1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <map> 120 #include <utility> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "loop-reduce" 125 126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 127 /// bail out. This threshold is far beyond the number of users that LSR can 128 /// conceivably solve, so it should not affect generated code, but catches the 129 /// worst cases before LSR burns too much compile time and stack space. 130 static const unsigned MaxIVUsers = 200; 131 132 // Temporary flag to cleanup congruent phis after LSR phi expansion. 133 // It's currently disabled until we can determine whether it's truly useful or 134 // not. The flag should be removed after the v3.0 release. 135 // This is now needed for ivchains. 136 static cl::opt<bool> EnablePhiElim( 137 "enable-lsr-phielim", cl::Hidden, cl::init(true), 138 cl::desc("Enable LSR phi elimination")); 139 140 // The flag adds instruction count to solutions cost comparision. 141 static cl::opt<bool> InsnsCost( 142 "lsr-insns-cost", cl::Hidden, cl::init(true), 143 cl::desc("Add instruction count to a LSR cost model")); 144 145 // Flag to choose how to narrow complex lsr solution 146 static cl::opt<bool> LSRExpNarrow( 147 "lsr-exp-narrow", cl::Hidden, cl::init(false), 148 cl::desc("Narrow LSR complex solution using" 149 " expectation of registers number")); 150 151 // Flag to narrow search space by filtering non-optimal formulae with 152 // the same ScaledReg and Scale. 153 static cl::opt<bool> FilterSameScaledReg( 154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 155 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 156 " with the same ScaledReg and Scale")); 157 158 static cl::opt<bool> EnableBackedgeIndexing( 159 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 160 cl::desc("Enable the generation of cross iteration indexed memops")); 161 162 static cl::opt<unsigned> ComplexityLimit( 163 "lsr-complexity-limit", cl::Hidden, 164 cl::init(std::numeric_limits<uint16_t>::max()), 165 cl::desc("LSR search space complexity limit")); 166 167 static cl::opt<unsigned> SetupCostDepthLimit( 168 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 169 cl::desc("The limit on recursion depth for LSRs setup cost")); 170 171 #ifndef NDEBUG 172 // Stress test IV chain generation. 173 static cl::opt<bool> StressIVChain( 174 "stress-ivchain", cl::Hidden, cl::init(false), 175 cl::desc("Stress test LSR IV chains")); 176 #else 177 static bool StressIVChain = false; 178 #endif 179 180 namespace { 181 182 struct MemAccessTy { 183 /// Used in situations where the accessed memory type is unknown. 184 static const unsigned UnknownAddressSpace = 185 std::numeric_limits<unsigned>::max(); 186 187 Type *MemTy = nullptr; 188 unsigned AddrSpace = UnknownAddressSpace; 189 190 MemAccessTy() = default; 191 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 192 193 bool operator==(MemAccessTy Other) const { 194 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 195 } 196 197 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 198 199 static MemAccessTy getUnknown(LLVMContext &Ctx, 200 unsigned AS = UnknownAddressSpace) { 201 return MemAccessTy(Type::getVoidTy(Ctx), AS); 202 } 203 204 Type *getType() { return MemTy; } 205 }; 206 207 /// This class holds data which is used to order reuse candidates. 208 class RegSortData { 209 public: 210 /// This represents the set of LSRUse indices which reference 211 /// a particular register. 212 SmallBitVector UsedByIndices; 213 214 void print(raw_ostream &OS) const; 215 void dump() const; 216 }; 217 218 } // end anonymous namespace 219 220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 221 void RegSortData::print(raw_ostream &OS) const { 222 OS << "[NumUses=" << UsedByIndices.count() << ']'; 223 } 224 225 LLVM_DUMP_METHOD void RegSortData::dump() const { 226 print(errs()); errs() << '\n'; 227 } 228 #endif 229 230 namespace { 231 232 /// Map register candidates to information about how they are used. 233 class RegUseTracker { 234 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 235 236 RegUsesTy RegUsesMap; 237 SmallVector<const SCEV *, 16> RegSequence; 238 239 public: 240 void countRegister(const SCEV *Reg, size_t LUIdx); 241 void dropRegister(const SCEV *Reg, size_t LUIdx); 242 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 243 244 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 245 246 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 247 248 void clear(); 249 250 using iterator = SmallVectorImpl<const SCEV *>::iterator; 251 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 252 253 iterator begin() { return RegSequence.begin(); } 254 iterator end() { return RegSequence.end(); } 255 const_iterator begin() const { return RegSequence.begin(); } 256 const_iterator end() const { return RegSequence.end(); } 257 }; 258 259 } // end anonymous namespace 260 261 void 262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 263 std::pair<RegUsesTy::iterator, bool> Pair = 264 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 265 RegSortData &RSD = Pair.first->second; 266 if (Pair.second) 267 RegSequence.push_back(Reg); 268 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 269 RSD.UsedByIndices.set(LUIdx); 270 } 271 272 void 273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 274 RegUsesTy::iterator It = RegUsesMap.find(Reg); 275 assert(It != RegUsesMap.end()); 276 RegSortData &RSD = It->second; 277 assert(RSD.UsedByIndices.size() > LUIdx); 278 RSD.UsedByIndices.reset(LUIdx); 279 } 280 281 void 282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 283 assert(LUIdx <= LastLUIdx); 284 285 // Update RegUses. The data structure is not optimized for this purpose; 286 // we must iterate through it and update each of the bit vectors. 287 for (auto &Pair : RegUsesMap) { 288 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 289 if (LUIdx < UsedByIndices.size()) 290 UsedByIndices[LUIdx] = 291 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 292 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 293 } 294 } 295 296 bool 297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 298 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 299 if (I == RegUsesMap.end()) 300 return false; 301 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 302 int i = UsedByIndices.find_first(); 303 if (i == -1) return false; 304 if ((size_t)i != LUIdx) return true; 305 return UsedByIndices.find_next(i) != -1; 306 } 307 308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 309 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 310 assert(I != RegUsesMap.end() && "Unknown register!"); 311 return I->second.UsedByIndices; 312 } 313 314 void RegUseTracker::clear() { 315 RegUsesMap.clear(); 316 RegSequence.clear(); 317 } 318 319 namespace { 320 321 /// This class holds information that describes a formula for computing 322 /// satisfying a use. It may include broken-out immediates and scaled registers. 323 struct Formula { 324 /// Global base address used for complex addressing. 325 GlobalValue *BaseGV = nullptr; 326 327 /// Base offset for complex addressing. 328 int64_t BaseOffset = 0; 329 330 /// Whether any complex addressing has a base register. 331 bool HasBaseReg = false; 332 333 /// The scale of any complex addressing. 334 int64_t Scale = 0; 335 336 /// The list of "base" registers for this use. When this is non-empty. The 337 /// canonical representation of a formula is 338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 340 /// 3. The reg containing recurrent expr related with currect loop in the 341 /// formula should be put in the ScaledReg. 342 /// #1 enforces that the scaled register is always used when at least two 343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 344 /// #2 enforces that 1 * reg is reg. 345 /// #3 ensures invariant regs with respect to current loop can be combined 346 /// together in LSR codegen. 347 /// This invariant can be temporarily broken while building a formula. 348 /// However, every formula inserted into the LSRInstance must be in canonical 349 /// form. 350 SmallVector<const SCEV *, 4> BaseRegs; 351 352 /// The 'scaled' register for this use. This should be non-null when Scale is 353 /// not zero. 354 const SCEV *ScaledReg = nullptr; 355 356 /// An additional constant offset which added near the use. This requires a 357 /// temporary register, but the offset itself can live in an add immediate 358 /// field rather than a register. 359 int64_t UnfoldedOffset = 0; 360 361 Formula() = default; 362 363 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 364 365 bool isCanonical(const Loop &L) const; 366 367 void canonicalize(const Loop &L); 368 369 bool unscale(); 370 371 bool hasZeroEnd() const; 372 373 size_t getNumRegs() const; 374 Type *getType() const; 375 376 void deleteBaseReg(const SCEV *&S); 377 378 bool referencesReg(const SCEV *S) const; 379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 380 const RegUseTracker &RegUses) const; 381 382 void print(raw_ostream &OS) const; 383 void dump() const; 384 }; 385 386 } // end anonymous namespace 387 388 /// Recursion helper for initialMatch. 389 static void DoInitialMatch(const SCEV *S, Loop *L, 390 SmallVectorImpl<const SCEV *> &Good, 391 SmallVectorImpl<const SCEV *> &Bad, 392 ScalarEvolution &SE) { 393 // Collect expressions which properly dominate the loop header. 394 if (SE.properlyDominates(S, L->getHeader())) { 395 Good.push_back(S); 396 return; 397 } 398 399 // Look at add operands. 400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 401 for (const SCEV *S : Add->operands()) 402 DoInitialMatch(S, L, Good, Bad, SE); 403 return; 404 } 405 406 // Look at addrec operands. 407 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 408 if (!AR->getStart()->isZero() && AR->isAffine()) { 409 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 410 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 411 AR->getStepRecurrence(SE), 412 // FIXME: AR->getNoWrapFlags() 413 AR->getLoop(), SCEV::FlagAnyWrap), 414 L, Good, Bad, SE); 415 return; 416 } 417 418 // Handle a multiplication by -1 (negation) if it didn't fold. 419 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 420 if (Mul->getOperand(0)->isAllOnesValue()) { 421 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 422 const SCEV *NewMul = SE.getMulExpr(Ops); 423 424 SmallVector<const SCEV *, 4> MyGood; 425 SmallVector<const SCEV *, 4> MyBad; 426 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 427 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 428 SE.getEffectiveSCEVType(NewMul->getType()))); 429 for (const SCEV *S : MyGood) 430 Good.push_back(SE.getMulExpr(NegOne, S)); 431 for (const SCEV *S : MyBad) 432 Bad.push_back(SE.getMulExpr(NegOne, S)); 433 return; 434 } 435 436 // Ok, we can't do anything interesting. Just stuff the whole thing into a 437 // register and hope for the best. 438 Bad.push_back(S); 439 } 440 441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 442 /// all loop-invariant and loop-computable values in a single base register. 443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 444 SmallVector<const SCEV *, 4> Good; 445 SmallVector<const SCEV *, 4> Bad; 446 DoInitialMatch(S, L, Good, Bad, SE); 447 if (!Good.empty()) { 448 const SCEV *Sum = SE.getAddExpr(Good); 449 if (!Sum->isZero()) 450 BaseRegs.push_back(Sum); 451 HasBaseReg = true; 452 } 453 if (!Bad.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Bad); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 canonicalize(*L); 460 } 461 462 /// Check whether or not this formula satisfies the canonical 463 /// representation. 464 /// \see Formula::BaseRegs. 465 bool Formula::isCanonical(const Loop &L) const { 466 if (!ScaledReg) 467 return BaseRegs.size() <= 1; 468 469 if (Scale != 1) 470 return true; 471 472 if (Scale == 1 && BaseRegs.empty()) 473 return false; 474 475 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 476 if (SAR && SAR->getLoop() == &L) 477 return true; 478 479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 481 // loop, we want to swap the reg in BaseRegs with ScaledReg. 482 auto I = 483 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 484 return isa<const SCEVAddRecExpr>(S) && 485 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 486 }); 487 return I == BaseRegs.end(); 488 } 489 490 /// Helper method to morph a formula into its canonical representation. 491 /// \see Formula::BaseRegs. 492 /// Every formula having more than one base register, must use the ScaledReg 493 /// field. Otherwise, we would have to do special cases everywhere in LSR 494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 495 /// On the other hand, 1*reg should be canonicalized into reg. 496 void Formula::canonicalize(const Loop &L) { 497 if (isCanonical(L)) 498 return; 499 // So far we did not need this case. This is easy to implement but it is 500 // useless to maintain dead code. Beside it could hurt compile time. 501 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 502 503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 504 if (!ScaledReg) { 505 ScaledReg = BaseRegs.back(); 506 BaseRegs.pop_back(); 507 Scale = 1; 508 } 509 510 // If ScaledReg is an invariant with respect to L, find the reg from 511 // BaseRegs containing the recurrent expr related with Loop L. Swap the 512 // reg with ScaledReg. 513 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 514 if (!SAR || SAR->getLoop() != &L) { 515 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 516 [&](const SCEV *S) { 517 return isa<const SCEVAddRecExpr>(S) && 518 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 519 }); 520 if (I != BaseRegs.end()) 521 std::swap(ScaledReg, *I); 522 } 523 } 524 525 /// Get rid of the scale in the formula. 526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 527 /// \return true if it was possible to get rid of the scale, false otherwise. 528 /// \note After this operation the formula may not be in the canonical form. 529 bool Formula::unscale() { 530 if (Scale != 1) 531 return false; 532 Scale = 0; 533 BaseRegs.push_back(ScaledReg); 534 ScaledReg = nullptr; 535 return true; 536 } 537 538 bool Formula::hasZeroEnd() const { 539 if (UnfoldedOffset || BaseOffset) 540 return false; 541 if (BaseRegs.size() != 1 || ScaledReg) 542 return false; 543 return true; 544 } 545 546 /// Return the total number of register operands used by this formula. This does 547 /// not include register uses implied by non-constant addrec strides. 548 size_t Formula::getNumRegs() const { 549 return !!ScaledReg + BaseRegs.size(); 550 } 551 552 /// Return the type of this formula, if it has one, or null otherwise. This type 553 /// is meaningless except for the bit size. 554 Type *Formula::getType() const { 555 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 556 ScaledReg ? ScaledReg->getType() : 557 BaseGV ? BaseGV->getType() : 558 nullptr; 559 } 560 561 /// Delete the given base reg from the BaseRegs list. 562 void Formula::deleteBaseReg(const SCEV *&S) { 563 if (&S != &BaseRegs.back()) 564 std::swap(S, BaseRegs.back()); 565 BaseRegs.pop_back(); 566 } 567 568 /// Test if this formula references the given register. 569 bool Formula::referencesReg(const SCEV *S) const { 570 return S == ScaledReg || is_contained(BaseRegs, S); 571 } 572 573 /// Test whether this formula uses registers which are used by uses other than 574 /// the use with the given index. 575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 576 const RegUseTracker &RegUses) const { 577 if (ScaledReg) 578 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 579 return true; 580 for (const SCEV *BaseReg : BaseRegs) 581 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 582 return true; 583 return false; 584 } 585 586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 587 void Formula::print(raw_ostream &OS) const { 588 bool First = true; 589 if (BaseGV) { 590 if (!First) OS << " + "; else First = false; 591 BaseGV->printAsOperand(OS, /*PrintType=*/false); 592 } 593 if (BaseOffset != 0) { 594 if (!First) OS << " + "; else First = false; 595 OS << BaseOffset; 596 } 597 for (const SCEV *BaseReg : BaseRegs) { 598 if (!First) OS << " + "; else First = false; 599 OS << "reg(" << *BaseReg << ')'; 600 } 601 if (HasBaseReg && BaseRegs.empty()) { 602 if (!First) OS << " + "; else First = false; 603 OS << "**error: HasBaseReg**"; 604 } else if (!HasBaseReg && !BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: !HasBaseReg**"; 607 } 608 if (Scale != 0) { 609 if (!First) OS << " + "; else First = false; 610 OS << Scale << "*reg("; 611 if (ScaledReg) 612 OS << *ScaledReg; 613 else 614 OS << "<unknown>"; 615 OS << ')'; 616 } 617 if (UnfoldedOffset != 0) { 618 if (!First) OS << " + "; 619 OS << "imm(" << UnfoldedOffset << ')'; 620 } 621 } 622 623 LLVM_DUMP_METHOD void Formula::dump() const { 624 print(errs()); errs() << '\n'; 625 } 626 #endif 627 628 /// Return true if the given addrec can be sign-extended without changing its 629 /// value. 630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 631 Type *WideTy = 632 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 633 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 634 } 635 636 /// Return true if the given add can be sign-extended without changing its 637 /// value. 638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 639 Type *WideTy = 640 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 641 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 642 } 643 644 /// Return true if the given mul can be sign-extended without changing its 645 /// value. 646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 647 Type *WideTy = 648 IntegerType::get(SE.getContext(), 649 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 650 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 651 } 652 653 /// Return an expression for LHS /s RHS, if it can be determined and if the 654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 656 /// the multiplication may overflow, which is useful when the result will be 657 /// used in a context where the most significant bits are ignored. 658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 659 ScalarEvolution &SE, 660 bool IgnoreSignificantBits = false) { 661 // Handle the trivial case, which works for any SCEV type. 662 if (LHS == RHS) 663 return SE.getConstant(LHS->getType(), 1); 664 665 // Handle a few RHS special cases. 666 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 667 if (RC) { 668 const APInt &RA = RC->getAPInt(); 669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 670 // some folding. 671 if (RA.isAllOnesValue()) 672 return SE.getMulExpr(LHS, RC); 673 // Handle x /s 1 as x. 674 if (RA == 1) 675 return LHS; 676 } 677 678 // Check for a division of a constant by a constant. 679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 680 if (!RC) 681 return nullptr; 682 const APInt &LA = C->getAPInt(); 683 const APInt &RA = RC->getAPInt(); 684 if (LA.srem(RA) != 0) 685 return nullptr; 686 return SE.getConstant(LA.sdiv(RA)); 687 } 688 689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 691 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 692 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 693 IgnoreSignificantBits); 694 if (!Step) return nullptr; 695 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Start) return nullptr; 698 // FlagNW is independent of the start value, step direction, and is 699 // preserved with smaller magnitude steps. 700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 701 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 702 } 703 return nullptr; 704 } 705 706 // Distribute the sdiv over add operands, if the add doesn't overflow. 707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 708 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 709 SmallVector<const SCEV *, 8> Ops; 710 for (const SCEV *S : Add->operands()) { 711 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 712 if (!Op) return nullptr; 713 Ops.push_back(Op); 714 } 715 return SE.getAddExpr(Ops); 716 } 717 return nullptr; 718 } 719 720 // Check for a multiply operand that we can pull RHS out of. 721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 722 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 723 SmallVector<const SCEV *, 4> Ops; 724 bool Found = false; 725 for (const SCEV *S : Mul->operands()) { 726 if (!Found) 727 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 728 IgnoreSignificantBits)) { 729 S = Q; 730 Found = true; 731 } 732 Ops.push_back(S); 733 } 734 return Found ? SE.getMulExpr(Ops) : nullptr; 735 } 736 return nullptr; 737 } 738 739 // Otherwise we don't know. 740 return nullptr; 741 } 742 743 /// If S involves the addition of a constant integer value, return that integer 744 /// value, and mutate S to point to a new SCEV with that value excluded. 745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 747 if (C->getAPInt().getMinSignedBits() <= 64) { 748 S = SE.getConstant(C->getType(), 0); 749 return C->getValue()->getSExtValue(); 750 } 751 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 752 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 753 int64_t Result = ExtractImmediate(NewOps.front(), SE); 754 if (Result != 0) 755 S = SE.getAddExpr(NewOps); 756 return Result; 757 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 758 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 759 int64_t Result = ExtractImmediate(NewOps.front(), SE); 760 if (Result != 0) 761 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 763 SCEV::FlagAnyWrap); 764 return Result; 765 } 766 return 0; 767 } 768 769 /// If S involves the addition of a GlobalValue address, return that symbol, and 770 /// mutate S to point to a new SCEV with that value excluded. 771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 773 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 774 S = SE.getConstant(GV->getType(), 0); 775 return GV; 776 } 777 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 778 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 779 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 780 if (Result) 781 S = SE.getAddExpr(NewOps); 782 return Result; 783 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 785 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 786 if (Result) 787 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 789 SCEV::FlagAnyWrap); 790 return Result; 791 } 792 return nullptr; 793 } 794 795 /// Returns true if the specified instruction is using the specified value as an 796 /// address. 797 static bool isAddressUse(const TargetTransformInfo &TTI, 798 Instruction *Inst, Value *OperandVal) { 799 bool isAddress = isa<LoadInst>(Inst); 800 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 801 if (SI->getPointerOperand() == OperandVal) 802 isAddress = true; 803 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 804 // Addressing modes can also be folded into prefetches and a variety 805 // of intrinsics. 806 switch (II->getIntrinsicID()) { 807 case Intrinsic::memset: 808 case Intrinsic::prefetch: 809 if (II->getArgOperand(0) == OperandVal) 810 isAddress = true; 811 break; 812 case Intrinsic::memmove: 813 case Intrinsic::memcpy: 814 if (II->getArgOperand(0) == OperandVal || 815 II->getArgOperand(1) == OperandVal) 816 isAddress = true; 817 break; 818 default: { 819 MemIntrinsicInfo IntrInfo; 820 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 821 if (IntrInfo.PtrVal == OperandVal) 822 isAddress = true; 823 } 824 } 825 } 826 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 827 if (RMW->getPointerOperand() == OperandVal) 828 isAddress = true; 829 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 830 if (CmpX->getPointerOperand() == OperandVal) 831 isAddress = true; 832 } 833 return isAddress; 834 } 835 836 /// Return the type of the memory being accessed. 837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 838 Instruction *Inst, Value *OperandVal) { 839 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 840 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 841 AccessTy.MemTy = SI->getOperand(0)->getType(); 842 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 843 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 844 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 845 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 846 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 847 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 848 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 850 switch (II->getIntrinsicID()) { 851 case Intrinsic::prefetch: 852 case Intrinsic::memset: 853 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 854 AccessTy.MemTy = OperandVal->getType(); 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 859 AccessTy.MemTy = OperandVal->getType(); 860 break; 861 default: { 862 MemIntrinsicInfo IntrInfo; 863 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 864 AccessTy.AddrSpace 865 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 866 } 867 868 break; 869 } 870 } 871 } 872 873 // All pointers have the same requirements, so canonicalize them to an 874 // arbitrary pointer type to minimize variation. 875 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 876 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 877 PTy->getAddressSpace()); 878 879 return AccessTy; 880 } 881 882 /// Return true if this AddRec is already a phi in its loop. 883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 884 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 885 if (SE.isSCEVable(PN.getType()) && 886 (SE.getEffectiveSCEVType(PN.getType()) == 887 SE.getEffectiveSCEVType(AR->getType())) && 888 SE.getSCEV(&PN) == AR) 889 return true; 890 } 891 return false; 892 } 893 894 /// Check if expanding this expression is likely to incur significant cost. This 895 /// is tricky because SCEV doesn't track which expressions are actually computed 896 /// by the current IR. 897 /// 898 /// We currently allow expansion of IV increments that involve adds, 899 /// multiplication by constants, and AddRecs from existing phis. 900 /// 901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 902 /// obvious multiple of the UDivExpr. 903 static bool isHighCostExpansion(const SCEV *S, 904 SmallPtrSetImpl<const SCEV*> &Processed, 905 ScalarEvolution &SE) { 906 // Zero/One operand expressions 907 switch (S->getSCEVType()) { 908 case scUnknown: 909 case scConstant: 910 return false; 911 case scTruncate: 912 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 913 Processed, SE); 914 case scZeroExtend: 915 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 916 Processed, SE); 917 case scSignExtend: 918 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 919 Processed, SE); 920 } 921 922 if (!Processed.insert(S).second) 923 return false; 924 925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 926 for (const SCEV *S : Add->operands()) { 927 if (isHighCostExpansion(S, Processed, SE)) 928 return true; 929 } 930 return false; 931 } 932 933 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 934 if (Mul->getNumOperands() == 2) { 935 // Multiplication by a constant is ok 936 if (isa<SCEVConstant>(Mul->getOperand(0))) 937 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 938 939 // If we have the value of one operand, check if an existing 940 // multiplication already generates this expression. 941 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 942 Value *UVal = U->getValue(); 943 for (User *UR : UVal->users()) { 944 // If U is a constant, it may be used by a ConstantExpr. 945 Instruction *UI = dyn_cast<Instruction>(UR); 946 if (UI && UI->getOpcode() == Instruction::Mul && 947 SE.isSCEVable(UI->getType())) { 948 return SE.getSCEV(UI) == Mul; 949 } 950 } 951 } 952 } 953 } 954 955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 956 if (isExistingPhi(AR, SE)) 957 return false; 958 } 959 960 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 961 return true; 962 } 963 964 /// If any of the instructions in the specified set are trivially dead, delete 965 /// them and see if this makes any of their operands subsequently dead. 966 static bool 967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 968 bool Changed = false; 969 970 while (!DeadInsts.empty()) { 971 Value *V = DeadInsts.pop_back_val(); 972 Instruction *I = dyn_cast_or_null<Instruction>(V); 973 974 if (!I || !isInstructionTriviallyDead(I)) 975 continue; 976 977 for (Use &O : I->operands()) 978 if (Instruction *U = dyn_cast<Instruction>(O)) { 979 O = nullptr; 980 if (U->use_empty()) 981 DeadInsts.emplace_back(U); 982 } 983 984 I->eraseFromParent(); 985 Changed = true; 986 } 987 988 return Changed; 989 } 990 991 namespace { 992 993 class LSRUse; 994 995 } // end anonymous namespace 996 997 /// Check if the addressing mode defined by \p F is completely 998 /// folded in \p LU at isel time. 999 /// This includes address-mode folding and special icmp tricks. 1000 /// This function returns true if \p LU can accommodate what \p F 1001 /// defines and up to 1 base + 1 scaled + offset. 1002 /// In other words, if \p F has several base registers, this function may 1003 /// still return true. Therefore, users still need to account for 1004 /// additional base registers and/or unfolded offsets to derive an 1005 /// accurate cost model. 1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1007 const LSRUse &LU, const Formula &F); 1008 1009 // Get the cost of the scaling factor used in F for LU. 1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1011 const LSRUse &LU, const Formula &F, 1012 const Loop &L); 1013 1014 namespace { 1015 1016 /// This class is used to measure and compare candidate formulae. 1017 class Cost { 1018 const Loop *L = nullptr; 1019 ScalarEvolution *SE = nullptr; 1020 const TargetTransformInfo *TTI = nullptr; 1021 TargetTransformInfo::LSRCost C; 1022 1023 public: 1024 Cost() = delete; 1025 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1026 L(L), SE(&SE), TTI(&TTI) { 1027 C.Insns = 0; 1028 C.NumRegs = 0; 1029 C.AddRecCost = 0; 1030 C.NumIVMuls = 0; 1031 C.NumBaseAdds = 0; 1032 C.ImmCost = 0; 1033 C.SetupCost = 0; 1034 C.ScaleCost = 0; 1035 } 1036 1037 bool isLess(Cost &Other); 1038 1039 void Lose(); 1040 1041 #ifndef NDEBUG 1042 // Once any of the metrics loses, they must all remain losers. 1043 bool isValid() { 1044 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1045 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1046 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1047 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1048 } 1049 #endif 1050 1051 bool isLoser() { 1052 assert(isValid() && "invalid cost"); 1053 return C.NumRegs == ~0u; 1054 } 1055 1056 void RateFormula(const Formula &F, 1057 SmallPtrSetImpl<const SCEV *> &Regs, 1058 const DenseSet<const SCEV *> &VisitedRegs, 1059 const LSRUse &LU, 1060 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1061 1062 void print(raw_ostream &OS) const; 1063 void dump() const; 1064 1065 private: 1066 void RateRegister(const Formula &F, const SCEV *Reg, 1067 SmallPtrSetImpl<const SCEV *> &Regs); 1068 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1069 SmallPtrSetImpl<const SCEV *> &Regs, 1070 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1071 }; 1072 1073 /// An operand value in an instruction which is to be replaced with some 1074 /// equivalent, possibly strength-reduced, replacement. 1075 struct LSRFixup { 1076 /// The instruction which will be updated. 1077 Instruction *UserInst = nullptr; 1078 1079 /// The operand of the instruction which will be replaced. The operand may be 1080 /// used more than once; every instance will be replaced. 1081 Value *OperandValToReplace = nullptr; 1082 1083 /// If this user is to use the post-incremented value of an induction 1084 /// variable, this set is non-empty and holds the loops associated with the 1085 /// induction variable. 1086 PostIncLoopSet PostIncLoops; 1087 1088 /// A constant offset to be added to the LSRUse expression. This allows 1089 /// multiple fixups to share the same LSRUse with different offsets, for 1090 /// example in an unrolled loop. 1091 int64_t Offset = 0; 1092 1093 LSRFixup() = default; 1094 1095 bool isUseFullyOutsideLoop(const Loop *L) const; 1096 1097 void print(raw_ostream &OS) const; 1098 void dump() const; 1099 }; 1100 1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1102 /// SmallVectors of const SCEV*. 1103 struct UniquifierDenseMapInfo { 1104 static SmallVector<const SCEV *, 4> getEmptyKey() { 1105 SmallVector<const SCEV *, 4> V; 1106 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1107 return V; 1108 } 1109 1110 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1111 SmallVector<const SCEV *, 4> V; 1112 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1113 return V; 1114 } 1115 1116 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1118 } 1119 1120 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1121 const SmallVector<const SCEV *, 4> &RHS) { 1122 return LHS == RHS; 1123 } 1124 }; 1125 1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1127 /// as uses invented by LSR itself. It includes information about what kinds of 1128 /// things can be folded into the user, information about the user itself, and 1129 /// information about how the use may be satisfied. TODO: Represent multiple 1130 /// users of the same expression in common? 1131 class LSRUse { 1132 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1133 1134 public: 1135 /// An enum for a kind of use, indicating what types of scaled and immediate 1136 /// operands it might support. 1137 enum KindType { 1138 Basic, ///< A normal use, with no folding. 1139 Special, ///< A special case of basic, allowing -1 scales. 1140 Address, ///< An address use; folding according to TargetLowering 1141 ICmpZero ///< An equality icmp with both operands folded into one. 1142 // TODO: Add a generic icmp too? 1143 }; 1144 1145 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1146 1147 KindType Kind; 1148 MemAccessTy AccessTy; 1149 1150 /// The list of operands which are to be replaced. 1151 SmallVector<LSRFixup, 8> Fixups; 1152 1153 /// Keep track of the min and max offsets of the fixups. 1154 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1155 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1156 1157 /// This records whether all of the fixups using this LSRUse are outside of 1158 /// the loop, in which case some special-case heuristics may be used. 1159 bool AllFixupsOutsideLoop = true; 1160 1161 /// RigidFormula is set to true to guarantee that this use will be associated 1162 /// with a single formula--the one that initially matched. Some SCEV 1163 /// expressions cannot be expanded. This allows LSR to consider the registers 1164 /// used by those expressions without the need to expand them later after 1165 /// changing the formula. 1166 bool RigidFormula = false; 1167 1168 /// This records the widest use type for any fixup using this 1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1170 /// fixup widths to be equivalent, because the narrower one may be relying on 1171 /// the implicit truncation to truncate away bogus bits. 1172 Type *WidestFixupType = nullptr; 1173 1174 /// A list of ways to build a value that can satisfy this user. After the 1175 /// list is populated, one of these is selected heuristically and used to 1176 /// formulate a replacement for OperandValToReplace in UserInst. 1177 SmallVector<Formula, 12> Formulae; 1178 1179 /// The set of register candidates used by all formulae in this LSRUse. 1180 SmallPtrSet<const SCEV *, 4> Regs; 1181 1182 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1183 1184 LSRFixup &getNewFixup() { 1185 Fixups.push_back(LSRFixup()); 1186 return Fixups.back(); 1187 } 1188 1189 void pushFixup(LSRFixup &f) { 1190 Fixups.push_back(f); 1191 if (f.Offset > MaxOffset) 1192 MaxOffset = f.Offset; 1193 if (f.Offset < MinOffset) 1194 MinOffset = f.Offset; 1195 } 1196 1197 bool HasFormulaWithSameRegs(const Formula &F) const; 1198 float getNotSelectedProbability(const SCEV *Reg) const; 1199 bool InsertFormula(const Formula &F, const Loop &L); 1200 void DeleteFormula(Formula &F); 1201 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1202 1203 void print(raw_ostream &OS) const; 1204 void dump() const; 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1210 LSRUse::KindType Kind, MemAccessTy AccessTy, 1211 GlobalValue *BaseGV, int64_t BaseOffset, 1212 bool HasBaseReg, int64_t Scale, 1213 Instruction *Fixup = nullptr); 1214 1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1216 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1217 return 1; 1218 if (Depth == 0) 1219 return 0; 1220 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1221 return getSetupCost(S->getStart(), Depth - 1); 1222 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1223 return getSetupCost(S->getOperand(), Depth - 1); 1224 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1225 return std::accumulate(S->op_begin(), S->op_end(), 0, 1226 [&](unsigned i, const SCEV *Reg) { 1227 return i + getSetupCost(Reg, Depth - 1); 1228 }); 1229 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1230 return getSetupCost(S->getLHS(), Depth - 1) + 1231 getSetupCost(S->getRHS(), Depth - 1); 1232 return 0; 1233 } 1234 1235 /// Tally up interesting quantities from the given register. 1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1237 SmallPtrSetImpl<const SCEV *> &Regs) { 1238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1239 // If this is an addrec for another loop, it should be an invariant 1240 // with respect to L since L is the innermost loop (at least 1241 // for now LSR only handles innermost loops). 1242 if (AR->getLoop() != L) { 1243 // If the AddRec exists, consider it's register free and leave it alone. 1244 if (isExistingPhi(AR, *SE)) 1245 return; 1246 1247 // It is bad to allow LSR for current loop to add induction variables 1248 // for its sibling loops. 1249 if (!AR->getLoop()->contains(L)) { 1250 Lose(); 1251 return; 1252 } 1253 1254 // Otherwise, it will be an invariant with respect to Loop L. 1255 ++C.NumRegs; 1256 return; 1257 } 1258 1259 unsigned LoopCost = 1; 1260 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1261 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1262 1263 // If the step size matches the base offset, we could use pre-indexed 1264 // addressing. 1265 if (TTI->shouldFavorBackedgeIndex(L)) { 1266 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1267 if (Step->getAPInt() == F.BaseOffset) 1268 LoopCost = 0; 1269 } 1270 1271 if (TTI->shouldFavorPostInc()) { 1272 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1273 if (isa<SCEVConstant>(LoopStep)) { 1274 const SCEV *LoopStart = AR->getStart(); 1275 if (!isa<SCEVConstant>(LoopStart) && 1276 SE->isLoopInvariant(LoopStart, L)) 1277 LoopCost = 0; 1278 } 1279 } 1280 } 1281 C.AddRecCost += LoopCost; 1282 1283 // Add the step value register, if it needs one. 1284 // TODO: The non-affine case isn't precisely modeled here. 1285 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1286 if (!Regs.count(AR->getOperand(1))) { 1287 RateRegister(F, AR->getOperand(1), Regs); 1288 if (isLoser()) 1289 return; 1290 } 1291 } 1292 } 1293 ++C.NumRegs; 1294 1295 // Rough heuristic; favor registers which don't require extra setup 1296 // instructions in the preheader. 1297 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1298 // Ensure we don't, even with the recusion limit, produce invalid costs. 1299 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1300 1301 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1302 SE->hasComputableLoopEvolution(Reg, L); 1303 } 1304 1305 /// Record this register in the set. If we haven't seen it before, rate 1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1307 /// one of those regs an instant loser. 1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1309 SmallPtrSetImpl<const SCEV *> &Regs, 1310 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1311 if (LoserRegs && LoserRegs->count(Reg)) { 1312 Lose(); 1313 return; 1314 } 1315 if (Regs.insert(Reg).second) { 1316 RateRegister(F, Reg, Regs); 1317 if (LoserRegs && isLoser()) 1318 LoserRegs->insert(Reg); 1319 } 1320 } 1321 1322 void Cost::RateFormula(const Formula &F, 1323 SmallPtrSetImpl<const SCEV *> &Regs, 1324 const DenseSet<const SCEV *> &VisitedRegs, 1325 const LSRUse &LU, 1326 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1327 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1328 // Tally up the registers. 1329 unsigned PrevAddRecCost = C.AddRecCost; 1330 unsigned PrevNumRegs = C.NumRegs; 1331 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1332 if (const SCEV *ScaledReg = F.ScaledReg) { 1333 if (VisitedRegs.count(ScaledReg)) { 1334 Lose(); 1335 return; 1336 } 1337 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1338 if (isLoser()) 1339 return; 1340 } 1341 for (const SCEV *BaseReg : F.BaseRegs) { 1342 if (VisitedRegs.count(BaseReg)) { 1343 Lose(); 1344 return; 1345 } 1346 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1347 if (isLoser()) 1348 return; 1349 } 1350 1351 // Determine how many (unfolded) adds we'll need inside the loop. 1352 size_t NumBaseParts = F.getNumRegs(); 1353 if (NumBaseParts > 1) 1354 // Do not count the base and a possible second register if the target 1355 // allows to fold 2 registers. 1356 C.NumBaseAdds += 1357 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1358 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1359 1360 // Accumulate non-free scaling amounts. 1361 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1362 1363 // Tally up the non-zero immediates. 1364 for (const LSRFixup &Fixup : LU.Fixups) { 1365 int64_t O = Fixup.Offset; 1366 int64_t Offset = (uint64_t)O + F.BaseOffset; 1367 if (F.BaseGV) 1368 C.ImmCost += 64; // Handle symbolic values conservatively. 1369 // TODO: This should probably be the pointer size. 1370 else if (Offset != 0) 1371 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1372 1373 // Check with target if this offset with this instruction is 1374 // specifically not supported. 1375 if (LU.Kind == LSRUse::Address && Offset != 0 && 1376 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1377 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1378 C.NumBaseAdds++; 1379 } 1380 1381 // If we don't count instruction cost exit here. 1382 if (!InsnsCost) { 1383 assert(isValid() && "invalid cost"); 1384 return; 1385 } 1386 1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1388 // additional instruction (at least fill). 1389 unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1; 1390 if (C.NumRegs > TTIRegNum) { 1391 // Cost already exceeded TTIRegNum, then only newly added register can add 1392 // new instructions. 1393 if (PrevNumRegs > TTIRegNum) 1394 C.Insns += (C.NumRegs - PrevNumRegs); 1395 else 1396 C.Insns += (C.NumRegs - TTIRegNum); 1397 } 1398 1399 // If ICmpZero formula ends with not 0, it could not be replaced by 1400 // just add or sub. We'll need to compare final result of AddRec. 1401 // That means we'll need an additional instruction. But if the target can 1402 // macro-fuse a compare with a branch, don't count this extra instruction. 1403 // For -10 + {0, +, 1}: 1404 // i = i + 1; 1405 // cmp i, 10 1406 // 1407 // For {-10, +, 1}: 1408 // i = i + 1; 1409 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1410 !TTI->canMacroFuseCmp()) 1411 C.Insns++; 1412 // Each new AddRec adds 1 instruction to calculation. 1413 C.Insns += (C.AddRecCost - PrevAddRecCost); 1414 1415 // BaseAdds adds instructions for unfolded registers. 1416 if (LU.Kind != LSRUse::ICmpZero) 1417 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1418 assert(isValid() && "invalid cost"); 1419 } 1420 1421 /// Set this cost to a losing value. 1422 void Cost::Lose() { 1423 C.Insns = std::numeric_limits<unsigned>::max(); 1424 C.NumRegs = std::numeric_limits<unsigned>::max(); 1425 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1426 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1427 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1428 C.ImmCost = std::numeric_limits<unsigned>::max(); 1429 C.SetupCost = std::numeric_limits<unsigned>::max(); 1430 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1431 } 1432 1433 /// Choose the lower cost. 1434 bool Cost::isLess(Cost &Other) { 1435 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1436 C.Insns != Other.C.Insns) 1437 return C.Insns < Other.C.Insns; 1438 return TTI->isLSRCostLess(C, Other.C); 1439 } 1440 1441 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1442 void Cost::print(raw_ostream &OS) const { 1443 if (InsnsCost) 1444 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1445 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1446 if (C.AddRecCost != 0) 1447 OS << ", with addrec cost " << C.AddRecCost; 1448 if (C.NumIVMuls != 0) 1449 OS << ", plus " << C.NumIVMuls << " IV mul" 1450 << (C.NumIVMuls == 1 ? "" : "s"); 1451 if (C.NumBaseAdds != 0) 1452 OS << ", plus " << C.NumBaseAdds << " base add" 1453 << (C.NumBaseAdds == 1 ? "" : "s"); 1454 if (C.ScaleCost != 0) 1455 OS << ", plus " << C.ScaleCost << " scale cost"; 1456 if (C.ImmCost != 0) 1457 OS << ", plus " << C.ImmCost << " imm cost"; 1458 if (C.SetupCost != 0) 1459 OS << ", plus " << C.SetupCost << " setup cost"; 1460 } 1461 1462 LLVM_DUMP_METHOD void Cost::dump() const { 1463 print(errs()); errs() << '\n'; 1464 } 1465 #endif 1466 1467 /// Test whether this fixup always uses its value outside of the given loop. 1468 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1469 // PHI nodes use their value in their incoming blocks. 1470 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1471 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1472 if (PN->getIncomingValue(i) == OperandValToReplace && 1473 L->contains(PN->getIncomingBlock(i))) 1474 return false; 1475 return true; 1476 } 1477 1478 return !L->contains(UserInst); 1479 } 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 void LSRFixup::print(raw_ostream &OS) const { 1483 OS << "UserInst="; 1484 // Store is common and interesting enough to be worth special-casing. 1485 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1486 OS << "store "; 1487 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1488 } else if (UserInst->getType()->isVoidTy()) 1489 OS << UserInst->getOpcodeName(); 1490 else 1491 UserInst->printAsOperand(OS, /*PrintType=*/false); 1492 1493 OS << ", OperandValToReplace="; 1494 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1495 1496 for (const Loop *PIL : PostIncLoops) { 1497 OS << ", PostIncLoop="; 1498 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1499 } 1500 1501 if (Offset != 0) 1502 OS << ", Offset=" << Offset; 1503 } 1504 1505 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1506 print(errs()); errs() << '\n'; 1507 } 1508 #endif 1509 1510 /// Test whether this use as a formula which has the same registers as the given 1511 /// formula. 1512 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1513 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1514 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1515 // Unstable sort by host order ok, because this is only used for uniquifying. 1516 llvm::sort(Key); 1517 return Uniquifier.count(Key); 1518 } 1519 1520 /// The function returns a probability of selecting formula without Reg. 1521 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1522 unsigned FNum = 0; 1523 for (const Formula &F : Formulae) 1524 if (F.referencesReg(Reg)) 1525 FNum++; 1526 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1527 } 1528 1529 /// If the given formula has not yet been inserted, add it to the list, and 1530 /// return true. Return false otherwise. The formula must be in canonical form. 1531 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1532 assert(F.isCanonical(L) && "Invalid canonical representation"); 1533 1534 if (!Formulae.empty() && RigidFormula) 1535 return false; 1536 1537 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1538 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1539 // Unstable sort by host order ok, because this is only used for uniquifying. 1540 llvm::sort(Key); 1541 1542 if (!Uniquifier.insert(Key).second) 1543 return false; 1544 1545 // Using a register to hold the value of 0 is not profitable. 1546 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1547 "Zero allocated in a scaled register!"); 1548 #ifndef NDEBUG 1549 for (const SCEV *BaseReg : F.BaseRegs) 1550 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1551 #endif 1552 1553 // Add the formula to the list. 1554 Formulae.push_back(F); 1555 1556 // Record registers now being used by this use. 1557 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1558 if (F.ScaledReg) 1559 Regs.insert(F.ScaledReg); 1560 1561 return true; 1562 } 1563 1564 /// Remove the given formula from this use's list. 1565 void LSRUse::DeleteFormula(Formula &F) { 1566 if (&F != &Formulae.back()) 1567 std::swap(F, Formulae.back()); 1568 Formulae.pop_back(); 1569 } 1570 1571 /// Recompute the Regs field, and update RegUses. 1572 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1573 // Now that we've filtered out some formulae, recompute the Regs set. 1574 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1575 Regs.clear(); 1576 for (const Formula &F : Formulae) { 1577 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1578 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1579 } 1580 1581 // Update the RegTracker. 1582 for (const SCEV *S : OldRegs) 1583 if (!Regs.count(S)) 1584 RegUses.dropRegister(S, LUIdx); 1585 } 1586 1587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1588 void LSRUse::print(raw_ostream &OS) const { 1589 OS << "LSR Use: Kind="; 1590 switch (Kind) { 1591 case Basic: OS << "Basic"; break; 1592 case Special: OS << "Special"; break; 1593 case ICmpZero: OS << "ICmpZero"; break; 1594 case Address: 1595 OS << "Address of "; 1596 if (AccessTy.MemTy->isPointerTy()) 1597 OS << "pointer"; // the full pointer type could be really verbose 1598 else { 1599 OS << *AccessTy.MemTy; 1600 } 1601 1602 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1603 } 1604 1605 OS << ", Offsets={"; 1606 bool NeedComma = false; 1607 for (const LSRFixup &Fixup : Fixups) { 1608 if (NeedComma) OS << ','; 1609 OS << Fixup.Offset; 1610 NeedComma = true; 1611 } 1612 OS << '}'; 1613 1614 if (AllFixupsOutsideLoop) 1615 OS << ", all-fixups-outside-loop"; 1616 1617 if (WidestFixupType) 1618 OS << ", widest fixup type: " << *WidestFixupType; 1619 } 1620 1621 LLVM_DUMP_METHOD void LSRUse::dump() const { 1622 print(errs()); errs() << '\n'; 1623 } 1624 #endif 1625 1626 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1627 LSRUse::KindType Kind, MemAccessTy AccessTy, 1628 GlobalValue *BaseGV, int64_t BaseOffset, 1629 bool HasBaseReg, int64_t Scale, 1630 Instruction *Fixup/*= nullptr*/) { 1631 switch (Kind) { 1632 case LSRUse::Address: 1633 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1634 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1635 1636 case LSRUse::ICmpZero: 1637 // There's not even a target hook for querying whether it would be legal to 1638 // fold a GV into an ICmp. 1639 if (BaseGV) 1640 return false; 1641 1642 // ICmp only has two operands; don't allow more than two non-trivial parts. 1643 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1644 return false; 1645 1646 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1647 // putting the scaled register in the other operand of the icmp. 1648 if (Scale != 0 && Scale != -1) 1649 return false; 1650 1651 // If we have low-level target information, ask the target if it can fold an 1652 // integer immediate on an icmp. 1653 if (BaseOffset != 0) { 1654 // We have one of: 1655 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1656 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1657 // Offs is the ICmp immediate. 1658 if (Scale == 0) 1659 // The cast does the right thing with 1660 // std::numeric_limits<int64_t>::min(). 1661 BaseOffset = -(uint64_t)BaseOffset; 1662 return TTI.isLegalICmpImmediate(BaseOffset); 1663 } 1664 1665 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1666 return true; 1667 1668 case LSRUse::Basic: 1669 // Only handle single-register values. 1670 return !BaseGV && Scale == 0 && BaseOffset == 0; 1671 1672 case LSRUse::Special: 1673 // Special case Basic to handle -1 scales. 1674 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1675 } 1676 1677 llvm_unreachable("Invalid LSRUse Kind!"); 1678 } 1679 1680 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1681 int64_t MinOffset, int64_t MaxOffset, 1682 LSRUse::KindType Kind, MemAccessTy AccessTy, 1683 GlobalValue *BaseGV, int64_t BaseOffset, 1684 bool HasBaseReg, int64_t Scale) { 1685 // Check for overflow. 1686 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1687 (MinOffset > 0)) 1688 return false; 1689 MinOffset = (uint64_t)BaseOffset + MinOffset; 1690 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1691 (MaxOffset > 0)) 1692 return false; 1693 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1694 1695 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1696 HasBaseReg, Scale) && 1697 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1698 HasBaseReg, Scale); 1699 } 1700 1701 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1702 int64_t MinOffset, int64_t MaxOffset, 1703 LSRUse::KindType Kind, MemAccessTy AccessTy, 1704 const Formula &F, const Loop &L) { 1705 // For the purpose of isAMCompletelyFolded either having a canonical formula 1706 // or a scale not equal to zero is correct. 1707 // Problems may arise from non canonical formulae having a scale == 0. 1708 // Strictly speaking it would best to just rely on canonical formulae. 1709 // However, when we generate the scaled formulae, we first check that the 1710 // scaling factor is profitable before computing the actual ScaledReg for 1711 // compile time sake. 1712 assert((F.isCanonical(L) || F.Scale != 0)); 1713 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1714 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1715 } 1716 1717 /// Test whether we know how to expand the current formula. 1718 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1719 int64_t MaxOffset, LSRUse::KindType Kind, 1720 MemAccessTy AccessTy, GlobalValue *BaseGV, 1721 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1722 // We know how to expand completely foldable formulae. 1723 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1724 BaseOffset, HasBaseReg, Scale) || 1725 // Or formulae that use a base register produced by a sum of base 1726 // registers. 1727 (Scale == 1 && 1728 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1729 BaseGV, BaseOffset, true, 0)); 1730 } 1731 1732 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1733 int64_t MaxOffset, LSRUse::KindType Kind, 1734 MemAccessTy AccessTy, const Formula &F) { 1735 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1736 F.BaseOffset, F.HasBaseReg, F.Scale); 1737 } 1738 1739 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1740 const LSRUse &LU, const Formula &F) { 1741 // Target may want to look at the user instructions. 1742 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1743 for (const LSRFixup &Fixup : LU.Fixups) 1744 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1745 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1746 F.Scale, Fixup.UserInst)) 1747 return false; 1748 return true; 1749 } 1750 1751 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1752 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1753 F.Scale); 1754 } 1755 1756 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1757 const LSRUse &LU, const Formula &F, 1758 const Loop &L) { 1759 if (!F.Scale) 1760 return 0; 1761 1762 // If the use is not completely folded in that instruction, we will have to 1763 // pay an extra cost only for scale != 1. 1764 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1765 LU.AccessTy, F, L)) 1766 return F.Scale != 1; 1767 1768 switch (LU.Kind) { 1769 case LSRUse::Address: { 1770 // Check the scaling factor cost with both the min and max offsets. 1771 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1772 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1773 F.Scale, LU.AccessTy.AddrSpace); 1774 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1775 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1776 F.Scale, LU.AccessTy.AddrSpace); 1777 1778 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1779 "Legal addressing mode has an illegal cost!"); 1780 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1781 } 1782 case LSRUse::ICmpZero: 1783 case LSRUse::Basic: 1784 case LSRUse::Special: 1785 // The use is completely folded, i.e., everything is folded into the 1786 // instruction. 1787 return 0; 1788 } 1789 1790 llvm_unreachable("Invalid LSRUse Kind!"); 1791 } 1792 1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1794 LSRUse::KindType Kind, MemAccessTy AccessTy, 1795 GlobalValue *BaseGV, int64_t BaseOffset, 1796 bool HasBaseReg) { 1797 // Fast-path: zero is always foldable. 1798 if (BaseOffset == 0 && !BaseGV) return true; 1799 1800 // Conservatively, create an address with an immediate and a 1801 // base and a scale. 1802 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1803 1804 // Canonicalize a scale of 1 to a base register if the formula doesn't 1805 // already have a base register. 1806 if (!HasBaseReg && Scale == 1) { 1807 Scale = 0; 1808 HasBaseReg = true; 1809 } 1810 1811 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1812 HasBaseReg, Scale); 1813 } 1814 1815 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1816 ScalarEvolution &SE, int64_t MinOffset, 1817 int64_t MaxOffset, LSRUse::KindType Kind, 1818 MemAccessTy AccessTy, const SCEV *S, 1819 bool HasBaseReg) { 1820 // Fast-path: zero is always foldable. 1821 if (S->isZero()) return true; 1822 1823 // Conservatively, create an address with an immediate and a 1824 // base and a scale. 1825 int64_t BaseOffset = ExtractImmediate(S, SE); 1826 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1827 1828 // If there's anything else involved, it's not foldable. 1829 if (!S->isZero()) return false; 1830 1831 // Fast-path: zero is always foldable. 1832 if (BaseOffset == 0 && !BaseGV) return true; 1833 1834 // Conservatively, create an address with an immediate and a 1835 // base and a scale. 1836 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1837 1838 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1839 BaseOffset, HasBaseReg, Scale); 1840 } 1841 1842 namespace { 1843 1844 /// An individual increment in a Chain of IV increments. Relate an IV user to 1845 /// an expression that computes the IV it uses from the IV used by the previous 1846 /// link in the Chain. 1847 /// 1848 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1849 /// original IVOperand. The head of the chain's IVOperand is only valid during 1850 /// chain collection, before LSR replaces IV users. During chain generation, 1851 /// IncExpr can be used to find the new IVOperand that computes the same 1852 /// expression. 1853 struct IVInc { 1854 Instruction *UserInst; 1855 Value* IVOperand; 1856 const SCEV *IncExpr; 1857 1858 IVInc(Instruction *U, Value *O, const SCEV *E) 1859 : UserInst(U), IVOperand(O), IncExpr(E) {} 1860 }; 1861 1862 // The list of IV increments in program order. We typically add the head of a 1863 // chain without finding subsequent links. 1864 struct IVChain { 1865 SmallVector<IVInc, 1> Incs; 1866 const SCEV *ExprBase = nullptr; 1867 1868 IVChain() = default; 1869 IVChain(const IVInc &Head, const SCEV *Base) 1870 : Incs(1, Head), ExprBase(Base) {} 1871 1872 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1873 1874 // Return the first increment in the chain. 1875 const_iterator begin() const { 1876 assert(!Incs.empty()); 1877 return std::next(Incs.begin()); 1878 } 1879 const_iterator end() const { 1880 return Incs.end(); 1881 } 1882 1883 // Returns true if this chain contains any increments. 1884 bool hasIncs() const { return Incs.size() >= 2; } 1885 1886 // Add an IVInc to the end of this chain. 1887 void add(const IVInc &X) { Incs.push_back(X); } 1888 1889 // Returns the last UserInst in the chain. 1890 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1891 1892 // Returns true if IncExpr can be profitably added to this chain. 1893 bool isProfitableIncrement(const SCEV *OperExpr, 1894 const SCEV *IncExpr, 1895 ScalarEvolution&); 1896 }; 1897 1898 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1899 /// between FarUsers that definitely cross IV increments and NearUsers that may 1900 /// be used between IV increments. 1901 struct ChainUsers { 1902 SmallPtrSet<Instruction*, 4> FarUsers; 1903 SmallPtrSet<Instruction*, 4> NearUsers; 1904 }; 1905 1906 /// This class holds state for the main loop strength reduction logic. 1907 class LSRInstance { 1908 IVUsers &IU; 1909 ScalarEvolution &SE; 1910 DominatorTree &DT; 1911 LoopInfo &LI; 1912 AssumptionCache &AC; 1913 TargetLibraryInfo &LibInfo; 1914 const TargetTransformInfo &TTI; 1915 Loop *const L; 1916 bool FavorBackedgeIndex = false; 1917 bool Changed = false; 1918 1919 /// This is the insert position that the current loop's induction variable 1920 /// increment should be placed. In simple loops, this is the latch block's 1921 /// terminator. But in more complicated cases, this is a position which will 1922 /// dominate all the in-loop post-increment users. 1923 Instruction *IVIncInsertPos = nullptr; 1924 1925 /// Interesting factors between use strides. 1926 /// 1927 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1928 /// default, a SmallDenseSet, because we need to use the full range of 1929 /// int64_ts, and there's currently no good way of doing that with 1930 /// SmallDenseSet. 1931 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1932 1933 /// Interesting use types, to facilitate truncation reuse. 1934 SmallSetVector<Type *, 4> Types; 1935 1936 /// The list of interesting uses. 1937 mutable SmallVector<LSRUse, 16> Uses; 1938 1939 /// Track which uses use which register candidates. 1940 RegUseTracker RegUses; 1941 1942 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1943 // have more than a few IV increment chains in a loop. Missing a Chain falls 1944 // back to normal LSR behavior for those uses. 1945 static const unsigned MaxChains = 8; 1946 1947 /// IV users can form a chain of IV increments. 1948 SmallVector<IVChain, MaxChains> IVChainVec; 1949 1950 /// IV users that belong to profitable IVChains. 1951 SmallPtrSet<Use*, MaxChains> IVIncSet; 1952 1953 void OptimizeShadowIV(); 1954 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1955 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1956 void OptimizeLoopTermCond(); 1957 1958 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1959 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1960 void FinalizeChain(IVChain &Chain); 1961 void CollectChains(); 1962 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1963 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1964 1965 void CollectInterestingTypesAndFactors(); 1966 void CollectFixupsAndInitialFormulae(); 1967 1968 // Support for sharing of LSRUses between LSRFixups. 1969 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1970 UseMapTy UseMap; 1971 1972 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1973 LSRUse::KindType Kind, MemAccessTy AccessTy); 1974 1975 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1976 MemAccessTy AccessTy); 1977 1978 void DeleteUse(LSRUse &LU, size_t LUIdx); 1979 1980 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1981 1982 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1983 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1984 void CountRegisters(const Formula &F, size_t LUIdx); 1985 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1986 1987 void CollectLoopInvariantFixupsAndFormulae(); 1988 1989 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1990 unsigned Depth = 0); 1991 1992 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1993 const Formula &Base, unsigned Depth, 1994 size_t Idx, bool IsScaledReg = false); 1995 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1996 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1997 const Formula &Base, size_t Idx, 1998 bool IsScaledReg = false); 1999 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2000 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2001 const Formula &Base, 2002 const SmallVectorImpl<int64_t> &Worklist, 2003 size_t Idx, bool IsScaledReg = false); 2004 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2005 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2006 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2007 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2008 void GenerateCrossUseConstantOffsets(); 2009 void GenerateAllReuseFormulae(); 2010 2011 void FilterOutUndesirableDedicatedRegisters(); 2012 2013 size_t EstimateSearchSpaceComplexity() const; 2014 void NarrowSearchSpaceByDetectingSupersets(); 2015 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2016 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2017 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2018 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2019 void NarrowSearchSpaceByPickingWinnerRegs(); 2020 void NarrowSearchSpaceUsingHeuristics(); 2021 2022 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2023 Cost &SolutionCost, 2024 SmallVectorImpl<const Formula *> &Workspace, 2025 const Cost &CurCost, 2026 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2027 DenseSet<const SCEV *> &VisitedRegs) const; 2028 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2029 2030 BasicBlock::iterator 2031 HoistInsertPosition(BasicBlock::iterator IP, 2032 const SmallVectorImpl<Instruction *> &Inputs) const; 2033 BasicBlock::iterator 2034 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2035 const LSRFixup &LF, 2036 const LSRUse &LU, 2037 SCEVExpander &Rewriter) const; 2038 2039 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2040 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2041 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2042 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2043 const Formula &F, SCEVExpander &Rewriter, 2044 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2045 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2046 SCEVExpander &Rewriter, 2047 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2048 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2049 2050 public: 2051 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2052 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2053 TargetLibraryInfo &LibInfo); 2054 2055 bool getChanged() const { return Changed; } 2056 2057 void print_factors_and_types(raw_ostream &OS) const; 2058 void print_fixups(raw_ostream &OS) const; 2059 void print_uses(raw_ostream &OS) const; 2060 void print(raw_ostream &OS) const; 2061 void dump() const; 2062 }; 2063 2064 } // end anonymous namespace 2065 2066 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2067 /// the cast operation. 2068 void LSRInstance::OptimizeShadowIV() { 2069 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2070 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2071 return; 2072 2073 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2074 UI != E; /* empty */) { 2075 IVUsers::const_iterator CandidateUI = UI; 2076 ++UI; 2077 Instruction *ShadowUse = CandidateUI->getUser(); 2078 Type *DestTy = nullptr; 2079 bool IsSigned = false; 2080 2081 /* If shadow use is a int->float cast then insert a second IV 2082 to eliminate this cast. 2083 2084 for (unsigned i = 0; i < n; ++i) 2085 foo((double)i); 2086 2087 is transformed into 2088 2089 double d = 0.0; 2090 for (unsigned i = 0; i < n; ++i, ++d) 2091 foo(d); 2092 */ 2093 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2094 IsSigned = false; 2095 DestTy = UCast->getDestTy(); 2096 } 2097 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2098 IsSigned = true; 2099 DestTy = SCast->getDestTy(); 2100 } 2101 if (!DestTy) continue; 2102 2103 // If target does not support DestTy natively then do not apply 2104 // this transformation. 2105 if (!TTI.isTypeLegal(DestTy)) continue; 2106 2107 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2108 if (!PH) continue; 2109 if (PH->getNumIncomingValues() != 2) continue; 2110 2111 // If the calculation in integers overflows, the result in FP type will 2112 // differ. So we only can do this transformation if we are guaranteed to not 2113 // deal with overflowing values 2114 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2115 if (!AR) continue; 2116 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2117 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2118 2119 Type *SrcTy = PH->getType(); 2120 int Mantissa = DestTy->getFPMantissaWidth(); 2121 if (Mantissa == -1) continue; 2122 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2123 continue; 2124 2125 unsigned Entry, Latch; 2126 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2127 Entry = 0; 2128 Latch = 1; 2129 } else { 2130 Entry = 1; 2131 Latch = 0; 2132 } 2133 2134 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2135 if (!Init) continue; 2136 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2137 (double)Init->getSExtValue() : 2138 (double)Init->getZExtValue()); 2139 2140 BinaryOperator *Incr = 2141 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2142 if (!Incr) continue; 2143 if (Incr->getOpcode() != Instruction::Add 2144 && Incr->getOpcode() != Instruction::Sub) 2145 continue; 2146 2147 /* Initialize new IV, double d = 0.0 in above example. */ 2148 ConstantInt *C = nullptr; 2149 if (Incr->getOperand(0) == PH) 2150 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2151 else if (Incr->getOperand(1) == PH) 2152 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2153 else 2154 continue; 2155 2156 if (!C) continue; 2157 2158 // Ignore negative constants, as the code below doesn't handle them 2159 // correctly. TODO: Remove this restriction. 2160 if (!C->getValue().isStrictlyPositive()) continue; 2161 2162 /* Add new PHINode. */ 2163 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2164 2165 /* create new increment. '++d' in above example. */ 2166 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2167 BinaryOperator *NewIncr = 2168 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2169 Instruction::FAdd : Instruction::FSub, 2170 NewPH, CFP, "IV.S.next.", Incr); 2171 2172 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2173 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2174 2175 /* Remove cast operation */ 2176 ShadowUse->replaceAllUsesWith(NewPH); 2177 ShadowUse->eraseFromParent(); 2178 Changed = true; 2179 break; 2180 } 2181 } 2182 2183 /// If Cond has an operand that is an expression of an IV, set the IV user and 2184 /// stride information and return true, otherwise return false. 2185 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2186 for (IVStrideUse &U : IU) 2187 if (U.getUser() == Cond) { 2188 // NOTE: we could handle setcc instructions with multiple uses here, but 2189 // InstCombine does it as well for simple uses, it's not clear that it 2190 // occurs enough in real life to handle. 2191 CondUse = &U; 2192 return true; 2193 } 2194 return false; 2195 } 2196 2197 /// Rewrite the loop's terminating condition if it uses a max computation. 2198 /// 2199 /// This is a narrow solution to a specific, but acute, problem. For loops 2200 /// like this: 2201 /// 2202 /// i = 0; 2203 /// do { 2204 /// p[i] = 0.0; 2205 /// } while (++i < n); 2206 /// 2207 /// the trip count isn't just 'n', because 'n' might not be positive. And 2208 /// unfortunately this can come up even for loops where the user didn't use 2209 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2210 /// will commonly be lowered like this: 2211 /// 2212 /// if (n > 0) { 2213 /// i = 0; 2214 /// do { 2215 /// p[i] = 0.0; 2216 /// } while (++i < n); 2217 /// } 2218 /// 2219 /// and then it's possible for subsequent optimization to obscure the if 2220 /// test in such a way that indvars can't find it. 2221 /// 2222 /// When indvars can't find the if test in loops like this, it creates a 2223 /// max expression, which allows it to give the loop a canonical 2224 /// induction variable: 2225 /// 2226 /// i = 0; 2227 /// max = n < 1 ? 1 : n; 2228 /// do { 2229 /// p[i] = 0.0; 2230 /// } while (++i != max); 2231 /// 2232 /// Canonical induction variables are necessary because the loop passes 2233 /// are designed around them. The most obvious example of this is the 2234 /// LoopInfo analysis, which doesn't remember trip count values. It 2235 /// expects to be able to rediscover the trip count each time it is 2236 /// needed, and it does this using a simple analysis that only succeeds if 2237 /// the loop has a canonical induction variable. 2238 /// 2239 /// However, when it comes time to generate code, the maximum operation 2240 /// can be quite costly, especially if it's inside of an outer loop. 2241 /// 2242 /// This function solves this problem by detecting this type of loop and 2243 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2244 /// the instructions for the maximum computation. 2245 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2246 // Check that the loop matches the pattern we're looking for. 2247 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2248 Cond->getPredicate() != CmpInst::ICMP_NE) 2249 return Cond; 2250 2251 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2252 if (!Sel || !Sel->hasOneUse()) return Cond; 2253 2254 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2255 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2256 return Cond; 2257 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2258 2259 // Add one to the backedge-taken count to get the trip count. 2260 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2261 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2262 2263 // Check for a max calculation that matches the pattern. There's no check 2264 // for ICMP_ULE here because the comparison would be with zero, which 2265 // isn't interesting. 2266 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2267 const SCEVNAryExpr *Max = nullptr; 2268 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2269 Pred = ICmpInst::ICMP_SLE; 2270 Max = S; 2271 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2272 Pred = ICmpInst::ICMP_SLT; 2273 Max = S; 2274 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2275 Pred = ICmpInst::ICMP_ULT; 2276 Max = U; 2277 } else { 2278 // No match; bail. 2279 return Cond; 2280 } 2281 2282 // To handle a max with more than two operands, this optimization would 2283 // require additional checking and setup. 2284 if (Max->getNumOperands() != 2) 2285 return Cond; 2286 2287 const SCEV *MaxLHS = Max->getOperand(0); 2288 const SCEV *MaxRHS = Max->getOperand(1); 2289 2290 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2291 // for a comparison with 1. For <= and >=, a comparison with zero. 2292 if (!MaxLHS || 2293 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2294 return Cond; 2295 2296 // Check the relevant induction variable for conformance to 2297 // the pattern. 2298 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2299 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2300 if (!AR || !AR->isAffine() || 2301 AR->getStart() != One || 2302 AR->getStepRecurrence(SE) != One) 2303 return Cond; 2304 2305 assert(AR->getLoop() == L && 2306 "Loop condition operand is an addrec in a different loop!"); 2307 2308 // Check the right operand of the select, and remember it, as it will 2309 // be used in the new comparison instruction. 2310 Value *NewRHS = nullptr; 2311 if (ICmpInst::isTrueWhenEqual(Pred)) { 2312 // Look for n+1, and grab n. 2313 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2314 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2315 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2316 NewRHS = BO->getOperand(0); 2317 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2318 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2319 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2320 NewRHS = BO->getOperand(0); 2321 if (!NewRHS) 2322 return Cond; 2323 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2324 NewRHS = Sel->getOperand(1); 2325 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2326 NewRHS = Sel->getOperand(2); 2327 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2328 NewRHS = SU->getValue(); 2329 else 2330 // Max doesn't match expected pattern. 2331 return Cond; 2332 2333 // Determine the new comparison opcode. It may be signed or unsigned, 2334 // and the original comparison may be either equality or inequality. 2335 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2336 Pred = CmpInst::getInversePredicate(Pred); 2337 2338 // Ok, everything looks ok to change the condition into an SLT or SGE and 2339 // delete the max calculation. 2340 ICmpInst *NewCond = 2341 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2342 2343 // Delete the max calculation instructions. 2344 Cond->replaceAllUsesWith(NewCond); 2345 CondUse->setUser(NewCond); 2346 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2347 Cond->eraseFromParent(); 2348 Sel->eraseFromParent(); 2349 if (Cmp->use_empty()) 2350 Cmp->eraseFromParent(); 2351 return NewCond; 2352 } 2353 2354 /// Change loop terminating condition to use the postinc iv when possible. 2355 void 2356 LSRInstance::OptimizeLoopTermCond() { 2357 SmallPtrSet<Instruction *, 4> PostIncs; 2358 2359 // We need a different set of heuristics for rotated and non-rotated loops. 2360 // If a loop is rotated then the latch is also the backedge, so inserting 2361 // post-inc expressions just before the latch is ideal. To reduce live ranges 2362 // it also makes sense to rewrite terminating conditions to use post-inc 2363 // expressions. 2364 // 2365 // If the loop is not rotated then the latch is not a backedge; the latch 2366 // check is done in the loop head. Adding post-inc expressions before the 2367 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2368 // in the loop body. In this case we do *not* want to use post-inc expressions 2369 // in the latch check, and we want to insert post-inc expressions before 2370 // the backedge. 2371 BasicBlock *LatchBlock = L->getLoopLatch(); 2372 SmallVector<BasicBlock*, 8> ExitingBlocks; 2373 L->getExitingBlocks(ExitingBlocks); 2374 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2375 return LatchBlock != BB; 2376 })) { 2377 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2378 IVIncInsertPos = LatchBlock->getTerminator(); 2379 return; 2380 } 2381 2382 // Otherwise treat this as a rotated loop. 2383 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2384 // Get the terminating condition for the loop if possible. If we 2385 // can, we want to change it to use a post-incremented version of its 2386 // induction variable, to allow coalescing the live ranges for the IV into 2387 // one register value. 2388 2389 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2390 if (!TermBr) 2391 continue; 2392 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2393 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2394 continue; 2395 2396 // Search IVUsesByStride to find Cond's IVUse if there is one. 2397 IVStrideUse *CondUse = nullptr; 2398 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2399 if (!FindIVUserForCond(Cond, CondUse)) 2400 continue; 2401 2402 // If the trip count is computed in terms of a max (due to ScalarEvolution 2403 // being unable to find a sufficient guard, for example), change the loop 2404 // comparison to use SLT or ULT instead of NE. 2405 // One consequence of doing this now is that it disrupts the count-down 2406 // optimization. That's not always a bad thing though, because in such 2407 // cases it may still be worthwhile to avoid a max. 2408 Cond = OptimizeMax(Cond, CondUse); 2409 2410 // If this exiting block dominates the latch block, it may also use 2411 // the post-inc value if it won't be shared with other uses. 2412 // Check for dominance. 2413 if (!DT.dominates(ExitingBlock, LatchBlock)) 2414 continue; 2415 2416 // Conservatively avoid trying to use the post-inc value in non-latch 2417 // exits if there may be pre-inc users in intervening blocks. 2418 if (LatchBlock != ExitingBlock) 2419 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2420 // Test if the use is reachable from the exiting block. This dominator 2421 // query is a conservative approximation of reachability. 2422 if (&*UI != CondUse && 2423 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2424 // Conservatively assume there may be reuse if the quotient of their 2425 // strides could be a legal scale. 2426 const SCEV *A = IU.getStride(*CondUse, L); 2427 const SCEV *B = IU.getStride(*UI, L); 2428 if (!A || !B) continue; 2429 if (SE.getTypeSizeInBits(A->getType()) != 2430 SE.getTypeSizeInBits(B->getType())) { 2431 if (SE.getTypeSizeInBits(A->getType()) > 2432 SE.getTypeSizeInBits(B->getType())) 2433 B = SE.getSignExtendExpr(B, A->getType()); 2434 else 2435 A = SE.getSignExtendExpr(A, B->getType()); 2436 } 2437 if (const SCEVConstant *D = 2438 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2439 const ConstantInt *C = D->getValue(); 2440 // Stride of one or negative one can have reuse with non-addresses. 2441 if (C->isOne() || C->isMinusOne()) 2442 goto decline_post_inc; 2443 // Avoid weird situations. 2444 if (C->getValue().getMinSignedBits() >= 64 || 2445 C->getValue().isMinSignedValue()) 2446 goto decline_post_inc; 2447 // Check for possible scaled-address reuse. 2448 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2449 MemAccessTy AccessTy = getAccessType( 2450 TTI, UI->getUser(), UI->getOperandValToReplace()); 2451 int64_t Scale = C->getSExtValue(); 2452 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2453 /*BaseOffset=*/0, 2454 /*HasBaseReg=*/false, Scale, 2455 AccessTy.AddrSpace)) 2456 goto decline_post_inc; 2457 Scale = -Scale; 2458 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2459 /*BaseOffset=*/0, 2460 /*HasBaseReg=*/false, Scale, 2461 AccessTy.AddrSpace)) 2462 goto decline_post_inc; 2463 } 2464 } 2465 } 2466 2467 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2468 << *Cond << '\n'); 2469 2470 // It's possible for the setcc instruction to be anywhere in the loop, and 2471 // possible for it to have multiple users. If it is not immediately before 2472 // the exiting block branch, move it. 2473 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2474 if (Cond->hasOneUse()) { 2475 Cond->moveBefore(TermBr); 2476 } else { 2477 // Clone the terminating condition and insert into the loopend. 2478 ICmpInst *OldCond = Cond; 2479 Cond = cast<ICmpInst>(Cond->clone()); 2480 Cond->setName(L->getHeader()->getName() + ".termcond"); 2481 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2482 2483 // Clone the IVUse, as the old use still exists! 2484 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2485 TermBr->replaceUsesOfWith(OldCond, Cond); 2486 } 2487 } 2488 2489 // If we get to here, we know that we can transform the setcc instruction to 2490 // use the post-incremented version of the IV, allowing us to coalesce the 2491 // live ranges for the IV correctly. 2492 CondUse->transformToPostInc(L); 2493 Changed = true; 2494 2495 PostIncs.insert(Cond); 2496 decline_post_inc:; 2497 } 2498 2499 // Determine an insertion point for the loop induction variable increment. It 2500 // must dominate all the post-inc comparisons we just set up, and it must 2501 // dominate the loop latch edge. 2502 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2503 for (Instruction *Inst : PostIncs) { 2504 BasicBlock *BB = 2505 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2506 Inst->getParent()); 2507 if (BB == Inst->getParent()) 2508 IVIncInsertPos = Inst; 2509 else if (BB != IVIncInsertPos->getParent()) 2510 IVIncInsertPos = BB->getTerminator(); 2511 } 2512 } 2513 2514 /// Determine if the given use can accommodate a fixup at the given offset and 2515 /// other details. If so, update the use and return true. 2516 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2517 bool HasBaseReg, LSRUse::KindType Kind, 2518 MemAccessTy AccessTy) { 2519 int64_t NewMinOffset = LU.MinOffset; 2520 int64_t NewMaxOffset = LU.MaxOffset; 2521 MemAccessTy NewAccessTy = AccessTy; 2522 2523 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2524 // something conservative, however this can pessimize in the case that one of 2525 // the uses will have all its uses outside the loop, for example. 2526 if (LU.Kind != Kind) 2527 return false; 2528 2529 // Check for a mismatched access type, and fall back conservatively as needed. 2530 // TODO: Be less conservative when the type is similar and can use the same 2531 // addressing modes. 2532 if (Kind == LSRUse::Address) { 2533 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2534 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2535 AccessTy.AddrSpace); 2536 } 2537 } 2538 2539 // Conservatively assume HasBaseReg is true for now. 2540 if (NewOffset < LU.MinOffset) { 2541 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2542 LU.MaxOffset - NewOffset, HasBaseReg)) 2543 return false; 2544 NewMinOffset = NewOffset; 2545 } else if (NewOffset > LU.MaxOffset) { 2546 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2547 NewOffset - LU.MinOffset, HasBaseReg)) 2548 return false; 2549 NewMaxOffset = NewOffset; 2550 } 2551 2552 // Update the use. 2553 LU.MinOffset = NewMinOffset; 2554 LU.MaxOffset = NewMaxOffset; 2555 LU.AccessTy = NewAccessTy; 2556 return true; 2557 } 2558 2559 /// Return an LSRUse index and an offset value for a fixup which needs the given 2560 /// expression, with the given kind and optional access type. Either reuse an 2561 /// existing use or create a new one, as needed. 2562 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2563 LSRUse::KindType Kind, 2564 MemAccessTy AccessTy) { 2565 const SCEV *Copy = Expr; 2566 int64_t Offset = ExtractImmediate(Expr, SE); 2567 2568 // Basic uses can't accept any offset, for example. 2569 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2570 Offset, /*HasBaseReg=*/ true)) { 2571 Expr = Copy; 2572 Offset = 0; 2573 } 2574 2575 std::pair<UseMapTy::iterator, bool> P = 2576 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2577 if (!P.second) { 2578 // A use already existed with this base. 2579 size_t LUIdx = P.first->second; 2580 LSRUse &LU = Uses[LUIdx]; 2581 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2582 // Reuse this use. 2583 return std::make_pair(LUIdx, Offset); 2584 } 2585 2586 // Create a new use. 2587 size_t LUIdx = Uses.size(); 2588 P.first->second = LUIdx; 2589 Uses.push_back(LSRUse(Kind, AccessTy)); 2590 LSRUse &LU = Uses[LUIdx]; 2591 2592 LU.MinOffset = Offset; 2593 LU.MaxOffset = Offset; 2594 return std::make_pair(LUIdx, Offset); 2595 } 2596 2597 /// Delete the given use from the Uses list. 2598 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2599 if (&LU != &Uses.back()) 2600 std::swap(LU, Uses.back()); 2601 Uses.pop_back(); 2602 2603 // Update RegUses. 2604 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2605 } 2606 2607 /// Look for a use distinct from OrigLU which is has a formula that has the same 2608 /// registers as the given formula. 2609 LSRUse * 2610 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2611 const LSRUse &OrigLU) { 2612 // Search all uses for the formula. This could be more clever. 2613 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2614 LSRUse &LU = Uses[LUIdx]; 2615 // Check whether this use is close enough to OrigLU, to see whether it's 2616 // worthwhile looking through its formulae. 2617 // Ignore ICmpZero uses because they may contain formulae generated by 2618 // GenerateICmpZeroScales, in which case adding fixup offsets may 2619 // be invalid. 2620 if (&LU != &OrigLU && 2621 LU.Kind != LSRUse::ICmpZero && 2622 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2623 LU.WidestFixupType == OrigLU.WidestFixupType && 2624 LU.HasFormulaWithSameRegs(OrigF)) { 2625 // Scan through this use's formulae. 2626 for (const Formula &F : LU.Formulae) { 2627 // Check to see if this formula has the same registers and symbols 2628 // as OrigF. 2629 if (F.BaseRegs == OrigF.BaseRegs && 2630 F.ScaledReg == OrigF.ScaledReg && 2631 F.BaseGV == OrigF.BaseGV && 2632 F.Scale == OrigF.Scale && 2633 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2634 if (F.BaseOffset == 0) 2635 return &LU; 2636 // This is the formula where all the registers and symbols matched; 2637 // there aren't going to be any others. Since we declined it, we 2638 // can skip the rest of the formulae and proceed to the next LSRUse. 2639 break; 2640 } 2641 } 2642 } 2643 } 2644 2645 // Nothing looked good. 2646 return nullptr; 2647 } 2648 2649 void LSRInstance::CollectInterestingTypesAndFactors() { 2650 SmallSetVector<const SCEV *, 4> Strides; 2651 2652 // Collect interesting types and strides. 2653 SmallVector<const SCEV *, 4> Worklist; 2654 for (const IVStrideUse &U : IU) { 2655 const SCEV *Expr = IU.getExpr(U); 2656 2657 // Collect interesting types. 2658 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2659 2660 // Add strides for mentioned loops. 2661 Worklist.push_back(Expr); 2662 do { 2663 const SCEV *S = Worklist.pop_back_val(); 2664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2665 if (AR->getLoop() == L) 2666 Strides.insert(AR->getStepRecurrence(SE)); 2667 Worklist.push_back(AR->getStart()); 2668 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2669 Worklist.append(Add->op_begin(), Add->op_end()); 2670 } 2671 } while (!Worklist.empty()); 2672 } 2673 2674 // Compute interesting factors from the set of interesting strides. 2675 for (SmallSetVector<const SCEV *, 4>::const_iterator 2676 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2677 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2678 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2679 const SCEV *OldStride = *I; 2680 const SCEV *NewStride = *NewStrideIter; 2681 2682 if (SE.getTypeSizeInBits(OldStride->getType()) != 2683 SE.getTypeSizeInBits(NewStride->getType())) { 2684 if (SE.getTypeSizeInBits(OldStride->getType()) > 2685 SE.getTypeSizeInBits(NewStride->getType())) 2686 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2687 else 2688 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2689 } 2690 if (const SCEVConstant *Factor = 2691 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2692 SE, true))) { 2693 if (Factor->getAPInt().getMinSignedBits() <= 64) 2694 Factors.insert(Factor->getAPInt().getSExtValue()); 2695 } else if (const SCEVConstant *Factor = 2696 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2697 NewStride, 2698 SE, true))) { 2699 if (Factor->getAPInt().getMinSignedBits() <= 64) 2700 Factors.insert(Factor->getAPInt().getSExtValue()); 2701 } 2702 } 2703 2704 // If all uses use the same type, don't bother looking for truncation-based 2705 // reuse. 2706 if (Types.size() == 1) 2707 Types.clear(); 2708 2709 LLVM_DEBUG(print_factors_and_types(dbgs())); 2710 } 2711 2712 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2713 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2714 /// IVStrideUses, we could partially skip this. 2715 static User::op_iterator 2716 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2717 Loop *L, ScalarEvolution &SE) { 2718 for(; OI != OE; ++OI) { 2719 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2720 if (!SE.isSCEVable(Oper->getType())) 2721 continue; 2722 2723 if (const SCEVAddRecExpr *AR = 2724 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2725 if (AR->getLoop() == L) 2726 break; 2727 } 2728 } 2729 } 2730 return OI; 2731 } 2732 2733 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2734 /// a convenient helper. 2735 static Value *getWideOperand(Value *Oper) { 2736 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2737 return Trunc->getOperand(0); 2738 return Oper; 2739 } 2740 2741 /// Return true if we allow an IV chain to include both types. 2742 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2743 Type *LType = LVal->getType(); 2744 Type *RType = RVal->getType(); 2745 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2746 // Different address spaces means (possibly) 2747 // different types of the pointer implementation, 2748 // e.g. i16 vs i32 so disallow that. 2749 (LType->getPointerAddressSpace() == 2750 RType->getPointerAddressSpace())); 2751 } 2752 2753 /// Return an approximation of this SCEV expression's "base", or NULL for any 2754 /// constant. Returning the expression itself is conservative. Returning a 2755 /// deeper subexpression is more precise and valid as long as it isn't less 2756 /// complex than another subexpression. For expressions involving multiple 2757 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2758 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2759 /// IVInc==b-a. 2760 /// 2761 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2762 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2763 static const SCEV *getExprBase(const SCEV *S) { 2764 switch (S->getSCEVType()) { 2765 default: // uncluding scUnknown. 2766 return S; 2767 case scConstant: 2768 return nullptr; 2769 case scTruncate: 2770 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2771 case scZeroExtend: 2772 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2773 case scSignExtend: 2774 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2775 case scAddExpr: { 2776 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2777 // there's nothing more complex. 2778 // FIXME: not sure if we want to recognize negation. 2779 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2780 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2781 E(Add->op_begin()); I != E; ++I) { 2782 const SCEV *SubExpr = *I; 2783 if (SubExpr->getSCEVType() == scAddExpr) 2784 return getExprBase(SubExpr); 2785 2786 if (SubExpr->getSCEVType() != scMulExpr) 2787 return SubExpr; 2788 } 2789 return S; // all operands are scaled, be conservative. 2790 } 2791 case scAddRecExpr: 2792 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2793 } 2794 } 2795 2796 /// Return true if the chain increment is profitable to expand into a loop 2797 /// invariant value, which may require its own register. A profitable chain 2798 /// increment will be an offset relative to the same base. We allow such offsets 2799 /// to potentially be used as chain increment as long as it's not obviously 2800 /// expensive to expand using real instructions. 2801 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2802 const SCEV *IncExpr, 2803 ScalarEvolution &SE) { 2804 // Aggressively form chains when -stress-ivchain. 2805 if (StressIVChain) 2806 return true; 2807 2808 // Do not replace a constant offset from IV head with a nonconstant IV 2809 // increment. 2810 if (!isa<SCEVConstant>(IncExpr)) { 2811 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2812 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2813 return false; 2814 } 2815 2816 SmallPtrSet<const SCEV*, 8> Processed; 2817 return !isHighCostExpansion(IncExpr, Processed, SE); 2818 } 2819 2820 /// Return true if the number of registers needed for the chain is estimated to 2821 /// be less than the number required for the individual IV users. First prohibit 2822 /// any IV users that keep the IV live across increments (the Users set should 2823 /// be empty). Next count the number and type of increments in the chain. 2824 /// 2825 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2826 /// effectively use postinc addressing modes. Only consider it profitable it the 2827 /// increments can be computed in fewer registers when chained. 2828 /// 2829 /// TODO: Consider IVInc free if it's already used in another chains. 2830 static bool 2831 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2832 ScalarEvolution &SE) { 2833 if (StressIVChain) 2834 return true; 2835 2836 if (!Chain.hasIncs()) 2837 return false; 2838 2839 if (!Users.empty()) { 2840 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2841 for (Instruction *Inst 2842 : Users) { dbgs() << " " << *Inst << "\n"; }); 2843 return false; 2844 } 2845 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2846 2847 // The chain itself may require a register, so intialize cost to 1. 2848 int cost = 1; 2849 2850 // A complete chain likely eliminates the need for keeping the original IV in 2851 // a register. LSR does not currently know how to form a complete chain unless 2852 // the header phi already exists. 2853 if (isa<PHINode>(Chain.tailUserInst()) 2854 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2855 --cost; 2856 } 2857 const SCEV *LastIncExpr = nullptr; 2858 unsigned NumConstIncrements = 0; 2859 unsigned NumVarIncrements = 0; 2860 unsigned NumReusedIncrements = 0; 2861 for (const IVInc &Inc : Chain) { 2862 if (Inc.IncExpr->isZero()) 2863 continue; 2864 2865 // Incrementing by zero or some constant is neutral. We assume constants can 2866 // be folded into an addressing mode or an add's immediate operand. 2867 if (isa<SCEVConstant>(Inc.IncExpr)) { 2868 ++NumConstIncrements; 2869 continue; 2870 } 2871 2872 if (Inc.IncExpr == LastIncExpr) 2873 ++NumReusedIncrements; 2874 else 2875 ++NumVarIncrements; 2876 2877 LastIncExpr = Inc.IncExpr; 2878 } 2879 // An IV chain with a single increment is handled by LSR's postinc 2880 // uses. However, a chain with multiple increments requires keeping the IV's 2881 // value live longer than it needs to be if chained. 2882 if (NumConstIncrements > 1) 2883 --cost; 2884 2885 // Materializing increment expressions in the preheader that didn't exist in 2886 // the original code may cost a register. For example, sign-extended array 2887 // indices can produce ridiculous increments like this: 2888 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2889 cost += NumVarIncrements; 2890 2891 // Reusing variable increments likely saves a register to hold the multiple of 2892 // the stride. 2893 cost -= NumReusedIncrements; 2894 2895 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2896 << "\n"); 2897 2898 return cost < 0; 2899 } 2900 2901 /// Add this IV user to an existing chain or make it the head of a new chain. 2902 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2903 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2904 // When IVs are used as types of varying widths, they are generally converted 2905 // to a wider type with some uses remaining narrow under a (free) trunc. 2906 Value *const NextIV = getWideOperand(IVOper); 2907 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2908 const SCEV *const OperExprBase = getExprBase(OperExpr); 2909 2910 // Visit all existing chains. Check if its IVOper can be computed as a 2911 // profitable loop invariant increment from the last link in the Chain. 2912 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2913 const SCEV *LastIncExpr = nullptr; 2914 for (; ChainIdx < NChains; ++ChainIdx) { 2915 IVChain &Chain = IVChainVec[ChainIdx]; 2916 2917 // Prune the solution space aggressively by checking that both IV operands 2918 // are expressions that operate on the same unscaled SCEVUnknown. This 2919 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2920 // first avoids creating extra SCEV expressions. 2921 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2922 continue; 2923 2924 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2925 if (!isCompatibleIVType(PrevIV, NextIV)) 2926 continue; 2927 2928 // A phi node terminates a chain. 2929 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2930 continue; 2931 2932 // The increment must be loop-invariant so it can be kept in a register. 2933 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2934 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2935 if (!SE.isLoopInvariant(IncExpr, L)) 2936 continue; 2937 2938 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2939 LastIncExpr = IncExpr; 2940 break; 2941 } 2942 } 2943 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2944 // bother for phi nodes, because they must be last in the chain. 2945 if (ChainIdx == NChains) { 2946 if (isa<PHINode>(UserInst)) 2947 return; 2948 if (NChains >= MaxChains && !StressIVChain) { 2949 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2950 return; 2951 } 2952 LastIncExpr = OperExpr; 2953 // IVUsers may have skipped over sign/zero extensions. We don't currently 2954 // attempt to form chains involving extensions unless they can be hoisted 2955 // into this loop's AddRec. 2956 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2957 return; 2958 ++NChains; 2959 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2960 OperExprBase)); 2961 ChainUsersVec.resize(NChains); 2962 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2963 << ") IV=" << *LastIncExpr << "\n"); 2964 } else { 2965 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2966 << ") IV+" << *LastIncExpr << "\n"); 2967 // Add this IV user to the end of the chain. 2968 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2969 } 2970 IVChain &Chain = IVChainVec[ChainIdx]; 2971 2972 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2973 // This chain's NearUsers become FarUsers. 2974 if (!LastIncExpr->isZero()) { 2975 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2976 NearUsers.end()); 2977 NearUsers.clear(); 2978 } 2979 2980 // All other uses of IVOperand become near uses of the chain. 2981 // We currently ignore intermediate values within SCEV expressions, assuming 2982 // they will eventually be used be the current chain, or can be computed 2983 // from one of the chain increments. To be more precise we could 2984 // transitively follow its user and only add leaf IV users to the set. 2985 for (User *U : IVOper->users()) { 2986 Instruction *OtherUse = dyn_cast<Instruction>(U); 2987 if (!OtherUse) 2988 continue; 2989 // Uses in the chain will no longer be uses if the chain is formed. 2990 // Include the head of the chain in this iteration (not Chain.begin()). 2991 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2992 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2993 for( ; IncIter != IncEnd; ++IncIter) { 2994 if (IncIter->UserInst == OtherUse) 2995 break; 2996 } 2997 if (IncIter != IncEnd) 2998 continue; 2999 3000 if (SE.isSCEVable(OtherUse->getType()) 3001 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3002 && IU.isIVUserOrOperand(OtherUse)) { 3003 continue; 3004 } 3005 NearUsers.insert(OtherUse); 3006 } 3007 3008 // Since this user is part of the chain, it's no longer considered a use 3009 // of the chain. 3010 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3011 } 3012 3013 /// Populate the vector of Chains. 3014 /// 3015 /// This decreases ILP at the architecture level. Targets with ample registers, 3016 /// multiple memory ports, and no register renaming probably don't want 3017 /// this. However, such targets should probably disable LSR altogether. 3018 /// 3019 /// The job of LSR is to make a reasonable choice of induction variables across 3020 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3021 /// ILP *within the loop* if the target wants it. 3022 /// 3023 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3024 /// will not reorder memory operations, it will recognize this as a chain, but 3025 /// will generate redundant IV increments. Ideally this would be corrected later 3026 /// by a smart scheduler: 3027 /// = A[i] 3028 /// = A[i+x] 3029 /// A[i] = 3030 /// A[i+x] = 3031 /// 3032 /// TODO: Walk the entire domtree within this loop, not just the path to the 3033 /// loop latch. This will discover chains on side paths, but requires 3034 /// maintaining multiple copies of the Chains state. 3035 void LSRInstance::CollectChains() { 3036 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3037 SmallVector<ChainUsers, 8> ChainUsersVec; 3038 3039 SmallVector<BasicBlock *,8> LatchPath; 3040 BasicBlock *LoopHeader = L->getHeader(); 3041 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3042 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3043 LatchPath.push_back(Rung->getBlock()); 3044 } 3045 LatchPath.push_back(LoopHeader); 3046 3047 // Walk the instruction stream from the loop header to the loop latch. 3048 for (BasicBlock *BB : reverse(LatchPath)) { 3049 for (Instruction &I : *BB) { 3050 // Skip instructions that weren't seen by IVUsers analysis. 3051 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3052 continue; 3053 3054 // Ignore users that are part of a SCEV expression. This way we only 3055 // consider leaf IV Users. This effectively rediscovers a portion of 3056 // IVUsers analysis but in program order this time. 3057 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3058 continue; 3059 3060 // Remove this instruction from any NearUsers set it may be in. 3061 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3062 ChainIdx < NChains; ++ChainIdx) { 3063 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3064 } 3065 // Search for operands that can be chained. 3066 SmallPtrSet<Instruction*, 4> UniqueOperands; 3067 User::op_iterator IVOpEnd = I.op_end(); 3068 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3069 while (IVOpIter != IVOpEnd) { 3070 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3071 if (UniqueOperands.insert(IVOpInst).second) 3072 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3073 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3074 } 3075 } // Continue walking down the instructions. 3076 } // Continue walking down the domtree. 3077 // Visit phi backedges to determine if the chain can generate the IV postinc. 3078 for (PHINode &PN : L->getHeader()->phis()) { 3079 if (!SE.isSCEVable(PN.getType())) 3080 continue; 3081 3082 Instruction *IncV = 3083 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3084 if (IncV) 3085 ChainInstruction(&PN, IncV, ChainUsersVec); 3086 } 3087 // Remove any unprofitable chains. 3088 unsigned ChainIdx = 0; 3089 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3090 UsersIdx < NChains; ++UsersIdx) { 3091 if (!isProfitableChain(IVChainVec[UsersIdx], 3092 ChainUsersVec[UsersIdx].FarUsers, SE)) 3093 continue; 3094 // Preserve the chain at UsesIdx. 3095 if (ChainIdx != UsersIdx) 3096 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3097 FinalizeChain(IVChainVec[ChainIdx]); 3098 ++ChainIdx; 3099 } 3100 IVChainVec.resize(ChainIdx); 3101 } 3102 3103 void LSRInstance::FinalizeChain(IVChain &Chain) { 3104 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3105 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3106 3107 for (const IVInc &Inc : Chain) { 3108 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3109 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3110 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3111 IVIncSet.insert(UseI); 3112 } 3113 } 3114 3115 /// Return true if the IVInc can be folded into an addressing mode. 3116 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3117 Value *Operand, const TargetTransformInfo &TTI) { 3118 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3119 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3120 return false; 3121 3122 if (IncConst->getAPInt().getMinSignedBits() > 64) 3123 return false; 3124 3125 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3126 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3127 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3128 IncOffset, /*HasBaseReg=*/false)) 3129 return false; 3130 3131 return true; 3132 } 3133 3134 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3135 /// user's operand from the previous IV user's operand. 3136 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3137 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3138 // Find the new IVOperand for the head of the chain. It may have been replaced 3139 // by LSR. 3140 const IVInc &Head = Chain.Incs[0]; 3141 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3142 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3143 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3144 IVOpEnd, L, SE); 3145 Value *IVSrc = nullptr; 3146 while (IVOpIter != IVOpEnd) { 3147 IVSrc = getWideOperand(*IVOpIter); 3148 3149 // If this operand computes the expression that the chain needs, we may use 3150 // it. (Check this after setting IVSrc which is used below.) 3151 // 3152 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3153 // narrow for the chain, so we can no longer use it. We do allow using a 3154 // wider phi, assuming the LSR checked for free truncation. In that case we 3155 // should already have a truncate on this operand such that 3156 // getSCEV(IVSrc) == IncExpr. 3157 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3158 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3159 break; 3160 } 3161 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3162 } 3163 if (IVOpIter == IVOpEnd) { 3164 // Gracefully give up on this chain. 3165 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3166 return; 3167 } 3168 3169 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3170 Type *IVTy = IVSrc->getType(); 3171 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3172 const SCEV *LeftOverExpr = nullptr; 3173 for (const IVInc &Inc : Chain) { 3174 Instruction *InsertPt = Inc.UserInst; 3175 if (isa<PHINode>(InsertPt)) 3176 InsertPt = L->getLoopLatch()->getTerminator(); 3177 3178 // IVOper will replace the current IV User's operand. IVSrc is the IV 3179 // value currently held in a register. 3180 Value *IVOper = IVSrc; 3181 if (!Inc.IncExpr->isZero()) { 3182 // IncExpr was the result of subtraction of two narrow values, so must 3183 // be signed. 3184 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3185 LeftOverExpr = LeftOverExpr ? 3186 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3187 } 3188 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3189 // Expand the IV increment. 3190 Rewriter.clearPostInc(); 3191 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3192 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3193 SE.getUnknown(IncV)); 3194 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3195 3196 // If an IV increment can't be folded, use it as the next IV value. 3197 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3198 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3199 IVSrc = IVOper; 3200 LeftOverExpr = nullptr; 3201 } 3202 } 3203 Type *OperTy = Inc.IVOperand->getType(); 3204 if (IVTy != OperTy) { 3205 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3206 "cannot extend a chained IV"); 3207 IRBuilder<> Builder(InsertPt); 3208 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3209 } 3210 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3211 DeadInsts.emplace_back(Inc.IVOperand); 3212 } 3213 // If LSR created a new, wider phi, we may also replace its postinc. We only 3214 // do this if we also found a wide value for the head of the chain. 3215 if (isa<PHINode>(Chain.tailUserInst())) { 3216 for (PHINode &Phi : L->getHeader()->phis()) { 3217 if (!isCompatibleIVType(&Phi, IVSrc)) 3218 continue; 3219 Instruction *PostIncV = dyn_cast<Instruction>( 3220 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3221 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3222 continue; 3223 Value *IVOper = IVSrc; 3224 Type *PostIncTy = PostIncV->getType(); 3225 if (IVTy != PostIncTy) { 3226 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3227 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3228 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3229 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3230 } 3231 Phi.replaceUsesOfWith(PostIncV, IVOper); 3232 DeadInsts.emplace_back(PostIncV); 3233 } 3234 } 3235 } 3236 3237 void LSRInstance::CollectFixupsAndInitialFormulae() { 3238 BranchInst *ExitBranch = nullptr; 3239 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo); 3240 3241 for (const IVStrideUse &U : IU) { 3242 Instruction *UserInst = U.getUser(); 3243 // Skip IV users that are part of profitable IV Chains. 3244 User::op_iterator UseI = 3245 find(UserInst->operands(), U.getOperandValToReplace()); 3246 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3247 if (IVIncSet.count(UseI)) { 3248 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3249 continue; 3250 } 3251 3252 LSRUse::KindType Kind = LSRUse::Basic; 3253 MemAccessTy AccessTy; 3254 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3255 Kind = LSRUse::Address; 3256 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3257 } 3258 3259 const SCEV *S = IU.getExpr(U); 3260 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3261 3262 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3263 // (N - i == 0), and this allows (N - i) to be the expression that we work 3264 // with rather than just N or i, so we can consider the register 3265 // requirements for both N and i at the same time. Limiting this code to 3266 // equality icmps is not a problem because all interesting loops use 3267 // equality icmps, thanks to IndVarSimplify. 3268 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3269 if (CI->isEquality()) { 3270 // If CI can be saved in some target, like replaced inside hardware loop 3271 // in PowerPC, no need to generate initial formulae for it. 3272 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3273 continue; 3274 // Swap the operands if needed to put the OperandValToReplace on the 3275 // left, for consistency. 3276 Value *NV = CI->getOperand(1); 3277 if (NV == U.getOperandValToReplace()) { 3278 CI->setOperand(1, CI->getOperand(0)); 3279 CI->setOperand(0, NV); 3280 NV = CI->getOperand(1); 3281 Changed = true; 3282 } 3283 3284 // x == y --> x - y == 0 3285 const SCEV *N = SE.getSCEV(NV); 3286 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3287 // S is normalized, so normalize N before folding it into S 3288 // to keep the result normalized. 3289 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3290 Kind = LSRUse::ICmpZero; 3291 S = SE.getMinusSCEV(N, S); 3292 } 3293 3294 // -1 and the negations of all interesting strides (except the negation 3295 // of -1) are now also interesting. 3296 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3297 if (Factors[i] != -1) 3298 Factors.insert(-(uint64_t)Factors[i]); 3299 Factors.insert(-1); 3300 } 3301 3302 // Get or create an LSRUse. 3303 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3304 size_t LUIdx = P.first; 3305 int64_t Offset = P.second; 3306 LSRUse &LU = Uses[LUIdx]; 3307 3308 // Record the fixup. 3309 LSRFixup &LF = LU.getNewFixup(); 3310 LF.UserInst = UserInst; 3311 LF.OperandValToReplace = U.getOperandValToReplace(); 3312 LF.PostIncLoops = TmpPostIncLoops; 3313 LF.Offset = Offset; 3314 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3315 3316 if (!LU.WidestFixupType || 3317 SE.getTypeSizeInBits(LU.WidestFixupType) < 3318 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3319 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3320 3321 // If this is the first use of this LSRUse, give it a formula. 3322 if (LU.Formulae.empty()) { 3323 InsertInitialFormula(S, LU, LUIdx); 3324 CountRegisters(LU.Formulae.back(), LUIdx); 3325 } 3326 } 3327 3328 LLVM_DEBUG(print_fixups(dbgs())); 3329 } 3330 3331 /// Insert a formula for the given expression into the given use, separating out 3332 /// loop-variant portions from loop-invariant and loop-computable portions. 3333 void 3334 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3335 // Mark uses whose expressions cannot be expanded. 3336 if (!isSafeToExpand(S, SE)) 3337 LU.RigidFormula = true; 3338 3339 Formula F; 3340 F.initialMatch(S, L, SE); 3341 bool Inserted = InsertFormula(LU, LUIdx, F); 3342 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3343 } 3344 3345 /// Insert a simple single-register formula for the given expression into the 3346 /// given use. 3347 void 3348 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3349 LSRUse &LU, size_t LUIdx) { 3350 Formula F; 3351 F.BaseRegs.push_back(S); 3352 F.HasBaseReg = true; 3353 bool Inserted = InsertFormula(LU, LUIdx, F); 3354 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3355 } 3356 3357 /// Note which registers are used by the given formula, updating RegUses. 3358 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3359 if (F.ScaledReg) 3360 RegUses.countRegister(F.ScaledReg, LUIdx); 3361 for (const SCEV *BaseReg : F.BaseRegs) 3362 RegUses.countRegister(BaseReg, LUIdx); 3363 } 3364 3365 /// If the given formula has not yet been inserted, add it to the list, and 3366 /// return true. Return false otherwise. 3367 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3368 // Do not insert formula that we will not be able to expand. 3369 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3370 "Formula is illegal"); 3371 3372 if (!LU.InsertFormula(F, *L)) 3373 return false; 3374 3375 CountRegisters(F, LUIdx); 3376 return true; 3377 } 3378 3379 /// Check for other uses of loop-invariant values which we're tracking. These 3380 /// other uses will pin these values in registers, making them less profitable 3381 /// for elimination. 3382 /// TODO: This currently misses non-constant addrec step registers. 3383 /// TODO: Should this give more weight to users inside the loop? 3384 void 3385 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3386 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3387 SmallPtrSet<const SCEV *, 32> Visited; 3388 3389 while (!Worklist.empty()) { 3390 const SCEV *S = Worklist.pop_back_val(); 3391 3392 // Don't process the same SCEV twice 3393 if (!Visited.insert(S).second) 3394 continue; 3395 3396 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3397 Worklist.append(N->op_begin(), N->op_end()); 3398 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3399 Worklist.push_back(C->getOperand()); 3400 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3401 Worklist.push_back(D->getLHS()); 3402 Worklist.push_back(D->getRHS()); 3403 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3404 const Value *V = US->getValue(); 3405 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3406 // Look for instructions defined outside the loop. 3407 if (L->contains(Inst)) continue; 3408 } else if (isa<UndefValue>(V)) 3409 // Undef doesn't have a live range, so it doesn't matter. 3410 continue; 3411 for (const Use &U : V->uses()) { 3412 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3413 // Ignore non-instructions. 3414 if (!UserInst) 3415 continue; 3416 // Ignore instructions in other functions (as can happen with 3417 // Constants). 3418 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3419 continue; 3420 // Ignore instructions not dominated by the loop. 3421 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3422 UserInst->getParent() : 3423 cast<PHINode>(UserInst)->getIncomingBlock( 3424 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3425 if (!DT.dominates(L->getHeader(), UseBB)) 3426 continue; 3427 // Don't bother if the instruction is in a BB which ends in an EHPad. 3428 if (UseBB->getTerminator()->isEHPad()) 3429 continue; 3430 // Don't bother rewriting PHIs in catchswitch blocks. 3431 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3432 continue; 3433 // Ignore uses which are part of other SCEV expressions, to avoid 3434 // analyzing them multiple times. 3435 if (SE.isSCEVable(UserInst->getType())) { 3436 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3437 // If the user is a no-op, look through to its uses. 3438 if (!isa<SCEVUnknown>(UserS)) 3439 continue; 3440 if (UserS == US) { 3441 Worklist.push_back( 3442 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3443 continue; 3444 } 3445 } 3446 // Ignore icmp instructions which are already being analyzed. 3447 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3448 unsigned OtherIdx = !U.getOperandNo(); 3449 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3450 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3451 continue; 3452 } 3453 3454 std::pair<size_t, int64_t> P = getUse( 3455 S, LSRUse::Basic, MemAccessTy()); 3456 size_t LUIdx = P.first; 3457 int64_t Offset = P.second; 3458 LSRUse &LU = Uses[LUIdx]; 3459 LSRFixup &LF = LU.getNewFixup(); 3460 LF.UserInst = const_cast<Instruction *>(UserInst); 3461 LF.OperandValToReplace = U; 3462 LF.Offset = Offset; 3463 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3464 if (!LU.WidestFixupType || 3465 SE.getTypeSizeInBits(LU.WidestFixupType) < 3466 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3467 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3468 InsertSupplementalFormula(US, LU, LUIdx); 3469 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3470 break; 3471 } 3472 } 3473 } 3474 } 3475 3476 /// Split S into subexpressions which can be pulled out into separate 3477 /// registers. If C is non-null, multiply each subexpression by C. 3478 /// 3479 /// Return remainder expression after factoring the subexpressions captured by 3480 /// Ops. If Ops is complete, return NULL. 3481 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3482 SmallVectorImpl<const SCEV *> &Ops, 3483 const Loop *L, 3484 ScalarEvolution &SE, 3485 unsigned Depth = 0) { 3486 // Arbitrarily cap recursion to protect compile time. 3487 if (Depth >= 3) 3488 return S; 3489 3490 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3491 // Break out add operands. 3492 for (const SCEV *S : Add->operands()) { 3493 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3494 if (Remainder) 3495 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3496 } 3497 return nullptr; 3498 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3499 // Split a non-zero base out of an addrec. 3500 if (AR->getStart()->isZero() || !AR->isAffine()) 3501 return S; 3502 3503 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3504 C, Ops, L, SE, Depth+1); 3505 // Split the non-zero AddRec unless it is part of a nested recurrence that 3506 // does not pertain to this loop. 3507 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3508 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3509 Remainder = nullptr; 3510 } 3511 if (Remainder != AR->getStart()) { 3512 if (!Remainder) 3513 Remainder = SE.getConstant(AR->getType(), 0); 3514 return SE.getAddRecExpr(Remainder, 3515 AR->getStepRecurrence(SE), 3516 AR->getLoop(), 3517 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3518 SCEV::FlagAnyWrap); 3519 } 3520 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3521 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3522 if (Mul->getNumOperands() != 2) 3523 return S; 3524 if (const SCEVConstant *Op0 = 3525 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3526 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3527 const SCEV *Remainder = 3528 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3529 if (Remainder) 3530 Ops.push_back(SE.getMulExpr(C, Remainder)); 3531 return nullptr; 3532 } 3533 } 3534 return S; 3535 } 3536 3537 /// Return true if the SCEV represents a value that may end up as a 3538 /// post-increment operation. 3539 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3540 LSRUse &LU, const SCEV *S, const Loop *L, 3541 ScalarEvolution &SE) { 3542 if (LU.Kind != LSRUse::Address || 3543 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3544 return false; 3545 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3546 if (!AR) 3547 return false; 3548 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3549 if (!isa<SCEVConstant>(LoopStep)) 3550 return false; 3551 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3552 LoopStep->getType()->getScalarSizeInBits()) 3553 return false; 3554 // Check if a post-indexed load/store can be used. 3555 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3556 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3557 const SCEV *LoopStart = AR->getStart(); 3558 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3559 return true; 3560 } 3561 return false; 3562 } 3563 3564 /// Helper function for LSRInstance::GenerateReassociations. 3565 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3566 const Formula &Base, 3567 unsigned Depth, size_t Idx, 3568 bool IsScaledReg) { 3569 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3570 // Don't generate reassociations for the base register of a value that 3571 // may generate a post-increment operator. The reason is that the 3572 // reassociations cause extra base+register formula to be created, 3573 // and possibly chosen, but the post-increment is more efficient. 3574 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3575 return; 3576 SmallVector<const SCEV *, 8> AddOps; 3577 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3578 if (Remainder) 3579 AddOps.push_back(Remainder); 3580 3581 if (AddOps.size() == 1) 3582 return; 3583 3584 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3585 JE = AddOps.end(); 3586 J != JE; ++J) { 3587 // Loop-variant "unknown" values are uninteresting; we won't be able to 3588 // do anything meaningful with them. 3589 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3590 continue; 3591 3592 // Don't pull a constant into a register if the constant could be folded 3593 // into an immediate field. 3594 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3595 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3596 continue; 3597 3598 // Collect all operands except *J. 3599 SmallVector<const SCEV *, 8> InnerAddOps( 3600 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3601 InnerAddOps.append(std::next(J), 3602 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3603 3604 // Don't leave just a constant behind in a register if the constant could 3605 // be folded into an immediate field. 3606 if (InnerAddOps.size() == 1 && 3607 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3608 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3609 continue; 3610 3611 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3612 if (InnerSum->isZero()) 3613 continue; 3614 Formula F = Base; 3615 3616 // Add the remaining pieces of the add back into the new formula. 3617 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3618 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3619 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3620 InnerSumSC->getValue()->getZExtValue())) { 3621 F.UnfoldedOffset = 3622 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3623 if (IsScaledReg) 3624 F.ScaledReg = nullptr; 3625 else 3626 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3627 } else if (IsScaledReg) 3628 F.ScaledReg = InnerSum; 3629 else 3630 F.BaseRegs[Idx] = InnerSum; 3631 3632 // Add J as its own register, or an unfolded immediate. 3633 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3634 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3635 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3636 SC->getValue()->getZExtValue())) 3637 F.UnfoldedOffset = 3638 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3639 else 3640 F.BaseRegs.push_back(*J); 3641 // We may have changed the number of register in base regs, adjust the 3642 // formula accordingly. 3643 F.canonicalize(*L); 3644 3645 if (InsertFormula(LU, LUIdx, F)) 3646 // If that formula hadn't been seen before, recurse to find more like 3647 // it. 3648 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3649 // Because just Depth is not enough to bound compile time. 3650 // This means that every time AddOps.size() is greater 16^x we will add 3651 // x to Depth. 3652 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3653 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3654 } 3655 } 3656 3657 /// Split out subexpressions from adds and the bases of addrecs. 3658 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3659 Formula Base, unsigned Depth) { 3660 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3661 // Arbitrarily cap recursion to protect compile time. 3662 if (Depth >= 3) 3663 return; 3664 3665 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3666 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3667 3668 if (Base.Scale == 1) 3669 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3670 /* Idx */ -1, /* IsScaledReg */ true); 3671 } 3672 3673 /// Generate a formula consisting of all of the loop-dominating registers added 3674 /// into a single register. 3675 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3676 Formula Base) { 3677 // This method is only interesting on a plurality of registers. 3678 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3679 (Base.UnfoldedOffset != 0) <= 1) 3680 return; 3681 3682 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3683 // processing the formula. 3684 Base.unscale(); 3685 SmallVector<const SCEV *, 4> Ops; 3686 Formula NewBase = Base; 3687 NewBase.BaseRegs.clear(); 3688 Type *CombinedIntegerType = nullptr; 3689 for (const SCEV *BaseReg : Base.BaseRegs) { 3690 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3691 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3692 if (!CombinedIntegerType) 3693 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3694 Ops.push_back(BaseReg); 3695 } 3696 else 3697 NewBase.BaseRegs.push_back(BaseReg); 3698 } 3699 3700 // If no register is relevant, we're done. 3701 if (Ops.size() == 0) 3702 return; 3703 3704 // Utility function for generating the required variants of the combined 3705 // registers. 3706 auto GenerateFormula = [&](const SCEV *Sum) { 3707 Formula F = NewBase; 3708 3709 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3710 // opportunity to fold something. For now, just ignore such cases 3711 // rather than proceed with zero in a register. 3712 if (Sum->isZero()) 3713 return; 3714 3715 F.BaseRegs.push_back(Sum); 3716 F.canonicalize(*L); 3717 (void)InsertFormula(LU, LUIdx, F); 3718 }; 3719 3720 // If we collected at least two registers, generate a formula combining them. 3721 if (Ops.size() > 1) { 3722 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3723 GenerateFormula(SE.getAddExpr(OpsCopy)); 3724 } 3725 3726 // If we have an unfolded offset, generate a formula combining it with the 3727 // registers collected. 3728 if (NewBase.UnfoldedOffset) { 3729 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3730 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3731 true)); 3732 NewBase.UnfoldedOffset = 0; 3733 GenerateFormula(SE.getAddExpr(Ops)); 3734 } 3735 } 3736 3737 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3738 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3739 const Formula &Base, size_t Idx, 3740 bool IsScaledReg) { 3741 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3742 GlobalValue *GV = ExtractSymbol(G, SE); 3743 if (G->isZero() || !GV) 3744 return; 3745 Formula F = Base; 3746 F.BaseGV = GV; 3747 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3748 return; 3749 if (IsScaledReg) 3750 F.ScaledReg = G; 3751 else 3752 F.BaseRegs[Idx] = G; 3753 (void)InsertFormula(LU, LUIdx, F); 3754 } 3755 3756 /// Generate reuse formulae using symbolic offsets. 3757 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3758 Formula Base) { 3759 // We can't add a symbolic offset if the address already contains one. 3760 if (Base.BaseGV) return; 3761 3762 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3763 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3764 if (Base.Scale == 1) 3765 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3766 /* IsScaledReg */ true); 3767 } 3768 3769 /// Helper function for LSRInstance::GenerateConstantOffsets. 3770 void LSRInstance::GenerateConstantOffsetsImpl( 3771 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3772 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3773 3774 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3775 Formula F = Base; 3776 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3777 3778 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3779 LU.AccessTy, F)) { 3780 // Add the offset to the base register. 3781 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3782 // If it cancelled out, drop the base register, otherwise update it. 3783 if (NewG->isZero()) { 3784 if (IsScaledReg) { 3785 F.Scale = 0; 3786 F.ScaledReg = nullptr; 3787 } else 3788 F.deleteBaseReg(F.BaseRegs[Idx]); 3789 F.canonicalize(*L); 3790 } else if (IsScaledReg) 3791 F.ScaledReg = NewG; 3792 else 3793 F.BaseRegs[Idx] = NewG; 3794 3795 (void)InsertFormula(LU, LUIdx, F); 3796 } 3797 }; 3798 3799 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3800 3801 // With constant offsets and constant steps, we can generate pre-inc 3802 // accesses by having the offset equal the step. So, for access #0 with a 3803 // step of 8, we generate a G - 8 base which would require the first access 3804 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3805 // for itself and hopefully becomes the base for other accesses. This means 3806 // means that a single pre-indexed access can be generated to become the new 3807 // base pointer for each iteration of the loop, resulting in no extra add/sub 3808 // instructions for pointer updating. 3809 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3810 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3811 if (auto *StepRec = 3812 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3813 const APInt &StepInt = StepRec->getAPInt(); 3814 int64_t Step = StepInt.isNegative() ? 3815 StepInt.getSExtValue() : StepInt.getZExtValue(); 3816 3817 for (int64_t Offset : Worklist) { 3818 Offset -= Step; 3819 GenerateOffset(G, Offset); 3820 } 3821 } 3822 } 3823 } 3824 for (int64_t Offset : Worklist) 3825 GenerateOffset(G, Offset); 3826 3827 int64_t Imm = ExtractImmediate(G, SE); 3828 if (G->isZero() || Imm == 0) 3829 return; 3830 Formula F = Base; 3831 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3832 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3833 return; 3834 if (IsScaledReg) 3835 F.ScaledReg = G; 3836 else 3837 F.BaseRegs[Idx] = G; 3838 (void)InsertFormula(LU, LUIdx, F); 3839 } 3840 3841 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3842 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3843 Formula Base) { 3844 // TODO: For now, just add the min and max offset, because it usually isn't 3845 // worthwhile looking at everything inbetween. 3846 SmallVector<int64_t, 2> Worklist; 3847 Worklist.push_back(LU.MinOffset); 3848 if (LU.MaxOffset != LU.MinOffset) 3849 Worklist.push_back(LU.MaxOffset); 3850 3851 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3852 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3853 if (Base.Scale == 1) 3854 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3855 /* IsScaledReg */ true); 3856 } 3857 3858 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3859 /// == y -> x*c == y*c. 3860 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3861 Formula Base) { 3862 if (LU.Kind != LSRUse::ICmpZero) return; 3863 3864 // Determine the integer type for the base formula. 3865 Type *IntTy = Base.getType(); 3866 if (!IntTy) return; 3867 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3868 3869 // Don't do this if there is more than one offset. 3870 if (LU.MinOffset != LU.MaxOffset) return; 3871 3872 // Check if transformation is valid. It is illegal to multiply pointer. 3873 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3874 return; 3875 for (const SCEV *BaseReg : Base.BaseRegs) 3876 if (BaseReg->getType()->isPointerTy()) 3877 return; 3878 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3879 3880 // Check each interesting stride. 3881 for (int64_t Factor : Factors) { 3882 // Check that the multiplication doesn't overflow. 3883 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3884 continue; 3885 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3886 if (NewBaseOffset / Factor != Base.BaseOffset) 3887 continue; 3888 // If the offset will be truncated at this use, check that it is in bounds. 3889 if (!IntTy->isPointerTy() && 3890 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3891 continue; 3892 3893 // Check that multiplying with the use offset doesn't overflow. 3894 int64_t Offset = LU.MinOffset; 3895 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3896 continue; 3897 Offset = (uint64_t)Offset * Factor; 3898 if (Offset / Factor != LU.MinOffset) 3899 continue; 3900 // If the offset will be truncated at this use, check that it is in bounds. 3901 if (!IntTy->isPointerTy() && 3902 !ConstantInt::isValueValidForType(IntTy, Offset)) 3903 continue; 3904 3905 Formula F = Base; 3906 F.BaseOffset = NewBaseOffset; 3907 3908 // Check that this scale is legal. 3909 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3910 continue; 3911 3912 // Compensate for the use having MinOffset built into it. 3913 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3914 3915 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3916 3917 // Check that multiplying with each base register doesn't overflow. 3918 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3919 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3920 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3921 goto next; 3922 } 3923 3924 // Check that multiplying with the scaled register doesn't overflow. 3925 if (F.ScaledReg) { 3926 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3927 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3928 continue; 3929 } 3930 3931 // Check that multiplying with the unfolded offset doesn't overflow. 3932 if (F.UnfoldedOffset != 0) { 3933 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3934 Factor == -1) 3935 continue; 3936 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3937 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3938 continue; 3939 // If the offset will be truncated, check that it is in bounds. 3940 if (!IntTy->isPointerTy() && 3941 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3942 continue; 3943 } 3944 3945 // If we make it here and it's legal, add it. 3946 (void)InsertFormula(LU, LUIdx, F); 3947 next:; 3948 } 3949 } 3950 3951 /// Generate stride factor reuse formulae by making use of scaled-offset address 3952 /// modes, for example. 3953 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3954 // Determine the integer type for the base formula. 3955 Type *IntTy = Base.getType(); 3956 if (!IntTy) return; 3957 3958 // If this Formula already has a scaled register, we can't add another one. 3959 // Try to unscale the formula to generate a better scale. 3960 if (Base.Scale != 0 && !Base.unscale()) 3961 return; 3962 3963 assert(Base.Scale == 0 && "unscale did not did its job!"); 3964 3965 // Check each interesting stride. 3966 for (int64_t Factor : Factors) { 3967 Base.Scale = Factor; 3968 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3969 // Check whether this scale is going to be legal. 3970 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3971 Base)) { 3972 // As a special-case, handle special out-of-loop Basic users specially. 3973 // TODO: Reconsider this special case. 3974 if (LU.Kind == LSRUse::Basic && 3975 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3976 LU.AccessTy, Base) && 3977 LU.AllFixupsOutsideLoop) 3978 LU.Kind = LSRUse::Special; 3979 else 3980 continue; 3981 } 3982 // For an ICmpZero, negating a solitary base register won't lead to 3983 // new solutions. 3984 if (LU.Kind == LSRUse::ICmpZero && 3985 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3986 continue; 3987 // For each addrec base reg, if its loop is current loop, apply the scale. 3988 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3989 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3990 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3991 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3992 if (FactorS->isZero()) 3993 continue; 3994 // Divide out the factor, ignoring high bits, since we'll be 3995 // scaling the value back up in the end. 3996 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3997 // TODO: This could be optimized to avoid all the copying. 3998 Formula F = Base; 3999 F.ScaledReg = Quotient; 4000 F.deleteBaseReg(F.BaseRegs[i]); 4001 // The canonical representation of 1*reg is reg, which is already in 4002 // Base. In that case, do not try to insert the formula, it will be 4003 // rejected anyway. 4004 if (F.Scale == 1 && (F.BaseRegs.empty() || 4005 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4006 continue; 4007 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4008 // non canonical Formula with ScaledReg's loop not being L. 4009 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4010 F.canonicalize(*L); 4011 (void)InsertFormula(LU, LUIdx, F); 4012 } 4013 } 4014 } 4015 } 4016 } 4017 4018 /// Generate reuse formulae from different IV types. 4019 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4020 // Don't bother truncating symbolic values. 4021 if (Base.BaseGV) return; 4022 4023 // Determine the integer type for the base formula. 4024 Type *DstTy = Base.getType(); 4025 if (!DstTy) return; 4026 DstTy = SE.getEffectiveSCEVType(DstTy); 4027 4028 for (Type *SrcTy : Types) { 4029 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4030 Formula F = Base; 4031 4032 // Sometimes SCEV is able to prove zero during ext transform. It may 4033 // happen if SCEV did not do all possible transforms while creating the 4034 // initial node (maybe due to depth limitations), but it can do them while 4035 // taking ext. 4036 if (F.ScaledReg) { 4037 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4038 if (NewScaledReg->isZero()) 4039 continue; 4040 F.ScaledReg = NewScaledReg; 4041 } 4042 bool HasZeroBaseReg = false; 4043 for (const SCEV *&BaseReg : F.BaseRegs) { 4044 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4045 if (NewBaseReg->isZero()) { 4046 HasZeroBaseReg = true; 4047 break; 4048 } 4049 BaseReg = NewBaseReg; 4050 } 4051 if (HasZeroBaseReg) 4052 continue; 4053 4054 // TODO: This assumes we've done basic processing on all uses and 4055 // have an idea what the register usage is. 4056 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4057 continue; 4058 4059 F.canonicalize(*L); 4060 (void)InsertFormula(LU, LUIdx, F); 4061 } 4062 } 4063 } 4064 4065 namespace { 4066 4067 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4068 /// modifications so that the search phase doesn't have to worry about the data 4069 /// structures moving underneath it. 4070 struct WorkItem { 4071 size_t LUIdx; 4072 int64_t Imm; 4073 const SCEV *OrigReg; 4074 4075 WorkItem(size_t LI, int64_t I, const SCEV *R) 4076 : LUIdx(LI), Imm(I), OrigReg(R) {} 4077 4078 void print(raw_ostream &OS) const; 4079 void dump() const; 4080 }; 4081 4082 } // end anonymous namespace 4083 4084 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4085 void WorkItem::print(raw_ostream &OS) const { 4086 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4087 << " , add offset " << Imm; 4088 } 4089 4090 LLVM_DUMP_METHOD void WorkItem::dump() const { 4091 print(errs()); errs() << '\n'; 4092 } 4093 #endif 4094 4095 /// Look for registers which are a constant distance apart and try to form reuse 4096 /// opportunities between them. 4097 void LSRInstance::GenerateCrossUseConstantOffsets() { 4098 // Group the registers by their value without any added constant offset. 4099 using ImmMapTy = std::map<int64_t, const SCEV *>; 4100 4101 DenseMap<const SCEV *, ImmMapTy> Map; 4102 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4103 SmallVector<const SCEV *, 8> Sequence; 4104 for (const SCEV *Use : RegUses) { 4105 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4106 int64_t Imm = ExtractImmediate(Reg, SE); 4107 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4108 if (Pair.second) 4109 Sequence.push_back(Reg); 4110 Pair.first->second.insert(std::make_pair(Imm, Use)); 4111 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4112 } 4113 4114 // Now examine each set of registers with the same base value. Build up 4115 // a list of work to do and do the work in a separate step so that we're 4116 // not adding formulae and register counts while we're searching. 4117 SmallVector<WorkItem, 32> WorkItems; 4118 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4119 for (const SCEV *Reg : Sequence) { 4120 const ImmMapTy &Imms = Map.find(Reg)->second; 4121 4122 // It's not worthwhile looking for reuse if there's only one offset. 4123 if (Imms.size() == 1) 4124 continue; 4125 4126 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4127 for (const auto &Entry 4128 : Imms) dbgs() 4129 << ' ' << Entry.first; 4130 dbgs() << '\n'); 4131 4132 // Examine each offset. 4133 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4134 J != JE; ++J) { 4135 const SCEV *OrigReg = J->second; 4136 4137 int64_t JImm = J->first; 4138 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4139 4140 if (!isa<SCEVConstant>(OrigReg) && 4141 UsedByIndicesMap[Reg].count() == 1) { 4142 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4143 << '\n'); 4144 continue; 4145 } 4146 4147 // Conservatively examine offsets between this orig reg a few selected 4148 // other orig regs. 4149 int64_t First = Imms.begin()->first; 4150 int64_t Last = std::prev(Imms.end())->first; 4151 // Compute (First + Last) / 2 without overflow using the fact that 4152 // First + Last = 2 * (First + Last) + (First ^ Last). 4153 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4154 // If the result is negative and First is odd and Last even (or vice versa), 4155 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4156 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4157 ImmMapTy::const_iterator OtherImms[] = { 4158 Imms.begin(), std::prev(Imms.end()), 4159 Imms.lower_bound(Avg)}; 4160 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4161 ImmMapTy::const_iterator M = OtherImms[i]; 4162 if (M == J || M == JE) continue; 4163 4164 // Compute the difference between the two. 4165 int64_t Imm = (uint64_t)JImm - M->first; 4166 for (unsigned LUIdx : UsedByIndices.set_bits()) 4167 // Make a memo of this use, offset, and register tuple. 4168 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4169 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4170 } 4171 } 4172 } 4173 4174 Map.clear(); 4175 Sequence.clear(); 4176 UsedByIndicesMap.clear(); 4177 UniqueItems.clear(); 4178 4179 // Now iterate through the worklist and add new formulae. 4180 for (const WorkItem &WI : WorkItems) { 4181 size_t LUIdx = WI.LUIdx; 4182 LSRUse &LU = Uses[LUIdx]; 4183 int64_t Imm = WI.Imm; 4184 const SCEV *OrigReg = WI.OrigReg; 4185 4186 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4187 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4188 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4189 4190 // TODO: Use a more targeted data structure. 4191 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4192 Formula F = LU.Formulae[L]; 4193 // FIXME: The code for the scaled and unscaled registers looks 4194 // very similar but slightly different. Investigate if they 4195 // could be merged. That way, we would not have to unscale the 4196 // Formula. 4197 F.unscale(); 4198 // Use the immediate in the scaled register. 4199 if (F.ScaledReg == OrigReg) { 4200 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4201 // Don't create 50 + reg(-50). 4202 if (F.referencesReg(SE.getSCEV( 4203 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4204 continue; 4205 Formula NewF = F; 4206 NewF.BaseOffset = Offset; 4207 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4208 NewF)) 4209 continue; 4210 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4211 4212 // If the new scale is a constant in a register, and adding the constant 4213 // value to the immediate would produce a value closer to zero than the 4214 // immediate itself, then the formula isn't worthwhile. 4215 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4216 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4217 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4218 .ule(std::abs(NewF.BaseOffset))) 4219 continue; 4220 4221 // OK, looks good. 4222 NewF.canonicalize(*this->L); 4223 (void)InsertFormula(LU, LUIdx, NewF); 4224 } else { 4225 // Use the immediate in a base register. 4226 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4227 const SCEV *BaseReg = F.BaseRegs[N]; 4228 if (BaseReg != OrigReg) 4229 continue; 4230 Formula NewF = F; 4231 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4232 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4233 LU.Kind, LU.AccessTy, NewF)) { 4234 if (TTI.shouldFavorPostInc() && 4235 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4236 continue; 4237 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4238 continue; 4239 NewF = F; 4240 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4241 } 4242 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4243 4244 // If the new formula has a constant in a register, and adding the 4245 // constant value to the immediate would produce a value closer to 4246 // zero than the immediate itself, then the formula isn't worthwhile. 4247 for (const SCEV *NewReg : NewF.BaseRegs) 4248 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4249 if ((C->getAPInt() + NewF.BaseOffset) 4250 .abs() 4251 .slt(std::abs(NewF.BaseOffset)) && 4252 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4253 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4254 goto skip_formula; 4255 4256 // Ok, looks good. 4257 NewF.canonicalize(*this->L); 4258 (void)InsertFormula(LU, LUIdx, NewF); 4259 break; 4260 skip_formula:; 4261 } 4262 } 4263 } 4264 } 4265 } 4266 4267 /// Generate formulae for each use. 4268 void 4269 LSRInstance::GenerateAllReuseFormulae() { 4270 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4271 // queries are more precise. 4272 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4273 LSRUse &LU = Uses[LUIdx]; 4274 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4275 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4276 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4277 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4278 } 4279 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4280 LSRUse &LU = Uses[LUIdx]; 4281 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4282 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4283 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4284 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4285 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4286 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4287 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4288 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4289 } 4290 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4291 LSRUse &LU = Uses[LUIdx]; 4292 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4293 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4294 } 4295 4296 GenerateCrossUseConstantOffsets(); 4297 4298 LLVM_DEBUG(dbgs() << "\n" 4299 "After generating reuse formulae:\n"; 4300 print_uses(dbgs())); 4301 } 4302 4303 /// If there are multiple formulae with the same set of registers used 4304 /// by other uses, pick the best one and delete the others. 4305 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4306 DenseSet<const SCEV *> VisitedRegs; 4307 SmallPtrSet<const SCEV *, 16> Regs; 4308 SmallPtrSet<const SCEV *, 16> LoserRegs; 4309 #ifndef NDEBUG 4310 bool ChangedFormulae = false; 4311 #endif 4312 4313 // Collect the best formula for each unique set of shared registers. This 4314 // is reset for each use. 4315 using BestFormulaeTy = 4316 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4317 4318 BestFormulaeTy BestFormulae; 4319 4320 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4321 LSRUse &LU = Uses[LUIdx]; 4322 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4323 dbgs() << '\n'); 4324 4325 bool Any = false; 4326 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4327 FIdx != NumForms; ++FIdx) { 4328 Formula &F = LU.Formulae[FIdx]; 4329 4330 // Some formulas are instant losers. For example, they may depend on 4331 // nonexistent AddRecs from other loops. These need to be filtered 4332 // immediately, otherwise heuristics could choose them over others leading 4333 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4334 // avoids the need to recompute this information across formulae using the 4335 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4336 // the corresponding bad register from the Regs set. 4337 Cost CostF(L, SE, TTI); 4338 Regs.clear(); 4339 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4340 if (CostF.isLoser()) { 4341 // During initial formula generation, undesirable formulae are generated 4342 // by uses within other loops that have some non-trivial address mode or 4343 // use the postinc form of the IV. LSR needs to provide these formulae 4344 // as the basis of rediscovering the desired formula that uses an AddRec 4345 // corresponding to the existing phi. Once all formulae have been 4346 // generated, these initial losers may be pruned. 4347 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4348 dbgs() << "\n"); 4349 } 4350 else { 4351 SmallVector<const SCEV *, 4> Key; 4352 for (const SCEV *Reg : F.BaseRegs) { 4353 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4354 Key.push_back(Reg); 4355 } 4356 if (F.ScaledReg && 4357 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4358 Key.push_back(F.ScaledReg); 4359 // Unstable sort by host order ok, because this is only used for 4360 // uniquifying. 4361 llvm::sort(Key); 4362 4363 std::pair<BestFormulaeTy::const_iterator, bool> P = 4364 BestFormulae.insert(std::make_pair(Key, FIdx)); 4365 if (P.second) 4366 continue; 4367 4368 Formula &Best = LU.Formulae[P.first->second]; 4369 4370 Cost CostBest(L, SE, TTI); 4371 Regs.clear(); 4372 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4373 if (CostF.isLess(CostBest)) 4374 std::swap(F, Best); 4375 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4376 dbgs() << "\n" 4377 " in favor of formula "; 4378 Best.print(dbgs()); dbgs() << '\n'); 4379 } 4380 #ifndef NDEBUG 4381 ChangedFormulae = true; 4382 #endif 4383 LU.DeleteFormula(F); 4384 --FIdx; 4385 --NumForms; 4386 Any = true; 4387 } 4388 4389 // Now that we've filtered out some formulae, recompute the Regs set. 4390 if (Any) 4391 LU.RecomputeRegs(LUIdx, RegUses); 4392 4393 // Reset this to prepare for the next use. 4394 BestFormulae.clear(); 4395 } 4396 4397 LLVM_DEBUG(if (ChangedFormulae) { 4398 dbgs() << "\n" 4399 "After filtering out undesirable candidates:\n"; 4400 print_uses(dbgs()); 4401 }); 4402 } 4403 4404 /// Estimate the worst-case number of solutions the solver might have to 4405 /// consider. It almost never considers this many solutions because it prune the 4406 /// search space, but the pruning isn't always sufficient. 4407 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4408 size_t Power = 1; 4409 for (const LSRUse &LU : Uses) { 4410 size_t FSize = LU.Formulae.size(); 4411 if (FSize >= ComplexityLimit) { 4412 Power = ComplexityLimit; 4413 break; 4414 } 4415 Power *= FSize; 4416 if (Power >= ComplexityLimit) 4417 break; 4418 } 4419 return Power; 4420 } 4421 4422 /// When one formula uses a superset of the registers of another formula, it 4423 /// won't help reduce register pressure (though it may not necessarily hurt 4424 /// register pressure); remove it to simplify the system. 4425 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4426 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4427 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4428 4429 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4430 "which use a superset of registers used by other " 4431 "formulae.\n"); 4432 4433 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4434 LSRUse &LU = Uses[LUIdx]; 4435 bool Any = false; 4436 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4437 Formula &F = LU.Formulae[i]; 4438 // Look for a formula with a constant or GV in a register. If the use 4439 // also has a formula with that same value in an immediate field, 4440 // delete the one that uses a register. 4441 for (SmallVectorImpl<const SCEV *>::const_iterator 4442 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4443 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4444 Formula NewF = F; 4445 //FIXME: Formulas should store bitwidth to do wrapping properly. 4446 // See PR41034. 4447 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4448 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4449 (I - F.BaseRegs.begin())); 4450 if (LU.HasFormulaWithSameRegs(NewF)) { 4451 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4452 dbgs() << '\n'); 4453 LU.DeleteFormula(F); 4454 --i; 4455 --e; 4456 Any = true; 4457 break; 4458 } 4459 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4460 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4461 if (!F.BaseGV) { 4462 Formula NewF = F; 4463 NewF.BaseGV = GV; 4464 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4465 (I - F.BaseRegs.begin())); 4466 if (LU.HasFormulaWithSameRegs(NewF)) { 4467 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4468 dbgs() << '\n'); 4469 LU.DeleteFormula(F); 4470 --i; 4471 --e; 4472 Any = true; 4473 break; 4474 } 4475 } 4476 } 4477 } 4478 } 4479 if (Any) 4480 LU.RecomputeRegs(LUIdx, RegUses); 4481 } 4482 4483 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4484 } 4485 } 4486 4487 /// When there are many registers for expressions like A, A+1, A+2, etc., 4488 /// allocate a single register for them. 4489 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4490 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4491 return; 4492 4493 LLVM_DEBUG( 4494 dbgs() << "The search space is too complex.\n" 4495 "Narrowing the search space by assuming that uses separated " 4496 "by a constant offset will use the same registers.\n"); 4497 4498 // This is especially useful for unrolled loops. 4499 4500 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4501 LSRUse &LU = Uses[LUIdx]; 4502 for (const Formula &F : LU.Formulae) { 4503 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4504 continue; 4505 4506 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4507 if (!LUThatHas) 4508 continue; 4509 4510 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4511 LU.Kind, LU.AccessTy)) 4512 continue; 4513 4514 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4515 4516 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4517 4518 // Transfer the fixups of LU to LUThatHas. 4519 for (LSRFixup &Fixup : LU.Fixups) { 4520 Fixup.Offset += F.BaseOffset; 4521 LUThatHas->pushFixup(Fixup); 4522 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4523 } 4524 4525 // Delete formulae from the new use which are no longer legal. 4526 bool Any = false; 4527 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4528 Formula &F = LUThatHas->Formulae[i]; 4529 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4530 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4531 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4532 LUThatHas->DeleteFormula(F); 4533 --i; 4534 --e; 4535 Any = true; 4536 } 4537 } 4538 4539 if (Any) 4540 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4541 4542 // Delete the old use. 4543 DeleteUse(LU, LUIdx); 4544 --LUIdx; 4545 --NumUses; 4546 break; 4547 } 4548 } 4549 4550 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4551 } 4552 4553 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4554 /// we've done more filtering, as it may be able to find more formulae to 4555 /// eliminate. 4556 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4557 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4558 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4559 4560 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4561 "undesirable dedicated registers.\n"); 4562 4563 FilterOutUndesirableDedicatedRegisters(); 4564 4565 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4566 } 4567 } 4568 4569 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4570 /// Pick the best one and delete the others. 4571 /// This narrowing heuristic is to keep as many formulae with different 4572 /// Scale and ScaledReg pair as possible while narrowing the search space. 4573 /// The benefit is that it is more likely to find out a better solution 4574 /// from a formulae set with more Scale and ScaledReg variations than 4575 /// a formulae set with the same Scale and ScaledReg. The picking winner 4576 /// reg heuristic will often keep the formulae with the same Scale and 4577 /// ScaledReg and filter others, and we want to avoid that if possible. 4578 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4579 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4580 return; 4581 4582 LLVM_DEBUG( 4583 dbgs() << "The search space is too complex.\n" 4584 "Narrowing the search space by choosing the best Formula " 4585 "from the Formulae with the same Scale and ScaledReg.\n"); 4586 4587 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4588 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4589 4590 BestFormulaeTy BestFormulae; 4591 #ifndef NDEBUG 4592 bool ChangedFormulae = false; 4593 #endif 4594 DenseSet<const SCEV *> VisitedRegs; 4595 SmallPtrSet<const SCEV *, 16> Regs; 4596 4597 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4598 LSRUse &LU = Uses[LUIdx]; 4599 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4600 dbgs() << '\n'); 4601 4602 // Return true if Formula FA is better than Formula FB. 4603 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4604 // First we will try to choose the Formula with fewer new registers. 4605 // For a register used by current Formula, the more the register is 4606 // shared among LSRUses, the less we increase the register number 4607 // counter of the formula. 4608 size_t FARegNum = 0; 4609 for (const SCEV *Reg : FA.BaseRegs) { 4610 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4611 FARegNum += (NumUses - UsedByIndices.count() + 1); 4612 } 4613 size_t FBRegNum = 0; 4614 for (const SCEV *Reg : FB.BaseRegs) { 4615 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4616 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4617 } 4618 if (FARegNum != FBRegNum) 4619 return FARegNum < FBRegNum; 4620 4621 // If the new register numbers are the same, choose the Formula with 4622 // less Cost. 4623 Cost CostFA(L, SE, TTI); 4624 Cost CostFB(L, SE, TTI); 4625 Regs.clear(); 4626 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4627 Regs.clear(); 4628 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4629 return CostFA.isLess(CostFB); 4630 }; 4631 4632 bool Any = false; 4633 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4634 ++FIdx) { 4635 Formula &F = LU.Formulae[FIdx]; 4636 if (!F.ScaledReg) 4637 continue; 4638 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4639 if (P.second) 4640 continue; 4641 4642 Formula &Best = LU.Formulae[P.first->second]; 4643 if (IsBetterThan(F, Best)) 4644 std::swap(F, Best); 4645 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4646 dbgs() << "\n" 4647 " in favor of formula "; 4648 Best.print(dbgs()); dbgs() << '\n'); 4649 #ifndef NDEBUG 4650 ChangedFormulae = true; 4651 #endif 4652 LU.DeleteFormula(F); 4653 --FIdx; 4654 --NumForms; 4655 Any = true; 4656 } 4657 if (Any) 4658 LU.RecomputeRegs(LUIdx, RegUses); 4659 4660 // Reset this to prepare for the next use. 4661 BestFormulae.clear(); 4662 } 4663 4664 LLVM_DEBUG(if (ChangedFormulae) { 4665 dbgs() << "\n" 4666 "After filtering out undesirable candidates:\n"; 4667 print_uses(dbgs()); 4668 }); 4669 } 4670 4671 /// The function delete formulas with high registers number expectation. 4672 /// Assuming we don't know the value of each formula (already delete 4673 /// all inefficient), generate probability of not selecting for each 4674 /// register. 4675 /// For example, 4676 /// Use1: 4677 /// reg(a) + reg({0,+,1}) 4678 /// reg(a) + reg({-1,+,1}) + 1 4679 /// reg({a,+,1}) 4680 /// Use2: 4681 /// reg(b) + reg({0,+,1}) 4682 /// reg(b) + reg({-1,+,1}) + 1 4683 /// reg({b,+,1}) 4684 /// Use3: 4685 /// reg(c) + reg(b) + reg({0,+,1}) 4686 /// reg(c) + reg({b,+,1}) 4687 /// 4688 /// Probability of not selecting 4689 /// Use1 Use2 Use3 4690 /// reg(a) (1/3) * 1 * 1 4691 /// reg(b) 1 * (1/3) * (1/2) 4692 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4693 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4694 /// reg({a,+,1}) (2/3) * 1 * 1 4695 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4696 /// reg(c) 1 * 1 * 0 4697 /// 4698 /// Now count registers number mathematical expectation for each formula: 4699 /// Note that for each use we exclude probability if not selecting for the use. 4700 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4701 /// probabilty 1/3 of not selecting for Use1). 4702 /// Use1: 4703 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4704 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4705 /// reg({a,+,1}) 1 4706 /// Use2: 4707 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4708 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4709 /// reg({b,+,1}) 2/3 4710 /// Use3: 4711 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4712 /// reg(c) + reg({b,+,1}) 1 + 2/3 4713 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4714 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4715 return; 4716 // Ok, we have too many of formulae on our hands to conveniently handle. 4717 // Use a rough heuristic to thin out the list. 4718 4719 // Set of Regs wich will be 100% used in final solution. 4720 // Used in each formula of a solution (in example above this is reg(c)). 4721 // We can skip them in calculations. 4722 SmallPtrSet<const SCEV *, 4> UniqRegs; 4723 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4724 4725 // Map each register to probability of not selecting 4726 DenseMap <const SCEV *, float> RegNumMap; 4727 for (const SCEV *Reg : RegUses) { 4728 if (UniqRegs.count(Reg)) 4729 continue; 4730 float PNotSel = 1; 4731 for (const LSRUse &LU : Uses) { 4732 if (!LU.Regs.count(Reg)) 4733 continue; 4734 float P = LU.getNotSelectedProbability(Reg); 4735 if (P != 0.0) 4736 PNotSel *= P; 4737 else 4738 UniqRegs.insert(Reg); 4739 } 4740 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4741 } 4742 4743 LLVM_DEBUG( 4744 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4745 4746 // Delete formulas where registers number expectation is high. 4747 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4748 LSRUse &LU = Uses[LUIdx]; 4749 // If nothing to delete - continue. 4750 if (LU.Formulae.size() < 2) 4751 continue; 4752 // This is temporary solution to test performance. Float should be 4753 // replaced with round independent type (based on integers) to avoid 4754 // different results for different target builds. 4755 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4756 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4757 size_t MinIdx = 0; 4758 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4759 Formula &F = LU.Formulae[i]; 4760 float FRegNum = 0; 4761 float FARegNum = 0; 4762 for (const SCEV *BaseReg : F.BaseRegs) { 4763 if (UniqRegs.count(BaseReg)) 4764 continue; 4765 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4766 if (isa<SCEVAddRecExpr>(BaseReg)) 4767 FARegNum += 4768 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4769 } 4770 if (const SCEV *ScaledReg = F.ScaledReg) { 4771 if (!UniqRegs.count(ScaledReg)) { 4772 FRegNum += 4773 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4774 if (isa<SCEVAddRecExpr>(ScaledReg)) 4775 FARegNum += 4776 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4777 } 4778 } 4779 if (FMinRegNum > FRegNum || 4780 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4781 FMinRegNum = FRegNum; 4782 FMinARegNum = FARegNum; 4783 MinIdx = i; 4784 } 4785 } 4786 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4787 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4788 if (MinIdx != 0) 4789 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4790 while (LU.Formulae.size() != 1) { 4791 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4792 dbgs() << '\n'); 4793 LU.Formulae.pop_back(); 4794 } 4795 LU.RecomputeRegs(LUIdx, RegUses); 4796 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4797 Formula &F = LU.Formulae[0]; 4798 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4799 // When we choose the formula, the regs become unique. 4800 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4801 if (F.ScaledReg) 4802 UniqRegs.insert(F.ScaledReg); 4803 } 4804 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4805 } 4806 4807 /// Pick a register which seems likely to be profitable, and then in any use 4808 /// which has any reference to that register, delete all formulae which do not 4809 /// reference that register. 4810 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4811 // With all other options exhausted, loop until the system is simple 4812 // enough to handle. 4813 SmallPtrSet<const SCEV *, 4> Taken; 4814 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4815 // Ok, we have too many of formulae on our hands to conveniently handle. 4816 // Use a rough heuristic to thin out the list. 4817 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4818 4819 // Pick the register which is used by the most LSRUses, which is likely 4820 // to be a good reuse register candidate. 4821 const SCEV *Best = nullptr; 4822 unsigned BestNum = 0; 4823 for (const SCEV *Reg : RegUses) { 4824 if (Taken.count(Reg)) 4825 continue; 4826 if (!Best) { 4827 Best = Reg; 4828 BestNum = RegUses.getUsedByIndices(Reg).count(); 4829 } else { 4830 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4831 if (Count > BestNum) { 4832 Best = Reg; 4833 BestNum = Count; 4834 } 4835 } 4836 } 4837 4838 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4839 << " will yield profitable reuse.\n"); 4840 Taken.insert(Best); 4841 4842 // In any use with formulae which references this register, delete formulae 4843 // which don't reference it. 4844 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4845 LSRUse &LU = Uses[LUIdx]; 4846 if (!LU.Regs.count(Best)) continue; 4847 4848 bool Any = false; 4849 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4850 Formula &F = LU.Formulae[i]; 4851 if (!F.referencesReg(Best)) { 4852 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4853 LU.DeleteFormula(F); 4854 --e; 4855 --i; 4856 Any = true; 4857 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4858 continue; 4859 } 4860 } 4861 4862 if (Any) 4863 LU.RecomputeRegs(LUIdx, RegUses); 4864 } 4865 4866 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4867 } 4868 } 4869 4870 /// If there are an extraordinary number of formulae to choose from, use some 4871 /// rough heuristics to prune down the number of formulae. This keeps the main 4872 /// solver from taking an extraordinary amount of time in some worst-case 4873 /// scenarios. 4874 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4875 NarrowSearchSpaceByDetectingSupersets(); 4876 NarrowSearchSpaceByCollapsingUnrolledCode(); 4877 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4878 if (FilterSameScaledReg) 4879 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4880 if (LSRExpNarrow) 4881 NarrowSearchSpaceByDeletingCostlyFormulas(); 4882 else 4883 NarrowSearchSpaceByPickingWinnerRegs(); 4884 } 4885 4886 /// This is the recursive solver. 4887 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4888 Cost &SolutionCost, 4889 SmallVectorImpl<const Formula *> &Workspace, 4890 const Cost &CurCost, 4891 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4892 DenseSet<const SCEV *> &VisitedRegs) const { 4893 // Some ideas: 4894 // - prune more: 4895 // - use more aggressive filtering 4896 // - sort the formula so that the most profitable solutions are found first 4897 // - sort the uses too 4898 // - search faster: 4899 // - don't compute a cost, and then compare. compare while computing a cost 4900 // and bail early. 4901 // - track register sets with SmallBitVector 4902 4903 const LSRUse &LU = Uses[Workspace.size()]; 4904 4905 // If this use references any register that's already a part of the 4906 // in-progress solution, consider it a requirement that a formula must 4907 // reference that register in order to be considered. This prunes out 4908 // unprofitable searching. 4909 SmallSetVector<const SCEV *, 4> ReqRegs; 4910 for (const SCEV *S : CurRegs) 4911 if (LU.Regs.count(S)) 4912 ReqRegs.insert(S); 4913 4914 SmallPtrSet<const SCEV *, 16> NewRegs; 4915 Cost NewCost(L, SE, TTI); 4916 for (const Formula &F : LU.Formulae) { 4917 // Ignore formulae which may not be ideal in terms of register reuse of 4918 // ReqRegs. The formula should use all required registers before 4919 // introducing new ones. 4920 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4921 for (const SCEV *Reg : ReqRegs) { 4922 if ((F.ScaledReg && F.ScaledReg == Reg) || 4923 is_contained(F.BaseRegs, Reg)) { 4924 --NumReqRegsToFind; 4925 if (NumReqRegsToFind == 0) 4926 break; 4927 } 4928 } 4929 if (NumReqRegsToFind != 0) { 4930 // If none of the formulae satisfied the required registers, then we could 4931 // clear ReqRegs and try again. Currently, we simply give up in this case. 4932 continue; 4933 } 4934 4935 // Evaluate the cost of the current formula. If it's already worse than 4936 // the current best, prune the search at that point. 4937 NewCost = CurCost; 4938 NewRegs = CurRegs; 4939 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4940 if (NewCost.isLess(SolutionCost)) { 4941 Workspace.push_back(&F); 4942 if (Workspace.size() != Uses.size()) { 4943 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4944 NewRegs, VisitedRegs); 4945 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4946 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4947 } else { 4948 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4949 dbgs() << ".\nRegs:\n"; 4950 for (const SCEV *S : NewRegs) dbgs() 4951 << "- " << *S << "\n"; 4952 dbgs() << '\n'); 4953 4954 SolutionCost = NewCost; 4955 Solution = Workspace; 4956 } 4957 Workspace.pop_back(); 4958 } 4959 } 4960 } 4961 4962 /// Choose one formula from each use. Return the results in the given Solution 4963 /// vector. 4964 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4965 SmallVector<const Formula *, 8> Workspace; 4966 Cost SolutionCost(L, SE, TTI); 4967 SolutionCost.Lose(); 4968 Cost CurCost(L, SE, TTI); 4969 SmallPtrSet<const SCEV *, 16> CurRegs; 4970 DenseSet<const SCEV *> VisitedRegs; 4971 Workspace.reserve(Uses.size()); 4972 4973 // SolveRecurse does all the work. 4974 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4975 CurRegs, VisitedRegs); 4976 if (Solution.empty()) { 4977 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4978 return; 4979 } 4980 4981 // Ok, we've now made all our decisions. 4982 LLVM_DEBUG(dbgs() << "\n" 4983 "The chosen solution requires "; 4984 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4985 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4986 dbgs() << " "; 4987 Uses[i].print(dbgs()); 4988 dbgs() << "\n" 4989 " "; 4990 Solution[i]->print(dbgs()); 4991 dbgs() << '\n'; 4992 }); 4993 4994 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4995 } 4996 4997 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4998 /// we can go while still being dominated by the input positions. This helps 4999 /// canonicalize the insert position, which encourages sharing. 5000 BasicBlock::iterator 5001 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5002 const SmallVectorImpl<Instruction *> &Inputs) 5003 const { 5004 Instruction *Tentative = &*IP; 5005 while (true) { 5006 bool AllDominate = true; 5007 Instruction *BetterPos = nullptr; 5008 // Don't bother attempting to insert before a catchswitch, their basic block 5009 // cannot have other non-PHI instructions. 5010 if (isa<CatchSwitchInst>(Tentative)) 5011 return IP; 5012 5013 for (Instruction *Inst : Inputs) { 5014 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5015 AllDominate = false; 5016 break; 5017 } 5018 // Attempt to find an insert position in the middle of the block, 5019 // instead of at the end, so that it can be used for other expansions. 5020 if (Tentative->getParent() == Inst->getParent() && 5021 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5022 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5023 } 5024 if (!AllDominate) 5025 break; 5026 if (BetterPos) 5027 IP = BetterPos->getIterator(); 5028 else 5029 IP = Tentative->getIterator(); 5030 5031 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5032 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5033 5034 BasicBlock *IDom; 5035 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5036 if (!Rung) return IP; 5037 Rung = Rung->getIDom(); 5038 if (!Rung) return IP; 5039 IDom = Rung->getBlock(); 5040 5041 // Don't climb into a loop though. 5042 const Loop *IDomLoop = LI.getLoopFor(IDom); 5043 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5044 if (IDomDepth <= IPLoopDepth && 5045 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5046 break; 5047 } 5048 5049 Tentative = IDom->getTerminator(); 5050 } 5051 5052 return IP; 5053 } 5054 5055 /// Determine an input position which will be dominated by the operands and 5056 /// which will dominate the result. 5057 BasicBlock::iterator 5058 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5059 const LSRFixup &LF, 5060 const LSRUse &LU, 5061 SCEVExpander &Rewriter) const { 5062 // Collect some instructions which must be dominated by the 5063 // expanding replacement. These must be dominated by any operands that 5064 // will be required in the expansion. 5065 SmallVector<Instruction *, 4> Inputs; 5066 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5067 Inputs.push_back(I); 5068 if (LU.Kind == LSRUse::ICmpZero) 5069 if (Instruction *I = 5070 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5071 Inputs.push_back(I); 5072 if (LF.PostIncLoops.count(L)) { 5073 if (LF.isUseFullyOutsideLoop(L)) 5074 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5075 else 5076 Inputs.push_back(IVIncInsertPos); 5077 } 5078 // The expansion must also be dominated by the increment positions of any 5079 // loops it for which it is using post-inc mode. 5080 for (const Loop *PIL : LF.PostIncLoops) { 5081 if (PIL == L) continue; 5082 5083 // Be dominated by the loop exit. 5084 SmallVector<BasicBlock *, 4> ExitingBlocks; 5085 PIL->getExitingBlocks(ExitingBlocks); 5086 if (!ExitingBlocks.empty()) { 5087 BasicBlock *BB = ExitingBlocks[0]; 5088 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5089 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5090 Inputs.push_back(BB->getTerminator()); 5091 } 5092 } 5093 5094 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5095 && !isa<DbgInfoIntrinsic>(LowestIP) && 5096 "Insertion point must be a normal instruction"); 5097 5098 // Then, climb up the immediate dominator tree as far as we can go while 5099 // still being dominated by the input positions. 5100 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5101 5102 // Don't insert instructions before PHI nodes. 5103 while (isa<PHINode>(IP)) ++IP; 5104 5105 // Ignore landingpad instructions. 5106 while (IP->isEHPad()) ++IP; 5107 5108 // Ignore debug intrinsics. 5109 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5110 5111 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5112 // IP consistent across expansions and allows the previously inserted 5113 // instructions to be reused by subsequent expansion. 5114 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5115 ++IP; 5116 5117 return IP; 5118 } 5119 5120 /// Emit instructions for the leading candidate expression for this LSRUse (this 5121 /// is called "expanding"). 5122 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5123 const Formula &F, BasicBlock::iterator IP, 5124 SCEVExpander &Rewriter, 5125 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5126 if (LU.RigidFormula) 5127 return LF.OperandValToReplace; 5128 5129 // Determine an input position which will be dominated by the operands and 5130 // which will dominate the result. 5131 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5132 Rewriter.setInsertPoint(&*IP); 5133 5134 // Inform the Rewriter if we have a post-increment use, so that it can 5135 // perform an advantageous expansion. 5136 Rewriter.setPostInc(LF.PostIncLoops); 5137 5138 // This is the type that the user actually needs. 5139 Type *OpTy = LF.OperandValToReplace->getType(); 5140 // This will be the type that we'll initially expand to. 5141 Type *Ty = F.getType(); 5142 if (!Ty) 5143 // No type known; just expand directly to the ultimate type. 5144 Ty = OpTy; 5145 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5146 // Expand directly to the ultimate type if it's the right size. 5147 Ty = OpTy; 5148 // This is the type to do integer arithmetic in. 5149 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5150 5151 // Build up a list of operands to add together to form the full base. 5152 SmallVector<const SCEV *, 8> Ops; 5153 5154 // Expand the BaseRegs portion. 5155 for (const SCEV *Reg : F.BaseRegs) { 5156 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5157 5158 // If we're expanding for a post-inc user, make the post-inc adjustment. 5159 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5160 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5161 } 5162 5163 // Expand the ScaledReg portion. 5164 Value *ICmpScaledV = nullptr; 5165 if (F.Scale != 0) { 5166 const SCEV *ScaledS = F.ScaledReg; 5167 5168 // If we're expanding for a post-inc user, make the post-inc adjustment. 5169 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5170 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5171 5172 if (LU.Kind == LSRUse::ICmpZero) { 5173 // Expand ScaleReg as if it was part of the base regs. 5174 if (F.Scale == 1) 5175 Ops.push_back( 5176 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5177 else { 5178 // An interesting way of "folding" with an icmp is to use a negated 5179 // scale, which we'll implement by inserting it into the other operand 5180 // of the icmp. 5181 assert(F.Scale == -1 && 5182 "The only scale supported by ICmpZero uses is -1!"); 5183 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5184 } 5185 } else { 5186 // Otherwise just expand the scaled register and an explicit scale, 5187 // which is expected to be matched as part of the address. 5188 5189 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5190 // Unless the addressing mode will not be folded. 5191 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5192 isAMCompletelyFolded(TTI, LU, F)) { 5193 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5194 Ops.clear(); 5195 Ops.push_back(SE.getUnknown(FullV)); 5196 } 5197 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5198 if (F.Scale != 1) 5199 ScaledS = 5200 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5201 Ops.push_back(ScaledS); 5202 } 5203 } 5204 5205 // Expand the GV portion. 5206 if (F.BaseGV) { 5207 // Flush the operand list to suppress SCEVExpander hoisting. 5208 if (!Ops.empty()) { 5209 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5210 Ops.clear(); 5211 Ops.push_back(SE.getUnknown(FullV)); 5212 } 5213 Ops.push_back(SE.getUnknown(F.BaseGV)); 5214 } 5215 5216 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5217 // unfolded offsets. LSR assumes they both live next to their uses. 5218 if (!Ops.empty()) { 5219 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5220 Ops.clear(); 5221 Ops.push_back(SE.getUnknown(FullV)); 5222 } 5223 5224 // Expand the immediate portion. 5225 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5226 if (Offset != 0) { 5227 if (LU.Kind == LSRUse::ICmpZero) { 5228 // The other interesting way of "folding" with an ICmpZero is to use a 5229 // negated immediate. 5230 if (!ICmpScaledV) 5231 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5232 else { 5233 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5234 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5235 } 5236 } else { 5237 // Just add the immediate values. These again are expected to be matched 5238 // as part of the address. 5239 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5240 } 5241 } 5242 5243 // Expand the unfolded offset portion. 5244 int64_t UnfoldedOffset = F.UnfoldedOffset; 5245 if (UnfoldedOffset != 0) { 5246 // Just add the immediate values. 5247 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5248 UnfoldedOffset))); 5249 } 5250 5251 // Emit instructions summing all the operands. 5252 const SCEV *FullS = Ops.empty() ? 5253 SE.getConstant(IntTy, 0) : 5254 SE.getAddExpr(Ops); 5255 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5256 5257 // We're done expanding now, so reset the rewriter. 5258 Rewriter.clearPostInc(); 5259 5260 // An ICmpZero Formula represents an ICmp which we're handling as a 5261 // comparison against zero. Now that we've expanded an expression for that 5262 // form, update the ICmp's other operand. 5263 if (LU.Kind == LSRUse::ICmpZero) { 5264 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5265 DeadInsts.emplace_back(CI->getOperand(1)); 5266 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5267 "a scale at the same time!"); 5268 if (F.Scale == -1) { 5269 if (ICmpScaledV->getType() != OpTy) { 5270 Instruction *Cast = 5271 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5272 OpTy, false), 5273 ICmpScaledV, OpTy, "tmp", CI); 5274 ICmpScaledV = Cast; 5275 } 5276 CI->setOperand(1, ICmpScaledV); 5277 } else { 5278 // A scale of 1 means that the scale has been expanded as part of the 5279 // base regs. 5280 assert((F.Scale == 0 || F.Scale == 1) && 5281 "ICmp does not support folding a global value and " 5282 "a scale at the same time!"); 5283 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5284 -(uint64_t)Offset); 5285 if (C->getType() != OpTy) 5286 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5287 OpTy, false), 5288 C, OpTy); 5289 5290 CI->setOperand(1, C); 5291 } 5292 } 5293 5294 return FullV; 5295 } 5296 5297 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5298 /// effectively happens in their predecessor blocks, so the expression may need 5299 /// to be expanded in multiple places. 5300 void LSRInstance::RewriteForPHI( 5301 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5302 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5303 DenseMap<BasicBlock *, Value *> Inserted; 5304 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5305 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5306 bool needUpdateFixups = false; 5307 BasicBlock *BB = PN->getIncomingBlock(i); 5308 5309 // If this is a critical edge, split the edge so that we do not insert 5310 // the code on all predecessor/successor paths. We do this unless this 5311 // is the canonical backedge for this loop, which complicates post-inc 5312 // users. 5313 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5314 !isa<IndirectBrInst>(BB->getTerminator()) && 5315 !isa<CatchSwitchInst>(BB->getTerminator())) { 5316 BasicBlock *Parent = PN->getParent(); 5317 Loop *PNLoop = LI.getLoopFor(Parent); 5318 if (!PNLoop || Parent != PNLoop->getHeader()) { 5319 // Split the critical edge. 5320 BasicBlock *NewBB = nullptr; 5321 if (!Parent->isLandingPad()) { 5322 NewBB = SplitCriticalEdge(BB, Parent, 5323 CriticalEdgeSplittingOptions(&DT, &LI) 5324 .setMergeIdenticalEdges() 5325 .setKeepOneInputPHIs()); 5326 } else { 5327 SmallVector<BasicBlock*, 2> NewBBs; 5328 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5329 NewBB = NewBBs[0]; 5330 } 5331 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5332 // phi predecessors are identical. The simple thing to do is skip 5333 // splitting in this case rather than complicate the API. 5334 if (NewBB) { 5335 // If PN is outside of the loop and BB is in the loop, we want to 5336 // move the block to be immediately before the PHI block, not 5337 // immediately after BB. 5338 if (L->contains(BB) && !L->contains(PN)) 5339 NewBB->moveBefore(PN->getParent()); 5340 5341 // Splitting the edge can reduce the number of PHI entries we have. 5342 e = PN->getNumIncomingValues(); 5343 BB = NewBB; 5344 i = PN->getBasicBlockIndex(BB); 5345 5346 needUpdateFixups = true; 5347 } 5348 } 5349 } 5350 5351 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5352 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5353 if (!Pair.second) 5354 PN->setIncomingValue(i, Pair.first->second); 5355 else { 5356 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5357 Rewriter, DeadInsts); 5358 5359 // If this is reuse-by-noop-cast, insert the noop cast. 5360 Type *OpTy = LF.OperandValToReplace->getType(); 5361 if (FullV->getType() != OpTy) 5362 FullV = 5363 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5364 OpTy, false), 5365 FullV, LF.OperandValToReplace->getType(), 5366 "tmp", BB->getTerminator()); 5367 5368 PN->setIncomingValue(i, FullV); 5369 Pair.first->second = FullV; 5370 } 5371 5372 // If LSR splits critical edge and phi node has other pending 5373 // fixup operands, we need to update those pending fixups. Otherwise 5374 // formulae will not be implemented completely and some instructions 5375 // will not be eliminated. 5376 if (needUpdateFixups) { 5377 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5378 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5379 // If fixup is supposed to rewrite some operand in the phi 5380 // that was just updated, it may be already moved to 5381 // another phi node. Such fixup requires update. 5382 if (Fixup.UserInst == PN) { 5383 // Check if the operand we try to replace still exists in the 5384 // original phi. 5385 bool foundInOriginalPHI = false; 5386 for (const auto &val : PN->incoming_values()) 5387 if (val == Fixup.OperandValToReplace) { 5388 foundInOriginalPHI = true; 5389 break; 5390 } 5391 5392 // If fixup operand found in original PHI - nothing to do. 5393 if (foundInOriginalPHI) 5394 continue; 5395 5396 // Otherwise it might be moved to another PHI and requires update. 5397 // If fixup operand not found in any of the incoming blocks that 5398 // means we have already rewritten it - nothing to do. 5399 for (const auto &Block : PN->blocks()) 5400 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5401 ++I) { 5402 PHINode *NewPN = cast<PHINode>(I); 5403 for (const auto &val : NewPN->incoming_values()) 5404 if (val == Fixup.OperandValToReplace) 5405 Fixup.UserInst = NewPN; 5406 } 5407 } 5408 } 5409 } 5410 } 5411 5412 /// Emit instructions for the leading candidate expression for this LSRUse (this 5413 /// is called "expanding"), and update the UserInst to reference the newly 5414 /// expanded value. 5415 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5416 const Formula &F, SCEVExpander &Rewriter, 5417 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5418 // First, find an insertion point that dominates UserInst. For PHI nodes, 5419 // find the nearest block which dominates all the relevant uses. 5420 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5421 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5422 } else { 5423 Value *FullV = 5424 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5425 5426 // If this is reuse-by-noop-cast, insert the noop cast. 5427 Type *OpTy = LF.OperandValToReplace->getType(); 5428 if (FullV->getType() != OpTy) { 5429 Instruction *Cast = 5430 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5431 FullV, OpTy, "tmp", LF.UserInst); 5432 FullV = Cast; 5433 } 5434 5435 // Update the user. ICmpZero is handled specially here (for now) because 5436 // Expand may have updated one of the operands of the icmp already, and 5437 // its new value may happen to be equal to LF.OperandValToReplace, in 5438 // which case doing replaceUsesOfWith leads to replacing both operands 5439 // with the same value. TODO: Reorganize this. 5440 if (LU.Kind == LSRUse::ICmpZero) 5441 LF.UserInst->setOperand(0, FullV); 5442 else 5443 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5444 } 5445 5446 DeadInsts.emplace_back(LF.OperandValToReplace); 5447 } 5448 5449 /// Rewrite all the fixup locations with new values, following the chosen 5450 /// solution. 5451 void LSRInstance::ImplementSolution( 5452 const SmallVectorImpl<const Formula *> &Solution) { 5453 // Keep track of instructions we may have made dead, so that 5454 // we can remove them after we are done working. 5455 SmallVector<WeakTrackingVH, 16> DeadInsts; 5456 5457 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5458 "lsr"); 5459 #ifndef NDEBUG 5460 Rewriter.setDebugType(DEBUG_TYPE); 5461 #endif 5462 Rewriter.disableCanonicalMode(); 5463 Rewriter.enableLSRMode(); 5464 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5465 5466 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5467 for (const IVChain &Chain : IVChainVec) { 5468 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5469 Rewriter.setChainedPhi(PN); 5470 } 5471 5472 // Expand the new value definitions and update the users. 5473 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5474 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5475 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5476 Changed = true; 5477 } 5478 5479 for (const IVChain &Chain : IVChainVec) { 5480 GenerateIVChain(Chain, Rewriter, DeadInsts); 5481 Changed = true; 5482 } 5483 // Clean up after ourselves. This must be done before deleting any 5484 // instructions. 5485 Rewriter.clear(); 5486 5487 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5488 } 5489 5490 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5491 DominatorTree &DT, LoopInfo &LI, 5492 const TargetTransformInfo &TTI, AssumptionCache &AC, 5493 TargetLibraryInfo &LibInfo) 5494 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L), 5495 FavorBackedgeIndex(EnableBackedgeIndexing && 5496 TTI.shouldFavorBackedgeIndex(L)) { 5497 // If LoopSimplify form is not available, stay out of trouble. 5498 if (!L->isLoopSimplifyForm()) 5499 return; 5500 5501 // If there's no interesting work to be done, bail early. 5502 if (IU.empty()) return; 5503 5504 // If there's too much analysis to be done, bail early. We won't be able to 5505 // model the problem anyway. 5506 unsigned NumUsers = 0; 5507 for (const IVStrideUse &U : IU) { 5508 if (++NumUsers > MaxIVUsers) { 5509 (void)U; 5510 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5511 << "\n"); 5512 return; 5513 } 5514 // Bail out if we have a PHI on an EHPad that gets a value from a 5515 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5516 // no good place to stick any instructions. 5517 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5518 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5519 if (isa<FuncletPadInst>(FirstNonPHI) || 5520 isa<CatchSwitchInst>(FirstNonPHI)) 5521 for (BasicBlock *PredBB : PN->blocks()) 5522 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5523 return; 5524 } 5525 } 5526 5527 #ifndef NDEBUG 5528 // All dominating loops must have preheaders, or SCEVExpander may not be able 5529 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5530 // 5531 // IVUsers analysis should only create users that are dominated by simple loop 5532 // headers. Since this loop should dominate all of its users, its user list 5533 // should be empty if this loop itself is not within a simple loop nest. 5534 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5535 Rung; Rung = Rung->getIDom()) { 5536 BasicBlock *BB = Rung->getBlock(); 5537 const Loop *DomLoop = LI.getLoopFor(BB); 5538 if (DomLoop && DomLoop->getHeader() == BB) { 5539 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5540 } 5541 } 5542 #endif // DEBUG 5543 5544 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5545 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5546 dbgs() << ":\n"); 5547 5548 // First, perform some low-level loop optimizations. 5549 OptimizeShadowIV(); 5550 OptimizeLoopTermCond(); 5551 5552 // If loop preparation eliminates all interesting IV users, bail. 5553 if (IU.empty()) return; 5554 5555 // Skip nested loops until we can model them better with formulae. 5556 if (!L->empty()) { 5557 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5558 return; 5559 } 5560 5561 // Start collecting data and preparing for the solver. 5562 CollectChains(); 5563 CollectInterestingTypesAndFactors(); 5564 CollectFixupsAndInitialFormulae(); 5565 CollectLoopInvariantFixupsAndFormulae(); 5566 5567 if (Uses.empty()) 5568 return; 5569 5570 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5571 print_uses(dbgs())); 5572 5573 // Now use the reuse data to generate a bunch of interesting ways 5574 // to formulate the values needed for the uses. 5575 GenerateAllReuseFormulae(); 5576 5577 FilterOutUndesirableDedicatedRegisters(); 5578 NarrowSearchSpaceUsingHeuristics(); 5579 5580 SmallVector<const Formula *, 8> Solution; 5581 Solve(Solution); 5582 5583 // Release memory that is no longer needed. 5584 Factors.clear(); 5585 Types.clear(); 5586 RegUses.clear(); 5587 5588 if (Solution.empty()) 5589 return; 5590 5591 #ifndef NDEBUG 5592 // Formulae should be legal. 5593 for (const LSRUse &LU : Uses) { 5594 for (const Formula &F : LU.Formulae) 5595 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5596 F) && "Illegal formula generated!"); 5597 }; 5598 #endif 5599 5600 // Now that we've decided what we want, make it so. 5601 ImplementSolution(Solution); 5602 } 5603 5604 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5605 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5606 if (Factors.empty() && Types.empty()) return; 5607 5608 OS << "LSR has identified the following interesting factors and types: "; 5609 bool First = true; 5610 5611 for (int64_t Factor : Factors) { 5612 if (!First) OS << ", "; 5613 First = false; 5614 OS << '*' << Factor; 5615 } 5616 5617 for (Type *Ty : Types) { 5618 if (!First) OS << ", "; 5619 First = false; 5620 OS << '(' << *Ty << ')'; 5621 } 5622 OS << '\n'; 5623 } 5624 5625 void LSRInstance::print_fixups(raw_ostream &OS) const { 5626 OS << "LSR is examining the following fixup sites:\n"; 5627 for (const LSRUse &LU : Uses) 5628 for (const LSRFixup &LF : LU.Fixups) { 5629 dbgs() << " "; 5630 LF.print(OS); 5631 OS << '\n'; 5632 } 5633 } 5634 5635 void LSRInstance::print_uses(raw_ostream &OS) const { 5636 OS << "LSR is examining the following uses:\n"; 5637 for (const LSRUse &LU : Uses) { 5638 dbgs() << " "; 5639 LU.print(OS); 5640 OS << '\n'; 5641 for (const Formula &F : LU.Formulae) { 5642 OS << " "; 5643 F.print(OS); 5644 OS << '\n'; 5645 } 5646 } 5647 } 5648 5649 void LSRInstance::print(raw_ostream &OS) const { 5650 print_factors_and_types(OS); 5651 print_fixups(OS); 5652 print_uses(OS); 5653 } 5654 5655 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5656 print(errs()); errs() << '\n'; 5657 } 5658 #endif 5659 5660 namespace { 5661 5662 class LoopStrengthReduce : public LoopPass { 5663 public: 5664 static char ID; // Pass ID, replacement for typeid 5665 5666 LoopStrengthReduce(); 5667 5668 private: 5669 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5670 void getAnalysisUsage(AnalysisUsage &AU) const override; 5671 }; 5672 5673 } // end anonymous namespace 5674 5675 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5676 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5677 } 5678 5679 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5680 // We split critical edges, so we change the CFG. However, we do update 5681 // many analyses if they are around. 5682 AU.addPreservedID(LoopSimplifyID); 5683 5684 AU.addRequired<LoopInfoWrapperPass>(); 5685 AU.addPreserved<LoopInfoWrapperPass>(); 5686 AU.addRequiredID(LoopSimplifyID); 5687 AU.addRequired<DominatorTreeWrapperPass>(); 5688 AU.addPreserved<DominatorTreeWrapperPass>(); 5689 AU.addRequired<ScalarEvolutionWrapperPass>(); 5690 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5691 AU.addRequired<AssumptionCacheTracker>(); 5692 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5693 // Requiring LoopSimplify a second time here prevents IVUsers from running 5694 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5695 AU.addRequiredID(LoopSimplifyID); 5696 AU.addRequired<IVUsersWrapperPass>(); 5697 AU.addPreserved<IVUsersWrapperPass>(); 5698 AU.addRequired<TargetTransformInfoWrapperPass>(); 5699 } 5700 5701 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5702 DominatorTree &DT, LoopInfo &LI, 5703 const TargetTransformInfo &TTI, 5704 AssumptionCache &AC, 5705 TargetLibraryInfo &LibInfo) { 5706 5707 bool Changed = false; 5708 5709 // Run the main LSR transformation. 5710 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged(); 5711 5712 // Remove any extra phis created by processing inner loops. 5713 Changed |= DeleteDeadPHIs(L->getHeader()); 5714 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5715 SmallVector<WeakTrackingVH, 16> DeadInsts; 5716 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5717 SCEVExpander Rewriter(SE, DL, "lsr"); 5718 #ifndef NDEBUG 5719 Rewriter.setDebugType(DEBUG_TYPE); 5720 #endif 5721 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5722 if (numFolded) { 5723 Changed = true; 5724 DeleteTriviallyDeadInstructions(DeadInsts); 5725 DeleteDeadPHIs(L->getHeader()); 5726 } 5727 } 5728 return Changed; 5729 } 5730 5731 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5732 if (skipLoop(L)) 5733 return false; 5734 5735 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5736 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5737 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5738 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5739 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5740 *L->getHeader()->getParent()); 5741 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5742 *L->getHeader()->getParent()); 5743 auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 5744 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo); 5745 } 5746 5747 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5748 LoopStandardAnalysisResults &AR, 5749 LPMUpdater &) { 5750 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5751 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI)) 5752 return PreservedAnalyses::all(); 5753 5754 return getLoopPassPreservedAnalyses(); 5755 } 5756 5757 char LoopStrengthReduce::ID = 0; 5758 5759 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5760 "Loop Strength Reduction", false, false) 5761 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5762 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5763 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5764 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5765 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5766 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5767 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5768 "Loop Strength Reduction", false, false) 5769 5770 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5771