand, check if an existing 995 // multiplication already generates this expression. 996 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 997 Value *UVal = U->getValue(); 998 for (User *UR : UVal->users()) { 999 // If U is a constant, it may be used by a ConstantExpr. 1000 Instruction *UI = dyn_cast<Instruction>(UR); 1001 if (UI && UI->getOpcode() == Instruction::Mul && 1002 SE.isSCEVable(UI->getType())) { 1003 return SE.getSCEV(UI) == Mul; 1004 } 1005 } 1006 } 1007 } 1008 } 1009 1010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1011 if (isExistingPhi(AR, SE)) 1012 return false; 1013 } 1014 1015 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1016 return true; 1017 } 1018 1019 namespace { 1020 1021 class LSRUse; 1022 1023 } // end anonymous namespace 1024 1025 /// Check if the addressing mode defined by \p F is completely 1026 /// folded in \p LU at isel time. 1027 /// This includes address-mode folding and special icmp tricks. 1028 /// This function returns true if \p LU can accommodate what \p F 1029 /// defines and up to 1 base + 1 scaled + offset. 1030 /// In other words, if \p F has several base registers, this function may 1031 /// still return true. Therefore, users still need to account for 1032 /// additional base registers and/or unfolded offsets to derive an 1033 /// accurate cost model. 1034 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1035 const LSRUse &LU, const Formula &F); 1036 1037 // Get the cost of the scaling factor used in F for LU. 1038 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1039 const LSRUse &LU, const Formula &F, 1040 const Loop &L); 1041 1042 namespace { 1043 1044 /// This class is used to measure and compare candidate formulae. 1045 class Cost { 1046 const Loop *L = nullptr; 1047 ScalarEvolution *SE = nullptr; 1048 const TargetTransformInfo *TTI = nullptr; 1049 TargetTransformInfo::LSRCost C; 1050 TTI::AddressingModeKind AMK = TTI::AMK_None; 1051 1052 public: 1053 Cost() = delete; 1054 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1055 TTI::AddressingModeKind AMK) : 1056 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1057 C.Insns = 0; 1058 C.NumRegs = 0; 1059 C.AddRecCost = 0; 1060 C.NumIVMuls = 0; 1061 C.NumBaseAdds = 0; 1062 C.ImmCost = 0; 1063 C.SetupCost = 0; 1064 C.ScaleCost = 0; 1065 } 1066 1067 bool isLess(Cost &Other); 1068 1069 void Lose(); 1070 1071 #ifndef NDEBUG 1072 // Once any of the metrics loses, they must all remain losers. 1073 bool isValid() { 1074 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1075 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1076 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1077 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1078 } 1079 #endif 1080 1081 bool isLoser() { 1082 assert(isValid() && "invalid cost"); 1083 return C.NumRegs == ~0u; 1084 } 1085 1086 void RateFormula(const Formula &F, 1087 SmallPtrSetImpl<const SCEV *> &Regs, 1088 const DenseSet<const SCEV *> &VisitedRegs, 1089 const LSRUse &LU, 1090 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1091 1092 void print(raw_ostream &OS) const; 1093 void dump() const; 1094 1095 private: 1096 void RateRegister(const Formula &F, const SCEV *Reg, 1097 SmallPtrSetImpl<const SCEV *> &Regs); 1098 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1099 SmallPtrSetImpl<const SCEV *> &Regs, 1100 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1101 }; 1102 1103 /// An operand value in an instruction which is to be replaced with some 1104 /// equivalent, possibly strength-reduced, replacement. 1105 struct LSRFixup { 1106 /// The instruction which will be updated. 1107 Instruction *UserInst = nullptr; 1108 1109 /// The operand of the instruction which will be replaced. The operand may be 1110 /// used more than once; every instance will be replaced. 1111 Value *OperandValToReplace = nullptr; 1112 1113 /// If this user is to use the post-incremented value of an induction 1114 /// variable, this set is non-empty and holds the loops associated with the 1115 /// induction variable. 1116 PostIncLoopSet PostIncLoops; 1117 1118 /// A constant offset to be added to the LSRUse expression. This allows 1119 /// multiple fixups to share the same LSRUse with different offsets, for 1120 /// example in an unrolled loop. 1121 int64_t Offset = 0; 1122 1123 LSRFixup() = default; 1124 1125 bool isUseFullyOutsideLoop(const Loop *L) const; 1126 1127 void print(raw_ostream &OS) const; 1128 void dump() const; 1129 }; 1130 1131 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1132 /// SmallVectors of const SCEV*. 1133 struct UniquifierDenseMapInfo { 1134 static SmallVector<const SCEV *, 4> getEmptyKey() { 1135 SmallVector<const SCEV *, 4> V; 1136 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1137 return V; 1138 } 1139 1140 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1141 SmallVector<const SCEV *, 4> V; 1142 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1143 return V; 1144 } 1145 1146 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1147 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1148 } 1149 1150 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1151 const SmallVector<const SCEV *, 4> &RHS) { 1152 return LHS == RHS; 1153 } 1154 }; 1155 1156 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1157 /// as uses invented by LSR itself. It includes information about what kinds of 1158 /// things can be folded into the user, information about the user itself, and 1159 /// information about how the use may be satisfied. TODO: Represent multiple 1160 /// users of the same expression in common? 1161 class LSRUse { 1162 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1163 1164 public: 1165 /// An enum for a kind of use, indicating what types of scaled and immediate 1166 /// operands it might support. 1167 enum KindType { 1168 Basic, ///< A normal use, with no folding. 1169 Special, ///< A special case of basic, allowing -1 scales. 1170 Address, ///< An address use; folding according to TargetLowering 1171 ICmpZero ///< An equality icmp with both operands folded into one. 1172 // TODO: Add a generic icmp too? 1173 }; 1174 1175 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1176 1177 KindType Kind; 1178 MemAccessTy AccessTy; 1179 1180 /// The list of operands which are to be replaced. 1181 SmallVector<LSRFixup, 8> Fixups; 1182 1183 /// Keep track of the min and max offsets of the fixups. 1184 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1185 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1186 1187 /// This records whether all of the fixups using this LSRUse are outside of 1188 /// the loop, in which case some special-case heuristics may be used. 1189 bool AllFixupsOutsideLoop = true; 1190 1191 /// RigidFormula is set to true to guarantee that this use will be associated 1192 /// with a single formula--the one that initially matched. Some SCEV 1193 /// expressions cannot be expanded. This allows LSR to consider the registers 1194 /// used by those expressions without the need to expand them later after 1195 /// changing the formula. 1196 bool RigidFormula = false; 1197 1198 /// This records the widest use type for any fixup using this 1199 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1200 /// fixup widths to be equivalent, because the narrower one may be relying on 1201 /// the implicit truncation to truncate away bogus bits. 1202 Type *WidestFixupType = nullptr; 1203 1204 /// A list of ways to build a value that can satisfy this user. After the 1205 /// list is populated, one of these is selected heuristically and used to 1206 /// formulate a replacement for OperandValToReplace in UserInst. 1207 SmallVector<Formula, 12> Formulae; 1208 1209 /// The set of register candidates used by all formulae in this LSRUse. 1210 SmallPtrSet<const SCEV *, 4> Regs; 1211 1212 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1213 1214 LSRFixup &getNewFixup() { 1215 Fixups.push_back(LSRFixup()); 1216 return Fixups.back(); 1217 } 1218 1219 void pushFixup(LSRFixup &f) { 1220 Fixups.push_back(f); 1221 if (f.Offset > MaxOffset) 1222 MaxOffset = f.Offset; 1223 if (f.Offset < MinOffset) 1224 MinOffset = f.Offset; 1225 } 1226 1227 bool HasFormulaWithSameRegs(const Formula &F) const; 1228 float getNotSelectedProbability(const SCEV *Reg) const; 1229 bool InsertFormula(const Formula &F, const Loop &L); 1230 void DeleteFormula(Formula &F); 1231 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1232 1233 void print(raw_ostream &OS) const; 1234 void dump() const; 1235 }; 1236 1237 } // end anonymous namespace 1238 1239 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1240 LSRUse::KindType Kind, MemAccessTy AccessTy, 1241 GlobalValue *BaseGV, int64_t BaseOffset, 1242 bool HasBaseReg, int64_t Scale, 1243 Instruction *Fixup = nullptr); 1244 1245 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1246 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1247 return 1; 1248 if (Depth == 0) 1249 return 0; 1250 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1251 return getSetupCost(S->getStart(), Depth - 1); 1252 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1253 return getSetupCost(S->getOperand(), Depth - 1); 1254 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1255 return std::accumulate(S->op_begin(), S->op_end(), 0, 1256 [&](unsigned i, const SCEV *Reg) { 1257 return i + getSetupCost(Reg, Depth - 1); 1258 }); 1259 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1260 return getSetupCost(S->getLHS(), Depth - 1) + 1261 getSetupCost(S->getRHS(), Depth - 1); 1262 return 0; 1263 } 1264 1265 /// Tally up interesting quantities from the given register. 1266 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1267 SmallPtrSetImpl<const SCEV *> &Regs) { 1268 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1269 // If this is an addrec for another loop, it should be an invariant 1270 // with respect to L since L is the innermost loop (at least 1271 // for now LSR only handles innermost loops). 1272 if (AR->getLoop() != L) { 1273 // If the AddRec exists, consider it's register free and leave it alone. 1274 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1275 return; 1276 1277 // It is bad to allow LSR for current loop to add induction variables 1278 // for its sibling loops. 1279 if (!AR->getLoop()->contains(L)) { 1280 Lose(); 1281 return; 1282 } 1283 1284 // Otherwise, it will be an invariant with respect to Loop L. 1285 ++C.NumRegs; 1286 return; 1287 } 1288 1289 unsigned LoopCost = 1; 1290 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1291 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1292 1293 // If the step size matches the base offset, we could use pre-indexed 1294 // addressing. 1295 if (AMK == TTI::AMK_PreIndexed) { 1296 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1297 if (Step->getAPInt() == F.BaseOffset) 1298 LoopCost = 0; 1299 } else if (AMK == TTI::AMK_PostIndexed) { 1300 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1301 if (isa<SCEVConstant>(LoopStep)) { 1302 const SCEV *LoopStart = AR->getStart(); 1303 if (!isa<SCEVConstant>(LoopStart) && 1304 SE->isLoopInvariant(LoopStart, L)) 1305 LoopCost = 0; 1306 } 1307 } 1308 } 1309 C.AddRecCost += LoopCost; 1310 1311 // Add the step value register, if it needs one. 1312 // TODO: The non-affine case isn't precisely modeled here. 1313 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1314 if (!Regs.count(AR->getOperand(1))) { 1315 RateRegister(F, AR->getOperand(1), Regs); 1316 if (isLoser()) 1317 return; 1318 } 1319 } 1320 } 1321 ++C.NumRegs; 1322 1323 // Rough heuristic; favor registers which don't require extra setup 1324 // instructions in the preheader. 1325 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1326 // Ensure we don't, even with the recusion limit, produce invalid costs. 1327 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1328 1329 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1330 SE->hasComputableLoopEvolution(Reg, L); 1331 } 1332 1333 /// Record this register in the set. If we haven't seen it before, rate 1334 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1335 /// one of those regs an instant loser. 1336 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1337 SmallPtrSetImpl<const SCEV *> &Regs, 1338 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1339 if (LoserRegs && LoserRegs->count(Reg)) { 1340 Lose(); 1341 return; 1342 } 1343 if (Regs.insert(Reg).second) { 1344 RateRegister(F, Reg, Regs); 1345 if (LoserRegs && isLoser()) 1346 LoserRegs->insert(Reg); 1347 } 1348 } 1349 1350 void Cost::RateFormula(const Formula &F, 1351 SmallPtrSetImpl<const SCEV *> &Regs, 1352 const DenseSet<const SCEV *> &VisitedRegs, 1353 const LSRUse &LU, 1354 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1355 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1356 // Tally up the registers. 1357 unsigned PrevAddRecCost = C.AddRecCost; 1358 unsigned PrevNumRegs = C.NumRegs; 1359 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1360 if (const SCEV *ScaledReg = F.ScaledReg) { 1361 if (VisitedRegs.count(ScaledReg)) { 1362 Lose(); 1363 return; 1364 } 1365 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1366 if (isLoser()) 1367 return; 1368 } 1369 for (const SCEV *BaseReg : F.BaseRegs) { 1370 if (VisitedRegs.count(BaseReg)) { 1371 Lose(); 1372 return; 1373 } 1374 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1375 if (isLoser()) 1376 return; 1377 } 1378 1379 // Determine how many (unfolded) adds we'll need inside the loop. 1380 size_t NumBaseParts = F.getNumRegs(); 1381 if (NumBaseParts > 1) 1382 // Do not count the base and a possible second register if the target 1383 // allows to fold 2 registers. 1384 C.NumBaseAdds += 1385 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1386 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1387 1388 // Accumulate non-free scaling amounts. 1389 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1390 1391 // Tally up the non-zero immediates. 1392 for (const LSRFixup &Fixup : LU.Fixups) { 1393 int64_t O = Fixup.Offset; 1394 int64_t Offset = (uint64_t)O + F.BaseOffset; 1395 if (F.BaseGV) 1396 C.ImmCost += 64; // Handle symbolic values conservatively. 1397 // TODO: This should probably be the pointer size. 1398 else if (Offset != 0) 1399 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1400 1401 // Check with target if this offset with this instruction is 1402 // specifically not supported. 1403 if (LU.Kind == LSRUse::Address && Offset != 0 && 1404 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1405 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1406 C.NumBaseAdds++; 1407 } 1408 1409 // If we don't count instruction cost exit here. 1410 if (!InsnsCost) { 1411 assert(isValid() && "invalid cost"); 1412 return; 1413 } 1414 1415 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1416 // additional instruction (at least fill). 1417 // TODO: Need distinguish register class? 1418 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1419 TTI->getRegisterClassForType(false, F.getType())) - 1; 1420 if (C.NumRegs > TTIRegNum) { 1421 // Cost already exceeded TTIRegNum, then only newly added register can add 1422 // new instructions. 1423 if (PrevNumRegs > TTIRegNum) 1424 C.Insns += (C.NumRegs - PrevNumRegs); 1425 else 1426 C.Insns += (C.NumRegs - TTIRegNum); 1427 } 1428 1429 // If ICmpZero formula ends with not 0, it could not be replaced by 1430 // just add or sub. We'll need to compare final result of AddRec. 1431 // That means we'll need an additional instruction. But if the target can 1432 // macro-fuse a compare with a branch, don't count this extra instruction. 1433 // For -10 + {0, +, 1}: 1434 // i = i + 1; 1435 // cmp i, 10 1436 // 1437 // For {-10, +, 1}: 1438 // i = i + 1; 1439 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1440 !TTI->canMacroFuseCmp()) 1441 C.Insns++; 1442 // Each new AddRec adds 1 instruction to calculation. 1443 C.Insns += (C.AddRecCost - PrevAddRecCost); 1444 1445 // BaseAdds adds instructions for unfolded registers. 1446 if (LU.Kind != LSRUse::ICmpZero) 1447 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1448 assert(isValid() && "invalid cost"); 1449 } 1450 1451 /// Set this cost to a losing value. 1452 void Cost::Lose() { 1453 C.Insns = std::numeric_limits<unsigned>::max(); 1454 C.NumRegs = std::numeric_limits<unsigned>::max(); 1455 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1456 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1457 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1458 C.ImmCost = std::numeric_limits<unsigned>::max(); 1459 C.SetupCost = std::numeric_limits<unsigned>::max(); 1460 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1461 } 1462 1463 /// Choose the lower cost. 1464 bool Cost::isLess(Cost &Other) { 1465 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1466 C.Insns != Other.C.Insns) 1467 return C.Insns < Other.C.Insns; 1468 return TTI->isLSRCostLess(C, Other.C); 1469 } 1470 1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1472 void Cost::print(raw_ostream &OS) const { 1473 if (InsnsCost) 1474 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1475 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1476 if (C.AddRecCost != 0) 1477 OS << ", with addrec cost " << C.AddRecCost; 1478 if (C.NumIVMuls != 0) 1479 OS << ", plus " << C.NumIVMuls << " IV mul" 1480 << (C.NumIVMuls == 1 ? "" : "s"); 1481 if (C.NumBaseAdds != 0) 1482 OS << ", plus " << C.NumBaseAdds << " base add" 1483 << (C.NumBaseAdds == 1 ? "" : "s"); 1484 if (C.ScaleCost != 0) 1485 OS << ", plus " << C.ScaleCost << " scale cost"; 1486 if (C.ImmCost != 0) 1487 OS << ", plus " << C.ImmCost << " imm cost"; 1488 if (C.SetupCost != 0) 1489 OS << ", plus " << C.SetupCost << " setup cost"; 1490 } 1491 1492 LLVM_DUMP_METHOD void Cost::dump() const { 1493 print(errs()); errs() << '\n'; 1494 } 1495 #endif 1496 1497 /// Test whether this fixup always uses its value outside of the given loop. 1498 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1499 // PHI nodes use their value in their incoming blocks. 1500 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1501 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1502 if (PN->getIncomingValue(i) == OperandValToReplace && 1503 L->contains(PN->getIncomingBlock(i))) 1504 return false; 1505 return true; 1506 } 1507 1508 return !L->contains(UserInst); 1509 } 1510 1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1512 void LSRFixup::print(raw_ostream &OS) const { 1513 OS << "UserInst="; 1514 // Store is common and interesting enough to be worth special-casing. 1515 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1516 OS << "store "; 1517 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1518 } else if (UserInst->getType()->isVoidTy()) 1519 OS << UserInst->getOpcodeName(); 1520 else 1521 UserInst->printAsOperand(OS, /*PrintType=*/false); 1522 1523 OS << ", OperandValToReplace="; 1524 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1525 1526 for (const Loop *PIL : PostIncLoops) { 1527 OS << ", PostIncLoop="; 1528 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1529 } 1530 1531 if (Offset != 0) 1532 OS << ", Offset=" << Offset; 1533 } 1534 1535 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1536 print(errs()); errs() << '\n'; 1537 } 1538 #endif 1539 1540 /// Test whether this use as a formula which has the same registers as the given 1541 /// formula. 1542 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1543 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1544 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1545 // Unstable sort by host order ok, because this is only used for uniquifying. 1546 llvm::sort(Key); 1547 return Uniquifier.count(Key); 1548 } 1549 1550 /// The function returns a probability of selecting formula without Reg. 1551 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1552 unsigned FNum = 0; 1553 for (const Formula &F : Formulae) 1554 if (F.referencesReg(Reg)) 1555 FNum++; 1556 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1557 } 1558 1559 /// If the given formula has not yet been inserted, add it to the list, and 1560 /// return true. Return false otherwise. The formula must be in canonical form. 1561 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1562 assert(F.isCanonical(L) && "Invalid canonical representation"); 1563 1564 if (!Formulae.empty() && RigidFormula) 1565 return false; 1566 1567 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1568 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1569 // Unstable sort by host order ok, because this is only used for uniquifying. 1570 llvm::sort(Key); 1571 1572 if (!Uniquifier.insert(Key).second) 1573 return false; 1574 1575 // Using a register to hold the value of 0 is not profitable. 1576 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1577 "Zero allocated in a scaled register!"); 1578 #ifndef NDEBUG 1579 for (const SCEV *BaseReg : F.BaseRegs) 1580 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1581 #endif 1582 1583 // Add the formula to the list. 1584 Formulae.push_back(F); 1585 1586 // Record registers now being used by this use. 1587 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1588 if (F.ScaledReg) 1589 Regs.insert(F.ScaledReg); 1590 1591 return true; 1592 } 1593 1594 /// Remove the given formula from this use's list. 1595 void LSRUse::DeleteFormula(Formula &F) { 1596 if (&F != &Formulae.back()) 1597 std::swap(F, Formulae.back()); 1598 Formulae.pop_back(); 1599 } 1600 1601 /// Recompute the Regs field, and update RegUses. 1602 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1603 // Now that we've filtered out some formulae, recompute the Regs set. 1604 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1605 Regs.clear(); 1606 for (const Formula &F : Formulae) { 1607 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1608 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1609 } 1610 1611 // Update the RegTracker. 1612 for (const SCEV *S : OldRegs) 1613 if (!Regs.count(S)) 1614 RegUses.dropRegister(S, LUIdx); 1615 } 1616 1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1618 void LSRUse::print(raw_ostream &OS) const { 1619 OS << "LSR Use: Kind="; 1620 switch (Kind) { 1621 case Basic: OS << "Basic"; break; 1622 case Special: OS << "Special"; break; 1623 case ICmpZero: OS << "ICmpZero"; break; 1624 case Address: 1625 OS << "Address of "; 1626 if (AccessTy.MemTy->isPointerTy()) 1627 OS << "pointer"; // the full pointer type could be really verbose 1628 else { 1629 OS << *AccessTy.MemTy; 1630 } 1631 1632 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1633 } 1634 1635 OS << ", Offsets={"; 1636 bool NeedComma = false; 1637 for (const LSRFixup &Fixup : Fixups) { 1638 if (NeedComma) OS << ','; 1639 OS << Fixup.Offset; 1640 NeedComma = true; 1641 } 1642 OS << '}'; 1643 1644 if (AllFixupsOutsideLoop) 1645 OS << ", all-fixups-outside-loop"; 1646 1647 if (WidestFixupType) 1648 OS << ", widest fixup type: " << *WidestFixupType; 1649 } 1650 1651 LLVM_DUMP_METHOD void LSRUse::dump() const { 1652 print(errs()); errs() << '\n'; 1653 } 1654 #endif 1655 1656 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1657 LSRUse::KindType Kind, MemAccessTy AccessTy, 1658 GlobalValue *BaseGV, int64_t BaseOffset, 1659 bool HasBaseReg, int64_t Scale, 1660 Instruction *Fixup/*= nullptr*/) { 1661 switch (Kind) { 1662 case LSRUse::Address: 1663 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1664 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1665 1666 case LSRUse::ICmpZero: 1667 // There's not even a target hook for querying whether it would be legal to 1668 // fold a GV into an ICmp. 1669 if (BaseGV) 1670 return false; 1671 1672 // ICmp only has two operands; don't allow more than two non-trivial parts. 1673 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1674 return false; 1675 1676 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1677 // putting the scaled register in the other operand of the icmp. 1678 if (Scale != 0 && Scale != -1) 1679 return false; 1680 1681 // If we have low-level target information, ask the target if it can fold an 1682 // integer immediate on an icmp. 1683 if (BaseOffset != 0) { 1684 // We have one of: 1685 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1686 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1687 // Offs is the ICmp immediate. 1688 if (Scale == 0) 1689 // The cast does the right thing with 1690 // std::numeric_limits<int64_t>::min(). 1691 BaseOffset = -(uint64_t)BaseOffset; 1692 return TTI.isLegalICmpImmediate(BaseOffset); 1693 } 1694 1695 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1696 return true; 1697 1698 case LSRUse::Basic: 1699 // Only handle single-register values. 1700 return !BaseGV && Scale == 0 && BaseOffset == 0; 1701 1702 case LSRUse::Special: 1703 // Special case Basic to handle -1 scales. 1704 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1705 } 1706 1707 llvm_unreachable("Invalid LSRUse Kind!"); 1708 } 1709 1710 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1711 int64_t MinOffset, int64_t MaxOffset, 1712 LSRUse::KindType Kind, MemAccessTy AccessTy, 1713 GlobalValue *BaseGV, int64_t BaseOffset, 1714 bool HasBaseReg, int64_t Scale) { 1715 // Check for overflow. 1716 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1717 (MinOffset > 0)) 1718 return false; 1719 MinOffset = (uint64_t)BaseOffset + MinOffset; 1720 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1721 (MaxOffset > 0)) 1722 return false; 1723 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1724 1725 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1726 HasBaseReg, Scale) && 1727 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1728 HasBaseReg, Scale); 1729 } 1730 1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1732 int64_t MinOffset, int64_t MaxOffset, 1733 LSRUse::KindType Kind, MemAccessTy AccessTy, 1734 const Formula &F, const Loop &L) { 1735 // For the purpose of isAMCompletelyFolded either having a canonical formula 1736 // or a scale not equal to zero is correct. 1737 // Problems may arise from non canonical formulae having a scale == 0. 1738 // Strictly speaking it would best to just rely on canonical formulae. 1739 // However, when we generate the scaled formulae, we first check that the 1740 // scaling factor is profitable before computing the actual ScaledReg for 1741 // compile time sake. 1742 assert((F.isCanonical(L) || F.Scale != 0)); 1743 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1744 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1745 } 1746 1747 /// Test whether we know how to expand the current formula. 1748 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1749 int64_t MaxOffset, LSRUse::KindType Kind, 1750 MemAccessTy AccessTy, GlobalValue *BaseGV, 1751 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1752 // We know how to expand completely foldable formulae. 1753 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1754 BaseOffset, HasBaseReg, Scale) || 1755 // Or formulae that use a base register produced by a sum of base 1756 // registers. 1757 (Scale == 1 && 1758 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1759 BaseGV, BaseOffset, true, 0)); 1760 } 1761 1762 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1763 int64_t MaxOffset, LSRUse::KindType Kind, 1764 MemAccessTy AccessTy, const Formula &F) { 1765 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1766 F.BaseOffset, F.HasBaseReg, F.Scale); 1767 } 1768 1769 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1770 const LSRUse &LU, const Formula &F) { 1771 // Target may want to look at the user instructions. 1772 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1773 for (const LSRFixup &Fixup : LU.Fixups) 1774 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1775 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1776 F.Scale, Fixup.UserInst)) 1777 return false; 1778 return true; 1779 } 1780 1781 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1782 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1783 F.Scale); 1784 } 1785 1786 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1787 const LSRUse &LU, const Formula &F, 1788 const Loop &L) { 1789 if (!F.Scale) 1790 return 0; 1791 1792 // If the use is not completely folded in that instruction, we will have to 1793 // pay an extra cost only for scale != 1. 1794 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1795 LU.AccessTy, F, L)) 1796 return F.Scale != 1; 1797 1798 switch (LU.Kind) { 1799 case LSRUse::Address: { 1800 // Check the scaling factor cost with both the min and max offsets. 1801 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1802 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1803 F.Scale, LU.AccessTy.AddrSpace); 1804 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1805 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1806 F.Scale, LU.AccessTy.AddrSpace); 1807 1808 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1809 "Legal addressing mode has an illegal cost!"); 1810 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1811 } 1812 case LSRUse::ICmpZero: 1813 case LSRUse::Basic: 1814 case LSRUse::Special: 1815 // The use is completely folded, i.e., everything is folded into the 1816 // instruction. 1817 return 0; 1818 } 1819 1820 llvm_unreachable("Invalid LSRUse Kind!"); 1821 } 1822 1823 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1824 LSRUse::KindType Kind, MemAccessTy AccessTy, 1825 GlobalValue *BaseGV, int64_t BaseOffset, 1826 bool HasBaseReg) { 1827 // Fast-path: zero is always foldable. 1828 if (BaseOffset == 0 && !BaseGV) return true; 1829 1830 // Conservatively, create an address with an immediate and a 1831 // base and a scale. 1832 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1833 1834 // Canonicalize a scale of 1 to a base register if the formula doesn't 1835 // already have a base register. 1836 if (!HasBaseReg && Scale == 1) { 1837 Scale = 0; 1838 HasBaseReg = true; 1839 } 1840 1841 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1842 HasBaseReg, Scale); 1843 } 1844 1845 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1846 ScalarEvolution &SE, int64_t MinOffset, 1847 int64_t MaxOffset, LSRUse::KindType Kind, 1848 MemAccessTy AccessTy, const SCEV *S, 1849 bool HasBaseReg) { 1850 // Fast-path: zero is always foldable. 1851 if (S->isZero()) return true; 1852 1853 // Conservatively, create an address with an immediate and a 1854 // base and a scale. 1855 int64_t BaseOffset = ExtractImmediate(S, SE); 1856 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1857 1858 // If there's anything else involved, it's not foldable. 1859 if (!S->isZero()) return false; 1860 1861 // Fast-path: zero is always foldable. 1862 if (BaseOffset == 0 && !BaseGV) return true; 1863 1864 // Conservatively, create an address with an immediate and a 1865 // base and a scale. 1866 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1867 1868 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1869 BaseOffset, HasBaseReg, Scale); 1870 } 1871 1872 namespace { 1873 1874 /// An individual increment in a Chain of IV increments. Relate an IV user to 1875 /// an expression that computes the IV it uses from the IV used by the previous 1876 /// link in the Chain. 1877 /// 1878 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1879 /// original IVOperand. The head of the chain's IVOperand is only valid during 1880 /// chain collection, before LSR replaces IV users. During chain generation, 1881 /// IncExpr can be used to find the new IVOperand that computes the same 1882 /// expression. 1883 struct IVInc { 1884 Instruction *UserInst; 1885 Value* IVOperand; 1886 const SCEV *IncExpr; 1887 1888 IVInc(Instruction *U, Value *O, const SCEV *E) 1889 : UserInst(U), IVOperand(O), IncExpr(E) {} 1890 }; 1891 1892 // The list of IV increments in program order. We typically add the head of a 1893 // chain without finding subsequent links. 1894 struct IVChain { 1895 SmallVector<IVInc, 1> Incs; 1896 const SCEV *ExprBase = nullptr; 1897 1898 IVChain() = default; 1899 IVChain(const IVInc &Head, const SCEV *Base) 1900 : Incs(1, Head), ExprBase(Base) {} 1901 1902 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1903 1904 // Return the first increment in the chain. 1905 const_iterator begin() const { 1906 assert(!Incs.empty()); 1907 return std::next(Incs.begin()); 1908 } 1909 const_iterator end() const { 1910 return Incs.end(); 1911 } 1912 1913 // Returns true if this chain contains any increments. 1914 bool hasIncs() const { return Incs.size() >= 2; } 1915 1916 // Add an IVInc to the end of this chain. 1917 void add(const IVInc &X) { Incs.push_back(X); } 1918 1919 // Returns the last UserInst in the chain. 1920 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1921 1922 // Returns true if IncExpr can be profitably added to this chain. 1923 bool isProfitableIncrement(const SCEV *OperExpr, 1924 const SCEV *IncExpr, 1925 ScalarEvolution&); 1926 }; 1927 1928 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1929 /// between FarUsers that definitely cross IV increments and NearUsers that may 1930 /// be used between IV increments. 1931 struct ChainUsers { 1932 SmallPtrSet<Instruction*, 4> FarUsers; 1933 SmallPtrSet<Instruction*, 4> NearUsers; 1934 }; 1935 1936 /// This class holds state for the main loop strength reduction logic. 1937 class LSRInstance { 1938 IVUsers &IU; 1939 ScalarEvolution &SE; 1940 DominatorTree &DT; 1941 LoopInfo &LI; 1942 AssumptionCache &AC; 1943 TargetLibraryInfo &TLI; 1944 const TargetTransformInfo &TTI; 1945 Loop *const L; 1946 MemorySSAUpdater *MSSAU; 1947 TTI::AddressingModeKind AMK; 1948 bool Changed = false; 1949 1950 /// This is the insert position that the current loop's induction variable 1951 /// increment should be placed. In simple loops, this is the latch block's 1952 /// terminator. But in more complicated cases, this is a position which will 1953 /// dominate all the in-loop post-increment users. 1954 Instruction *IVIncInsertPos = nullptr; 1955 1956 /// Interesting factors between use strides. 1957 /// 1958 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1959 /// default, a SmallDenseSet, because we need to use the full range of 1960 /// int64_ts, and there's currently no good way of doing that with 1961 /// SmallDenseSet. 1962 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1963 1964 /// Interesting use types, to facilitate truncation reuse. 1965 SmallSetVector<Type *, 4> Types; 1966 1967 /// The list of interesting uses. 1968 mutable SmallVector<LSRUse, 16> Uses; 1969 1970 /// Track which uses use which register candidates. 1971 RegUseTracker RegUses; 1972 1973 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1974 // have more than a few IV increment chains in a loop. Missing a Chain falls 1975 // back to normal LSR behavior for those uses. 1976 static const unsigned MaxChains = 8; 1977 1978 /// IV users can form a chain of IV increments. 1979 SmallVector<IVChain, MaxChains> IVChainVec; 1980 1981 /// IV users that belong to profitable IVChains. 1982 SmallPtrSet<Use*, MaxChains> IVIncSet; 1983 1984 /// Induction variables that were generated and inserted by the SCEV Expander. 1985 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 1986 1987 void OptimizeShadowIV(); 1988 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1989 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1990 void OptimizeLoopTermCond(); 1991 1992 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1993 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1994 void FinalizeChain(IVChain &Chain); 1995 void CollectChains(); 1996 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1997 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1998 1999 void CollectInterestingTypesAndFactors(); 2000 void CollectFixupsAndInitialFormulae(); 2001 2002 // Support for sharing of LSRUses between LSRFixups. 2003 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2004 UseMapTy UseMap; 2005 2006 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2007 LSRUse::KindType Kind, MemAccessTy AccessTy); 2008 2009 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2010 MemAccessTy AccessTy); 2011 2012 void DeleteUse(LSRUse &LU, size_t LUIdx); 2013 2014 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2015 2016 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2017 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2018 void CountRegisters(const Formula &F, size_t LUIdx); 2019 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2020 2021 void CollectLoopInvariantFixupsAndFormulae(); 2022 2023 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2024 unsigned Depth = 0); 2025 2026 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2027 const Formula &Base, unsigned Depth, 2028 size_t Idx, bool IsScaledReg = false); 2029 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2030 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2031 const Formula &Base, size_t Idx, 2032 bool IsScaledReg = false); 2033 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2034 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2035 const Formula &Base, 2036 const SmallVectorImpl<int64_t> &Worklist, 2037 size_t Idx, bool IsScaledReg = false); 2038 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2039 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2040 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2041 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2042 void GenerateCrossUseConstantOffsets(); 2043 void GenerateAllReuseFormulae(); 2044 2045 void FilterOutUndesirableDedicatedRegisters(); 2046 2047 size_t EstimateSearchSpaceComplexity() const; 2048 void NarrowSearchSpaceByDetectingSupersets(); 2049 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2050 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2051 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2052 void NarrowSearchSpaceByFilterPostInc(); 2053 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2054 void NarrowSearchSpaceByPickingWinnerRegs(); 2055 void NarrowSearchSpaceUsingHeuristics(); 2056 2057 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2058 Cost &SolutionCost, 2059 SmallVectorImpl<const Formula *> &Workspace, 2060 const Cost &CurCost, 2061 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2062 DenseSet<const SCEV *> &VisitedRegs) const; 2063 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2064 2065 BasicBlock::iterator 2066 HoistInsertPosition(BasicBlock::iterator IP, 2067 const SmallVectorImpl<Instruction *> &Inputs) const; 2068 BasicBlock::iterator 2069 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2070 const LSRFixup &LF, 2071 const LSRUse &LU, 2072 SCEVExpander &Rewriter) const; 2073 2074 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2075 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2076 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2077 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2078 const Formula &F, SCEVExpander &Rewriter, 2079 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2080 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2081 SCEVExpander &Rewriter, 2082 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2083 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2084 2085 public: 2086 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2087 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2088 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2089 2090 bool getChanged() const { return Changed; } 2091 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2092 return ScalarEvolutionIVs; 2093 } 2094 2095 void print_factors_and_types(raw_ostream &OS) const; 2096 void print_fixups(raw_ostream &OS) const; 2097 void print_uses(raw_ostream &OS) const; 2098 void print(raw_ostream &OS) const; 2099 void dump() const; 2100 }; 2101 2102 } // end anonymous namespace 2103 2104 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2105 /// the cast operation. 2106 void LSRInstance::OptimizeShadowIV() { 2107 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2108 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2109 return; 2110 2111 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2112 UI != E; /* empty */) { 2113 IVUsers::const_iterator CandidateUI = UI; 2114 ++UI; 2115 Instruction *ShadowUse = CandidateUI->getUser(); 2116 Type *DestTy = nullptr; 2117 bool IsSigned = false; 2118 2119 /* If shadow use is a int->float cast then insert a second IV 2120 to eliminate this cast. 2121 2122 for (unsigned i = 0; i < n; ++i) 2123 foo((double)i); 2124 2125 is transformed into 2126 2127 double d = 0.0; 2128 for (unsigned i = 0; i < n; ++i, ++d) 2129 foo(d); 2130 */ 2131 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2132 IsSigned = false; 2133 DestTy = UCast->getDestTy(); 2134 } 2135 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2136 IsSigned = true; 2137 DestTy = SCast->getDestTy(); 2138 } 2139 if (!DestTy) continue; 2140 2141 // If target does not support DestTy natively then do not apply 2142 // this transformation. 2143 if (!TTI.isTypeLegal(DestTy)) continue; 2144 2145 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2146 if (!PH) continue; 2147 if (PH->getNumIncomingValues() != 2) continue; 2148 2149 // If the calculation in integers overflows, the result in FP type will 2150 // differ. So we only can do this transformation if we are guaranteed to not 2151 // deal with overflowing values 2152 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2153 if (!AR) continue; 2154 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2155 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2156 2157 Type *SrcTy = PH->getType(); 2158 int Mantissa = DestTy->getFPMantissaWidth(); 2159 if (Mantissa == -1) continue; 2160 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2161 continue; 2162 2163 unsigned Entry, Latch; 2164 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2165 Entry = 0; 2166 Latch = 1; 2167 } else { 2168 Entry = 1; 2169 Latch = 0; 2170 } 2171 2172 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2173 if (!Init) continue; 2174 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2175 (double)Init->getSExtValue() : 2176 (double)Init->getZExtValue()); 2177 2178 BinaryOperator *Incr = 2179 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2180 if (!Incr) continue; 2181 if (Incr->getOpcode() != Instruction::Add 2182 && Incr->getOpcode() != Instruction::Sub) 2183 continue; 2184 2185 /* Initialize new IV, double d = 0.0 in above example. */ 2186 ConstantInt *C = nullptr; 2187 if (Incr->getOperand(0) == PH) 2188 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2189 else if (Incr->getOperand(1) == PH) 2190 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2191 else 2192 continue; 2193 2194 if (!C) continue; 2195 2196 // Ignore negative constants, as the code below doesn't handle them 2197 // correctly. TODO: Remove this restriction. 2198 if (!C->getValue().isStrictlyPositive()) continue; 2199 2200 /* Add new PHINode. */ 2201 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2202 2203 /* create new increment. '++d' in above example. */ 2204 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2205 BinaryOperator *NewIncr = 2206 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2207 Instruction::FAdd : Instruction::FSub, 2208 NewPH, CFP, "IV.S.next.", Incr); 2209 2210 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2211 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2212 2213 /* Remove cast operation */ 2214 ShadowUse->replaceAllUsesWith(NewPH); 2215 ShadowUse->eraseFromParent(); 2216 Changed = true; 2217 break; 2218 } 2219 } 2220 2221 /// If Cond has an operand that is an expression of an IV, set the IV user and 2222 /// stride information and return true, otherwise return false. 2223 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2224 for (IVStrideUse &U : IU) 2225 if (U.getUser() == Cond) { 2226 // NOTE: we could handle setcc instructions with multiple uses here, but 2227 // InstCombine does it as well for simple uses, it's not clear that it 2228 // occurs enough in real life to handle. 2229 CondUse = &U; 2230 return true; 2231 } 2232 return false; 2233 } 2234 2235 /// Rewrite the loop's terminating condition if it uses a max computation. 2236 /// 2237 /// This is a narrow solution to a specific, but acute, problem. For loops 2238 /// like this: 2239 /// 2240 /// i = 0; 2241 /// do { 2242 /// p[i] = 0.0; 2243 /// } while (++i < n); 2244 /// 2245 /// the trip count isn't just 'n', because 'n' might not be positive. And 2246 /// unfortunately this can come up even for loops where the user didn't use 2247 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2248 /// will commonly be lowered like this: 2249 /// 2250 /// if (n > 0) { 2251 /// i = 0; 2252 /// do { 2253 /// p[i] = 0.0; 2254 /// } while (++i < n); 2255 /// } 2256 /// 2257 /// and then it's possible for subsequent optimization to obscure the if 2258 /// test in such a way that indvars can't find it. 2259 /// 2260 /// When indvars can't find the if test in loops like this, it creates a 2261 /// max expression, which allows it to give the loop a canonical 2262 /// induction variable: 2263 /// 2264 /// i = 0; 2265 /// max = n < 1 ? 1 : n; 2266 /// do { 2267 /// p[i] = 0.0; 2268 /// } while (++i != max); 2269 /// 2270 /// Canonical induction variables are necessary because the loop passes 2271 /// are designed around them. The most obvious example of this is the 2272 /// LoopInfo analysis, which doesn't remember trip count values. It 2273 /// expects to be able to rediscover the trip count each time it is 2274 /// needed, and it does this using a simple analysis that only succeeds if 2275 /// the loop has a canonical induction variable. 2276 /// 2277 /// However, when it comes time to generate code, the maximum operation 2278 /// can be quite costly, especially if it's inside of an outer loop. 2279 /// 2280 /// This function solves this problem by detecting this type of loop and 2281 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2282 /// the instructions for the maximum computation. 2283 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2284 // Check that the loop matches the pattern we're looking for. 2285 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2286 Cond->getPredicate() != CmpInst::ICMP_NE) 2287 return Cond; 2288 2289 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2290 if (!Sel || !Sel->hasOneUse()) return Cond; 2291 2292 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2293 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2294 return Cond; 2295 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2296 2297 // Add one to the backedge-taken count to get the trip count. 2298 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2299 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2300 2301 // Check for a max calculation that matches the pattern. There's no check 2302 // for ICMP_ULE here because the comparison would be with zero, which 2303 // isn't interesting. 2304 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2305 const SCEVNAryExpr *Max = nullptr; 2306 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2307 Pred = ICmpInst::ICMP_SLE; 2308 Max = S; 2309 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2310 Pred = ICmpInst::ICMP_SLT; 2311 Max = S; 2312 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2313 Pred = ICmpInst::ICMP_ULT; 2314 Max = U; 2315 } else { 2316 // No match; bail. 2317 return Cond; 2318 } 2319 2320 // To handle a max with more than two operands, this optimization would 2321 // require additional checking and setup. 2322 if (Max->getNumOperands() != 2) 2323 return Cond; 2324 2325 const SCEV *MaxLHS = Max->getOperand(0); 2326 const SCEV *MaxRHS = Max->getOperand(1); 2327 2328 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2329 // for a comparison with 1. For <= and >=, a comparison with zero. 2330 if (!MaxLHS || 2331 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2332 return Cond; 2333 2334 // Check the relevant induction variable for conformance to 2335 // the pattern. 2336 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2337 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2338 if (!AR || !AR->isAffine() || 2339 AR->getStart() != One || 2340 AR->getStepRecurrence(SE) != One) 2341 return Cond; 2342 2343 assert(AR->getLoop() == L && 2344 "Loop condition operand is an addrec in a different loop!"); 2345 2346 // Check the right operand of the select, and remember it, as it will 2347 // be used in the new comparison instruction. 2348 Value *NewRHS = nullptr; 2349 if (ICmpInst::isTrueWhenEqual(Pred)) { 2350 // Look for n+1, and grab n. 2351 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2352 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2353 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2354 NewRHS = BO->getOperand(0); 2355 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2356 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2357 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2358 NewRHS = BO->getOperand(0); 2359 if (!NewRHS) 2360 return Cond; 2361 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2362 NewRHS = Sel->getOperand(1); 2363 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2364 NewRHS = Sel->getOperand(2); 2365 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2366 NewRHS = SU->getValue(); 2367 else 2368 // Max doesn't match expected pattern. 2369 return Cond; 2370 2371 // Determine the new comparison opcode. It may be signed or unsigned, 2372 // and the original comparison may be either equality or inequality. 2373 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2374 Pred = CmpInst::getInversePredicate(Pred); 2375 2376 // Ok, everything looks ok to change the condition into an SLT or SGE and 2377 // delete the max calculation. 2378 ICmpInst *NewCond = 2379 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2380 2381 // Delete the max calculation instructions. 2382 NewCond->setDebugLoc(Cond->getDebugLoc()); 2383 Cond->replaceAllUsesWith(NewCond); 2384 CondUse->setUser(NewCond); 2385 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2386 Cond->eraseFromParent(); 2387 Sel->eraseFromParent(); 2388 if (Cmp->use_empty()) 2389 Cmp->eraseFromParent(); 2390 return NewCond; 2391 } 2392 2393 /// Change loop terminating condition to use the postinc iv when possible. 2394 void 2395 LSRInstance::OptimizeLoopTermCond() { 2396 SmallPtrSet<Instruction *, 4> PostIncs; 2397 2398 // We need a different set of heuristics for rotated and non-rotated loops. 2399 // If a loop is rotated then the latch is also the backedge, so inserting 2400 // post-inc expressions just before the latch is ideal. To reduce live ranges 2401 // it also makes sense to rewrite terminating conditions to use post-inc 2402 // expressions. 2403 // 2404 // If the loop is not rotated then the latch is not a backedge; the latch 2405 // check is done in the loop head. Adding post-inc expressions before the 2406 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2407 // in the loop body. In this case we do *not* want to use post-inc expressions 2408 // in the latch check, and we want to insert post-inc expressions before 2409 // the backedge. 2410 BasicBlock *LatchBlock = L->getLoopLatch(); 2411 SmallVector<BasicBlock*, 8> ExitingBlocks; 2412 L->getExitingBlocks(ExitingBlocks); 2413 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2414 return LatchBlock != BB; 2415 })) { 2416 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2417 IVIncInsertPos = LatchBlock->getTerminator(); 2418 return; 2419 } 2420 2421 // Otherwise treat this as a rotated loop. 2422 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2423 // Get the terminating condition for the loop if possible. If we 2424 // can, we want to change it to use a post-incremented version of its 2425 // induction variable, to allow coalescing the live ranges for the IV into 2426 // one register value. 2427 2428 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2429 if (!TermBr) 2430 continue; 2431 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2432 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2433 continue; 2434 2435 // Search IVUsesByStride to find Cond's IVUse if there is one. 2436 IVStrideUse *CondUse = nullptr; 2437 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2438 if (!FindIVUserForCond(Cond, CondUse)) 2439 continue; 2440 2441 // If the trip count is computed in terms of a max (due to ScalarEvolution 2442 // being unable to find a sufficient guard, for example), change the loop 2443 // comparison to use SLT or ULT instead of NE. 2444 // One consequence of doing this now is that it disrupts the count-down 2445 // optimization. That's not always a bad thing though, because in such 2446 // cases it may still be worthwhile to avoid a max. 2447 Cond = OptimizeMax(Cond, CondUse); 2448 2449 // If this exiting block dominates the latch block, it may also use 2450 // the post-inc value if it won't be shared with other uses. 2451 // Check for dominance. 2452 if (!DT.dominates(ExitingBlock, LatchBlock)) 2453 continue; 2454 2455 // Conservatively avoid trying to use the post-inc value in non-latch 2456 // exits if there may be pre-inc users in intervening blocks. 2457 if (LatchBlock != ExitingBlock) 2458 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2459 // Test if the use is reachable from the exiting block. This dominator 2460 // query is a conservative approximation of reachability. 2461 if (&*UI != CondUse && 2462 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2463 // Conservatively assume there may be reuse if the quotient of their 2464 // strides could be a legal scale. 2465 const SCEV *A = IU.getStride(*CondUse, L); 2466 const SCEV *B = IU.getStride(*UI, L); 2467 if (!A || !B) continue; 2468 if (SE.getTypeSizeInBits(A->getType()) != 2469 SE.getTypeSizeInBits(B->getType())) { 2470 if (SE.getTypeSizeInBits(A->getType()) > 2471 SE.getTypeSizeInBits(B->getType())) 2472 B = SE.getSignExtendExpr(B, A->getType()); 2473 else 2474 A = SE.getSignExtendExpr(A, B->getType()); 2475 } 2476 if (const SCEVConstant *D = 2477 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2478 const ConstantInt *C = D->getValue(); 2479 // Stride of one or negative one can have reuse with non-addresses. 2480 if (C->isOne() || C->isMinusOne()) 2481 goto decline_post_inc; 2482 // Avoid weird situations. 2483 if (C->getValue().getMinSignedBits() >= 64 || 2484 C->getValue().isMinSignedValue()) 2485 goto decline_post_inc; 2486 // Check for possible scaled-address reuse. 2487 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2488 MemAccessTy AccessTy = getAccessType( 2489 TTI, UI->getUser(), UI->getOperandValToReplace()); 2490 int64_t Scale = C->getSExtValue(); 2491 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2492 /*BaseOffset=*/0, 2493 /*HasBaseReg=*/false, Scale, 2494 AccessTy.AddrSpace)) 2495 goto decline_post_inc; 2496 Scale = -Scale; 2497 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2498 /*BaseOffset=*/0, 2499 /*HasBaseReg=*/false, Scale, 2500 AccessTy.AddrSpace)) 2501 goto decline_post_inc; 2502 } 2503 } 2504 } 2505 2506 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2507 << *Cond << '\n'); 2508 2509 // It's possible for the setcc instruction to be anywhere in the loop, and 2510 // possible for it to have multiple users. If it is not immediately before 2511 // the exiting block branch, move it. 2512 if (Cond->getNextNonDebugInstruction() != TermBr) { 2513 if (Cond->hasOneUse()) { 2514 Cond->moveBefore(TermBr); 2515 } else { 2516 // Clone the terminating condition and insert into the loopend. 2517 ICmpInst *OldCond = Cond; 2518 Cond = cast<ICmpInst>(Cond->clone()); 2519 Cond->setName(L->getHeader()->getName() + ".termcond"); 2520 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2521 2522 // Clone the IVUse, as the old use still exists! 2523 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2524 TermBr->replaceUsesOfWith(OldCond, Cond); 2525 } 2526 } 2527 2528 // If we get to here, we know that we can transform the setcc instruction to 2529 // use the post-incremented version of the IV, allowing us to coalesce the 2530 // live ranges for the IV correctly. 2531 CondUse->transformToPostInc(L); 2532 Changed = true; 2533 2534 PostIncs.insert(Cond); 2535 decline_post_inc:; 2536 } 2537 2538 // Determine an insertion point for the loop induction variable increment. It 2539 // must dominate all the post-inc comparisons we just set up, and it must 2540 // dominate the loop latch edge. 2541 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2542 for (Instruction *Inst : PostIncs) { 2543 BasicBlock *BB = 2544 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2545 Inst->getParent()); 2546 if (BB == Inst->getParent()) 2547 IVIncInsertPos = Inst; 2548 else if (BB != IVIncInsertPos->getParent()) 2549 IVIncInsertPos = BB->getTerminator(); 2550 } 2551 } 2552 2553 /// Determine if the given use can accommodate a fixup at the given offset and 2554 /// other details. If so, update the use and return true. 2555 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2556 bool HasBaseReg, LSRUse::KindType Kind, 2557 MemAccessTy AccessTy) { 2558 int64_t NewMinOffset = LU.MinOffset; 2559 int64_t NewMaxOffset = LU.MaxOffset; 2560 MemAccessTy NewAccessTy = AccessTy; 2561 2562 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2563 // something conservative, however this can pessimize in the case that one of 2564 // the uses will have all its uses outside the loop, for example. 2565 if (LU.Kind != Kind) 2566 return false; 2567 2568 // Check for a mismatched access type, and fall back conservatively as needed. 2569 // TODO: Be less conservative when the type is similar and can use the same 2570 // addressing modes. 2571 if (Kind == LSRUse::Address) { 2572 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2573 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2574 AccessTy.AddrSpace); 2575 } 2576 } 2577 2578 // Conservatively assume HasBaseReg is true for now. 2579 if (NewOffset < LU.MinOffset) { 2580 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2581 LU.MaxOffset - NewOffset, HasBaseReg)) 2582 return false; 2583 NewMinOffset = NewOffset; 2584 } else if (NewOffset > LU.MaxOffset) { 2585 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2586 NewOffset - LU.MinOffset, HasBaseReg)) 2587 return false; 2588 NewMaxOffset = NewOffset; 2589 } 2590 2591 // Update the use. 2592 LU.MinOffset = NewMinOffset; 2593 LU.MaxOffset = NewMaxOffset; 2594 LU.AccessTy = NewAccessTy; 2595 return true; 2596 } 2597 2598 /// Return an LSRUse index and an offset value for a fixup which needs the given 2599 /// expression, with the given kind and optional access type. Either reuse an 2600 /// existing use or create a new one, as needed. 2601 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2602 LSRUse::KindType Kind, 2603 MemAccessTy AccessTy) { 2604 const SCEV *Copy = Expr; 2605 int64_t Offset = ExtractImmediate(Expr, SE); 2606 2607 // Basic uses can't accept any offset, for example. 2608 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2609 Offset, /*HasBaseReg=*/ true)) { 2610 Expr = Copy; 2611 Offset = 0; 2612 } 2613 2614 std::pair<UseMapTy::iterator, bool> P = 2615 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2616 if (!P.second) { 2617 // A use already existed with this base. 2618 size_t LUIdx = P.first->second; 2619 LSRUse &LU = Uses[LUIdx]; 2620 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2621 // Reuse this use. 2622 return std::make_pair(LUIdx, Offset); 2623 } 2624 2625 // Create a new use. 2626 size_t LUIdx = Uses.size(); 2627 P.first->second = LUIdx; 2628 Uses.push_back(LSRUse(Kind, AccessTy)); 2629 LSRUse &LU = Uses[LUIdx]; 2630 2631 LU.MinOffset = Offset; 2632 LU.MaxOffset = Offset; 2633 return std::make_pair(LUIdx, Offset); 2634 } 2635 2636 /// Delete the given use from the Uses list. 2637 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2638 if (&LU != &Uses.back()) 2639 std::swap(LU, Uses.back()); 2640 Uses.pop_back(); 2641 2642 // Update RegUses. 2643 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2644 } 2645 2646 /// Look for a use distinct from OrigLU which is has a formula that has the same 2647 /// registers as the given formula. 2648 LSRUse * 2649 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2650 const LSRUse &OrigLU) { 2651 // Search all uses for the formula. This could be more clever. 2652 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2653 LSRUse &LU = Uses[LUIdx]; 2654 // Check whether this use is close enough to OrigLU, to see whether it's 2655 // worthwhile looking through its formulae. 2656 // Ignore ICmpZero uses because they may contain formulae generated by 2657 // GenerateICmpZeroScales, in which case adding fixup offsets may 2658 // be invalid. 2659 if (&LU != &OrigLU && 2660 LU.Kind != LSRUse::ICmpZero && 2661 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2662 LU.WidestFixupType == OrigLU.WidestFixupType && 2663 LU.HasFormulaWithSameRegs(OrigF)) { 2664 // Scan through this use's formulae. 2665 for (const Formula &F : LU.Formulae) { 2666 // Check to see if this formula has the same registers and symbols 2667 // as OrigF. 2668 if (F.BaseRegs == OrigF.BaseRegs && 2669 F.ScaledReg == OrigF.ScaledReg && 2670 F.BaseGV == OrigF.BaseGV && 2671 F.Scale == OrigF.Scale && 2672 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2673 if (F.BaseOffset == 0) 2674 return &LU; 2675 // This is the formula where all the registers and symbols matched; 2676 // there aren't going to be any others. Since we declined it, we 2677 // can skip the rest of the formulae and proceed to the next LSRUse. 2678 break; 2679 } 2680 } 2681 } 2682 } 2683 2684 // Nothing looked good. 2685 return nullptr; 2686 } 2687 2688 void LSRInstance::CollectInterestingTypesAndFactors() { 2689 SmallSetVector<const SCEV *, 4> Strides; 2690 2691 // Collect interesting types and strides. 2692 SmallVector<const SCEV *, 4> Worklist; 2693 for (const IVStrideUse &U : IU) { 2694 const SCEV *Expr = IU.getExpr(U); 2695 2696 // Collect interesting types. 2697 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2698 2699 // Add strides for mentioned loops. 2700 Worklist.push_back(Expr); 2701 do { 2702 const SCEV *S = Worklist.pop_back_val(); 2703 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2704 if (AR->getLoop() == L) 2705 Strides.insert(AR->getStepRecurrence(SE)); 2706 Worklist.push_back(AR->getStart()); 2707 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2708 Worklist.append(Add->op_begin(), Add->op_end()); 2709 } 2710 } while (!Worklist.empty()); 2711 } 2712 2713 // Compute interesting factors from the set of interesting strides. 2714 for (SmallSetVector<const SCEV *, 4>::const_iterator 2715 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2716 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2717 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2718 const SCEV *OldStride = *I; 2719 const SCEV *NewStride = *NewStrideIter; 2720 2721 if (SE.getTypeSizeInBits(OldStride->getType()) != 2722 SE.getTypeSizeInBits(NewStride->getType())) { 2723 if (SE.getTypeSizeInBits(OldStride->getType()) > 2724 SE.getTypeSizeInBits(NewStride->getType())) 2725 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2726 else 2727 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2728 } 2729 if (const SCEVConstant *Factor = 2730 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2731 SE, true))) { 2732 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2733 Factors.insert(Factor->getAPInt().getSExtValue()); 2734 } else if (const SCEVConstant *Factor = 2735 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2736 NewStride, 2737 SE, true))) { 2738 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2739 Factors.insert(Factor->getAPInt().getSExtValue()); 2740 } 2741 } 2742 2743 // If all uses use the same type, don't bother looking for truncation-based 2744 // reuse. 2745 if (Types.size() == 1) 2746 Types.clear(); 2747 2748 LLVM_DEBUG(print_factors_and_types(dbgs())); 2749 } 2750 2751 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2752 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2753 /// IVStrideUses, we could partially skip this. 2754 static User::op_iterator 2755 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2756 Loop *L, ScalarEvolution &SE) { 2757 for(; OI != OE; ++OI) { 2758 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2759 if (!SE.isSCEVable(Oper->getType())) 2760 continue; 2761 2762 if (const SCEVAddRecExpr *AR = 2763 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2764 if (AR->getLoop() == L) 2765 break; 2766 } 2767 } 2768 } 2769 return OI; 2770 } 2771 2772 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2773 /// a convenient helper. 2774 static Value *getWideOperand(Value *Oper) { 2775 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2776 return Trunc->getOperand(0); 2777 return Oper; 2778 } 2779 2780 /// Return true if we allow an IV chain to include both types. 2781 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2782 Type *LType = LVal->getType(); 2783 Type *RType = RVal->getType(); 2784 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2785 // Different address spaces means (possibly) 2786 // different types of the pointer implementation, 2787 // e.g. i16 vs i32 so disallow that. 2788 (LType->getPointerAddressSpace() == 2789 RType->getPointerAddressSpace())); 2790 } 2791 2792 /// Return an approximation of this SCEV expression's "base", or NULL for any 2793 /// constant. Returning the expression itself is conservative. Returning a 2794 /// deeper subexpression is more precise and valid as long as it isn't less 2795 /// complex than another subexpression. For expressions involving multiple 2796 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2797 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2798 /// IVInc==b-a. 2799 /// 2800 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2801 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2802 static const SCEV *getExprBase(const SCEV *S) { 2803 switch (S->getSCEVType()) { 2804 default: // uncluding scUnknown. 2805 return S; 2806 case scConstant: 2807 return nullptr; 2808 case scTruncate: 2809 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2810 case scZeroExtend: 2811 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2812 case scSignExtend: 2813 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2814 case scAddExpr: { 2815 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2816 // there's nothing more complex. 2817 // FIXME: not sure if we want to recognize negation. 2818 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2819 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2820 E(Add->op_begin()); I != E; ++I) { 2821 const SCEV *SubExpr = *I; 2822 if (SubExpr->getSCEVType() == scAddExpr) 2823 return getExprBase(SubExpr); 2824 2825 if (SubExpr->getSCEVType() != scMulExpr) 2826 return SubExpr; 2827 } 2828 return S; // all operands are scaled, be conservative. 2829 } 2830 case scAddRecExpr: 2831 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2832 } 2833 llvm_unreachable("Unknown SCEV kind!"); 2834 } 2835 2836 /// Return true if the chain increment is profitable to expand into a loop 2837 /// invariant value, which may require its own register. A profitable chain 2838 /// increment will be an offset relative to the same base. We allow such offsets 2839 /// to potentially be used as chain increment as long as it's not obviously 2840 /// expensive to expand using real instructions. 2841 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2842 const SCEV *IncExpr, 2843 ScalarEvolution &SE) { 2844 // Aggressively form chains when -stress-ivchain. 2845 if (StressIVChain) 2846 return true; 2847 2848 // Do not replace a constant offset from IV head with a nonconstant IV 2849 // increment. 2850 if (!isa<SCEVConstant>(IncExpr)) { 2851 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2852 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2853 return false; 2854 } 2855 2856 SmallPtrSet<const SCEV*, 8> Processed; 2857 return !isHighCostExpansion(IncExpr, Processed, SE); 2858 } 2859 2860 /// Return true if the number of registers needed for the chain is estimated to 2861 /// be less than the number required for the individual IV users. First prohibit 2862 /// any IV users that keep the IV live across increments (the Users set should 2863 /// be empty). Next count the number and type of increments in the chain. 2864 /// 2865 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2866 /// effectively use postinc addressing modes. Only consider it profitable it the 2867 /// increments can be computed in fewer registers when chained. 2868 /// 2869 /// TODO: Consider IVInc free if it's already used in another chains. 2870 static bool isProfitableChain(IVChain &Chain, 2871 SmallPtrSetImpl<Instruction *> &Users, 2872 ScalarEvolution &SE, 2873 const TargetTransformInfo &TTI) { 2874 if (StressIVChain) 2875 return true; 2876 2877 if (!Chain.hasIncs()) 2878 return false; 2879 2880 if (!Users.empty()) { 2881 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2882 for (Instruction *Inst 2883 : Users) { dbgs() << " " << *Inst << "\n"; }); 2884 return false; 2885 } 2886 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2887 2888 // The chain itself may require a register, so intialize cost to 1. 2889 int cost = 1; 2890 2891 // A complete chain likely eliminates the need for keeping the original IV in 2892 // a register. LSR does not currently know how to form a complete chain unless 2893 // the header phi already exists. 2894 if (isa<PHINode>(Chain.tailUserInst()) 2895 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2896 --cost; 2897 } 2898 const SCEV *LastIncExpr = nullptr; 2899 unsigned NumConstIncrements = 0; 2900 unsigned NumVarIncrements = 0; 2901 unsigned NumReusedIncrements = 0; 2902 2903 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2904 return true; 2905 2906 for (const IVInc &Inc : Chain) { 2907 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2908 return true; 2909 if (Inc.IncExpr->isZero()) 2910 continue; 2911 2912 // Incrementing by zero or some constant is neutral. We assume constants can 2913 // be folded into an addressing mode or an add's immediate operand. 2914 if (isa<SCEVConstant>(Inc.IncExpr)) { 2915 ++NumConstIncrements; 2916 continue; 2917 } 2918 2919 if (Inc.IncExpr == LastIncExpr) 2920 ++NumReusedIncrements; 2921 else 2922 ++NumVarIncrements; 2923 2924 LastIncExpr = Inc.IncExpr; 2925 } 2926 // An IV chain with a single increment is handled by LSR's postinc 2927 // uses. However, a chain with multiple increments requires keeping the IV's 2928 // value live longer than it needs to be if chained. 2929 if (NumConstIncrements > 1) 2930 --cost; 2931 2932 // Materializing increment expressions in the preheader that didn't exist in 2933 // the original code may cost a register. For example, sign-extended array 2934 // indices can produce ridiculous increments like this: 2935 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2936 cost += NumVarIncrements; 2937 2938 // Reusing variable increments likely saves a register to hold the multiple of 2939 // the stride. 2940 cost -= NumReusedIncrements; 2941 2942 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2943 << "\n"); 2944 2945 return cost < 0; 2946 } 2947 2948 /// Add this IV user to an existing chain or make it the head of a new chain. 2949 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2950 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2951 // When IVs are used as types of varying widths, they are generally converted 2952 // to a wider type with some uses remaining narrow under a (free) trunc. 2953 Value *const NextIV = getWideOperand(IVOper); 2954 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2955 const SCEV *const OperExprBase = getExprBase(OperExpr); 2956 2957 // Visit all existing chains. Check if its IVOper can be computed as a 2958 // profitable loop invariant increment from the last link in the Chain. 2959 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2960 const SCEV *LastIncExpr = nullptr; 2961 for (; ChainIdx < NChains; ++ChainIdx) { 2962 IVChain &Chain = IVChainVec[ChainIdx]; 2963 2964 // Prune the solution space aggressively by checking that both IV operands 2965 // are expressions that operate on the same unscaled SCEVUnknown. This 2966 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2967 // first avoids creating extra SCEV expressions. 2968 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2969 continue; 2970 2971 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2972 if (!isCompatibleIVType(PrevIV, NextIV)) 2973 continue; 2974 2975 // A phi node terminates a chain. 2976 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2977 continue; 2978 2979 // The increment must be loop-invariant so it can be kept in a register. 2980 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2981 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2982 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2983 continue; 2984 2985 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2986 LastIncExpr = IncExpr; 2987 break; 2988 } 2989 } 2990 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2991 // bother for phi nodes, because they must be last in the chain. 2992 if (ChainIdx == NChains) { 2993 if (isa<PHINode>(UserInst)) 2994 return; 2995 if (NChains >= MaxChains && !StressIVChain) { 2996 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2997 return; 2998 } 2999 LastIncExpr = OperExpr; 3000 // IVUsers may have skipped over sign/zero extensions. We don't currently 3001 // attempt to form chains involving extensions unless they can be hoisted 3002 // into this loop's AddRec. 3003 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3004 return; 3005 ++NChains; 3006 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3007 OperExprBase)); 3008 ChainUsersVec.resize(NChains); 3009 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3010 << ") IV=" << *LastIncExpr << "\n"); 3011 } else { 3012 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3013 << ") IV+" << *LastIncExpr << "\n"); 3014 // Add this IV user to the end of the chain. 3015 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3016 } 3017 IVChain &Chain = IVChainVec[ChainIdx]; 3018 3019 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3020 // This chain's NearUsers become FarUsers. 3021 if (!LastIncExpr->isZero()) { 3022 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3023 NearUsers.end()); 3024 NearUsers.clear(); 3025 } 3026 3027 // All other uses of IVOperand become near uses of the chain. 3028 // We currently ignore intermediate values within SCEV expressions, assuming 3029 // they will eventually be used be the current chain, or can be computed 3030 // from one of the chain increments. To be more precise we could 3031 // transitively follow its user and only add leaf IV users to the set. 3032 for (User *U : IVOper->users()) { 3033 Instruction *OtherUse = dyn_cast<Instruction>(U); 3034 if (!OtherUse) 3035 continue; 3036 // Uses in the chain will no longer be uses if the chain is formed. 3037 // Include the head of the chain in this iteration (not Chain.begin()). 3038 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3039 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3040 for( ; IncIter != IncEnd; ++IncIter) { 3041 if (IncIter->UserInst == OtherUse) 3042 break; 3043 } 3044 if (IncIter != IncEnd) 3045 continue; 3046 3047 if (SE.isSCEVable(OtherUse->getType()) 3048 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3049 && IU.isIVUserOrOperand(OtherUse)) { 3050 continue; 3051 } 3052 NearUsers.insert(OtherUse); 3053 } 3054 3055 // Since this user is part of the chain, it's no longer considered a use 3056 // of the chain. 3057 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3058 } 3059 3060 /// Populate the vector of Chains. 3061 /// 3062 /// This decreases ILP at the architecture level. Targets with ample registers, 3063 /// multiple memory ports, and no register renaming probably don't want 3064 /// this. However, such targets should probably disable LSR altogether. 3065 /// 3066 /// The job of LSR is to make a reasonable choice of induction variables across 3067 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3068 /// ILP *within the loop* if the target wants it. 3069 /// 3070 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3071 /// will not reorder memory operations, it will recognize this as a chain, but 3072 /// will generate redundant IV increments. Ideally this would be corrected later 3073 /// by a smart scheduler: 3074 /// = A[i] 3075 /// = A[i+x] 3076 /// A[i] = 3077 /// A[i+x] = 3078 /// 3079 /// TODO: Walk the entire domtree within this loop, not just the path to the 3080 /// loop latch. This will discover chains on side paths, but requires 3081 /// maintaining multiple copies of the Chains state. 3082 void LSRInstance::CollectChains() { 3083 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3084 SmallVector<ChainUsers, 8> ChainUsersVec; 3085 3086 SmallVector<BasicBlock *,8> LatchPath; 3087 BasicBlock *LoopHeader = L->getHeader(); 3088 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3089 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3090 LatchPath.push_back(Rung->getBlock()); 3091 } 3092 LatchPath.push_back(LoopHeader); 3093 3094 // Walk the instruction stream from the loop header to the loop latch. 3095 for (BasicBlock *BB : reverse(LatchPath)) { 3096 for (Instruction &I : *BB) { 3097 // Skip instructions that weren't seen by IVUsers analysis. 3098 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3099 continue; 3100 3101 // Ignore users that are part of a SCEV expression. This way we only 3102 // consider leaf IV Users. This effectively rediscovers a portion of 3103 // IVUsers analysis but in program order this time. 3104 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3105 continue; 3106 3107 // Remove this instruction from any NearUsers set it may be in. 3108 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3109 ChainIdx < NChains; ++ChainIdx) { 3110 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3111 } 3112 // Search for operands that can be chained. 3113 SmallPtrSet<Instruction*, 4> UniqueOperands; 3114 User::op_iterator IVOpEnd = I.op_end(); 3115 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3116 while (IVOpIter != IVOpEnd) { 3117 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3118 if (UniqueOperands.insert(IVOpInst).second) 3119 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3120 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3121 } 3122 } // Continue walking down the instructions. 3123 } // Continue walking down the domtree. 3124 // Visit phi backedges to determine if the chain can generate the IV postinc. 3125 for (PHINode &PN : L->getHeader()->phis()) { 3126 if (!SE.isSCEVable(PN.getType())) 3127 continue; 3128 3129 Instruction *IncV = 3130 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3131 if (IncV) 3132 ChainInstruction(&PN, IncV, ChainUsersVec); 3133 } 3134 // Remove any unprofitable chains. 3135 unsigned ChainIdx = 0; 3136 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3137 UsersIdx < NChains; ++UsersIdx) { 3138 if (!isProfitableChain(IVChainVec[UsersIdx], 3139 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3140 continue; 3141 // Preserve the chain at UsesIdx. 3142 if (ChainIdx != UsersIdx) 3143 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3144 FinalizeChain(IVChainVec[ChainIdx]); 3145 ++ChainIdx; 3146 } 3147 IVChainVec.resize(ChainIdx); 3148 } 3149 3150 void LSRInstance::FinalizeChain(IVChain &Chain) { 3151 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3152 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3153 3154 for (const IVInc &Inc : Chain) { 3155 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3156 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3157 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3158 IVIncSet.insert(UseI); 3159 } 3160 } 3161 3162 /// Return true if the IVInc can be folded into an addressing mode. 3163 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3164 Value *Operand, const TargetTransformInfo &TTI) { 3165 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3166 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3167 return false; 3168 3169 if (IncConst->getAPInt().getMinSignedBits() > 64) 3170 return false; 3171 3172 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3173 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3174 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3175 IncOffset, /*HasBaseReg=*/false)) 3176 return false; 3177 3178 return true; 3179 } 3180 3181 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3182 /// user's operand from the previous IV user's operand. 3183 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3184 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3185 // Find the new IVOperand for the head of the chain. It may have been replaced 3186 // by LSR. 3187 const IVInc &Head = Chain.Incs[0]; 3188 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3189 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3190 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3191 IVOpEnd, L, SE); 3192 Value *IVSrc = nullptr; 3193 while (IVOpIter != IVOpEnd) { 3194 IVSrc = getWideOperand(*IVOpIter); 3195 3196 // If this operand computes the expression that the chain needs, we may use 3197 // it. (Check this after setting IVSrc which is used below.) 3198 // 3199 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3200 // narrow for the chain, so we can no longer use it. We do allow using a 3201 // wider phi, assuming the LSR checked for free truncation. In that case we 3202 // should already have a truncate on this operand such that 3203 // getSCEV(IVSrc) == IncExpr. 3204 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3205 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3206 break; 3207 } 3208 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3209 } 3210 if (IVOpIter == IVOpEnd) { 3211 // Gracefully give up on this chain. 3212 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3213 return; 3214 } 3215 assert(IVSrc && "Failed to find IV chain source"); 3216 3217 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3218 Type *IVTy = IVSrc->getType(); 3219 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3220 const SCEV *LeftOverExpr = nullptr; 3221 for (const IVInc &Inc : Chain) { 3222 Instruction *InsertPt = Inc.UserInst; 3223 if (isa<PHINode>(InsertPt)) 3224 InsertPt = L->getLoopLatch()->getTerminator(); 3225 3226 // IVOper will replace the current IV User's operand. IVSrc is the IV 3227 // value currently held in a register. 3228 Value *IVOper = IVSrc; 3229 if (!Inc.IncExpr->isZero()) { 3230 // IncExpr was the result of subtraction of two narrow values, so must 3231 // be signed. 3232 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3233 LeftOverExpr = LeftOverExpr ? 3234 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3235 } 3236 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3237 // Expand the IV increment. 3238 Rewriter.clearPostInc(); 3239 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3240 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3241 SE.getUnknown(IncV)); 3242 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3243 3244 // If an IV increment can't be folded, use it as the next IV value. 3245 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3246 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3247 IVSrc = IVOper; 3248 LeftOverExpr = nullptr; 3249 } 3250 } 3251 Type *OperTy = Inc.IVOperand->getType(); 3252 if (IVTy != OperTy) { 3253 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3254 "cannot extend a chained IV"); 3255 IRBuilder<> Builder(InsertPt); 3256 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3257 } 3258 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3259 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3260 DeadInsts.emplace_back(OperandIsInstr); 3261 } 3262 // If LSR created a new, wider phi, we may also replace its postinc. We only 3263 // do this if we also found a wide value for the head of the chain. 3264 if (isa<PHINode>(Chain.tailUserInst())) { 3265 for (PHINode &Phi : L->getHeader()->phis()) { 3266 if (!isCompatibleIVType(&Phi, IVSrc)) 3267 continue; 3268 Instruction *PostIncV = dyn_cast<Instruction>( 3269 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3270 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3271 continue; 3272 Value *IVOper = IVSrc; 3273 Type *PostIncTy = PostIncV->getType(); 3274 if (IVTy != PostIncTy) { 3275 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3276 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3277 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3278 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3279 } 3280 Phi.replaceUsesOfWith(PostIncV, IVOper); 3281 DeadInsts.emplace_back(PostIncV); 3282 } 3283 } 3284 } 3285 3286 void LSRInstance::CollectFixupsAndInitialFormulae() { 3287 BranchInst *ExitBranch = nullptr; 3288 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3289 3290 for (const IVStrideUse &U : IU) { 3291 Instruction *UserInst = U.getUser(); 3292 // Skip IV users that are part of profitable IV Chains. 3293 User::op_iterator UseI = 3294 find(UserInst->operands(), U.getOperandValToReplace()); 3295 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3296 if (IVIncSet.count(UseI)) { 3297 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3298 continue; 3299 } 3300 3301 LSRUse::KindType Kind = LSRUse::Basic; 3302 MemAccessTy AccessTy; 3303 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3304 Kind = LSRUse::Address; 3305 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3306 } 3307 3308 const SCEV *S = IU.getExpr(U); 3309 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3310 3311 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3312 // (N - i == 0), and this allows (N - i) to be the expression that we work 3313 // with rather than just N or i, so we can consider the register 3314 // requirements for both N and i at the same time. Limiting this code to 3315 // equality icmps is not a problem because all interesting loops use 3316 // equality icmps, thanks to IndVarSimplify. 3317 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3318 // If CI can be saved in some target, like replaced inside hardware loop 3319 // in PowerPC, no need to generate initial formulae for it. 3320 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3321 continue; 3322 if (CI->isEquality()) { 3323 // Swap the operands if needed to put the OperandValToReplace on the 3324 // left, for consistency. 3325 Value *NV = CI->getOperand(1); 3326 if (NV == U.getOperandValToReplace()) { 3327 CI->setOperand(1, CI->getOperand(0)); 3328 CI->setOperand(0, NV); 3329 NV = CI->getOperand(1); 3330 Changed = true; 3331 } 3332 3333 // x == y --> x - y == 0 3334 const SCEV *N = SE.getSCEV(NV); 3335 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3336 (!NV->getType()->isPointerTy() || 3337 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3338 // S is normalized, so normalize N before folding it into S 3339 // to keep the result normalized. 3340 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3341 Kind = LSRUse::ICmpZero; 3342 S = SE.getMinusSCEV(N, S); 3343 } 3344 3345 // -1 and the negations of all interesting strides (except the negation 3346 // of -1) are now also interesting. 3347 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3348 if (Factors[i] != -1) 3349 Factors.insert(-(uint64_t)Factors[i]); 3350 Factors.insert(-1); 3351 } 3352 } 3353 3354 // Get or create an LSRUse. 3355 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3356 size_t LUIdx = P.first; 3357 int64_t Offset = P.second; 3358 LSRUse &LU = Uses[LUIdx]; 3359 3360 // Record the fixup. 3361 LSRFixup &LF = LU.getNewFixup(); 3362 LF.UserInst = UserInst; 3363 LF.OperandValToReplace = U.getOperandValToReplace(); 3364 LF.PostIncLoops = TmpPostIncLoops; 3365 LF.Offset = Offset; 3366 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3367 3368 if (!LU.WidestFixupType || 3369 SE.getTypeSizeInBits(LU.WidestFixupType) < 3370 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3371 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3372 3373 // If this is the first use of this LSRUse, give it a formula. 3374 if (LU.Formulae.empty()) { 3375 InsertInitialFormula(S, LU, LUIdx); 3376 CountRegisters(LU.Formulae.back(), LUIdx); 3377 } 3378 } 3379 3380 LLVM_DEBUG(print_fixups(dbgs())); 3381 } 3382 3383 /// Insert a formula for the given expression into the given use, separating out 3384 /// loop-variant portions from loop-invariant and loop-computable portions. 3385 void 3386 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3387 // Mark uses whose expressions cannot be expanded. 3388 if (!isSafeToExpand(S, SE)) 3389 LU.RigidFormula = true; 3390 3391 Formula F; 3392 F.initialMatch(S, L, SE); 3393 bool Inserted = InsertFormula(LU, LUIdx, F); 3394 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3395 } 3396 3397 /// Insert a simple single-register formula for the given expression into the 3398 /// given use. 3399 void 3400 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3401 LSRUse &LU, size_t LUIdx) { 3402 Formula F; 3403 F.BaseRegs.push_back(S); 3404 F.HasBaseReg = true; 3405 bool Inserted = InsertFormula(LU, LUIdx, F); 3406 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3407 } 3408 3409 /// Note which registers are used by the given formula, updating RegUses. 3410 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3411 if (F.ScaledReg) 3412 RegUses.countRegister(F.ScaledReg, LUIdx); 3413 for (const SCEV *BaseReg : F.BaseRegs) 3414 RegUses.countRegister(BaseReg, LUIdx); 3415 } 3416 3417 /// If the given formula has not yet been inserted, add it to the list, and 3418 /// return true. Return false otherwise. 3419 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3420 // Do not insert formula that we will not be able to expand. 3421 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3422 "Formula is illegal"); 3423 3424 if (!LU.InsertFormula(F, *L)) 3425 return false; 3426 3427 CountRegisters(F, LUIdx); 3428 return true; 3429 } 3430 3431 /// Check for other uses of loop-invariant values which we're tracking. These 3432 /// other uses will pin these values in registers, making them less profitable 3433 /// for elimination. 3434 /// TODO: This currently misses non-constant addrec step registers. 3435 /// TODO: Should this give more weight to users inside the loop? 3436 void 3437 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3438 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3439 SmallPtrSet<const SCEV *, 32> Visited; 3440 3441 while (!Worklist.empty()) { 3442 const SCEV *S = Worklist.pop_back_val(); 3443 3444 // Don't process the same SCEV twice 3445 if (!Visited.insert(S).second) 3446 continue; 3447 3448 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3449 Worklist.append(N->op_begin(), N->op_end()); 3450 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3451 Worklist.push_back(C->getOperand()); 3452 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3453 Worklist.push_back(D->getLHS()); 3454 Worklist.push_back(D->getRHS()); 3455 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3456 const Value *V = US->getValue(); 3457 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3458 // Look for instructions defined outside the loop. 3459 if (L->contains(Inst)) continue; 3460 } else if (isa<UndefValue>(V)) 3461 // Undef doesn't have a live range, so it doesn't matter. 3462 continue; 3463 for (const Use &U : V->uses()) { 3464 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3465 // Ignore non-instructions. 3466 if (!UserInst) 3467 continue; 3468 // Don't bother if the instruction is an EHPad. 3469 if (UserInst->isEHPad()) 3470 continue; 3471 // Ignore instructions in other functions (as can happen with 3472 // Constants). 3473 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3474 continue; 3475 // Ignore instructions not dominated by the loop. 3476 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3477 UserInst->getParent() : 3478 cast<PHINode>(UserInst)->getIncomingBlock( 3479 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3480 if (!DT.dominates(L->getHeader(), UseBB)) 3481 continue; 3482 // Don't bother if the instruction is in a BB which ends in an EHPad. 3483 if (UseBB->getTerminator()->isEHPad()) 3484 continue; 3485 // Don't bother rewriting PHIs in catchswitch blocks. 3486 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3487 continue; 3488 // Ignore uses which are part of other SCEV expressions, to avoid 3489 // analyzing them multiple times. 3490 if (SE.isSCEVable(UserInst->getType())) { 3491 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3492 // If the user is a no-op, look through to its uses. 3493 if (!isa<SCEVUnknown>(UserS)) 3494 continue; 3495 if (UserS == US) { 3496 Worklist.push_back( 3497 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3498 continue; 3499 } 3500 } 3501 // Ignore icmp instructions which are already being analyzed. 3502 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3503 unsigned OtherIdx = !U.getOperandNo(); 3504 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3505 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3506 continue; 3507 } 3508 3509 std::pair<size_t, int64_t> P = getUse( 3510 S, LSRUse::Basic, MemAccessTy()); 3511 size_t LUIdx = P.first; 3512 int64_t Offset = P.second; 3513 LSRUse &LU = Uses[LUIdx]; 3514 LSRFixup &LF = LU.getNewFixup(); 3515 LF.UserInst = const_cast<Instruction *>(UserInst); 3516 LF.OperandValToReplace = U; 3517 LF.Offset = Offset; 3518 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3519 if (!LU.WidestFixupType || 3520 SE.getTypeSizeInBits(LU.WidestFixupType) < 3521 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3522 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3523 InsertSupplementalFormula(US, LU, LUIdx); 3524 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3525 break; 3526 } 3527 } 3528 } 3529 } 3530 3531 /// Split S into subexpressions which can be pulled out into separate 3532 /// registers. If C is non-null, multiply each subexpression by C. 3533 /// 3534 /// Return remainder expression after factoring the subexpressions captured by 3535 /// Ops. If Ops is complete, return NULL. 3536 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3537 SmallVectorImpl<const SCEV *> &Ops, 3538 const Loop *L, 3539 ScalarEvolution &SE, 3540 unsigned Depth = 0) { 3541 // Arbitrarily cap recursion to protect compile time. 3542 if (Depth >= 3) 3543 return S; 3544 3545 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3546 // Break out add operands. 3547 for (const SCEV *S : Add->operands()) { 3548 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3549 if (Remainder) 3550 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3551 } 3552 return nullptr; 3553 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3554 // Split a non-zero base out of an addrec. 3555 if (AR->getStart()->isZero() || !AR->isAffine()) 3556 return S; 3557 3558 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3559 C, Ops, L, SE, Depth+1); 3560 // Split the non-zero AddRec unless it is part of a nested recurrence that 3561 // does not pertain to this loop. 3562 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3563 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3564 Remainder = nullptr; 3565 } 3566 if (Remainder != AR->getStart()) { 3567 if (!Remainder) 3568 Remainder = SE.getConstant(AR->getType(), 0); 3569 return SE.getAddRecExpr(Remainder, 3570 AR->getStepRecurrence(SE), 3571 AR->getLoop(), 3572 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3573 SCEV::FlagAnyWrap); 3574 } 3575 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3576 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3577 if (Mul->getNumOperands() != 2) 3578 return S; 3579 if (const SCEVConstant *Op0 = 3580 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3581 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3582 const SCEV *Remainder = 3583 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3584 if (Remainder) 3585 Ops.push_back(SE.getMulExpr(C, Remainder)); 3586 return nullptr; 3587 } 3588 } 3589 return S; 3590 } 3591 3592 /// Return true if the SCEV represents a value that may end up as a 3593 /// post-increment operation. 3594 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3595 LSRUse &LU, const SCEV *S, const Loop *L, 3596 ScalarEvolution &SE) { 3597 if (LU.Kind != LSRUse::Address || 3598 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3599 return false; 3600 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3601 if (!AR) 3602 return false; 3603 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3604 if (!isa<SCEVConstant>(LoopStep)) 3605 return false; 3606 // Check if a post-indexed load/store can be used. 3607 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3608 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3609 const SCEV *LoopStart = AR->getStart(); 3610 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3611 return true; 3612 } 3613 return false; 3614 } 3615 3616 /// Helper function for LSRInstance::GenerateReassociations. 3617 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3618 const Formula &Base, 3619 unsigned Depth, size_t Idx, 3620 bool IsScaledReg) { 3621 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3622 // Don't generate reassociations for the base register of a value that 3623 // may generate a post-increment operator. The reason is that the 3624 // reassociations cause extra base+register formula to be created, 3625 // and possibly chosen, but the post-increment is more efficient. 3626 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3627 return; 3628 SmallVector<const SCEV *, 8> AddOps; 3629 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3630 if (Remainder) 3631 AddOps.push_back(Remainder); 3632 3633 if (AddOps.size() == 1) 3634 return; 3635 3636 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3637 JE = AddOps.end(); 3638 J != JE; ++J) { 3639 // Loop-variant "unknown" values are uninteresting; we won't be able to 3640 // do anything meaningful with them. 3641 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3642 continue; 3643 3644 // Don't pull a constant into a register if the constant could be folded 3645 // into an immediate field. 3646 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3647 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3648 continue; 3649 3650 // Collect all operands except *J. 3651 SmallVector<const SCEV *, 8> InnerAddOps( 3652 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3653 InnerAddOps.append(std::next(J), 3654 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3655 3656 // Don't leave just a constant behind in a register if the constant could 3657 // be folded into an immediate field. 3658 if (InnerAddOps.size() == 1 && 3659 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3660 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3661 continue; 3662 3663 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3664 if (InnerSum->isZero()) 3665 continue; 3666 Formula F = Base; 3667 3668 // Add the remaining pieces of the add back into the new formula. 3669 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3670 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3671 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3672 InnerSumSC->getValue()->getZExtValue())) { 3673 F.UnfoldedOffset = 3674 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3675 if (IsScaledReg) 3676 F.ScaledReg = nullptr; 3677 else 3678 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3679 } else if (IsScaledReg) 3680 F.ScaledReg = InnerSum; 3681 else 3682 F.BaseRegs[Idx] = InnerSum; 3683 3684 // Add J as its own register, or an unfolded immediate. 3685 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3686 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3687 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3688 SC->getValue()->getZExtValue())) 3689 F.UnfoldedOffset = 3690 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3691 else 3692 F.BaseRegs.push_back(*J); 3693 // We may have changed the number of register in base regs, adjust the 3694 // formula accordingly. 3695 F.canonicalize(*L); 3696 3697 if (InsertFormula(LU, LUIdx, F)) 3698 // If that formula hadn't been seen before, recurse to find more like 3699 // it. 3700 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3701 // Because just Depth is not enough to bound compile time. 3702 // This means that every time AddOps.size() is greater 16^x we will add 3703 // x to Depth. 3704 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3705 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3706 } 3707 } 3708 3709 /// Split out subexpressions from adds and the bases of addrecs. 3710 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3711 Formula Base, unsigned Depth) { 3712 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3713 // Arbitrarily cap recursion to protect compile time. 3714 if (Depth >= 3) 3715 return; 3716 3717 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3718 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3719 3720 if (Base.Scale == 1) 3721 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3722 /* Idx */ -1, /* IsScaledReg */ true); 3723 } 3724 3725 /// Generate a formula consisting of all of the loop-dominating registers added 3726 /// into a single register. 3727 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3728 Formula Base) { 3729 // This method is only interesting on a plurality of registers. 3730 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3731 (Base.UnfoldedOffset != 0) <= 1) 3732 return; 3733 3734 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3735 // processing the formula. 3736 Base.unscale(); 3737 SmallVector<const SCEV *, 4> Ops; 3738 Formula NewBase = Base; 3739 NewBase.BaseRegs.clear(); 3740 Type *CombinedIntegerType = nullptr; 3741 for (const SCEV *BaseReg : Base.BaseRegs) { 3742 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3743 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3744 if (!CombinedIntegerType) 3745 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3746 Ops.push_back(BaseReg); 3747 } 3748 else 3749 NewBase.BaseRegs.push_back(BaseReg); 3750 } 3751 3752 // If no register is relevant, we're done. 3753 if (Ops.size() == 0) 3754 return; 3755 3756 // Utility function for generating the required variants of the combined 3757 // registers. 3758 auto GenerateFormula = [&](const SCEV *Sum) { 3759 Formula F = NewBase; 3760 3761 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3762 // opportunity to fold something. For now, just ignore such cases 3763 // rather than proceed with zero in a register. 3764 if (Sum->isZero()) 3765 return; 3766 3767 F.BaseRegs.push_back(Sum); 3768 F.canonicalize(*L); 3769 (void)InsertFormula(LU, LUIdx, F); 3770 }; 3771 3772 // If we collected at least two registers, generate a formula combining them. 3773 if (Ops.size() > 1) { 3774 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3775 GenerateFormula(SE.getAddExpr(OpsCopy)); 3776 } 3777 3778 // If we have an unfolded offset, generate a formula combining it with the 3779 // registers collected. 3780 if (NewBase.UnfoldedOffset) { 3781 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3782 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3783 true)); 3784 NewBase.UnfoldedOffset = 0; 3785 GenerateFormula(SE.getAddExpr(Ops)); 3786 } 3787 } 3788 3789 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3790 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3791 const Formula &Base, size_t Idx, 3792 bool IsScaledReg) { 3793 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3794 GlobalValue *GV = ExtractSymbol(G, SE); 3795 if (G->isZero() || !GV) 3796 return; 3797 Formula F = Base; 3798 F.BaseGV = GV; 3799 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3800 return; 3801 if (IsScaledReg) 3802 F.ScaledReg = G; 3803 else 3804 F.BaseRegs[Idx] = G; 3805 (void)InsertFormula(LU, LUIdx, F); 3806 } 3807 3808 /// Generate reuse formulae using symbolic offsets. 3809 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3810 Formula Base) { 3811 // We can't add a symbolic offset if the address already contains one. 3812 if (Base.BaseGV) return; 3813 3814 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3815 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3816 if (Base.Scale == 1) 3817 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3818 /* IsScaledReg */ true); 3819 } 3820 3821 /// Helper function for LSRInstance::GenerateConstantOffsets. 3822 void LSRInstance::GenerateConstantOffsetsImpl( 3823 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3824 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3825 3826 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3827 Formula F = Base; 3828 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3829 3830 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3831 // Add the offset to the base register. 3832 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3833 // If it cancelled out, drop the base register, otherwise update it. 3834 if (NewG->isZero()) { 3835 if (IsScaledReg) { 3836 F.Scale = 0; 3837 F.ScaledReg = nullptr; 3838 } else 3839 F.deleteBaseReg(F.BaseRegs[Idx]); 3840 F.canonicalize(*L); 3841 } else if (IsScaledReg) 3842 F.ScaledReg = NewG; 3843 else 3844 F.BaseRegs[Idx] = NewG; 3845 3846 (void)InsertFormula(LU, LUIdx, F); 3847 } 3848 }; 3849 3850 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3851 3852 // With constant offsets and constant steps, we can generate pre-inc 3853 // accesses by having the offset equal the step. So, for access #0 with a 3854 // step of 8, we generate a G - 8 base which would require the first access 3855 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3856 // for itself and hopefully becomes the base for other accesses. This means 3857 // means that a single pre-indexed access can be generated to become the new 3858 // base pointer for each iteration of the loop, resulting in no extra add/sub 3859 // instructions for pointer updating. 3860 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3861 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3862 if (auto *StepRec = 3863 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3864 const APInt &StepInt = StepRec->getAPInt(); 3865 int64_t Step = StepInt.isNegative() ? 3866 StepInt.getSExtValue() : StepInt.getZExtValue(); 3867 3868 for (int64_t Offset : Worklist) { 3869 Offset -= Step; 3870 GenerateOffset(G, Offset); 3871 } 3872 } 3873 } 3874 } 3875 for (int64_t Offset : Worklist) 3876 GenerateOffset(G, Offset); 3877 3878 int64_t Imm = ExtractImmediate(G, SE); 3879 if (G->isZero() || Imm == 0) 3880 return; 3881 Formula F = Base; 3882 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3883 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3884 return; 3885 if (IsScaledReg) { 3886 F.ScaledReg = G; 3887 } else { 3888 F.BaseRegs[Idx] = G; 3889 // We may generate non canonical Formula if G is a recurrent expr reg 3890 // related with current loop while F.ScaledReg is not. 3891 F.canonicalize(*L); 3892 } 3893 (void)InsertFormula(LU, LUIdx, F); 3894 } 3895 3896 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3897 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3898 Formula Base) { 3899 // TODO: For now, just add the min and max offset, because it usually isn't 3900 // worthwhile looking at everything inbetween. 3901 SmallVector<int64_t, 2> Worklist; 3902 Worklist.push_back(LU.MinOffset); 3903 if (LU.MaxOffset != LU.MinOffset) 3904 Worklist.push_back(LU.MaxOffset); 3905 3906 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3907 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3908 if (Base.Scale == 1) 3909 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3910 /* IsScaledReg */ true); 3911 } 3912 3913 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3914 /// == y -> x*c == y*c. 3915 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3916 Formula Base) { 3917 if (LU.Kind != LSRUse::ICmpZero) return; 3918 3919 // Determine the integer type for the base formula. 3920 Type *IntTy = Base.getType(); 3921 if (!IntTy) return; 3922 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3923 3924 // Don't do this if there is more than one offset. 3925 if (LU.MinOffset != LU.MaxOffset) return; 3926 3927 // Check if transformation is valid. It is illegal to multiply pointer. 3928 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3929 return; 3930 for (const SCEV *BaseReg : Base.BaseRegs) 3931 if (BaseReg->getType()->isPointerTy()) 3932 return; 3933 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3934 3935 // Check each interesting stride. 3936 for (int64_t Factor : Factors) { 3937 // Check that the multiplication doesn't overflow. 3938 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3939 continue; 3940 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3941 assert(Factor != 0 && "Zero factor not expected!"); 3942 if (NewBaseOffset / Factor != Base.BaseOffset) 3943 continue; 3944 // If the offset will be truncated at this use, check that it is in bounds. 3945 if (!IntTy->isPointerTy() && 3946 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3947 continue; 3948 3949 // Check that multiplying with the use offset doesn't overflow. 3950 int64_t Offset = LU.MinOffset; 3951 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3952 continue; 3953 Offset = (uint64_t)Offset * Factor; 3954 if (Offset / Factor != LU.MinOffset) 3955 continue; 3956 // If the offset will be truncated at this use, check that it is in bounds. 3957 if (!IntTy->isPointerTy() && 3958 !ConstantInt::isValueValidForType(IntTy, Offset)) 3959 continue; 3960 3961 Formula F = Base; 3962 F.BaseOffset = NewBaseOffset; 3963 3964 // Check that this scale is legal. 3965 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3966 continue; 3967 3968 // Compensate for the use having MinOffset built into it. 3969 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3970 3971 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3972 3973 // Check that multiplying with each base register doesn't overflow. 3974 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3975 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3976 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3977 goto next; 3978 } 3979 3980 // Check that multiplying with the scaled register doesn't overflow. 3981 if (F.ScaledReg) { 3982 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3983 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3984 continue; 3985 } 3986 3987 // Check that multiplying with the unfolded offset doesn't overflow. 3988 if (F.UnfoldedOffset != 0) { 3989 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3990 Factor == -1) 3991 continue; 3992 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3993 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3994 continue; 3995 // If the offset will be truncated, check that it is in bounds. 3996 if (!IntTy->isPointerTy() && 3997 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3998 continue; 3999 } 4000 4001 // If we make it here and it's legal, add it. 4002 (void)InsertFormula(LU, LUIdx, F); 4003 next:; 4004 } 4005 } 4006 4007 /// Generate stride factor reuse formulae by making use of scaled-offset address 4008 /// modes, for example. 4009 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4010 // Determine the integer type for the base formula. 4011 Type *IntTy = Base.getType(); 4012 if (!IntTy) return; 4013 4014 // If this Formula already has a scaled register, we can't add another one. 4015 // Try to unscale the formula to generate a better scale. 4016 if (Base.Scale != 0 && !Base.unscale()) 4017 return; 4018 4019 assert(Base.Scale == 0 && "unscale did not did its job!"); 4020 4021 // Check each interesting stride. 4022 for (int64_t Factor : Factors) { 4023 Base.Scale = Factor; 4024 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4025 // Check whether this scale is going to be legal. 4026 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4027 Base)) { 4028 // As a special-case, handle special out-of-loop Basic users specially. 4029 // TODO: Reconsider this special case. 4030 if (LU.Kind == LSRUse::Basic && 4031 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4032 LU.AccessTy, Base) && 4033 LU.AllFixupsOutsideLoop) 4034 LU.Kind = LSRUse::Special; 4035 else 4036 continue; 4037 } 4038 // For an ICmpZero, negating a solitary base register won't lead to 4039 // new solutions. 4040 if (LU.Kind == LSRUse::ICmpZero && 4041 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4042 continue; 4043 // For each addrec base reg, if its loop is current loop, apply the scale. 4044 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4045 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4046 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4047 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4048 if (FactorS->isZero()) 4049 continue; 4050 // Divide out the factor, ignoring high bits, since we'll be 4051 // scaling the value back up in the end. 4052 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4053 // TODO: This could be optimized to avoid all the copying. 4054 Formula F = Base; 4055 F.ScaledReg = Quotient; 4056 F.deleteBaseReg(F.BaseRegs[i]); 4057 // The canonical representation of 1*reg is reg, which is already in 4058 // Base. In that case, do not try to insert the formula, it will be 4059 // rejected anyway. 4060 if (F.Scale == 1 && (F.BaseRegs.empty() || 4061 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4062 continue; 4063 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4064 // non canonical Formula with ScaledReg's loop not being L. 4065 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4066 F.canonicalize(*L); 4067 (void)InsertFormula(LU, LUIdx, F); 4068 } 4069 } 4070 } 4071 } 4072 } 4073 4074 /// Generate reuse formulae from different IV types. 4075 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4076 // Don't bother truncating symbolic values. 4077 if (Base.BaseGV) return; 4078 4079 // Determine the integer type for the base formula. 4080 Type *DstTy = Base.getType(); 4081 if (!DstTy) return; 4082 if (DstTy->isPointerTy()) 4083 return; 4084 4085 for (Type *SrcTy : Types) { 4086 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4087 Formula F = Base; 4088 4089 // Sometimes SCEV is able to prove zero during ext transform. It may 4090 // happen if SCEV did not do all possible transforms while creating the 4091 // initial node (maybe due to depth limitations), but it can do them while 4092 // taking ext. 4093 if (F.ScaledReg) { 4094 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4095 if (NewScaledReg->isZero()) 4096 continue; 4097 F.ScaledReg = NewScaledReg; 4098 } 4099 bool HasZeroBaseReg = false; 4100 for (const SCEV *&BaseReg : F.BaseRegs) { 4101 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4102 if (NewBaseReg->isZero()) { 4103 HasZeroBaseReg = true; 4104 break; 4105 } 4106 BaseReg = NewBaseReg; 4107 } 4108 if (HasZeroBaseReg) 4109 continue; 4110 4111 // TODO: This assumes we've done basic processing on all uses and 4112 // have an idea what the register usage is. 4113 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4114 continue; 4115 4116 F.canonicalize(*L); 4117 (void)InsertFormula(LU, LUIdx, F); 4118 } 4119 } 4120 } 4121 4122 namespace { 4123 4124 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4125 /// modifications so that the search phase doesn't have to worry about the data 4126 /// structures moving underneath it. 4127 struct WorkItem { 4128 size_t LUIdx; 4129 int64_t Imm; 4130 const SCEV *OrigReg; 4131 4132 WorkItem(size_t LI, int64_t I, const SCEV *R) 4133 : LUIdx(LI), Imm(I), OrigReg(R) {} 4134 4135 void print(raw_ostream &OS) const; 4136 void dump() const; 4137 }; 4138 4139 } // end anonymous namespace 4140 4141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4142 void WorkItem::print(raw_ostream &OS) const { 4143 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4144 << " , add offset " << Imm; 4145 } 4146 4147 LLVM_DUMP_METHOD void WorkItem::dump() const { 4148 print(errs()); errs() << '\n'; 4149 } 4150 #endif 4151 4152 /// Look for registers which are a constant distance apart and try to form reuse 4153 /// opportunities between them. 4154 void LSRInstance::GenerateCrossUseConstantOffsets() { 4155 // Group the registers by their value without any added constant offset. 4156 using ImmMapTy = std::map<int64_t, const SCEV *>; 4157 4158 DenseMap<const SCEV *, ImmMapTy> Map; 4159 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4160 SmallVector<const SCEV *, 8> Sequence; 4161 for (const SCEV *Use : RegUses) { 4162 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4163 int64_t Imm = ExtractImmediate(Reg, SE); 4164 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4165 if (Pair.second) 4166 Sequence.push_back(Reg); 4167 Pair.first->second.insert(std::make_pair(Imm, Use)); 4168 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4169 } 4170 4171 // Now examine each set of registers with the same base value. Build up 4172 // a list of work to do and do the work in a separate step so that we're 4173 // not adding formulae and register counts while we're searching. 4174 SmallVector<WorkItem, 32> WorkItems; 4175 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4176 for (const SCEV *Reg : Sequence) { 4177 const ImmMapTy &Imms = Map.find(Reg)->second; 4178 4179 // It's not worthwhile looking for reuse if there's only one offset. 4180 if (Imms.size() == 1) 4181 continue; 4182 4183 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4184 for (const auto &Entry 4185 : Imms) dbgs() 4186 << ' ' << Entry.first; 4187 dbgs() << '\n'); 4188 4189 // Examine each offset. 4190 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4191 J != JE; ++J) { 4192 const SCEV *OrigReg = J->second; 4193 4194 int64_t JImm = J->first; 4195 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4196 4197 if (!isa<SCEVConstant>(OrigReg) && 4198 UsedByIndicesMap[Reg].count() == 1) { 4199 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4200 << '\n'); 4201 continue; 4202 } 4203 4204 // Conservatively examine offsets between this orig reg a few selected 4205 // other orig regs. 4206 int64_t First = Imms.begin()->first; 4207 int64_t Last = std::prev(Imms.end())->first; 4208 // Compute (First + Last) / 2 without overflow using the fact that 4209 // First + Last = 2 * (First + Last) + (First ^ Last). 4210 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4211 // If the result is negative and First is odd and Last even (or vice versa), 4212 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4213 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4214 ImmMapTy::const_iterator OtherImms[] = { 4215 Imms.begin(), std::prev(Imms.end()), 4216 Imms.lower_bound(Avg)}; 4217 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4218 ImmMapTy::const_iterator M = OtherImms[i]; 4219 if (M == J || M == JE) continue; 4220 4221 // Compute the difference between the two. 4222 int64_t Imm = (uint64_t)JImm - M->first; 4223 for (unsigned LUIdx : UsedByIndices.set_bits()) 4224 // Make a memo of this use, offset, and register tuple. 4225 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4226 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4227 } 4228 } 4229 } 4230 4231 Map.clear(); 4232 Sequence.clear(); 4233 UsedByIndicesMap.clear(); 4234 UniqueItems.clear(); 4235 4236 // Now iterate through the worklist and add new formulae. 4237 for (const WorkItem &WI : WorkItems) { 4238 size_t LUIdx = WI.LUIdx; 4239 LSRUse &LU = Uses[LUIdx]; 4240 int64_t Imm = WI.Imm; 4241 const SCEV *OrigReg = WI.OrigReg; 4242 4243 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4244 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4245 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4246 4247 // TODO: Use a more targeted data structure. 4248 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4249 Formula F = LU.Formulae[L]; 4250 // FIXME: The code for the scaled and unscaled registers looks 4251 // very similar but slightly different. Investigate if they 4252 // could be merged. That way, we would not have to unscale the 4253 // Formula. 4254 F.unscale(); 4255 // Use the immediate in the scaled register. 4256 if (F.ScaledReg == OrigReg) { 4257 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4258 // Don't create 50 + reg(-50). 4259 if (F.referencesReg(SE.getSCEV( 4260 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4261 continue; 4262 Formula NewF = F; 4263 NewF.BaseOffset = Offset; 4264 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4265 NewF)) 4266 continue; 4267 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4268 4269 // If the new scale is a constant in a register, and adding the constant 4270 // value to the immediate would produce a value closer to zero than the 4271 // immediate itself, then the formula isn't worthwhile. 4272 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4273 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4274 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4275 .ule(std::abs(NewF.BaseOffset))) 4276 continue; 4277 4278 // OK, looks good. 4279 NewF.canonicalize(*this->L); 4280 (void)InsertFormula(LU, LUIdx, NewF); 4281 } else { 4282 // Use the immediate in a base register. 4283 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4284 const SCEV *BaseReg = F.BaseRegs[N]; 4285 if (BaseReg != OrigReg) 4286 continue; 4287 Formula NewF = F; 4288 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4289 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4290 LU.Kind, LU.AccessTy, NewF)) { 4291 if (AMK == TTI::AMK_PostIndexed && 4292 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4293 continue; 4294 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4295 continue; 4296 NewF = F; 4297 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4298 } 4299 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4300 4301 // If the new formula has a constant in a register, and adding the 4302 // constant value to the immediate would produce a value closer to 4303 // zero than the immediate itself, then the formula isn't worthwhile. 4304 for (const SCEV *NewReg : NewF.BaseRegs) 4305 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4306 if ((C->getAPInt() + NewF.BaseOffset) 4307 .abs() 4308 .slt(std::abs(NewF.BaseOffset)) && 4309 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4310 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4311 goto skip_formula; 4312 4313 // Ok, looks good. 4314 NewF.canonicalize(*this->L); 4315 (void)InsertFormula(LU, LUIdx, NewF); 4316 break; 4317 skip_formula:; 4318 } 4319 } 4320 } 4321 } 4322 } 4323 4324 /// Generate formulae for each use. 4325 void 4326 LSRInstance::GenerateAllReuseFormulae() { 4327 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4328 // queries are more precise. 4329 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4330 LSRUse &LU = Uses[LUIdx]; 4331 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4332 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4333 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4334 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4335 } 4336 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4337 LSRUse &LU = Uses[LUIdx]; 4338 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4339 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4340 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4341 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4342 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4343 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4344 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4345 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4346 } 4347 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4348 LSRUse &LU = Uses[LUIdx]; 4349 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4350 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4351 } 4352 4353 GenerateCrossUseConstantOffsets(); 4354 4355 LLVM_DEBUG(dbgs() << "\n" 4356 "After generating reuse formulae:\n"; 4357 print_uses(dbgs())); 4358 } 4359 4360 /// If there are multiple formulae with the same set of registers used 4361 /// by other uses, pick the best one and delete the others. 4362 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4363 DenseSet<const SCEV *> VisitedRegs; 4364 SmallPtrSet<const SCEV *, 16> Regs; 4365 SmallPtrSet<const SCEV *, 16> LoserRegs; 4366 #ifndef NDEBUG 4367 bool ChangedFormulae = false; 4368 #endif 4369 4370 // Collect the best formula for each unique set of shared registers. This 4371 // is reset for each use. 4372 using BestFormulaeTy = 4373 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4374 4375 BestFormulaeTy BestFormulae; 4376 4377 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4378 LSRUse &LU = Uses[LUIdx]; 4379 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4380 dbgs() << '\n'); 4381 4382 bool Any = false; 4383 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4384 FIdx != NumForms; ++FIdx) { 4385 Formula &F = LU.Formulae[FIdx]; 4386 4387 // Some formulas are instant losers. For example, they may depend on 4388 // nonexistent AddRecs from other loops. These need to be filtered 4389 // immediately, otherwise heuristics could choose them over others leading 4390 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4391 // avoids the need to recompute this information across formulae using the 4392 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4393 // the corresponding bad register from the Regs set. 4394 Cost CostF(L, SE, TTI, AMK); 4395 Regs.clear(); 4396 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4397 if (CostF.isLoser()) { 4398 // During initial formula generation, undesirable formulae are generated 4399 // by uses within other loops that have some non-trivial address mode or 4400 // use the postinc form of the IV. LSR needs to provide these formulae 4401 // as the basis of rediscovering the desired formula that uses an AddRec 4402 // corresponding to the existing phi. Once all formulae have been 4403 // generated, these initial losers may be pruned. 4404 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4405 dbgs() << "\n"); 4406 } 4407 else { 4408 SmallVector<const SCEV *, 4> Key; 4409 for (const SCEV *Reg : F.BaseRegs) { 4410 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4411 Key.push_back(Reg); 4412 } 4413 if (F.ScaledReg && 4414 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4415 Key.push_back(F.ScaledReg); 4416 // Unstable sort by host order ok, because this is only used for 4417 // uniquifying. 4418 llvm::sort(Key); 4419 4420 std::pair<BestFormulaeTy::const_iterator, bool> P = 4421 BestFormulae.insert(std::make_pair(Key, FIdx)); 4422 if (P.second) 4423 continue; 4424 4425 Formula &Best = LU.Formulae[P.first->second]; 4426 4427 Cost CostBest(L, SE, TTI, AMK); 4428 Regs.clear(); 4429 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4430 if (CostF.isLess(CostBest)) 4431 std::swap(F, Best); 4432 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4433 dbgs() << "\n" 4434 " in favor of formula "; 4435 Best.print(dbgs()); dbgs() << '\n'); 4436 } 4437 #ifndef NDEBUG 4438 ChangedFormulae = true; 4439 #endif 4440 LU.DeleteFormula(F); 4441 --FIdx; 4442 --NumForms; 4443 Any = true; 4444 } 4445 4446 // Now that we've filtered out some formulae, recompute the Regs set. 4447 if (Any) 4448 LU.RecomputeRegs(LUIdx, RegUses); 4449 4450 // Reset this to prepare for the next use. 4451 BestFormulae.clear(); 4452 } 4453 4454 LLVM_DEBUG(if (ChangedFormulae) { 4455 dbgs() << "\n" 4456 "After filtering out undesirable candidates:\n"; 4457 print_uses(dbgs()); 4458 }); 4459 } 4460 4461 /// Estimate the worst-case number of solutions the solver might have to 4462 /// consider. It almost never considers this many solutions because it prune the 4463 /// search space, but the pruning isn't always sufficient. 4464 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4465 size_t Power = 1; 4466 for (const LSRUse &LU : Uses) { 4467 size_t FSize = LU.Formulae.size(); 4468 if (FSize >= ComplexityLimit) { 4469 Power = ComplexityLimit; 4470 break; 4471 } 4472 Power *= FSize; 4473 if (Power >= ComplexityLimit) 4474 break; 4475 } 4476 return Power; 4477 } 4478 4479 /// When one formula uses a superset of the registers of another formula, it 4480 /// won't help reduce register pressure (though it may not necessarily hurt 4481 /// register pressure); remove it to simplify the system. 4482 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4483 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4484 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4485 4486 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4487 "which use a superset of registers used by other " 4488 "formulae.\n"); 4489 4490 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4491 LSRUse &LU = Uses[LUIdx]; 4492 bool Any = false; 4493 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4494 Formula &F = LU.Formulae[i]; 4495 // Look for a formula with a constant or GV in a register. If the use 4496 // also has a formula with that same value in an immediate field, 4497 // delete the one that uses a register. 4498 for (SmallVectorImpl<const SCEV *>::const_iterator 4499 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4500 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4501 Formula NewF = F; 4502 //FIXME: Formulas should store bitwidth to do wrapping properly. 4503 // See PR41034. 4504 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4505 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4506 (I - F.BaseRegs.begin())); 4507 if (LU.HasFormulaWithSameRegs(NewF)) { 4508 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4509 dbgs() << '\n'); 4510 LU.DeleteFormula(F); 4511 --i; 4512 --e; 4513 Any = true; 4514 break; 4515 } 4516 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4517 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4518 if (!F.BaseGV) { 4519 Formula NewF = F; 4520 NewF.BaseGV = GV; 4521 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4522 (I - F.BaseRegs.begin())); 4523 if (LU.HasFormulaWithSameRegs(NewF)) { 4524 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4525 dbgs() << '\n'); 4526 LU.DeleteFormula(F); 4527 --i; 4528 --e; 4529 Any = true; 4530 break; 4531 } 4532 } 4533 } 4534 } 4535 } 4536 if (Any) 4537 LU.RecomputeRegs(LUIdx, RegUses); 4538 } 4539 4540 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4541 } 4542 } 4543 4544 /// When there are many registers for expressions like A, A+1, A+2, etc., 4545 /// allocate a single register for them. 4546 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4547 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4548 return; 4549 4550 LLVM_DEBUG( 4551 dbgs() << "The search space is too complex.\n" 4552 "Narrowing the search space by assuming that uses separated " 4553 "by a constant offset will use the same registers.\n"); 4554 4555 // This is especially useful for unrolled loops. 4556 4557 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4558 LSRUse &LU = Uses[LUIdx]; 4559 for (const Formula &F : LU.Formulae) { 4560 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4561 continue; 4562 4563 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4564 if (!LUThatHas) 4565 continue; 4566 4567 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4568 LU.Kind, LU.AccessTy)) 4569 continue; 4570 4571 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4572 4573 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4574 4575 // Transfer the fixups of LU to LUThatHas. 4576 for (LSRFixup &Fixup : LU.Fixups) { 4577 Fixup.Offset += F.BaseOffset; 4578 LUThatHas->pushFixup(Fixup); 4579 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4580 } 4581 4582 // Delete formulae from the new use which are no longer legal. 4583 bool Any = false; 4584 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4585 Formula &F = LUThatHas->Formulae[i]; 4586 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4587 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4588 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4589 LUThatHas->DeleteFormula(F); 4590 --i; 4591 --e; 4592 Any = true; 4593 } 4594 } 4595 4596 if (Any) 4597 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4598 4599 // Delete the old use. 4600 DeleteUse(LU, LUIdx); 4601 --LUIdx; 4602 --NumUses; 4603 break; 4604 } 4605 } 4606 4607 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4608 } 4609 4610 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4611 /// we've done more filtering, as it may be able to find more formulae to 4612 /// eliminate. 4613 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4614 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4615 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4616 4617 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4618 "undesirable dedicated registers.\n"); 4619 4620 FilterOutUndesirableDedicatedRegisters(); 4621 4622 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4623 } 4624 } 4625 4626 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4627 /// Pick the best one and delete the others. 4628 /// This narrowing heuristic is to keep as many formulae with different 4629 /// Scale and ScaledReg pair as possible while narrowing the search space. 4630 /// The benefit is that it is more likely to find out a better solution 4631 /// from a formulae set with more Scale and ScaledReg variations than 4632 /// a formulae set with the same Scale and ScaledReg. The picking winner 4633 /// reg heuristic will often keep the formulae with the same Scale and 4634 /// ScaledReg and filter others, and we want to avoid that if possible. 4635 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4636 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4637 return; 4638 4639 LLVM_DEBUG( 4640 dbgs() << "The search space is too complex.\n" 4641 "Narrowing the search space by choosing the best Formula " 4642 "from the Formulae with the same Scale and ScaledReg.\n"); 4643 4644 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4645 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4646 4647 BestFormulaeTy BestFormulae; 4648 #ifndef NDEBUG 4649 bool ChangedFormulae = false; 4650 #endif 4651 DenseSet<const SCEV *> VisitedRegs; 4652 SmallPtrSet<const SCEV *, 16> Regs; 4653 4654 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4655 LSRUse &LU = Uses[LUIdx]; 4656 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4657 dbgs() << '\n'); 4658 4659 // Return true if Formula FA is better than Formula FB. 4660 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4661 // First we will try to choose the Formula with fewer new registers. 4662 // For a register used by current Formula, the more the register is 4663 // shared among LSRUses, the less we increase the register number 4664 // counter of the formula. 4665 size_t FARegNum = 0; 4666 for (const SCEV *Reg : FA.BaseRegs) { 4667 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4668 FARegNum += (NumUses - UsedByIndices.count() + 1); 4669 } 4670 size_t FBRegNum = 0; 4671 for (const SCEV *Reg : FB.BaseRegs) { 4672 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4673 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4674 } 4675 if (FARegNum != FBRegNum) 4676 return FARegNum < FBRegNum; 4677 4678 // If the new register numbers are the same, choose the Formula with 4679 // less Cost. 4680 Cost CostFA(L, SE, TTI, AMK); 4681 Cost CostFB(L, SE, TTI, AMK); 4682 Regs.clear(); 4683 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4684 Regs.clear(); 4685 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4686 return CostFA.isLess(CostFB); 4687 }; 4688 4689 bool Any = false; 4690 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4691 ++FIdx) { 4692 Formula &F = LU.Formulae[FIdx]; 4693 if (!F.ScaledReg) 4694 continue; 4695 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4696 if (P.second) 4697 continue; 4698 4699 Formula &Best = LU.Formulae[P.first->second]; 4700 if (IsBetterThan(F, Best)) 4701 std::swap(F, Best); 4702 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4703 dbgs() << "\n" 4704 " in favor of formula "; 4705 Best.print(dbgs()); dbgs() << '\n'); 4706 #ifndef NDEBUG 4707 ChangedFormulae = true; 4708 #endif 4709 LU.DeleteFormula(F); 4710 --FIdx; 4711 --NumForms; 4712 Any = true; 4713 } 4714 if (Any) 4715 LU.RecomputeRegs(LUIdx, RegUses); 4716 4717 // Reset this to prepare for the next use. 4718 BestFormulae.clear(); 4719 } 4720 4721 LLVM_DEBUG(if (ChangedFormulae) { 4722 dbgs() << "\n" 4723 "After filtering out undesirable candidates:\n"; 4724 print_uses(dbgs()); 4725 }); 4726 } 4727 4728 /// If we are over the complexity limit, filter out any post-inc prefering 4729 /// variables to only post-inc values. 4730 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4731 if (AMK != TTI::AMK_PostIndexed) 4732 return; 4733 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4734 return; 4735 4736 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4737 "Narrowing the search space by choosing the lowest " 4738 "register Formula for PostInc Uses.\n"); 4739 4740 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4741 LSRUse &LU = Uses[LUIdx]; 4742 4743 if (LU.Kind != LSRUse::Address) 4744 continue; 4745 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4746 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4747 continue; 4748 4749 size_t MinRegs = std::numeric_limits<size_t>::max(); 4750 for (const Formula &F : LU.Formulae) 4751 MinRegs = std::min(F.getNumRegs(), MinRegs); 4752 4753 bool Any = false; 4754 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4755 ++FIdx) { 4756 Formula &F = LU.Formulae[FIdx]; 4757 if (F.getNumRegs() > MinRegs) { 4758 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4759 dbgs() << "\n"); 4760 LU.DeleteFormula(F); 4761 --FIdx; 4762 --NumForms; 4763 Any = true; 4764 } 4765 } 4766 if (Any) 4767 LU.RecomputeRegs(LUIdx, RegUses); 4768 4769 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4770 break; 4771 } 4772 4773 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4774 } 4775 4776 /// The function delete formulas with high registers number expectation. 4777 /// Assuming we don't know the value of each formula (already delete 4778 /// all inefficient), generate probability of not selecting for each 4779 /// register. 4780 /// For example, 4781 /// Use1: 4782 /// reg(a) + reg({0,+,1}) 4783 /// reg(a) + reg({-1,+,1}) + 1 4784 /// reg({a,+,1}) 4785 /// Use2: 4786 /// reg(b) + reg({0,+,1}) 4787 /// reg(b) + reg({-1,+,1}) + 1 4788 /// reg({b,+,1}) 4789 /// Use3: 4790 /// reg(c) + reg(b) + reg({0,+,1}) 4791 /// reg(c) + reg({b,+,1}) 4792 /// 4793 /// Probability of not selecting 4794 /// Use1 Use2 Use3 4795 /// reg(a) (1/3) * 1 * 1 4796 /// reg(b) 1 * (1/3) * (1/2) 4797 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4798 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4799 /// reg({a,+,1}) (2/3) * 1 * 1 4800 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4801 /// reg(c) 1 * 1 * 0 4802 /// 4803 /// Now count registers number mathematical expectation for each formula: 4804 /// Note that for each use we exclude probability if not selecting for the use. 4805 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4806 /// probabilty 1/3 of not selecting for Use1). 4807 /// Use1: 4808 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4809 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4810 /// reg({a,+,1}) 1 4811 /// Use2: 4812 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4813 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4814 /// reg({b,+,1}) 2/3 4815 /// Use3: 4816 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4817 /// reg(c) + reg({b,+,1}) 1 + 2/3 4818 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4819 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4820 return; 4821 // Ok, we have too many of formulae on our hands to conveniently handle. 4822 // Use a rough heuristic to thin out the list. 4823 4824 // Set of Regs wich will be 100% used in final solution. 4825 // Used in each formula of a solution (in example above this is reg(c)). 4826 // We can skip them in calculations. 4827 SmallPtrSet<const SCEV *, 4> UniqRegs; 4828 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4829 4830 // Map each register to probability of not selecting 4831 DenseMap <const SCEV *, float> RegNumMap; 4832 for (const SCEV *Reg : RegUses) { 4833 if (UniqRegs.count(Reg)) 4834 continue; 4835 float PNotSel = 1; 4836 for (const LSRUse &LU : Uses) { 4837 if (!LU.Regs.count(Reg)) 4838 continue; 4839 float P = LU.getNotSelectedProbability(Reg); 4840 if (P != 0.0) 4841 PNotSel *= P; 4842 else 4843 UniqRegs.insert(Reg); 4844 } 4845 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4846 } 4847 4848 LLVM_DEBUG( 4849 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4850 4851 // Delete formulas where registers number expectation is high. 4852 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4853 LSRUse &LU = Uses[LUIdx]; 4854 // If nothing to delete - continue. 4855 if (LU.Formulae.size() < 2) 4856 continue; 4857 // This is temporary solution to test performance. Float should be 4858 // replaced with round independent type (based on integers) to avoid 4859 // different results for different target builds. 4860 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4861 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4862 size_t MinIdx = 0; 4863 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4864 Formula &F = LU.Formulae[i]; 4865 float FRegNum = 0; 4866 float FARegNum = 0; 4867 for (const SCEV *BaseReg : F.BaseRegs) { 4868 if (UniqRegs.count(BaseReg)) 4869 continue; 4870 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4871 if (isa<SCEVAddRecExpr>(BaseReg)) 4872 FARegNum += 4873 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4874 } 4875 if (const SCEV *ScaledReg = F.ScaledReg) { 4876 if (!UniqRegs.count(ScaledReg)) { 4877 FRegNum += 4878 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4879 if (isa<SCEVAddRecExpr>(ScaledReg)) 4880 FARegNum += 4881 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4882 } 4883 } 4884 if (FMinRegNum > FRegNum || 4885 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4886 FMinRegNum = FRegNum; 4887 FMinARegNum = FARegNum; 4888 MinIdx = i; 4889 } 4890 } 4891 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4892 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4893 if (MinIdx != 0) 4894 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4895 while (LU.Formulae.size() != 1) { 4896 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4897 dbgs() << '\n'); 4898 LU.Formulae.pop_back(); 4899 } 4900 LU.RecomputeRegs(LUIdx, RegUses); 4901 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4902 Formula &F = LU.Formulae[0]; 4903 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4904 // When we choose the formula, the regs become unique. 4905 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4906 if (F.ScaledReg) 4907 UniqRegs.insert(F.ScaledReg); 4908 } 4909 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4910 } 4911 4912 /// Pick a register which seems likely to be profitable, and then in any use 4913 /// which has any reference to that register, delete all formulae which do not 4914 /// reference that register. 4915 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4916 // With all other options exhausted, loop until the system is simple 4917 // enough to handle. 4918 SmallPtrSet<const SCEV *, 4> Taken; 4919 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4920 // Ok, we have too many of formulae on our hands to conveniently handle. 4921 // Use a rough heuristic to thin out the list. 4922 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4923 4924 // Pick the register which is used by the most LSRUses, which is likely 4925 // to be a good reuse register candidate. 4926 const SCEV *Best = nullptr; 4927 unsigned BestNum = 0; 4928 for (const SCEV *Reg : RegUses) { 4929 if (Taken.count(Reg)) 4930 continue; 4931 if (!Best) { 4932 Best = Reg; 4933 BestNum = RegUses.getUsedByIndices(Reg).count(); 4934 } else { 4935 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4936 if (Count > BestNum) { 4937 Best = Reg; 4938 BestNum = Count; 4939 } 4940 } 4941 } 4942 assert(Best && "Failed to find best LSRUse candidate"); 4943 4944 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4945 << " will yield profitable reuse.\n"); 4946 Taken.insert(Best); 4947 4948 // In any use with formulae which references this register, delete formulae 4949 // which don't reference it. 4950 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4951 LSRUse &LU = Uses[LUIdx]; 4952 if (!LU.Regs.count(Best)) continue; 4953 4954 bool Any = false; 4955 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4956 Formula &F = LU.Formulae[i]; 4957 if (!F.referencesReg(Best)) { 4958 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4959 LU.DeleteFormula(F); 4960 --e; 4961 --i; 4962 Any = true; 4963 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4964 continue; 4965 } 4966 } 4967 4968 if (Any) 4969 LU.RecomputeRegs(LUIdx, RegUses); 4970 } 4971 4972 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4973 } 4974 } 4975 4976 /// If there are an extraordinary number of formulae to choose from, use some 4977 /// rough heuristics to prune down the number of formulae. This keeps the main 4978 /// solver from taking an extraordinary amount of time in some worst-case 4979 /// scenarios. 4980 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4981 NarrowSearchSpaceByDetectingSupersets(); 4982 NarrowSearchSpaceByCollapsingUnrolledCode(); 4983 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4984 if (FilterSameScaledReg) 4985 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4986 NarrowSearchSpaceByFilterPostInc(); 4987 if (LSRExpNarrow) 4988 NarrowSearchSpaceByDeletingCostlyFormulas(); 4989 else 4990 NarrowSearchSpaceByPickingWinnerRegs(); 4991 } 4992 4993 /// This is the recursive solver. 4994 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4995 Cost &SolutionCost, 4996 SmallVectorImpl<const Formula *> &Workspace, 4997 const Cost &CurCost, 4998 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4999 DenseSet<const SCEV *> &VisitedRegs) const { 5000 // Some ideas: 5001 // - prune more: 5002 // - use more aggressive filtering 5003 // - sort the formula so that the most profitable solutions are found first 5004 // - sort the uses too 5005 // - search faster: 5006 // - don't compute a cost, and then compare. compare while computing a cost 5007 // and bail early. 5008 // - track register sets with SmallBitVector 5009 5010 const LSRUse &LU = Uses[Workspace.size()]; 5011 5012 // If this use references any register that's already a part of the 5013 // in-progress solution, consider it a requirement that a formula must 5014 // reference that register in order to be considered. This prunes out 5015 // unprofitable searching. 5016 SmallSetVector<const SCEV *, 4> ReqRegs; 5017 for (const SCEV *S : CurRegs) 5018 if (LU.Regs.count(S)) 5019 ReqRegs.insert(S); 5020 5021 SmallPtrSet<const SCEV *, 16> NewRegs; 5022 Cost NewCost(L, SE, TTI, AMK); 5023 for (const Formula &F : LU.Formulae) { 5024 // Ignore formulae which may not be ideal in terms of register reuse of 5025 // ReqRegs. The formula should use all required registers before 5026 // introducing new ones. 5027 // This can sometimes (notably when trying to favour postinc) lead to 5028 // sub-optimial decisions. There it is best left to the cost modelling to 5029 // get correct. 5030 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5031 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5032 for (const SCEV *Reg : ReqRegs) { 5033 if ((F.ScaledReg && F.ScaledReg == Reg) || 5034 is_contained(F.BaseRegs, Reg)) { 5035 --NumReqRegsToFind; 5036 if (NumReqRegsToFind == 0) 5037 break; 5038 } 5039 } 5040 if (NumReqRegsToFind != 0) { 5041 // If none of the formulae satisfied the required registers, then we could 5042 // clear ReqRegs and try again. Currently, we simply give up in this case. 5043 continue; 5044 } 5045 } 5046 5047 // Evaluate the cost of the current formula. If it's already worse than 5048 // the current best, prune the search at that point. 5049 NewCost = CurCost; 5050 NewRegs = CurRegs; 5051 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5052 if (NewCost.isLess(SolutionCost)) { 5053 Workspace.push_back(&F); 5054 if (Workspace.size() != Uses.size()) { 5055 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5056 NewRegs, VisitedRegs); 5057 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5058 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5059 } else { 5060 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5061 dbgs() << ".\nRegs:\n"; 5062 for (const SCEV *S : NewRegs) dbgs() 5063 << "- " << *S << "\n"; 5064 dbgs() << '\n'); 5065 5066 SolutionCost = NewCost; 5067 Solution = Workspace; 5068 } 5069 Workspace.pop_back(); 5070 } 5071 } 5072 } 5073 5074 /// Choose one formula from each use. Return the results in the given Solution 5075 /// vector. 5076 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5077 SmallVector<const Formula *, 8> Workspace; 5078 Cost SolutionCost(L, SE, TTI, AMK); 5079 SolutionCost.Lose(); 5080 Cost CurCost(L, SE, TTI, AMK); 5081 SmallPtrSet<const SCEV *, 16> CurRegs; 5082 DenseSet<const SCEV *> VisitedRegs; 5083 Workspace.reserve(Uses.size()); 5084 5085 // SolveRecurse does all the work. 5086 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5087 CurRegs, VisitedRegs); 5088 if (Solution.empty()) { 5089 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5090 return; 5091 } 5092 5093 // Ok, we've now made all our decisions. 5094 LLVM_DEBUG(dbgs() << "\n" 5095 "The chosen solution requires "; 5096 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5097 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5098 dbgs() << " "; 5099 Uses[i].print(dbgs()); 5100 dbgs() << "\n" 5101 " "; 5102 Solution[i]->print(dbgs()); 5103 dbgs() << '\n'; 5104 }); 5105 5106 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5107 } 5108 5109 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5110 /// we can go while still being dominated by the input positions. This helps 5111 /// canonicalize the insert position, which encourages sharing. 5112 BasicBlock::iterator 5113 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5114 const SmallVectorImpl<Instruction *> &Inputs) 5115 const { 5116 Instruction *Tentative = &*IP; 5117 while (true) { 5118 bool AllDominate = true; 5119 Instruction *BetterPos = nullptr; 5120 // Don't bother attempting to insert before a catchswitch, their basic block 5121 // cannot have other non-PHI instructions. 5122 if (isa<CatchSwitchInst>(Tentative)) 5123 return IP; 5124 5125 for (Instruction *Inst : Inputs) { 5126 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5127 AllDominate = false; 5128 break; 5129 } 5130 // Attempt to find an insert position in the middle of the block, 5131 // instead of at the end, so that it can be used for other expansions. 5132 if (Tentative->getParent() == Inst->getParent() && 5133 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5134 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5135 } 5136 if (!AllDominate) 5137 break; 5138 if (BetterPos) 5139 IP = BetterPos->getIterator(); 5140 else 5141 IP = Tentative->getIterator(); 5142 5143 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5144 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5145 5146 BasicBlock *IDom; 5147 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5148 if (!Rung) return IP; 5149 Rung = Rung->getIDom(); 5150 if (!Rung) return IP; 5151 IDom = Rung->getBlock(); 5152 5153 // Don't climb into a loop though. 5154 const Loop *IDomLoop = LI.getLoopFor(IDom); 5155 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5156 if (IDomDepth <= IPLoopDepth && 5157 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5158 break; 5159 } 5160 5161 Tentative = IDom->getTerminator(); 5162 } 5163 5164 return IP; 5165 } 5166 5167 /// Determine an input position which will be dominated by the operands and 5168 /// which will dominate the result. 5169 BasicBlock::iterator 5170 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5171 const LSRFixup &LF, 5172 const LSRUse &LU, 5173 SCEVExpander &Rewriter) const { 5174 // Collect some instructions which must be dominated by the 5175 // expanding replacement. These must be dominated by any operands that 5176 // will be required in the expansion. 5177 SmallVector<Instruction *, 4> Inputs; 5178 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5179 Inputs.push_back(I); 5180 if (LU.Kind == LSRUse::ICmpZero) 5181 if (Instruction *I = 5182 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5183 Inputs.push_back(I); 5184 if (LF.PostIncLoops.count(L)) { 5185 if (LF.isUseFullyOutsideLoop(L)) 5186 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5187 else 5188 Inputs.push_back(IVIncInsertPos); 5189 } 5190 // The expansion must also be dominated by the increment positions of any 5191 // loops it for which it is using post-inc mode. 5192 for (const Loop *PIL : LF.PostIncLoops) { 5193 if (PIL == L) continue; 5194 5195 // Be dominated by the loop exit. 5196 SmallVector<BasicBlock *, 4> ExitingBlocks; 5197 PIL->getExitingBlocks(ExitingBlocks); 5198 if (!ExitingBlocks.empty()) { 5199 BasicBlock *BB = ExitingBlocks[0]; 5200 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5201 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5202 Inputs.push_back(BB->getTerminator()); 5203 } 5204 } 5205 5206 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5207 && !isa<DbgInfoIntrinsic>(LowestIP) && 5208 "Insertion point must be a normal instruction"); 5209 5210 // Then, climb up the immediate dominator tree as far as we can go while 5211 // still being dominated by the input positions. 5212 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5213 5214 // Don't insert instructions before PHI nodes. 5215 while (isa<PHINode>(IP)) ++IP; 5216 5217 // Ignore landingpad instructions. 5218 while (IP->isEHPad()) ++IP; 5219 5220 // Ignore debug intrinsics. 5221 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5222 5223 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5224 // IP consistent across expansions and allows the previously inserted 5225 // instructions to be reused by subsequent expansion. 5226 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5227 ++IP; 5228 5229 return IP; 5230 } 5231 5232 /// Emit instructions for the leading candidate expression for this LSRUse (this 5233 /// is called "expanding"). 5234 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5235 const Formula &F, BasicBlock::iterator IP, 5236 SCEVExpander &Rewriter, 5237 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5238 if (LU.RigidFormula) 5239 return LF.OperandValToReplace; 5240 5241 // Determine an input position which will be dominated by the operands and 5242 // which will dominate the result. 5243 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5244 Rewriter.setInsertPoint(&*IP); 5245 5246 // Inform the Rewriter if we have a post-increment use, so that it can 5247 // perform an advantageous expansion. 5248 Rewriter.setPostInc(LF.PostIncLoops); 5249 5250 // This is the type that the user actually needs. 5251 Type *OpTy = LF.OperandValToReplace->getType(); 5252 // This will be the type that we'll initially expand to. 5253 Type *Ty = F.getType(); 5254 if (!Ty) 5255 // No type known; just expand directly to the ultimate type. 5256 Ty = OpTy; 5257 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5258 // Expand directly to the ultimate type if it's the right size. 5259 Ty = OpTy; 5260 // This is the type to do integer arithmetic in. 5261 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5262 5263 // Build up a list of operands to add together to form the full base. 5264 SmallVector<const SCEV *, 8> Ops; 5265 5266 // Expand the BaseRegs portion. 5267 for (const SCEV *Reg : F.BaseRegs) { 5268 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5269 5270 // If we're expanding for a post-inc user, make the post-inc adjustment. 5271 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5272 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5273 } 5274 5275 // Expand the ScaledReg portion. 5276 Value *ICmpScaledV = nullptr; 5277 if (F.Scale != 0) { 5278 const SCEV *ScaledS = F.ScaledReg; 5279 5280 // If we're expanding for a post-inc user, make the post-inc adjustment. 5281 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5282 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5283 5284 if (LU.Kind == LSRUse::ICmpZero) { 5285 // Expand ScaleReg as if it was part of the base regs. 5286 if (F.Scale == 1) 5287 Ops.push_back( 5288 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5289 else { 5290 // An interesting way of "folding" with an icmp is to use a negated 5291 // scale, which we'll implement by inserting it into the other operand 5292 // of the icmp. 5293 assert(F.Scale == -1 && 5294 "The only scale supported by ICmpZero uses is -1!"); 5295 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5296 } 5297 } else { 5298 // Otherwise just expand the scaled register and an explicit scale, 5299 // which is expected to be matched as part of the address. 5300 5301 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5302 // Unless the addressing mode will not be folded. 5303 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5304 isAMCompletelyFolded(TTI, LU, F)) { 5305 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5306 Ops.clear(); 5307 Ops.push_back(SE.getUnknown(FullV)); 5308 } 5309 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5310 if (F.Scale != 1) 5311 ScaledS = 5312 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5313 Ops.push_back(ScaledS); 5314 } 5315 } 5316 5317 // Expand the GV portion. 5318 if (F.BaseGV) { 5319 // Flush the operand list to suppress SCEVExpander hoisting. 5320 if (!Ops.empty()) { 5321 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5322 Ops.clear(); 5323 Ops.push_back(SE.getUnknown(FullV)); 5324 } 5325 Ops.push_back(SE.getUnknown(F.BaseGV)); 5326 } 5327 5328 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5329 // unfolded offsets. LSR assumes they both live next to their uses. 5330 if (!Ops.empty()) { 5331 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5332 Ops.clear(); 5333 Ops.push_back(SE.getUnknown(FullV)); 5334 } 5335 5336 // Expand the immediate portion. 5337 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5338 if (Offset != 0) { 5339 if (LU.Kind == LSRUse::ICmpZero) { 5340 // The other interesting way of "folding" with an ICmpZero is to use a 5341 // negated immediate. 5342 if (!ICmpScaledV) 5343 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5344 else { 5345 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5346 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5347 } 5348 } else { 5349 // Just add the immediate values. These again are expected to be matched 5350 // as part of the address. 5351 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5352 } 5353 } 5354 5355 // Expand the unfolded offset portion. 5356 int64_t UnfoldedOffset = F.UnfoldedOffset; 5357 if (UnfoldedOffset != 0) { 5358 // Just add the immediate values. 5359 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5360 UnfoldedOffset))); 5361 } 5362 5363 // Emit instructions summing all the operands. 5364 const SCEV *FullS = Ops.empty() ? 5365 SE.getConstant(IntTy, 0) : 5366 SE.getAddExpr(Ops); 5367 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5368 5369 // We're done expanding now, so reset the rewriter. 5370 Rewriter.clearPostInc(); 5371 5372 // An ICmpZero Formula represents an ICmp which we're handling as a 5373 // comparison against zero. Now that we've expanded an expression for that 5374 // form, update the ICmp's other operand. 5375 if (LU.Kind == LSRUse::ICmpZero) { 5376 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5377 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5378 DeadInsts.emplace_back(OperandIsInstr); 5379 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5380 "a scale at the same time!"); 5381 if (F.Scale == -1) { 5382 if (ICmpScaledV->getType() != OpTy) { 5383 Instruction *Cast = 5384 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5385 OpTy, false), 5386 ICmpScaledV, OpTy, "tmp", CI); 5387 ICmpScaledV = Cast; 5388 } 5389 CI->setOperand(1, ICmpScaledV); 5390 } else { 5391 // A scale of 1 means that the scale has been expanded as part of the 5392 // base regs. 5393 assert((F.Scale == 0 || F.Scale == 1) && 5394 "ICmp does not support folding a global value and " 5395 "a scale at the same time!"); 5396 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5397 -(uint64_t)Offset); 5398 if (C->getType() != OpTy) 5399 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5400 OpTy, false), 5401 C, OpTy); 5402 5403 CI->setOperand(1, C); 5404 } 5405 } 5406 5407 return FullV; 5408 } 5409 5410 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5411 /// effectively happens in their predecessor blocks, so the expression may need 5412 /// to be expanded in multiple places. 5413 void LSRInstance::RewriteForPHI( 5414 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5415 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5416 DenseMap<BasicBlock *, Value *> Inserted; 5417 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5418 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5419 bool needUpdateFixups = false; 5420 BasicBlock *BB = PN->getIncomingBlock(i); 5421 5422 // If this is a critical edge, split the edge so that we do not insert 5423 // the code on all predecessor/successor paths. We do this unless this 5424 // is the canonical backedge for this loop, which complicates post-inc 5425 // users. 5426 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5427 !isa<IndirectBrInst>(BB->getTerminator()) && 5428 !isa<CatchSwitchInst>(BB->getTerminator())) { 5429 BasicBlock *Parent = PN->getParent(); 5430 Loop *PNLoop = LI.getLoopFor(Parent); 5431 if (!PNLoop || Parent != PNLoop->getHeader()) { 5432 // Split the critical edge. 5433 BasicBlock *NewBB = nullptr; 5434 if (!Parent->isLandingPad()) { 5435 NewBB = 5436 SplitCriticalEdge(BB, Parent, 5437 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5438 .setMergeIdenticalEdges() 5439 .setKeepOneInputPHIs()); 5440 } else { 5441 SmallVector<BasicBlock*, 2> NewBBs; 5442 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5443 NewBB = NewBBs[0]; 5444 } 5445 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5446 // phi predecessors are identical. The simple thing to do is skip 5447 // splitting in this case rather than complicate the API. 5448 if (NewBB) { 5449 // If PN is outside of the loop and BB is in the loop, we want to 5450 // move the block to be immediately before the PHI block, not 5451 // immediately after BB. 5452 if (L->contains(BB) && !L->contains(PN)) 5453 NewBB->moveBefore(PN->getParent()); 5454 5455 // Splitting the edge can reduce the number of PHI entries we have. 5456 e = PN->getNumIncomingValues(); 5457 BB = NewBB; 5458 i = PN->getBasicBlockIndex(BB); 5459 5460 needUpdateFixups = true; 5461 } 5462 } 5463 } 5464 5465 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5466 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5467 if (!Pair.second) 5468 PN->setIncomingValue(i, Pair.first->second); 5469 else { 5470 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5471 Rewriter, DeadInsts); 5472 5473 // If this is reuse-by-noop-cast, insert the noop cast. 5474 Type *OpTy = LF.OperandValToReplace->getType(); 5475 if (FullV->getType() != OpTy) 5476 FullV = 5477 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5478 OpTy, false), 5479 FullV, LF.OperandValToReplace->getType(), 5480 "tmp", BB->getTerminator()); 5481 5482 PN->setIncomingValue(i, FullV); 5483 Pair.first->second = FullV; 5484 } 5485 5486 // If LSR splits critical edge and phi node has other pending 5487 // fixup operands, we need to update those pending fixups. Otherwise 5488 // formulae will not be implemented completely and some instructions 5489 // will not be eliminated. 5490 if (needUpdateFixups) { 5491 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5492 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5493 // If fixup is supposed to rewrite some operand in the phi 5494 // that was just updated, it may be already moved to 5495 // another phi node. Such fixup requires update. 5496 if (Fixup.UserInst == PN) { 5497 // Check if the operand we try to replace still exists in the 5498 // original phi. 5499 bool foundInOriginalPHI = false; 5500 for (const auto &val : PN->incoming_values()) 5501 if (val == Fixup.OperandValToReplace) { 5502 foundInOriginalPHI = true; 5503 break; 5504 } 5505 5506 // If fixup operand found in original PHI - nothing to do. 5507 if (foundInOriginalPHI) 5508 continue; 5509 5510 // Otherwise it might be moved to another PHI and requires update. 5511 // If fixup operand not found in any of the incoming blocks that 5512 // means we have already rewritten it - nothing to do. 5513 for (const auto &Block : PN->blocks()) 5514 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5515 ++I) { 5516 PHINode *NewPN = cast<PHINode>(I); 5517 for (const auto &val : NewPN->incoming_values()) 5518 if (val == Fixup.OperandValToReplace) 5519 Fixup.UserInst = NewPN; 5520 } 5521 } 5522 } 5523 } 5524 } 5525 5526 /// Emit instructions for the leading candidate expression for this LSRUse (this 5527 /// is called "expanding"), and update the UserInst to reference the newly 5528 /// expanded value. 5529 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5530 const Formula &F, SCEVExpander &Rewriter, 5531 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5532 // First, find an insertion point that dominates UserInst. For PHI nodes, 5533 // find the nearest block which dominates all the relevant uses. 5534 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5535 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5536 } else { 5537 Value *FullV = 5538 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5539 5540 // If this is reuse-by-noop-cast, insert the noop cast. 5541 Type *OpTy = LF.OperandValToReplace->getType(); 5542 if (FullV->getType() != OpTy) { 5543 Instruction *Cast = 5544 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5545 FullV, OpTy, "tmp", LF.UserInst); 5546 FullV = Cast; 5547 } 5548 5549 // Update the user. ICmpZero is handled specially here (for now) because 5550 // Expand may have updated one of the operands of the icmp already, and 5551 // its new value may happen to be equal to LF.OperandValToReplace, in 5552 // which case doing replaceUsesOfWith leads to replacing both operands 5553 // with the same value. TODO: Reorganize this. 5554 if (LU.Kind == LSRUse::ICmpZero) 5555 LF.UserInst->setOperand(0, FullV); 5556 else 5557 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5558 } 5559 5560 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5561 DeadInsts.emplace_back(OperandIsInstr); 5562 } 5563 5564 /// Rewrite all the fixup locations with new values, following the chosen 5565 /// solution. 5566 void LSRInstance::ImplementSolution( 5567 const SmallVectorImpl<const Formula *> &Solution) { 5568 // Keep track of instructions we may have made dead, so that 5569 // we can remove them after we are done working. 5570 SmallVector<WeakTrackingVH, 16> DeadInsts; 5571 5572 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5573 false); 5574 #ifndef NDEBUG 5575 Rewriter.setDebugType(DEBUG_TYPE); 5576 #endif 5577 Rewriter.disableCanonicalMode(); 5578 Rewriter.enableLSRMode(); 5579 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5580 5581 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5582 for (const IVChain &Chain : IVChainVec) { 5583 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5584 Rewriter.setChainedPhi(PN); 5585 } 5586 5587 // Expand the new value definitions and update the users. 5588 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5589 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5590 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5591 Changed = true; 5592 } 5593 5594 for (const IVChain &Chain : IVChainVec) { 5595 GenerateIVChain(Chain, Rewriter, DeadInsts); 5596 Changed = true; 5597 } 5598 5599 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5600 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5601 ScalarEvolutionIVs.push_back(IV); 5602 5603 // Clean up after ourselves. This must be done before deleting any 5604 // instructions. 5605 Rewriter.clear(); 5606 5607 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5608 &TLI, MSSAU); 5609 5610 // In our cost analysis above, we assume that each addrec consumes exactly 5611 // one register, and arrange to have increments inserted just before the 5612 // latch to maximimize the chance this is true. However, if we reused 5613 // existing IVs, we now need to move the increments to match our 5614 // expectations. Otherwise, our cost modeling results in us having a 5615 // chosen a non-optimal result for the actual schedule. (And yes, this 5616 // scheduling decision does impact later codegen.) 5617 for (PHINode &PN : L->getHeader()->phis()) { 5618 BinaryOperator *BO = nullptr; 5619 Value *Start = nullptr, *Step = nullptr; 5620 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5621 continue; 5622 5623 switch (BO->getOpcode()) { 5624 case Instruction::Sub: 5625 if (BO->getOperand(0) != &PN) 5626 // sub is non-commutative - match handling elsewhere in LSR 5627 continue; 5628 break; 5629 case Instruction::Add: 5630 break; 5631 default: 5632 continue; 5633 }; 5634 5635 if (!isa<Constant>(Step)) 5636 // If not a constant step, might increase register pressure 5637 // (We assume constants have been canonicalized to RHS) 5638 continue; 5639 5640 if (BO->getParent() == IVIncInsertPos->getParent()) 5641 // Only bother moving across blocks. Isel can handle block local case. 5642 continue; 5643 5644 // Can we legally schedule inc at the desired point? 5645 if (!llvm::all_of(BO->uses(), 5646 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5647 continue; 5648 BO->moveBefore(IVIncInsertPos); 5649 Changed = true; 5650 } 5651 5652 5653 } 5654 5655 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5656 DominatorTree &DT, LoopInfo &LI, 5657 const TargetTransformInfo &TTI, AssumptionCache &AC, 5658 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5659 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5660 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5661 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5662 // If LoopSimplify form is not available, stay out of trouble. 5663 if (!L->isLoopSimplifyForm()) 5664 return; 5665 5666 // If there's no interesting work to be done, bail early. 5667 if (IU.empty()) return; 5668 5669 // If there's too much analysis to be done, bail early. We won't be able to 5670 // model the problem anyway. 5671 unsigned NumUsers = 0; 5672 for (const IVStrideUse &U : IU) { 5673 if (++NumUsers > MaxIVUsers) { 5674 (void)U; 5675 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5676 << "\n"); 5677 return; 5678 } 5679 // Bail out if we have a PHI on an EHPad that gets a value from a 5680 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5681 // no good place to stick any instructions. 5682 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5683 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5684 if (isa<FuncletPadInst>(FirstNonPHI) || 5685 isa<CatchSwitchInst>(FirstNonPHI)) 5686 for (BasicBlock *PredBB : PN->blocks()) 5687 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5688 return; 5689 } 5690 } 5691 5692 #ifndef NDEBUG 5693 // All dominating loops must have preheaders, or SCEVExpander may not be able 5694 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5695 // 5696 // IVUsers analysis should only create users that are dominated by simple loop 5697 // headers. Since this loop should dominate all of its users, its user list 5698 // should be empty if this loop itself is not within a simple loop nest. 5699 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5700 Rung; Rung = Rung->getIDom()) { 5701 BasicBlock *BB = Rung->getBlock(); 5702 const Loop *DomLoop = LI.getLoopFor(BB); 5703 if (DomLoop && DomLoop->getHeader() == BB) { 5704 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5705 } 5706 } 5707 #endif // DEBUG 5708 5709 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5710 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5711 dbgs() << ":\n"); 5712 5713 // First, perform some low-level loop optimizations. 5714 OptimizeShadowIV(); 5715 OptimizeLoopTermCond(); 5716 5717 // If loop preparation eliminates all interesting IV users, bail. 5718 if (IU.empty()) return; 5719 5720 // Skip nested loops until we can model them better with formulae. 5721 if (!L->isInnermost()) { 5722 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5723 return; 5724 } 5725 5726 // Start collecting data and preparing for the solver. 5727 // If number of registers is not the major cost, we cannot benefit from the 5728 // current profitable chain optimization which is based on number of 5729 // registers. 5730 // FIXME: add profitable chain optimization for other kinds major cost, for 5731 // example number of instructions. 5732 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5733 CollectChains(); 5734 CollectInterestingTypesAndFactors(); 5735 CollectFixupsAndInitialFormulae(); 5736 CollectLoopInvariantFixupsAndFormulae(); 5737 5738 if (Uses.empty()) 5739 return; 5740 5741 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5742 print_uses(dbgs())); 5743 5744 // Now use the reuse data to generate a bunch of interesting ways 5745 // to formulate the values needed for the uses. 5746 GenerateAllReuseFormulae(); 5747 5748 FilterOutUndesirableDedicatedRegisters(); 5749 NarrowSearchSpaceUsingHeuristics(); 5750 5751 SmallVector<const Formula *, 8> Solution; 5752 Solve(Solution); 5753 5754 // Release memory that is no longer needed. 5755 Factors.clear(); 5756 Types.clear(); 5757 RegUses.clear(); 5758 5759 if (Solution.empty()) 5760 return; 5761 5762 #ifndef NDEBUG 5763 // Formulae should be legal. 5764 for (const LSRUse &LU : Uses) { 5765 for (const Formula &F : LU.Formulae) 5766 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5767 F) && "Illegal formula generated!"); 5768 }; 5769 #endif 5770 5771 // Now that we've decided what we want, make it so. 5772 ImplementSolution(Solution); 5773 } 5774 5775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5776 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5777 if (Factors.empty() && Types.empty()) return; 5778 5779 OS << "LSR has identified the following interesting factors and types: "; 5780 bool First = true; 5781 5782 for (int64_t Factor : Factors) { 5783 if (!First) OS << ", "; 5784 First = false; 5785 OS << '*' << Factor; 5786 } 5787 5788 for (Type *Ty : Types) { 5789 if (!First) OS << ", "; 5790 First = false; 5791 OS << '(' << *Ty << ')'; 5792 } 5793 OS << '\n'; 5794 } 5795 5796 void LSRInstance::print_fixups(raw_ostream &OS) const { 5797 OS << "LSR is examining the following fixup sites:\n"; 5798 for (const LSRUse &LU : Uses) 5799 for (const LSRFixup &LF : LU.Fixups) { 5800 dbgs() << " "; 5801 LF.print(OS); 5802 OS << '\n'; 5803 } 5804 } 5805 5806 void LSRInstance::print_uses(raw_ostream &OS) const { 5807 OS << "LSR is examining the following uses:\n"; 5808 for (const LSRUse &LU : Uses) { 5809 dbgs() << " "; 5810 LU.print(OS); 5811 OS << '\n'; 5812 for (const Formula &F : LU.Formulae) { 5813 OS << " "; 5814 F.print(OS); 5815 OS << '\n'; 5816 } 5817 } 5818 } 5819 5820 void LSRInstance::print(raw_ostream &OS) const { 5821 print_factors_and_types(OS); 5822 print_fixups(OS); 5823 print_uses(OS); 5824 } 5825 5826 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5827 print(errs()); errs() << '\n'; 5828 } 5829 #endif 5830 5831 namespace { 5832 5833 class LoopStrengthReduce : public LoopPass { 5834 public: 5835 static char ID; // Pass ID, replacement for typeid 5836 5837 LoopStrengthReduce(); 5838 5839 private: 5840 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5841 void getAnalysisUsage(AnalysisUsage &AU) const override; 5842 }; 5843 5844 } // end anonymous namespace 5845 5846 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5847 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5848 } 5849 5850 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5851 // We split critical edges, so we change the CFG. However, we do update 5852 // many analyses if they are around. 5853 AU.addPreservedID(LoopSimplifyID); 5854 5855 AU.addRequired<LoopInfoWrapperPass>(); 5856 AU.addPreserved<LoopInfoWrapperPass>(); 5857 AU.addRequiredID(LoopSimplifyID); 5858 AU.addRequired<DominatorTreeWrapperPass>(); 5859 AU.addPreserved<DominatorTreeWrapperPass>(); 5860 AU.addRequired<ScalarEvolutionWrapperPass>(); 5861 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5862 AU.addRequired<AssumptionCacheTracker>(); 5863 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5864 // Requiring LoopSimplify a second time here prevents IVUsers from running 5865 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5866 AU.addRequiredID(LoopSimplifyID); 5867 AU.addRequired<IVUsersWrapperPass>(); 5868 AU.addPreserved<IVUsersWrapperPass>(); 5869 AU.addRequired<TargetTransformInfoWrapperPass>(); 5870 AU.addPreserved<MemorySSAWrapperPass>(); 5871 } 5872 5873 struct SCEVDbgValueBuilder { 5874 SCEVDbgValueBuilder() = default; 5875 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { 5876 Values = Base.Values; 5877 Expr = Base.Expr; 5878 } 5879 5880 /// The DIExpression as we translate the SCEV. 5881 SmallVector<uint64_t, 6> Expr; 5882 /// The location ops of the DIExpression. 5883 SmallVector<llvm::ValueAsMetadata *, 2> Values; 5884 5885 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 5886 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 5887 5888 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 5889 /// in the set of values referenced by the expression. 5890 void pushValue(llvm::Value *V) { 5891 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 5892 auto *It = 5893 std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V)); 5894 unsigned ArgIndex = 0; 5895 if (It != Values.end()) { 5896 ArgIndex = std::distance(Values.begin(), It); 5897 } else { 5898 ArgIndex = Values.size(); 5899 Values.push_back(llvm::ValueAsMetadata::get(V)); 5900 } 5901 Expr.push_back(ArgIndex); 5902 } 5903 5904 void pushValue(const SCEVUnknown *U) { 5905 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 5906 pushValue(V); 5907 } 5908 5909 bool pushConst(const SCEVConstant *C) { 5910 if (C->getAPInt().getMinSignedBits() > 64) 5911 return false; 5912 Expr.push_back(llvm::dwarf::DW_OP_consts); 5913 Expr.push_back(C->getAPInt().getSExtValue()); 5914 return true; 5915 } 5916 5917 /// Several SCEV types are sequences of the same arithmetic operator applied 5918 /// to constants and values that may be extended or truncated. 5919 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 5920 uint64_t DwarfOp) { 5921 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 5922 "Expected arithmetic SCEV type"); 5923 bool Success = true; 5924 unsigned EmitOperator = 0; 5925 for (auto &Op : CommExpr->operands()) { 5926 Success &= pushSCEV(Op); 5927 5928 if (EmitOperator >= 1) 5929 pushOperator(DwarfOp); 5930 ++EmitOperator; 5931 } 5932 return Success; 5933 } 5934 5935 // TODO: Identify and omit noop casts. 5936 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 5937 const llvm::SCEV *Inner = C->getOperand(0); 5938 const llvm::Type *Type = C->getType(); 5939 uint64_t ToWidth = Type->getIntegerBitWidth(); 5940 bool Success = pushSCEV(Inner); 5941 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 5942 IsSigned ? llvm::dwarf::DW_ATE_signed 5943 : llvm::dwarf::DW_ATE_unsigned}; 5944 for (const auto &Op : CastOps) 5945 pushOperator(Op); 5946 return Success; 5947 } 5948 5949 // TODO: MinMax - although these haven't been encountered in the test suite. 5950 bool pushSCEV(const llvm::SCEV *S) { 5951 bool Success = true; 5952 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 5953 Success &= pushConst(StartInt); 5954 5955 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5956 if (!U->getValue()) 5957 return false; 5958 pushValue(U->getValue()); 5959 5960 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 5961 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 5962 5963 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5964 Success &= pushSCEV(UDiv->getLHS()); 5965 Success &= pushSCEV(UDiv->getRHS()); 5966 pushOperator(llvm::dwarf::DW_OP_div); 5967 5968 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 5969 // Assert if a new and unknown SCEVCastEXpr type is encountered. 5970 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 5971 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 5972 "Unexpected cast type in SCEV."); 5973 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 5974 5975 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 5976 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 5977 5978 } else if (isa<SCEVAddRecExpr>(S)) { 5979 // Nested SCEVAddRecExpr are generated by nested loops and are currently 5980 // unsupported. 5981 return false; 5982 5983 } else { 5984 return false; 5985 } 5986 return Success; 5987 } 5988 5989 void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) { 5990 // Re-state assumption that this dbg.value is not variadic. Any remaining 5991 // opcodes in its expression operate on a single value already on the 5992 // expression stack. Prepend our operations, which will re-compute and 5993 // place that value on the expression stack. 5994 assert(!DI.hasArgList()); 5995 auto *NewExpr = 5996 DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true); 5997 DI.setExpression(NewExpr); 5998 5999 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values); 6000 DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef)); 6001 } 6002 6003 /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the 6004 /// location op index 0. 6005 void setShortFinalExpression(llvm::DbgValueInst &DI, 6006 const DIExpression *OldExpr) { 6007 assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) && 6008 "Expected DW_OP_llvm_arg and 0."); 6009 DI.replaceVariableLocationOp( 6010 0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0])); 6011 6012 // See setFinalExpression: prepend our opcodes on the start of any old 6013 // expression opcodes. 6014 assert(!DI.hasArgList()); 6015 llvm::SmallVector<uint64_t, 6> FinalExpr(Expr.begin() + 2, Expr.end()); 6016 auto *NewExpr = 6017 DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true); 6018 DI.setExpression(NewExpr); 6019 } 6020 6021 /// Once the IV and variable SCEV translation is complete, write it to the 6022 /// source DVI. 6023 void applyExprToDbgValue(llvm::DbgValueInst &DI, 6024 const DIExpression *OldExpr) { 6025 assert(!Expr.empty() && "Unexpected empty expression."); 6026 // Emit a simpler form if only a single location is referenced. 6027 if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && 6028 Expr[1] == 0) { 6029 setShortFinalExpression(DI, OldExpr); 6030 } else { 6031 setFinalExpression(DI, OldExpr); 6032 } 6033 } 6034 6035 /// Return true if the combination of arithmetic operator and underlying 6036 /// SCEV constant value is an identity function. 6037 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6038 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6039 if (C->getAPInt().getMinSignedBits() > 64) 6040 return false; 6041 int64_t I = C->getAPInt().getSExtValue(); 6042 switch (Op) { 6043 case llvm::dwarf::DW_OP_plus: 6044 case llvm::dwarf::DW_OP_minus: 6045 return I == 0; 6046 case llvm::dwarf::DW_OP_mul: 6047 case llvm::dwarf::DW_OP_div: 6048 return I == 1; 6049 } 6050 } 6051 return false; 6052 } 6053 6054 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6055 /// builder's expression stack. The stack should already contain an 6056 /// expression for the iteration count, so that it can be multiplied by 6057 /// the stride and added to the start. 6058 /// Components of the expression are omitted if they are an identity function. 6059 /// Chain (non-affine) SCEVs are not supported. 6060 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6061 assert(SAR.isAffine() && "Expected affine SCEV"); 6062 // TODO: Is this check needed? 6063 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6064 return false; 6065 6066 const SCEV *Start = SAR.getStart(); 6067 const SCEV *Stride = SAR.getStepRecurrence(SE); 6068 6069 // Skip pushing arithmetic noops. 6070 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6071 if (!pushSCEV(Stride)) 6072 return false; 6073 pushOperator(llvm::dwarf::DW_OP_mul); 6074 } 6075 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6076 if (!pushSCEV(Start)) 6077 return false; 6078 pushOperator(llvm::dwarf::DW_OP_plus); 6079 } 6080 return true; 6081 } 6082 6083 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6084 /// builder's expression stack. The stack should already contain an 6085 /// expression for the iteration count, so that it can be multiplied by 6086 /// the stride and added to the start. 6087 /// Components of the expression are omitted if they are an identity function. 6088 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6089 ScalarEvolution &SE) { 6090 assert(SAR.isAffine() && "Expected affine SCEV"); 6091 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6092 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6093 << SAR << '\n'); 6094 return false; 6095 } 6096 const SCEV *Start = SAR.getStart(); 6097 const SCEV *Stride = SAR.getStepRecurrence(SE); 6098 6099 // Skip pushing arithmetic noops. 6100 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6101 if (!pushSCEV(Start)) 6102 return false; 6103 pushOperator(llvm::dwarf::DW_OP_minus); 6104 } 6105 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6106 if (!pushSCEV(Stride)) 6107 return false; 6108 pushOperator(llvm::dwarf::DW_OP_div); 6109 } 6110 return true; 6111 } 6112 }; 6113 6114 struct DVIRecoveryRec { 6115 DbgValueInst *DVI; 6116 DIExpression *Expr; 6117 Metadata *LocationOp; 6118 const llvm::SCEV *SCEV; 6119 }; 6120 6121 static bool RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI, 6122 const SCEVDbgValueBuilder &IterationCount, 6123 ScalarEvolution &SE) { 6124 // LSR may add locations to previously single location-op DVIs which 6125 // are currently not supported. 6126 if (CachedDVI.DVI->getNumVariableLocationOps() != 1) 6127 return false; 6128 6129 // SCEVs for SSA values are most frquently of the form 6130 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6131 // This is because %a is a PHI node that is not the IV. However, these 6132 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6133 // so its not expected this point will be reached. 6134 if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV)) 6135 return false; 6136 6137 LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: " 6138 << *CachedDVI.SCEV << '\n'); 6139 6140 const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV); 6141 if (!Rec->isAffine()) 6142 return false; 6143 6144 // Initialise a new builder with the iteration count expression. In 6145 // combination with the value's SCEV this enables recovery. 6146 SCEVDbgValueBuilder RecoverValue(IterationCount); 6147 if (!RecoverValue.SCEVToValueExpr(*Rec, SE)) 6148 return false; 6149 6150 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n'); 6151 RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr); 6152 LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n'); 6153 return true; 6154 } 6155 6156 static bool 6157 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE, 6158 llvm::PHINode *LSRInductionVar, 6159 SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) { 6160 if (DVIToUpdate.empty()) 6161 return false; 6162 6163 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6164 assert(SCEVInductionVar && 6165 "Anticipated a SCEV for the post-LSR induction variable"); 6166 6167 bool Changed = false; 6168 if (const SCEVAddRecExpr *IVAddRec = 6169 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6170 if (!IVAddRec->isAffine()) 6171 return false; 6172 6173 SCEVDbgValueBuilder IterCountExpr; 6174 IterCountExpr.pushValue(LSRInductionVar); 6175 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6176 return false; 6177 6178 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6179 << '\n'); 6180 6181 // Needn't salvage if the location op hasn't been undef'd by LSR. 6182 for (auto &DVIRec : DVIToUpdate) { 6183 if (!DVIRec.DVI->isUndef()) 6184 continue; 6185 6186 // Some DVIs that were single location-op when cached are now multi-op, 6187 // due to LSR optimisations. However, multi-op salvaging is not yet 6188 // supported by SCEV salvaging. But, we can attempt a salvage by restoring 6189 // the pre-LSR single-op expression. 6190 if (DVIRec.DVI->hasArgList()) { 6191 if (!DVIRec.DVI->getVariableLocationOp(0)) 6192 continue; 6193 llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType(); 6194 DVIRec.DVI->setRawLocation( 6195 llvm::ValueAsMetadata::get(UndefValue::get(Ty))); 6196 DVIRec.DVI->setExpression(DVIRec.Expr); 6197 } 6198 6199 Changed |= RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE); 6200 } 6201 } 6202 return Changed; 6203 } 6204 6205 /// Identify and cache salvageable DVI locations and expressions along with the 6206 /// corresponding SCEV(s). Also ensure that the DVI is not deleted before 6207 static void 6208 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE, 6209 SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs, 6210 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6211 for (auto &B : L->getBlocks()) { 6212 for (auto &I : *B) { 6213 auto DVI = dyn_cast<DbgValueInst>(&I); 6214 if (!DVI) 6215 continue; 6216 6217 if (DVI->hasArgList()) 6218 continue; 6219 6220 if (!DVI->getVariableLocationOp(0) || 6221 !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType())) 6222 continue; 6223 6224 SalvageableDVISCEVs.push_back( 6225 {DVI, DVI->getExpression(), DVI->getRawLocation(), 6226 SE.getSCEV(DVI->getVariableLocationOp(0))}); 6227 DVIHandles.insert(DVI); 6228 } 6229 } 6230 } 6231 6232 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6233 /// any PHi from the loop header is usable, but may have less chance of 6234 /// surviving subsequent transforms. 6235 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6236 const LSRInstance &LSR) { 6237 // For now, just pick the first IV generated and inserted. Ideally pick an IV 6238 // that is unlikely to be optimised away by subsequent transforms. 6239 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6240 if (!IV) 6241 continue; 6242 6243 assert(isa<PHINode>(&*IV) && "Expected PhI node."); 6244 if (SE.isSCEVable((*IV).getType())) { 6245 PHINode *Phi = dyn_cast<PHINode>(&*IV); 6246 LLVM_DEBUG(dbgs() << "scev-salvage: IV : " << *IV 6247 << "with SCEV: " << *SE.getSCEV(Phi) << "\n"); 6248 return Phi; 6249 } 6250 } 6251 6252 for (PHINode &Phi : L.getHeader()->phis()) { 6253 if (!SE.isSCEVable(Phi.getType())) 6254 continue; 6255 6256 const llvm::SCEV *PhiSCEV = SE.getSCEV(&Phi); 6257 if (const llvm::SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(PhiSCEV)) 6258 if (!Rec->isAffine()) 6259 continue; 6260 6261 LLVM_DEBUG(dbgs() << "scev-salvage: Selected IV from loop header: " << Phi 6262 << " with SCEV: " << *PhiSCEV << "\n"); 6263 return Φ 6264 } 6265 return nullptr; 6266 } 6267 6268 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6269 DominatorTree &DT, LoopInfo &LI, 6270 const TargetTransformInfo &TTI, 6271 AssumptionCache &AC, TargetLibraryInfo &TLI, 6272 MemorySSA *MSSA) { 6273 6274 // Debug preservation - before we start removing anything identify which DVI 6275 // meet the salvageable criteria and store their DIExpression and SCEVs. 6276 SmallVector<DVIRecoveryRec, 2> SalvageableDVI; 6277 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6278 DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles); 6279 6280 bool Changed = false; 6281 std::unique_ptr<MemorySSAUpdater> MSSAU; 6282 if (MSSA) 6283 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6284 6285 // Run the main LSR transformation. 6286 const LSRInstance &Reducer = 6287 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6288 Changed |= Reducer.getChanged(); 6289 6290 // Remove any extra phis created by processing inner loops. 6291 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6292 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6293 SmallVector<WeakTrackingVH, 16> DeadInsts; 6294 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6295 SCEVExpander Rewriter(SE, DL, "lsr", false); 6296 #ifndef NDEBUG 6297 Rewriter.setDebugType(DEBUG_TYPE); 6298 #endif 6299 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6300 if (numFolded) { 6301 Changed = true; 6302 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6303 MSSAU.get()); 6304 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6305 } 6306 } 6307 6308 if (SalvageableDVI.empty()) 6309 return Changed; 6310 6311 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 6312 // expressions composed using the derived iteration count. 6313 // TODO: Allow for multiple IV references for nested AddRecSCEVs 6314 for (auto &L : LI) { 6315 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 6316 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI); 6317 else { 6318 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 6319 "could not be identified.\n"); 6320 } 6321 } 6322 6323 DVIHandles.clear(); 6324 return Changed; 6325 } 6326 6327 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 6328 if (skipLoop(L)) 6329 return false; 6330 6331 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 6332 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6333 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6334 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6335 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 6336 *L->getHeader()->getParent()); 6337 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6338 *L->getHeader()->getParent()); 6339 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6340 *L->getHeader()->getParent()); 6341 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6342 MemorySSA *MSSA = nullptr; 6343 if (MSSAAnalysis) 6344 MSSA = &MSSAAnalysis->getMSSA(); 6345 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6346 } 6347 6348 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6349 LoopStandardAnalysisResults &AR, 6350 LPMUpdater &) { 6351 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6352 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6353 return PreservedAnalyses::all(); 6354 6355 auto PA = getLoopPassPreservedAnalyses(); 6356 if (AR.MSSA) 6357 PA.preserve<MemorySSAAnalysis>(); 6358 return PA; 6359 } 6360 6361 char LoopStrengthReduce::ID = 0; 6362 6363 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6364 "Loop Strength Reduction", false, false) 6365 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6367 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6368 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6369 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6370 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6371 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6372 "Loop Strength Reduction", false, false) 6373 6374 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6375