xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/DomTreeUpdater.h"
71 #include "llvm/Analysis/IVUsers.h"
72 #include "llvm/Analysis/LoopAnalysisManager.h"
73 #include "llvm/Analysis/LoopInfo.h"
74 #include "llvm/Analysis/LoopPass.h"
75 #include "llvm/Analysis/MemorySSA.h"
76 #include "llvm/Analysis/MemorySSAUpdater.h"
77 #include "llvm/Analysis/ScalarEvolution.h"
78 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
79 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
80 #include "llvm/Analysis/TargetLibraryInfo.h"
81 #include "llvm/Analysis/TargetTransformInfo.h"
82 #include "llvm/Analysis/ValueTracking.h"
83 #include "llvm/BinaryFormat/Dwarf.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/BasicBlock.h"
86 #include "llvm/IR/Constant.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DebugInfoMetadata.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/GlobalValue.h"
92 #include "llvm/IR/IRBuilder.h"
93 #include "llvm/IR/InstrTypes.h"
94 #include "llvm/IR/Instruction.h"
95 #include "llvm/IR/Instructions.h"
96 #include "llvm/IR/IntrinsicInst.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/PassManager.h"
100 #include "llvm/IR/Type.h"
101 #include "llvm/IR/Use.h"
102 #include "llvm/IR/User.h"
103 #include "llvm/IR/Value.h"
104 #include "llvm/IR/ValueHandle.h"
105 #include "llvm/InitializePasses.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Support/Casting.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/Debug.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/Support/MathExtras.h"
113 #include "llvm/Support/raw_ostream.h"
114 #include "llvm/Transforms/Scalar.h"
115 #include "llvm/Transforms/Utils.h"
116 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
117 #include "llvm/Transforms/Utils/Local.h"
118 #include "llvm/Transforms/Utils/LoopUtils.h"
119 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
120 #include <algorithm>
121 #include <cassert>
122 #include <cstddef>
123 #include <cstdint>
124 #include <iterator>
125 #include <limits>
126 #include <map>
127 #include <numeric>
128 #include <optional>
129 #include <utility>
130 
131 using namespace llvm;
132 
133 #define DEBUG_TYPE "loop-reduce"
134 
135 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
136 /// bail out. This threshold is far beyond the number of users that LSR can
137 /// conceivably solve, so it should not affect generated code, but catches the
138 /// worst cases before LSR burns too much compile time and stack space.
139 static const unsigned MaxIVUsers = 200;
140 
141 /// Limit the size of expression that SCEV-based salvaging will attempt to
142 /// translate into a DIExpression.
143 /// Choose a maximum size such that debuginfo is not excessively increased and
144 /// the salvaging is not too expensive for the compiler.
145 static const unsigned MaxSCEVSalvageExpressionSize = 64;
146 
147 // Cleanup congruent phis after LSR phi expansion.
148 static cl::opt<bool> EnablePhiElim(
149   "enable-lsr-phielim", cl::Hidden, cl::init(true),
150   cl::desc("Enable LSR phi elimination"));
151 
152 // The flag adds instruction count to solutions cost comparison.
153 static cl::opt<bool> InsnsCost(
154   "lsr-insns-cost", cl::Hidden, cl::init(true),
155   cl::desc("Add instruction count to a LSR cost model"));
156 
157 // Flag to choose how to narrow complex lsr solution
158 static cl::opt<bool> LSRExpNarrow(
159   "lsr-exp-narrow", cl::Hidden, cl::init(false),
160   cl::desc("Narrow LSR complex solution using"
161            " expectation of registers number"));
162 
163 // Flag to narrow search space by filtering non-optimal formulae with
164 // the same ScaledReg and Scale.
165 static cl::opt<bool> FilterSameScaledReg(
166     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
167     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
168              " with the same ScaledReg and Scale"));
169 
170 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
171   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
172    cl::desc("A flag that overrides the target's preferred addressing mode."),
173    cl::values(clEnumValN(TTI::AMK_None,
174                          "none",
175                          "Don't prefer any addressing mode"),
176               clEnumValN(TTI::AMK_PreIndexed,
177                          "preindexed",
178                          "Prefer pre-indexed addressing mode"),
179               clEnumValN(TTI::AMK_PostIndexed,
180                          "postindexed",
181                          "Prefer post-indexed addressing mode")));
182 
183 static cl::opt<unsigned> ComplexityLimit(
184   "lsr-complexity-limit", cl::Hidden,
185   cl::init(std::numeric_limits<uint16_t>::max()),
186   cl::desc("LSR search space complexity limit"));
187 
188 static cl::opt<unsigned> SetupCostDepthLimit(
189     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
190     cl::desc("The limit on recursion depth for LSRs setup cost"));
191 
192 static cl::opt<cl::boolOrDefault> AllowTerminatingConditionFoldingAfterLSR(
193     "lsr-term-fold", cl::Hidden,
194     cl::desc("Attempt to replace primary IV with other IV."));
195 
196 static cl::opt<bool> AllowDropSolutionIfLessProfitable(
197     "lsr-drop-solution", cl::Hidden, cl::init(false),
198     cl::desc("Attempt to drop solution if it is less profitable"));
199 
200 STATISTIC(NumTermFold,
201           "Number of terminating condition fold recognized and performed");
202 
203 #ifndef NDEBUG
204 // Stress test IV chain generation.
205 static cl::opt<bool> StressIVChain(
206   "stress-ivchain", cl::Hidden, cl::init(false),
207   cl::desc("Stress test LSR IV chains"));
208 #else
209 static bool StressIVChain = false;
210 #endif
211 
212 namespace {
213 
214 struct MemAccessTy {
215   /// Used in situations where the accessed memory type is unknown.
216   static const unsigned UnknownAddressSpace =
217       std::numeric_limits<unsigned>::max();
218 
219   Type *MemTy = nullptr;
220   unsigned AddrSpace = UnknownAddressSpace;
221 
222   MemAccessTy() = default;
223   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
224 
225   bool operator==(MemAccessTy Other) const {
226     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
227   }
228 
229   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
230 
231   static MemAccessTy getUnknown(LLVMContext &Ctx,
232                                 unsigned AS = UnknownAddressSpace) {
233     return MemAccessTy(Type::getVoidTy(Ctx), AS);
234   }
235 
236   Type *getType() { return MemTy; }
237 };
238 
239 /// This class holds data which is used to order reuse candidates.
240 class RegSortData {
241 public:
242   /// This represents the set of LSRUse indices which reference
243   /// a particular register.
244   SmallBitVector UsedByIndices;
245 
246   void print(raw_ostream &OS) const;
247   void dump() const;
248 };
249 
250 } // end anonymous namespace
251 
252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
253 void RegSortData::print(raw_ostream &OS) const {
254   OS << "[NumUses=" << UsedByIndices.count() << ']';
255 }
256 
257 LLVM_DUMP_METHOD void RegSortData::dump() const {
258   print(errs()); errs() << '\n';
259 }
260 #endif
261 
262 namespace {
263 
264 /// Map register candidates to information about how they are used.
265 class RegUseTracker {
266   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
267 
268   RegUsesTy RegUsesMap;
269   SmallVector<const SCEV *, 16> RegSequence;
270 
271 public:
272   void countRegister(const SCEV *Reg, size_t LUIdx);
273   void dropRegister(const SCEV *Reg, size_t LUIdx);
274   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
275 
276   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
277 
278   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
279 
280   void clear();
281 
282   using iterator = SmallVectorImpl<const SCEV *>::iterator;
283   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
284 
285   iterator begin() { return RegSequence.begin(); }
286   iterator end()   { return RegSequence.end(); }
287   const_iterator begin() const { return RegSequence.begin(); }
288   const_iterator end() const   { return RegSequence.end(); }
289 };
290 
291 } // end anonymous namespace
292 
293 void
294 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
295   std::pair<RegUsesTy::iterator, bool> Pair =
296     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
297   RegSortData &RSD = Pair.first->second;
298   if (Pair.second)
299     RegSequence.push_back(Reg);
300   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
301   RSD.UsedByIndices.set(LUIdx);
302 }
303 
304 void
305 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
306   RegUsesTy::iterator It = RegUsesMap.find(Reg);
307   assert(It != RegUsesMap.end());
308   RegSortData &RSD = It->second;
309   assert(RSD.UsedByIndices.size() > LUIdx);
310   RSD.UsedByIndices.reset(LUIdx);
311 }
312 
313 void
314 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
315   assert(LUIdx <= LastLUIdx);
316 
317   // Update RegUses. The data structure is not optimized for this purpose;
318   // we must iterate through it and update each of the bit vectors.
319   for (auto &Pair : RegUsesMap) {
320     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
321     if (LUIdx < UsedByIndices.size())
322       UsedByIndices[LUIdx] =
323         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
324     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
325   }
326 }
327 
328 bool
329 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
330   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
331   if (I == RegUsesMap.end())
332     return false;
333   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
334   int i = UsedByIndices.find_first();
335   if (i == -1) return false;
336   if ((size_t)i != LUIdx) return true;
337   return UsedByIndices.find_next(i) != -1;
338 }
339 
340 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
341   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
342   assert(I != RegUsesMap.end() && "Unknown register!");
343   return I->second.UsedByIndices;
344 }
345 
346 void RegUseTracker::clear() {
347   RegUsesMap.clear();
348   RegSequence.clear();
349 }
350 
351 namespace {
352 
353 /// This class holds information that describes a formula for computing
354 /// satisfying a use. It may include broken-out immediates and scaled registers.
355 struct Formula {
356   /// Global base address used for complex addressing.
357   GlobalValue *BaseGV = nullptr;
358 
359   /// Base offset for complex addressing.
360   int64_t BaseOffset = 0;
361 
362   /// Whether any complex addressing has a base register.
363   bool HasBaseReg = false;
364 
365   /// The scale of any complex addressing.
366   int64_t Scale = 0;
367 
368   /// The list of "base" registers for this use. When this is non-empty. The
369   /// canonical representation of a formula is
370   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
371   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
372   /// 3. The reg containing recurrent expr related with currect loop in the
373   /// formula should be put in the ScaledReg.
374   /// #1 enforces that the scaled register is always used when at least two
375   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
376   /// #2 enforces that 1 * reg is reg.
377   /// #3 ensures invariant regs with respect to current loop can be combined
378   /// together in LSR codegen.
379   /// This invariant can be temporarily broken while building a formula.
380   /// However, every formula inserted into the LSRInstance must be in canonical
381   /// form.
382   SmallVector<const SCEV *, 4> BaseRegs;
383 
384   /// The 'scaled' register for this use. This should be non-null when Scale is
385   /// not zero.
386   const SCEV *ScaledReg = nullptr;
387 
388   /// An additional constant offset which added near the use. This requires a
389   /// temporary register, but the offset itself can live in an add immediate
390   /// field rather than a register.
391   int64_t UnfoldedOffset = 0;
392 
393   Formula() = default;
394 
395   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
396 
397   bool isCanonical(const Loop &L) const;
398 
399   void canonicalize(const Loop &L);
400 
401   bool unscale();
402 
403   bool hasZeroEnd() const;
404 
405   size_t getNumRegs() const;
406   Type *getType() const;
407 
408   void deleteBaseReg(const SCEV *&S);
409 
410   bool referencesReg(const SCEV *S) const;
411   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
412                                   const RegUseTracker &RegUses) const;
413 
414   void print(raw_ostream &OS) const;
415   void dump() const;
416 };
417 
418 } // end anonymous namespace
419 
420 /// Recursion helper for initialMatch.
421 static void DoInitialMatch(const SCEV *S, Loop *L,
422                            SmallVectorImpl<const SCEV *> &Good,
423                            SmallVectorImpl<const SCEV *> &Bad,
424                            ScalarEvolution &SE) {
425   // Collect expressions which properly dominate the loop header.
426   if (SE.properlyDominates(S, L->getHeader())) {
427     Good.push_back(S);
428     return;
429   }
430 
431   // Look at add operands.
432   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
433     for (const SCEV *S : Add->operands())
434       DoInitialMatch(S, L, Good, Bad, SE);
435     return;
436   }
437 
438   // Look at addrec operands.
439   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440     if (!AR->getStart()->isZero() && AR->isAffine()) {
441       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
442       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
443                                       AR->getStepRecurrence(SE),
444                                       // FIXME: AR->getNoWrapFlags()
445                                       AR->getLoop(), SCEV::FlagAnyWrap),
446                      L, Good, Bad, SE);
447       return;
448     }
449 
450   // Handle a multiplication by -1 (negation) if it didn't fold.
451   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
452     if (Mul->getOperand(0)->isAllOnesValue()) {
453       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
454       const SCEV *NewMul = SE.getMulExpr(Ops);
455 
456       SmallVector<const SCEV *, 4> MyGood;
457       SmallVector<const SCEV *, 4> MyBad;
458       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
459       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
460         SE.getEffectiveSCEVType(NewMul->getType())));
461       for (const SCEV *S : MyGood)
462         Good.push_back(SE.getMulExpr(NegOne, S));
463       for (const SCEV *S : MyBad)
464         Bad.push_back(SE.getMulExpr(NegOne, S));
465       return;
466     }
467 
468   // Ok, we can't do anything interesting. Just stuff the whole thing into a
469   // register and hope for the best.
470   Bad.push_back(S);
471 }
472 
473 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
474 /// all loop-invariant and loop-computable values in a single base register.
475 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
476   SmallVector<const SCEV *, 4> Good;
477   SmallVector<const SCEV *, 4> Bad;
478   DoInitialMatch(S, L, Good, Bad, SE);
479   if (!Good.empty()) {
480     const SCEV *Sum = SE.getAddExpr(Good);
481     if (!Sum->isZero())
482       BaseRegs.push_back(Sum);
483     HasBaseReg = true;
484   }
485   if (!Bad.empty()) {
486     const SCEV *Sum = SE.getAddExpr(Bad);
487     if (!Sum->isZero())
488       BaseRegs.push_back(Sum);
489     HasBaseReg = true;
490   }
491   canonicalize(*L);
492 }
493 
494 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
495   return SCEVExprContains(S, [&L](const SCEV *S) {
496     return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
497   });
498 }
499 
500 /// Check whether or not this formula satisfies the canonical
501 /// representation.
502 /// \see Formula::BaseRegs.
503 bool Formula::isCanonical(const Loop &L) const {
504   if (!ScaledReg)
505     return BaseRegs.size() <= 1;
506 
507   if (Scale != 1)
508     return true;
509 
510   if (Scale == 1 && BaseRegs.empty())
511     return false;
512 
513   if (containsAddRecDependentOnLoop(ScaledReg, L))
514     return true;
515 
516   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
517   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
518   // loop, we want to swap the reg in BaseRegs with ScaledReg.
519   return none_of(BaseRegs, [&L](const SCEV *S) {
520     return containsAddRecDependentOnLoop(S, L);
521   });
522 }
523 
524 /// Helper method to morph a formula into its canonical representation.
525 /// \see Formula::BaseRegs.
526 /// Every formula having more than one base register, must use the ScaledReg
527 /// field. Otherwise, we would have to do special cases everywhere in LSR
528 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
529 /// On the other hand, 1*reg should be canonicalized into reg.
530 void Formula::canonicalize(const Loop &L) {
531   if (isCanonical(L))
532     return;
533 
534   if (BaseRegs.empty()) {
535     // No base reg? Use scale reg with scale = 1 as such.
536     assert(ScaledReg && "Expected 1*reg => reg");
537     assert(Scale == 1 && "Expected 1*reg => reg");
538     BaseRegs.push_back(ScaledReg);
539     Scale = 0;
540     ScaledReg = nullptr;
541     return;
542   }
543 
544   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
545   if (!ScaledReg) {
546     ScaledReg = BaseRegs.pop_back_val();
547     Scale = 1;
548   }
549 
550   // If ScaledReg is an invariant with respect to L, find the reg from
551   // BaseRegs containing the recurrent expr related with Loop L. Swap the
552   // reg with ScaledReg.
553   if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
554     auto I = find_if(BaseRegs, [&L](const SCEV *S) {
555       return containsAddRecDependentOnLoop(S, L);
556     });
557     if (I != BaseRegs.end())
558       std::swap(ScaledReg, *I);
559   }
560   assert(isCanonical(L) && "Failed to canonicalize?");
561 }
562 
563 /// Get rid of the scale in the formula.
564 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
565 /// \return true if it was possible to get rid of the scale, false otherwise.
566 /// \note After this operation the formula may not be in the canonical form.
567 bool Formula::unscale() {
568   if (Scale != 1)
569     return false;
570   Scale = 0;
571   BaseRegs.push_back(ScaledReg);
572   ScaledReg = nullptr;
573   return true;
574 }
575 
576 bool Formula::hasZeroEnd() const {
577   if (UnfoldedOffset || BaseOffset)
578     return false;
579   if (BaseRegs.size() != 1 || ScaledReg)
580     return false;
581   return true;
582 }
583 
584 /// Return the total number of register operands used by this formula. This does
585 /// not include register uses implied by non-constant addrec strides.
586 size_t Formula::getNumRegs() const {
587   return !!ScaledReg + BaseRegs.size();
588 }
589 
590 /// Return the type of this formula, if it has one, or null otherwise. This type
591 /// is meaningless except for the bit size.
592 Type *Formula::getType() const {
593   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
594          ScaledReg ? ScaledReg->getType() :
595          BaseGV ? BaseGV->getType() :
596          nullptr;
597 }
598 
599 /// Delete the given base reg from the BaseRegs list.
600 void Formula::deleteBaseReg(const SCEV *&S) {
601   if (&S != &BaseRegs.back())
602     std::swap(S, BaseRegs.back());
603   BaseRegs.pop_back();
604 }
605 
606 /// Test if this formula references the given register.
607 bool Formula::referencesReg(const SCEV *S) const {
608   return S == ScaledReg || is_contained(BaseRegs, S);
609 }
610 
611 /// Test whether this formula uses registers which are used by uses other than
612 /// the use with the given index.
613 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
614                                          const RegUseTracker &RegUses) const {
615   if (ScaledReg)
616     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
617       return true;
618   for (const SCEV *BaseReg : BaseRegs)
619     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
620       return true;
621   return false;
622 }
623 
624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
625 void Formula::print(raw_ostream &OS) const {
626   bool First = true;
627   if (BaseGV) {
628     if (!First) OS << " + "; else First = false;
629     BaseGV->printAsOperand(OS, /*PrintType=*/false);
630   }
631   if (BaseOffset != 0) {
632     if (!First) OS << " + "; else First = false;
633     OS << BaseOffset;
634   }
635   for (const SCEV *BaseReg : BaseRegs) {
636     if (!First) OS << " + "; else First = false;
637     OS << "reg(" << *BaseReg << ')';
638   }
639   if (HasBaseReg && BaseRegs.empty()) {
640     if (!First) OS << " + "; else First = false;
641     OS << "**error: HasBaseReg**";
642   } else if (!HasBaseReg && !BaseRegs.empty()) {
643     if (!First) OS << " + "; else First = false;
644     OS << "**error: !HasBaseReg**";
645   }
646   if (Scale != 0) {
647     if (!First) OS << " + "; else First = false;
648     OS << Scale << "*reg(";
649     if (ScaledReg)
650       OS << *ScaledReg;
651     else
652       OS << "<unknown>";
653     OS << ')';
654   }
655   if (UnfoldedOffset != 0) {
656     if (!First) OS << " + ";
657     OS << "imm(" << UnfoldedOffset << ')';
658   }
659 }
660 
661 LLVM_DUMP_METHOD void Formula::dump() const {
662   print(errs()); errs() << '\n';
663 }
664 #endif
665 
666 /// Return true if the given addrec can be sign-extended without changing its
667 /// value.
668 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
669   Type *WideTy =
670     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
671   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
672 }
673 
674 /// Return true if the given add can be sign-extended without changing its
675 /// value.
676 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
677   Type *WideTy =
678     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
679   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
680 }
681 
682 /// Return true if the given mul can be sign-extended without changing its
683 /// value.
684 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
685   Type *WideTy =
686     IntegerType::get(SE.getContext(),
687                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
688   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
689 }
690 
691 /// Return an expression for LHS /s RHS, if it can be determined and if the
692 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
693 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
694 /// the multiplication may overflow, which is useful when the result will be
695 /// used in a context where the most significant bits are ignored.
696 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
697                                 ScalarEvolution &SE,
698                                 bool IgnoreSignificantBits = false) {
699   // Handle the trivial case, which works for any SCEV type.
700   if (LHS == RHS)
701     return SE.getConstant(LHS->getType(), 1);
702 
703   // Handle a few RHS special cases.
704   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
705   if (RC) {
706     const APInt &RA = RC->getAPInt();
707     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
708     // some folding.
709     if (RA.isAllOnes()) {
710       if (LHS->getType()->isPointerTy())
711         return nullptr;
712       return SE.getMulExpr(LHS, RC);
713     }
714     // Handle x /s 1 as x.
715     if (RA == 1)
716       return LHS;
717   }
718 
719   // Check for a division of a constant by a constant.
720   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
721     if (!RC)
722       return nullptr;
723     const APInt &LA = C->getAPInt();
724     const APInt &RA = RC->getAPInt();
725     if (LA.srem(RA) != 0)
726       return nullptr;
727     return SE.getConstant(LA.sdiv(RA));
728   }
729 
730   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
731   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
732     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
733       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
734                                       IgnoreSignificantBits);
735       if (!Step) return nullptr;
736       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
737                                        IgnoreSignificantBits);
738       if (!Start) return nullptr;
739       // FlagNW is independent of the start value, step direction, and is
740       // preserved with smaller magnitude steps.
741       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
742       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
743     }
744     return nullptr;
745   }
746 
747   // Distribute the sdiv over add operands, if the add doesn't overflow.
748   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
749     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
750       SmallVector<const SCEV *, 8> Ops;
751       for (const SCEV *S : Add->operands()) {
752         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
753         if (!Op) return nullptr;
754         Ops.push_back(Op);
755       }
756       return SE.getAddExpr(Ops);
757     }
758     return nullptr;
759   }
760 
761   // Check for a multiply operand that we can pull RHS out of.
762   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
763     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
764       // Handle special case C1*X*Y /s C2*X*Y.
765       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
766         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
767           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
768           const SCEVConstant *RC =
769               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
770           if (LC && RC) {
771             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
772             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
773             if (LOps == ROps)
774               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
775           }
776         }
777       }
778 
779       SmallVector<const SCEV *, 4> Ops;
780       bool Found = false;
781       for (const SCEV *S : Mul->operands()) {
782         if (!Found)
783           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
784                                            IgnoreSignificantBits)) {
785             S = Q;
786             Found = true;
787           }
788         Ops.push_back(S);
789       }
790       return Found ? SE.getMulExpr(Ops) : nullptr;
791     }
792     return nullptr;
793   }
794 
795   // Otherwise we don't know.
796   return nullptr;
797 }
798 
799 /// If S involves the addition of a constant integer value, return that integer
800 /// value, and mutate S to point to a new SCEV with that value excluded.
801 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
802   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
803     if (C->getAPInt().getSignificantBits() <= 64) {
804       S = SE.getConstant(C->getType(), 0);
805       return C->getValue()->getSExtValue();
806     }
807   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
808     SmallVector<const SCEV *, 8> NewOps(Add->operands());
809     int64_t Result = ExtractImmediate(NewOps.front(), SE);
810     if (Result != 0)
811       S = SE.getAddExpr(NewOps);
812     return Result;
813   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
814     SmallVector<const SCEV *, 8> NewOps(AR->operands());
815     int64_t Result = ExtractImmediate(NewOps.front(), SE);
816     if (Result != 0)
817       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
818                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
819                            SCEV::FlagAnyWrap);
820     return Result;
821   }
822   return 0;
823 }
824 
825 /// If S involves the addition of a GlobalValue address, return that symbol, and
826 /// mutate S to point to a new SCEV with that value excluded.
827 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
828   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
829     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
830       S = SE.getConstant(GV->getType(), 0);
831       return GV;
832     }
833   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
834     SmallVector<const SCEV *, 8> NewOps(Add->operands());
835     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
836     if (Result)
837       S = SE.getAddExpr(NewOps);
838     return Result;
839   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
840     SmallVector<const SCEV *, 8> NewOps(AR->operands());
841     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
842     if (Result)
843       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
844                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
845                            SCEV::FlagAnyWrap);
846     return Result;
847   }
848   return nullptr;
849 }
850 
851 /// Returns true if the specified instruction is using the specified value as an
852 /// address.
853 static bool isAddressUse(const TargetTransformInfo &TTI,
854                          Instruction *Inst, Value *OperandVal) {
855   bool isAddress = isa<LoadInst>(Inst);
856   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
857     if (SI->getPointerOperand() == OperandVal)
858       isAddress = true;
859   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
860     // Addressing modes can also be folded into prefetches and a variety
861     // of intrinsics.
862     switch (II->getIntrinsicID()) {
863     case Intrinsic::memset:
864     case Intrinsic::prefetch:
865     case Intrinsic::masked_load:
866       if (II->getArgOperand(0) == OperandVal)
867         isAddress = true;
868       break;
869     case Intrinsic::masked_store:
870       if (II->getArgOperand(1) == OperandVal)
871         isAddress = true;
872       break;
873     case Intrinsic::memmove:
874     case Intrinsic::memcpy:
875       if (II->getArgOperand(0) == OperandVal ||
876           II->getArgOperand(1) == OperandVal)
877         isAddress = true;
878       break;
879     default: {
880       MemIntrinsicInfo IntrInfo;
881       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
882         if (IntrInfo.PtrVal == OperandVal)
883           isAddress = true;
884       }
885     }
886     }
887   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
888     if (RMW->getPointerOperand() == OperandVal)
889       isAddress = true;
890   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
891     if (CmpX->getPointerOperand() == OperandVal)
892       isAddress = true;
893   }
894   return isAddress;
895 }
896 
897 /// Return the type of the memory being accessed.
898 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
899                                  Instruction *Inst, Value *OperandVal) {
900   MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
901 
902   // First get the type of memory being accessed.
903   if (Type *Ty = Inst->getAccessType())
904     AccessTy.MemTy = Ty;
905 
906   // Then get the pointer address space.
907   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
908     AccessTy.AddrSpace = SI->getPointerAddressSpace();
909   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
910     AccessTy.AddrSpace = LI->getPointerAddressSpace();
911   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
912     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
913   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
914     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
915   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
916     switch (II->getIntrinsicID()) {
917     case Intrinsic::prefetch:
918     case Intrinsic::memset:
919       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
920       AccessTy.MemTy = OperandVal->getType();
921       break;
922     case Intrinsic::memmove:
923     case Intrinsic::memcpy:
924       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
925       AccessTy.MemTy = OperandVal->getType();
926       break;
927     case Intrinsic::masked_load:
928       AccessTy.AddrSpace =
929           II->getArgOperand(0)->getType()->getPointerAddressSpace();
930       break;
931     case Intrinsic::masked_store:
932       AccessTy.AddrSpace =
933           II->getArgOperand(1)->getType()->getPointerAddressSpace();
934       break;
935     default: {
936       MemIntrinsicInfo IntrInfo;
937       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
938         AccessTy.AddrSpace
939           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
940       }
941 
942       break;
943     }
944     }
945   }
946 
947   return AccessTy;
948 }
949 
950 /// Return true if this AddRec is already a phi in its loop.
951 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
952   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
953     if (SE.isSCEVable(PN.getType()) &&
954         (SE.getEffectiveSCEVType(PN.getType()) ==
955          SE.getEffectiveSCEVType(AR->getType())) &&
956         SE.getSCEV(&PN) == AR)
957       return true;
958   }
959   return false;
960 }
961 
962 /// Check if expanding this expression is likely to incur significant cost. This
963 /// is tricky because SCEV doesn't track which expressions are actually computed
964 /// by the current IR.
965 ///
966 /// We currently allow expansion of IV increments that involve adds,
967 /// multiplication by constants, and AddRecs from existing phis.
968 ///
969 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
970 /// obvious multiple of the UDivExpr.
971 static bool isHighCostExpansion(const SCEV *S,
972                                 SmallPtrSetImpl<const SCEV*> &Processed,
973                                 ScalarEvolution &SE) {
974   // Zero/One operand expressions
975   switch (S->getSCEVType()) {
976   case scUnknown:
977   case scConstant:
978   case scVScale:
979     return false;
980   case scTruncate:
981     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
982                                Processed, SE);
983   case scZeroExtend:
984     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
985                                Processed, SE);
986   case scSignExtend:
987     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
988                                Processed, SE);
989   default:
990     break;
991   }
992 
993   if (!Processed.insert(S).second)
994     return false;
995 
996   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
997     for (const SCEV *S : Add->operands()) {
998       if (isHighCostExpansion(S, Processed, SE))
999         return true;
1000     }
1001     return false;
1002   }
1003 
1004   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1005     if (Mul->getNumOperands() == 2) {
1006       // Multiplication by a constant is ok
1007       if (isa<SCEVConstant>(Mul->getOperand(0)))
1008         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1009 
1010       // If we have the value of one operand, check if an existing
1011       // multiplication already generates this expression.
1012       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1013         Value *UVal = U->getValue();
1014         for (User *UR : UVal->users()) {
1015           // If U is a constant, it may be used by a ConstantExpr.
1016           Instruction *UI = dyn_cast<Instruction>(UR);
1017           if (UI && UI->getOpcode() == Instruction::Mul &&
1018               SE.isSCEVable(UI->getType())) {
1019             return SE.getSCEV(UI) == Mul;
1020           }
1021         }
1022       }
1023     }
1024   }
1025 
1026   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1027     if (isExistingPhi(AR, SE))
1028       return false;
1029   }
1030 
1031   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1032   return true;
1033 }
1034 
1035 namespace {
1036 
1037 class LSRUse;
1038 
1039 } // end anonymous namespace
1040 
1041 /// Check if the addressing mode defined by \p F is completely
1042 /// folded in \p LU at isel time.
1043 /// This includes address-mode folding and special icmp tricks.
1044 /// This function returns true if \p LU can accommodate what \p F
1045 /// defines and up to 1 base + 1 scaled + offset.
1046 /// In other words, if \p F has several base registers, this function may
1047 /// still return true. Therefore, users still need to account for
1048 /// additional base registers and/or unfolded offsets to derive an
1049 /// accurate cost model.
1050 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1051                                  const LSRUse &LU, const Formula &F);
1052 
1053 // Get the cost of the scaling factor used in F for LU.
1054 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1055                                             const LSRUse &LU, const Formula &F,
1056                                             const Loop &L);
1057 
1058 namespace {
1059 
1060 /// This class is used to measure and compare candidate formulae.
1061 class Cost {
1062   const Loop *L = nullptr;
1063   ScalarEvolution *SE = nullptr;
1064   const TargetTransformInfo *TTI = nullptr;
1065   TargetTransformInfo::LSRCost C;
1066   TTI::AddressingModeKind AMK = TTI::AMK_None;
1067 
1068 public:
1069   Cost() = delete;
1070   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1071        TTI::AddressingModeKind AMK) :
1072     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1073     C.Insns = 0;
1074     C.NumRegs = 0;
1075     C.AddRecCost = 0;
1076     C.NumIVMuls = 0;
1077     C.NumBaseAdds = 0;
1078     C.ImmCost = 0;
1079     C.SetupCost = 0;
1080     C.ScaleCost = 0;
1081   }
1082 
1083   bool isLess(const Cost &Other) const;
1084 
1085   void Lose();
1086 
1087 #ifndef NDEBUG
1088   // Once any of the metrics loses, they must all remain losers.
1089   bool isValid() {
1090     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1091              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1092       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1093            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1094   }
1095 #endif
1096 
1097   bool isLoser() {
1098     assert(isValid() && "invalid cost");
1099     return C.NumRegs == ~0u;
1100   }
1101 
1102   void RateFormula(const Formula &F,
1103                    SmallPtrSetImpl<const SCEV *> &Regs,
1104                    const DenseSet<const SCEV *> &VisitedRegs,
1105                    const LSRUse &LU,
1106                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1107 
1108   void print(raw_ostream &OS) const;
1109   void dump() const;
1110 
1111 private:
1112   void RateRegister(const Formula &F, const SCEV *Reg,
1113                     SmallPtrSetImpl<const SCEV *> &Regs);
1114   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1115                            SmallPtrSetImpl<const SCEV *> &Regs,
1116                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1117 };
1118 
1119 /// An operand value in an instruction which is to be replaced with some
1120 /// equivalent, possibly strength-reduced, replacement.
1121 struct LSRFixup {
1122   /// The instruction which will be updated.
1123   Instruction *UserInst = nullptr;
1124 
1125   /// The operand of the instruction which will be replaced. The operand may be
1126   /// used more than once; every instance will be replaced.
1127   Value *OperandValToReplace = nullptr;
1128 
1129   /// If this user is to use the post-incremented value of an induction
1130   /// variable, this set is non-empty and holds the loops associated with the
1131   /// induction variable.
1132   PostIncLoopSet PostIncLoops;
1133 
1134   /// A constant offset to be added to the LSRUse expression.  This allows
1135   /// multiple fixups to share the same LSRUse with different offsets, for
1136   /// example in an unrolled loop.
1137   int64_t Offset = 0;
1138 
1139   LSRFixup() = default;
1140 
1141   bool isUseFullyOutsideLoop(const Loop *L) const;
1142 
1143   void print(raw_ostream &OS) const;
1144   void dump() const;
1145 };
1146 
1147 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1148 /// SmallVectors of const SCEV*.
1149 struct UniquifierDenseMapInfo {
1150   static SmallVector<const SCEV *, 4> getEmptyKey() {
1151     SmallVector<const SCEV *, 4>  V;
1152     V.push_back(reinterpret_cast<const SCEV *>(-1));
1153     return V;
1154   }
1155 
1156   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1157     SmallVector<const SCEV *, 4> V;
1158     V.push_back(reinterpret_cast<const SCEV *>(-2));
1159     return V;
1160   }
1161 
1162   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1163     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1164   }
1165 
1166   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1167                       const SmallVector<const SCEV *, 4> &RHS) {
1168     return LHS == RHS;
1169   }
1170 };
1171 
1172 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1173 /// as uses invented by LSR itself. It includes information about what kinds of
1174 /// things can be folded into the user, information about the user itself, and
1175 /// information about how the use may be satisfied.  TODO: Represent multiple
1176 /// users of the same expression in common?
1177 class LSRUse {
1178   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1179 
1180 public:
1181   /// An enum for a kind of use, indicating what types of scaled and immediate
1182   /// operands it might support.
1183   enum KindType {
1184     Basic,   ///< A normal use, with no folding.
1185     Special, ///< A special case of basic, allowing -1 scales.
1186     Address, ///< An address use; folding according to TargetLowering
1187     ICmpZero ///< An equality icmp with both operands folded into one.
1188     // TODO: Add a generic icmp too?
1189   };
1190 
1191   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1192 
1193   KindType Kind;
1194   MemAccessTy AccessTy;
1195 
1196   /// The list of operands which are to be replaced.
1197   SmallVector<LSRFixup, 8> Fixups;
1198 
1199   /// Keep track of the min and max offsets of the fixups.
1200   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1201   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1202 
1203   /// This records whether all of the fixups using this LSRUse are outside of
1204   /// the loop, in which case some special-case heuristics may be used.
1205   bool AllFixupsOutsideLoop = true;
1206 
1207   /// RigidFormula is set to true to guarantee that this use will be associated
1208   /// with a single formula--the one that initially matched. Some SCEV
1209   /// expressions cannot be expanded. This allows LSR to consider the registers
1210   /// used by those expressions without the need to expand them later after
1211   /// changing the formula.
1212   bool RigidFormula = false;
1213 
1214   /// This records the widest use type for any fixup using this
1215   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1216   /// fixup widths to be equivalent, because the narrower one may be relying on
1217   /// the implicit truncation to truncate away bogus bits.
1218   Type *WidestFixupType = nullptr;
1219 
1220   /// A list of ways to build a value that can satisfy this user.  After the
1221   /// list is populated, one of these is selected heuristically and used to
1222   /// formulate a replacement for OperandValToReplace in UserInst.
1223   SmallVector<Formula, 12> Formulae;
1224 
1225   /// The set of register candidates used by all formulae in this LSRUse.
1226   SmallPtrSet<const SCEV *, 4> Regs;
1227 
1228   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1229 
1230   LSRFixup &getNewFixup() {
1231     Fixups.push_back(LSRFixup());
1232     return Fixups.back();
1233   }
1234 
1235   void pushFixup(LSRFixup &f) {
1236     Fixups.push_back(f);
1237     if (f.Offset > MaxOffset)
1238       MaxOffset = f.Offset;
1239     if (f.Offset < MinOffset)
1240       MinOffset = f.Offset;
1241   }
1242 
1243   bool HasFormulaWithSameRegs(const Formula &F) const;
1244   float getNotSelectedProbability(const SCEV *Reg) const;
1245   bool InsertFormula(const Formula &F, const Loop &L);
1246   void DeleteFormula(Formula &F);
1247   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1248 
1249   void print(raw_ostream &OS) const;
1250   void dump() const;
1251 };
1252 
1253 } // end anonymous namespace
1254 
1255 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1256                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1257                                  GlobalValue *BaseGV, int64_t BaseOffset,
1258                                  bool HasBaseReg, int64_t Scale,
1259                                  Instruction *Fixup = nullptr);
1260 
1261 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1262   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1263     return 1;
1264   if (Depth == 0)
1265     return 0;
1266   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1267     return getSetupCost(S->getStart(), Depth - 1);
1268   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1269     return getSetupCost(S->getOperand(), Depth - 1);
1270   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1271     return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1272                            [&](unsigned i, const SCEV *Reg) {
1273                              return i + getSetupCost(Reg, Depth - 1);
1274                            });
1275   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1276     return getSetupCost(S->getLHS(), Depth - 1) +
1277            getSetupCost(S->getRHS(), Depth - 1);
1278   return 0;
1279 }
1280 
1281 /// Tally up interesting quantities from the given register.
1282 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1283                         SmallPtrSetImpl<const SCEV *> &Regs) {
1284   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1285     // If this is an addrec for another loop, it should be an invariant
1286     // with respect to L since L is the innermost loop (at least
1287     // for now LSR only handles innermost loops).
1288     if (AR->getLoop() != L) {
1289       // If the AddRec exists, consider it's register free and leave it alone.
1290       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1291         return;
1292 
1293       // It is bad to allow LSR for current loop to add induction variables
1294       // for its sibling loops.
1295       if (!AR->getLoop()->contains(L)) {
1296         Lose();
1297         return;
1298       }
1299 
1300       // Otherwise, it will be an invariant with respect to Loop L.
1301       ++C.NumRegs;
1302       return;
1303     }
1304 
1305     unsigned LoopCost = 1;
1306     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1307         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1308 
1309       // If the step size matches the base offset, we could use pre-indexed
1310       // addressing.
1311       if (AMK == TTI::AMK_PreIndexed) {
1312         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1313           if (Step->getAPInt() == F.BaseOffset)
1314             LoopCost = 0;
1315       } else if (AMK == TTI::AMK_PostIndexed) {
1316         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1317         if (isa<SCEVConstant>(LoopStep)) {
1318           const SCEV *LoopStart = AR->getStart();
1319           if (!isa<SCEVConstant>(LoopStart) &&
1320               SE->isLoopInvariant(LoopStart, L))
1321             LoopCost = 0;
1322         }
1323       }
1324     }
1325     C.AddRecCost += LoopCost;
1326 
1327     // Add the step value register, if it needs one.
1328     // TODO: The non-affine case isn't precisely modeled here.
1329     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1330       if (!Regs.count(AR->getOperand(1))) {
1331         RateRegister(F, AR->getOperand(1), Regs);
1332         if (isLoser())
1333           return;
1334       }
1335     }
1336   }
1337   ++C.NumRegs;
1338 
1339   // Rough heuristic; favor registers which don't require extra setup
1340   // instructions in the preheader.
1341   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1342   // Ensure we don't, even with the recusion limit, produce invalid costs.
1343   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1344 
1345   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1346                SE->hasComputableLoopEvolution(Reg, L);
1347 }
1348 
1349 /// Record this register in the set. If we haven't seen it before, rate
1350 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1351 /// one of those regs an instant loser.
1352 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1353                                SmallPtrSetImpl<const SCEV *> &Regs,
1354                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1355   if (LoserRegs && LoserRegs->count(Reg)) {
1356     Lose();
1357     return;
1358   }
1359   if (Regs.insert(Reg).second) {
1360     RateRegister(F, Reg, Regs);
1361     if (LoserRegs && isLoser())
1362       LoserRegs->insert(Reg);
1363   }
1364 }
1365 
1366 void Cost::RateFormula(const Formula &F,
1367                        SmallPtrSetImpl<const SCEV *> &Regs,
1368                        const DenseSet<const SCEV *> &VisitedRegs,
1369                        const LSRUse &LU,
1370                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1371   if (isLoser())
1372     return;
1373   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1374   // Tally up the registers.
1375   unsigned PrevAddRecCost = C.AddRecCost;
1376   unsigned PrevNumRegs = C.NumRegs;
1377   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1378   if (const SCEV *ScaledReg = F.ScaledReg) {
1379     if (VisitedRegs.count(ScaledReg)) {
1380       Lose();
1381       return;
1382     }
1383     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1384     if (isLoser())
1385       return;
1386   }
1387   for (const SCEV *BaseReg : F.BaseRegs) {
1388     if (VisitedRegs.count(BaseReg)) {
1389       Lose();
1390       return;
1391     }
1392     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1393     if (isLoser())
1394       return;
1395   }
1396 
1397   // Determine how many (unfolded) adds we'll need inside the loop.
1398   size_t NumBaseParts = F.getNumRegs();
1399   if (NumBaseParts > 1)
1400     // Do not count the base and a possible second register if the target
1401     // allows to fold 2 registers.
1402     C.NumBaseAdds +=
1403         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1404   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1405 
1406   // Accumulate non-free scaling amounts.
1407   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1408 
1409   // Tally up the non-zero immediates.
1410   for (const LSRFixup &Fixup : LU.Fixups) {
1411     int64_t O = Fixup.Offset;
1412     int64_t Offset = (uint64_t)O + F.BaseOffset;
1413     if (F.BaseGV)
1414       C.ImmCost += 64; // Handle symbolic values conservatively.
1415                      // TODO: This should probably be the pointer size.
1416     else if (Offset != 0)
1417       C.ImmCost += APInt(64, Offset, true).getSignificantBits();
1418 
1419     // Check with target if this offset with this instruction is
1420     // specifically not supported.
1421     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1422         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1423                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1424       C.NumBaseAdds++;
1425   }
1426 
1427   // If we don't count instruction cost exit here.
1428   if (!InsnsCost) {
1429     assert(isValid() && "invalid cost");
1430     return;
1431   }
1432 
1433   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1434   // additional instruction (at least fill).
1435   // TODO: Need distinguish register class?
1436   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1437                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1438   if (C.NumRegs > TTIRegNum) {
1439     // Cost already exceeded TTIRegNum, then only newly added register can add
1440     // new instructions.
1441     if (PrevNumRegs > TTIRegNum)
1442       C.Insns += (C.NumRegs - PrevNumRegs);
1443     else
1444       C.Insns += (C.NumRegs - TTIRegNum);
1445   }
1446 
1447   // If ICmpZero formula ends with not 0, it could not be replaced by
1448   // just add or sub. We'll need to compare final result of AddRec.
1449   // That means we'll need an additional instruction. But if the target can
1450   // macro-fuse a compare with a branch, don't count this extra instruction.
1451   // For -10 + {0, +, 1}:
1452   // i = i + 1;
1453   // cmp i, 10
1454   //
1455   // For {-10, +, 1}:
1456   // i = i + 1;
1457   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1458       !TTI->canMacroFuseCmp())
1459     C.Insns++;
1460   // Each new AddRec adds 1 instruction to calculation.
1461   C.Insns += (C.AddRecCost - PrevAddRecCost);
1462 
1463   // BaseAdds adds instructions for unfolded registers.
1464   if (LU.Kind != LSRUse::ICmpZero)
1465     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1466   assert(isValid() && "invalid cost");
1467 }
1468 
1469 /// Set this cost to a losing value.
1470 void Cost::Lose() {
1471   C.Insns = std::numeric_limits<unsigned>::max();
1472   C.NumRegs = std::numeric_limits<unsigned>::max();
1473   C.AddRecCost = std::numeric_limits<unsigned>::max();
1474   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1475   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1476   C.ImmCost = std::numeric_limits<unsigned>::max();
1477   C.SetupCost = std::numeric_limits<unsigned>::max();
1478   C.ScaleCost = std::numeric_limits<unsigned>::max();
1479 }
1480 
1481 /// Choose the lower cost.
1482 bool Cost::isLess(const Cost &Other) const {
1483   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1484       C.Insns != Other.C.Insns)
1485     return C.Insns < Other.C.Insns;
1486   return TTI->isLSRCostLess(C, Other.C);
1487 }
1488 
1489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1490 void Cost::print(raw_ostream &OS) const {
1491   if (InsnsCost)
1492     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1493   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1494   if (C.AddRecCost != 0)
1495     OS << ", with addrec cost " << C.AddRecCost;
1496   if (C.NumIVMuls != 0)
1497     OS << ", plus " << C.NumIVMuls << " IV mul"
1498        << (C.NumIVMuls == 1 ? "" : "s");
1499   if (C.NumBaseAdds != 0)
1500     OS << ", plus " << C.NumBaseAdds << " base add"
1501        << (C.NumBaseAdds == 1 ? "" : "s");
1502   if (C.ScaleCost != 0)
1503     OS << ", plus " << C.ScaleCost << " scale cost";
1504   if (C.ImmCost != 0)
1505     OS << ", plus " << C.ImmCost << " imm cost";
1506   if (C.SetupCost != 0)
1507     OS << ", plus " << C.SetupCost << " setup cost";
1508 }
1509 
1510 LLVM_DUMP_METHOD void Cost::dump() const {
1511   print(errs()); errs() << '\n';
1512 }
1513 #endif
1514 
1515 /// Test whether this fixup always uses its value outside of the given loop.
1516 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1517   // PHI nodes use their value in their incoming blocks.
1518   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1519     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1520       if (PN->getIncomingValue(i) == OperandValToReplace &&
1521           L->contains(PN->getIncomingBlock(i)))
1522         return false;
1523     return true;
1524   }
1525 
1526   return !L->contains(UserInst);
1527 }
1528 
1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1530 void LSRFixup::print(raw_ostream &OS) const {
1531   OS << "UserInst=";
1532   // Store is common and interesting enough to be worth special-casing.
1533   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1534     OS << "store ";
1535     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1536   } else if (UserInst->getType()->isVoidTy())
1537     OS << UserInst->getOpcodeName();
1538   else
1539     UserInst->printAsOperand(OS, /*PrintType=*/false);
1540 
1541   OS << ", OperandValToReplace=";
1542   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1543 
1544   for (const Loop *PIL : PostIncLoops) {
1545     OS << ", PostIncLoop=";
1546     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1547   }
1548 
1549   if (Offset != 0)
1550     OS << ", Offset=" << Offset;
1551 }
1552 
1553 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1554   print(errs()); errs() << '\n';
1555 }
1556 #endif
1557 
1558 /// Test whether this use as a formula which has the same registers as the given
1559 /// formula.
1560 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1561   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1562   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1563   // Unstable sort by host order ok, because this is only used for uniquifying.
1564   llvm::sort(Key);
1565   return Uniquifier.count(Key);
1566 }
1567 
1568 /// The function returns a probability of selecting formula without Reg.
1569 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1570   unsigned FNum = 0;
1571   for (const Formula &F : Formulae)
1572     if (F.referencesReg(Reg))
1573       FNum++;
1574   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1575 }
1576 
1577 /// If the given formula has not yet been inserted, add it to the list, and
1578 /// return true. Return false otherwise.  The formula must be in canonical form.
1579 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1580   assert(F.isCanonical(L) && "Invalid canonical representation");
1581 
1582   if (!Formulae.empty() && RigidFormula)
1583     return false;
1584 
1585   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1586   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1587   // Unstable sort by host order ok, because this is only used for uniquifying.
1588   llvm::sort(Key);
1589 
1590   if (!Uniquifier.insert(Key).second)
1591     return false;
1592 
1593   // Using a register to hold the value of 0 is not profitable.
1594   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1595          "Zero allocated in a scaled register!");
1596 #ifndef NDEBUG
1597   for (const SCEV *BaseReg : F.BaseRegs)
1598     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1599 #endif
1600 
1601   // Add the formula to the list.
1602   Formulae.push_back(F);
1603 
1604   // Record registers now being used by this use.
1605   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1606   if (F.ScaledReg)
1607     Regs.insert(F.ScaledReg);
1608 
1609   return true;
1610 }
1611 
1612 /// Remove the given formula from this use's list.
1613 void LSRUse::DeleteFormula(Formula &F) {
1614   if (&F != &Formulae.back())
1615     std::swap(F, Formulae.back());
1616   Formulae.pop_back();
1617 }
1618 
1619 /// Recompute the Regs field, and update RegUses.
1620 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1621   // Now that we've filtered out some formulae, recompute the Regs set.
1622   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1623   Regs.clear();
1624   for (const Formula &F : Formulae) {
1625     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1626     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1627   }
1628 
1629   // Update the RegTracker.
1630   for (const SCEV *S : OldRegs)
1631     if (!Regs.count(S))
1632       RegUses.dropRegister(S, LUIdx);
1633 }
1634 
1635 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1636 void LSRUse::print(raw_ostream &OS) const {
1637   OS << "LSR Use: Kind=";
1638   switch (Kind) {
1639   case Basic:    OS << "Basic"; break;
1640   case Special:  OS << "Special"; break;
1641   case ICmpZero: OS << "ICmpZero"; break;
1642   case Address:
1643     OS << "Address of ";
1644     if (AccessTy.MemTy->isPointerTy())
1645       OS << "pointer"; // the full pointer type could be really verbose
1646     else {
1647       OS << *AccessTy.MemTy;
1648     }
1649 
1650     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1651   }
1652 
1653   OS << ", Offsets={";
1654   bool NeedComma = false;
1655   for (const LSRFixup &Fixup : Fixups) {
1656     if (NeedComma) OS << ',';
1657     OS << Fixup.Offset;
1658     NeedComma = true;
1659   }
1660   OS << '}';
1661 
1662   if (AllFixupsOutsideLoop)
1663     OS << ", all-fixups-outside-loop";
1664 
1665   if (WidestFixupType)
1666     OS << ", widest fixup type: " << *WidestFixupType;
1667 }
1668 
1669 LLVM_DUMP_METHOD void LSRUse::dump() const {
1670   print(errs()); errs() << '\n';
1671 }
1672 #endif
1673 
1674 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1675                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1676                                  GlobalValue *BaseGV, int64_t BaseOffset,
1677                                  bool HasBaseReg, int64_t Scale,
1678                                  Instruction *Fixup/*= nullptr*/) {
1679   switch (Kind) {
1680   case LSRUse::Address:
1681     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1682                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1683 
1684   case LSRUse::ICmpZero:
1685     // There's not even a target hook for querying whether it would be legal to
1686     // fold a GV into an ICmp.
1687     if (BaseGV)
1688       return false;
1689 
1690     // ICmp only has two operands; don't allow more than two non-trivial parts.
1691     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1692       return false;
1693 
1694     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1695     // putting the scaled register in the other operand of the icmp.
1696     if (Scale != 0 && Scale != -1)
1697       return false;
1698 
1699     // If we have low-level target information, ask the target if it can fold an
1700     // integer immediate on an icmp.
1701     if (BaseOffset != 0) {
1702       // We have one of:
1703       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1704       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1705       // Offs is the ICmp immediate.
1706       if (Scale == 0)
1707         // The cast does the right thing with
1708         // std::numeric_limits<int64_t>::min().
1709         BaseOffset = -(uint64_t)BaseOffset;
1710       return TTI.isLegalICmpImmediate(BaseOffset);
1711     }
1712 
1713     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1714     return true;
1715 
1716   case LSRUse::Basic:
1717     // Only handle single-register values.
1718     return !BaseGV && Scale == 0 && BaseOffset == 0;
1719 
1720   case LSRUse::Special:
1721     // Special case Basic to handle -1 scales.
1722     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1723   }
1724 
1725   llvm_unreachable("Invalid LSRUse Kind!");
1726 }
1727 
1728 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1729                                  int64_t MinOffset, int64_t MaxOffset,
1730                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1731                                  GlobalValue *BaseGV, int64_t BaseOffset,
1732                                  bool HasBaseReg, int64_t Scale) {
1733   // Check for overflow.
1734   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1735       (MinOffset > 0))
1736     return false;
1737   MinOffset = (uint64_t)BaseOffset + MinOffset;
1738   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1739       (MaxOffset > 0))
1740     return false;
1741   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1742 
1743   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1744                               HasBaseReg, Scale) &&
1745          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1746                               HasBaseReg, Scale);
1747 }
1748 
1749 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1750                                  int64_t MinOffset, int64_t MaxOffset,
1751                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1752                                  const Formula &F, const Loop &L) {
1753   // For the purpose of isAMCompletelyFolded either having a canonical formula
1754   // or a scale not equal to zero is correct.
1755   // Problems may arise from non canonical formulae having a scale == 0.
1756   // Strictly speaking it would best to just rely on canonical formulae.
1757   // However, when we generate the scaled formulae, we first check that the
1758   // scaling factor is profitable before computing the actual ScaledReg for
1759   // compile time sake.
1760   assert((F.isCanonical(L) || F.Scale != 0));
1761   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1762                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1763 }
1764 
1765 /// Test whether we know how to expand the current formula.
1766 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1767                        int64_t MaxOffset, LSRUse::KindType Kind,
1768                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1769                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1770   // We know how to expand completely foldable formulae.
1771   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1772                               BaseOffset, HasBaseReg, Scale) ||
1773          // Or formulae that use a base register produced by a sum of base
1774          // registers.
1775          (Scale == 1 &&
1776           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1777                                BaseGV, BaseOffset, true, 0));
1778 }
1779 
1780 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1781                        int64_t MaxOffset, LSRUse::KindType Kind,
1782                        MemAccessTy AccessTy, const Formula &F) {
1783   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1784                     F.BaseOffset, F.HasBaseReg, F.Scale);
1785 }
1786 
1787 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1788                                  const LSRUse &LU, const Formula &F) {
1789   // Target may want to look at the user instructions.
1790   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1791     for (const LSRFixup &Fixup : LU.Fixups)
1792       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1793                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1794                                 F.Scale, Fixup.UserInst))
1795         return false;
1796     return true;
1797   }
1798 
1799   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1801                               F.Scale);
1802 }
1803 
1804 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1805                                             const LSRUse &LU, const Formula &F,
1806                                             const Loop &L) {
1807   if (!F.Scale)
1808     return 0;
1809 
1810   // If the use is not completely folded in that instruction, we will have to
1811   // pay an extra cost only for scale != 1.
1812   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1813                             LU.AccessTy, F, L))
1814     return F.Scale != 1;
1815 
1816   switch (LU.Kind) {
1817   case LSRUse::Address: {
1818     // Check the scaling factor cost with both the min and max offsets.
1819     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1820         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1821         F.Scale, LU.AccessTy.AddrSpace);
1822     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1823         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1824         F.Scale, LU.AccessTy.AddrSpace);
1825 
1826     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1827            "Legal addressing mode has an illegal cost!");
1828     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1829   }
1830   case LSRUse::ICmpZero:
1831   case LSRUse::Basic:
1832   case LSRUse::Special:
1833     // The use is completely folded, i.e., everything is folded into the
1834     // instruction.
1835     return 0;
1836   }
1837 
1838   llvm_unreachable("Invalid LSRUse Kind!");
1839 }
1840 
1841 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1842                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1843                              GlobalValue *BaseGV, int64_t BaseOffset,
1844                              bool HasBaseReg) {
1845   // Fast-path: zero is always foldable.
1846   if (BaseOffset == 0 && !BaseGV) return true;
1847 
1848   // Conservatively, create an address with an immediate and a
1849   // base and a scale.
1850   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1851 
1852   // Canonicalize a scale of 1 to a base register if the formula doesn't
1853   // already have a base register.
1854   if (!HasBaseReg && Scale == 1) {
1855     Scale = 0;
1856     HasBaseReg = true;
1857   }
1858 
1859   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1860                               HasBaseReg, Scale);
1861 }
1862 
1863 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1864                              ScalarEvolution &SE, int64_t MinOffset,
1865                              int64_t MaxOffset, LSRUse::KindType Kind,
1866                              MemAccessTy AccessTy, const SCEV *S,
1867                              bool HasBaseReg) {
1868   // Fast-path: zero is always foldable.
1869   if (S->isZero()) return true;
1870 
1871   // Conservatively, create an address with an immediate and a
1872   // base and a scale.
1873   int64_t BaseOffset = ExtractImmediate(S, SE);
1874   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1875 
1876   // If there's anything else involved, it's not foldable.
1877   if (!S->isZero()) return false;
1878 
1879   // Fast-path: zero is always foldable.
1880   if (BaseOffset == 0 && !BaseGV) return true;
1881 
1882   // Conservatively, create an address with an immediate and a
1883   // base and a scale.
1884   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1885 
1886   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1887                               BaseOffset, HasBaseReg, Scale);
1888 }
1889 
1890 namespace {
1891 
1892 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1893 /// an expression that computes the IV it uses from the IV used by the previous
1894 /// link in the Chain.
1895 ///
1896 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1897 /// original IVOperand. The head of the chain's IVOperand is only valid during
1898 /// chain collection, before LSR replaces IV users. During chain generation,
1899 /// IncExpr can be used to find the new IVOperand that computes the same
1900 /// expression.
1901 struct IVInc {
1902   Instruction *UserInst;
1903   Value* IVOperand;
1904   const SCEV *IncExpr;
1905 
1906   IVInc(Instruction *U, Value *O, const SCEV *E)
1907       : UserInst(U), IVOperand(O), IncExpr(E) {}
1908 };
1909 
1910 // The list of IV increments in program order.  We typically add the head of a
1911 // chain without finding subsequent links.
1912 struct IVChain {
1913   SmallVector<IVInc, 1> Incs;
1914   const SCEV *ExprBase = nullptr;
1915 
1916   IVChain() = default;
1917   IVChain(const IVInc &Head, const SCEV *Base)
1918       : Incs(1, Head), ExprBase(Base) {}
1919 
1920   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1921 
1922   // Return the first increment in the chain.
1923   const_iterator begin() const {
1924     assert(!Incs.empty());
1925     return std::next(Incs.begin());
1926   }
1927   const_iterator end() const {
1928     return Incs.end();
1929   }
1930 
1931   // Returns true if this chain contains any increments.
1932   bool hasIncs() const { return Incs.size() >= 2; }
1933 
1934   // Add an IVInc to the end of this chain.
1935   void add(const IVInc &X) { Incs.push_back(X); }
1936 
1937   // Returns the last UserInst in the chain.
1938   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1939 
1940   // Returns true if IncExpr can be profitably added to this chain.
1941   bool isProfitableIncrement(const SCEV *OperExpr,
1942                              const SCEV *IncExpr,
1943                              ScalarEvolution&);
1944 };
1945 
1946 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1947 /// between FarUsers that definitely cross IV increments and NearUsers that may
1948 /// be used between IV increments.
1949 struct ChainUsers {
1950   SmallPtrSet<Instruction*, 4> FarUsers;
1951   SmallPtrSet<Instruction*, 4> NearUsers;
1952 };
1953 
1954 /// This class holds state for the main loop strength reduction logic.
1955 class LSRInstance {
1956   IVUsers &IU;
1957   ScalarEvolution &SE;
1958   DominatorTree &DT;
1959   LoopInfo &LI;
1960   AssumptionCache &AC;
1961   TargetLibraryInfo &TLI;
1962   const TargetTransformInfo &TTI;
1963   Loop *const L;
1964   MemorySSAUpdater *MSSAU;
1965   TTI::AddressingModeKind AMK;
1966   mutable SCEVExpander Rewriter;
1967   bool Changed = false;
1968 
1969   /// This is the insert position that the current loop's induction variable
1970   /// increment should be placed. In simple loops, this is the latch block's
1971   /// terminator. But in more complicated cases, this is a position which will
1972   /// dominate all the in-loop post-increment users.
1973   Instruction *IVIncInsertPos = nullptr;
1974 
1975   /// Interesting factors between use strides.
1976   ///
1977   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1978   /// default, a SmallDenseSet, because we need to use the full range of
1979   /// int64_ts, and there's currently no good way of doing that with
1980   /// SmallDenseSet.
1981   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1982 
1983   /// The cost of the current SCEV, the best solution by LSR will be dropped if
1984   /// the solution is not profitable.
1985   Cost BaselineCost;
1986 
1987   /// Interesting use types, to facilitate truncation reuse.
1988   SmallSetVector<Type *, 4> Types;
1989 
1990   /// The list of interesting uses.
1991   mutable SmallVector<LSRUse, 16> Uses;
1992 
1993   /// Track which uses use which register candidates.
1994   RegUseTracker RegUses;
1995 
1996   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1997   // have more than a few IV increment chains in a loop. Missing a Chain falls
1998   // back to normal LSR behavior for those uses.
1999   static const unsigned MaxChains = 8;
2000 
2001   /// IV users can form a chain of IV increments.
2002   SmallVector<IVChain, MaxChains> IVChainVec;
2003 
2004   /// IV users that belong to profitable IVChains.
2005   SmallPtrSet<Use*, MaxChains> IVIncSet;
2006 
2007   /// Induction variables that were generated and inserted by the SCEV Expander.
2008   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2009 
2010   void OptimizeShadowIV();
2011   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2012   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2013   void OptimizeLoopTermCond();
2014 
2015   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2016                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
2017   void FinalizeChain(IVChain &Chain);
2018   void CollectChains();
2019   void GenerateIVChain(const IVChain &Chain,
2020                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2021 
2022   void CollectInterestingTypesAndFactors();
2023   void CollectFixupsAndInitialFormulae();
2024 
2025   // Support for sharing of LSRUses between LSRFixups.
2026   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2027   UseMapTy UseMap;
2028 
2029   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2030                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2031 
2032   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2033                                     MemAccessTy AccessTy);
2034 
2035   void DeleteUse(LSRUse &LU, size_t LUIdx);
2036 
2037   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2038 
2039   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2040   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2041   void CountRegisters(const Formula &F, size_t LUIdx);
2042   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2043 
2044   void CollectLoopInvariantFixupsAndFormulae();
2045 
2046   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2047                               unsigned Depth = 0);
2048 
2049   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2050                                   const Formula &Base, unsigned Depth,
2051                                   size_t Idx, bool IsScaledReg = false);
2052   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2053   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2054                                    const Formula &Base, size_t Idx,
2055                                    bool IsScaledReg = false);
2056   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2057   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2058                                    const Formula &Base,
2059                                    const SmallVectorImpl<int64_t> &Worklist,
2060                                    size_t Idx, bool IsScaledReg = false);
2061   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2062   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2063   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2064   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2065   void GenerateCrossUseConstantOffsets();
2066   void GenerateAllReuseFormulae();
2067 
2068   void FilterOutUndesirableDedicatedRegisters();
2069 
2070   size_t EstimateSearchSpaceComplexity() const;
2071   void NarrowSearchSpaceByDetectingSupersets();
2072   void NarrowSearchSpaceByCollapsingUnrolledCode();
2073   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2074   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2075   void NarrowSearchSpaceByFilterPostInc();
2076   void NarrowSearchSpaceByDeletingCostlyFormulas();
2077   void NarrowSearchSpaceByPickingWinnerRegs();
2078   void NarrowSearchSpaceUsingHeuristics();
2079 
2080   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2081                     Cost &SolutionCost,
2082                     SmallVectorImpl<const Formula *> &Workspace,
2083                     const Cost &CurCost,
2084                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2085                     DenseSet<const SCEV *> &VisitedRegs) const;
2086   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2087 
2088   BasicBlock::iterator
2089   HoistInsertPosition(BasicBlock::iterator IP,
2090                       const SmallVectorImpl<Instruction *> &Inputs) const;
2091   BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2092                                                      const LSRFixup &LF,
2093                                                      const LSRUse &LU) const;
2094 
2095   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2096                 BasicBlock::iterator IP,
2097                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2098   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2099                      const Formula &F,
2100                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2101   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2102                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2103   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2104 
2105 public:
2106   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2107               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2108               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2109 
2110   bool getChanged() const { return Changed; }
2111   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2112     return ScalarEvolutionIVs;
2113   }
2114 
2115   void print_factors_and_types(raw_ostream &OS) const;
2116   void print_fixups(raw_ostream &OS) const;
2117   void print_uses(raw_ostream &OS) const;
2118   void print(raw_ostream &OS) const;
2119   void dump() const;
2120 };
2121 
2122 } // end anonymous namespace
2123 
2124 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2125 /// the cast operation.
2126 void LSRInstance::OptimizeShadowIV() {
2127   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2128   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2129     return;
2130 
2131   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2132        UI != E; /* empty */) {
2133     IVUsers::const_iterator CandidateUI = UI;
2134     ++UI;
2135     Instruction *ShadowUse = CandidateUI->getUser();
2136     Type *DestTy = nullptr;
2137     bool IsSigned = false;
2138 
2139     /* If shadow use is a int->float cast then insert a second IV
2140        to eliminate this cast.
2141 
2142          for (unsigned i = 0; i < n; ++i)
2143            foo((double)i);
2144 
2145        is transformed into
2146 
2147          double d = 0.0;
2148          for (unsigned i = 0; i < n; ++i, ++d)
2149            foo(d);
2150     */
2151     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2152       IsSigned = false;
2153       DestTy = UCast->getDestTy();
2154     }
2155     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2156       IsSigned = true;
2157       DestTy = SCast->getDestTy();
2158     }
2159     if (!DestTy) continue;
2160 
2161     // If target does not support DestTy natively then do not apply
2162     // this transformation.
2163     if (!TTI.isTypeLegal(DestTy)) continue;
2164 
2165     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2166     if (!PH) continue;
2167     if (PH->getNumIncomingValues() != 2) continue;
2168 
2169     // If the calculation in integers overflows, the result in FP type will
2170     // differ. So we only can do this transformation if we are guaranteed to not
2171     // deal with overflowing values
2172     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2173     if (!AR) continue;
2174     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2175     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2176 
2177     Type *SrcTy = PH->getType();
2178     int Mantissa = DestTy->getFPMantissaWidth();
2179     if (Mantissa == -1) continue;
2180     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2181       continue;
2182 
2183     unsigned Entry, Latch;
2184     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2185       Entry = 0;
2186       Latch = 1;
2187     } else {
2188       Entry = 1;
2189       Latch = 0;
2190     }
2191 
2192     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2193     if (!Init) continue;
2194     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2195                                         (double)Init->getSExtValue() :
2196                                         (double)Init->getZExtValue());
2197 
2198     BinaryOperator *Incr =
2199       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2200     if (!Incr) continue;
2201     if (Incr->getOpcode() != Instruction::Add
2202         && Incr->getOpcode() != Instruction::Sub)
2203       continue;
2204 
2205     /* Initialize new IV, double d = 0.0 in above example. */
2206     ConstantInt *C = nullptr;
2207     if (Incr->getOperand(0) == PH)
2208       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2209     else if (Incr->getOperand(1) == PH)
2210       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2211     else
2212       continue;
2213 
2214     if (!C) continue;
2215 
2216     // Ignore negative constants, as the code below doesn't handle them
2217     // correctly. TODO: Remove this restriction.
2218     if (!C->getValue().isStrictlyPositive()) continue;
2219 
2220     /* Add new PHINode. */
2221     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2222 
2223     /* create new increment. '++d' in above example. */
2224     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2225     BinaryOperator *NewIncr =
2226       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2227                                Instruction::FAdd : Instruction::FSub,
2228                              NewPH, CFP, "IV.S.next.", Incr);
2229 
2230     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2231     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2232 
2233     /* Remove cast operation */
2234     ShadowUse->replaceAllUsesWith(NewPH);
2235     ShadowUse->eraseFromParent();
2236     Changed = true;
2237     break;
2238   }
2239 }
2240 
2241 /// If Cond has an operand that is an expression of an IV, set the IV user and
2242 /// stride information and return true, otherwise return false.
2243 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2244   for (IVStrideUse &U : IU)
2245     if (U.getUser() == Cond) {
2246       // NOTE: we could handle setcc instructions with multiple uses here, but
2247       // InstCombine does it as well for simple uses, it's not clear that it
2248       // occurs enough in real life to handle.
2249       CondUse = &U;
2250       return true;
2251     }
2252   return false;
2253 }
2254 
2255 /// Rewrite the loop's terminating condition if it uses a max computation.
2256 ///
2257 /// This is a narrow solution to a specific, but acute, problem. For loops
2258 /// like this:
2259 ///
2260 ///   i = 0;
2261 ///   do {
2262 ///     p[i] = 0.0;
2263 ///   } while (++i < n);
2264 ///
2265 /// the trip count isn't just 'n', because 'n' might not be positive. And
2266 /// unfortunately this can come up even for loops where the user didn't use
2267 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2268 /// will commonly be lowered like this:
2269 ///
2270 ///   if (n > 0) {
2271 ///     i = 0;
2272 ///     do {
2273 ///       p[i] = 0.0;
2274 ///     } while (++i < n);
2275 ///   }
2276 ///
2277 /// and then it's possible for subsequent optimization to obscure the if
2278 /// test in such a way that indvars can't find it.
2279 ///
2280 /// When indvars can't find the if test in loops like this, it creates a
2281 /// max expression, which allows it to give the loop a canonical
2282 /// induction variable:
2283 ///
2284 ///   i = 0;
2285 ///   max = n < 1 ? 1 : n;
2286 ///   do {
2287 ///     p[i] = 0.0;
2288 ///   } while (++i != max);
2289 ///
2290 /// Canonical induction variables are necessary because the loop passes
2291 /// are designed around them. The most obvious example of this is the
2292 /// LoopInfo analysis, which doesn't remember trip count values. It
2293 /// expects to be able to rediscover the trip count each time it is
2294 /// needed, and it does this using a simple analysis that only succeeds if
2295 /// the loop has a canonical induction variable.
2296 ///
2297 /// However, when it comes time to generate code, the maximum operation
2298 /// can be quite costly, especially if it's inside of an outer loop.
2299 ///
2300 /// This function solves this problem by detecting this type of loop and
2301 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2302 /// the instructions for the maximum computation.
2303 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2304   // Check that the loop matches the pattern we're looking for.
2305   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2306       Cond->getPredicate() != CmpInst::ICMP_NE)
2307     return Cond;
2308 
2309   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2310   if (!Sel || !Sel->hasOneUse()) return Cond;
2311 
2312   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2313   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2314     return Cond;
2315   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2316 
2317   // Add one to the backedge-taken count to get the trip count.
2318   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2319   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2320 
2321   // Check for a max calculation that matches the pattern. There's no check
2322   // for ICMP_ULE here because the comparison would be with zero, which
2323   // isn't interesting.
2324   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2325   const SCEVNAryExpr *Max = nullptr;
2326   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2327     Pred = ICmpInst::ICMP_SLE;
2328     Max = S;
2329   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2330     Pred = ICmpInst::ICMP_SLT;
2331     Max = S;
2332   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2333     Pred = ICmpInst::ICMP_ULT;
2334     Max = U;
2335   } else {
2336     // No match; bail.
2337     return Cond;
2338   }
2339 
2340   // To handle a max with more than two operands, this optimization would
2341   // require additional checking and setup.
2342   if (Max->getNumOperands() != 2)
2343     return Cond;
2344 
2345   const SCEV *MaxLHS = Max->getOperand(0);
2346   const SCEV *MaxRHS = Max->getOperand(1);
2347 
2348   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2349   // for a comparison with 1. For <= and >=, a comparison with zero.
2350   if (!MaxLHS ||
2351       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2352     return Cond;
2353 
2354   // Check the relevant induction variable for conformance to
2355   // the pattern.
2356   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2357   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2358   if (!AR || !AR->isAffine() ||
2359       AR->getStart() != One ||
2360       AR->getStepRecurrence(SE) != One)
2361     return Cond;
2362 
2363   assert(AR->getLoop() == L &&
2364          "Loop condition operand is an addrec in a different loop!");
2365 
2366   // Check the right operand of the select, and remember it, as it will
2367   // be used in the new comparison instruction.
2368   Value *NewRHS = nullptr;
2369   if (ICmpInst::isTrueWhenEqual(Pred)) {
2370     // Look for n+1, and grab n.
2371     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2372       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2373          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2374            NewRHS = BO->getOperand(0);
2375     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2376       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2377         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2378           NewRHS = BO->getOperand(0);
2379     if (!NewRHS)
2380       return Cond;
2381   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2382     NewRHS = Sel->getOperand(1);
2383   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2384     NewRHS = Sel->getOperand(2);
2385   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2386     NewRHS = SU->getValue();
2387   else
2388     // Max doesn't match expected pattern.
2389     return Cond;
2390 
2391   // Determine the new comparison opcode. It may be signed or unsigned,
2392   // and the original comparison may be either equality or inequality.
2393   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2394     Pred = CmpInst::getInversePredicate(Pred);
2395 
2396   // Ok, everything looks ok to change the condition into an SLT or SGE and
2397   // delete the max calculation.
2398   ICmpInst *NewCond =
2399     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2400 
2401   // Delete the max calculation instructions.
2402   NewCond->setDebugLoc(Cond->getDebugLoc());
2403   Cond->replaceAllUsesWith(NewCond);
2404   CondUse->setUser(NewCond);
2405   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2406   Cond->eraseFromParent();
2407   Sel->eraseFromParent();
2408   if (Cmp->use_empty())
2409     Cmp->eraseFromParent();
2410   return NewCond;
2411 }
2412 
2413 /// Change loop terminating condition to use the postinc iv when possible.
2414 void
2415 LSRInstance::OptimizeLoopTermCond() {
2416   SmallPtrSet<Instruction *, 4> PostIncs;
2417 
2418   // We need a different set of heuristics for rotated and non-rotated loops.
2419   // If a loop is rotated then the latch is also the backedge, so inserting
2420   // post-inc expressions just before the latch is ideal. To reduce live ranges
2421   // it also makes sense to rewrite terminating conditions to use post-inc
2422   // expressions.
2423   //
2424   // If the loop is not rotated then the latch is not a backedge; the latch
2425   // check is done in the loop head. Adding post-inc expressions before the
2426   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2427   // in the loop body. In this case we do *not* want to use post-inc expressions
2428   // in the latch check, and we want to insert post-inc expressions before
2429   // the backedge.
2430   BasicBlock *LatchBlock = L->getLoopLatch();
2431   SmallVector<BasicBlock*, 8> ExitingBlocks;
2432   L->getExitingBlocks(ExitingBlocks);
2433   if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2434     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2435     IVIncInsertPos = LatchBlock->getTerminator();
2436     return;
2437   }
2438 
2439   // Otherwise treat this as a rotated loop.
2440   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2441     // Get the terminating condition for the loop if possible.  If we
2442     // can, we want to change it to use a post-incremented version of its
2443     // induction variable, to allow coalescing the live ranges for the IV into
2444     // one register value.
2445 
2446     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2447     if (!TermBr)
2448       continue;
2449     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2450     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2451       continue;
2452 
2453     // Search IVUsesByStride to find Cond's IVUse if there is one.
2454     IVStrideUse *CondUse = nullptr;
2455     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2456     if (!FindIVUserForCond(Cond, CondUse))
2457       continue;
2458 
2459     // If the trip count is computed in terms of a max (due to ScalarEvolution
2460     // being unable to find a sufficient guard, for example), change the loop
2461     // comparison to use SLT or ULT instead of NE.
2462     // One consequence of doing this now is that it disrupts the count-down
2463     // optimization. That's not always a bad thing though, because in such
2464     // cases it may still be worthwhile to avoid a max.
2465     Cond = OptimizeMax(Cond, CondUse);
2466 
2467     // If this exiting block dominates the latch block, it may also use
2468     // the post-inc value if it won't be shared with other uses.
2469     // Check for dominance.
2470     if (!DT.dominates(ExitingBlock, LatchBlock))
2471       continue;
2472 
2473     // Conservatively avoid trying to use the post-inc value in non-latch
2474     // exits if there may be pre-inc users in intervening blocks.
2475     if (LatchBlock != ExitingBlock)
2476       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2477         // Test if the use is reachable from the exiting block. This dominator
2478         // query is a conservative approximation of reachability.
2479         if (&*UI != CondUse &&
2480             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2481           // Conservatively assume there may be reuse if the quotient of their
2482           // strides could be a legal scale.
2483           const SCEV *A = IU.getStride(*CondUse, L);
2484           const SCEV *B = IU.getStride(*UI, L);
2485           if (!A || !B) continue;
2486           if (SE.getTypeSizeInBits(A->getType()) !=
2487               SE.getTypeSizeInBits(B->getType())) {
2488             if (SE.getTypeSizeInBits(A->getType()) >
2489                 SE.getTypeSizeInBits(B->getType()))
2490               B = SE.getSignExtendExpr(B, A->getType());
2491             else
2492               A = SE.getSignExtendExpr(A, B->getType());
2493           }
2494           if (const SCEVConstant *D =
2495                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2496             const ConstantInt *C = D->getValue();
2497             // Stride of one or negative one can have reuse with non-addresses.
2498             if (C->isOne() || C->isMinusOne())
2499               goto decline_post_inc;
2500             // Avoid weird situations.
2501             if (C->getValue().getSignificantBits() >= 64 ||
2502                 C->getValue().isMinSignedValue())
2503               goto decline_post_inc;
2504             // Check for possible scaled-address reuse.
2505             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2506               MemAccessTy AccessTy = getAccessType(
2507                   TTI, UI->getUser(), UI->getOperandValToReplace());
2508               int64_t Scale = C->getSExtValue();
2509               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2510                                             /*BaseOffset=*/0,
2511                                             /*HasBaseReg=*/true, Scale,
2512                                             AccessTy.AddrSpace))
2513                 goto decline_post_inc;
2514               Scale = -Scale;
2515               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2516                                             /*BaseOffset=*/0,
2517                                             /*HasBaseReg=*/true, Scale,
2518                                             AccessTy.AddrSpace))
2519                 goto decline_post_inc;
2520             }
2521           }
2522         }
2523 
2524     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2525                       << *Cond << '\n');
2526 
2527     // It's possible for the setcc instruction to be anywhere in the loop, and
2528     // possible for it to have multiple users.  If it is not immediately before
2529     // the exiting block branch, move it.
2530     if (Cond->getNextNonDebugInstruction() != TermBr) {
2531       if (Cond->hasOneUse()) {
2532         Cond->moveBefore(TermBr);
2533       } else {
2534         // Clone the terminating condition and insert into the loopend.
2535         ICmpInst *OldCond = Cond;
2536         Cond = cast<ICmpInst>(Cond->clone());
2537         Cond->setName(L->getHeader()->getName() + ".termcond");
2538         Cond->insertInto(ExitingBlock, TermBr->getIterator());
2539 
2540         // Clone the IVUse, as the old use still exists!
2541         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2542         TermBr->replaceUsesOfWith(OldCond, Cond);
2543       }
2544     }
2545 
2546     // If we get to here, we know that we can transform the setcc instruction to
2547     // use the post-incremented version of the IV, allowing us to coalesce the
2548     // live ranges for the IV correctly.
2549     CondUse->transformToPostInc(L);
2550     Changed = true;
2551 
2552     PostIncs.insert(Cond);
2553   decline_post_inc:;
2554   }
2555 
2556   // Determine an insertion point for the loop induction variable increment. It
2557   // must dominate all the post-inc comparisons we just set up, and it must
2558   // dominate the loop latch edge.
2559   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2560   for (Instruction *Inst : PostIncs)
2561     IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2562 }
2563 
2564 /// Determine if the given use can accommodate a fixup at the given offset and
2565 /// other details. If so, update the use and return true.
2566 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2567                                      bool HasBaseReg, LSRUse::KindType Kind,
2568                                      MemAccessTy AccessTy) {
2569   int64_t NewMinOffset = LU.MinOffset;
2570   int64_t NewMaxOffset = LU.MaxOffset;
2571   MemAccessTy NewAccessTy = AccessTy;
2572 
2573   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2574   // something conservative, however this can pessimize in the case that one of
2575   // the uses will have all its uses outside the loop, for example.
2576   if (LU.Kind != Kind)
2577     return false;
2578 
2579   // Check for a mismatched access type, and fall back conservatively as needed.
2580   // TODO: Be less conservative when the type is similar and can use the same
2581   // addressing modes.
2582   if (Kind == LSRUse::Address) {
2583     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2584       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2585                                             AccessTy.AddrSpace);
2586     }
2587   }
2588 
2589   // Conservatively assume HasBaseReg is true for now.
2590   if (NewOffset < LU.MinOffset) {
2591     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2592                           LU.MaxOffset - NewOffset, HasBaseReg))
2593       return false;
2594     NewMinOffset = NewOffset;
2595   } else if (NewOffset > LU.MaxOffset) {
2596     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2597                           NewOffset - LU.MinOffset, HasBaseReg))
2598       return false;
2599     NewMaxOffset = NewOffset;
2600   }
2601 
2602   // Update the use.
2603   LU.MinOffset = NewMinOffset;
2604   LU.MaxOffset = NewMaxOffset;
2605   LU.AccessTy = NewAccessTy;
2606   return true;
2607 }
2608 
2609 /// Return an LSRUse index and an offset value for a fixup which needs the given
2610 /// expression, with the given kind and optional access type.  Either reuse an
2611 /// existing use or create a new one, as needed.
2612 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2613                                                LSRUse::KindType Kind,
2614                                                MemAccessTy AccessTy) {
2615   const SCEV *Copy = Expr;
2616   int64_t Offset = ExtractImmediate(Expr, SE);
2617 
2618   // Basic uses can't accept any offset, for example.
2619   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2620                         Offset, /*HasBaseReg=*/ true)) {
2621     Expr = Copy;
2622     Offset = 0;
2623   }
2624 
2625   std::pair<UseMapTy::iterator, bool> P =
2626     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2627   if (!P.second) {
2628     // A use already existed with this base.
2629     size_t LUIdx = P.first->second;
2630     LSRUse &LU = Uses[LUIdx];
2631     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2632       // Reuse this use.
2633       return std::make_pair(LUIdx, Offset);
2634   }
2635 
2636   // Create a new use.
2637   size_t LUIdx = Uses.size();
2638   P.first->second = LUIdx;
2639   Uses.push_back(LSRUse(Kind, AccessTy));
2640   LSRUse &LU = Uses[LUIdx];
2641 
2642   LU.MinOffset = Offset;
2643   LU.MaxOffset = Offset;
2644   return std::make_pair(LUIdx, Offset);
2645 }
2646 
2647 /// Delete the given use from the Uses list.
2648 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2649   if (&LU != &Uses.back())
2650     std::swap(LU, Uses.back());
2651   Uses.pop_back();
2652 
2653   // Update RegUses.
2654   RegUses.swapAndDropUse(LUIdx, Uses.size());
2655 }
2656 
2657 /// Look for a use distinct from OrigLU which is has a formula that has the same
2658 /// registers as the given formula.
2659 LSRUse *
2660 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2661                                        const LSRUse &OrigLU) {
2662   // Search all uses for the formula. This could be more clever.
2663   for (LSRUse &LU : Uses) {
2664     // Check whether this use is close enough to OrigLU, to see whether it's
2665     // worthwhile looking through its formulae.
2666     // Ignore ICmpZero uses because they may contain formulae generated by
2667     // GenerateICmpZeroScales, in which case adding fixup offsets may
2668     // be invalid.
2669     if (&LU != &OrigLU &&
2670         LU.Kind != LSRUse::ICmpZero &&
2671         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2672         LU.WidestFixupType == OrigLU.WidestFixupType &&
2673         LU.HasFormulaWithSameRegs(OrigF)) {
2674       // Scan through this use's formulae.
2675       for (const Formula &F : LU.Formulae) {
2676         // Check to see if this formula has the same registers and symbols
2677         // as OrigF.
2678         if (F.BaseRegs == OrigF.BaseRegs &&
2679             F.ScaledReg == OrigF.ScaledReg &&
2680             F.BaseGV == OrigF.BaseGV &&
2681             F.Scale == OrigF.Scale &&
2682             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2683           if (F.BaseOffset == 0)
2684             return &LU;
2685           // This is the formula where all the registers and symbols matched;
2686           // there aren't going to be any others. Since we declined it, we
2687           // can skip the rest of the formulae and proceed to the next LSRUse.
2688           break;
2689         }
2690       }
2691     }
2692   }
2693 
2694   // Nothing looked good.
2695   return nullptr;
2696 }
2697 
2698 void LSRInstance::CollectInterestingTypesAndFactors() {
2699   SmallSetVector<const SCEV *, 4> Strides;
2700 
2701   // Collect interesting types and strides.
2702   SmallVector<const SCEV *, 4> Worklist;
2703   for (const IVStrideUse &U : IU) {
2704     const SCEV *Expr = IU.getExpr(U);
2705     if (!Expr)
2706       continue;
2707 
2708     // Collect interesting types.
2709     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2710 
2711     // Add strides for mentioned loops.
2712     Worklist.push_back(Expr);
2713     do {
2714       const SCEV *S = Worklist.pop_back_val();
2715       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2716         if (AR->getLoop() == L)
2717           Strides.insert(AR->getStepRecurrence(SE));
2718         Worklist.push_back(AR->getStart());
2719       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2720         append_range(Worklist, Add->operands());
2721       }
2722     } while (!Worklist.empty());
2723   }
2724 
2725   // Compute interesting factors from the set of interesting strides.
2726   for (SmallSetVector<const SCEV *, 4>::const_iterator
2727        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2728     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2729          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2730       const SCEV *OldStride = *I;
2731       const SCEV *NewStride = *NewStrideIter;
2732 
2733       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2734           SE.getTypeSizeInBits(NewStride->getType())) {
2735         if (SE.getTypeSizeInBits(OldStride->getType()) >
2736             SE.getTypeSizeInBits(NewStride->getType()))
2737           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2738         else
2739           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2740       }
2741       if (const SCEVConstant *Factor =
2742             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2743                                                         SE, true))) {
2744         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2745           Factors.insert(Factor->getAPInt().getSExtValue());
2746       } else if (const SCEVConstant *Factor =
2747                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2748                                                                NewStride,
2749                                                                SE, true))) {
2750         if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2751           Factors.insert(Factor->getAPInt().getSExtValue());
2752       }
2753     }
2754 
2755   // If all uses use the same type, don't bother looking for truncation-based
2756   // reuse.
2757   if (Types.size() == 1)
2758     Types.clear();
2759 
2760   LLVM_DEBUG(print_factors_and_types(dbgs()));
2761 }
2762 
2763 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2764 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2765 /// IVStrideUses, we could partially skip this.
2766 static User::op_iterator
2767 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2768               Loop *L, ScalarEvolution &SE) {
2769   for(; OI != OE; ++OI) {
2770     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2771       if (!SE.isSCEVable(Oper->getType()))
2772         continue;
2773 
2774       if (const SCEVAddRecExpr *AR =
2775           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2776         if (AR->getLoop() == L)
2777           break;
2778       }
2779     }
2780   }
2781   return OI;
2782 }
2783 
2784 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2785 /// a convenient helper.
2786 static Value *getWideOperand(Value *Oper) {
2787   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2788     return Trunc->getOperand(0);
2789   return Oper;
2790 }
2791 
2792 /// Return an approximation of this SCEV expression's "base", or NULL for any
2793 /// constant. Returning the expression itself is conservative. Returning a
2794 /// deeper subexpression is more precise and valid as long as it isn't less
2795 /// complex than another subexpression. For expressions involving multiple
2796 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2797 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2798 /// IVInc==b-a.
2799 ///
2800 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2801 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2802 static const SCEV *getExprBase(const SCEV *S) {
2803   switch (S->getSCEVType()) {
2804   default: // including scUnknown.
2805     return S;
2806   case scConstant:
2807   case scVScale:
2808     return nullptr;
2809   case scTruncate:
2810     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2811   case scZeroExtend:
2812     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2813   case scSignExtend:
2814     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2815   case scAddExpr: {
2816     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2817     // there's nothing more complex.
2818     // FIXME: not sure if we want to recognize negation.
2819     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2820     for (const SCEV *SubExpr : reverse(Add->operands())) {
2821       if (SubExpr->getSCEVType() == scAddExpr)
2822         return getExprBase(SubExpr);
2823 
2824       if (SubExpr->getSCEVType() != scMulExpr)
2825         return SubExpr;
2826     }
2827     return S; // all operands are scaled, be conservative.
2828   }
2829   case scAddRecExpr:
2830     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2831   }
2832   llvm_unreachable("Unknown SCEV kind!");
2833 }
2834 
2835 /// Return true if the chain increment is profitable to expand into a loop
2836 /// invariant value, which may require its own register. A profitable chain
2837 /// increment will be an offset relative to the same base. We allow such offsets
2838 /// to potentially be used as chain increment as long as it's not obviously
2839 /// expensive to expand using real instructions.
2840 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2841                                     const SCEV *IncExpr,
2842                                     ScalarEvolution &SE) {
2843   // Aggressively form chains when -stress-ivchain.
2844   if (StressIVChain)
2845     return true;
2846 
2847   // Do not replace a constant offset from IV head with a nonconstant IV
2848   // increment.
2849   if (!isa<SCEVConstant>(IncExpr)) {
2850     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2851     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2852       return false;
2853   }
2854 
2855   SmallPtrSet<const SCEV*, 8> Processed;
2856   return !isHighCostExpansion(IncExpr, Processed, SE);
2857 }
2858 
2859 /// Return true if the number of registers needed for the chain is estimated to
2860 /// be less than the number required for the individual IV users. First prohibit
2861 /// any IV users that keep the IV live across increments (the Users set should
2862 /// be empty). Next count the number and type of increments in the chain.
2863 ///
2864 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2865 /// effectively use postinc addressing modes. Only consider it profitable it the
2866 /// increments can be computed in fewer registers when chained.
2867 ///
2868 /// TODO: Consider IVInc free if it's already used in another chains.
2869 static bool isProfitableChain(IVChain &Chain,
2870                               SmallPtrSetImpl<Instruction *> &Users,
2871                               ScalarEvolution &SE,
2872                               const TargetTransformInfo &TTI) {
2873   if (StressIVChain)
2874     return true;
2875 
2876   if (!Chain.hasIncs())
2877     return false;
2878 
2879   if (!Users.empty()) {
2880     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2881                for (Instruction *Inst
2882                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2883     return false;
2884   }
2885   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2886 
2887   // The chain itself may require a register, so intialize cost to 1.
2888   int cost = 1;
2889 
2890   // A complete chain likely eliminates the need for keeping the original IV in
2891   // a register. LSR does not currently know how to form a complete chain unless
2892   // the header phi already exists.
2893   if (isa<PHINode>(Chain.tailUserInst())
2894       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2895     --cost;
2896   }
2897   const SCEV *LastIncExpr = nullptr;
2898   unsigned NumConstIncrements = 0;
2899   unsigned NumVarIncrements = 0;
2900   unsigned NumReusedIncrements = 0;
2901 
2902   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2903     return true;
2904 
2905   for (const IVInc &Inc : Chain) {
2906     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2907       return true;
2908     if (Inc.IncExpr->isZero())
2909       continue;
2910 
2911     // Incrementing by zero or some constant is neutral. We assume constants can
2912     // be folded into an addressing mode or an add's immediate operand.
2913     if (isa<SCEVConstant>(Inc.IncExpr)) {
2914       ++NumConstIncrements;
2915       continue;
2916     }
2917 
2918     if (Inc.IncExpr == LastIncExpr)
2919       ++NumReusedIncrements;
2920     else
2921       ++NumVarIncrements;
2922 
2923     LastIncExpr = Inc.IncExpr;
2924   }
2925   // An IV chain with a single increment is handled by LSR's postinc
2926   // uses. However, a chain with multiple increments requires keeping the IV's
2927   // value live longer than it needs to be if chained.
2928   if (NumConstIncrements > 1)
2929     --cost;
2930 
2931   // Materializing increment expressions in the preheader that didn't exist in
2932   // the original code may cost a register. For example, sign-extended array
2933   // indices can produce ridiculous increments like this:
2934   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2935   cost += NumVarIncrements;
2936 
2937   // Reusing variable increments likely saves a register to hold the multiple of
2938   // the stride.
2939   cost -= NumReusedIncrements;
2940 
2941   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2942                     << "\n");
2943 
2944   return cost < 0;
2945 }
2946 
2947 /// Add this IV user to an existing chain or make it the head of a new chain.
2948 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2949                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2950   // When IVs are used as types of varying widths, they are generally converted
2951   // to a wider type with some uses remaining narrow under a (free) trunc.
2952   Value *const NextIV = getWideOperand(IVOper);
2953   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2954   const SCEV *const OperExprBase = getExprBase(OperExpr);
2955 
2956   // Visit all existing chains. Check if its IVOper can be computed as a
2957   // profitable loop invariant increment from the last link in the Chain.
2958   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2959   const SCEV *LastIncExpr = nullptr;
2960   for (; ChainIdx < NChains; ++ChainIdx) {
2961     IVChain &Chain = IVChainVec[ChainIdx];
2962 
2963     // Prune the solution space aggressively by checking that both IV operands
2964     // are expressions that operate on the same unscaled SCEVUnknown. This
2965     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2966     // first avoids creating extra SCEV expressions.
2967     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2968       continue;
2969 
2970     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2971     if (PrevIV->getType() != NextIV->getType())
2972       continue;
2973 
2974     // A phi node terminates a chain.
2975     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2976       continue;
2977 
2978     // The increment must be loop-invariant so it can be kept in a register.
2979     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2980     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2981     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2982       continue;
2983 
2984     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2985       LastIncExpr = IncExpr;
2986       break;
2987     }
2988   }
2989   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2990   // bother for phi nodes, because they must be last in the chain.
2991   if (ChainIdx == NChains) {
2992     if (isa<PHINode>(UserInst))
2993       return;
2994     if (NChains >= MaxChains && !StressIVChain) {
2995       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2996       return;
2997     }
2998     LastIncExpr = OperExpr;
2999     // IVUsers may have skipped over sign/zero extensions. We don't currently
3000     // attempt to form chains involving extensions unless they can be hoisted
3001     // into this loop's AddRec.
3002     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3003       return;
3004     ++NChains;
3005     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3006                                  OperExprBase));
3007     ChainUsersVec.resize(NChains);
3008     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3009                       << ") IV=" << *LastIncExpr << "\n");
3010   } else {
3011     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3012                       << ") IV+" << *LastIncExpr << "\n");
3013     // Add this IV user to the end of the chain.
3014     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3015   }
3016   IVChain &Chain = IVChainVec[ChainIdx];
3017 
3018   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3019   // This chain's NearUsers become FarUsers.
3020   if (!LastIncExpr->isZero()) {
3021     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3022                                             NearUsers.end());
3023     NearUsers.clear();
3024   }
3025 
3026   // All other uses of IVOperand become near uses of the chain.
3027   // We currently ignore intermediate values within SCEV expressions, assuming
3028   // they will eventually be used be the current chain, or can be computed
3029   // from one of the chain increments. To be more precise we could
3030   // transitively follow its user and only add leaf IV users to the set.
3031   for (User *U : IVOper->users()) {
3032     Instruction *OtherUse = dyn_cast<Instruction>(U);
3033     if (!OtherUse)
3034       continue;
3035     // Uses in the chain will no longer be uses if the chain is formed.
3036     // Include the head of the chain in this iteration (not Chain.begin()).
3037     IVChain::const_iterator IncIter = Chain.Incs.begin();
3038     IVChain::const_iterator IncEnd = Chain.Incs.end();
3039     for( ; IncIter != IncEnd; ++IncIter) {
3040       if (IncIter->UserInst == OtherUse)
3041         break;
3042     }
3043     if (IncIter != IncEnd)
3044       continue;
3045 
3046     if (SE.isSCEVable(OtherUse->getType())
3047         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3048         && IU.isIVUserOrOperand(OtherUse)) {
3049       continue;
3050     }
3051     NearUsers.insert(OtherUse);
3052   }
3053 
3054   // Since this user is part of the chain, it's no longer considered a use
3055   // of the chain.
3056   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3057 }
3058 
3059 /// Populate the vector of Chains.
3060 ///
3061 /// This decreases ILP at the architecture level. Targets with ample registers,
3062 /// multiple memory ports, and no register renaming probably don't want
3063 /// this. However, such targets should probably disable LSR altogether.
3064 ///
3065 /// The job of LSR is to make a reasonable choice of induction variables across
3066 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3067 /// ILP *within the loop* if the target wants it.
3068 ///
3069 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3070 /// will not reorder memory operations, it will recognize this as a chain, but
3071 /// will generate redundant IV increments. Ideally this would be corrected later
3072 /// by a smart scheduler:
3073 ///        = A[i]
3074 ///        = A[i+x]
3075 /// A[i]   =
3076 /// A[i+x] =
3077 ///
3078 /// TODO: Walk the entire domtree within this loop, not just the path to the
3079 /// loop latch. This will discover chains on side paths, but requires
3080 /// maintaining multiple copies of the Chains state.
3081 void LSRInstance::CollectChains() {
3082   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3083   SmallVector<ChainUsers, 8> ChainUsersVec;
3084 
3085   SmallVector<BasicBlock *,8> LatchPath;
3086   BasicBlock *LoopHeader = L->getHeader();
3087   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3088        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3089     LatchPath.push_back(Rung->getBlock());
3090   }
3091   LatchPath.push_back(LoopHeader);
3092 
3093   // Walk the instruction stream from the loop header to the loop latch.
3094   for (BasicBlock *BB : reverse(LatchPath)) {
3095     for (Instruction &I : *BB) {
3096       // Skip instructions that weren't seen by IVUsers analysis.
3097       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3098         continue;
3099 
3100       // Ignore users that are part of a SCEV expression. This way we only
3101       // consider leaf IV Users. This effectively rediscovers a portion of
3102       // IVUsers analysis but in program order this time.
3103       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3104           continue;
3105 
3106       // Remove this instruction from any NearUsers set it may be in.
3107       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3108            ChainIdx < NChains; ++ChainIdx) {
3109         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3110       }
3111       // Search for operands that can be chained.
3112       SmallPtrSet<Instruction*, 4> UniqueOperands;
3113       User::op_iterator IVOpEnd = I.op_end();
3114       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3115       while (IVOpIter != IVOpEnd) {
3116         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3117         if (UniqueOperands.insert(IVOpInst).second)
3118           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3119         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3120       }
3121     } // Continue walking down the instructions.
3122   } // Continue walking down the domtree.
3123   // Visit phi backedges to determine if the chain can generate the IV postinc.
3124   for (PHINode &PN : L->getHeader()->phis()) {
3125     if (!SE.isSCEVable(PN.getType()))
3126       continue;
3127 
3128     Instruction *IncV =
3129         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3130     if (IncV)
3131       ChainInstruction(&PN, IncV, ChainUsersVec);
3132   }
3133   // Remove any unprofitable chains.
3134   unsigned ChainIdx = 0;
3135   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3136        UsersIdx < NChains; ++UsersIdx) {
3137     if (!isProfitableChain(IVChainVec[UsersIdx],
3138                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3139       continue;
3140     // Preserve the chain at UsesIdx.
3141     if (ChainIdx != UsersIdx)
3142       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3143     FinalizeChain(IVChainVec[ChainIdx]);
3144     ++ChainIdx;
3145   }
3146   IVChainVec.resize(ChainIdx);
3147 }
3148 
3149 void LSRInstance::FinalizeChain(IVChain &Chain) {
3150   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3151   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3152 
3153   for (const IVInc &Inc : Chain) {
3154     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3155     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3156     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3157     IVIncSet.insert(UseI);
3158   }
3159 }
3160 
3161 /// Return true if the IVInc can be folded into an addressing mode.
3162 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3163                              Value *Operand, const TargetTransformInfo &TTI) {
3164   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3165   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3166     return false;
3167 
3168   if (IncConst->getAPInt().getSignificantBits() > 64)
3169     return false;
3170 
3171   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3172   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3173   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3174                         IncOffset, /*HasBaseReg=*/false))
3175     return false;
3176 
3177   return true;
3178 }
3179 
3180 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3181 /// user's operand from the previous IV user's operand.
3182 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3183                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3184   // Find the new IVOperand for the head of the chain. It may have been replaced
3185   // by LSR.
3186   const IVInc &Head = Chain.Incs[0];
3187   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3188   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3189   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3190                                              IVOpEnd, L, SE);
3191   Value *IVSrc = nullptr;
3192   while (IVOpIter != IVOpEnd) {
3193     IVSrc = getWideOperand(*IVOpIter);
3194 
3195     // If this operand computes the expression that the chain needs, we may use
3196     // it. (Check this after setting IVSrc which is used below.)
3197     //
3198     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3199     // narrow for the chain, so we can no longer use it. We do allow using a
3200     // wider phi, assuming the LSR checked for free truncation. In that case we
3201     // should already have a truncate on this operand such that
3202     // getSCEV(IVSrc) == IncExpr.
3203     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3204         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3205       break;
3206     }
3207     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3208   }
3209   if (IVOpIter == IVOpEnd) {
3210     // Gracefully give up on this chain.
3211     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3212     return;
3213   }
3214   assert(IVSrc && "Failed to find IV chain source");
3215 
3216   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3217   Type *IVTy = IVSrc->getType();
3218   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3219   const SCEV *LeftOverExpr = nullptr;
3220   for (const IVInc &Inc : Chain) {
3221     Instruction *InsertPt = Inc.UserInst;
3222     if (isa<PHINode>(InsertPt))
3223       InsertPt = L->getLoopLatch()->getTerminator();
3224 
3225     // IVOper will replace the current IV User's operand. IVSrc is the IV
3226     // value currently held in a register.
3227     Value *IVOper = IVSrc;
3228     if (!Inc.IncExpr->isZero()) {
3229       // IncExpr was the result of subtraction of two narrow values, so must
3230       // be signed.
3231       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3232       LeftOverExpr = LeftOverExpr ?
3233         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3234     }
3235     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3236       // Expand the IV increment.
3237       Rewriter.clearPostInc();
3238       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3239       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3240                                              SE.getUnknown(IncV));
3241       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3242 
3243       // If an IV increment can't be folded, use it as the next IV value.
3244       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3245         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3246         IVSrc = IVOper;
3247         LeftOverExpr = nullptr;
3248       }
3249     }
3250     Type *OperTy = Inc.IVOperand->getType();
3251     if (IVTy != OperTy) {
3252       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3253              "cannot extend a chained IV");
3254       IRBuilder<> Builder(InsertPt);
3255       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3256     }
3257     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3258     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3259       DeadInsts.emplace_back(OperandIsInstr);
3260   }
3261   // If LSR created a new, wider phi, we may also replace its postinc. We only
3262   // do this if we also found a wide value for the head of the chain.
3263   if (isa<PHINode>(Chain.tailUserInst())) {
3264     for (PHINode &Phi : L->getHeader()->phis()) {
3265       if (Phi.getType() != IVSrc->getType())
3266         continue;
3267       Instruction *PostIncV = dyn_cast<Instruction>(
3268           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3269       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3270         continue;
3271       Value *IVOper = IVSrc;
3272       Type *PostIncTy = PostIncV->getType();
3273       if (IVTy != PostIncTy) {
3274         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3275         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3276         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3277         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3278       }
3279       Phi.replaceUsesOfWith(PostIncV, IVOper);
3280       DeadInsts.emplace_back(PostIncV);
3281     }
3282   }
3283 }
3284 
3285 void LSRInstance::CollectFixupsAndInitialFormulae() {
3286   BranchInst *ExitBranch = nullptr;
3287   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3288 
3289   // For calculating baseline cost
3290   SmallPtrSet<const SCEV *, 16> Regs;
3291   DenseSet<const SCEV *> VisitedRegs;
3292   DenseSet<size_t> VisitedLSRUse;
3293 
3294   for (const IVStrideUse &U : IU) {
3295     Instruction *UserInst = U.getUser();
3296     // Skip IV users that are part of profitable IV Chains.
3297     User::op_iterator UseI =
3298         find(UserInst->operands(), U.getOperandValToReplace());
3299     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3300     if (IVIncSet.count(UseI)) {
3301       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3302       continue;
3303     }
3304 
3305     LSRUse::KindType Kind = LSRUse::Basic;
3306     MemAccessTy AccessTy;
3307     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3308       Kind = LSRUse::Address;
3309       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3310     }
3311 
3312     const SCEV *S = IU.getExpr(U);
3313     if (!S)
3314       continue;
3315     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3316 
3317     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3318     // (N - i == 0), and this allows (N - i) to be the expression that we work
3319     // with rather than just N or i, so we can consider the register
3320     // requirements for both N and i at the same time. Limiting this code to
3321     // equality icmps is not a problem because all interesting loops use
3322     // equality icmps, thanks to IndVarSimplify.
3323     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3324       // If CI can be saved in some target, like replaced inside hardware loop
3325       // in PowerPC, no need to generate initial formulae for it.
3326       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3327         continue;
3328       if (CI->isEquality()) {
3329         // Swap the operands if needed to put the OperandValToReplace on the
3330         // left, for consistency.
3331         Value *NV = CI->getOperand(1);
3332         if (NV == U.getOperandValToReplace()) {
3333           CI->setOperand(1, CI->getOperand(0));
3334           CI->setOperand(0, NV);
3335           NV = CI->getOperand(1);
3336           Changed = true;
3337         }
3338 
3339         // x == y  -->  x - y == 0
3340         const SCEV *N = SE.getSCEV(NV);
3341         if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3342             (!NV->getType()->isPointerTy() ||
3343              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3344           // S is normalized, so normalize N before folding it into S
3345           // to keep the result normalized.
3346           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3347           if (!N)
3348             continue;
3349           Kind = LSRUse::ICmpZero;
3350           S = SE.getMinusSCEV(N, S);
3351         } else if (L->isLoopInvariant(NV) &&
3352                    (!isa<Instruction>(NV) ||
3353                     DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3354                    !NV->getType()->isPointerTy()) {
3355           // If we can't generally expand the expression (e.g. it contains
3356           // a divide), but it is already at a loop invariant point before the
3357           // loop, wrap it in an unknown (to prevent the expander from trying
3358           // to re-expand in a potentially unsafe way.)  The restriction to
3359           // integer types is required because the unknown hides the base, and
3360           // SCEV can't compute the difference of two unknown pointers.
3361           N = SE.getUnknown(NV);
3362           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3363           if (!N)
3364             continue;
3365           Kind = LSRUse::ICmpZero;
3366           S = SE.getMinusSCEV(N, S);
3367           assert(!isa<SCEVCouldNotCompute>(S));
3368         }
3369 
3370         // -1 and the negations of all interesting strides (except the negation
3371         // of -1) are now also interesting.
3372         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3373           if (Factors[i] != -1)
3374             Factors.insert(-(uint64_t)Factors[i]);
3375         Factors.insert(-1);
3376       }
3377     }
3378 
3379     // Get or create an LSRUse.
3380     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3381     size_t LUIdx = P.first;
3382     int64_t Offset = P.second;
3383     LSRUse &LU = Uses[LUIdx];
3384 
3385     // Record the fixup.
3386     LSRFixup &LF = LU.getNewFixup();
3387     LF.UserInst = UserInst;
3388     LF.OperandValToReplace = U.getOperandValToReplace();
3389     LF.PostIncLoops = TmpPostIncLoops;
3390     LF.Offset = Offset;
3391     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3392 
3393     // Create SCEV as Formula for calculating baseline cost
3394     if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3395       Formula F;
3396       F.initialMatch(S, L, SE);
3397       BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3398       VisitedLSRUse.insert(LUIdx);
3399     }
3400 
3401     if (!LU.WidestFixupType ||
3402         SE.getTypeSizeInBits(LU.WidestFixupType) <
3403         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3404       LU.WidestFixupType = LF.OperandValToReplace->getType();
3405 
3406     // If this is the first use of this LSRUse, give it a formula.
3407     if (LU.Formulae.empty()) {
3408       InsertInitialFormula(S, LU, LUIdx);
3409       CountRegisters(LU.Formulae.back(), LUIdx);
3410     }
3411   }
3412 
3413   LLVM_DEBUG(print_fixups(dbgs()));
3414 }
3415 
3416 /// Insert a formula for the given expression into the given use, separating out
3417 /// loop-variant portions from loop-invariant and loop-computable portions.
3418 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3419                                        size_t LUIdx) {
3420   // Mark uses whose expressions cannot be expanded.
3421   if (!Rewriter.isSafeToExpand(S))
3422     LU.RigidFormula = true;
3423 
3424   Formula F;
3425   F.initialMatch(S, L, SE);
3426   bool Inserted = InsertFormula(LU, LUIdx, F);
3427   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3428 }
3429 
3430 /// Insert a simple single-register formula for the given expression into the
3431 /// given use.
3432 void
3433 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3434                                        LSRUse &LU, size_t LUIdx) {
3435   Formula F;
3436   F.BaseRegs.push_back(S);
3437   F.HasBaseReg = true;
3438   bool Inserted = InsertFormula(LU, LUIdx, F);
3439   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3440 }
3441 
3442 /// Note which registers are used by the given formula, updating RegUses.
3443 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3444   if (F.ScaledReg)
3445     RegUses.countRegister(F.ScaledReg, LUIdx);
3446   for (const SCEV *BaseReg : F.BaseRegs)
3447     RegUses.countRegister(BaseReg, LUIdx);
3448 }
3449 
3450 /// If the given formula has not yet been inserted, add it to the list, and
3451 /// return true. Return false otherwise.
3452 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3453   // Do not insert formula that we will not be able to expand.
3454   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3455          "Formula is illegal");
3456 
3457   if (!LU.InsertFormula(F, *L))
3458     return false;
3459 
3460   CountRegisters(F, LUIdx);
3461   return true;
3462 }
3463 
3464 /// Check for other uses of loop-invariant values which we're tracking. These
3465 /// other uses will pin these values in registers, making them less profitable
3466 /// for elimination.
3467 /// TODO: This currently misses non-constant addrec step registers.
3468 /// TODO: Should this give more weight to users inside the loop?
3469 void
3470 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3471   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3472   SmallPtrSet<const SCEV *, 32> Visited;
3473 
3474   // Don't collect outside uses if we are favoring postinc - the instructions in
3475   // the loop are more important than the ones outside of it.
3476   if (AMK == TTI::AMK_PostIndexed)
3477     return;
3478 
3479   while (!Worklist.empty()) {
3480     const SCEV *S = Worklist.pop_back_val();
3481 
3482     // Don't process the same SCEV twice
3483     if (!Visited.insert(S).second)
3484       continue;
3485 
3486     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3487       append_range(Worklist, N->operands());
3488     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3489       Worklist.push_back(C->getOperand());
3490     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3491       Worklist.push_back(D->getLHS());
3492       Worklist.push_back(D->getRHS());
3493     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3494       const Value *V = US->getValue();
3495       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3496         // Look for instructions defined outside the loop.
3497         if (L->contains(Inst)) continue;
3498       } else if (isa<Constant>(V))
3499         // Constants can be re-materialized.
3500         continue;
3501       for (const Use &U : V->uses()) {
3502         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3503         // Ignore non-instructions.
3504         if (!UserInst)
3505           continue;
3506         // Don't bother if the instruction is an EHPad.
3507         if (UserInst->isEHPad())
3508           continue;
3509         // Ignore instructions in other functions (as can happen with
3510         // Constants).
3511         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3512           continue;
3513         // Ignore instructions not dominated by the loop.
3514         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3515           UserInst->getParent() :
3516           cast<PHINode>(UserInst)->getIncomingBlock(
3517             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3518         if (!DT.dominates(L->getHeader(), UseBB))
3519           continue;
3520         // Don't bother if the instruction is in a BB which ends in an EHPad.
3521         if (UseBB->getTerminator()->isEHPad())
3522           continue;
3523 
3524         // Ignore cases in which the currently-examined value could come from
3525         // a basic block terminated with an EHPad. This checks all incoming
3526         // blocks of the phi node since it is possible that the same incoming
3527         // value comes from multiple basic blocks, only some of which may end
3528         // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3529         // pass would try to insert instructions into an EHPad, hitting an
3530         // assertion.
3531         if (isa<PHINode>(UserInst)) {
3532           const auto *PhiNode = cast<PHINode>(UserInst);
3533           bool HasIncompatibleEHPTerminatedBlock = false;
3534           llvm::Value *ExpectedValue = U;
3535           for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3536             if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3537               if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3538                 HasIncompatibleEHPTerminatedBlock = true;
3539                 break;
3540               }
3541             }
3542           }
3543           if (HasIncompatibleEHPTerminatedBlock) {
3544             continue;
3545           }
3546         }
3547 
3548         // Don't bother rewriting PHIs in catchswitch blocks.
3549         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3550           continue;
3551         // Ignore uses which are part of other SCEV expressions, to avoid
3552         // analyzing them multiple times.
3553         if (SE.isSCEVable(UserInst->getType())) {
3554           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3555           // If the user is a no-op, look through to its uses.
3556           if (!isa<SCEVUnknown>(UserS))
3557             continue;
3558           if (UserS == US) {
3559             Worklist.push_back(
3560               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3561             continue;
3562           }
3563         }
3564         // Ignore icmp instructions which are already being analyzed.
3565         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3566           unsigned OtherIdx = !U.getOperandNo();
3567           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3568           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3569             continue;
3570         }
3571 
3572         std::pair<size_t, int64_t> P = getUse(
3573             S, LSRUse::Basic, MemAccessTy());
3574         size_t LUIdx = P.first;
3575         int64_t Offset = P.second;
3576         LSRUse &LU = Uses[LUIdx];
3577         LSRFixup &LF = LU.getNewFixup();
3578         LF.UserInst = const_cast<Instruction *>(UserInst);
3579         LF.OperandValToReplace = U;
3580         LF.Offset = Offset;
3581         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3582         if (!LU.WidestFixupType ||
3583             SE.getTypeSizeInBits(LU.WidestFixupType) <
3584             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3585           LU.WidestFixupType = LF.OperandValToReplace->getType();
3586         InsertSupplementalFormula(US, LU, LUIdx);
3587         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3588         break;
3589       }
3590     }
3591   }
3592 }
3593 
3594 /// Split S into subexpressions which can be pulled out into separate
3595 /// registers. If C is non-null, multiply each subexpression by C.
3596 ///
3597 /// Return remainder expression after factoring the subexpressions captured by
3598 /// Ops. If Ops is complete, return NULL.
3599 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3600                                    SmallVectorImpl<const SCEV *> &Ops,
3601                                    const Loop *L,
3602                                    ScalarEvolution &SE,
3603                                    unsigned Depth = 0) {
3604   // Arbitrarily cap recursion to protect compile time.
3605   if (Depth >= 3)
3606     return S;
3607 
3608   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3609     // Break out add operands.
3610     for (const SCEV *S : Add->operands()) {
3611       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3612       if (Remainder)
3613         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3614     }
3615     return nullptr;
3616   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3617     // Split a non-zero base out of an addrec.
3618     if (AR->getStart()->isZero() || !AR->isAffine())
3619       return S;
3620 
3621     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3622                                             C, Ops, L, SE, Depth+1);
3623     // Split the non-zero AddRec unless it is part of a nested recurrence that
3624     // does not pertain to this loop.
3625     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3626       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3627       Remainder = nullptr;
3628     }
3629     if (Remainder != AR->getStart()) {
3630       if (!Remainder)
3631         Remainder = SE.getConstant(AR->getType(), 0);
3632       return SE.getAddRecExpr(Remainder,
3633                               AR->getStepRecurrence(SE),
3634                               AR->getLoop(),
3635                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3636                               SCEV::FlagAnyWrap);
3637     }
3638   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3639     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3640     if (Mul->getNumOperands() != 2)
3641       return S;
3642     if (const SCEVConstant *Op0 =
3643         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3644       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3645       const SCEV *Remainder =
3646         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3647       if (Remainder)
3648         Ops.push_back(SE.getMulExpr(C, Remainder));
3649       return nullptr;
3650     }
3651   }
3652   return S;
3653 }
3654 
3655 /// Return true if the SCEV represents a value that may end up as a
3656 /// post-increment operation.
3657 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3658                               LSRUse &LU, const SCEV *S, const Loop *L,
3659                               ScalarEvolution &SE) {
3660   if (LU.Kind != LSRUse::Address ||
3661       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3662     return false;
3663   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3664   if (!AR)
3665     return false;
3666   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3667   if (!isa<SCEVConstant>(LoopStep))
3668     return false;
3669   // Check if a post-indexed load/store can be used.
3670   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3671       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3672     const SCEV *LoopStart = AR->getStart();
3673     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3674       return true;
3675   }
3676   return false;
3677 }
3678 
3679 /// Helper function for LSRInstance::GenerateReassociations.
3680 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3681                                              const Formula &Base,
3682                                              unsigned Depth, size_t Idx,
3683                                              bool IsScaledReg) {
3684   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3685   // Don't generate reassociations for the base register of a value that
3686   // may generate a post-increment operator. The reason is that the
3687   // reassociations cause extra base+register formula to be created,
3688   // and possibly chosen, but the post-increment is more efficient.
3689   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3690     return;
3691   SmallVector<const SCEV *, 8> AddOps;
3692   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3693   if (Remainder)
3694     AddOps.push_back(Remainder);
3695 
3696   if (AddOps.size() == 1)
3697     return;
3698 
3699   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3700                                                      JE = AddOps.end();
3701        J != JE; ++J) {
3702     // Loop-variant "unknown" values are uninteresting; we won't be able to
3703     // do anything meaningful with them.
3704     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3705       continue;
3706 
3707     // Don't pull a constant into a register if the constant could be folded
3708     // into an immediate field.
3709     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3710                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3711       continue;
3712 
3713     // Collect all operands except *J.
3714     SmallVector<const SCEV *, 8> InnerAddOps(
3715         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3716     InnerAddOps.append(std::next(J),
3717                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3718 
3719     // Don't leave just a constant behind in a register if the constant could
3720     // be folded into an immediate field.
3721     if (InnerAddOps.size() == 1 &&
3722         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3723                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3724       continue;
3725 
3726     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3727     if (InnerSum->isZero())
3728       continue;
3729     Formula F = Base;
3730 
3731     // Add the remaining pieces of the add back into the new formula.
3732     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3733     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3734         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3735                                 InnerSumSC->getValue()->getZExtValue())) {
3736       F.UnfoldedOffset =
3737           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3738       if (IsScaledReg)
3739         F.ScaledReg = nullptr;
3740       else
3741         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3742     } else if (IsScaledReg)
3743       F.ScaledReg = InnerSum;
3744     else
3745       F.BaseRegs[Idx] = InnerSum;
3746 
3747     // Add J as its own register, or an unfolded immediate.
3748     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3749     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3750         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3751                                 SC->getValue()->getZExtValue()))
3752       F.UnfoldedOffset =
3753           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3754     else
3755       F.BaseRegs.push_back(*J);
3756     // We may have changed the number of register in base regs, adjust the
3757     // formula accordingly.
3758     F.canonicalize(*L);
3759 
3760     if (InsertFormula(LU, LUIdx, F))
3761       // If that formula hadn't been seen before, recurse to find more like
3762       // it.
3763       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3764       // Because just Depth is not enough to bound compile time.
3765       // This means that every time AddOps.size() is greater 16^x we will add
3766       // x to Depth.
3767       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3768                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3769   }
3770 }
3771 
3772 /// Split out subexpressions from adds and the bases of addrecs.
3773 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3774                                          Formula Base, unsigned Depth) {
3775   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3776   // Arbitrarily cap recursion to protect compile time.
3777   if (Depth >= 3)
3778     return;
3779 
3780   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3781     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3782 
3783   if (Base.Scale == 1)
3784     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3785                                /* Idx */ -1, /* IsScaledReg */ true);
3786 }
3787 
3788 ///  Generate a formula consisting of all of the loop-dominating registers added
3789 /// into a single register.
3790 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3791                                        Formula Base) {
3792   // This method is only interesting on a plurality of registers.
3793   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3794       (Base.UnfoldedOffset != 0) <= 1)
3795     return;
3796 
3797   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3798   // processing the formula.
3799   Base.unscale();
3800   SmallVector<const SCEV *, 4> Ops;
3801   Formula NewBase = Base;
3802   NewBase.BaseRegs.clear();
3803   Type *CombinedIntegerType = nullptr;
3804   for (const SCEV *BaseReg : Base.BaseRegs) {
3805     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3806         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3807       if (!CombinedIntegerType)
3808         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3809       Ops.push_back(BaseReg);
3810     }
3811     else
3812       NewBase.BaseRegs.push_back(BaseReg);
3813   }
3814 
3815   // If no register is relevant, we're done.
3816   if (Ops.size() == 0)
3817     return;
3818 
3819   // Utility function for generating the required variants of the combined
3820   // registers.
3821   auto GenerateFormula = [&](const SCEV *Sum) {
3822     Formula F = NewBase;
3823 
3824     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3825     // opportunity to fold something. For now, just ignore such cases
3826     // rather than proceed with zero in a register.
3827     if (Sum->isZero())
3828       return;
3829 
3830     F.BaseRegs.push_back(Sum);
3831     F.canonicalize(*L);
3832     (void)InsertFormula(LU, LUIdx, F);
3833   };
3834 
3835   // If we collected at least two registers, generate a formula combining them.
3836   if (Ops.size() > 1) {
3837     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3838     GenerateFormula(SE.getAddExpr(OpsCopy));
3839   }
3840 
3841   // If we have an unfolded offset, generate a formula combining it with the
3842   // registers collected.
3843   if (NewBase.UnfoldedOffset) {
3844     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3845     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3846                                  true));
3847     NewBase.UnfoldedOffset = 0;
3848     GenerateFormula(SE.getAddExpr(Ops));
3849   }
3850 }
3851 
3852 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3853 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3854                                               const Formula &Base, size_t Idx,
3855                                               bool IsScaledReg) {
3856   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3857   GlobalValue *GV = ExtractSymbol(G, SE);
3858   if (G->isZero() || !GV)
3859     return;
3860   Formula F = Base;
3861   F.BaseGV = GV;
3862   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3863     return;
3864   if (IsScaledReg)
3865     F.ScaledReg = G;
3866   else
3867     F.BaseRegs[Idx] = G;
3868   (void)InsertFormula(LU, LUIdx, F);
3869 }
3870 
3871 /// Generate reuse formulae using symbolic offsets.
3872 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3873                                           Formula Base) {
3874   // We can't add a symbolic offset if the address already contains one.
3875   if (Base.BaseGV) return;
3876 
3877   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3878     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3879   if (Base.Scale == 1)
3880     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3881                                 /* IsScaledReg */ true);
3882 }
3883 
3884 /// Helper function for LSRInstance::GenerateConstantOffsets.
3885 void LSRInstance::GenerateConstantOffsetsImpl(
3886     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3887     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3888 
3889   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3890     Formula F = Base;
3891     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3892 
3893     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3894       // Add the offset to the base register.
3895       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3896       // If it cancelled out, drop the base register, otherwise update it.
3897       if (NewG->isZero()) {
3898         if (IsScaledReg) {
3899           F.Scale = 0;
3900           F.ScaledReg = nullptr;
3901         } else
3902           F.deleteBaseReg(F.BaseRegs[Idx]);
3903         F.canonicalize(*L);
3904       } else if (IsScaledReg)
3905         F.ScaledReg = NewG;
3906       else
3907         F.BaseRegs[Idx] = NewG;
3908 
3909       (void)InsertFormula(LU, LUIdx, F);
3910     }
3911   };
3912 
3913   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3914 
3915   // With constant offsets and constant steps, we can generate pre-inc
3916   // accesses by having the offset equal the step. So, for access #0 with a
3917   // step of 8, we generate a G - 8 base which would require the first access
3918   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3919   // for itself and hopefully becomes the base for other accesses. This means
3920   // means that a single pre-indexed access can be generated to become the new
3921   // base pointer for each iteration of the loop, resulting in no extra add/sub
3922   // instructions for pointer updating.
3923   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3924     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3925       if (auto *StepRec =
3926           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3927         const APInt &StepInt = StepRec->getAPInt();
3928         int64_t Step = StepInt.isNegative() ?
3929           StepInt.getSExtValue() : StepInt.getZExtValue();
3930 
3931         for (int64_t Offset : Worklist) {
3932           Offset -= Step;
3933           GenerateOffset(G, Offset);
3934         }
3935       }
3936     }
3937   }
3938   for (int64_t Offset : Worklist)
3939     GenerateOffset(G, Offset);
3940 
3941   int64_t Imm = ExtractImmediate(G, SE);
3942   if (G->isZero() || Imm == 0)
3943     return;
3944   Formula F = Base;
3945   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3946   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3947     return;
3948   if (IsScaledReg) {
3949     F.ScaledReg = G;
3950   } else {
3951     F.BaseRegs[Idx] = G;
3952     // We may generate non canonical Formula if G is a recurrent expr reg
3953     // related with current loop while F.ScaledReg is not.
3954     F.canonicalize(*L);
3955   }
3956   (void)InsertFormula(LU, LUIdx, F);
3957 }
3958 
3959 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3960 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3961                                           Formula Base) {
3962   // TODO: For now, just add the min and max offset, because it usually isn't
3963   // worthwhile looking at everything inbetween.
3964   SmallVector<int64_t, 2> Worklist;
3965   Worklist.push_back(LU.MinOffset);
3966   if (LU.MaxOffset != LU.MinOffset)
3967     Worklist.push_back(LU.MaxOffset);
3968 
3969   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3970     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3971   if (Base.Scale == 1)
3972     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3973                                 /* IsScaledReg */ true);
3974 }
3975 
3976 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3977 /// == y -> x*c == y*c.
3978 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3979                                          Formula Base) {
3980   if (LU.Kind != LSRUse::ICmpZero) return;
3981 
3982   // Determine the integer type for the base formula.
3983   Type *IntTy = Base.getType();
3984   if (!IntTy) return;
3985   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3986 
3987   // Don't do this if there is more than one offset.
3988   if (LU.MinOffset != LU.MaxOffset) return;
3989 
3990   // Check if transformation is valid. It is illegal to multiply pointer.
3991   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3992     return;
3993   for (const SCEV *BaseReg : Base.BaseRegs)
3994     if (BaseReg->getType()->isPointerTy())
3995       return;
3996   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3997 
3998   // Check each interesting stride.
3999   for (int64_t Factor : Factors) {
4000     // Check that Factor can be represented by IntTy
4001     if (!ConstantInt::isValueValidForType(IntTy, Factor))
4002       continue;
4003     // Check that the multiplication doesn't overflow.
4004     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4005       continue;
4006     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4007     assert(Factor != 0 && "Zero factor not expected!");
4008     if (NewBaseOffset / Factor != Base.BaseOffset)
4009       continue;
4010     // If the offset will be truncated at this use, check that it is in bounds.
4011     if (!IntTy->isPointerTy() &&
4012         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4013       continue;
4014 
4015     // Check that multiplying with the use offset doesn't overflow.
4016     int64_t Offset = LU.MinOffset;
4017     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4018       continue;
4019     Offset = (uint64_t)Offset * Factor;
4020     if (Offset / Factor != LU.MinOffset)
4021       continue;
4022     // If the offset will be truncated at this use, check that it is in bounds.
4023     if (!IntTy->isPointerTy() &&
4024         !ConstantInt::isValueValidForType(IntTy, Offset))
4025       continue;
4026 
4027     Formula F = Base;
4028     F.BaseOffset = NewBaseOffset;
4029 
4030     // Check that this scale is legal.
4031     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4032       continue;
4033 
4034     // Compensate for the use having MinOffset built into it.
4035     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4036 
4037     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4038 
4039     // Check that multiplying with each base register doesn't overflow.
4040     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4041       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4042       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4043         goto next;
4044     }
4045 
4046     // Check that multiplying with the scaled register doesn't overflow.
4047     if (F.ScaledReg) {
4048       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4049       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4050         continue;
4051     }
4052 
4053     // Check that multiplying with the unfolded offset doesn't overflow.
4054     if (F.UnfoldedOffset != 0) {
4055       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4056           Factor == -1)
4057         continue;
4058       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4059       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4060         continue;
4061       // If the offset will be truncated, check that it is in bounds.
4062       if (!IntTy->isPointerTy() &&
4063           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4064         continue;
4065     }
4066 
4067     // If we make it here and it's legal, add it.
4068     (void)InsertFormula(LU, LUIdx, F);
4069   next:;
4070   }
4071 }
4072 
4073 /// Generate stride factor reuse formulae by making use of scaled-offset address
4074 /// modes, for example.
4075 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4076   // Determine the integer type for the base formula.
4077   Type *IntTy = Base.getType();
4078   if (!IntTy) return;
4079 
4080   // If this Formula already has a scaled register, we can't add another one.
4081   // Try to unscale the formula to generate a better scale.
4082   if (Base.Scale != 0 && !Base.unscale())
4083     return;
4084 
4085   assert(Base.Scale == 0 && "unscale did not did its job!");
4086 
4087   // Check each interesting stride.
4088   for (int64_t Factor : Factors) {
4089     Base.Scale = Factor;
4090     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4091     // Check whether this scale is going to be legal.
4092     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4093                     Base)) {
4094       // As a special-case, handle special out-of-loop Basic users specially.
4095       // TODO: Reconsider this special case.
4096       if (LU.Kind == LSRUse::Basic &&
4097           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4098                      LU.AccessTy, Base) &&
4099           LU.AllFixupsOutsideLoop)
4100         LU.Kind = LSRUse::Special;
4101       else
4102         continue;
4103     }
4104     // For an ICmpZero, negating a solitary base register won't lead to
4105     // new solutions.
4106     if (LU.Kind == LSRUse::ICmpZero &&
4107         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4108       continue;
4109     // For each addrec base reg, if its loop is current loop, apply the scale.
4110     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4111       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4112       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4113         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4114         if (FactorS->isZero())
4115           continue;
4116         // Divide out the factor, ignoring high bits, since we'll be
4117         // scaling the value back up in the end.
4118         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4119           if (!Quotient->isZero()) {
4120             // TODO: This could be optimized to avoid all the copying.
4121             Formula F = Base;
4122             F.ScaledReg = Quotient;
4123             F.deleteBaseReg(F.BaseRegs[i]);
4124             // The canonical representation of 1*reg is reg, which is already in
4125             // Base. In that case, do not try to insert the formula, it will be
4126             // rejected anyway.
4127             if (F.Scale == 1 && (F.BaseRegs.empty() ||
4128                                  (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4129               continue;
4130             // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4131             // non canonical Formula with ScaledReg's loop not being L.
4132             if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4133               F.canonicalize(*L);
4134             (void)InsertFormula(LU, LUIdx, F);
4135           }
4136       }
4137     }
4138   }
4139 }
4140 
4141 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4142 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4143 /// perform the extension/truncate and normalize again, as the normalized form
4144 /// can result in folds that are not valid in the post-inc use contexts. The
4145 /// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4146 static const SCEV *
4147 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4148                                    const SCEV *Expr, Type *ToTy,
4149                                    ScalarEvolution &SE) {
4150   const SCEV *Result = nullptr;
4151   for (auto &L : Loops) {
4152     auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4153     const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4154     const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4155     if (!New || (Result && New != Result))
4156       return nullptr;
4157     Result = New;
4158   }
4159 
4160   assert(Result && "failed to create expression");
4161   return Result;
4162 }
4163 
4164 /// Generate reuse formulae from different IV types.
4165 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4166   // Don't bother truncating symbolic values.
4167   if (Base.BaseGV) return;
4168 
4169   // Determine the integer type for the base formula.
4170   Type *DstTy = Base.getType();
4171   if (!DstTy) return;
4172   if (DstTy->isPointerTy())
4173     return;
4174 
4175   // It is invalid to extend a pointer type so exit early if ScaledReg or
4176   // any of the BaseRegs are pointers.
4177   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4178     return;
4179   if (any_of(Base.BaseRegs,
4180              [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4181     return;
4182 
4183   SmallVector<PostIncLoopSet> Loops;
4184   for (auto &LF : LU.Fixups)
4185     Loops.push_back(LF.PostIncLoops);
4186 
4187   for (Type *SrcTy : Types) {
4188     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4189       Formula F = Base;
4190 
4191       // Sometimes SCEV is able to prove zero during ext transform. It may
4192       // happen if SCEV did not do all possible transforms while creating the
4193       // initial node (maybe due to depth limitations), but it can do them while
4194       // taking ext.
4195       if (F.ScaledReg) {
4196         const SCEV *NewScaledReg =
4197             getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4198         if (!NewScaledReg || NewScaledReg->isZero())
4199           continue;
4200         F.ScaledReg = NewScaledReg;
4201       }
4202       bool HasZeroBaseReg = false;
4203       for (const SCEV *&BaseReg : F.BaseRegs) {
4204         const SCEV *NewBaseReg =
4205             getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4206         if (!NewBaseReg || NewBaseReg->isZero()) {
4207           HasZeroBaseReg = true;
4208           break;
4209         }
4210         BaseReg = NewBaseReg;
4211       }
4212       if (HasZeroBaseReg)
4213         continue;
4214 
4215       // TODO: This assumes we've done basic processing on all uses and
4216       // have an idea what the register usage is.
4217       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4218         continue;
4219 
4220       F.canonicalize(*L);
4221       (void)InsertFormula(LU, LUIdx, F);
4222     }
4223   }
4224 }
4225 
4226 namespace {
4227 
4228 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4229 /// modifications so that the search phase doesn't have to worry about the data
4230 /// structures moving underneath it.
4231 struct WorkItem {
4232   size_t LUIdx;
4233   int64_t Imm;
4234   const SCEV *OrigReg;
4235 
4236   WorkItem(size_t LI, int64_t I, const SCEV *R)
4237       : LUIdx(LI), Imm(I), OrigReg(R) {}
4238 
4239   void print(raw_ostream &OS) const;
4240   void dump() const;
4241 };
4242 
4243 } // end anonymous namespace
4244 
4245 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4246 void WorkItem::print(raw_ostream &OS) const {
4247   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4248      << " , add offset " << Imm;
4249 }
4250 
4251 LLVM_DUMP_METHOD void WorkItem::dump() const {
4252   print(errs()); errs() << '\n';
4253 }
4254 #endif
4255 
4256 /// Look for registers which are a constant distance apart and try to form reuse
4257 /// opportunities between them.
4258 void LSRInstance::GenerateCrossUseConstantOffsets() {
4259   // Group the registers by their value without any added constant offset.
4260   using ImmMapTy = std::map<int64_t, const SCEV *>;
4261 
4262   DenseMap<const SCEV *, ImmMapTy> Map;
4263   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4264   SmallVector<const SCEV *, 8> Sequence;
4265   for (const SCEV *Use : RegUses) {
4266     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4267     int64_t Imm = ExtractImmediate(Reg, SE);
4268     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4269     if (Pair.second)
4270       Sequence.push_back(Reg);
4271     Pair.first->second.insert(std::make_pair(Imm, Use));
4272     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4273   }
4274 
4275   // Now examine each set of registers with the same base value. Build up
4276   // a list of work to do and do the work in a separate step so that we're
4277   // not adding formulae and register counts while we're searching.
4278   SmallVector<WorkItem, 32> WorkItems;
4279   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4280   for (const SCEV *Reg : Sequence) {
4281     const ImmMapTy &Imms = Map.find(Reg)->second;
4282 
4283     // It's not worthwhile looking for reuse if there's only one offset.
4284     if (Imms.size() == 1)
4285       continue;
4286 
4287     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4288                for (const auto &Entry
4289                     : Imms) dbgs()
4290                << ' ' << Entry.first;
4291                dbgs() << '\n');
4292 
4293     // Examine each offset.
4294     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4295          J != JE; ++J) {
4296       const SCEV *OrigReg = J->second;
4297 
4298       int64_t JImm = J->first;
4299       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4300 
4301       if (!isa<SCEVConstant>(OrigReg) &&
4302           UsedByIndicesMap[Reg].count() == 1) {
4303         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4304                           << '\n');
4305         continue;
4306       }
4307 
4308       // Conservatively examine offsets between this orig reg a few selected
4309       // other orig regs.
4310       int64_t First = Imms.begin()->first;
4311       int64_t Last = std::prev(Imms.end())->first;
4312       // Compute (First + Last)  / 2 without overflow using the fact that
4313       // First + Last = 2 * (First + Last) + (First ^ Last).
4314       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4315       // If the result is negative and First is odd and Last even (or vice versa),
4316       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4317       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4318       ImmMapTy::const_iterator OtherImms[] = {
4319           Imms.begin(), std::prev(Imms.end()),
4320          Imms.lower_bound(Avg)};
4321       for (const auto &M : OtherImms) {
4322         if (M == J || M == JE) continue;
4323 
4324         // Compute the difference between the two.
4325         int64_t Imm = (uint64_t)JImm - M->first;
4326         for (unsigned LUIdx : UsedByIndices.set_bits())
4327           // Make a memo of this use, offset, and register tuple.
4328           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4329             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4330       }
4331     }
4332   }
4333 
4334   Map.clear();
4335   Sequence.clear();
4336   UsedByIndicesMap.clear();
4337   UniqueItems.clear();
4338 
4339   // Now iterate through the worklist and add new formulae.
4340   for (const WorkItem &WI : WorkItems) {
4341     size_t LUIdx = WI.LUIdx;
4342     LSRUse &LU = Uses[LUIdx];
4343     int64_t Imm = WI.Imm;
4344     const SCEV *OrigReg = WI.OrigReg;
4345 
4346     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4347     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4348     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4349 
4350     // TODO: Use a more targeted data structure.
4351     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4352       Formula F = LU.Formulae[L];
4353       // FIXME: The code for the scaled and unscaled registers looks
4354       // very similar but slightly different. Investigate if they
4355       // could be merged. That way, we would not have to unscale the
4356       // Formula.
4357       F.unscale();
4358       // Use the immediate in the scaled register.
4359       if (F.ScaledReg == OrigReg) {
4360         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4361         // Don't create 50 + reg(-50).
4362         if (F.referencesReg(SE.getSCEV(
4363                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4364           continue;
4365         Formula NewF = F;
4366         NewF.BaseOffset = Offset;
4367         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4368                         NewF))
4369           continue;
4370         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4371 
4372         // If the new scale is a constant in a register, and adding the constant
4373         // value to the immediate would produce a value closer to zero than the
4374         // immediate itself, then the formula isn't worthwhile.
4375         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4376           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4377               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4378                   .ule(std::abs(NewF.BaseOffset)))
4379             continue;
4380 
4381         // OK, looks good.
4382         NewF.canonicalize(*this->L);
4383         (void)InsertFormula(LU, LUIdx, NewF);
4384       } else {
4385         // Use the immediate in a base register.
4386         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4387           const SCEV *BaseReg = F.BaseRegs[N];
4388           if (BaseReg != OrigReg)
4389             continue;
4390           Formula NewF = F;
4391           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4392           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4393                           LU.Kind, LU.AccessTy, NewF)) {
4394             if (AMK == TTI::AMK_PostIndexed &&
4395                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4396               continue;
4397             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4398               continue;
4399             NewF = F;
4400             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4401           }
4402           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4403 
4404           // If the new formula has a constant in a register, and adding the
4405           // constant value to the immediate would produce a value closer to
4406           // zero than the immediate itself, then the formula isn't worthwhile.
4407           for (const SCEV *NewReg : NewF.BaseRegs)
4408             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4409               if ((C->getAPInt() + NewF.BaseOffset)
4410                       .abs()
4411                       .slt(std::abs(NewF.BaseOffset)) &&
4412                   (C->getAPInt() + NewF.BaseOffset).countr_zero() >=
4413                       (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset))
4414                 goto skip_formula;
4415 
4416           // Ok, looks good.
4417           NewF.canonicalize(*this->L);
4418           (void)InsertFormula(LU, LUIdx, NewF);
4419           break;
4420         skip_formula:;
4421         }
4422       }
4423     }
4424   }
4425 }
4426 
4427 /// Generate formulae for each use.
4428 void
4429 LSRInstance::GenerateAllReuseFormulae() {
4430   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4431   // queries are more precise.
4432   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4433     LSRUse &LU = Uses[LUIdx];
4434     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4435       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4436     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4437       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4438   }
4439   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4440     LSRUse &LU = Uses[LUIdx];
4441     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4442       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4443     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4444       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4445     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4446       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4447     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4448       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4449   }
4450   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4451     LSRUse &LU = Uses[LUIdx];
4452     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4453       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4454   }
4455 
4456   GenerateCrossUseConstantOffsets();
4457 
4458   LLVM_DEBUG(dbgs() << "\n"
4459                        "After generating reuse formulae:\n";
4460              print_uses(dbgs()));
4461 }
4462 
4463 /// If there are multiple formulae with the same set of registers used
4464 /// by other uses, pick the best one and delete the others.
4465 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4466   DenseSet<const SCEV *> VisitedRegs;
4467   SmallPtrSet<const SCEV *, 16> Regs;
4468   SmallPtrSet<const SCEV *, 16> LoserRegs;
4469 #ifndef NDEBUG
4470   bool ChangedFormulae = false;
4471 #endif
4472 
4473   // Collect the best formula for each unique set of shared registers. This
4474   // is reset for each use.
4475   using BestFormulaeTy =
4476       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4477 
4478   BestFormulaeTy BestFormulae;
4479 
4480   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4481     LSRUse &LU = Uses[LUIdx];
4482     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4483                dbgs() << '\n');
4484 
4485     bool Any = false;
4486     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4487          FIdx != NumForms; ++FIdx) {
4488       Formula &F = LU.Formulae[FIdx];
4489 
4490       // Some formulas are instant losers. For example, they may depend on
4491       // nonexistent AddRecs from other loops. These need to be filtered
4492       // immediately, otherwise heuristics could choose them over others leading
4493       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4494       // avoids the need to recompute this information across formulae using the
4495       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4496       // the corresponding bad register from the Regs set.
4497       Cost CostF(L, SE, TTI, AMK);
4498       Regs.clear();
4499       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4500       if (CostF.isLoser()) {
4501         // During initial formula generation, undesirable formulae are generated
4502         // by uses within other loops that have some non-trivial address mode or
4503         // use the postinc form of the IV. LSR needs to provide these formulae
4504         // as the basis of rediscovering the desired formula that uses an AddRec
4505         // corresponding to the existing phi. Once all formulae have been
4506         // generated, these initial losers may be pruned.
4507         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4508                    dbgs() << "\n");
4509       }
4510       else {
4511         SmallVector<const SCEV *, 4> Key;
4512         for (const SCEV *Reg : F.BaseRegs) {
4513           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4514             Key.push_back(Reg);
4515         }
4516         if (F.ScaledReg &&
4517             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4518           Key.push_back(F.ScaledReg);
4519         // Unstable sort by host order ok, because this is only used for
4520         // uniquifying.
4521         llvm::sort(Key);
4522 
4523         std::pair<BestFormulaeTy::const_iterator, bool> P =
4524           BestFormulae.insert(std::make_pair(Key, FIdx));
4525         if (P.second)
4526           continue;
4527 
4528         Formula &Best = LU.Formulae[P.first->second];
4529 
4530         Cost CostBest(L, SE, TTI, AMK);
4531         Regs.clear();
4532         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4533         if (CostF.isLess(CostBest))
4534           std::swap(F, Best);
4535         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4536                    dbgs() << "\n"
4537                              "    in favor of formula ";
4538                    Best.print(dbgs()); dbgs() << '\n');
4539       }
4540 #ifndef NDEBUG
4541       ChangedFormulae = true;
4542 #endif
4543       LU.DeleteFormula(F);
4544       --FIdx;
4545       --NumForms;
4546       Any = true;
4547     }
4548 
4549     // Now that we've filtered out some formulae, recompute the Regs set.
4550     if (Any)
4551       LU.RecomputeRegs(LUIdx, RegUses);
4552 
4553     // Reset this to prepare for the next use.
4554     BestFormulae.clear();
4555   }
4556 
4557   LLVM_DEBUG(if (ChangedFormulae) {
4558     dbgs() << "\n"
4559               "After filtering out undesirable candidates:\n";
4560     print_uses(dbgs());
4561   });
4562 }
4563 
4564 /// Estimate the worst-case number of solutions the solver might have to
4565 /// consider. It almost never considers this many solutions because it prune the
4566 /// search space, but the pruning isn't always sufficient.
4567 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4568   size_t Power = 1;
4569   for (const LSRUse &LU : Uses) {
4570     size_t FSize = LU.Formulae.size();
4571     if (FSize >= ComplexityLimit) {
4572       Power = ComplexityLimit;
4573       break;
4574     }
4575     Power *= FSize;
4576     if (Power >= ComplexityLimit)
4577       break;
4578   }
4579   return Power;
4580 }
4581 
4582 /// When one formula uses a superset of the registers of another formula, it
4583 /// won't help reduce register pressure (though it may not necessarily hurt
4584 /// register pressure); remove it to simplify the system.
4585 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4586   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4587     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4588 
4589     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4590                          "which use a superset of registers used by other "
4591                          "formulae.\n");
4592 
4593     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4594       LSRUse &LU = Uses[LUIdx];
4595       bool Any = false;
4596       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4597         Formula &F = LU.Formulae[i];
4598         // Look for a formula with a constant or GV in a register. If the use
4599         // also has a formula with that same value in an immediate field,
4600         // delete the one that uses a register.
4601         for (SmallVectorImpl<const SCEV *>::const_iterator
4602              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4603           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4604             Formula NewF = F;
4605             //FIXME: Formulas should store bitwidth to do wrapping properly.
4606             //       See PR41034.
4607             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4608             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4609                                 (I - F.BaseRegs.begin()));
4610             if (LU.HasFormulaWithSameRegs(NewF)) {
4611               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4612                          dbgs() << '\n');
4613               LU.DeleteFormula(F);
4614               --i;
4615               --e;
4616               Any = true;
4617               break;
4618             }
4619           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4620             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4621               if (!F.BaseGV) {
4622                 Formula NewF = F;
4623                 NewF.BaseGV = GV;
4624                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4625                                     (I - F.BaseRegs.begin()));
4626                 if (LU.HasFormulaWithSameRegs(NewF)) {
4627                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4628                              dbgs() << '\n');
4629                   LU.DeleteFormula(F);
4630                   --i;
4631                   --e;
4632                   Any = true;
4633                   break;
4634                 }
4635               }
4636           }
4637         }
4638       }
4639       if (Any)
4640         LU.RecomputeRegs(LUIdx, RegUses);
4641     }
4642 
4643     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4644   }
4645 }
4646 
4647 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4648 /// allocate a single register for them.
4649 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4650   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4651     return;
4652 
4653   LLVM_DEBUG(
4654       dbgs() << "The search space is too complex.\n"
4655                 "Narrowing the search space by assuming that uses separated "
4656                 "by a constant offset will use the same registers.\n");
4657 
4658   // This is especially useful for unrolled loops.
4659 
4660   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4661     LSRUse &LU = Uses[LUIdx];
4662     for (const Formula &F : LU.Formulae) {
4663       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4664         continue;
4665 
4666       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4667       if (!LUThatHas)
4668         continue;
4669 
4670       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4671                               LU.Kind, LU.AccessTy))
4672         continue;
4673 
4674       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4675 
4676       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4677 
4678       // Transfer the fixups of LU to LUThatHas.
4679       for (LSRFixup &Fixup : LU.Fixups) {
4680         Fixup.Offset += F.BaseOffset;
4681         LUThatHas->pushFixup(Fixup);
4682         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4683       }
4684 
4685       // Delete formulae from the new use which are no longer legal.
4686       bool Any = false;
4687       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4688         Formula &F = LUThatHas->Formulae[i];
4689         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4690                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4691           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4692           LUThatHas->DeleteFormula(F);
4693           --i;
4694           --e;
4695           Any = true;
4696         }
4697       }
4698 
4699       if (Any)
4700         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4701 
4702       // Delete the old use.
4703       DeleteUse(LU, LUIdx);
4704       --LUIdx;
4705       --NumUses;
4706       break;
4707     }
4708   }
4709 
4710   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4711 }
4712 
4713 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4714 /// we've done more filtering, as it may be able to find more formulae to
4715 /// eliminate.
4716 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4717   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4718     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4719 
4720     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4721                          "undesirable dedicated registers.\n");
4722 
4723     FilterOutUndesirableDedicatedRegisters();
4724 
4725     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4726   }
4727 }
4728 
4729 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4730 /// Pick the best one and delete the others.
4731 /// This narrowing heuristic is to keep as many formulae with different
4732 /// Scale and ScaledReg pair as possible while narrowing the search space.
4733 /// The benefit is that it is more likely to find out a better solution
4734 /// from a formulae set with more Scale and ScaledReg variations than
4735 /// a formulae set with the same Scale and ScaledReg. The picking winner
4736 /// reg heuristic will often keep the formulae with the same Scale and
4737 /// ScaledReg and filter others, and we want to avoid that if possible.
4738 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4739   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4740     return;
4741 
4742   LLVM_DEBUG(
4743       dbgs() << "The search space is too complex.\n"
4744                 "Narrowing the search space by choosing the best Formula "
4745                 "from the Formulae with the same Scale and ScaledReg.\n");
4746 
4747   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4748   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4749 
4750   BestFormulaeTy BestFormulae;
4751 #ifndef NDEBUG
4752   bool ChangedFormulae = false;
4753 #endif
4754   DenseSet<const SCEV *> VisitedRegs;
4755   SmallPtrSet<const SCEV *, 16> Regs;
4756 
4757   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4758     LSRUse &LU = Uses[LUIdx];
4759     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4760                dbgs() << '\n');
4761 
4762     // Return true if Formula FA is better than Formula FB.
4763     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4764       // First we will try to choose the Formula with fewer new registers.
4765       // For a register used by current Formula, the more the register is
4766       // shared among LSRUses, the less we increase the register number
4767       // counter of the formula.
4768       size_t FARegNum = 0;
4769       for (const SCEV *Reg : FA.BaseRegs) {
4770         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4771         FARegNum += (NumUses - UsedByIndices.count() + 1);
4772       }
4773       size_t FBRegNum = 0;
4774       for (const SCEV *Reg : FB.BaseRegs) {
4775         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4776         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4777       }
4778       if (FARegNum != FBRegNum)
4779         return FARegNum < FBRegNum;
4780 
4781       // If the new register numbers are the same, choose the Formula with
4782       // less Cost.
4783       Cost CostFA(L, SE, TTI, AMK);
4784       Cost CostFB(L, SE, TTI, AMK);
4785       Regs.clear();
4786       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4787       Regs.clear();
4788       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4789       return CostFA.isLess(CostFB);
4790     };
4791 
4792     bool Any = false;
4793     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4794          ++FIdx) {
4795       Formula &F = LU.Formulae[FIdx];
4796       if (!F.ScaledReg)
4797         continue;
4798       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4799       if (P.second)
4800         continue;
4801 
4802       Formula &Best = LU.Formulae[P.first->second];
4803       if (IsBetterThan(F, Best))
4804         std::swap(F, Best);
4805       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4806                  dbgs() << "\n"
4807                            "    in favor of formula ";
4808                  Best.print(dbgs()); dbgs() << '\n');
4809 #ifndef NDEBUG
4810       ChangedFormulae = true;
4811 #endif
4812       LU.DeleteFormula(F);
4813       --FIdx;
4814       --NumForms;
4815       Any = true;
4816     }
4817     if (Any)
4818       LU.RecomputeRegs(LUIdx, RegUses);
4819 
4820     // Reset this to prepare for the next use.
4821     BestFormulae.clear();
4822   }
4823 
4824   LLVM_DEBUG(if (ChangedFormulae) {
4825     dbgs() << "\n"
4826               "After filtering out undesirable candidates:\n";
4827     print_uses(dbgs());
4828   });
4829 }
4830 
4831 /// If we are over the complexity limit, filter out any post-inc prefering
4832 /// variables to only post-inc values.
4833 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4834   if (AMK != TTI::AMK_PostIndexed)
4835     return;
4836   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4837     return;
4838 
4839   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4840                        "Narrowing the search space by choosing the lowest "
4841                        "register Formula for PostInc Uses.\n");
4842 
4843   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4844     LSRUse &LU = Uses[LUIdx];
4845 
4846     if (LU.Kind != LSRUse::Address)
4847       continue;
4848     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4849         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4850       continue;
4851 
4852     size_t MinRegs = std::numeric_limits<size_t>::max();
4853     for (const Formula &F : LU.Formulae)
4854       MinRegs = std::min(F.getNumRegs(), MinRegs);
4855 
4856     bool Any = false;
4857     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4858          ++FIdx) {
4859       Formula &F = LU.Formulae[FIdx];
4860       if (F.getNumRegs() > MinRegs) {
4861         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4862                    dbgs() << "\n");
4863         LU.DeleteFormula(F);
4864         --FIdx;
4865         --NumForms;
4866         Any = true;
4867       }
4868     }
4869     if (Any)
4870       LU.RecomputeRegs(LUIdx, RegUses);
4871 
4872     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4873       break;
4874   }
4875 
4876   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4877 }
4878 
4879 /// The function delete formulas with high registers number expectation.
4880 /// Assuming we don't know the value of each formula (already delete
4881 /// all inefficient), generate probability of not selecting for each
4882 /// register.
4883 /// For example,
4884 /// Use1:
4885 ///  reg(a) + reg({0,+,1})
4886 ///  reg(a) + reg({-1,+,1}) + 1
4887 ///  reg({a,+,1})
4888 /// Use2:
4889 ///  reg(b) + reg({0,+,1})
4890 ///  reg(b) + reg({-1,+,1}) + 1
4891 ///  reg({b,+,1})
4892 /// Use3:
4893 ///  reg(c) + reg(b) + reg({0,+,1})
4894 ///  reg(c) + reg({b,+,1})
4895 ///
4896 /// Probability of not selecting
4897 ///                 Use1   Use2    Use3
4898 /// reg(a)         (1/3) *   1   *   1
4899 /// reg(b)           1   * (1/3) * (1/2)
4900 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4901 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4902 /// reg({a,+,1})   (2/3) *   1   *   1
4903 /// reg({b,+,1})     1   * (2/3) * (2/3)
4904 /// reg(c)           1   *   1   *   0
4905 ///
4906 /// Now count registers number mathematical expectation for each formula:
4907 /// Note that for each use we exclude probability if not selecting for the use.
4908 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4909 /// probabilty 1/3 of not selecting for Use1).
4910 /// Use1:
4911 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4912 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4913 ///  reg({a,+,1})                   1
4914 /// Use2:
4915 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4916 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4917 ///  reg({b,+,1})                   2/3
4918 /// Use3:
4919 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4920 ///  reg(c) + reg({b,+,1})          1 + 2/3
4921 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4922   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4923     return;
4924   // Ok, we have too many of formulae on our hands to conveniently handle.
4925   // Use a rough heuristic to thin out the list.
4926 
4927   // Set of Regs wich will be 100% used in final solution.
4928   // Used in each formula of a solution (in example above this is reg(c)).
4929   // We can skip them in calculations.
4930   SmallPtrSet<const SCEV *, 4> UniqRegs;
4931   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4932 
4933   // Map each register to probability of not selecting
4934   DenseMap <const SCEV *, float> RegNumMap;
4935   for (const SCEV *Reg : RegUses) {
4936     if (UniqRegs.count(Reg))
4937       continue;
4938     float PNotSel = 1;
4939     for (const LSRUse &LU : Uses) {
4940       if (!LU.Regs.count(Reg))
4941         continue;
4942       float P = LU.getNotSelectedProbability(Reg);
4943       if (P != 0.0)
4944         PNotSel *= P;
4945       else
4946         UniqRegs.insert(Reg);
4947     }
4948     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4949   }
4950 
4951   LLVM_DEBUG(
4952       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4953 
4954   // Delete formulas where registers number expectation is high.
4955   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4956     LSRUse &LU = Uses[LUIdx];
4957     // If nothing to delete - continue.
4958     if (LU.Formulae.size() < 2)
4959       continue;
4960     // This is temporary solution to test performance. Float should be
4961     // replaced with round independent type (based on integers) to avoid
4962     // different results for different target builds.
4963     float FMinRegNum = LU.Formulae[0].getNumRegs();
4964     float FMinARegNum = LU.Formulae[0].getNumRegs();
4965     size_t MinIdx = 0;
4966     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4967       Formula &F = LU.Formulae[i];
4968       float FRegNum = 0;
4969       float FARegNum = 0;
4970       for (const SCEV *BaseReg : F.BaseRegs) {
4971         if (UniqRegs.count(BaseReg))
4972           continue;
4973         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4974         if (isa<SCEVAddRecExpr>(BaseReg))
4975           FARegNum +=
4976               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4977       }
4978       if (const SCEV *ScaledReg = F.ScaledReg) {
4979         if (!UniqRegs.count(ScaledReg)) {
4980           FRegNum +=
4981               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4982           if (isa<SCEVAddRecExpr>(ScaledReg))
4983             FARegNum +=
4984                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4985         }
4986       }
4987       if (FMinRegNum > FRegNum ||
4988           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4989         FMinRegNum = FRegNum;
4990         FMinARegNum = FARegNum;
4991         MinIdx = i;
4992       }
4993     }
4994     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4995                dbgs() << " with min reg num " << FMinRegNum << '\n');
4996     if (MinIdx != 0)
4997       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4998     while (LU.Formulae.size() != 1) {
4999       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
5000                  dbgs() << '\n');
5001       LU.Formulae.pop_back();
5002     }
5003     LU.RecomputeRegs(LUIdx, RegUses);
5004     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5005     Formula &F = LU.Formulae[0];
5006     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
5007     // When we choose the formula, the regs become unique.
5008     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5009     if (F.ScaledReg)
5010       UniqRegs.insert(F.ScaledReg);
5011   }
5012   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5013 }
5014 
5015 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5016 // would the addressing offset +C would be legal where the negative offset -C is
5017 // not.
5018 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5019                                        ScalarEvolution &SE, const SCEV *Best,
5020                                        const SCEV *Reg,
5021                                        MemAccessTy AccessType) {
5022   if (Best->getType() != Reg->getType() ||
5023       (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5024        cast<SCEVAddRecExpr>(Best)->getLoop() !=
5025            cast<SCEVAddRecExpr>(Reg)->getLoop()))
5026     return false;
5027   const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5028   if (!Diff)
5029     return false;
5030 
5031   return TTI.isLegalAddressingMode(
5032              AccessType.MemTy, /*BaseGV=*/nullptr,
5033              /*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5034              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5035          !TTI.isLegalAddressingMode(
5036              AccessType.MemTy, /*BaseGV=*/nullptr,
5037              /*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5038              /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5039 }
5040 
5041 /// Pick a register which seems likely to be profitable, and then in any use
5042 /// which has any reference to that register, delete all formulae which do not
5043 /// reference that register.
5044 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5045   // With all other options exhausted, loop until the system is simple
5046   // enough to handle.
5047   SmallPtrSet<const SCEV *, 4> Taken;
5048   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5049     // Ok, we have too many of formulae on our hands to conveniently handle.
5050     // Use a rough heuristic to thin out the list.
5051     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5052 
5053     // Pick the register which is used by the most LSRUses, which is likely
5054     // to be a good reuse register candidate.
5055     const SCEV *Best = nullptr;
5056     unsigned BestNum = 0;
5057     for (const SCEV *Reg : RegUses) {
5058       if (Taken.count(Reg))
5059         continue;
5060       if (!Best) {
5061         Best = Reg;
5062         BestNum = RegUses.getUsedByIndices(Reg).count();
5063       } else {
5064         unsigned Count = RegUses.getUsedByIndices(Reg).count();
5065         if (Count > BestNum) {
5066           Best = Reg;
5067           BestNum = Count;
5068         }
5069 
5070         // If the scores are the same, but the Reg is simpler for the target
5071         // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5072         // handle +C but not -C), opt for the simpler formula.
5073         if (Count == BestNum) {
5074           int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5075           if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5076               IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5077                                          Uses[LUIdx].AccessTy)) {
5078             Best = Reg;
5079             BestNum = Count;
5080           }
5081         }
5082       }
5083     }
5084     assert(Best && "Failed to find best LSRUse candidate");
5085 
5086     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5087                       << " will yield profitable reuse.\n");
5088     Taken.insert(Best);
5089 
5090     // In any use with formulae which references this register, delete formulae
5091     // which don't reference it.
5092     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5093       LSRUse &LU = Uses[LUIdx];
5094       if (!LU.Regs.count(Best)) continue;
5095 
5096       bool Any = false;
5097       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5098         Formula &F = LU.Formulae[i];
5099         if (!F.referencesReg(Best)) {
5100           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
5101           LU.DeleteFormula(F);
5102           --e;
5103           --i;
5104           Any = true;
5105           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5106           continue;
5107         }
5108       }
5109 
5110       if (Any)
5111         LU.RecomputeRegs(LUIdx, RegUses);
5112     }
5113 
5114     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5115   }
5116 }
5117 
5118 /// If there are an extraordinary number of formulae to choose from, use some
5119 /// rough heuristics to prune down the number of formulae. This keeps the main
5120 /// solver from taking an extraordinary amount of time in some worst-case
5121 /// scenarios.
5122 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5123   NarrowSearchSpaceByDetectingSupersets();
5124   NarrowSearchSpaceByCollapsingUnrolledCode();
5125   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5126   if (FilterSameScaledReg)
5127     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5128   NarrowSearchSpaceByFilterPostInc();
5129   if (LSRExpNarrow)
5130     NarrowSearchSpaceByDeletingCostlyFormulas();
5131   else
5132     NarrowSearchSpaceByPickingWinnerRegs();
5133 }
5134 
5135 /// This is the recursive solver.
5136 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5137                                Cost &SolutionCost,
5138                                SmallVectorImpl<const Formula *> &Workspace,
5139                                const Cost &CurCost,
5140                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
5141                                DenseSet<const SCEV *> &VisitedRegs) const {
5142   // Some ideas:
5143   //  - prune more:
5144   //    - use more aggressive filtering
5145   //    - sort the formula so that the most profitable solutions are found first
5146   //    - sort the uses too
5147   //  - search faster:
5148   //    - don't compute a cost, and then compare. compare while computing a cost
5149   //      and bail early.
5150   //    - track register sets with SmallBitVector
5151 
5152   const LSRUse &LU = Uses[Workspace.size()];
5153 
5154   // If this use references any register that's already a part of the
5155   // in-progress solution, consider it a requirement that a formula must
5156   // reference that register in order to be considered. This prunes out
5157   // unprofitable searching.
5158   SmallSetVector<const SCEV *, 4> ReqRegs;
5159   for (const SCEV *S : CurRegs)
5160     if (LU.Regs.count(S))
5161       ReqRegs.insert(S);
5162 
5163   SmallPtrSet<const SCEV *, 16> NewRegs;
5164   Cost NewCost(L, SE, TTI, AMK);
5165   for (const Formula &F : LU.Formulae) {
5166     // Ignore formulae which may not be ideal in terms of register reuse of
5167     // ReqRegs.  The formula should use all required registers before
5168     // introducing new ones.
5169     // This can sometimes (notably when trying to favour postinc) lead to
5170     // sub-optimial decisions. There it is best left to the cost modelling to
5171     // get correct.
5172     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5173       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5174       for (const SCEV *Reg : ReqRegs) {
5175         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5176             is_contained(F.BaseRegs, Reg)) {
5177           --NumReqRegsToFind;
5178           if (NumReqRegsToFind == 0)
5179             break;
5180         }
5181       }
5182       if (NumReqRegsToFind != 0) {
5183         // If none of the formulae satisfied the required registers, then we could
5184         // clear ReqRegs and try again. Currently, we simply give up in this case.
5185         continue;
5186       }
5187     }
5188 
5189     // Evaluate the cost of the current formula. If it's already worse than
5190     // the current best, prune the search at that point.
5191     NewCost = CurCost;
5192     NewRegs = CurRegs;
5193     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5194     if (NewCost.isLess(SolutionCost)) {
5195       Workspace.push_back(&F);
5196       if (Workspace.size() != Uses.size()) {
5197         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5198                      NewRegs, VisitedRegs);
5199         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5200           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5201       } else {
5202         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5203                    dbgs() << ".\nRegs:\n";
5204                    for (const SCEV *S : NewRegs) dbgs()
5205                       << "- " << *S << "\n";
5206                    dbgs() << '\n');
5207 
5208         SolutionCost = NewCost;
5209         Solution = Workspace;
5210       }
5211       Workspace.pop_back();
5212     }
5213   }
5214 }
5215 
5216 /// Choose one formula from each use. Return the results in the given Solution
5217 /// vector.
5218 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5219   SmallVector<const Formula *, 8> Workspace;
5220   Cost SolutionCost(L, SE, TTI, AMK);
5221   SolutionCost.Lose();
5222   Cost CurCost(L, SE, TTI, AMK);
5223   SmallPtrSet<const SCEV *, 16> CurRegs;
5224   DenseSet<const SCEV *> VisitedRegs;
5225   Workspace.reserve(Uses.size());
5226 
5227   // SolveRecurse does all the work.
5228   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5229                CurRegs, VisitedRegs);
5230   if (Solution.empty()) {
5231     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5232     return;
5233   }
5234 
5235   // Ok, we've now made all our decisions.
5236   LLVM_DEBUG(dbgs() << "\n"
5237                        "The chosen solution requires ";
5238              SolutionCost.print(dbgs()); dbgs() << ":\n";
5239              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5240                dbgs() << "  ";
5241                Uses[i].print(dbgs());
5242                dbgs() << "\n"
5243                          "    ";
5244                Solution[i]->print(dbgs());
5245                dbgs() << '\n';
5246              });
5247 
5248   assert(Solution.size() == Uses.size() && "Malformed solution!");
5249 
5250   if (BaselineCost.isLess(SolutionCost)) {
5251     LLVM_DEBUG(dbgs() << "The baseline solution requires ";
5252                BaselineCost.print(dbgs()); dbgs() << "\n");
5253     if (!AllowDropSolutionIfLessProfitable)
5254       LLVM_DEBUG(
5255           dbgs() << "Baseline is more profitable than chosen solution, "
5256                     "add option 'lsr-drop-solution' to drop LSR solution.\n");
5257     else {
5258       LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5259                            "solution, dropping LSR solution.\n";);
5260       Solution.clear();
5261     }
5262   }
5263 }
5264 
5265 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5266 /// we can go while still being dominated by the input positions. This helps
5267 /// canonicalize the insert position, which encourages sharing.
5268 BasicBlock::iterator
5269 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5270                                  const SmallVectorImpl<Instruction *> &Inputs)
5271                                                                          const {
5272   Instruction *Tentative = &*IP;
5273   while (true) {
5274     bool AllDominate = true;
5275     Instruction *BetterPos = nullptr;
5276     // Don't bother attempting to insert before a catchswitch, their basic block
5277     // cannot have other non-PHI instructions.
5278     if (isa<CatchSwitchInst>(Tentative))
5279       return IP;
5280 
5281     for (Instruction *Inst : Inputs) {
5282       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5283         AllDominate = false;
5284         break;
5285       }
5286       // Attempt to find an insert position in the middle of the block,
5287       // instead of at the end, so that it can be used for other expansions.
5288       if (Tentative->getParent() == Inst->getParent() &&
5289           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5290         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5291     }
5292     if (!AllDominate)
5293       break;
5294     if (BetterPos)
5295       IP = BetterPos->getIterator();
5296     else
5297       IP = Tentative->getIterator();
5298 
5299     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5300     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5301 
5302     BasicBlock *IDom;
5303     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5304       if (!Rung) return IP;
5305       Rung = Rung->getIDom();
5306       if (!Rung) return IP;
5307       IDom = Rung->getBlock();
5308 
5309       // Don't climb into a loop though.
5310       const Loop *IDomLoop = LI.getLoopFor(IDom);
5311       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5312       if (IDomDepth <= IPLoopDepth &&
5313           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5314         break;
5315     }
5316 
5317     Tentative = IDom->getTerminator();
5318   }
5319 
5320   return IP;
5321 }
5322 
5323 /// Determine an input position which will be dominated by the operands and
5324 /// which will dominate the result.
5325 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5326     BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5327   // Collect some instructions which must be dominated by the
5328   // expanding replacement. These must be dominated by any operands that
5329   // will be required in the expansion.
5330   SmallVector<Instruction *, 4> Inputs;
5331   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5332     Inputs.push_back(I);
5333   if (LU.Kind == LSRUse::ICmpZero)
5334     if (Instruction *I =
5335           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5336       Inputs.push_back(I);
5337   if (LF.PostIncLoops.count(L)) {
5338     if (LF.isUseFullyOutsideLoop(L))
5339       Inputs.push_back(L->getLoopLatch()->getTerminator());
5340     else
5341       Inputs.push_back(IVIncInsertPos);
5342   }
5343   // The expansion must also be dominated by the increment positions of any
5344   // loops it for which it is using post-inc mode.
5345   for (const Loop *PIL : LF.PostIncLoops) {
5346     if (PIL == L) continue;
5347 
5348     // Be dominated by the loop exit.
5349     SmallVector<BasicBlock *, 4> ExitingBlocks;
5350     PIL->getExitingBlocks(ExitingBlocks);
5351     if (!ExitingBlocks.empty()) {
5352       BasicBlock *BB = ExitingBlocks[0];
5353       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5354         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5355       Inputs.push_back(BB->getTerminator());
5356     }
5357   }
5358 
5359   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5360          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5361          "Insertion point must be a normal instruction");
5362 
5363   // Then, climb up the immediate dominator tree as far as we can go while
5364   // still being dominated by the input positions.
5365   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5366 
5367   // Don't insert instructions before PHI nodes.
5368   while (isa<PHINode>(IP)) ++IP;
5369 
5370   // Ignore landingpad instructions.
5371   while (IP->isEHPad()) ++IP;
5372 
5373   // Ignore debug intrinsics.
5374   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5375 
5376   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5377   // IP consistent across expansions and allows the previously inserted
5378   // instructions to be reused by subsequent expansion.
5379   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5380     ++IP;
5381 
5382   return IP;
5383 }
5384 
5385 /// Emit instructions for the leading candidate expression for this LSRUse (this
5386 /// is called "expanding").
5387 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5388                            const Formula &F, BasicBlock::iterator IP,
5389                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5390   if (LU.RigidFormula)
5391     return LF.OperandValToReplace;
5392 
5393   // Determine an input position which will be dominated by the operands and
5394   // which will dominate the result.
5395   IP = AdjustInsertPositionForExpand(IP, LF, LU);
5396   Rewriter.setInsertPoint(&*IP);
5397 
5398   // Inform the Rewriter if we have a post-increment use, so that it can
5399   // perform an advantageous expansion.
5400   Rewriter.setPostInc(LF.PostIncLoops);
5401 
5402   // This is the type that the user actually needs.
5403   Type *OpTy = LF.OperandValToReplace->getType();
5404   // This will be the type that we'll initially expand to.
5405   Type *Ty = F.getType();
5406   if (!Ty)
5407     // No type known; just expand directly to the ultimate type.
5408     Ty = OpTy;
5409   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5410     // Expand directly to the ultimate type if it's the right size.
5411     Ty = OpTy;
5412   // This is the type to do integer arithmetic in.
5413   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5414 
5415   // Build up a list of operands to add together to form the full base.
5416   SmallVector<const SCEV *, 8> Ops;
5417 
5418   // Expand the BaseRegs portion.
5419   for (const SCEV *Reg : F.BaseRegs) {
5420     assert(!Reg->isZero() && "Zero allocated in a base register!");
5421 
5422     // If we're expanding for a post-inc user, make the post-inc adjustment.
5423     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5424     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5425   }
5426 
5427   // Expand the ScaledReg portion.
5428   Value *ICmpScaledV = nullptr;
5429   if (F.Scale != 0) {
5430     const SCEV *ScaledS = F.ScaledReg;
5431 
5432     // If we're expanding for a post-inc user, make the post-inc adjustment.
5433     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5434     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5435 
5436     if (LU.Kind == LSRUse::ICmpZero) {
5437       // Expand ScaleReg as if it was part of the base regs.
5438       if (F.Scale == 1)
5439         Ops.push_back(
5440             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5441       else {
5442         // An interesting way of "folding" with an icmp is to use a negated
5443         // scale, which we'll implement by inserting it into the other operand
5444         // of the icmp.
5445         assert(F.Scale == -1 &&
5446                "The only scale supported by ICmpZero uses is -1!");
5447         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5448       }
5449     } else {
5450       // Otherwise just expand the scaled register and an explicit scale,
5451       // which is expected to be matched as part of the address.
5452 
5453       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5454       // Unless the addressing mode will not be folded.
5455       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5456           isAMCompletelyFolded(TTI, LU, F)) {
5457         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5458         Ops.clear();
5459         Ops.push_back(SE.getUnknown(FullV));
5460       }
5461       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5462       if (F.Scale != 1)
5463         ScaledS =
5464             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5465       Ops.push_back(ScaledS);
5466     }
5467   }
5468 
5469   // Expand the GV portion.
5470   if (F.BaseGV) {
5471     // Flush the operand list to suppress SCEVExpander hoisting.
5472     if (!Ops.empty()) {
5473       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5474       Ops.clear();
5475       Ops.push_back(SE.getUnknown(FullV));
5476     }
5477     Ops.push_back(SE.getUnknown(F.BaseGV));
5478   }
5479 
5480   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5481   // unfolded offsets. LSR assumes they both live next to their uses.
5482   if (!Ops.empty()) {
5483     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5484     Ops.clear();
5485     Ops.push_back(SE.getUnknown(FullV));
5486   }
5487 
5488   // Expand the immediate portion.
5489   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5490   if (Offset != 0) {
5491     if (LU.Kind == LSRUse::ICmpZero) {
5492       // The other interesting way of "folding" with an ICmpZero is to use a
5493       // negated immediate.
5494       if (!ICmpScaledV)
5495         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5496       else {
5497         Ops.push_back(SE.getUnknown(ICmpScaledV));
5498         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5499       }
5500     } else {
5501       // Just add the immediate values. These again are expected to be matched
5502       // as part of the address.
5503       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5504     }
5505   }
5506 
5507   // Expand the unfolded offset portion.
5508   int64_t UnfoldedOffset = F.UnfoldedOffset;
5509   if (UnfoldedOffset != 0) {
5510     // Just add the immediate values.
5511     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5512                                                        UnfoldedOffset)));
5513   }
5514 
5515   // Emit instructions summing all the operands.
5516   const SCEV *FullS = Ops.empty() ?
5517                       SE.getConstant(IntTy, 0) :
5518                       SE.getAddExpr(Ops);
5519   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5520 
5521   // We're done expanding now, so reset the rewriter.
5522   Rewriter.clearPostInc();
5523 
5524   // An ICmpZero Formula represents an ICmp which we're handling as a
5525   // comparison against zero. Now that we've expanded an expression for that
5526   // form, update the ICmp's other operand.
5527   if (LU.Kind == LSRUse::ICmpZero) {
5528     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5529     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5530       DeadInsts.emplace_back(OperandIsInstr);
5531     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5532                            "a scale at the same time!");
5533     if (F.Scale == -1) {
5534       if (ICmpScaledV->getType() != OpTy) {
5535         Instruction *Cast =
5536           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5537                                                    OpTy, false),
5538                            ICmpScaledV, OpTy, "tmp", CI);
5539         ICmpScaledV = Cast;
5540       }
5541       CI->setOperand(1, ICmpScaledV);
5542     } else {
5543       // A scale of 1 means that the scale has been expanded as part of the
5544       // base regs.
5545       assert((F.Scale == 0 || F.Scale == 1) &&
5546              "ICmp does not support folding a global value and "
5547              "a scale at the same time!");
5548       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5549                                            -(uint64_t)Offset);
5550       if (C->getType() != OpTy) {
5551         C = ConstantFoldCastOperand(
5552             CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy,
5553             CI->getModule()->getDataLayout());
5554         assert(C && "Cast of ConstantInt should have folded");
5555       }
5556 
5557       CI->setOperand(1, C);
5558     }
5559   }
5560 
5561   return FullV;
5562 }
5563 
5564 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5565 /// effectively happens in their predecessor blocks, so the expression may need
5566 /// to be expanded in multiple places.
5567 void LSRInstance::RewriteForPHI(
5568     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5569     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5570   DenseMap<BasicBlock *, Value *> Inserted;
5571 
5572   // Inserting instructions in the loop and using them as PHI's input could
5573   // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
5574   // corresponding incoming block is not loop exiting). So collect all such
5575   // instructions to form LCSSA for them later.
5576   SmallVector<Instruction *, 4> InsertedNonLCSSAInsts;
5577 
5578   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5579     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5580       bool needUpdateFixups = false;
5581       BasicBlock *BB = PN->getIncomingBlock(i);
5582 
5583       // If this is a critical edge, split the edge so that we do not insert
5584       // the code on all predecessor/successor paths.  We do this unless this
5585       // is the canonical backedge for this loop, which complicates post-inc
5586       // users.
5587       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5588           !isa<IndirectBrInst>(BB->getTerminator()) &&
5589           !isa<CatchSwitchInst>(BB->getTerminator())) {
5590         BasicBlock *Parent = PN->getParent();
5591         Loop *PNLoop = LI.getLoopFor(Parent);
5592         if (!PNLoop || Parent != PNLoop->getHeader()) {
5593           // Split the critical edge.
5594           BasicBlock *NewBB = nullptr;
5595           if (!Parent->isLandingPad()) {
5596             NewBB =
5597                 SplitCriticalEdge(BB, Parent,
5598                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5599                                       .setMergeIdenticalEdges()
5600                                       .setKeepOneInputPHIs());
5601           } else {
5602             SmallVector<BasicBlock*, 2> NewBBs;
5603             DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
5604             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI);
5605             NewBB = NewBBs[0];
5606           }
5607           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5608           // phi predecessors are identical. The simple thing to do is skip
5609           // splitting in this case rather than complicate the API.
5610           if (NewBB) {
5611             // If PN is outside of the loop and BB is in the loop, we want to
5612             // move the block to be immediately before the PHI block, not
5613             // immediately after BB.
5614             if (L->contains(BB) && !L->contains(PN))
5615               NewBB->moveBefore(PN->getParent());
5616 
5617             // Splitting the edge can reduce the number of PHI entries we have.
5618             e = PN->getNumIncomingValues();
5619             BB = NewBB;
5620             i = PN->getBasicBlockIndex(BB);
5621 
5622             needUpdateFixups = true;
5623           }
5624         }
5625       }
5626 
5627       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5628         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5629       if (!Pair.second)
5630         PN->setIncomingValue(i, Pair.first->second);
5631       else {
5632         Value *FullV =
5633             Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5634 
5635         // If this is reuse-by-noop-cast, insert the noop cast.
5636         Type *OpTy = LF.OperandValToReplace->getType();
5637         if (FullV->getType() != OpTy)
5638           FullV =
5639             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5640                                                      OpTy, false),
5641                              FullV, LF.OperandValToReplace->getType(),
5642                              "tmp", BB->getTerminator());
5643 
5644         // If the incoming block for this value is not in the loop, it means the
5645         // current PHI is not in a loop exit, so we must create a LCSSA PHI for
5646         // the inserted value.
5647         if (auto *I = dyn_cast<Instruction>(FullV))
5648           if (L->contains(I) && !L->contains(BB))
5649             InsertedNonLCSSAInsts.push_back(I);
5650 
5651         PN->setIncomingValue(i, FullV);
5652         Pair.first->second = FullV;
5653       }
5654 
5655       // If LSR splits critical edge and phi node has other pending
5656       // fixup operands, we need to update those pending fixups. Otherwise
5657       // formulae will not be implemented completely and some instructions
5658       // will not be eliminated.
5659       if (needUpdateFixups) {
5660         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5661           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5662             // If fixup is supposed to rewrite some operand in the phi
5663             // that was just updated, it may be already moved to
5664             // another phi node. Such fixup requires update.
5665             if (Fixup.UserInst == PN) {
5666               // Check if the operand we try to replace still exists in the
5667               // original phi.
5668               bool foundInOriginalPHI = false;
5669               for (const auto &val : PN->incoming_values())
5670                 if (val == Fixup.OperandValToReplace) {
5671                   foundInOriginalPHI = true;
5672                   break;
5673                 }
5674 
5675               // If fixup operand found in original PHI - nothing to do.
5676               if (foundInOriginalPHI)
5677                 continue;
5678 
5679               // Otherwise it might be moved to another PHI and requires update.
5680               // If fixup operand not found in any of the incoming blocks that
5681               // means we have already rewritten it - nothing to do.
5682               for (const auto &Block : PN->blocks())
5683                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5684                      ++I) {
5685                   PHINode *NewPN = cast<PHINode>(I);
5686                   for (const auto &val : NewPN->incoming_values())
5687                     if (val == Fixup.OperandValToReplace)
5688                       Fixup.UserInst = NewPN;
5689                 }
5690             }
5691       }
5692     }
5693 
5694   formLCSSAForInstructions(InsertedNonLCSSAInsts, DT, LI, &SE);
5695 }
5696 
5697 /// Emit instructions for the leading candidate expression for this LSRUse (this
5698 /// is called "expanding"), and update the UserInst to reference the newly
5699 /// expanded value.
5700 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5701                           const Formula &F,
5702                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5703   // First, find an insertion point that dominates UserInst. For PHI nodes,
5704   // find the nearest block which dominates all the relevant uses.
5705   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5706     RewriteForPHI(PN, LU, LF, F, DeadInsts);
5707   } else {
5708     Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5709 
5710     // If this is reuse-by-noop-cast, insert the noop cast.
5711     Type *OpTy = LF.OperandValToReplace->getType();
5712     if (FullV->getType() != OpTy) {
5713       Instruction *Cast =
5714         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5715                          FullV, OpTy, "tmp", LF.UserInst);
5716       FullV = Cast;
5717     }
5718 
5719     // Update the user. ICmpZero is handled specially here (for now) because
5720     // Expand may have updated one of the operands of the icmp already, and
5721     // its new value may happen to be equal to LF.OperandValToReplace, in
5722     // which case doing replaceUsesOfWith leads to replacing both operands
5723     // with the same value. TODO: Reorganize this.
5724     if (LU.Kind == LSRUse::ICmpZero)
5725       LF.UserInst->setOperand(0, FullV);
5726     else
5727       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5728   }
5729 
5730   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5731     DeadInsts.emplace_back(OperandIsInstr);
5732 }
5733 
5734 // Trying to hoist the IVInc to loop header if all IVInc users are in
5735 // the loop header. It will help backend to generate post index load/store
5736 // when the latch block is different from loop header block.
5737 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
5738                           const LSRUse &LU, Instruction *IVIncInsertPos,
5739                           Loop *L) {
5740   if (LU.Kind != LSRUse::Address)
5741     return false;
5742 
5743   // For now this code do the conservative optimization, only work for
5744   // the header block. Later we can hoist the IVInc to the block post
5745   // dominate all users.
5746   BasicBlock *LHeader = L->getHeader();
5747   if (IVIncInsertPos->getParent() == LHeader)
5748     return false;
5749 
5750   if (!Fixup.OperandValToReplace ||
5751       any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
5752         Instruction *UI = cast<Instruction>(U);
5753         return UI->getParent() != LHeader;
5754       }))
5755     return false;
5756 
5757   Instruction *I = Fixup.UserInst;
5758   Type *Ty = I->getType();
5759   return Ty->isIntegerTy() &&
5760          ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
5761           (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
5762 }
5763 
5764 /// Rewrite all the fixup locations with new values, following the chosen
5765 /// solution.
5766 void LSRInstance::ImplementSolution(
5767     const SmallVectorImpl<const Formula *> &Solution) {
5768   // Keep track of instructions we may have made dead, so that
5769   // we can remove them after we are done working.
5770   SmallVector<WeakTrackingVH, 16> DeadInsts;
5771 
5772   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5773   for (const IVChain &Chain : IVChainVec) {
5774     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5775       Rewriter.setChainedPhi(PN);
5776   }
5777 
5778   // Expand the new value definitions and update the users.
5779   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5780     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5781       Instruction *InsertPos =
5782           canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
5783               ? L->getHeader()->getTerminator()
5784               : IVIncInsertPos;
5785       Rewriter.setIVIncInsertPos(L, InsertPos);
5786       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5787       Changed = true;
5788     }
5789 
5790   for (const IVChain &Chain : IVChainVec) {
5791     GenerateIVChain(Chain, DeadInsts);
5792     Changed = true;
5793   }
5794 
5795   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5796     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5797       ScalarEvolutionIVs.push_back(IV);
5798 
5799   // Clean up after ourselves. This must be done before deleting any
5800   // instructions.
5801   Rewriter.clear();
5802 
5803   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5804                                                                   &TLI, MSSAU);
5805 
5806   // In our cost analysis above, we assume that each addrec consumes exactly
5807   // one register, and arrange to have increments inserted just before the
5808   // latch to maximimize the chance this is true.  However, if we reused
5809   // existing IVs, we now need to move the increments to match our
5810   // expectations.  Otherwise, our cost modeling results in us having a
5811   // chosen a non-optimal result for the actual schedule.  (And yes, this
5812   // scheduling decision does impact later codegen.)
5813   for (PHINode &PN : L->getHeader()->phis()) {
5814     BinaryOperator *BO = nullptr;
5815     Value *Start = nullptr, *Step = nullptr;
5816     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5817       continue;
5818 
5819     switch (BO->getOpcode()) {
5820     case Instruction::Sub:
5821       if (BO->getOperand(0) != &PN)
5822         // sub is non-commutative - match handling elsewhere in LSR
5823         continue;
5824       break;
5825     case Instruction::Add:
5826       break;
5827     default:
5828       continue;
5829     };
5830 
5831     if (!isa<Constant>(Step))
5832       // If not a constant step, might increase register pressure
5833       // (We assume constants have been canonicalized to RHS)
5834       continue;
5835 
5836     if (BO->getParent() == IVIncInsertPos->getParent())
5837       // Only bother moving across blocks.  Isel can handle block local case.
5838       continue;
5839 
5840     // Can we legally schedule inc at the desired point?
5841     if (!llvm::all_of(BO->uses(),
5842                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5843       continue;
5844     BO->moveBefore(IVIncInsertPos);
5845     Changed = true;
5846   }
5847 
5848 
5849 }
5850 
5851 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5852                          DominatorTree &DT, LoopInfo &LI,
5853                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5854                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5855     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5856       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5857                             ? PreferredAddresingMode
5858                             : TTI.getPreferredAddressingMode(L, &SE)),
5859       Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5860       BaselineCost(L, SE, TTI, AMK) {
5861   // If LoopSimplify form is not available, stay out of trouble.
5862   if (!L->isLoopSimplifyForm())
5863     return;
5864 
5865   // If there's no interesting work to be done, bail early.
5866   if (IU.empty()) return;
5867 
5868   // If there's too much analysis to be done, bail early. We won't be able to
5869   // model the problem anyway.
5870   unsigned NumUsers = 0;
5871   for (const IVStrideUse &U : IU) {
5872     if (++NumUsers > MaxIVUsers) {
5873       (void)U;
5874       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5875                         << "\n");
5876       return;
5877     }
5878     // Bail out if we have a PHI on an EHPad that gets a value from a
5879     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5880     // no good place to stick any instructions.
5881     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5882        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5883        if (isa<FuncletPadInst>(FirstNonPHI) ||
5884            isa<CatchSwitchInst>(FirstNonPHI))
5885          for (BasicBlock *PredBB : PN->blocks())
5886            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5887              return;
5888     }
5889   }
5890 
5891   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5892              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5893              dbgs() << ":\n");
5894 
5895   // Configure SCEVExpander already now, so the correct mode is used for
5896   // isSafeToExpand() checks.
5897 #ifndef NDEBUG
5898   Rewriter.setDebugType(DEBUG_TYPE);
5899 #endif
5900   Rewriter.disableCanonicalMode();
5901   Rewriter.enableLSRMode();
5902 
5903   // First, perform some low-level loop optimizations.
5904   OptimizeShadowIV();
5905   OptimizeLoopTermCond();
5906 
5907   // If loop preparation eliminates all interesting IV users, bail.
5908   if (IU.empty()) return;
5909 
5910   // Skip nested loops until we can model them better with formulae.
5911   if (!L->isInnermost()) {
5912     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5913     return;
5914   }
5915 
5916   // Start collecting data and preparing for the solver.
5917   // If number of registers is not the major cost, we cannot benefit from the
5918   // current profitable chain optimization which is based on number of
5919   // registers.
5920   // FIXME: add profitable chain optimization for other kinds major cost, for
5921   // example number of instructions.
5922   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5923     CollectChains();
5924   CollectInterestingTypesAndFactors();
5925   CollectFixupsAndInitialFormulae();
5926   CollectLoopInvariantFixupsAndFormulae();
5927 
5928   if (Uses.empty())
5929     return;
5930 
5931   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5932              print_uses(dbgs()));
5933 
5934   // Now use the reuse data to generate a bunch of interesting ways
5935   // to formulate the values needed for the uses.
5936   GenerateAllReuseFormulae();
5937 
5938   FilterOutUndesirableDedicatedRegisters();
5939   NarrowSearchSpaceUsingHeuristics();
5940 
5941   SmallVector<const Formula *, 8> Solution;
5942   Solve(Solution);
5943 
5944   // Release memory that is no longer needed.
5945   Factors.clear();
5946   Types.clear();
5947   RegUses.clear();
5948 
5949   if (Solution.empty())
5950     return;
5951 
5952 #ifndef NDEBUG
5953   // Formulae should be legal.
5954   for (const LSRUse &LU : Uses) {
5955     for (const Formula &F : LU.Formulae)
5956       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5957                         F) && "Illegal formula generated!");
5958   };
5959 #endif
5960 
5961   // Now that we've decided what we want, make it so.
5962   ImplementSolution(Solution);
5963 }
5964 
5965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5966 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5967   if (Factors.empty() && Types.empty()) return;
5968 
5969   OS << "LSR has identified the following interesting factors and types: ";
5970   bool First = true;
5971 
5972   for (int64_t Factor : Factors) {
5973     if (!First) OS << ", ";
5974     First = false;
5975     OS << '*' << Factor;
5976   }
5977 
5978   for (Type *Ty : Types) {
5979     if (!First) OS << ", ";
5980     First = false;
5981     OS << '(' << *Ty << ')';
5982   }
5983   OS << '\n';
5984 }
5985 
5986 void LSRInstance::print_fixups(raw_ostream &OS) const {
5987   OS << "LSR is examining the following fixup sites:\n";
5988   for (const LSRUse &LU : Uses)
5989     for (const LSRFixup &LF : LU.Fixups) {
5990       dbgs() << "  ";
5991       LF.print(OS);
5992       OS << '\n';
5993     }
5994 }
5995 
5996 void LSRInstance::print_uses(raw_ostream &OS) const {
5997   OS << "LSR is examining the following uses:\n";
5998   for (const LSRUse &LU : Uses) {
5999     dbgs() << "  ";
6000     LU.print(OS);
6001     OS << '\n';
6002     for (const Formula &F : LU.Formulae) {
6003       OS << "    ";
6004       F.print(OS);
6005       OS << '\n';
6006     }
6007   }
6008 }
6009 
6010 void LSRInstance::print(raw_ostream &OS) const {
6011   print_factors_and_types(OS);
6012   print_fixups(OS);
6013   print_uses(OS);
6014 }
6015 
6016 LLVM_DUMP_METHOD void LSRInstance::dump() const {
6017   print(errs()); errs() << '\n';
6018 }
6019 #endif
6020 
6021 namespace {
6022 
6023 class LoopStrengthReduce : public LoopPass {
6024 public:
6025   static char ID; // Pass ID, replacement for typeid
6026 
6027   LoopStrengthReduce();
6028 
6029 private:
6030   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6031   void getAnalysisUsage(AnalysisUsage &AU) const override;
6032 };
6033 
6034 } // end anonymous namespace
6035 
6036 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6037   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6038 }
6039 
6040 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6041   // We split critical edges, so we change the CFG.  However, we do update
6042   // many analyses if they are around.
6043   AU.addPreservedID(LoopSimplifyID);
6044 
6045   AU.addRequired<LoopInfoWrapperPass>();
6046   AU.addPreserved<LoopInfoWrapperPass>();
6047   AU.addRequiredID(LoopSimplifyID);
6048   AU.addRequired<DominatorTreeWrapperPass>();
6049   AU.addPreserved<DominatorTreeWrapperPass>();
6050   AU.addRequired<ScalarEvolutionWrapperPass>();
6051   AU.addPreserved<ScalarEvolutionWrapperPass>();
6052   AU.addRequired<AssumptionCacheTracker>();
6053   AU.addRequired<TargetLibraryInfoWrapperPass>();
6054   // Requiring LoopSimplify a second time here prevents IVUsers from running
6055   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6056   AU.addRequiredID(LoopSimplifyID);
6057   AU.addRequired<IVUsersWrapperPass>();
6058   AU.addPreserved<IVUsersWrapperPass>();
6059   AU.addRequired<TargetTransformInfoWrapperPass>();
6060   AU.addPreserved<MemorySSAWrapperPass>();
6061 }
6062 
6063 namespace {
6064 
6065 /// Enables more convenient iteration over a DWARF expression vector.
6066 static iterator_range<llvm::DIExpression::expr_op_iterator>
6067 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6068   llvm::DIExpression::expr_op_iterator Begin =
6069       llvm::DIExpression::expr_op_iterator(Expr.begin());
6070   llvm::DIExpression::expr_op_iterator End =
6071       llvm::DIExpression::expr_op_iterator(Expr.end());
6072   return {Begin, End};
6073 }
6074 
6075 struct SCEVDbgValueBuilder {
6076   SCEVDbgValueBuilder() = default;
6077   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6078 
6079   void clone(const SCEVDbgValueBuilder &Base) {
6080     LocationOps = Base.LocationOps;
6081     Expr = Base.Expr;
6082   }
6083 
6084   void clear() {
6085     LocationOps.clear();
6086     Expr.clear();
6087   }
6088 
6089   /// The DIExpression as we translate the SCEV.
6090   SmallVector<uint64_t, 6> Expr;
6091   /// The location ops of the DIExpression.
6092   SmallVector<Value *, 2> LocationOps;
6093 
6094   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6095   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6096 
6097   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6098   /// in the set of values referenced by the expression.
6099   void pushLocation(llvm::Value *V) {
6100     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6101     auto *It = llvm::find(LocationOps, V);
6102     unsigned ArgIndex = 0;
6103     if (It != LocationOps.end()) {
6104       ArgIndex = std::distance(LocationOps.begin(), It);
6105     } else {
6106       ArgIndex = LocationOps.size();
6107       LocationOps.push_back(V);
6108     }
6109     Expr.push_back(ArgIndex);
6110   }
6111 
6112   void pushValue(const SCEVUnknown *U) {
6113     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6114     pushLocation(V);
6115   }
6116 
6117   bool pushConst(const SCEVConstant *C) {
6118     if (C->getAPInt().getSignificantBits() > 64)
6119       return false;
6120     Expr.push_back(llvm::dwarf::DW_OP_consts);
6121     Expr.push_back(C->getAPInt().getSExtValue());
6122     return true;
6123   }
6124 
6125   // Iterating the expression as DWARF ops is convenient when updating
6126   // DWARF_OP_LLVM_args.
6127   iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6128     return ToDwarfOpIter(Expr);
6129   }
6130 
6131   /// Several SCEV types are sequences of the same arithmetic operator applied
6132   /// to constants and values that may be extended or truncated.
6133   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6134                           uint64_t DwarfOp) {
6135     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6136            "Expected arithmetic SCEV type");
6137     bool Success = true;
6138     unsigned EmitOperator = 0;
6139     for (const auto &Op : CommExpr->operands()) {
6140       Success &= pushSCEV(Op);
6141 
6142       if (EmitOperator >= 1)
6143         pushOperator(DwarfOp);
6144       ++EmitOperator;
6145     }
6146     return Success;
6147   }
6148 
6149   // TODO: Identify and omit noop casts.
6150   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6151     const llvm::SCEV *Inner = C->getOperand(0);
6152     const llvm::Type *Type = C->getType();
6153     uint64_t ToWidth = Type->getIntegerBitWidth();
6154     bool Success = pushSCEV(Inner);
6155     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6156                           IsSigned ? llvm::dwarf::DW_ATE_signed
6157                                    : llvm::dwarf::DW_ATE_unsigned};
6158     for (const auto &Op : CastOps)
6159       pushOperator(Op);
6160     return Success;
6161   }
6162 
6163   // TODO: MinMax - although these haven't been encountered in the test suite.
6164   bool pushSCEV(const llvm::SCEV *S) {
6165     bool Success = true;
6166     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6167       Success &= pushConst(StartInt);
6168 
6169     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6170       if (!U->getValue())
6171         return false;
6172       pushLocation(U->getValue());
6173 
6174     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6175       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6176 
6177     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6178       Success &= pushSCEV(UDiv->getLHS());
6179       Success &= pushSCEV(UDiv->getRHS());
6180       pushOperator(llvm::dwarf::DW_OP_div);
6181 
6182     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6183       // Assert if a new and unknown SCEVCastEXpr type is encountered.
6184       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6185               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6186              "Unexpected cast type in SCEV.");
6187       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6188 
6189     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6190       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6191 
6192     } else if (isa<SCEVAddRecExpr>(S)) {
6193       // Nested SCEVAddRecExpr are generated by nested loops and are currently
6194       // unsupported.
6195       return false;
6196 
6197     } else {
6198       return false;
6199     }
6200     return Success;
6201   }
6202 
6203   /// Return true if the combination of arithmetic operator and underlying
6204   /// SCEV constant value is an identity function.
6205   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6206     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6207       if (C->getAPInt().getSignificantBits() > 64)
6208         return false;
6209       int64_t I = C->getAPInt().getSExtValue();
6210       switch (Op) {
6211       case llvm::dwarf::DW_OP_plus:
6212       case llvm::dwarf::DW_OP_minus:
6213         return I == 0;
6214       case llvm::dwarf::DW_OP_mul:
6215       case llvm::dwarf::DW_OP_div:
6216         return I == 1;
6217       }
6218     }
6219     return false;
6220   }
6221 
6222   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6223   /// builder's expression stack. The stack should already contain an
6224   /// expression for the iteration count, so that it can be multiplied by
6225   /// the stride and added to the start.
6226   /// Components of the expression are omitted if they are an identity function.
6227   /// Chain (non-affine) SCEVs are not supported.
6228   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6229     assert(SAR.isAffine() && "Expected affine SCEV");
6230     // TODO: Is this check needed?
6231     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6232       return false;
6233 
6234     const SCEV *Start = SAR.getStart();
6235     const SCEV *Stride = SAR.getStepRecurrence(SE);
6236 
6237     // Skip pushing arithmetic noops.
6238     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6239       if (!pushSCEV(Stride))
6240         return false;
6241       pushOperator(llvm::dwarf::DW_OP_mul);
6242     }
6243     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6244       if (!pushSCEV(Start))
6245         return false;
6246       pushOperator(llvm::dwarf::DW_OP_plus);
6247     }
6248     return true;
6249   }
6250 
6251   /// Create an expression that is an offset from a value (usually the IV).
6252   void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6253     pushLocation(OffsetValue);
6254     DIExpression::appendOffset(Expr, Offset);
6255     LLVM_DEBUG(
6256         dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6257                << std::to_string(Offset) << "\n");
6258   }
6259 
6260   /// Combine a translation of the SCEV and the IV to create an expression that
6261   /// recovers a location's value.
6262   /// returns true if an expression was created.
6263   bool createIterCountExpr(const SCEV *S,
6264                            const SCEVDbgValueBuilder &IterationCount,
6265                            ScalarEvolution &SE) {
6266     // SCEVs for SSA values are most frquently of the form
6267     // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6268     // This is because %a is a PHI node that is not the IV. However, these
6269     // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6270     // so its not expected this point will be reached.
6271     if (!isa<SCEVAddRecExpr>(S))
6272       return false;
6273 
6274     LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6275                       << '\n');
6276 
6277     const auto *Rec = cast<SCEVAddRecExpr>(S);
6278     if (!Rec->isAffine())
6279       return false;
6280 
6281     if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6282       return false;
6283 
6284     // Initialise a new builder with the iteration count expression. In
6285     // combination with the value's SCEV this enables recovery.
6286     clone(IterationCount);
6287     if (!SCEVToValueExpr(*Rec, SE))
6288       return false;
6289 
6290     return true;
6291   }
6292 
6293   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6294   /// builder's expression stack. The stack should already contain an
6295   /// expression for the iteration count, so that it can be multiplied by
6296   /// the stride and added to the start.
6297   /// Components of the expression are omitted if they are an identity function.
6298   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6299                            ScalarEvolution &SE) {
6300     assert(SAR.isAffine() && "Expected affine SCEV");
6301     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6302       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6303                         << SAR << '\n');
6304       return false;
6305     }
6306     const SCEV *Start = SAR.getStart();
6307     const SCEV *Stride = SAR.getStepRecurrence(SE);
6308 
6309     // Skip pushing arithmetic noops.
6310     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6311       if (!pushSCEV(Start))
6312         return false;
6313       pushOperator(llvm::dwarf::DW_OP_minus);
6314     }
6315     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6316       if (!pushSCEV(Stride))
6317         return false;
6318       pushOperator(llvm::dwarf::DW_OP_div);
6319     }
6320     return true;
6321   }
6322 
6323   // Append the current expression and locations to a location list and an
6324   // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6325   // the locations already present in the destination list.
6326   void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6327                        SmallVectorImpl<Value *> &DestLocations) {
6328     assert(!DestLocations.empty() &&
6329            "Expected the locations vector to contain the IV");
6330     // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6331     // modified to account for the locations already in the destination vector.
6332     // All builders contain the IV as the first location op.
6333     assert(!LocationOps.empty() &&
6334            "Expected the location ops to contain the IV.");
6335     // DestIndexMap[n] contains the index in DestLocations for the nth
6336     // location in this SCEVDbgValueBuilder.
6337     SmallVector<uint64_t, 2> DestIndexMap;
6338     for (const auto &Op : LocationOps) {
6339       auto It = find(DestLocations, Op);
6340       if (It != DestLocations.end()) {
6341         // Location already exists in DestLocations, reuse existing ArgIndex.
6342         DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6343         continue;
6344       }
6345       // Location is not in DestLocations, add it.
6346       DestIndexMap.push_back(DestLocations.size());
6347       DestLocations.push_back(Op);
6348     }
6349 
6350     for (const auto &Op : expr_ops()) {
6351       if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6352         Op.appendToVector(DestExpr);
6353         continue;
6354       }
6355 
6356       DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6357       // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6358       // DestIndexMap[n] contains its new index in DestLocations.
6359       uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6360       DestExpr.push_back(NewIndex);
6361     }
6362   }
6363 };
6364 
6365 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6366 /// and DIExpression.
6367 struct DVIRecoveryRec {
6368   DVIRecoveryRec(DbgValueInst *DbgValue)
6369       : DbgRef(DbgValue), Expr(DbgValue->getExpression()),
6370         HadLocationArgList(false) {}
6371   DVIRecoveryRec(DPValue *DPV)
6372       : DbgRef(DPV), Expr(DPV->getExpression()), HadLocationArgList(false) {}
6373 
6374   PointerUnion<DbgValueInst *, DPValue *> DbgRef;
6375   DIExpression *Expr;
6376   bool HadLocationArgList;
6377   SmallVector<WeakVH, 2> LocationOps;
6378   SmallVector<const llvm::SCEV *, 2> SCEVs;
6379   SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6380 
6381   void clear() {
6382     for (auto &RE : RecoveryExprs)
6383       RE.reset();
6384     RecoveryExprs.clear();
6385   }
6386 
6387   ~DVIRecoveryRec() { clear(); }
6388 };
6389 } // namespace
6390 
6391 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6392 /// This helps in determining if a DIArglist is necessary or can be omitted from
6393 /// the dbg.value.
6394 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6395   auto expr_ops = ToDwarfOpIter(Expr);
6396   unsigned Count = 0;
6397   for (auto Op : expr_ops)
6398     if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6399       Count++;
6400   return Count;
6401 }
6402 
6403 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6404 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6405 /// because a DIArglist is not created for the first argument of the dbg.value.
6406 template <typename T>
6407 static void updateDVIWithLocation(T &DbgVal, Value *Location,
6408                                   SmallVectorImpl<uint64_t> &Ops) {
6409   assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not "
6410                                     "contain any DW_OP_llvm_arg operands.");
6411   DbgVal.setRawLocation(ValueAsMetadata::get(Location));
6412   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6413   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6414 }
6415 
6416 /// Overwrite DVI with locations placed into a DIArglist.
6417 template <typename T>
6418 static void updateDVIWithLocations(T &DbgVal,
6419                                    SmallVectorImpl<Value *> &Locations,
6420                                    SmallVectorImpl<uint64_t> &Ops) {
6421   assert(numLLVMArgOps(Ops) != 0 &&
6422          "Expected expression that references DIArglist locations using "
6423          "DW_OP_llvm_arg operands.");
6424   SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6425   for (Value *V : Locations)
6426     MetadataLocs.push_back(ValueAsMetadata::get(V));
6427   auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6428   DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef));
6429   DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6430 }
6431 
6432 /// Write the new expression and new location ops for the dbg.value. If possible
6433 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6434 /// can be omitted if:
6435 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6436 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6437 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6438                                SmallVectorImpl<Value *> &NewLocationOps,
6439                                SmallVectorImpl<uint64_t> &NewExpr) {
6440   auto UpdateDbgValueInstImpl = [&](auto *DbgVal) {
6441     unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6442     if (NumLLVMArgs == 0) {
6443       // Location assumed to be on the stack.
6444       updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr);
6445     } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6446       // There is only a single DW_OP_llvm_arg at the start of the expression,
6447       // so it can be omitted along with DIArglist.
6448       assert(NewExpr[1] == 0 &&
6449              "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6450       llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6451       updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps);
6452     } else {
6453       // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6454       updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr);
6455     }
6456 
6457     // If the DIExpression was previously empty then add the stack terminator.
6458     // Non-empty expressions have only had elements inserted into them and so
6459     // the terminator should already be present e.g. stack_value or fragment.
6460     DIExpression *SalvageExpr = DbgVal->getExpression();
6461     if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6462       SalvageExpr =
6463           DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6464       DbgVal->setExpression(SalvageExpr);
6465     }
6466   };
6467   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6468     UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6469   else
6470     UpdateDbgValueInstImpl(cast<DPValue *>(DVIRec.DbgRef));
6471 }
6472 
6473 /// Cached location ops may be erased during LSR, in which case a poison is
6474 /// required when restoring from the cache. The type of that location is no
6475 /// longer available, so just use int8. The poison will be replaced by one or
6476 /// more locations later when a SCEVDbgValueBuilder selects alternative
6477 /// locations to use for the salvage.
6478 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6479   return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6480 }
6481 
6482 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6483 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6484   auto RestorePreTransformStateImpl = [&](auto *DbgVal) {
6485     LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6486                       << "scev-salvage: post-LSR: " << *DbgVal << '\n');
6487     assert(DVIRec.Expr && "Expected an expression");
6488     DbgVal->setExpression(DVIRec.Expr);
6489 
6490     // Even a single location-op may be inside a DIArgList and referenced with
6491     // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6492     if (!DVIRec.HadLocationArgList) {
6493       assert(DVIRec.LocationOps.size() == 1 &&
6494              "Unexpected number of location ops.");
6495       // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6496       // this case was not present before, so force the location back to a
6497       // single uncontained Value.
6498       Value *CachedValue =
6499           getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext());
6500       DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue));
6501     } else {
6502       SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6503       for (WeakVH VH : DVIRec.LocationOps) {
6504         Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext());
6505         MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6506       }
6507       auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6508       DbgVal->setRawLocation(
6509           llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef));
6510     }
6511     LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n');
6512   };
6513   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6514     RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6515   else
6516     RestorePreTransformStateImpl(cast<DPValue *>(DVIRec.DbgRef));
6517 }
6518 
6519 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6520                        llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6521                        const SCEV *SCEVInductionVar,
6522                        SCEVDbgValueBuilder IterCountExpr) {
6523 
6524   if (isa<DbgValueInst *>(DVIRec.DbgRef)
6525           ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation()
6526           : !cast<DPValue *>(DVIRec.DbgRef)->isKillLocation())
6527     return false;
6528 
6529   // LSR may have caused several changes to the dbg.value in the failed salvage
6530   // attempt. So restore the DIExpression, the location ops and also the
6531   // location ops format, which is always DIArglist for multiple ops, but only
6532   // sometimes for a single op.
6533   restorePreTransformState(DVIRec);
6534 
6535   // LocationOpIndexMap[i] will store the post-LSR location index of
6536   // the non-optimised out location at pre-LSR index i.
6537   SmallVector<int64_t, 2> LocationOpIndexMap;
6538   LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6539   SmallVector<Value *, 2> NewLocationOps;
6540   NewLocationOps.push_back(LSRInductionVar);
6541 
6542   for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6543     WeakVH VH = DVIRec.LocationOps[i];
6544     // Place the locations not optimised out in the list first, avoiding
6545     // inserts later. The map is used to update the DIExpression's
6546     // DW_OP_LLVM_arg arguments as the expression is updated.
6547     if (VH && !isa<UndefValue>(VH)) {
6548       NewLocationOps.push_back(VH);
6549       LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6550       LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6551                         << " now at index " << LocationOpIndexMap[i] << "\n");
6552       continue;
6553     }
6554 
6555     // It's possible that a value referred to in the SCEV may have been
6556     // optimised out by LSR.
6557     if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6558         SE.containsUndefs(DVIRec.SCEVs[i])) {
6559       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6560                         << " refers to a location that is now undef or erased. "
6561                            "Salvage abandoned.\n");
6562       return false;
6563     }
6564 
6565     LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6566                       << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6567 
6568     DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6569     SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6570 
6571     // Create an offset-based salvage expression if possible, as it requires
6572     // less DWARF ops than an iteration count-based expression.
6573     if (std::optional<APInt> Offset =
6574             SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6575       if (Offset->getSignificantBits() <= 64)
6576         SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6577     } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6578                                                  SE))
6579       return false;
6580   }
6581 
6582   // Merge the DbgValueBuilder generated expressions and the original
6583   // DIExpression, place the result into an new vector.
6584   SmallVector<uint64_t, 3> NewExpr;
6585   if (DVIRec.Expr->getNumElements() == 0) {
6586     assert(DVIRec.RecoveryExprs.size() == 1 &&
6587            "Expected only a single recovery expression for an empty "
6588            "DIExpression.");
6589     assert(DVIRec.RecoveryExprs[0] &&
6590            "Expected a SCEVDbgSalvageBuilder for location 0");
6591     SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6592     B->appendToVectors(NewExpr, NewLocationOps);
6593   }
6594   for (const auto &Op : DVIRec.Expr->expr_ops()) {
6595     // Most Ops needn't be updated.
6596     if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6597       Op.appendToVector(NewExpr);
6598       continue;
6599     }
6600 
6601     uint64_t LocationArgIndex = Op.getArg(0);
6602     SCEVDbgValueBuilder *DbgBuilder =
6603         DVIRec.RecoveryExprs[LocationArgIndex].get();
6604     // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6605     // optimise it away. So just translate the argument to the updated
6606     // location index.
6607     if (!DbgBuilder) {
6608       NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6609       assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6610              "Expected a positive index for the location-op position.");
6611       NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6612       continue;
6613     }
6614     // The location has a recovery expression.
6615     DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6616   }
6617 
6618   UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6619   if (isa<DbgValueInst *>(DVIRec.DbgRef))
6620     LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6621                       << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n");
6622   else
6623     LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6624                       << *cast<DPValue *>(DVIRec.DbgRef) << "\n");
6625   return true;
6626 }
6627 
6628 /// Obtain an expression for the iteration count, then attempt to salvage the
6629 /// dbg.value intrinsics.
6630 static void DbgRewriteSalvageableDVIs(
6631     llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar,
6632     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6633   if (DVIToUpdate.empty())
6634     return;
6635 
6636   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6637   assert(SCEVInductionVar &&
6638          "Anticipated a SCEV for the post-LSR induction variable");
6639 
6640   if (const SCEVAddRecExpr *IVAddRec =
6641           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6642     if (!IVAddRec->isAffine())
6643       return;
6644 
6645     // Prevent translation using excessive resources.
6646     if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6647       return;
6648 
6649     // The iteration count is required to recover location values.
6650     SCEVDbgValueBuilder IterCountExpr;
6651     IterCountExpr.pushLocation(LSRInductionVar);
6652     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6653       return;
6654 
6655     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6656                       << '\n');
6657 
6658     for (auto &DVIRec : DVIToUpdate) {
6659       SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6660                  IterCountExpr);
6661     }
6662   }
6663 }
6664 
6665 /// Identify and cache salvageable DVI locations and expressions along with the
6666 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6667 /// cacheing and salvaging.
6668 static void DbgGatherSalvagableDVI(
6669     Loop *L, ScalarEvolution &SE,
6670     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6671     SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6672   for (const auto &B : L->getBlocks()) {
6673     for (auto &I : *B) {
6674       auto ProcessDbgValue = [&](auto *DbgVal) -> bool {
6675         // Ensure that if any location op is undef that the dbg.vlue is not
6676         // cached.
6677         if (DbgVal->isKillLocation())
6678           return false;
6679 
6680         // Check that the location op SCEVs are suitable for translation to
6681         // DIExpression.
6682         const auto &HasTranslatableLocationOps =
6683             [&](const auto *DbgValToTranslate) -> bool {
6684           for (const auto LocOp : DbgValToTranslate->location_ops()) {
6685             if (!LocOp)
6686               return false;
6687 
6688             if (!SE.isSCEVable(LocOp->getType()))
6689               return false;
6690 
6691             const SCEV *S = SE.getSCEV(LocOp);
6692             if (SE.containsUndefs(S))
6693               return false;
6694           }
6695           return true;
6696         };
6697 
6698         if (!HasTranslatableLocationOps(DbgVal))
6699           return false;
6700 
6701         std::unique_ptr<DVIRecoveryRec> NewRec =
6702             std::make_unique<DVIRecoveryRec>(DbgVal);
6703         // Each location Op may need a SCEVDbgValueBuilder in order to recover
6704         // it. Pre-allocating a vector will enable quick lookups of the builder
6705         // later during the salvage.
6706         NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps());
6707         for (const auto LocOp : DbgVal->location_ops()) {
6708           NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6709           NewRec->LocationOps.push_back(LocOp);
6710           NewRec->HadLocationArgList = DbgVal->hasArgList();
6711         }
6712         SalvageableDVISCEVs.push_back(std::move(NewRec));
6713         return true;
6714       };
6715       for (auto &DPV : I.getDbgValueRange()) {
6716         if (DPV.isDbgValue() || DPV.isDbgAssign())
6717           ProcessDbgValue(&DPV);
6718       }
6719       auto DVI = dyn_cast<DbgValueInst>(&I);
6720       if (!DVI)
6721         continue;
6722       if (ProcessDbgValue(DVI))
6723         DVIHandles.insert(DVI);
6724     }
6725   }
6726 }
6727 
6728 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6729 /// any PHi from the loop header is usable, but may have less chance of
6730 /// surviving subsequent transforms.
6731 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6732                                            const LSRInstance &LSR) {
6733 
6734   auto IsSuitableIV = [&](PHINode *P) {
6735     if (!SE.isSCEVable(P->getType()))
6736       return false;
6737     if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6738       return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6739     return false;
6740   };
6741 
6742   // For now, just pick the first IV that was generated and inserted by
6743   // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6744   // by subsequent transforms.
6745   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6746     if (!IV)
6747       continue;
6748 
6749     // There should only be PHI node IVs.
6750     PHINode *P = cast<PHINode>(&*IV);
6751 
6752     if (IsSuitableIV(P))
6753       return P;
6754   }
6755 
6756   for (PHINode &P : L.getHeader()->phis()) {
6757     if (IsSuitableIV(&P))
6758       return &P;
6759   }
6760   return nullptr;
6761 }
6762 
6763 static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
6764 canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6765                       const LoopInfo &LI) {
6766   if (!L->isInnermost()) {
6767     LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
6768     return std::nullopt;
6769   }
6770   // Only inspect on simple loop structure
6771   if (!L->isLoopSimplifyForm()) {
6772     LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
6773     return std::nullopt;
6774   }
6775 
6776   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6777     LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
6778     return std::nullopt;
6779   }
6780 
6781   BasicBlock *LoopLatch = L->getLoopLatch();
6782   BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
6783   if (!BI || BI->isUnconditional())
6784     return std::nullopt;
6785   auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
6786   if (!TermCond) {
6787     LLVM_DEBUG(
6788         dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
6789     return std::nullopt;
6790   }
6791   if (!TermCond->hasOneUse()) {
6792     LLVM_DEBUG(
6793         dbgs()
6794         << "Cannot replace terminating condition with more than one use\n");
6795     return std::nullopt;
6796   }
6797 
6798   BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
6799   Value *RHS = TermCond->getOperand(1);
6800   if (!LHS || !L->isLoopInvariant(RHS))
6801     // We could pattern match the inverse form of the icmp, but that is
6802     // non-canonical, and this pass is running *very* late in the pipeline.
6803     return std::nullopt;
6804 
6805   // Find the IV used by the current exit condition.
6806   PHINode *ToFold;
6807   Value *ToFoldStart, *ToFoldStep;
6808   if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
6809     return std::nullopt;
6810 
6811   // If that IV isn't dead after we rewrite the exit condition in terms of
6812   // another IV, there's no point in doing the transform.
6813   if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
6814     return std::nullopt;
6815 
6816   const SCEV *BECount = SE.getBackedgeTakenCount(L);
6817   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6818   SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6819 
6820   PHINode *ToHelpFold = nullptr;
6821   const SCEV *TermValueS = nullptr;
6822   bool MustDropPoison = false;
6823   for (PHINode &PN : L->getHeader()->phis()) {
6824     if (ToFold == &PN)
6825       continue;
6826 
6827     if (!SE.isSCEVable(PN.getType())) {
6828       LLVM_DEBUG(dbgs() << "IV of phi '" << PN
6829                         << "' is not SCEV-able, not qualified for the "
6830                            "terminating condition folding.\n");
6831       continue;
6832     }
6833     const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6834     // Only speculate on affine AddRec
6835     if (!AddRec || !AddRec->isAffine()) {
6836       LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
6837                         << "' is not an affine add recursion, not qualified "
6838                            "for the terminating condition folding.\n");
6839       continue;
6840     }
6841 
6842     // Check that we can compute the value of AddRec on the exiting iteration
6843     // without soundness problems.  evaluateAtIteration internally needs
6844     // to multiply the stride of the iteration number - which may wrap around.
6845     // The issue here is subtle because computing the result accounting for
6846     // wrap is insufficient. In order to use the result in an exit test, we
6847     // must also know that AddRec doesn't take the same value on any previous
6848     // iteration. The simplest case to consider is a candidate IV which is
6849     // narrower than the trip count (and thus original IV), but this can
6850     // also happen due to non-unit strides on the candidate IVs.
6851     if (!AddRec->hasNoSelfWrap() ||
6852         !SE.isKnownNonZero(AddRec->getStepRecurrence(SE)))
6853       continue;
6854 
6855     const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
6856     const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
6857     if (!Expander.isSafeToExpand(TermValueSLocal)) {
6858       LLVM_DEBUG(
6859           dbgs() << "Is not safe to expand terminating value for phi node" << PN
6860                  << "\n");
6861       continue;
6862     }
6863 
6864     // The candidate IV may have been otherwise dead and poison from the
6865     // very first iteration.  If we can't disprove that, we can't use the IV.
6866     if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
6867       LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "
6868                         << PN << "\n");
6869       continue;
6870     }
6871 
6872     // The candidate IV may become poison on the last iteration.  If this
6873     // value is not branched on, this is a well defined program.  We're
6874     // about to add a new use to this IV, and we have to ensure we don't
6875     // insert UB which didn't previously exist.
6876     bool MustDropPoisonLocal = false;
6877     Instruction *PostIncV =
6878       cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
6879     if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
6880                                        &DT)) {
6881       LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"
6882                         << PN << "\n");
6883 
6884       // If this is a complex recurrance with multiple instructions computing
6885       // the backedge value, we might need to strip poison flags from all of
6886       // them.
6887       if (PostIncV->getOperand(0) != &PN)
6888         continue;
6889 
6890       // In order to perform the transform, we need to drop the poison generating
6891       // flags on this instruction (if any).
6892       MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
6893     }
6894 
6895     // We pick the last legal alternate IV.  We could expore choosing an optimal
6896     // alternate IV if we had a decent heuristic to do so.
6897     ToHelpFold = &PN;
6898     TermValueS = TermValueSLocal;
6899     MustDropPoison = MustDropPoisonLocal;
6900   }
6901 
6902   LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
6903                  << "Cannot find other AddRec IV to help folding\n";);
6904 
6905   LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
6906              << "\nFound loop that can fold terminating condition\n"
6907              << "  BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
6908              << "  TermCond: " << *TermCond << "\n"
6909              << "  BrandInst: " << *BI << "\n"
6910              << "  ToFold: " << *ToFold << "\n"
6911              << "  ToHelpFold: " << *ToHelpFold << "\n");
6912 
6913   if (!ToFold || !ToHelpFold)
6914     return std::nullopt;
6915   return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
6916 }
6917 
6918 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6919                                DominatorTree &DT, LoopInfo &LI,
6920                                const TargetTransformInfo &TTI,
6921                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6922                                MemorySSA *MSSA) {
6923 
6924   // Debug preservation - before we start removing anything identify which DVI
6925   // meet the salvageable criteria and store their DIExpression and SCEVs.
6926   SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6927   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6928   DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6929 
6930   bool Changed = false;
6931   std::unique_ptr<MemorySSAUpdater> MSSAU;
6932   if (MSSA)
6933     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6934 
6935   // Run the main LSR transformation.
6936   const LSRInstance &Reducer =
6937       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6938   Changed |= Reducer.getChanged();
6939 
6940   // Remove any extra phis created by processing inner loops.
6941   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6942   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6943     SmallVector<WeakTrackingVH, 16> DeadInsts;
6944     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6945     SCEVExpander Rewriter(SE, DL, "lsr", false);
6946 #ifndef NDEBUG
6947     Rewriter.setDebugType(DEBUG_TYPE);
6948 #endif
6949     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6950     if (numFolded) {
6951       Changed = true;
6952       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6953                                                            MSSAU.get());
6954       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6955     }
6956   }
6957   // LSR may at times remove all uses of an induction variable from a loop.
6958   // The only remaining use is the PHI in the exit block.
6959   // When this is the case, if the exit value of the IV can be calculated using
6960   // SCEV, we can replace the exit block PHI with the final value of the IV and
6961   // skip the updates in each loop iteration.
6962   if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6963     SmallVector<WeakTrackingVH, 16> DeadInsts;
6964     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6965     SCEVExpander Rewriter(SE, DL, "lsr", true);
6966     int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6967                                          UnusedIndVarInLoop, DeadInsts);
6968     if (Rewrites) {
6969       Changed = true;
6970       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6971                                                            MSSAU.get());
6972       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6973     }
6974   }
6975 
6976   const bool EnableFormTerm = [&] {
6977     switch (AllowTerminatingConditionFoldingAfterLSR) {
6978     case cl::BOU_TRUE:
6979       return true;
6980     case cl::BOU_FALSE:
6981       return false;
6982     case cl::BOU_UNSET:
6983       return TTI.shouldFoldTerminatingConditionAfterLSR();
6984     }
6985     llvm_unreachable("Unhandled cl::boolOrDefault enum");
6986   }();
6987 
6988   if (EnableFormTerm) {
6989     if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) {
6990       auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
6991 
6992       Changed = true;
6993       NumTermFold++;
6994 
6995       BasicBlock *LoopPreheader = L->getLoopPreheader();
6996       BasicBlock *LoopLatch = L->getLoopLatch();
6997 
6998       (void)ToFold;
6999       LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
7000                         << *ToFold << "\n"
7001                         << "New term-cond phi-node:\n"
7002                         << *ToHelpFold << "\n");
7003 
7004       Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
7005       (void)StartValue;
7006       Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
7007 
7008       // See comment in canFoldTermCondOfLoop on why this is sufficient.
7009       if (MustDrop)
7010         cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
7011 
7012       // SCEVExpander for both use in preheader and latch
7013       const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
7014       SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
7015       SCEVExpanderCleaner ExpCleaner(Expander);
7016 
7017       assert(Expander.isSafeToExpand(TermValueS) &&
7018              "Terminating value was checked safe in canFoldTerminatingCondition");
7019 
7020       // Create new terminating value at loop preheader
7021       Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
7022                                                 LoopPreheader->getTerminator());
7023 
7024       LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
7025                         << *StartValue << "\n"
7026                         << "Terminating value of new term-cond phi-node:\n"
7027                         << *TermValue << "\n");
7028 
7029       // Create new terminating condition at loop latch
7030       BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
7031       ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
7032       IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
7033       Value *NewTermCond =
7034           LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
7035                                   "lsr_fold_term_cond.replaced_term_cond");
7036       // Swap successors to exit loop body if IV equals to new TermValue
7037       if (BI->getSuccessor(0) == L->getHeader())
7038         BI->swapSuccessors();
7039 
7040       LLVM_DEBUG(dbgs() << "Old term-cond:\n"
7041                         << *OldTermCond << "\n"
7042                         << "New term-cond:\n" << *NewTermCond << "\n");
7043 
7044       BI->setCondition(NewTermCond);
7045 
7046       OldTermCond->eraseFromParent();
7047       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7048 
7049       ExpCleaner.markResultUsed();
7050     }
7051   }
7052 
7053   if (SalvageableDVIRecords.empty())
7054     return Changed;
7055 
7056   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7057   // expressions composed using the derived iteration count.
7058   // TODO: Allow for multiple IV references for nested AddRecSCEVs
7059   for (const auto &L : LI) {
7060     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7061       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7062     else {
7063       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7064                            "could not be identified.\n");
7065     }
7066   }
7067 
7068   for (auto &Rec : SalvageableDVIRecords)
7069     Rec->clear();
7070   SalvageableDVIRecords.clear();
7071   DVIHandles.clear();
7072   return Changed;
7073 }
7074 
7075 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7076   if (skipLoop(L))
7077     return false;
7078 
7079   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7080   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7081   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7082   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7083   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7084       *L->getHeader()->getParent());
7085   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7086       *L->getHeader()->getParent());
7087   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7088       *L->getHeader()->getParent());
7089   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7090   MemorySSA *MSSA = nullptr;
7091   if (MSSAAnalysis)
7092     MSSA = &MSSAAnalysis->getMSSA();
7093   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7094 }
7095 
7096 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7097                                               LoopStandardAnalysisResults &AR,
7098                                               LPMUpdater &) {
7099   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7100                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7101     return PreservedAnalyses::all();
7102 
7103   auto PA = getLoopPassPreservedAnalyses();
7104   if (AR.MSSA)
7105     PA.preserve<MemorySSAAnalysis>();
7106   return PA;
7107 }
7108 
7109 char LoopStrengthReduce::ID = 0;
7110 
7111 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7112                       "Loop Strength Reduction", false, false)
7113 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7114 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7115 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7116 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7117 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7118 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7119 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7120                     "Loop Strength Reduction", false, false)
7121 
7122 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
7123