1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Config/llvm-config.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/IRBuilder.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/OperandTraits.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/IR/ValueHandle.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstdlib> 117 #include <iterator> 118 #include <limits> 119 #include <map> 120 #include <numeric> 121 #include <utility> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "loop-reduce" 126 127 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 128 /// bail out. This threshold is far beyond the number of users that LSR can 129 /// conceivably solve, so it should not affect generated code, but catches the 130 /// worst cases before LSR burns too much compile time and stack space. 131 static const unsigned MaxIVUsers = 200; 132 133 // Temporary flag to cleanup congruent phis after LSR phi expansion. 134 // It's currently disabled until we can determine whether it's truly useful or 135 // not. The flag should be removed after the v3.0 release. 136 // This is now needed for ivchains. 137 static cl::opt<bool> EnablePhiElim( 138 "enable-lsr-phielim", cl::Hidden, cl::init(true), 139 cl::desc("Enable LSR phi elimination")); 140 141 // The flag adds instruction count to solutions cost comparision. 142 static cl::opt<bool> InsnsCost( 143 "lsr-insns-cost", cl::Hidden, cl::init(true), 144 cl::desc("Add instruction count to a LSR cost model")); 145 146 // Flag to choose how to narrow complex lsr solution 147 static cl::opt<bool> LSRExpNarrow( 148 "lsr-exp-narrow", cl::Hidden, cl::init(false), 149 cl::desc("Narrow LSR complex solution using" 150 " expectation of registers number")); 151 152 // Flag to narrow search space by filtering non-optimal formulae with 153 // the same ScaledReg and Scale. 154 static cl::opt<bool> FilterSameScaledReg( 155 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 156 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 157 " with the same ScaledReg and Scale")); 158 159 static cl::opt<bool> EnableBackedgeIndexing( 160 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 161 cl::desc("Enable the generation of cross iteration indexed memops")); 162 163 static cl::opt<unsigned> ComplexityLimit( 164 "lsr-complexity-limit", cl::Hidden, 165 cl::init(std::numeric_limits<uint16_t>::max()), 166 cl::desc("LSR search space complexity limit")); 167 168 static cl::opt<unsigned> SetupCostDepthLimit( 169 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 170 cl::desc("The limit on recursion depth for LSRs setup cost")); 171 172 #ifndef NDEBUG 173 // Stress test IV chain generation. 174 static cl::opt<bool> StressIVChain( 175 "stress-ivchain", cl::Hidden, cl::init(false), 176 cl::desc("Stress test LSR IV chains")); 177 #else 178 static bool StressIVChain = false; 179 #endif 180 181 namespace { 182 183 struct MemAccessTy { 184 /// Used in situations where the accessed memory type is unknown. 185 static const unsigned UnknownAddressSpace = 186 std::numeric_limits<unsigned>::max(); 187 188 Type *MemTy = nullptr; 189 unsigned AddrSpace = UnknownAddressSpace; 190 191 MemAccessTy() = default; 192 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 193 194 bool operator==(MemAccessTy Other) const { 195 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 196 } 197 198 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 199 200 static MemAccessTy getUnknown(LLVMContext &Ctx, 201 unsigned AS = UnknownAddressSpace) { 202 return MemAccessTy(Type::getVoidTy(Ctx), AS); 203 } 204 205 Type *getType() { return MemTy; } 206 }; 207 208 /// This class holds data which is used to order reuse candidates. 209 class RegSortData { 210 public: 211 /// This represents the set of LSRUse indices which reference 212 /// a particular register. 213 SmallBitVector UsedByIndices; 214 215 void print(raw_ostream &OS) const; 216 void dump() const; 217 }; 218 219 } // end anonymous namespace 220 221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 222 void RegSortData::print(raw_ostream &OS) const { 223 OS << "[NumUses=" << UsedByIndices.count() << ']'; 224 } 225 226 LLVM_DUMP_METHOD void RegSortData::dump() const { 227 print(errs()); errs() << '\n'; 228 } 229 #endif 230 231 namespace { 232 233 /// Map register candidates to information about how they are used. 234 class RegUseTracker { 235 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 236 237 RegUsesTy RegUsesMap; 238 SmallVector<const SCEV *, 16> RegSequence; 239 240 public: 241 void countRegister(const SCEV *Reg, size_t LUIdx); 242 void dropRegister(const SCEV *Reg, size_t LUIdx); 243 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 244 245 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 246 247 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 248 249 void clear(); 250 251 using iterator = SmallVectorImpl<const SCEV *>::iterator; 252 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 253 254 iterator begin() { return RegSequence.begin(); } 255 iterator end() { return RegSequence.end(); } 256 const_iterator begin() const { return RegSequence.begin(); } 257 const_iterator end() const { return RegSequence.end(); } 258 }; 259 260 } // end anonymous namespace 261 262 void 263 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 264 std::pair<RegUsesTy::iterator, bool> Pair = 265 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 266 RegSortData &RSD = Pair.first->second; 267 if (Pair.second) 268 RegSequence.push_back(Reg); 269 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 270 RSD.UsedByIndices.set(LUIdx); 271 } 272 273 void 274 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 275 RegUsesTy::iterator It = RegUsesMap.find(Reg); 276 assert(It != RegUsesMap.end()); 277 RegSortData &RSD = It->second; 278 assert(RSD.UsedByIndices.size() > LUIdx); 279 RSD.UsedByIndices.reset(LUIdx); 280 } 281 282 void 283 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 284 assert(LUIdx <= LastLUIdx); 285 286 // Update RegUses. The data structure is not optimized for this purpose; 287 // we must iterate through it and update each of the bit vectors. 288 for (auto &Pair : RegUsesMap) { 289 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 290 if (LUIdx < UsedByIndices.size()) 291 UsedByIndices[LUIdx] = 292 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 293 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 294 } 295 } 296 297 bool 298 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 299 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 300 if (I == RegUsesMap.end()) 301 return false; 302 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 303 int i = UsedByIndices.find_first(); 304 if (i == -1) return false; 305 if ((size_t)i != LUIdx) return true; 306 return UsedByIndices.find_next(i) != -1; 307 } 308 309 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 310 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 311 assert(I != RegUsesMap.end() && "Unknown register!"); 312 return I->second.UsedByIndices; 313 } 314 315 void RegUseTracker::clear() { 316 RegUsesMap.clear(); 317 RegSequence.clear(); 318 } 319 320 namespace { 321 322 /// This class holds information that describes a formula for computing 323 /// satisfying a use. It may include broken-out immediates and scaled registers. 324 struct Formula { 325 /// Global base address used for complex addressing. 326 GlobalValue *BaseGV = nullptr; 327 328 /// Base offset for complex addressing. 329 int64_t BaseOffset = 0; 330 331 /// Whether any complex addressing has a base register. 332 bool HasBaseReg = false; 333 334 /// The scale of any complex addressing. 335 int64_t Scale = 0; 336 337 /// The list of "base" registers for this use. When this is non-empty. The 338 /// canonical representation of a formula is 339 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 340 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 341 /// 3. The reg containing recurrent expr related with currect loop in the 342 /// formula should be put in the ScaledReg. 343 /// #1 enforces that the scaled register is always used when at least two 344 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 345 /// #2 enforces that 1 * reg is reg. 346 /// #3 ensures invariant regs with respect to current loop can be combined 347 /// together in LSR codegen. 348 /// This invariant can be temporarily broken while building a formula. 349 /// However, every formula inserted into the LSRInstance must be in canonical 350 /// form. 351 SmallVector<const SCEV *, 4> BaseRegs; 352 353 /// The 'scaled' register for this use. This should be non-null when Scale is 354 /// not zero. 355 const SCEV *ScaledReg = nullptr; 356 357 /// An additional constant offset which added near the use. This requires a 358 /// temporary register, but the offset itself can live in an add immediate 359 /// field rather than a register. 360 int64_t UnfoldedOffset = 0; 361 362 Formula() = default; 363 364 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 365 366 bool isCanonical(const Loop &L) const; 367 368 void canonicalize(const Loop &L); 369 370 bool unscale(); 371 372 bool hasZeroEnd() const; 373 374 size_t getNumRegs() const; 375 Type *getType() const; 376 377 void deleteBaseReg(const SCEV *&S); 378 379 bool referencesReg(const SCEV *S) const; 380 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 381 const RegUseTracker &RegUses) const; 382 383 void print(raw_ostream &OS) const; 384 void dump() const; 385 }; 386 387 } // end anonymous namespace 388 389 /// Recursion helper for initialMatch. 390 static void DoInitialMatch(const SCEV *S, Loop *L, 391 SmallVectorImpl<const SCEV *> &Good, 392 SmallVectorImpl<const SCEV *> &Bad, 393 ScalarEvolution &SE) { 394 // Collect expressions which properly dominate the loop header. 395 if (SE.properlyDominates(S, L->getHeader())) { 396 Good.push_back(S); 397 return; 398 } 399 400 // Look at add operands. 401 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 402 for (const SCEV *S : Add->operands()) 403 DoInitialMatch(S, L, Good, Bad, SE); 404 return; 405 } 406 407 // Look at addrec operands. 408 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 409 if (!AR->getStart()->isZero() && AR->isAffine()) { 410 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 411 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 412 AR->getStepRecurrence(SE), 413 // FIXME: AR->getNoWrapFlags() 414 AR->getLoop(), SCEV::FlagAnyWrap), 415 L, Good, Bad, SE); 416 return; 417 } 418 419 // Handle a multiplication by -1 (negation) if it didn't fold. 420 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 421 if (Mul->getOperand(0)->isAllOnesValue()) { 422 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 423 const SCEV *NewMul = SE.getMulExpr(Ops); 424 425 SmallVector<const SCEV *, 4> MyGood; 426 SmallVector<const SCEV *, 4> MyBad; 427 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 428 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 429 SE.getEffectiveSCEVType(NewMul->getType()))); 430 for (const SCEV *S : MyGood) 431 Good.push_back(SE.getMulExpr(NegOne, S)); 432 for (const SCEV *S : MyBad) 433 Bad.push_back(SE.getMulExpr(NegOne, S)); 434 return; 435 } 436 437 // Ok, we can't do anything interesting. Just stuff the whole thing into a 438 // register and hope for the best. 439 Bad.push_back(S); 440 } 441 442 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 443 /// all loop-invariant and loop-computable values in a single base register. 444 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 445 SmallVector<const SCEV *, 4> Good; 446 SmallVector<const SCEV *, 4> Bad; 447 DoInitialMatch(S, L, Good, Bad, SE); 448 if (!Good.empty()) { 449 const SCEV *Sum = SE.getAddExpr(Good); 450 if (!Sum->isZero()) 451 BaseRegs.push_back(Sum); 452 HasBaseReg = true; 453 } 454 if (!Bad.empty()) { 455 const SCEV *Sum = SE.getAddExpr(Bad); 456 if (!Sum->isZero()) 457 BaseRegs.push_back(Sum); 458 HasBaseReg = true; 459 } 460 canonicalize(*L); 461 } 462 463 /// Check whether or not this formula satisfies the canonical 464 /// representation. 465 /// \see Formula::BaseRegs. 466 bool Formula::isCanonical(const Loop &L) const { 467 if (!ScaledReg) 468 return BaseRegs.size() <= 1; 469 470 if (Scale != 1) 471 return true; 472 473 if (Scale == 1 && BaseRegs.empty()) 474 return false; 475 476 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 477 if (SAR && SAR->getLoop() == &L) 478 return true; 479 480 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 481 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 482 // loop, we want to swap the reg in BaseRegs with ScaledReg. 483 auto I = 484 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 485 return isa<const SCEVAddRecExpr>(S) && 486 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 487 }); 488 return I == BaseRegs.end(); 489 } 490 491 /// Helper method to morph a formula into its canonical representation. 492 /// \see Formula::BaseRegs. 493 /// Every formula having more than one base register, must use the ScaledReg 494 /// field. Otherwise, we would have to do special cases everywhere in LSR 495 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 496 /// On the other hand, 1*reg should be canonicalized into reg. 497 void Formula::canonicalize(const Loop &L) { 498 if (isCanonical(L)) 499 return; 500 // So far we did not need this case. This is easy to implement but it is 501 // useless to maintain dead code. Beside it could hurt compile time. 502 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 503 504 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 505 if (!ScaledReg) { 506 ScaledReg = BaseRegs.back(); 507 BaseRegs.pop_back(); 508 Scale = 1; 509 } 510 511 // If ScaledReg is an invariant with respect to L, find the reg from 512 // BaseRegs containing the recurrent expr related with Loop L. Swap the 513 // reg with ScaledReg. 514 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 515 if (!SAR || SAR->getLoop() != &L) { 516 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 517 [&](const SCEV *S) { 518 return isa<const SCEVAddRecExpr>(S) && 519 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 520 }); 521 if (I != BaseRegs.end()) 522 std::swap(ScaledReg, *I); 523 } 524 } 525 526 /// Get rid of the scale in the formula. 527 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 528 /// \return true if it was possible to get rid of the scale, false otherwise. 529 /// \note After this operation the formula may not be in the canonical form. 530 bool Formula::unscale() { 531 if (Scale != 1) 532 return false; 533 Scale = 0; 534 BaseRegs.push_back(ScaledReg); 535 ScaledReg = nullptr; 536 return true; 537 } 538 539 bool Formula::hasZeroEnd() const { 540 if (UnfoldedOffset || BaseOffset) 541 return false; 542 if (BaseRegs.size() != 1 || ScaledReg) 543 return false; 544 return true; 545 } 546 547 /// Return the total number of register operands used by this formula. This does 548 /// not include register uses implied by non-constant addrec strides. 549 size_t Formula::getNumRegs() const { 550 return !!ScaledReg + BaseRegs.size(); 551 } 552 553 /// Return the type of this formula, if it has one, or null otherwise. This type 554 /// is meaningless except for the bit size. 555 Type *Formula::getType() const { 556 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 557 ScaledReg ? ScaledReg->getType() : 558 BaseGV ? BaseGV->getType() : 559 nullptr; 560 } 561 562 /// Delete the given base reg from the BaseRegs list. 563 void Formula::deleteBaseReg(const SCEV *&S) { 564 if (&S != &BaseRegs.back()) 565 std::swap(S, BaseRegs.back()); 566 BaseRegs.pop_back(); 567 } 568 569 /// Test if this formula references the given register. 570 bool Formula::referencesReg(const SCEV *S) const { 571 return S == ScaledReg || is_contained(BaseRegs, S); 572 } 573 574 /// Test whether this formula uses registers which are used by uses other than 575 /// the use with the given index. 576 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 577 const RegUseTracker &RegUses) const { 578 if (ScaledReg) 579 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 580 return true; 581 for (const SCEV *BaseReg : BaseRegs) 582 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 583 return true; 584 return false; 585 } 586 587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 588 void Formula::print(raw_ostream &OS) const { 589 bool First = true; 590 if (BaseGV) { 591 if (!First) OS << " + "; else First = false; 592 BaseGV->printAsOperand(OS, /*PrintType=*/false); 593 } 594 if (BaseOffset != 0) { 595 if (!First) OS << " + "; else First = false; 596 OS << BaseOffset; 597 } 598 for (const SCEV *BaseReg : BaseRegs) { 599 if (!First) OS << " + "; else First = false; 600 OS << "reg(" << *BaseReg << ')'; 601 } 602 if (HasBaseReg && BaseRegs.empty()) { 603 if (!First) OS << " + "; else First = false; 604 OS << "**error: HasBaseReg**"; 605 } else if (!HasBaseReg && !BaseRegs.empty()) { 606 if (!First) OS << " + "; else First = false; 607 OS << "**error: !HasBaseReg**"; 608 } 609 if (Scale != 0) { 610 if (!First) OS << " + "; else First = false; 611 OS << Scale << "*reg("; 612 if (ScaledReg) 613 OS << *ScaledReg; 614 else 615 OS << "<unknown>"; 616 OS << ')'; 617 } 618 if (UnfoldedOffset != 0) { 619 if (!First) OS << " + "; 620 OS << "imm(" << UnfoldedOffset << ')'; 621 } 622 } 623 624 LLVM_DUMP_METHOD void Formula::dump() const { 625 print(errs()); errs() << '\n'; 626 } 627 #endif 628 629 /// Return true if the given addrec can be sign-extended without changing its 630 /// value. 631 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 632 Type *WideTy = 633 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 634 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 635 } 636 637 /// Return true if the given add can be sign-extended without changing its 638 /// value. 639 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 640 Type *WideTy = 641 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 642 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 643 } 644 645 /// Return true if the given mul can be sign-extended without changing its 646 /// value. 647 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 648 Type *WideTy = 649 IntegerType::get(SE.getContext(), 650 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 651 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 652 } 653 654 /// Return an expression for LHS /s RHS, if it can be determined and if the 655 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 656 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 657 /// the multiplication may overflow, which is useful when the result will be 658 /// used in a context where the most significant bits are ignored. 659 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 660 ScalarEvolution &SE, 661 bool IgnoreSignificantBits = false) { 662 // Handle the trivial case, which works for any SCEV type. 663 if (LHS == RHS) 664 return SE.getConstant(LHS->getType(), 1); 665 666 // Handle a few RHS special cases. 667 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 668 if (RC) { 669 const APInt &RA = RC->getAPInt(); 670 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 671 // some folding. 672 if (RA.isAllOnesValue()) 673 return SE.getMulExpr(LHS, RC); 674 // Handle x /s 1 as x. 675 if (RA == 1) 676 return LHS; 677 } 678 679 // Check for a division of a constant by a constant. 680 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 681 if (!RC) 682 return nullptr; 683 const APInt &LA = C->getAPInt(); 684 const APInt &RA = RC->getAPInt(); 685 if (LA.srem(RA) != 0) 686 return nullptr; 687 return SE.getConstant(LA.sdiv(RA)); 688 } 689 690 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 691 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 692 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 693 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 694 IgnoreSignificantBits); 695 if (!Step) return nullptr; 696 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 697 IgnoreSignificantBits); 698 if (!Start) return nullptr; 699 // FlagNW is independent of the start value, step direction, and is 700 // preserved with smaller magnitude steps. 701 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 702 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 703 } 704 return nullptr; 705 } 706 707 // Distribute the sdiv over add operands, if the add doesn't overflow. 708 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 709 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 710 SmallVector<const SCEV *, 8> Ops; 711 for (const SCEV *S : Add->operands()) { 712 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 713 if (!Op) return nullptr; 714 Ops.push_back(Op); 715 } 716 return SE.getAddExpr(Ops); 717 } 718 return nullptr; 719 } 720 721 // Check for a multiply operand that we can pull RHS out of. 722 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 723 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 724 SmallVector<const SCEV *, 4> Ops; 725 bool Found = false; 726 for (const SCEV *S : Mul->operands()) { 727 if (!Found) 728 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 729 IgnoreSignificantBits)) { 730 S = Q; 731 Found = true; 732 } 733 Ops.push_back(S); 734 } 735 return Found ? SE.getMulExpr(Ops) : nullptr; 736 } 737 return nullptr; 738 } 739 740 // Otherwise we don't know. 741 return nullptr; 742 } 743 744 /// If S involves the addition of a constant integer value, return that integer 745 /// value, and mutate S to point to a new SCEV with that value excluded. 746 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 747 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 748 if (C->getAPInt().getMinSignedBits() <= 64) { 749 S = SE.getConstant(C->getType(), 0); 750 return C->getValue()->getSExtValue(); 751 } 752 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 753 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 754 int64_t Result = ExtractImmediate(NewOps.front(), SE); 755 if (Result != 0) 756 S = SE.getAddExpr(NewOps); 757 return Result; 758 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 759 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 760 int64_t Result = ExtractImmediate(NewOps.front(), SE); 761 if (Result != 0) 762 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 763 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 764 SCEV::FlagAnyWrap); 765 return Result; 766 } 767 return 0; 768 } 769 770 /// If S involves the addition of a GlobalValue address, return that symbol, and 771 /// mutate S to point to a new SCEV with that value excluded. 772 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 773 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 774 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 775 S = SE.getConstant(GV->getType(), 0); 776 return GV; 777 } 778 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 779 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 780 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 781 if (Result) 782 S = SE.getAddExpr(NewOps); 783 return Result; 784 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 785 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 786 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 787 if (Result) 788 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 789 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 790 SCEV::FlagAnyWrap); 791 return Result; 792 } 793 return nullptr; 794 } 795 796 /// Returns true if the specified instruction is using the specified value as an 797 /// address. 798 static bool isAddressUse(const TargetTransformInfo &TTI, 799 Instruction *Inst, Value *OperandVal) { 800 bool isAddress = isa<LoadInst>(Inst); 801 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 802 if (SI->getPointerOperand() == OperandVal) 803 isAddress = true; 804 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 805 // Addressing modes can also be folded into prefetches and a variety 806 // of intrinsics. 807 switch (II->getIntrinsicID()) { 808 case Intrinsic::memset: 809 case Intrinsic::prefetch: 810 if (II->getArgOperand(0) == OperandVal) 811 isAddress = true; 812 break; 813 case Intrinsic::memmove: 814 case Intrinsic::memcpy: 815 if (II->getArgOperand(0) == OperandVal || 816 II->getArgOperand(1) == OperandVal) 817 isAddress = true; 818 break; 819 default: { 820 MemIntrinsicInfo IntrInfo; 821 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 822 if (IntrInfo.PtrVal == OperandVal) 823 isAddress = true; 824 } 825 } 826 } 827 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 828 if (RMW->getPointerOperand() == OperandVal) 829 isAddress = true; 830 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 831 if (CmpX->getPointerOperand() == OperandVal) 832 isAddress = true; 833 } 834 return isAddress; 835 } 836 837 /// Return the type of the memory being accessed. 838 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 839 Instruction *Inst, Value *OperandVal) { 840 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 841 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 842 AccessTy.MemTy = SI->getOperand(0)->getType(); 843 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 844 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 845 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 846 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 847 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 848 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 849 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 850 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 851 switch (II->getIntrinsicID()) { 852 case Intrinsic::prefetch: 853 case Intrinsic::memset: 854 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 855 AccessTy.MemTy = OperandVal->getType(); 856 break; 857 case Intrinsic::memmove: 858 case Intrinsic::memcpy: 859 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 860 AccessTy.MemTy = OperandVal->getType(); 861 break; 862 default: { 863 MemIntrinsicInfo IntrInfo; 864 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 865 AccessTy.AddrSpace 866 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 867 } 868 869 break; 870 } 871 } 872 } 873 874 // All pointers have the same requirements, so canonicalize them to an 875 // arbitrary pointer type to minimize variation. 876 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 877 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 878 PTy->getAddressSpace()); 879 880 return AccessTy; 881 } 882 883 /// Return true if this AddRec is already a phi in its loop. 884 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 885 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 886 if (SE.isSCEVable(PN.getType()) && 887 (SE.getEffectiveSCEVType(PN.getType()) == 888 SE.getEffectiveSCEVType(AR->getType())) && 889 SE.getSCEV(&PN) == AR) 890 return true; 891 } 892 return false; 893 } 894 895 /// Check if expanding this expression is likely to incur significant cost. This 896 /// is tricky because SCEV doesn't track which expressions are actually computed 897 /// by the current IR. 898 /// 899 /// We currently allow expansion of IV increments that involve adds, 900 /// multiplication by constants, and AddRecs from existing phis. 901 /// 902 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 903 /// obvious multiple of the UDivExpr. 904 static bool isHighCostExpansion(const SCEV *S, 905 SmallPtrSetImpl<const SCEV*> &Processed, 906 ScalarEvolution &SE) { 907 // Zero/One operand expressions 908 switch (S->getSCEVType()) { 909 case scUnknown: 910 case scConstant: 911 return false; 912 case scTruncate: 913 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 914 Processed, SE); 915 case scZeroExtend: 916 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 917 Processed, SE); 918 case scSignExtend: 919 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 920 Processed, SE); 921 } 922 923 if (!Processed.insert(S).second) 924 return false; 925 926 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 927 for (const SCEV *S : Add->operands()) { 928 if (isHighCostExpansion(S, Processed, SE)) 929 return true; 930 } 931 return false; 932 } 933 934 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 935 if (Mul->getNumOperands() == 2) { 936 // Multiplication by a constant is ok 937 if (isa<SCEVConstant>(Mul->getOperand(0))) 938 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 939 940 // If we have the value of one operand, check if an existing 941 // multiplication already generates this expression. 942 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 943 Value *UVal = U->getValue(); 944 for (User *UR : UVal->users()) { 945 // If U is a constant, it may be used by a ConstantExpr. 946 Instruction *UI = dyn_cast<Instruction>(UR); 947 if (UI && UI->getOpcode() == Instruction::Mul && 948 SE.isSCEVable(UI->getType())) { 949 return SE.getSCEV(UI) == Mul; 950 } 951 } 952 } 953 } 954 } 955 956 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 957 if (isExistingPhi(AR, SE)) 958 return false; 959 } 960 961 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 962 return true; 963 } 964 965 /// If any of the instructions in the specified set are trivially dead, delete 966 /// them and see if this makes any of their operands subsequently dead. 967 static bool 968 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 969 bool Changed = false; 970 971 while (!DeadInsts.empty()) { 972 Value *V = DeadInsts.pop_back_val(); 973 Instruction *I = dyn_cast_or_null<Instruction>(V); 974 975 if (!I || !isInstructionTriviallyDead(I)) 976 continue; 977 978 for (Use &O : I->operands()) 979 if (Instruction *U = dyn_cast<Instruction>(O)) { 980 O = nullptr; 981 if (U->use_empty()) 982 DeadInsts.emplace_back(U); 983 } 984 985 I->eraseFromParent(); 986 Changed = true; 987 } 988 989 return Changed; 990 } 991 992 namespace { 993 994 class LSRUse; 995 996 } // end anonymous namespace 997 998 /// Check if the addressing mode defined by \p F is completely 999 /// folded in \p LU at isel time. 1000 /// This includes address-mode folding and special icmp tricks. 1001 /// This function returns true if \p LU can accommodate what \p F 1002 /// defines and up to 1 base + 1 scaled + offset. 1003 /// In other words, if \p F has several base registers, this function may 1004 /// still return true. Therefore, users still need to account for 1005 /// additional base registers and/or unfolded offsets to derive an 1006 /// accurate cost model. 1007 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1008 const LSRUse &LU, const Formula &F); 1009 1010 // Get the cost of the scaling factor used in F for LU. 1011 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1012 const LSRUse &LU, const Formula &F, 1013 const Loop &L); 1014 1015 namespace { 1016 1017 /// This class is used to measure and compare candidate formulae. 1018 class Cost { 1019 const Loop *L = nullptr; 1020 ScalarEvolution *SE = nullptr; 1021 const TargetTransformInfo *TTI = nullptr; 1022 TargetTransformInfo::LSRCost C; 1023 1024 public: 1025 Cost() = delete; 1026 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1027 L(L), SE(&SE), TTI(&TTI) { 1028 C.Insns = 0; 1029 C.NumRegs = 0; 1030 C.AddRecCost = 0; 1031 C.NumIVMuls = 0; 1032 C.NumBaseAdds = 0; 1033 C.ImmCost = 0; 1034 C.SetupCost = 0; 1035 C.ScaleCost = 0; 1036 } 1037 1038 bool isLess(Cost &Other); 1039 1040 void Lose(); 1041 1042 #ifndef NDEBUG 1043 // Once any of the metrics loses, they must all remain losers. 1044 bool isValid() { 1045 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1046 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1047 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1048 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1049 } 1050 #endif 1051 1052 bool isLoser() { 1053 assert(isValid() && "invalid cost"); 1054 return C.NumRegs == ~0u; 1055 } 1056 1057 void RateFormula(const Formula &F, 1058 SmallPtrSetImpl<const SCEV *> &Regs, 1059 const DenseSet<const SCEV *> &VisitedRegs, 1060 const LSRUse &LU, 1061 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1062 1063 void print(raw_ostream &OS) const; 1064 void dump() const; 1065 1066 private: 1067 void RateRegister(const Formula &F, const SCEV *Reg, 1068 SmallPtrSetImpl<const SCEV *> &Regs); 1069 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1070 SmallPtrSetImpl<const SCEV *> &Regs, 1071 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1072 }; 1073 1074 /// An operand value in an instruction which is to be replaced with some 1075 /// equivalent, possibly strength-reduced, replacement. 1076 struct LSRFixup { 1077 /// The instruction which will be updated. 1078 Instruction *UserInst = nullptr; 1079 1080 /// The operand of the instruction which will be replaced. The operand may be 1081 /// used more than once; every instance will be replaced. 1082 Value *OperandValToReplace = nullptr; 1083 1084 /// If this user is to use the post-incremented value of an induction 1085 /// variable, this set is non-empty and holds the loops associated with the 1086 /// induction variable. 1087 PostIncLoopSet PostIncLoops; 1088 1089 /// A constant offset to be added to the LSRUse expression. This allows 1090 /// multiple fixups to share the same LSRUse with different offsets, for 1091 /// example in an unrolled loop. 1092 int64_t Offset = 0; 1093 1094 LSRFixup() = default; 1095 1096 bool isUseFullyOutsideLoop(const Loop *L) const; 1097 1098 void print(raw_ostream &OS) const; 1099 void dump() const; 1100 }; 1101 1102 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1103 /// SmallVectors of const SCEV*. 1104 struct UniquifierDenseMapInfo { 1105 static SmallVector<const SCEV *, 4> getEmptyKey() { 1106 SmallVector<const SCEV *, 4> V; 1107 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1108 return V; 1109 } 1110 1111 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1112 SmallVector<const SCEV *, 4> V; 1113 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1114 return V; 1115 } 1116 1117 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1118 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1119 } 1120 1121 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1122 const SmallVector<const SCEV *, 4> &RHS) { 1123 return LHS == RHS; 1124 } 1125 }; 1126 1127 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1128 /// as uses invented by LSR itself. It includes information about what kinds of 1129 /// things can be folded into the user, information about the user itself, and 1130 /// information about how the use may be satisfied. TODO: Represent multiple 1131 /// users of the same expression in common? 1132 class LSRUse { 1133 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1134 1135 public: 1136 /// An enum for a kind of use, indicating what types of scaled and immediate 1137 /// operands it might support. 1138 enum KindType { 1139 Basic, ///< A normal use, with no folding. 1140 Special, ///< A special case of basic, allowing -1 scales. 1141 Address, ///< An address use; folding according to TargetLowering 1142 ICmpZero ///< An equality icmp with both operands folded into one. 1143 // TODO: Add a generic icmp too? 1144 }; 1145 1146 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1147 1148 KindType Kind; 1149 MemAccessTy AccessTy; 1150 1151 /// The list of operands which are to be replaced. 1152 SmallVector<LSRFixup, 8> Fixups; 1153 1154 /// Keep track of the min and max offsets of the fixups. 1155 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1156 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1157 1158 /// This records whether all of the fixups using this LSRUse are outside of 1159 /// the loop, in which case some special-case heuristics may be used. 1160 bool AllFixupsOutsideLoop = true; 1161 1162 /// RigidFormula is set to true to guarantee that this use will be associated 1163 /// with a single formula--the one that initially matched. Some SCEV 1164 /// expressions cannot be expanded. This allows LSR to consider the registers 1165 /// used by those expressions without the need to expand them later after 1166 /// changing the formula. 1167 bool RigidFormula = false; 1168 1169 /// This records the widest use type for any fixup using this 1170 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1171 /// fixup widths to be equivalent, because the narrower one may be relying on 1172 /// the implicit truncation to truncate away bogus bits. 1173 Type *WidestFixupType = nullptr; 1174 1175 /// A list of ways to build a value that can satisfy this user. After the 1176 /// list is populated, one of these is selected heuristically and used to 1177 /// formulate a replacement for OperandValToReplace in UserInst. 1178 SmallVector<Formula, 12> Formulae; 1179 1180 /// The set of register candidates used by all formulae in this LSRUse. 1181 SmallPtrSet<const SCEV *, 4> Regs; 1182 1183 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1184 1185 LSRFixup &getNewFixup() { 1186 Fixups.push_back(LSRFixup()); 1187 return Fixups.back(); 1188 } 1189 1190 void pushFixup(LSRFixup &f) { 1191 Fixups.push_back(f); 1192 if (f.Offset > MaxOffset) 1193 MaxOffset = f.Offset; 1194 if (f.Offset < MinOffset) 1195 MinOffset = f.Offset; 1196 } 1197 1198 bool HasFormulaWithSameRegs(const Formula &F) const; 1199 float getNotSelectedProbability(const SCEV *Reg) const; 1200 bool InsertFormula(const Formula &F, const Loop &L); 1201 void DeleteFormula(Formula &F); 1202 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1203 1204 void print(raw_ostream &OS) const; 1205 void dump() const; 1206 }; 1207 1208 } // end anonymous namespace 1209 1210 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1211 LSRUse::KindType Kind, MemAccessTy AccessTy, 1212 GlobalValue *BaseGV, int64_t BaseOffset, 1213 bool HasBaseReg, int64_t Scale, 1214 Instruction *Fixup = nullptr); 1215 1216 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1217 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1218 return 1; 1219 if (Depth == 0) 1220 return 0; 1221 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1222 return getSetupCost(S->getStart(), Depth - 1); 1223 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1224 return getSetupCost(S->getOperand(), Depth - 1); 1225 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1226 return std::accumulate(S->op_begin(), S->op_end(), 0, 1227 [&](unsigned i, const SCEV *Reg) { 1228 return i + getSetupCost(Reg, Depth - 1); 1229 }); 1230 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1231 return getSetupCost(S->getLHS(), Depth - 1) + 1232 getSetupCost(S->getRHS(), Depth - 1); 1233 return 0; 1234 } 1235 1236 /// Tally up interesting quantities from the given register. 1237 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1238 SmallPtrSetImpl<const SCEV *> &Regs) { 1239 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1240 // If this is an addrec for another loop, it should be an invariant 1241 // with respect to L since L is the innermost loop (at least 1242 // for now LSR only handles innermost loops). 1243 if (AR->getLoop() != L) { 1244 // If the AddRec exists, consider it's register free and leave it alone. 1245 if (isExistingPhi(AR, *SE)) 1246 return; 1247 1248 // It is bad to allow LSR for current loop to add induction variables 1249 // for its sibling loops. 1250 if (!AR->getLoop()->contains(L)) { 1251 Lose(); 1252 return; 1253 } 1254 1255 // Otherwise, it will be an invariant with respect to Loop L. 1256 ++C.NumRegs; 1257 return; 1258 } 1259 1260 unsigned LoopCost = 1; 1261 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1262 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1263 1264 // If the step size matches the base offset, we could use pre-indexed 1265 // addressing. 1266 if (TTI->shouldFavorBackedgeIndex(L)) { 1267 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1268 if (Step->getAPInt() == F.BaseOffset) 1269 LoopCost = 0; 1270 } 1271 1272 if (TTI->shouldFavorPostInc()) { 1273 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1274 if (isa<SCEVConstant>(LoopStep)) { 1275 const SCEV *LoopStart = AR->getStart(); 1276 if (!isa<SCEVConstant>(LoopStart) && 1277 SE->isLoopInvariant(LoopStart, L)) 1278 LoopCost = 0; 1279 } 1280 } 1281 } 1282 C.AddRecCost += LoopCost; 1283 1284 // Add the step value register, if it needs one. 1285 // TODO: The non-affine case isn't precisely modeled here. 1286 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1287 if (!Regs.count(AR->getOperand(1))) { 1288 RateRegister(F, AR->getOperand(1), Regs); 1289 if (isLoser()) 1290 return; 1291 } 1292 } 1293 } 1294 ++C.NumRegs; 1295 1296 // Rough heuristic; favor registers which don't require extra setup 1297 // instructions in the preheader. 1298 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1299 // Ensure we don't, even with the recusion limit, produce invalid costs. 1300 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1301 1302 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1303 SE->hasComputableLoopEvolution(Reg, L); 1304 } 1305 1306 /// Record this register in the set. If we haven't seen it before, rate 1307 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1308 /// one of those regs an instant loser. 1309 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1310 SmallPtrSetImpl<const SCEV *> &Regs, 1311 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1312 if (LoserRegs && LoserRegs->count(Reg)) { 1313 Lose(); 1314 return; 1315 } 1316 if (Regs.insert(Reg).second) { 1317 RateRegister(F, Reg, Regs); 1318 if (LoserRegs && isLoser()) 1319 LoserRegs->insert(Reg); 1320 } 1321 } 1322 1323 void Cost::RateFormula(const Formula &F, 1324 SmallPtrSetImpl<const SCEV *> &Regs, 1325 const DenseSet<const SCEV *> &VisitedRegs, 1326 const LSRUse &LU, 1327 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1328 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1329 // Tally up the registers. 1330 unsigned PrevAddRecCost = C.AddRecCost; 1331 unsigned PrevNumRegs = C.NumRegs; 1332 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1333 if (const SCEV *ScaledReg = F.ScaledReg) { 1334 if (VisitedRegs.count(ScaledReg)) { 1335 Lose(); 1336 return; 1337 } 1338 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1339 if (isLoser()) 1340 return; 1341 } 1342 for (const SCEV *BaseReg : F.BaseRegs) { 1343 if (VisitedRegs.count(BaseReg)) { 1344 Lose(); 1345 return; 1346 } 1347 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1348 if (isLoser()) 1349 return; 1350 } 1351 1352 // Determine how many (unfolded) adds we'll need inside the loop. 1353 size_t NumBaseParts = F.getNumRegs(); 1354 if (NumBaseParts > 1) 1355 // Do not count the base and a possible second register if the target 1356 // allows to fold 2 registers. 1357 C.NumBaseAdds += 1358 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1359 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1360 1361 // Accumulate non-free scaling amounts. 1362 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1363 1364 // Tally up the non-zero immediates. 1365 for (const LSRFixup &Fixup : LU.Fixups) { 1366 int64_t O = Fixup.Offset; 1367 int64_t Offset = (uint64_t)O + F.BaseOffset; 1368 if (F.BaseGV) 1369 C.ImmCost += 64; // Handle symbolic values conservatively. 1370 // TODO: This should probably be the pointer size. 1371 else if (Offset != 0) 1372 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1373 1374 // Check with target if this offset with this instruction is 1375 // specifically not supported. 1376 if (LU.Kind == LSRUse::Address && Offset != 0 && 1377 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1378 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1379 C.NumBaseAdds++; 1380 } 1381 1382 // If we don't count instruction cost exit here. 1383 if (!InsnsCost) { 1384 assert(isValid() && "invalid cost"); 1385 return; 1386 } 1387 1388 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1389 // additional instruction (at least fill). 1390 // TODO: Need distinguish register class? 1391 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1392 TTI->getRegisterClassForType(false, F.getType())) - 1; 1393 if (C.NumRegs > TTIRegNum) { 1394 // Cost already exceeded TTIRegNum, then only newly added register can add 1395 // new instructions. 1396 if (PrevNumRegs > TTIRegNum) 1397 C.Insns += (C.NumRegs - PrevNumRegs); 1398 else 1399 C.Insns += (C.NumRegs - TTIRegNum); 1400 } 1401 1402 // If ICmpZero formula ends with not 0, it could not be replaced by 1403 // just add or sub. We'll need to compare final result of AddRec. 1404 // That means we'll need an additional instruction. But if the target can 1405 // macro-fuse a compare with a branch, don't count this extra instruction. 1406 // For -10 + {0, +, 1}: 1407 // i = i + 1; 1408 // cmp i, 10 1409 // 1410 // For {-10, +, 1}: 1411 // i = i + 1; 1412 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1413 !TTI->canMacroFuseCmp()) 1414 C.Insns++; 1415 // Each new AddRec adds 1 instruction to calculation. 1416 C.Insns += (C.AddRecCost - PrevAddRecCost); 1417 1418 // BaseAdds adds instructions for unfolded registers. 1419 if (LU.Kind != LSRUse::ICmpZero) 1420 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1421 assert(isValid() && "invalid cost"); 1422 } 1423 1424 /// Set this cost to a losing value. 1425 void Cost::Lose() { 1426 C.Insns = std::numeric_limits<unsigned>::max(); 1427 C.NumRegs = std::numeric_limits<unsigned>::max(); 1428 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1429 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1430 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1431 C.ImmCost = std::numeric_limits<unsigned>::max(); 1432 C.SetupCost = std::numeric_limits<unsigned>::max(); 1433 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1434 } 1435 1436 /// Choose the lower cost. 1437 bool Cost::isLess(Cost &Other) { 1438 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1439 C.Insns != Other.C.Insns) 1440 return C.Insns < Other.C.Insns; 1441 return TTI->isLSRCostLess(C, Other.C); 1442 } 1443 1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1445 void Cost::print(raw_ostream &OS) const { 1446 if (InsnsCost) 1447 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1448 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1449 if (C.AddRecCost != 0) 1450 OS << ", with addrec cost " << C.AddRecCost; 1451 if (C.NumIVMuls != 0) 1452 OS << ", plus " << C.NumIVMuls << " IV mul" 1453 << (C.NumIVMuls == 1 ? "" : "s"); 1454 if (C.NumBaseAdds != 0) 1455 OS << ", plus " << C.NumBaseAdds << " base add" 1456 << (C.NumBaseAdds == 1 ? "" : "s"); 1457 if (C.ScaleCost != 0) 1458 OS << ", plus " << C.ScaleCost << " scale cost"; 1459 if (C.ImmCost != 0) 1460 OS << ", plus " << C.ImmCost << " imm cost"; 1461 if (C.SetupCost != 0) 1462 OS << ", plus " << C.SetupCost << " setup cost"; 1463 } 1464 1465 LLVM_DUMP_METHOD void Cost::dump() const { 1466 print(errs()); errs() << '\n'; 1467 } 1468 #endif 1469 1470 /// Test whether this fixup always uses its value outside of the given loop. 1471 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1472 // PHI nodes use their value in their incoming blocks. 1473 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1474 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1475 if (PN->getIncomingValue(i) == OperandValToReplace && 1476 L->contains(PN->getIncomingBlock(i))) 1477 return false; 1478 return true; 1479 } 1480 1481 return !L->contains(UserInst); 1482 } 1483 1484 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1485 void LSRFixup::print(raw_ostream &OS) const { 1486 OS << "UserInst="; 1487 // Store is common and interesting enough to be worth special-casing. 1488 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1489 OS << "store "; 1490 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1491 } else if (UserInst->getType()->isVoidTy()) 1492 OS << UserInst->getOpcodeName(); 1493 else 1494 UserInst->printAsOperand(OS, /*PrintType=*/false); 1495 1496 OS << ", OperandValToReplace="; 1497 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1498 1499 for (const Loop *PIL : PostIncLoops) { 1500 OS << ", PostIncLoop="; 1501 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1502 } 1503 1504 if (Offset != 0) 1505 OS << ", Offset=" << Offset; 1506 } 1507 1508 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1509 print(errs()); errs() << '\n'; 1510 } 1511 #endif 1512 1513 /// Test whether this use as a formula which has the same registers as the given 1514 /// formula. 1515 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1516 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1517 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1518 // Unstable sort by host order ok, because this is only used for uniquifying. 1519 llvm::sort(Key); 1520 return Uniquifier.count(Key); 1521 } 1522 1523 /// The function returns a probability of selecting formula without Reg. 1524 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1525 unsigned FNum = 0; 1526 for (const Formula &F : Formulae) 1527 if (F.referencesReg(Reg)) 1528 FNum++; 1529 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1530 } 1531 1532 /// If the given formula has not yet been inserted, add it to the list, and 1533 /// return true. Return false otherwise. The formula must be in canonical form. 1534 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1535 assert(F.isCanonical(L) && "Invalid canonical representation"); 1536 1537 if (!Formulae.empty() && RigidFormula) 1538 return false; 1539 1540 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1541 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1542 // Unstable sort by host order ok, because this is only used for uniquifying. 1543 llvm::sort(Key); 1544 1545 if (!Uniquifier.insert(Key).second) 1546 return false; 1547 1548 // Using a register to hold the value of 0 is not profitable. 1549 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1550 "Zero allocated in a scaled register!"); 1551 #ifndef NDEBUG 1552 for (const SCEV *BaseReg : F.BaseRegs) 1553 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1554 #endif 1555 1556 // Add the formula to the list. 1557 Formulae.push_back(F); 1558 1559 // Record registers now being used by this use. 1560 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1561 if (F.ScaledReg) 1562 Regs.insert(F.ScaledReg); 1563 1564 return true; 1565 } 1566 1567 /// Remove the given formula from this use's list. 1568 void LSRUse::DeleteFormula(Formula &F) { 1569 if (&F != &Formulae.back()) 1570 std::swap(F, Formulae.back()); 1571 Formulae.pop_back(); 1572 } 1573 1574 /// Recompute the Regs field, and update RegUses. 1575 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1576 // Now that we've filtered out some formulae, recompute the Regs set. 1577 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1578 Regs.clear(); 1579 for (const Formula &F : Formulae) { 1580 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1581 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1582 } 1583 1584 // Update the RegTracker. 1585 for (const SCEV *S : OldRegs) 1586 if (!Regs.count(S)) 1587 RegUses.dropRegister(S, LUIdx); 1588 } 1589 1590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1591 void LSRUse::print(raw_ostream &OS) const { 1592 OS << "LSR Use: Kind="; 1593 switch (Kind) { 1594 case Basic: OS << "Basic"; break; 1595 case Special: OS << "Special"; break; 1596 case ICmpZero: OS << "ICmpZero"; break; 1597 case Address: 1598 OS << "Address of "; 1599 if (AccessTy.MemTy->isPointerTy()) 1600 OS << "pointer"; // the full pointer type could be really verbose 1601 else { 1602 OS << *AccessTy.MemTy; 1603 } 1604 1605 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1606 } 1607 1608 OS << ", Offsets={"; 1609 bool NeedComma = false; 1610 for (const LSRFixup &Fixup : Fixups) { 1611 if (NeedComma) OS << ','; 1612 OS << Fixup.Offset; 1613 NeedComma = true; 1614 } 1615 OS << '}'; 1616 1617 if (AllFixupsOutsideLoop) 1618 OS << ", all-fixups-outside-loop"; 1619 1620 if (WidestFixupType) 1621 OS << ", widest fixup type: " << *WidestFixupType; 1622 } 1623 1624 LLVM_DUMP_METHOD void LSRUse::dump() const { 1625 print(errs()); errs() << '\n'; 1626 } 1627 #endif 1628 1629 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1630 LSRUse::KindType Kind, MemAccessTy AccessTy, 1631 GlobalValue *BaseGV, int64_t BaseOffset, 1632 bool HasBaseReg, int64_t Scale, 1633 Instruction *Fixup/*= nullptr*/) { 1634 switch (Kind) { 1635 case LSRUse::Address: 1636 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1637 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1638 1639 case LSRUse::ICmpZero: 1640 // There's not even a target hook for querying whether it would be legal to 1641 // fold a GV into an ICmp. 1642 if (BaseGV) 1643 return false; 1644 1645 // ICmp only has two operands; don't allow more than two non-trivial parts. 1646 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1647 return false; 1648 1649 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1650 // putting the scaled register in the other operand of the icmp. 1651 if (Scale != 0 && Scale != -1) 1652 return false; 1653 1654 // If we have low-level target information, ask the target if it can fold an 1655 // integer immediate on an icmp. 1656 if (BaseOffset != 0) { 1657 // We have one of: 1658 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1659 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1660 // Offs is the ICmp immediate. 1661 if (Scale == 0) 1662 // The cast does the right thing with 1663 // std::numeric_limits<int64_t>::min(). 1664 BaseOffset = -(uint64_t)BaseOffset; 1665 return TTI.isLegalICmpImmediate(BaseOffset); 1666 } 1667 1668 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1669 return true; 1670 1671 case LSRUse::Basic: 1672 // Only handle single-register values. 1673 return !BaseGV && Scale == 0 && BaseOffset == 0; 1674 1675 case LSRUse::Special: 1676 // Special case Basic to handle -1 scales. 1677 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1678 } 1679 1680 llvm_unreachable("Invalid LSRUse Kind!"); 1681 } 1682 1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1684 int64_t MinOffset, int64_t MaxOffset, 1685 LSRUse::KindType Kind, MemAccessTy AccessTy, 1686 GlobalValue *BaseGV, int64_t BaseOffset, 1687 bool HasBaseReg, int64_t Scale) { 1688 // Check for overflow. 1689 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1690 (MinOffset > 0)) 1691 return false; 1692 MinOffset = (uint64_t)BaseOffset + MinOffset; 1693 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1694 (MaxOffset > 0)) 1695 return false; 1696 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1697 1698 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1699 HasBaseReg, Scale) && 1700 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1701 HasBaseReg, Scale); 1702 } 1703 1704 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1705 int64_t MinOffset, int64_t MaxOffset, 1706 LSRUse::KindType Kind, MemAccessTy AccessTy, 1707 const Formula &F, const Loop &L) { 1708 // For the purpose of isAMCompletelyFolded either having a canonical formula 1709 // or a scale not equal to zero is correct. 1710 // Problems may arise from non canonical formulae having a scale == 0. 1711 // Strictly speaking it would best to just rely on canonical formulae. 1712 // However, when we generate the scaled formulae, we first check that the 1713 // scaling factor is profitable before computing the actual ScaledReg for 1714 // compile time sake. 1715 assert((F.isCanonical(L) || F.Scale != 0)); 1716 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1717 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1718 } 1719 1720 /// Test whether we know how to expand the current formula. 1721 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1722 int64_t MaxOffset, LSRUse::KindType Kind, 1723 MemAccessTy AccessTy, GlobalValue *BaseGV, 1724 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1725 // We know how to expand completely foldable formulae. 1726 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1727 BaseOffset, HasBaseReg, Scale) || 1728 // Or formulae that use a base register produced by a sum of base 1729 // registers. 1730 (Scale == 1 && 1731 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1732 BaseGV, BaseOffset, true, 0)); 1733 } 1734 1735 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1736 int64_t MaxOffset, LSRUse::KindType Kind, 1737 MemAccessTy AccessTy, const Formula &F) { 1738 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1739 F.BaseOffset, F.HasBaseReg, F.Scale); 1740 } 1741 1742 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1743 const LSRUse &LU, const Formula &F) { 1744 // Target may want to look at the user instructions. 1745 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1746 for (const LSRFixup &Fixup : LU.Fixups) 1747 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1748 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1749 F.Scale, Fixup.UserInst)) 1750 return false; 1751 return true; 1752 } 1753 1754 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1755 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1756 F.Scale); 1757 } 1758 1759 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1760 const LSRUse &LU, const Formula &F, 1761 const Loop &L) { 1762 if (!F.Scale) 1763 return 0; 1764 1765 // If the use is not completely folded in that instruction, we will have to 1766 // pay an extra cost only for scale != 1. 1767 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1768 LU.AccessTy, F, L)) 1769 return F.Scale != 1; 1770 1771 switch (LU.Kind) { 1772 case LSRUse::Address: { 1773 // Check the scaling factor cost with both the min and max offsets. 1774 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1775 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1776 F.Scale, LU.AccessTy.AddrSpace); 1777 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1778 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1779 F.Scale, LU.AccessTy.AddrSpace); 1780 1781 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1782 "Legal addressing mode has an illegal cost!"); 1783 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1784 } 1785 case LSRUse::ICmpZero: 1786 case LSRUse::Basic: 1787 case LSRUse::Special: 1788 // The use is completely folded, i.e., everything is folded into the 1789 // instruction. 1790 return 0; 1791 } 1792 1793 llvm_unreachable("Invalid LSRUse Kind!"); 1794 } 1795 1796 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1797 LSRUse::KindType Kind, MemAccessTy AccessTy, 1798 GlobalValue *BaseGV, int64_t BaseOffset, 1799 bool HasBaseReg) { 1800 // Fast-path: zero is always foldable. 1801 if (BaseOffset == 0 && !BaseGV) return true; 1802 1803 // Conservatively, create an address with an immediate and a 1804 // base and a scale. 1805 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1806 1807 // Canonicalize a scale of 1 to a base register if the formula doesn't 1808 // already have a base register. 1809 if (!HasBaseReg && Scale == 1) { 1810 Scale = 0; 1811 HasBaseReg = true; 1812 } 1813 1814 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1815 HasBaseReg, Scale); 1816 } 1817 1818 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1819 ScalarEvolution &SE, int64_t MinOffset, 1820 int64_t MaxOffset, LSRUse::KindType Kind, 1821 MemAccessTy AccessTy, const SCEV *S, 1822 bool HasBaseReg) { 1823 // Fast-path: zero is always foldable. 1824 if (S->isZero()) return true; 1825 1826 // Conservatively, create an address with an immediate and a 1827 // base and a scale. 1828 int64_t BaseOffset = ExtractImmediate(S, SE); 1829 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1830 1831 // If there's anything else involved, it's not foldable. 1832 if (!S->isZero()) return false; 1833 1834 // Fast-path: zero is always foldable. 1835 if (BaseOffset == 0 && !BaseGV) return true; 1836 1837 // Conservatively, create an address with an immediate and a 1838 // base and a scale. 1839 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1840 1841 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1842 BaseOffset, HasBaseReg, Scale); 1843 } 1844 1845 namespace { 1846 1847 /// An individual increment in a Chain of IV increments. Relate an IV user to 1848 /// an expression that computes the IV it uses from the IV used by the previous 1849 /// link in the Chain. 1850 /// 1851 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1852 /// original IVOperand. The head of the chain's IVOperand is only valid during 1853 /// chain collection, before LSR replaces IV users. During chain generation, 1854 /// IncExpr can be used to find the new IVOperand that computes the same 1855 /// expression. 1856 struct IVInc { 1857 Instruction *UserInst; 1858 Value* IVOperand; 1859 const SCEV *IncExpr; 1860 1861 IVInc(Instruction *U, Value *O, const SCEV *E) 1862 : UserInst(U), IVOperand(O), IncExpr(E) {} 1863 }; 1864 1865 // The list of IV increments in program order. We typically add the head of a 1866 // chain without finding subsequent links. 1867 struct IVChain { 1868 SmallVector<IVInc, 1> Incs; 1869 const SCEV *ExprBase = nullptr; 1870 1871 IVChain() = default; 1872 IVChain(const IVInc &Head, const SCEV *Base) 1873 : Incs(1, Head), ExprBase(Base) {} 1874 1875 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1876 1877 // Return the first increment in the chain. 1878 const_iterator begin() const { 1879 assert(!Incs.empty()); 1880 return std::next(Incs.begin()); 1881 } 1882 const_iterator end() const { 1883 return Incs.end(); 1884 } 1885 1886 // Returns true if this chain contains any increments. 1887 bool hasIncs() const { return Incs.size() >= 2; } 1888 1889 // Add an IVInc to the end of this chain. 1890 void add(const IVInc &X) { Incs.push_back(X); } 1891 1892 // Returns the last UserInst in the chain. 1893 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1894 1895 // Returns true if IncExpr can be profitably added to this chain. 1896 bool isProfitableIncrement(const SCEV *OperExpr, 1897 const SCEV *IncExpr, 1898 ScalarEvolution&); 1899 }; 1900 1901 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1902 /// between FarUsers that definitely cross IV increments and NearUsers that may 1903 /// be used between IV increments. 1904 struct ChainUsers { 1905 SmallPtrSet<Instruction*, 4> FarUsers; 1906 SmallPtrSet<Instruction*, 4> NearUsers; 1907 }; 1908 1909 /// This class holds state for the main loop strength reduction logic. 1910 class LSRInstance { 1911 IVUsers &IU; 1912 ScalarEvolution &SE; 1913 DominatorTree &DT; 1914 LoopInfo &LI; 1915 AssumptionCache &AC; 1916 TargetLibraryInfo &LibInfo; 1917 const TargetTransformInfo &TTI; 1918 Loop *const L; 1919 bool FavorBackedgeIndex = false; 1920 bool Changed = false; 1921 1922 /// This is the insert position that the current loop's induction variable 1923 /// increment should be placed. In simple loops, this is the latch block's 1924 /// terminator. But in more complicated cases, this is a position which will 1925 /// dominate all the in-loop post-increment users. 1926 Instruction *IVIncInsertPos = nullptr; 1927 1928 /// Interesting factors between use strides. 1929 /// 1930 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1931 /// default, a SmallDenseSet, because we need to use the full range of 1932 /// int64_ts, and there's currently no good way of doing that with 1933 /// SmallDenseSet. 1934 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1935 1936 /// Interesting use types, to facilitate truncation reuse. 1937 SmallSetVector<Type *, 4> Types; 1938 1939 /// The list of interesting uses. 1940 mutable SmallVector<LSRUse, 16> Uses; 1941 1942 /// Track which uses use which register candidates. 1943 RegUseTracker RegUses; 1944 1945 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1946 // have more than a few IV increment chains in a loop. Missing a Chain falls 1947 // back to normal LSR behavior for those uses. 1948 static const unsigned MaxChains = 8; 1949 1950 /// IV users can form a chain of IV increments. 1951 SmallVector<IVChain, MaxChains> IVChainVec; 1952 1953 /// IV users that belong to profitable IVChains. 1954 SmallPtrSet<Use*, MaxChains> IVIncSet; 1955 1956 void OptimizeShadowIV(); 1957 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1958 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1959 void OptimizeLoopTermCond(); 1960 1961 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1962 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1963 void FinalizeChain(IVChain &Chain); 1964 void CollectChains(); 1965 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1966 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1967 1968 void CollectInterestingTypesAndFactors(); 1969 void CollectFixupsAndInitialFormulae(); 1970 1971 // Support for sharing of LSRUses between LSRFixups. 1972 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1973 UseMapTy UseMap; 1974 1975 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1976 LSRUse::KindType Kind, MemAccessTy AccessTy); 1977 1978 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1979 MemAccessTy AccessTy); 1980 1981 void DeleteUse(LSRUse &LU, size_t LUIdx); 1982 1983 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1984 1985 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1986 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1987 void CountRegisters(const Formula &F, size_t LUIdx); 1988 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1989 1990 void CollectLoopInvariantFixupsAndFormulae(); 1991 1992 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1993 unsigned Depth = 0); 1994 1995 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1996 const Formula &Base, unsigned Depth, 1997 size_t Idx, bool IsScaledReg = false); 1998 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1999 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2000 const Formula &Base, size_t Idx, 2001 bool IsScaledReg = false); 2002 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2004 const Formula &Base, 2005 const SmallVectorImpl<int64_t> &Worklist, 2006 size_t Idx, bool IsScaledReg = false); 2007 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2008 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2009 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2010 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2011 void GenerateCrossUseConstantOffsets(); 2012 void GenerateAllReuseFormulae(); 2013 2014 void FilterOutUndesirableDedicatedRegisters(); 2015 2016 size_t EstimateSearchSpaceComplexity() const; 2017 void NarrowSearchSpaceByDetectingSupersets(); 2018 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2019 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2020 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2021 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2022 void NarrowSearchSpaceByPickingWinnerRegs(); 2023 void NarrowSearchSpaceUsingHeuristics(); 2024 2025 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2026 Cost &SolutionCost, 2027 SmallVectorImpl<const Formula *> &Workspace, 2028 const Cost &CurCost, 2029 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2030 DenseSet<const SCEV *> &VisitedRegs) const; 2031 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2032 2033 BasicBlock::iterator 2034 HoistInsertPosition(BasicBlock::iterator IP, 2035 const SmallVectorImpl<Instruction *> &Inputs) const; 2036 BasicBlock::iterator 2037 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2038 const LSRFixup &LF, 2039 const LSRUse &LU, 2040 SCEVExpander &Rewriter) const; 2041 2042 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2043 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2044 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2045 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2046 const Formula &F, SCEVExpander &Rewriter, 2047 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2048 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2049 SCEVExpander &Rewriter, 2050 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2051 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2052 2053 public: 2054 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2055 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2056 TargetLibraryInfo &LibInfo); 2057 2058 bool getChanged() const { return Changed; } 2059 2060 void print_factors_and_types(raw_ostream &OS) const; 2061 void print_fixups(raw_ostream &OS) const; 2062 void print_uses(raw_ostream &OS) const; 2063 void print(raw_ostream &OS) const; 2064 void dump() const; 2065 }; 2066 2067 } // end anonymous namespace 2068 2069 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2070 /// the cast operation. 2071 void LSRInstance::OptimizeShadowIV() { 2072 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2073 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2074 return; 2075 2076 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2077 UI != E; /* empty */) { 2078 IVUsers::const_iterator CandidateUI = UI; 2079 ++UI; 2080 Instruction *ShadowUse = CandidateUI->getUser(); 2081 Type *DestTy = nullptr; 2082 bool IsSigned = false; 2083 2084 /* If shadow use is a int->float cast then insert a second IV 2085 to eliminate this cast. 2086 2087 for (unsigned i = 0; i < n; ++i) 2088 foo((double)i); 2089 2090 is transformed into 2091 2092 double d = 0.0; 2093 for (unsigned i = 0; i < n; ++i, ++d) 2094 foo(d); 2095 */ 2096 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2097 IsSigned = false; 2098 DestTy = UCast->getDestTy(); 2099 } 2100 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2101 IsSigned = true; 2102 DestTy = SCast->getDestTy(); 2103 } 2104 if (!DestTy) continue; 2105 2106 // If target does not support DestTy natively then do not apply 2107 // this transformation. 2108 if (!TTI.isTypeLegal(DestTy)) continue; 2109 2110 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2111 if (!PH) continue; 2112 if (PH->getNumIncomingValues() != 2) continue; 2113 2114 // If the calculation in integers overflows, the result in FP type will 2115 // differ. So we only can do this transformation if we are guaranteed to not 2116 // deal with overflowing values 2117 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2118 if (!AR) continue; 2119 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2120 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2121 2122 Type *SrcTy = PH->getType(); 2123 int Mantissa = DestTy->getFPMantissaWidth(); 2124 if (Mantissa == -1) continue; 2125 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2126 continue; 2127 2128 unsigned Entry, Latch; 2129 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2130 Entry = 0; 2131 Latch = 1; 2132 } else { 2133 Entry = 1; 2134 Latch = 0; 2135 } 2136 2137 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2138 if (!Init) continue; 2139 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2140 (double)Init->getSExtValue() : 2141 (double)Init->getZExtValue()); 2142 2143 BinaryOperator *Incr = 2144 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2145 if (!Incr) continue; 2146 if (Incr->getOpcode() != Instruction::Add 2147 && Incr->getOpcode() != Instruction::Sub) 2148 continue; 2149 2150 /* Initialize new IV, double d = 0.0 in above example. */ 2151 ConstantInt *C = nullptr; 2152 if (Incr->getOperand(0) == PH) 2153 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2154 else if (Incr->getOperand(1) == PH) 2155 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2156 else 2157 continue; 2158 2159 if (!C) continue; 2160 2161 // Ignore negative constants, as the code below doesn't handle them 2162 // correctly. TODO: Remove this restriction. 2163 if (!C->getValue().isStrictlyPositive()) continue; 2164 2165 /* Add new PHINode. */ 2166 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2167 2168 /* create new increment. '++d' in above example. */ 2169 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2170 BinaryOperator *NewIncr = 2171 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2172 Instruction::FAdd : Instruction::FSub, 2173 NewPH, CFP, "IV.S.next.", Incr); 2174 2175 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2176 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2177 2178 /* Remove cast operation */ 2179 ShadowUse->replaceAllUsesWith(NewPH); 2180 ShadowUse->eraseFromParent(); 2181 Changed = true; 2182 break; 2183 } 2184 } 2185 2186 /// If Cond has an operand that is an expression of an IV, set the IV user and 2187 /// stride information and return true, otherwise return false. 2188 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2189 for (IVStrideUse &U : IU) 2190 if (U.getUser() == Cond) { 2191 // NOTE: we could handle setcc instructions with multiple uses here, but 2192 // InstCombine does it as well for simple uses, it's not clear that it 2193 // occurs enough in real life to handle. 2194 CondUse = &U; 2195 return true; 2196 } 2197 return false; 2198 } 2199 2200 /// Rewrite the loop's terminating condition if it uses a max computation. 2201 /// 2202 /// This is a narrow solution to a specific, but acute, problem. For loops 2203 /// like this: 2204 /// 2205 /// i = 0; 2206 /// do { 2207 /// p[i] = 0.0; 2208 /// } while (++i < n); 2209 /// 2210 /// the trip count isn't just 'n', because 'n' might not be positive. And 2211 /// unfortunately this can come up even for loops where the user didn't use 2212 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2213 /// will commonly be lowered like this: 2214 /// 2215 /// if (n > 0) { 2216 /// i = 0; 2217 /// do { 2218 /// p[i] = 0.0; 2219 /// } while (++i < n); 2220 /// } 2221 /// 2222 /// and then it's possible for subsequent optimization to obscure the if 2223 /// test in such a way that indvars can't find it. 2224 /// 2225 /// When indvars can't find the if test in loops like this, it creates a 2226 /// max expression, which allows it to give the loop a canonical 2227 /// induction variable: 2228 /// 2229 /// i = 0; 2230 /// max = n < 1 ? 1 : n; 2231 /// do { 2232 /// p[i] = 0.0; 2233 /// } while (++i != max); 2234 /// 2235 /// Canonical induction variables are necessary because the loop passes 2236 /// are designed around them. The most obvious example of this is the 2237 /// LoopInfo analysis, which doesn't remember trip count values. It 2238 /// expects to be able to rediscover the trip count each time it is 2239 /// needed, and it does this using a simple analysis that only succeeds if 2240 /// the loop has a canonical induction variable. 2241 /// 2242 /// However, when it comes time to generate code, the maximum operation 2243 /// can be quite costly, especially if it's inside of an outer loop. 2244 /// 2245 /// This function solves this problem by detecting this type of loop and 2246 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2247 /// the instructions for the maximum computation. 2248 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2249 // Check that the loop matches the pattern we're looking for. 2250 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2251 Cond->getPredicate() != CmpInst::ICMP_NE) 2252 return Cond; 2253 2254 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2255 if (!Sel || !Sel->hasOneUse()) return Cond; 2256 2257 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2258 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2259 return Cond; 2260 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2261 2262 // Add one to the backedge-taken count to get the trip count. 2263 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2264 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2265 2266 // Check for a max calculation that matches the pattern. There's no check 2267 // for ICMP_ULE here because the comparison would be with zero, which 2268 // isn't interesting. 2269 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2270 const SCEVNAryExpr *Max = nullptr; 2271 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2272 Pred = ICmpInst::ICMP_SLE; 2273 Max = S; 2274 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2275 Pred = ICmpInst::ICMP_SLT; 2276 Max = S; 2277 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2278 Pred = ICmpInst::ICMP_ULT; 2279 Max = U; 2280 } else { 2281 // No match; bail. 2282 return Cond; 2283 } 2284 2285 // To handle a max with more than two operands, this optimization would 2286 // require additional checking and setup. 2287 if (Max->getNumOperands() != 2) 2288 return Cond; 2289 2290 const SCEV *MaxLHS = Max->getOperand(0); 2291 const SCEV *MaxRHS = Max->getOperand(1); 2292 2293 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2294 // for a comparison with 1. For <= and >=, a comparison with zero. 2295 if (!MaxLHS || 2296 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2297 return Cond; 2298 2299 // Check the relevant induction variable for conformance to 2300 // the pattern. 2301 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2302 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2303 if (!AR || !AR->isAffine() || 2304 AR->getStart() != One || 2305 AR->getStepRecurrence(SE) != One) 2306 return Cond; 2307 2308 assert(AR->getLoop() == L && 2309 "Loop condition operand is an addrec in a different loop!"); 2310 2311 // Check the right operand of the select, and remember it, as it will 2312 // be used in the new comparison instruction. 2313 Value *NewRHS = nullptr; 2314 if (ICmpInst::isTrueWhenEqual(Pred)) { 2315 // Look for n+1, and grab n. 2316 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2317 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2318 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2319 NewRHS = BO->getOperand(0); 2320 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2321 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2322 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2323 NewRHS = BO->getOperand(0); 2324 if (!NewRHS) 2325 return Cond; 2326 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2327 NewRHS = Sel->getOperand(1); 2328 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2329 NewRHS = Sel->getOperand(2); 2330 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2331 NewRHS = SU->getValue(); 2332 else 2333 // Max doesn't match expected pattern. 2334 return Cond; 2335 2336 // Determine the new comparison opcode. It may be signed or unsigned, 2337 // and the original comparison may be either equality or inequality. 2338 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2339 Pred = CmpInst::getInversePredicate(Pred); 2340 2341 // Ok, everything looks ok to change the condition into an SLT or SGE and 2342 // delete the max calculation. 2343 ICmpInst *NewCond = 2344 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2345 2346 // Delete the max calculation instructions. 2347 Cond->replaceAllUsesWith(NewCond); 2348 CondUse->setUser(NewCond); 2349 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2350 Cond->eraseFromParent(); 2351 Sel->eraseFromParent(); 2352 if (Cmp->use_empty()) 2353 Cmp->eraseFromParent(); 2354 return NewCond; 2355 } 2356 2357 /// Change loop terminating condition to use the postinc iv when possible. 2358 void 2359 LSRInstance::OptimizeLoopTermCond() { 2360 SmallPtrSet<Instruction *, 4> PostIncs; 2361 2362 // We need a different set of heuristics for rotated and non-rotated loops. 2363 // If a loop is rotated then the latch is also the backedge, so inserting 2364 // post-inc expressions just before the latch is ideal. To reduce live ranges 2365 // it also makes sense to rewrite terminating conditions to use post-inc 2366 // expressions. 2367 // 2368 // If the loop is not rotated then the latch is not a backedge; the latch 2369 // check is done in the loop head. Adding post-inc expressions before the 2370 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2371 // in the loop body. In this case we do *not* want to use post-inc expressions 2372 // in the latch check, and we want to insert post-inc expressions before 2373 // the backedge. 2374 BasicBlock *LatchBlock = L->getLoopLatch(); 2375 SmallVector<BasicBlock*, 8> ExitingBlocks; 2376 L->getExitingBlocks(ExitingBlocks); 2377 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2378 return LatchBlock != BB; 2379 })) { 2380 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2381 IVIncInsertPos = LatchBlock->getTerminator(); 2382 return; 2383 } 2384 2385 // Otherwise treat this as a rotated loop. 2386 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2387 // Get the terminating condition for the loop if possible. If we 2388 // can, we want to change it to use a post-incremented version of its 2389 // induction variable, to allow coalescing the live ranges for the IV into 2390 // one register value. 2391 2392 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2393 if (!TermBr) 2394 continue; 2395 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2396 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2397 continue; 2398 2399 // Search IVUsesByStride to find Cond's IVUse if there is one. 2400 IVStrideUse *CondUse = nullptr; 2401 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2402 if (!FindIVUserForCond(Cond, CondUse)) 2403 continue; 2404 2405 // If the trip count is computed in terms of a max (due to ScalarEvolution 2406 // being unable to find a sufficient guard, for example), change the loop 2407 // comparison to use SLT or ULT instead of NE. 2408 // One consequence of doing this now is that it disrupts the count-down 2409 // optimization. That's not always a bad thing though, because in such 2410 // cases it may still be worthwhile to avoid a max. 2411 Cond = OptimizeMax(Cond, CondUse); 2412 2413 // If this exiting block dominates the latch block, it may also use 2414 // the post-inc value if it won't be shared with other uses. 2415 // Check for dominance. 2416 if (!DT.dominates(ExitingBlock, LatchBlock)) 2417 continue; 2418 2419 // Conservatively avoid trying to use the post-inc value in non-latch 2420 // exits if there may be pre-inc users in intervening blocks. 2421 if (LatchBlock != ExitingBlock) 2422 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2423 // Test if the use is reachable from the exiting block. This dominator 2424 // query is a conservative approximation of reachability. 2425 if (&*UI != CondUse && 2426 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2427 // Conservatively assume there may be reuse if the quotient of their 2428 // strides could be a legal scale. 2429 const SCEV *A = IU.getStride(*CondUse, L); 2430 const SCEV *B = IU.getStride(*UI, L); 2431 if (!A || !B) continue; 2432 if (SE.getTypeSizeInBits(A->getType()) != 2433 SE.getTypeSizeInBits(B->getType())) { 2434 if (SE.getTypeSizeInBits(A->getType()) > 2435 SE.getTypeSizeInBits(B->getType())) 2436 B = SE.getSignExtendExpr(B, A->getType()); 2437 else 2438 A = SE.getSignExtendExpr(A, B->getType()); 2439 } 2440 if (const SCEVConstant *D = 2441 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2442 const ConstantInt *C = D->getValue(); 2443 // Stride of one or negative one can have reuse with non-addresses. 2444 if (C->isOne() || C->isMinusOne()) 2445 goto decline_post_inc; 2446 // Avoid weird situations. 2447 if (C->getValue().getMinSignedBits() >= 64 || 2448 C->getValue().isMinSignedValue()) 2449 goto decline_post_inc; 2450 // Check for possible scaled-address reuse. 2451 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2452 MemAccessTy AccessTy = getAccessType( 2453 TTI, UI->getUser(), UI->getOperandValToReplace()); 2454 int64_t Scale = C->getSExtValue(); 2455 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2456 /*BaseOffset=*/0, 2457 /*HasBaseReg=*/false, Scale, 2458 AccessTy.AddrSpace)) 2459 goto decline_post_inc; 2460 Scale = -Scale; 2461 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2462 /*BaseOffset=*/0, 2463 /*HasBaseReg=*/false, Scale, 2464 AccessTy.AddrSpace)) 2465 goto decline_post_inc; 2466 } 2467 } 2468 } 2469 2470 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2471 << *Cond << '\n'); 2472 2473 // It's possible for the setcc instruction to be anywhere in the loop, and 2474 // possible for it to have multiple users. If it is not immediately before 2475 // the exiting block branch, move it. 2476 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2477 if (Cond->hasOneUse()) { 2478 Cond->moveBefore(TermBr); 2479 } else { 2480 // Clone the terminating condition and insert into the loopend. 2481 ICmpInst *OldCond = Cond; 2482 Cond = cast<ICmpInst>(Cond->clone()); 2483 Cond->setName(L->getHeader()->getName() + ".termcond"); 2484 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2485 2486 // Clone the IVUse, as the old use still exists! 2487 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2488 TermBr->replaceUsesOfWith(OldCond, Cond); 2489 } 2490 } 2491 2492 // If we get to here, we know that we can transform the setcc instruction to 2493 // use the post-incremented version of the IV, allowing us to coalesce the 2494 // live ranges for the IV correctly. 2495 CondUse->transformToPostInc(L); 2496 Changed = true; 2497 2498 PostIncs.insert(Cond); 2499 decline_post_inc:; 2500 } 2501 2502 // Determine an insertion point for the loop induction variable increment. It 2503 // must dominate all the post-inc comparisons we just set up, and it must 2504 // dominate the loop latch edge. 2505 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2506 for (Instruction *Inst : PostIncs) { 2507 BasicBlock *BB = 2508 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2509 Inst->getParent()); 2510 if (BB == Inst->getParent()) 2511 IVIncInsertPos = Inst; 2512 else if (BB != IVIncInsertPos->getParent()) 2513 IVIncInsertPos = BB->getTerminator(); 2514 } 2515 } 2516 2517 /// Determine if the given use can accommodate a fixup at the given offset and 2518 /// other details. If so, update the use and return true. 2519 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2520 bool HasBaseReg, LSRUse::KindType Kind, 2521 MemAccessTy AccessTy) { 2522 int64_t NewMinOffset = LU.MinOffset; 2523 int64_t NewMaxOffset = LU.MaxOffset; 2524 MemAccessTy NewAccessTy = AccessTy; 2525 2526 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2527 // something conservative, however this can pessimize in the case that one of 2528 // the uses will have all its uses outside the loop, for example. 2529 if (LU.Kind != Kind) 2530 return false; 2531 2532 // Check for a mismatched access type, and fall back conservatively as needed. 2533 // TODO: Be less conservative when the type is similar and can use the same 2534 // addressing modes. 2535 if (Kind == LSRUse::Address) { 2536 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2537 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2538 AccessTy.AddrSpace); 2539 } 2540 } 2541 2542 // Conservatively assume HasBaseReg is true for now. 2543 if (NewOffset < LU.MinOffset) { 2544 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2545 LU.MaxOffset - NewOffset, HasBaseReg)) 2546 return false; 2547 NewMinOffset = NewOffset; 2548 } else if (NewOffset > LU.MaxOffset) { 2549 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2550 NewOffset - LU.MinOffset, HasBaseReg)) 2551 return false; 2552 NewMaxOffset = NewOffset; 2553 } 2554 2555 // Update the use. 2556 LU.MinOffset = NewMinOffset; 2557 LU.MaxOffset = NewMaxOffset; 2558 LU.AccessTy = NewAccessTy; 2559 return true; 2560 } 2561 2562 /// Return an LSRUse index and an offset value for a fixup which needs the given 2563 /// expression, with the given kind and optional access type. Either reuse an 2564 /// existing use or create a new one, as needed. 2565 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2566 LSRUse::KindType Kind, 2567 MemAccessTy AccessTy) { 2568 const SCEV *Copy = Expr; 2569 int64_t Offset = ExtractImmediate(Expr, SE); 2570 2571 // Basic uses can't accept any offset, for example. 2572 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2573 Offset, /*HasBaseReg=*/ true)) { 2574 Expr = Copy; 2575 Offset = 0; 2576 } 2577 2578 std::pair<UseMapTy::iterator, bool> P = 2579 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2580 if (!P.second) { 2581 // A use already existed with this base. 2582 size_t LUIdx = P.first->second; 2583 LSRUse &LU = Uses[LUIdx]; 2584 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2585 // Reuse this use. 2586 return std::make_pair(LUIdx, Offset); 2587 } 2588 2589 // Create a new use. 2590 size_t LUIdx = Uses.size(); 2591 P.first->second = LUIdx; 2592 Uses.push_back(LSRUse(Kind, AccessTy)); 2593 LSRUse &LU = Uses[LUIdx]; 2594 2595 LU.MinOffset = Offset; 2596 LU.MaxOffset = Offset; 2597 return std::make_pair(LUIdx, Offset); 2598 } 2599 2600 /// Delete the given use from the Uses list. 2601 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2602 if (&LU != &Uses.back()) 2603 std::swap(LU, Uses.back()); 2604 Uses.pop_back(); 2605 2606 // Update RegUses. 2607 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2608 } 2609 2610 /// Look for a use distinct from OrigLU which is has a formula that has the same 2611 /// registers as the given formula. 2612 LSRUse * 2613 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2614 const LSRUse &OrigLU) { 2615 // Search all uses for the formula. This could be more clever. 2616 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2617 LSRUse &LU = Uses[LUIdx]; 2618 // Check whether this use is close enough to OrigLU, to see whether it's 2619 // worthwhile looking through its formulae. 2620 // Ignore ICmpZero uses because they may contain formulae generated by 2621 // GenerateICmpZeroScales, in which case adding fixup offsets may 2622 // be invalid. 2623 if (&LU != &OrigLU && 2624 LU.Kind != LSRUse::ICmpZero && 2625 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2626 LU.WidestFixupType == OrigLU.WidestFixupType && 2627 LU.HasFormulaWithSameRegs(OrigF)) { 2628 // Scan through this use's formulae. 2629 for (const Formula &F : LU.Formulae) { 2630 // Check to see if this formula has the same registers and symbols 2631 // as OrigF. 2632 if (F.BaseRegs == OrigF.BaseRegs && 2633 F.ScaledReg == OrigF.ScaledReg && 2634 F.BaseGV == OrigF.BaseGV && 2635 F.Scale == OrigF.Scale && 2636 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2637 if (F.BaseOffset == 0) 2638 return &LU; 2639 // This is the formula where all the registers and symbols matched; 2640 // there aren't going to be any others. Since we declined it, we 2641 // can skip the rest of the formulae and proceed to the next LSRUse. 2642 break; 2643 } 2644 } 2645 } 2646 } 2647 2648 // Nothing looked good. 2649 return nullptr; 2650 } 2651 2652 void LSRInstance::CollectInterestingTypesAndFactors() { 2653 SmallSetVector<const SCEV *, 4> Strides; 2654 2655 // Collect interesting types and strides. 2656 SmallVector<const SCEV *, 4> Worklist; 2657 for (const IVStrideUse &U : IU) { 2658 const SCEV *Expr = IU.getExpr(U); 2659 2660 // Collect interesting types. 2661 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2662 2663 // Add strides for mentioned loops. 2664 Worklist.push_back(Expr); 2665 do { 2666 const SCEV *S = Worklist.pop_back_val(); 2667 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2668 if (AR->getLoop() == L) 2669 Strides.insert(AR->getStepRecurrence(SE)); 2670 Worklist.push_back(AR->getStart()); 2671 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2672 Worklist.append(Add->op_begin(), Add->op_end()); 2673 } 2674 } while (!Worklist.empty()); 2675 } 2676 2677 // Compute interesting factors from the set of interesting strides. 2678 for (SmallSetVector<const SCEV *, 4>::const_iterator 2679 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2680 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2681 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2682 const SCEV *OldStride = *I; 2683 const SCEV *NewStride = *NewStrideIter; 2684 2685 if (SE.getTypeSizeInBits(OldStride->getType()) != 2686 SE.getTypeSizeInBits(NewStride->getType())) { 2687 if (SE.getTypeSizeInBits(OldStride->getType()) > 2688 SE.getTypeSizeInBits(NewStride->getType())) 2689 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2690 else 2691 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2692 } 2693 if (const SCEVConstant *Factor = 2694 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2695 SE, true))) { 2696 if (Factor->getAPInt().getMinSignedBits() <= 64) 2697 Factors.insert(Factor->getAPInt().getSExtValue()); 2698 } else if (const SCEVConstant *Factor = 2699 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2700 NewStride, 2701 SE, true))) { 2702 if (Factor->getAPInt().getMinSignedBits() <= 64) 2703 Factors.insert(Factor->getAPInt().getSExtValue()); 2704 } 2705 } 2706 2707 // If all uses use the same type, don't bother looking for truncation-based 2708 // reuse. 2709 if (Types.size() == 1) 2710 Types.clear(); 2711 2712 LLVM_DEBUG(print_factors_and_types(dbgs())); 2713 } 2714 2715 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2716 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2717 /// IVStrideUses, we could partially skip this. 2718 static User::op_iterator 2719 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2720 Loop *L, ScalarEvolution &SE) { 2721 for(; OI != OE; ++OI) { 2722 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2723 if (!SE.isSCEVable(Oper->getType())) 2724 continue; 2725 2726 if (const SCEVAddRecExpr *AR = 2727 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2728 if (AR->getLoop() == L) 2729 break; 2730 } 2731 } 2732 } 2733 return OI; 2734 } 2735 2736 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2737 /// a convenient helper. 2738 static Value *getWideOperand(Value *Oper) { 2739 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2740 return Trunc->getOperand(0); 2741 return Oper; 2742 } 2743 2744 /// Return true if we allow an IV chain to include both types. 2745 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2746 Type *LType = LVal->getType(); 2747 Type *RType = RVal->getType(); 2748 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2749 // Different address spaces means (possibly) 2750 // different types of the pointer implementation, 2751 // e.g. i16 vs i32 so disallow that. 2752 (LType->getPointerAddressSpace() == 2753 RType->getPointerAddressSpace())); 2754 } 2755 2756 /// Return an approximation of this SCEV expression's "base", or NULL for any 2757 /// constant. Returning the expression itself is conservative. Returning a 2758 /// deeper subexpression is more precise and valid as long as it isn't less 2759 /// complex than another subexpression. For expressions involving multiple 2760 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2761 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2762 /// IVInc==b-a. 2763 /// 2764 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2765 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2766 static const SCEV *getExprBase(const SCEV *S) { 2767 switch (S->getSCEVType()) { 2768 default: // uncluding scUnknown. 2769 return S; 2770 case scConstant: 2771 return nullptr; 2772 case scTruncate: 2773 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2774 case scZeroExtend: 2775 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2776 case scSignExtend: 2777 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2778 case scAddExpr: { 2779 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2780 // there's nothing more complex. 2781 // FIXME: not sure if we want to recognize negation. 2782 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2783 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2784 E(Add->op_begin()); I != E; ++I) { 2785 const SCEV *SubExpr = *I; 2786 if (SubExpr->getSCEVType() == scAddExpr) 2787 return getExprBase(SubExpr); 2788 2789 if (SubExpr->getSCEVType() != scMulExpr) 2790 return SubExpr; 2791 } 2792 return S; // all operands are scaled, be conservative. 2793 } 2794 case scAddRecExpr: 2795 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2796 } 2797 } 2798 2799 /// Return true if the chain increment is profitable to expand into a loop 2800 /// invariant value, which may require its own register. A profitable chain 2801 /// increment will be an offset relative to the same base. We allow such offsets 2802 /// to potentially be used as chain increment as long as it's not obviously 2803 /// expensive to expand using real instructions. 2804 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2805 const SCEV *IncExpr, 2806 ScalarEvolution &SE) { 2807 // Aggressively form chains when -stress-ivchain. 2808 if (StressIVChain) 2809 return true; 2810 2811 // Do not replace a constant offset from IV head with a nonconstant IV 2812 // increment. 2813 if (!isa<SCEVConstant>(IncExpr)) { 2814 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2815 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2816 return false; 2817 } 2818 2819 SmallPtrSet<const SCEV*, 8> Processed; 2820 return !isHighCostExpansion(IncExpr, Processed, SE); 2821 } 2822 2823 /// Return true if the number of registers needed for the chain is estimated to 2824 /// be less than the number required for the individual IV users. First prohibit 2825 /// any IV users that keep the IV live across increments (the Users set should 2826 /// be empty). Next count the number and type of increments in the chain. 2827 /// 2828 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2829 /// effectively use postinc addressing modes. Only consider it profitable it the 2830 /// increments can be computed in fewer registers when chained. 2831 /// 2832 /// TODO: Consider IVInc free if it's already used in another chains. 2833 static bool 2834 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2835 ScalarEvolution &SE) { 2836 if (StressIVChain) 2837 return true; 2838 2839 if (!Chain.hasIncs()) 2840 return false; 2841 2842 if (!Users.empty()) { 2843 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2844 for (Instruction *Inst 2845 : Users) { dbgs() << " " << *Inst << "\n"; }); 2846 return false; 2847 } 2848 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2849 2850 // The chain itself may require a register, so intialize cost to 1. 2851 int cost = 1; 2852 2853 // A complete chain likely eliminates the need for keeping the original IV in 2854 // a register. LSR does not currently know how to form a complete chain unless 2855 // the header phi already exists. 2856 if (isa<PHINode>(Chain.tailUserInst()) 2857 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2858 --cost; 2859 } 2860 const SCEV *LastIncExpr = nullptr; 2861 unsigned NumConstIncrements = 0; 2862 unsigned NumVarIncrements = 0; 2863 unsigned NumReusedIncrements = 0; 2864 for (const IVInc &Inc : Chain) { 2865 if (Inc.IncExpr->isZero()) 2866 continue; 2867 2868 // Incrementing by zero or some constant is neutral. We assume constants can 2869 // be folded into an addressing mode or an add's immediate operand. 2870 if (isa<SCEVConstant>(Inc.IncExpr)) { 2871 ++NumConstIncrements; 2872 continue; 2873 } 2874 2875 if (Inc.IncExpr == LastIncExpr) 2876 ++NumReusedIncrements; 2877 else 2878 ++NumVarIncrements; 2879 2880 LastIncExpr = Inc.IncExpr; 2881 } 2882 // An IV chain with a single increment is handled by LSR's postinc 2883 // uses. However, a chain with multiple increments requires keeping the IV's 2884 // value live longer than it needs to be if chained. 2885 if (NumConstIncrements > 1) 2886 --cost; 2887 2888 // Materializing increment expressions in the preheader that didn't exist in 2889 // the original code may cost a register. For example, sign-extended array 2890 // indices can produce ridiculous increments like this: 2891 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2892 cost += NumVarIncrements; 2893 2894 // Reusing variable increments likely saves a register to hold the multiple of 2895 // the stride. 2896 cost -= NumReusedIncrements; 2897 2898 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2899 << "\n"); 2900 2901 return cost < 0; 2902 } 2903 2904 /// Add this IV user to an existing chain or make it the head of a new chain. 2905 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2906 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2907 // When IVs are used as types of varying widths, they are generally converted 2908 // to a wider type with some uses remaining narrow under a (free) trunc. 2909 Value *const NextIV = getWideOperand(IVOper); 2910 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2911 const SCEV *const OperExprBase = getExprBase(OperExpr); 2912 2913 // Visit all existing chains. Check if its IVOper can be computed as a 2914 // profitable loop invariant increment from the last link in the Chain. 2915 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2916 const SCEV *LastIncExpr = nullptr; 2917 for (; ChainIdx < NChains; ++ChainIdx) { 2918 IVChain &Chain = IVChainVec[ChainIdx]; 2919 2920 // Prune the solution space aggressively by checking that both IV operands 2921 // are expressions that operate on the same unscaled SCEVUnknown. This 2922 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2923 // first avoids creating extra SCEV expressions. 2924 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2925 continue; 2926 2927 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2928 if (!isCompatibleIVType(PrevIV, NextIV)) 2929 continue; 2930 2931 // A phi node terminates a chain. 2932 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2933 continue; 2934 2935 // The increment must be loop-invariant so it can be kept in a register. 2936 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2937 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2938 if (!SE.isLoopInvariant(IncExpr, L)) 2939 continue; 2940 2941 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2942 LastIncExpr = IncExpr; 2943 break; 2944 } 2945 } 2946 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2947 // bother for phi nodes, because they must be last in the chain. 2948 if (ChainIdx == NChains) { 2949 if (isa<PHINode>(UserInst)) 2950 return; 2951 if (NChains >= MaxChains && !StressIVChain) { 2952 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2953 return; 2954 } 2955 LastIncExpr = OperExpr; 2956 // IVUsers may have skipped over sign/zero extensions. We don't currently 2957 // attempt to form chains involving extensions unless they can be hoisted 2958 // into this loop's AddRec. 2959 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2960 return; 2961 ++NChains; 2962 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2963 OperExprBase)); 2964 ChainUsersVec.resize(NChains); 2965 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2966 << ") IV=" << *LastIncExpr << "\n"); 2967 } else { 2968 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2969 << ") IV+" << *LastIncExpr << "\n"); 2970 // Add this IV user to the end of the chain. 2971 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2972 } 2973 IVChain &Chain = IVChainVec[ChainIdx]; 2974 2975 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2976 // This chain's NearUsers become FarUsers. 2977 if (!LastIncExpr->isZero()) { 2978 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2979 NearUsers.end()); 2980 NearUsers.clear(); 2981 } 2982 2983 // All other uses of IVOperand become near uses of the chain. 2984 // We currently ignore intermediate values within SCEV expressions, assuming 2985 // they will eventually be used be the current chain, or can be computed 2986 // from one of the chain increments. To be more precise we could 2987 // transitively follow its user and only add leaf IV users to the set. 2988 for (User *U : IVOper->users()) { 2989 Instruction *OtherUse = dyn_cast<Instruction>(U); 2990 if (!OtherUse) 2991 continue; 2992 // Uses in the chain will no longer be uses if the chain is formed. 2993 // Include the head of the chain in this iteration (not Chain.begin()). 2994 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2995 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2996 for( ; IncIter != IncEnd; ++IncIter) { 2997 if (IncIter->UserInst == OtherUse) 2998 break; 2999 } 3000 if (IncIter != IncEnd) 3001 continue; 3002 3003 if (SE.isSCEVable(OtherUse->getType()) 3004 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3005 && IU.isIVUserOrOperand(OtherUse)) { 3006 continue; 3007 } 3008 NearUsers.insert(OtherUse); 3009 } 3010 3011 // Since this user is part of the chain, it's no longer considered a use 3012 // of the chain. 3013 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3014 } 3015 3016 /// Populate the vector of Chains. 3017 /// 3018 /// This decreases ILP at the architecture level. Targets with ample registers, 3019 /// multiple memory ports, and no register renaming probably don't want 3020 /// this. However, such targets should probably disable LSR altogether. 3021 /// 3022 /// The job of LSR is to make a reasonable choice of induction variables across 3023 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3024 /// ILP *within the loop* if the target wants it. 3025 /// 3026 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3027 /// will not reorder memory operations, it will recognize this as a chain, but 3028 /// will generate redundant IV increments. Ideally this would be corrected later 3029 /// by a smart scheduler: 3030 /// = A[i] 3031 /// = A[i+x] 3032 /// A[i] = 3033 /// A[i+x] = 3034 /// 3035 /// TODO: Walk the entire domtree within this loop, not just the path to the 3036 /// loop latch. This will discover chains on side paths, but requires 3037 /// maintaining multiple copies of the Chains state. 3038 void LSRInstance::CollectChains() { 3039 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3040 SmallVector<ChainUsers, 8> ChainUsersVec; 3041 3042 SmallVector<BasicBlock *,8> LatchPath; 3043 BasicBlock *LoopHeader = L->getHeader(); 3044 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3045 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3046 LatchPath.push_back(Rung->getBlock()); 3047 } 3048 LatchPath.push_back(LoopHeader); 3049 3050 // Walk the instruction stream from the loop header to the loop latch. 3051 for (BasicBlock *BB : reverse(LatchPath)) { 3052 for (Instruction &I : *BB) { 3053 // Skip instructions that weren't seen by IVUsers analysis. 3054 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3055 continue; 3056 3057 // Ignore users that are part of a SCEV expression. This way we only 3058 // consider leaf IV Users. This effectively rediscovers a portion of 3059 // IVUsers analysis but in program order this time. 3060 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3061 continue; 3062 3063 // Remove this instruction from any NearUsers set it may be in. 3064 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3065 ChainIdx < NChains; ++ChainIdx) { 3066 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3067 } 3068 // Search for operands that can be chained. 3069 SmallPtrSet<Instruction*, 4> UniqueOperands; 3070 User::op_iterator IVOpEnd = I.op_end(); 3071 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3072 while (IVOpIter != IVOpEnd) { 3073 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3074 if (UniqueOperands.insert(IVOpInst).second) 3075 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3076 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3077 } 3078 } // Continue walking down the instructions. 3079 } // Continue walking down the domtree. 3080 // Visit phi backedges to determine if the chain can generate the IV postinc. 3081 for (PHINode &PN : L->getHeader()->phis()) { 3082 if (!SE.isSCEVable(PN.getType())) 3083 continue; 3084 3085 Instruction *IncV = 3086 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3087 if (IncV) 3088 ChainInstruction(&PN, IncV, ChainUsersVec); 3089 } 3090 // Remove any unprofitable chains. 3091 unsigned ChainIdx = 0; 3092 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3093 UsersIdx < NChains; ++UsersIdx) { 3094 if (!isProfitableChain(IVChainVec[UsersIdx], 3095 ChainUsersVec[UsersIdx].FarUsers, SE)) 3096 continue; 3097 // Preserve the chain at UsesIdx. 3098 if (ChainIdx != UsersIdx) 3099 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3100 FinalizeChain(IVChainVec[ChainIdx]); 3101 ++ChainIdx; 3102 } 3103 IVChainVec.resize(ChainIdx); 3104 } 3105 3106 void LSRInstance::FinalizeChain(IVChain &Chain) { 3107 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3108 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3109 3110 for (const IVInc &Inc : Chain) { 3111 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3112 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3113 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3114 IVIncSet.insert(UseI); 3115 } 3116 } 3117 3118 /// Return true if the IVInc can be folded into an addressing mode. 3119 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3120 Value *Operand, const TargetTransformInfo &TTI) { 3121 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3122 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3123 return false; 3124 3125 if (IncConst->getAPInt().getMinSignedBits() > 64) 3126 return false; 3127 3128 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3129 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3130 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3131 IncOffset, /*HasBaseReg=*/false)) 3132 return false; 3133 3134 return true; 3135 } 3136 3137 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3138 /// user's operand from the previous IV user's operand. 3139 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3140 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3141 // Find the new IVOperand for the head of the chain. It may have been replaced 3142 // by LSR. 3143 const IVInc &Head = Chain.Incs[0]; 3144 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3145 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3146 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3147 IVOpEnd, L, SE); 3148 Value *IVSrc = nullptr; 3149 while (IVOpIter != IVOpEnd) { 3150 IVSrc = getWideOperand(*IVOpIter); 3151 3152 // If this operand computes the expression that the chain needs, we may use 3153 // it. (Check this after setting IVSrc which is used below.) 3154 // 3155 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3156 // narrow for the chain, so we can no longer use it. We do allow using a 3157 // wider phi, assuming the LSR checked for free truncation. In that case we 3158 // should already have a truncate on this operand such that 3159 // getSCEV(IVSrc) == IncExpr. 3160 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3161 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3162 break; 3163 } 3164 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3165 } 3166 if (IVOpIter == IVOpEnd) { 3167 // Gracefully give up on this chain. 3168 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3169 return; 3170 } 3171 assert(IVSrc && "Failed to find IV chain source"); 3172 3173 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3174 Type *IVTy = IVSrc->getType(); 3175 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3176 const SCEV *LeftOverExpr = nullptr; 3177 for (const IVInc &Inc : Chain) { 3178 Instruction *InsertPt = Inc.UserInst; 3179 if (isa<PHINode>(InsertPt)) 3180 InsertPt = L->getLoopLatch()->getTerminator(); 3181 3182 // IVOper will replace the current IV User's operand. IVSrc is the IV 3183 // value currently held in a register. 3184 Value *IVOper = IVSrc; 3185 if (!Inc.IncExpr->isZero()) { 3186 // IncExpr was the result of subtraction of two narrow values, so must 3187 // be signed. 3188 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3189 LeftOverExpr = LeftOverExpr ? 3190 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3191 } 3192 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3193 // Expand the IV increment. 3194 Rewriter.clearPostInc(); 3195 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3196 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3197 SE.getUnknown(IncV)); 3198 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3199 3200 // If an IV increment can't be folded, use it as the next IV value. 3201 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3202 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3203 IVSrc = IVOper; 3204 LeftOverExpr = nullptr; 3205 } 3206 } 3207 Type *OperTy = Inc.IVOperand->getType(); 3208 if (IVTy != OperTy) { 3209 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3210 "cannot extend a chained IV"); 3211 IRBuilder<> Builder(InsertPt); 3212 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3213 } 3214 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3215 DeadInsts.emplace_back(Inc.IVOperand); 3216 } 3217 // If LSR created a new, wider phi, we may also replace its postinc. We only 3218 // do this if we also found a wide value for the head of the chain. 3219 if (isa<PHINode>(Chain.tailUserInst())) { 3220 for (PHINode &Phi : L->getHeader()->phis()) { 3221 if (!isCompatibleIVType(&Phi, IVSrc)) 3222 continue; 3223 Instruction *PostIncV = dyn_cast<Instruction>( 3224 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3225 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3226 continue; 3227 Value *IVOper = IVSrc; 3228 Type *PostIncTy = PostIncV->getType(); 3229 if (IVTy != PostIncTy) { 3230 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3231 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3232 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3233 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3234 } 3235 Phi.replaceUsesOfWith(PostIncV, IVOper); 3236 DeadInsts.emplace_back(PostIncV); 3237 } 3238 } 3239 } 3240 3241 void LSRInstance::CollectFixupsAndInitialFormulae() { 3242 BranchInst *ExitBranch = nullptr; 3243 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo); 3244 3245 for (const IVStrideUse &U : IU) { 3246 Instruction *UserInst = U.getUser(); 3247 // Skip IV users that are part of profitable IV Chains. 3248 User::op_iterator UseI = 3249 find(UserInst->operands(), U.getOperandValToReplace()); 3250 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3251 if (IVIncSet.count(UseI)) { 3252 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3253 continue; 3254 } 3255 3256 LSRUse::KindType Kind = LSRUse::Basic; 3257 MemAccessTy AccessTy; 3258 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3259 Kind = LSRUse::Address; 3260 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3261 } 3262 3263 const SCEV *S = IU.getExpr(U); 3264 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3265 3266 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3267 // (N - i == 0), and this allows (N - i) to be the expression that we work 3268 // with rather than just N or i, so we can consider the register 3269 // requirements for both N and i at the same time. Limiting this code to 3270 // equality icmps is not a problem because all interesting loops use 3271 // equality icmps, thanks to IndVarSimplify. 3272 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3273 // If CI can be saved in some target, like replaced inside hardware loop 3274 // in PowerPC, no need to generate initial formulae for it. 3275 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3276 continue; 3277 if (CI->isEquality()) { 3278 // Swap the operands if needed to put the OperandValToReplace on the 3279 // left, for consistency. 3280 Value *NV = CI->getOperand(1); 3281 if (NV == U.getOperandValToReplace()) { 3282 CI->setOperand(1, CI->getOperand(0)); 3283 CI->setOperand(0, NV); 3284 NV = CI->getOperand(1); 3285 Changed = true; 3286 } 3287 3288 // x == y --> x - y == 0 3289 const SCEV *N = SE.getSCEV(NV); 3290 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3291 // S is normalized, so normalize N before folding it into S 3292 // to keep the result normalized. 3293 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3294 Kind = LSRUse::ICmpZero; 3295 S = SE.getMinusSCEV(N, S); 3296 } 3297 3298 // -1 and the negations of all interesting strides (except the negation 3299 // of -1) are now also interesting. 3300 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3301 if (Factors[i] != -1) 3302 Factors.insert(-(uint64_t)Factors[i]); 3303 Factors.insert(-1); 3304 } 3305 } 3306 3307 // Get or create an LSRUse. 3308 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3309 size_t LUIdx = P.first; 3310 int64_t Offset = P.second; 3311 LSRUse &LU = Uses[LUIdx]; 3312 3313 // Record the fixup. 3314 LSRFixup &LF = LU.getNewFixup(); 3315 LF.UserInst = UserInst; 3316 LF.OperandValToReplace = U.getOperandValToReplace(); 3317 LF.PostIncLoops = TmpPostIncLoops; 3318 LF.Offset = Offset; 3319 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3320 3321 if (!LU.WidestFixupType || 3322 SE.getTypeSizeInBits(LU.WidestFixupType) < 3323 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3324 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3325 3326 // If this is the first use of this LSRUse, give it a formula. 3327 if (LU.Formulae.empty()) { 3328 InsertInitialFormula(S, LU, LUIdx); 3329 CountRegisters(LU.Formulae.back(), LUIdx); 3330 } 3331 } 3332 3333 LLVM_DEBUG(print_fixups(dbgs())); 3334 } 3335 3336 /// Insert a formula for the given expression into the given use, separating out 3337 /// loop-variant portions from loop-invariant and loop-computable portions. 3338 void 3339 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3340 // Mark uses whose expressions cannot be expanded. 3341 if (!isSafeToExpand(S, SE)) 3342 LU.RigidFormula = true; 3343 3344 Formula F; 3345 F.initialMatch(S, L, SE); 3346 bool Inserted = InsertFormula(LU, LUIdx, F); 3347 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3348 } 3349 3350 /// Insert a simple single-register formula for the given expression into the 3351 /// given use. 3352 void 3353 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3354 LSRUse &LU, size_t LUIdx) { 3355 Formula F; 3356 F.BaseRegs.push_back(S); 3357 F.HasBaseReg = true; 3358 bool Inserted = InsertFormula(LU, LUIdx, F); 3359 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3360 } 3361 3362 /// Note which registers are used by the given formula, updating RegUses. 3363 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3364 if (F.ScaledReg) 3365 RegUses.countRegister(F.ScaledReg, LUIdx); 3366 for (const SCEV *BaseReg : F.BaseRegs) 3367 RegUses.countRegister(BaseReg, LUIdx); 3368 } 3369 3370 /// If the given formula has not yet been inserted, add it to the list, and 3371 /// return true. Return false otherwise. 3372 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3373 // Do not insert formula that we will not be able to expand. 3374 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3375 "Formula is illegal"); 3376 3377 if (!LU.InsertFormula(F, *L)) 3378 return false; 3379 3380 CountRegisters(F, LUIdx); 3381 return true; 3382 } 3383 3384 /// Check for other uses of loop-invariant values which we're tracking. These 3385 /// other uses will pin these values in registers, making them less profitable 3386 /// for elimination. 3387 /// TODO: This currently misses non-constant addrec step registers. 3388 /// TODO: Should this give more weight to users inside the loop? 3389 void 3390 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3391 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3392 SmallPtrSet<const SCEV *, 32> Visited; 3393 3394 while (!Worklist.empty()) { 3395 const SCEV *S = Worklist.pop_back_val(); 3396 3397 // Don't process the same SCEV twice 3398 if (!Visited.insert(S).second) 3399 continue; 3400 3401 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3402 Worklist.append(N->op_begin(), N->op_end()); 3403 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3404 Worklist.push_back(C->getOperand()); 3405 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3406 Worklist.push_back(D->getLHS()); 3407 Worklist.push_back(D->getRHS()); 3408 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3409 const Value *V = US->getValue(); 3410 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3411 // Look for instructions defined outside the loop. 3412 if (L->contains(Inst)) continue; 3413 } else if (isa<UndefValue>(V)) 3414 // Undef doesn't have a live range, so it doesn't matter. 3415 continue; 3416 for (const Use &U : V->uses()) { 3417 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3418 // Ignore non-instructions. 3419 if (!UserInst) 3420 continue; 3421 // Ignore instructions in other functions (as can happen with 3422 // Constants). 3423 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3424 continue; 3425 // Ignore instructions not dominated by the loop. 3426 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3427 UserInst->getParent() : 3428 cast<PHINode>(UserInst)->getIncomingBlock( 3429 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3430 if (!DT.dominates(L->getHeader(), UseBB)) 3431 continue; 3432 // Don't bother if the instruction is in a BB which ends in an EHPad. 3433 if (UseBB->getTerminator()->isEHPad()) 3434 continue; 3435 // Don't bother rewriting PHIs in catchswitch blocks. 3436 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3437 continue; 3438 // Ignore uses which are part of other SCEV expressions, to avoid 3439 // analyzing them multiple times. 3440 if (SE.isSCEVable(UserInst->getType())) { 3441 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3442 // If the user is a no-op, look through to its uses. 3443 if (!isa<SCEVUnknown>(UserS)) 3444 continue; 3445 if (UserS == US) { 3446 Worklist.push_back( 3447 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3448 continue; 3449 } 3450 } 3451 // Ignore icmp instructions which are already being analyzed. 3452 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3453 unsigned OtherIdx = !U.getOperandNo(); 3454 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3455 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3456 continue; 3457 } 3458 3459 std::pair<size_t, int64_t> P = getUse( 3460 S, LSRUse::Basic, MemAccessTy()); 3461 size_t LUIdx = P.first; 3462 int64_t Offset = P.second; 3463 LSRUse &LU = Uses[LUIdx]; 3464 LSRFixup &LF = LU.getNewFixup(); 3465 LF.UserInst = const_cast<Instruction *>(UserInst); 3466 LF.OperandValToReplace = U; 3467 LF.Offset = Offset; 3468 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3469 if (!LU.WidestFixupType || 3470 SE.getTypeSizeInBits(LU.WidestFixupType) < 3471 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3472 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3473 InsertSupplementalFormula(US, LU, LUIdx); 3474 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3475 break; 3476 } 3477 } 3478 } 3479 } 3480 3481 /// Split S into subexpressions which can be pulled out into separate 3482 /// registers. If C is non-null, multiply each subexpression by C. 3483 /// 3484 /// Return remainder expression after factoring the subexpressions captured by 3485 /// Ops. If Ops is complete, return NULL. 3486 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3487 SmallVectorImpl<const SCEV *> &Ops, 3488 const Loop *L, 3489 ScalarEvolution &SE, 3490 unsigned Depth = 0) { 3491 // Arbitrarily cap recursion to protect compile time. 3492 if (Depth >= 3) 3493 return S; 3494 3495 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3496 // Break out add operands. 3497 for (const SCEV *S : Add->operands()) { 3498 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3499 if (Remainder) 3500 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3501 } 3502 return nullptr; 3503 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3504 // Split a non-zero base out of an addrec. 3505 if (AR->getStart()->isZero() || !AR->isAffine()) 3506 return S; 3507 3508 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3509 C, Ops, L, SE, Depth+1); 3510 // Split the non-zero AddRec unless it is part of a nested recurrence that 3511 // does not pertain to this loop. 3512 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3513 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3514 Remainder = nullptr; 3515 } 3516 if (Remainder != AR->getStart()) { 3517 if (!Remainder) 3518 Remainder = SE.getConstant(AR->getType(), 0); 3519 return SE.getAddRecExpr(Remainder, 3520 AR->getStepRecurrence(SE), 3521 AR->getLoop(), 3522 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3523 SCEV::FlagAnyWrap); 3524 } 3525 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3526 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3527 if (Mul->getNumOperands() != 2) 3528 return S; 3529 if (const SCEVConstant *Op0 = 3530 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3531 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3532 const SCEV *Remainder = 3533 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3534 if (Remainder) 3535 Ops.push_back(SE.getMulExpr(C, Remainder)); 3536 return nullptr; 3537 } 3538 } 3539 return S; 3540 } 3541 3542 /// Return true if the SCEV represents a value that may end up as a 3543 /// post-increment operation. 3544 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3545 LSRUse &LU, const SCEV *S, const Loop *L, 3546 ScalarEvolution &SE) { 3547 if (LU.Kind != LSRUse::Address || 3548 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3549 return false; 3550 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3551 if (!AR) 3552 return false; 3553 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3554 if (!isa<SCEVConstant>(LoopStep)) 3555 return false; 3556 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3557 LoopStep->getType()->getScalarSizeInBits()) 3558 return false; 3559 // Check if a post-indexed load/store can be used. 3560 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3561 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3562 const SCEV *LoopStart = AR->getStart(); 3563 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3564 return true; 3565 } 3566 return false; 3567 } 3568 3569 /// Helper function for LSRInstance::GenerateReassociations. 3570 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3571 const Formula &Base, 3572 unsigned Depth, size_t Idx, 3573 bool IsScaledReg) { 3574 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3575 // Don't generate reassociations for the base register of a value that 3576 // may generate a post-increment operator. The reason is that the 3577 // reassociations cause extra base+register formula to be created, 3578 // and possibly chosen, but the post-increment is more efficient. 3579 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3580 return; 3581 SmallVector<const SCEV *, 8> AddOps; 3582 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3583 if (Remainder) 3584 AddOps.push_back(Remainder); 3585 3586 if (AddOps.size() == 1) 3587 return; 3588 3589 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3590 JE = AddOps.end(); 3591 J != JE; ++J) { 3592 // Loop-variant "unknown" values are uninteresting; we won't be able to 3593 // do anything meaningful with them. 3594 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3595 continue; 3596 3597 // Don't pull a constant into a register if the constant could be folded 3598 // into an immediate field. 3599 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3600 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3601 continue; 3602 3603 // Collect all operands except *J. 3604 SmallVector<const SCEV *, 8> InnerAddOps( 3605 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3606 InnerAddOps.append(std::next(J), 3607 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3608 3609 // Don't leave just a constant behind in a register if the constant could 3610 // be folded into an immediate field. 3611 if (InnerAddOps.size() == 1 && 3612 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3613 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3614 continue; 3615 3616 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3617 if (InnerSum->isZero()) 3618 continue; 3619 Formula F = Base; 3620 3621 // Add the remaining pieces of the add back into the new formula. 3622 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3623 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3624 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3625 InnerSumSC->getValue()->getZExtValue())) { 3626 F.UnfoldedOffset = 3627 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3628 if (IsScaledReg) 3629 F.ScaledReg = nullptr; 3630 else 3631 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3632 } else if (IsScaledReg) 3633 F.ScaledReg = InnerSum; 3634 else 3635 F.BaseRegs[Idx] = InnerSum; 3636 3637 // Add J as its own register, or an unfolded immediate. 3638 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3639 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3640 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3641 SC->getValue()->getZExtValue())) 3642 F.UnfoldedOffset = 3643 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3644 else 3645 F.BaseRegs.push_back(*J); 3646 // We may have changed the number of register in base regs, adjust the 3647 // formula accordingly. 3648 F.canonicalize(*L); 3649 3650 if (InsertFormula(LU, LUIdx, F)) 3651 // If that formula hadn't been seen before, recurse to find more like 3652 // it. 3653 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3654 // Because just Depth is not enough to bound compile time. 3655 // This means that every time AddOps.size() is greater 16^x we will add 3656 // x to Depth. 3657 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3658 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3659 } 3660 } 3661 3662 /// Split out subexpressions from adds and the bases of addrecs. 3663 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3664 Formula Base, unsigned Depth) { 3665 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3666 // Arbitrarily cap recursion to protect compile time. 3667 if (Depth >= 3) 3668 return; 3669 3670 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3671 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3672 3673 if (Base.Scale == 1) 3674 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3675 /* Idx */ -1, /* IsScaledReg */ true); 3676 } 3677 3678 /// Generate a formula consisting of all of the loop-dominating registers added 3679 /// into a single register. 3680 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3681 Formula Base) { 3682 // This method is only interesting on a plurality of registers. 3683 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3684 (Base.UnfoldedOffset != 0) <= 1) 3685 return; 3686 3687 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3688 // processing the formula. 3689 Base.unscale(); 3690 SmallVector<const SCEV *, 4> Ops; 3691 Formula NewBase = Base; 3692 NewBase.BaseRegs.clear(); 3693 Type *CombinedIntegerType = nullptr; 3694 for (const SCEV *BaseReg : Base.BaseRegs) { 3695 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3696 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3697 if (!CombinedIntegerType) 3698 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3699 Ops.push_back(BaseReg); 3700 } 3701 else 3702 NewBase.BaseRegs.push_back(BaseReg); 3703 } 3704 3705 // If no register is relevant, we're done. 3706 if (Ops.size() == 0) 3707 return; 3708 3709 // Utility function for generating the required variants of the combined 3710 // registers. 3711 auto GenerateFormula = [&](const SCEV *Sum) { 3712 Formula F = NewBase; 3713 3714 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3715 // opportunity to fold something. For now, just ignore such cases 3716 // rather than proceed with zero in a register. 3717 if (Sum->isZero()) 3718 return; 3719 3720 F.BaseRegs.push_back(Sum); 3721 F.canonicalize(*L); 3722 (void)InsertFormula(LU, LUIdx, F); 3723 }; 3724 3725 // If we collected at least two registers, generate a formula combining them. 3726 if (Ops.size() > 1) { 3727 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3728 GenerateFormula(SE.getAddExpr(OpsCopy)); 3729 } 3730 3731 // If we have an unfolded offset, generate a formula combining it with the 3732 // registers collected. 3733 if (NewBase.UnfoldedOffset) { 3734 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3735 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3736 true)); 3737 NewBase.UnfoldedOffset = 0; 3738 GenerateFormula(SE.getAddExpr(Ops)); 3739 } 3740 } 3741 3742 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3743 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3744 const Formula &Base, size_t Idx, 3745 bool IsScaledReg) { 3746 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3747 GlobalValue *GV = ExtractSymbol(G, SE); 3748 if (G->isZero() || !GV) 3749 return; 3750 Formula F = Base; 3751 F.BaseGV = GV; 3752 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3753 return; 3754 if (IsScaledReg) 3755 F.ScaledReg = G; 3756 else 3757 F.BaseRegs[Idx] = G; 3758 (void)InsertFormula(LU, LUIdx, F); 3759 } 3760 3761 /// Generate reuse formulae using symbolic offsets. 3762 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3763 Formula Base) { 3764 // We can't add a symbolic offset if the address already contains one. 3765 if (Base.BaseGV) return; 3766 3767 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3768 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3769 if (Base.Scale == 1) 3770 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3771 /* IsScaledReg */ true); 3772 } 3773 3774 /// Helper function for LSRInstance::GenerateConstantOffsets. 3775 void LSRInstance::GenerateConstantOffsetsImpl( 3776 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3777 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3778 3779 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3780 Formula F = Base; 3781 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3782 3783 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3784 LU.AccessTy, F)) { 3785 // Add the offset to the base register. 3786 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3787 // If it cancelled out, drop the base register, otherwise update it. 3788 if (NewG->isZero()) { 3789 if (IsScaledReg) { 3790 F.Scale = 0; 3791 F.ScaledReg = nullptr; 3792 } else 3793 F.deleteBaseReg(F.BaseRegs[Idx]); 3794 F.canonicalize(*L); 3795 } else if (IsScaledReg) 3796 F.ScaledReg = NewG; 3797 else 3798 F.BaseRegs[Idx] = NewG; 3799 3800 (void)InsertFormula(LU, LUIdx, F); 3801 } 3802 }; 3803 3804 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3805 3806 // With constant offsets and constant steps, we can generate pre-inc 3807 // accesses by having the offset equal the step. So, for access #0 with a 3808 // step of 8, we generate a G - 8 base which would require the first access 3809 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3810 // for itself and hopefully becomes the base for other accesses. This means 3811 // means that a single pre-indexed access can be generated to become the new 3812 // base pointer for each iteration of the loop, resulting in no extra add/sub 3813 // instructions for pointer updating. 3814 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3815 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3816 if (auto *StepRec = 3817 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3818 const APInt &StepInt = StepRec->getAPInt(); 3819 int64_t Step = StepInt.isNegative() ? 3820 StepInt.getSExtValue() : StepInt.getZExtValue(); 3821 3822 for (int64_t Offset : Worklist) { 3823 Offset -= Step; 3824 GenerateOffset(G, Offset); 3825 } 3826 } 3827 } 3828 } 3829 for (int64_t Offset : Worklist) 3830 GenerateOffset(G, Offset); 3831 3832 int64_t Imm = ExtractImmediate(G, SE); 3833 if (G->isZero() || Imm == 0) 3834 return; 3835 Formula F = Base; 3836 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3837 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3838 return; 3839 if (IsScaledReg) 3840 F.ScaledReg = G; 3841 else 3842 F.BaseRegs[Idx] = G; 3843 (void)InsertFormula(LU, LUIdx, F); 3844 } 3845 3846 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3847 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3848 Formula Base) { 3849 // TODO: For now, just add the min and max offset, because it usually isn't 3850 // worthwhile looking at everything inbetween. 3851 SmallVector<int64_t, 2> Worklist; 3852 Worklist.push_back(LU.MinOffset); 3853 if (LU.MaxOffset != LU.MinOffset) 3854 Worklist.push_back(LU.MaxOffset); 3855 3856 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3857 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3858 if (Base.Scale == 1) 3859 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3860 /* IsScaledReg */ true); 3861 } 3862 3863 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3864 /// == y -> x*c == y*c. 3865 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3866 Formula Base) { 3867 if (LU.Kind != LSRUse::ICmpZero) return; 3868 3869 // Determine the integer type for the base formula. 3870 Type *IntTy = Base.getType(); 3871 if (!IntTy) return; 3872 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3873 3874 // Don't do this if there is more than one offset. 3875 if (LU.MinOffset != LU.MaxOffset) return; 3876 3877 // Check if transformation is valid. It is illegal to multiply pointer. 3878 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3879 return; 3880 for (const SCEV *BaseReg : Base.BaseRegs) 3881 if (BaseReg->getType()->isPointerTy()) 3882 return; 3883 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3884 3885 // Check each interesting stride. 3886 for (int64_t Factor : Factors) { 3887 // Check that the multiplication doesn't overflow. 3888 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3889 continue; 3890 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3891 if (NewBaseOffset / Factor != Base.BaseOffset) 3892 continue; 3893 // If the offset will be truncated at this use, check that it is in bounds. 3894 if (!IntTy->isPointerTy() && 3895 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3896 continue; 3897 3898 // Check that multiplying with the use offset doesn't overflow. 3899 int64_t Offset = LU.MinOffset; 3900 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3901 continue; 3902 Offset = (uint64_t)Offset * Factor; 3903 if (Offset / Factor != LU.MinOffset) 3904 continue; 3905 // If the offset will be truncated at this use, check that it is in bounds. 3906 if (!IntTy->isPointerTy() && 3907 !ConstantInt::isValueValidForType(IntTy, Offset)) 3908 continue; 3909 3910 Formula F = Base; 3911 F.BaseOffset = NewBaseOffset; 3912 3913 // Check that this scale is legal. 3914 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3915 continue; 3916 3917 // Compensate for the use having MinOffset built into it. 3918 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3919 3920 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3921 3922 // Check that multiplying with each base register doesn't overflow. 3923 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3924 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3925 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3926 goto next; 3927 } 3928 3929 // Check that multiplying with the scaled register doesn't overflow. 3930 if (F.ScaledReg) { 3931 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3932 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3933 continue; 3934 } 3935 3936 // Check that multiplying with the unfolded offset doesn't overflow. 3937 if (F.UnfoldedOffset != 0) { 3938 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3939 Factor == -1) 3940 continue; 3941 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3942 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3943 continue; 3944 // If the offset will be truncated, check that it is in bounds. 3945 if (!IntTy->isPointerTy() && 3946 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3947 continue; 3948 } 3949 3950 // If we make it here and it's legal, add it. 3951 (void)InsertFormula(LU, LUIdx, F); 3952 next:; 3953 } 3954 } 3955 3956 /// Generate stride factor reuse formulae by making use of scaled-offset address 3957 /// modes, for example. 3958 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3959 // Determine the integer type for the base formula. 3960 Type *IntTy = Base.getType(); 3961 if (!IntTy) return; 3962 3963 // If this Formula already has a scaled register, we can't add another one. 3964 // Try to unscale the formula to generate a better scale. 3965 if (Base.Scale != 0 && !Base.unscale()) 3966 return; 3967 3968 assert(Base.Scale == 0 && "unscale did not did its job!"); 3969 3970 // Check each interesting stride. 3971 for (int64_t Factor : Factors) { 3972 Base.Scale = Factor; 3973 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3974 // Check whether this scale is going to be legal. 3975 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3976 Base)) { 3977 // As a special-case, handle special out-of-loop Basic users specially. 3978 // TODO: Reconsider this special case. 3979 if (LU.Kind == LSRUse::Basic && 3980 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3981 LU.AccessTy, Base) && 3982 LU.AllFixupsOutsideLoop) 3983 LU.Kind = LSRUse::Special; 3984 else 3985 continue; 3986 } 3987 // For an ICmpZero, negating a solitary base register won't lead to 3988 // new solutions. 3989 if (LU.Kind == LSRUse::ICmpZero && 3990 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3991 continue; 3992 // For each addrec base reg, if its loop is current loop, apply the scale. 3993 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3994 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3995 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3996 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3997 if (FactorS->isZero()) 3998 continue; 3999 // Divide out the factor, ignoring high bits, since we'll be 4000 // scaling the value back up in the end. 4001 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4002 // TODO: This could be optimized to avoid all the copying. 4003 Formula F = Base; 4004 F.ScaledReg = Quotient; 4005 F.deleteBaseReg(F.BaseRegs[i]); 4006 // The canonical representation of 1*reg is reg, which is already in 4007 // Base. In that case, do not try to insert the formula, it will be 4008 // rejected anyway. 4009 if (F.Scale == 1 && (F.BaseRegs.empty() || 4010 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4011 continue; 4012 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4013 // non canonical Formula with ScaledReg's loop not being L. 4014 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4015 F.canonicalize(*L); 4016 (void)InsertFormula(LU, LUIdx, F); 4017 } 4018 } 4019 } 4020 } 4021 } 4022 4023 /// Generate reuse formulae from different IV types. 4024 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4025 // Don't bother truncating symbolic values. 4026 if (Base.BaseGV) return; 4027 4028 // Determine the integer type for the base formula. 4029 Type *DstTy = Base.getType(); 4030 if (!DstTy) return; 4031 DstTy = SE.getEffectiveSCEVType(DstTy); 4032 4033 for (Type *SrcTy : Types) { 4034 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4035 Formula F = Base; 4036 4037 // Sometimes SCEV is able to prove zero during ext transform. It may 4038 // happen if SCEV did not do all possible transforms while creating the 4039 // initial node (maybe due to depth limitations), but it can do them while 4040 // taking ext. 4041 if (F.ScaledReg) { 4042 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4043 if (NewScaledReg->isZero()) 4044 continue; 4045 F.ScaledReg = NewScaledReg; 4046 } 4047 bool HasZeroBaseReg = false; 4048 for (const SCEV *&BaseReg : F.BaseRegs) { 4049 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4050 if (NewBaseReg->isZero()) { 4051 HasZeroBaseReg = true; 4052 break; 4053 } 4054 BaseReg = NewBaseReg; 4055 } 4056 if (HasZeroBaseReg) 4057 continue; 4058 4059 // TODO: This assumes we've done basic processing on all uses and 4060 // have an idea what the register usage is. 4061 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4062 continue; 4063 4064 F.canonicalize(*L); 4065 (void)InsertFormula(LU, LUIdx, F); 4066 } 4067 } 4068 } 4069 4070 namespace { 4071 4072 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4073 /// modifications so that the search phase doesn't have to worry about the data 4074 /// structures moving underneath it. 4075 struct WorkItem { 4076 size_t LUIdx; 4077 int64_t Imm; 4078 const SCEV *OrigReg; 4079 4080 WorkItem(size_t LI, int64_t I, const SCEV *R) 4081 : LUIdx(LI), Imm(I), OrigReg(R) {} 4082 4083 void print(raw_ostream &OS) const; 4084 void dump() const; 4085 }; 4086 4087 } // end anonymous namespace 4088 4089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4090 void WorkItem::print(raw_ostream &OS) const { 4091 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4092 << " , add offset " << Imm; 4093 } 4094 4095 LLVM_DUMP_METHOD void WorkItem::dump() const { 4096 print(errs()); errs() << '\n'; 4097 } 4098 #endif 4099 4100 /// Look for registers which are a constant distance apart and try to form reuse 4101 /// opportunities between them. 4102 void LSRInstance::GenerateCrossUseConstantOffsets() { 4103 // Group the registers by their value without any added constant offset. 4104 using ImmMapTy = std::map<int64_t, const SCEV *>; 4105 4106 DenseMap<const SCEV *, ImmMapTy> Map; 4107 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4108 SmallVector<const SCEV *, 8> Sequence; 4109 for (const SCEV *Use : RegUses) { 4110 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4111 int64_t Imm = ExtractImmediate(Reg, SE); 4112 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4113 if (Pair.second) 4114 Sequence.push_back(Reg); 4115 Pair.first->second.insert(std::make_pair(Imm, Use)); 4116 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4117 } 4118 4119 // Now examine each set of registers with the same base value. Build up 4120 // a list of work to do and do the work in a separate step so that we're 4121 // not adding formulae and register counts while we're searching. 4122 SmallVector<WorkItem, 32> WorkItems; 4123 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4124 for (const SCEV *Reg : Sequence) { 4125 const ImmMapTy &Imms = Map.find(Reg)->second; 4126 4127 // It's not worthwhile looking for reuse if there's only one offset. 4128 if (Imms.size() == 1) 4129 continue; 4130 4131 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4132 for (const auto &Entry 4133 : Imms) dbgs() 4134 << ' ' << Entry.first; 4135 dbgs() << '\n'); 4136 4137 // Examine each offset. 4138 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4139 J != JE; ++J) { 4140 const SCEV *OrigReg = J->second; 4141 4142 int64_t JImm = J->first; 4143 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4144 4145 if (!isa<SCEVConstant>(OrigReg) && 4146 UsedByIndicesMap[Reg].count() == 1) { 4147 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4148 << '\n'); 4149 continue; 4150 } 4151 4152 // Conservatively examine offsets between this orig reg a few selected 4153 // other orig regs. 4154 int64_t First = Imms.begin()->first; 4155 int64_t Last = std::prev(Imms.end())->first; 4156 // Compute (First + Last) / 2 without overflow using the fact that 4157 // First + Last = 2 * (First + Last) + (First ^ Last). 4158 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4159 // If the result is negative and First is odd and Last even (or vice versa), 4160 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4161 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4162 ImmMapTy::const_iterator OtherImms[] = { 4163 Imms.begin(), std::prev(Imms.end()), 4164 Imms.lower_bound(Avg)}; 4165 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4166 ImmMapTy::const_iterator M = OtherImms[i]; 4167 if (M == J || M == JE) continue; 4168 4169 // Compute the difference between the two. 4170 int64_t Imm = (uint64_t)JImm - M->first; 4171 for (unsigned LUIdx : UsedByIndices.set_bits()) 4172 // Make a memo of this use, offset, and register tuple. 4173 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4174 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4175 } 4176 } 4177 } 4178 4179 Map.clear(); 4180 Sequence.clear(); 4181 UsedByIndicesMap.clear(); 4182 UniqueItems.clear(); 4183 4184 // Now iterate through the worklist and add new formulae. 4185 for (const WorkItem &WI : WorkItems) { 4186 size_t LUIdx = WI.LUIdx; 4187 LSRUse &LU = Uses[LUIdx]; 4188 int64_t Imm = WI.Imm; 4189 const SCEV *OrigReg = WI.OrigReg; 4190 4191 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4192 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4193 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4194 4195 // TODO: Use a more targeted data structure. 4196 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4197 Formula F = LU.Formulae[L]; 4198 // FIXME: The code for the scaled and unscaled registers looks 4199 // very similar but slightly different. Investigate if they 4200 // could be merged. That way, we would not have to unscale the 4201 // Formula. 4202 F.unscale(); 4203 // Use the immediate in the scaled register. 4204 if (F.ScaledReg == OrigReg) { 4205 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4206 // Don't create 50 + reg(-50). 4207 if (F.referencesReg(SE.getSCEV( 4208 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4209 continue; 4210 Formula NewF = F; 4211 NewF.BaseOffset = Offset; 4212 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4213 NewF)) 4214 continue; 4215 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4216 4217 // If the new scale is a constant in a register, and adding the constant 4218 // value to the immediate would produce a value closer to zero than the 4219 // immediate itself, then the formula isn't worthwhile. 4220 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4221 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4222 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4223 .ule(std::abs(NewF.BaseOffset))) 4224 continue; 4225 4226 // OK, looks good. 4227 NewF.canonicalize(*this->L); 4228 (void)InsertFormula(LU, LUIdx, NewF); 4229 } else { 4230 // Use the immediate in a base register. 4231 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4232 const SCEV *BaseReg = F.BaseRegs[N]; 4233 if (BaseReg != OrigReg) 4234 continue; 4235 Formula NewF = F; 4236 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4237 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4238 LU.Kind, LU.AccessTy, NewF)) { 4239 if (TTI.shouldFavorPostInc() && 4240 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4241 continue; 4242 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4243 continue; 4244 NewF = F; 4245 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4246 } 4247 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4248 4249 // If the new formula has a constant in a register, and adding the 4250 // constant value to the immediate would produce a value closer to 4251 // zero than the immediate itself, then the formula isn't worthwhile. 4252 for (const SCEV *NewReg : NewF.BaseRegs) 4253 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4254 if ((C->getAPInt() + NewF.BaseOffset) 4255 .abs() 4256 .slt(std::abs(NewF.BaseOffset)) && 4257 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4258 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4259 goto skip_formula; 4260 4261 // Ok, looks good. 4262 NewF.canonicalize(*this->L); 4263 (void)InsertFormula(LU, LUIdx, NewF); 4264 break; 4265 skip_formula:; 4266 } 4267 } 4268 } 4269 } 4270 } 4271 4272 /// Generate formulae for each use. 4273 void 4274 LSRInstance::GenerateAllReuseFormulae() { 4275 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4276 // queries are more precise. 4277 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4278 LSRUse &LU = Uses[LUIdx]; 4279 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4280 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4281 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4282 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4283 } 4284 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4285 LSRUse &LU = Uses[LUIdx]; 4286 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4287 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4288 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4289 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4290 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4291 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4292 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4293 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4294 } 4295 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4296 LSRUse &LU = Uses[LUIdx]; 4297 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4298 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4299 } 4300 4301 GenerateCrossUseConstantOffsets(); 4302 4303 LLVM_DEBUG(dbgs() << "\n" 4304 "After generating reuse formulae:\n"; 4305 print_uses(dbgs())); 4306 } 4307 4308 /// If there are multiple formulae with the same set of registers used 4309 /// by other uses, pick the best one and delete the others. 4310 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4311 DenseSet<const SCEV *> VisitedRegs; 4312 SmallPtrSet<const SCEV *, 16> Regs; 4313 SmallPtrSet<const SCEV *, 16> LoserRegs; 4314 #ifndef NDEBUG 4315 bool ChangedFormulae = false; 4316 #endif 4317 4318 // Collect the best formula for each unique set of shared registers. This 4319 // is reset for each use. 4320 using BestFormulaeTy = 4321 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4322 4323 BestFormulaeTy BestFormulae; 4324 4325 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4326 LSRUse &LU = Uses[LUIdx]; 4327 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4328 dbgs() << '\n'); 4329 4330 bool Any = false; 4331 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4332 FIdx != NumForms; ++FIdx) { 4333 Formula &F = LU.Formulae[FIdx]; 4334 4335 // Some formulas are instant losers. For example, they may depend on 4336 // nonexistent AddRecs from other loops. These need to be filtered 4337 // immediately, otherwise heuristics could choose them over others leading 4338 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4339 // avoids the need to recompute this information across formulae using the 4340 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4341 // the corresponding bad register from the Regs set. 4342 Cost CostF(L, SE, TTI); 4343 Regs.clear(); 4344 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4345 if (CostF.isLoser()) { 4346 // During initial formula generation, undesirable formulae are generated 4347 // by uses within other loops that have some non-trivial address mode or 4348 // use the postinc form of the IV. LSR needs to provide these formulae 4349 // as the basis of rediscovering the desired formula that uses an AddRec 4350 // corresponding to the existing phi. Once all formulae have been 4351 // generated, these initial losers may be pruned. 4352 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4353 dbgs() << "\n"); 4354 } 4355 else { 4356 SmallVector<const SCEV *, 4> Key; 4357 for (const SCEV *Reg : F.BaseRegs) { 4358 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4359 Key.push_back(Reg); 4360 } 4361 if (F.ScaledReg && 4362 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4363 Key.push_back(F.ScaledReg); 4364 // Unstable sort by host order ok, because this is only used for 4365 // uniquifying. 4366 llvm::sort(Key); 4367 4368 std::pair<BestFormulaeTy::const_iterator, bool> P = 4369 BestFormulae.insert(std::make_pair(Key, FIdx)); 4370 if (P.second) 4371 continue; 4372 4373 Formula &Best = LU.Formulae[P.first->second]; 4374 4375 Cost CostBest(L, SE, TTI); 4376 Regs.clear(); 4377 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4378 if (CostF.isLess(CostBest)) 4379 std::swap(F, Best); 4380 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4381 dbgs() << "\n" 4382 " in favor of formula "; 4383 Best.print(dbgs()); dbgs() << '\n'); 4384 } 4385 #ifndef NDEBUG 4386 ChangedFormulae = true; 4387 #endif 4388 LU.DeleteFormula(F); 4389 --FIdx; 4390 --NumForms; 4391 Any = true; 4392 } 4393 4394 // Now that we've filtered out some formulae, recompute the Regs set. 4395 if (Any) 4396 LU.RecomputeRegs(LUIdx, RegUses); 4397 4398 // Reset this to prepare for the next use. 4399 BestFormulae.clear(); 4400 } 4401 4402 LLVM_DEBUG(if (ChangedFormulae) { 4403 dbgs() << "\n" 4404 "After filtering out undesirable candidates:\n"; 4405 print_uses(dbgs()); 4406 }); 4407 } 4408 4409 /// Estimate the worst-case number of solutions the solver might have to 4410 /// consider. It almost never considers this many solutions because it prune the 4411 /// search space, but the pruning isn't always sufficient. 4412 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4413 size_t Power = 1; 4414 for (const LSRUse &LU : Uses) { 4415 size_t FSize = LU.Formulae.size(); 4416 if (FSize >= ComplexityLimit) { 4417 Power = ComplexityLimit; 4418 break; 4419 } 4420 Power *= FSize; 4421 if (Power >= ComplexityLimit) 4422 break; 4423 } 4424 return Power; 4425 } 4426 4427 /// When one formula uses a superset of the registers of another formula, it 4428 /// won't help reduce register pressure (though it may not necessarily hurt 4429 /// register pressure); remove it to simplify the system. 4430 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4431 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4432 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4433 4434 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4435 "which use a superset of registers used by other " 4436 "formulae.\n"); 4437 4438 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4439 LSRUse &LU = Uses[LUIdx]; 4440 bool Any = false; 4441 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4442 Formula &F = LU.Formulae[i]; 4443 // Look for a formula with a constant or GV in a register. If the use 4444 // also has a formula with that same value in an immediate field, 4445 // delete the one that uses a register. 4446 for (SmallVectorImpl<const SCEV *>::const_iterator 4447 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4448 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4449 Formula NewF = F; 4450 //FIXME: Formulas should store bitwidth to do wrapping properly. 4451 // See PR41034. 4452 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4453 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4454 (I - F.BaseRegs.begin())); 4455 if (LU.HasFormulaWithSameRegs(NewF)) { 4456 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4457 dbgs() << '\n'); 4458 LU.DeleteFormula(F); 4459 --i; 4460 --e; 4461 Any = true; 4462 break; 4463 } 4464 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4465 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4466 if (!F.BaseGV) { 4467 Formula NewF = F; 4468 NewF.BaseGV = GV; 4469 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4470 (I - F.BaseRegs.begin())); 4471 if (LU.HasFormulaWithSameRegs(NewF)) { 4472 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4473 dbgs() << '\n'); 4474 LU.DeleteFormula(F); 4475 --i; 4476 --e; 4477 Any = true; 4478 break; 4479 } 4480 } 4481 } 4482 } 4483 } 4484 if (Any) 4485 LU.RecomputeRegs(LUIdx, RegUses); 4486 } 4487 4488 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4489 } 4490 } 4491 4492 /// When there are many registers for expressions like A, A+1, A+2, etc., 4493 /// allocate a single register for them. 4494 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4495 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4496 return; 4497 4498 LLVM_DEBUG( 4499 dbgs() << "The search space is too complex.\n" 4500 "Narrowing the search space by assuming that uses separated " 4501 "by a constant offset will use the same registers.\n"); 4502 4503 // This is especially useful for unrolled loops. 4504 4505 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4506 LSRUse &LU = Uses[LUIdx]; 4507 for (const Formula &F : LU.Formulae) { 4508 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4509 continue; 4510 4511 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4512 if (!LUThatHas) 4513 continue; 4514 4515 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4516 LU.Kind, LU.AccessTy)) 4517 continue; 4518 4519 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4520 4521 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4522 4523 // Transfer the fixups of LU to LUThatHas. 4524 for (LSRFixup &Fixup : LU.Fixups) { 4525 Fixup.Offset += F.BaseOffset; 4526 LUThatHas->pushFixup(Fixup); 4527 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4528 } 4529 4530 // Delete formulae from the new use which are no longer legal. 4531 bool Any = false; 4532 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4533 Formula &F = LUThatHas->Formulae[i]; 4534 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4535 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4536 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4537 LUThatHas->DeleteFormula(F); 4538 --i; 4539 --e; 4540 Any = true; 4541 } 4542 } 4543 4544 if (Any) 4545 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4546 4547 // Delete the old use. 4548 DeleteUse(LU, LUIdx); 4549 --LUIdx; 4550 --NumUses; 4551 break; 4552 } 4553 } 4554 4555 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4556 } 4557 4558 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4559 /// we've done more filtering, as it may be able to find more formulae to 4560 /// eliminate. 4561 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4562 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4563 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4564 4565 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4566 "undesirable dedicated registers.\n"); 4567 4568 FilterOutUndesirableDedicatedRegisters(); 4569 4570 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4571 } 4572 } 4573 4574 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4575 /// Pick the best one and delete the others. 4576 /// This narrowing heuristic is to keep as many formulae with different 4577 /// Scale and ScaledReg pair as possible while narrowing the search space. 4578 /// The benefit is that it is more likely to find out a better solution 4579 /// from a formulae set with more Scale and ScaledReg variations than 4580 /// a formulae set with the same Scale and ScaledReg. The picking winner 4581 /// reg heuristic will often keep the formulae with the same Scale and 4582 /// ScaledReg and filter others, and we want to avoid that if possible. 4583 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4584 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4585 return; 4586 4587 LLVM_DEBUG( 4588 dbgs() << "The search space is too complex.\n" 4589 "Narrowing the search space by choosing the best Formula " 4590 "from the Formulae with the same Scale and ScaledReg.\n"); 4591 4592 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4593 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4594 4595 BestFormulaeTy BestFormulae; 4596 #ifndef NDEBUG 4597 bool ChangedFormulae = false; 4598 #endif 4599 DenseSet<const SCEV *> VisitedRegs; 4600 SmallPtrSet<const SCEV *, 16> Regs; 4601 4602 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4603 LSRUse &LU = Uses[LUIdx]; 4604 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4605 dbgs() << '\n'); 4606 4607 // Return true if Formula FA is better than Formula FB. 4608 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4609 // First we will try to choose the Formula with fewer new registers. 4610 // For a register used by current Formula, the more the register is 4611 // shared among LSRUses, the less we increase the register number 4612 // counter of the formula. 4613 size_t FARegNum = 0; 4614 for (const SCEV *Reg : FA.BaseRegs) { 4615 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4616 FARegNum += (NumUses - UsedByIndices.count() + 1); 4617 } 4618 size_t FBRegNum = 0; 4619 for (const SCEV *Reg : FB.BaseRegs) { 4620 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4621 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4622 } 4623 if (FARegNum != FBRegNum) 4624 return FARegNum < FBRegNum; 4625 4626 // If the new register numbers are the same, choose the Formula with 4627 // less Cost. 4628 Cost CostFA(L, SE, TTI); 4629 Cost CostFB(L, SE, TTI); 4630 Regs.clear(); 4631 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4632 Regs.clear(); 4633 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4634 return CostFA.isLess(CostFB); 4635 }; 4636 4637 bool Any = false; 4638 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4639 ++FIdx) { 4640 Formula &F = LU.Formulae[FIdx]; 4641 if (!F.ScaledReg) 4642 continue; 4643 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4644 if (P.second) 4645 continue; 4646 4647 Formula &Best = LU.Formulae[P.first->second]; 4648 if (IsBetterThan(F, Best)) 4649 std::swap(F, Best); 4650 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4651 dbgs() << "\n" 4652 " in favor of formula "; 4653 Best.print(dbgs()); dbgs() << '\n'); 4654 #ifndef NDEBUG 4655 ChangedFormulae = true; 4656 #endif 4657 LU.DeleteFormula(F); 4658 --FIdx; 4659 --NumForms; 4660 Any = true; 4661 } 4662 if (Any) 4663 LU.RecomputeRegs(LUIdx, RegUses); 4664 4665 // Reset this to prepare for the next use. 4666 BestFormulae.clear(); 4667 } 4668 4669 LLVM_DEBUG(if (ChangedFormulae) { 4670 dbgs() << "\n" 4671 "After filtering out undesirable candidates:\n"; 4672 print_uses(dbgs()); 4673 }); 4674 } 4675 4676 /// The function delete formulas with high registers number expectation. 4677 /// Assuming we don't know the value of each formula (already delete 4678 /// all inefficient), generate probability of not selecting for each 4679 /// register. 4680 /// For example, 4681 /// Use1: 4682 /// reg(a) + reg({0,+,1}) 4683 /// reg(a) + reg({-1,+,1}) + 1 4684 /// reg({a,+,1}) 4685 /// Use2: 4686 /// reg(b) + reg({0,+,1}) 4687 /// reg(b) + reg({-1,+,1}) + 1 4688 /// reg({b,+,1}) 4689 /// Use3: 4690 /// reg(c) + reg(b) + reg({0,+,1}) 4691 /// reg(c) + reg({b,+,1}) 4692 /// 4693 /// Probability of not selecting 4694 /// Use1 Use2 Use3 4695 /// reg(a) (1/3) * 1 * 1 4696 /// reg(b) 1 * (1/3) * (1/2) 4697 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4698 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4699 /// reg({a,+,1}) (2/3) * 1 * 1 4700 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4701 /// reg(c) 1 * 1 * 0 4702 /// 4703 /// Now count registers number mathematical expectation for each formula: 4704 /// Note that for each use we exclude probability if not selecting for the use. 4705 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4706 /// probabilty 1/3 of not selecting for Use1). 4707 /// Use1: 4708 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4709 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4710 /// reg({a,+,1}) 1 4711 /// Use2: 4712 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4713 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4714 /// reg({b,+,1}) 2/3 4715 /// Use3: 4716 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4717 /// reg(c) + reg({b,+,1}) 1 + 2/3 4718 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4719 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4720 return; 4721 // Ok, we have too many of formulae on our hands to conveniently handle. 4722 // Use a rough heuristic to thin out the list. 4723 4724 // Set of Regs wich will be 100% used in final solution. 4725 // Used in each formula of a solution (in example above this is reg(c)). 4726 // We can skip them in calculations. 4727 SmallPtrSet<const SCEV *, 4> UniqRegs; 4728 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4729 4730 // Map each register to probability of not selecting 4731 DenseMap <const SCEV *, float> RegNumMap; 4732 for (const SCEV *Reg : RegUses) { 4733 if (UniqRegs.count(Reg)) 4734 continue; 4735 float PNotSel = 1; 4736 for (const LSRUse &LU : Uses) { 4737 if (!LU.Regs.count(Reg)) 4738 continue; 4739 float P = LU.getNotSelectedProbability(Reg); 4740 if (P != 0.0) 4741 PNotSel *= P; 4742 else 4743 UniqRegs.insert(Reg); 4744 } 4745 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4746 } 4747 4748 LLVM_DEBUG( 4749 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4750 4751 // Delete formulas where registers number expectation is high. 4752 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4753 LSRUse &LU = Uses[LUIdx]; 4754 // If nothing to delete - continue. 4755 if (LU.Formulae.size() < 2) 4756 continue; 4757 // This is temporary solution to test performance. Float should be 4758 // replaced with round independent type (based on integers) to avoid 4759 // different results for different target builds. 4760 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4761 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4762 size_t MinIdx = 0; 4763 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4764 Formula &F = LU.Formulae[i]; 4765 float FRegNum = 0; 4766 float FARegNum = 0; 4767 for (const SCEV *BaseReg : F.BaseRegs) { 4768 if (UniqRegs.count(BaseReg)) 4769 continue; 4770 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4771 if (isa<SCEVAddRecExpr>(BaseReg)) 4772 FARegNum += 4773 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4774 } 4775 if (const SCEV *ScaledReg = F.ScaledReg) { 4776 if (!UniqRegs.count(ScaledReg)) { 4777 FRegNum += 4778 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4779 if (isa<SCEVAddRecExpr>(ScaledReg)) 4780 FARegNum += 4781 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4782 } 4783 } 4784 if (FMinRegNum > FRegNum || 4785 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4786 FMinRegNum = FRegNum; 4787 FMinARegNum = FARegNum; 4788 MinIdx = i; 4789 } 4790 } 4791 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4792 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4793 if (MinIdx != 0) 4794 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4795 while (LU.Formulae.size() != 1) { 4796 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4797 dbgs() << '\n'); 4798 LU.Formulae.pop_back(); 4799 } 4800 LU.RecomputeRegs(LUIdx, RegUses); 4801 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4802 Formula &F = LU.Formulae[0]; 4803 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4804 // When we choose the formula, the regs become unique. 4805 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4806 if (F.ScaledReg) 4807 UniqRegs.insert(F.ScaledReg); 4808 } 4809 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4810 } 4811 4812 /// Pick a register which seems likely to be profitable, and then in any use 4813 /// which has any reference to that register, delete all formulae which do not 4814 /// reference that register. 4815 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4816 // With all other options exhausted, loop until the system is simple 4817 // enough to handle. 4818 SmallPtrSet<const SCEV *, 4> Taken; 4819 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4820 // Ok, we have too many of formulae on our hands to conveniently handle. 4821 // Use a rough heuristic to thin out the list. 4822 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4823 4824 // Pick the register which is used by the most LSRUses, which is likely 4825 // to be a good reuse register candidate. 4826 const SCEV *Best = nullptr; 4827 unsigned BestNum = 0; 4828 for (const SCEV *Reg : RegUses) { 4829 if (Taken.count(Reg)) 4830 continue; 4831 if (!Best) { 4832 Best = Reg; 4833 BestNum = RegUses.getUsedByIndices(Reg).count(); 4834 } else { 4835 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4836 if (Count > BestNum) { 4837 Best = Reg; 4838 BestNum = Count; 4839 } 4840 } 4841 } 4842 assert(Best && "Failed to find best LSRUse candidate"); 4843 4844 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4845 << " will yield profitable reuse.\n"); 4846 Taken.insert(Best); 4847 4848 // In any use with formulae which references this register, delete formulae 4849 // which don't reference it. 4850 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4851 LSRUse &LU = Uses[LUIdx]; 4852 if (!LU.Regs.count(Best)) continue; 4853 4854 bool Any = false; 4855 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4856 Formula &F = LU.Formulae[i]; 4857 if (!F.referencesReg(Best)) { 4858 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4859 LU.DeleteFormula(F); 4860 --e; 4861 --i; 4862 Any = true; 4863 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4864 continue; 4865 } 4866 } 4867 4868 if (Any) 4869 LU.RecomputeRegs(LUIdx, RegUses); 4870 } 4871 4872 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4873 } 4874 } 4875 4876 /// If there are an extraordinary number of formulae to choose from, use some 4877 /// rough heuristics to prune down the number of formulae. This keeps the main 4878 /// solver from taking an extraordinary amount of time in some worst-case 4879 /// scenarios. 4880 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4881 NarrowSearchSpaceByDetectingSupersets(); 4882 NarrowSearchSpaceByCollapsingUnrolledCode(); 4883 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4884 if (FilterSameScaledReg) 4885 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4886 if (LSRExpNarrow) 4887 NarrowSearchSpaceByDeletingCostlyFormulas(); 4888 else 4889 NarrowSearchSpaceByPickingWinnerRegs(); 4890 } 4891 4892 /// This is the recursive solver. 4893 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4894 Cost &SolutionCost, 4895 SmallVectorImpl<const Formula *> &Workspace, 4896 const Cost &CurCost, 4897 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4898 DenseSet<const SCEV *> &VisitedRegs) const { 4899 // Some ideas: 4900 // - prune more: 4901 // - use more aggressive filtering 4902 // - sort the formula so that the most profitable solutions are found first 4903 // - sort the uses too 4904 // - search faster: 4905 // - don't compute a cost, and then compare. compare while computing a cost 4906 // and bail early. 4907 // - track register sets with SmallBitVector 4908 4909 const LSRUse &LU = Uses[Workspace.size()]; 4910 4911 // If this use references any register that's already a part of the 4912 // in-progress solution, consider it a requirement that a formula must 4913 // reference that register in order to be considered. This prunes out 4914 // unprofitable searching. 4915 SmallSetVector<const SCEV *, 4> ReqRegs; 4916 for (const SCEV *S : CurRegs) 4917 if (LU.Regs.count(S)) 4918 ReqRegs.insert(S); 4919 4920 SmallPtrSet<const SCEV *, 16> NewRegs; 4921 Cost NewCost(L, SE, TTI); 4922 for (const Formula &F : LU.Formulae) { 4923 // Ignore formulae which may not be ideal in terms of register reuse of 4924 // ReqRegs. The formula should use all required registers before 4925 // introducing new ones. 4926 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4927 for (const SCEV *Reg : ReqRegs) { 4928 if ((F.ScaledReg && F.ScaledReg == Reg) || 4929 is_contained(F.BaseRegs, Reg)) { 4930 --NumReqRegsToFind; 4931 if (NumReqRegsToFind == 0) 4932 break; 4933 } 4934 } 4935 if (NumReqRegsToFind != 0) { 4936 // If none of the formulae satisfied the required registers, then we could 4937 // clear ReqRegs and try again. Currently, we simply give up in this case. 4938 continue; 4939 } 4940 4941 // Evaluate the cost of the current formula. If it's already worse than 4942 // the current best, prune the search at that point. 4943 NewCost = CurCost; 4944 NewRegs = CurRegs; 4945 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4946 if (NewCost.isLess(SolutionCost)) { 4947 Workspace.push_back(&F); 4948 if (Workspace.size() != Uses.size()) { 4949 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4950 NewRegs, VisitedRegs); 4951 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4952 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4953 } else { 4954 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4955 dbgs() << ".\nRegs:\n"; 4956 for (const SCEV *S : NewRegs) dbgs() 4957 << "- " << *S << "\n"; 4958 dbgs() << '\n'); 4959 4960 SolutionCost = NewCost; 4961 Solution = Workspace; 4962 } 4963 Workspace.pop_back(); 4964 } 4965 } 4966 } 4967 4968 /// Choose one formula from each use. Return the results in the given Solution 4969 /// vector. 4970 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4971 SmallVector<const Formula *, 8> Workspace; 4972 Cost SolutionCost(L, SE, TTI); 4973 SolutionCost.Lose(); 4974 Cost CurCost(L, SE, TTI); 4975 SmallPtrSet<const SCEV *, 16> CurRegs; 4976 DenseSet<const SCEV *> VisitedRegs; 4977 Workspace.reserve(Uses.size()); 4978 4979 // SolveRecurse does all the work. 4980 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4981 CurRegs, VisitedRegs); 4982 if (Solution.empty()) { 4983 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4984 return; 4985 } 4986 4987 // Ok, we've now made all our decisions. 4988 LLVM_DEBUG(dbgs() << "\n" 4989 "The chosen solution requires "; 4990 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4991 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4992 dbgs() << " "; 4993 Uses[i].print(dbgs()); 4994 dbgs() << "\n" 4995 " "; 4996 Solution[i]->print(dbgs()); 4997 dbgs() << '\n'; 4998 }); 4999 5000 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5001 } 5002 5003 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5004 /// we can go while still being dominated by the input positions. This helps 5005 /// canonicalize the insert position, which encourages sharing. 5006 BasicBlock::iterator 5007 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5008 const SmallVectorImpl<Instruction *> &Inputs) 5009 const { 5010 Instruction *Tentative = &*IP; 5011 while (true) { 5012 bool AllDominate = true; 5013 Instruction *BetterPos = nullptr; 5014 // Don't bother attempting to insert before a catchswitch, their basic block 5015 // cannot have other non-PHI instructions. 5016 if (isa<CatchSwitchInst>(Tentative)) 5017 return IP; 5018 5019 for (Instruction *Inst : Inputs) { 5020 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5021 AllDominate = false; 5022 break; 5023 } 5024 // Attempt to find an insert position in the middle of the block, 5025 // instead of at the end, so that it can be used for other expansions. 5026 if (Tentative->getParent() == Inst->getParent() && 5027 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5028 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5029 } 5030 if (!AllDominate) 5031 break; 5032 if (BetterPos) 5033 IP = BetterPos->getIterator(); 5034 else 5035 IP = Tentative->getIterator(); 5036 5037 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5038 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5039 5040 BasicBlock *IDom; 5041 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5042 if (!Rung) return IP; 5043 Rung = Rung->getIDom(); 5044 if (!Rung) return IP; 5045 IDom = Rung->getBlock(); 5046 5047 // Don't climb into a loop though. 5048 const Loop *IDomLoop = LI.getLoopFor(IDom); 5049 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5050 if (IDomDepth <= IPLoopDepth && 5051 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5052 break; 5053 } 5054 5055 Tentative = IDom->getTerminator(); 5056 } 5057 5058 return IP; 5059 } 5060 5061 /// Determine an input position which will be dominated by the operands and 5062 /// which will dominate the result. 5063 BasicBlock::iterator 5064 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5065 const LSRFixup &LF, 5066 const LSRUse &LU, 5067 SCEVExpander &Rewriter) const { 5068 // Collect some instructions which must be dominated by the 5069 // expanding replacement. These must be dominated by any operands that 5070 // will be required in the expansion. 5071 SmallVector<Instruction *, 4> Inputs; 5072 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5073 Inputs.push_back(I); 5074 if (LU.Kind == LSRUse::ICmpZero) 5075 if (Instruction *I = 5076 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5077 Inputs.push_back(I); 5078 if (LF.PostIncLoops.count(L)) { 5079 if (LF.isUseFullyOutsideLoop(L)) 5080 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5081 else 5082 Inputs.push_back(IVIncInsertPos); 5083 } 5084 // The expansion must also be dominated by the increment positions of any 5085 // loops it for which it is using post-inc mode. 5086 for (const Loop *PIL : LF.PostIncLoops) { 5087 if (PIL == L) continue; 5088 5089 // Be dominated by the loop exit. 5090 SmallVector<BasicBlock *, 4> ExitingBlocks; 5091 PIL->getExitingBlocks(ExitingBlocks); 5092 if (!ExitingBlocks.empty()) { 5093 BasicBlock *BB = ExitingBlocks[0]; 5094 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5095 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5096 Inputs.push_back(BB->getTerminator()); 5097 } 5098 } 5099 5100 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5101 && !isa<DbgInfoIntrinsic>(LowestIP) && 5102 "Insertion point must be a normal instruction"); 5103 5104 // Then, climb up the immediate dominator tree as far as we can go while 5105 // still being dominated by the input positions. 5106 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5107 5108 // Don't insert instructions before PHI nodes. 5109 while (isa<PHINode>(IP)) ++IP; 5110 5111 // Ignore landingpad instructions. 5112 while (IP->isEHPad()) ++IP; 5113 5114 // Ignore debug intrinsics. 5115 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5116 5117 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5118 // IP consistent across expansions and allows the previously inserted 5119 // instructions to be reused by subsequent expansion. 5120 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5121 ++IP; 5122 5123 return IP; 5124 } 5125 5126 /// Emit instructions for the leading candidate expression for this LSRUse (this 5127 /// is called "expanding"). 5128 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5129 const Formula &F, BasicBlock::iterator IP, 5130 SCEVExpander &Rewriter, 5131 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5132 if (LU.RigidFormula) 5133 return LF.OperandValToReplace; 5134 5135 // Determine an input position which will be dominated by the operands and 5136 // which will dominate the result. 5137 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5138 Rewriter.setInsertPoint(&*IP); 5139 5140 // Inform the Rewriter if we have a post-increment use, so that it can 5141 // perform an advantageous expansion. 5142 Rewriter.setPostInc(LF.PostIncLoops); 5143 5144 // This is the type that the user actually needs. 5145 Type *OpTy = LF.OperandValToReplace->getType(); 5146 // This will be the type that we'll initially expand to. 5147 Type *Ty = F.getType(); 5148 if (!Ty) 5149 // No type known; just expand directly to the ultimate type. 5150 Ty = OpTy; 5151 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5152 // Expand directly to the ultimate type if it's the right size. 5153 Ty = OpTy; 5154 // This is the type to do integer arithmetic in. 5155 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5156 5157 // Build up a list of operands to add together to form the full base. 5158 SmallVector<const SCEV *, 8> Ops; 5159 5160 // Expand the BaseRegs portion. 5161 for (const SCEV *Reg : F.BaseRegs) { 5162 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5163 5164 // If we're expanding for a post-inc user, make the post-inc adjustment. 5165 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5166 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5167 } 5168 5169 // Expand the ScaledReg portion. 5170 Value *ICmpScaledV = nullptr; 5171 if (F.Scale != 0) { 5172 const SCEV *ScaledS = F.ScaledReg; 5173 5174 // If we're expanding for a post-inc user, make the post-inc adjustment. 5175 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5176 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5177 5178 if (LU.Kind == LSRUse::ICmpZero) { 5179 // Expand ScaleReg as if it was part of the base regs. 5180 if (F.Scale == 1) 5181 Ops.push_back( 5182 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5183 else { 5184 // An interesting way of "folding" with an icmp is to use a negated 5185 // scale, which we'll implement by inserting it into the other operand 5186 // of the icmp. 5187 assert(F.Scale == -1 && 5188 "The only scale supported by ICmpZero uses is -1!"); 5189 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5190 } 5191 } else { 5192 // Otherwise just expand the scaled register and an explicit scale, 5193 // which is expected to be matched as part of the address. 5194 5195 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5196 // Unless the addressing mode will not be folded. 5197 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5198 isAMCompletelyFolded(TTI, LU, F)) { 5199 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5200 Ops.clear(); 5201 Ops.push_back(SE.getUnknown(FullV)); 5202 } 5203 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5204 if (F.Scale != 1) 5205 ScaledS = 5206 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5207 Ops.push_back(ScaledS); 5208 } 5209 } 5210 5211 // Expand the GV portion. 5212 if (F.BaseGV) { 5213 // Flush the operand list to suppress SCEVExpander hoisting. 5214 if (!Ops.empty()) { 5215 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5216 Ops.clear(); 5217 Ops.push_back(SE.getUnknown(FullV)); 5218 } 5219 Ops.push_back(SE.getUnknown(F.BaseGV)); 5220 } 5221 5222 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5223 // unfolded offsets. LSR assumes they both live next to their uses. 5224 if (!Ops.empty()) { 5225 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5226 Ops.clear(); 5227 Ops.push_back(SE.getUnknown(FullV)); 5228 } 5229 5230 // Expand the immediate portion. 5231 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5232 if (Offset != 0) { 5233 if (LU.Kind == LSRUse::ICmpZero) { 5234 // The other interesting way of "folding" with an ICmpZero is to use a 5235 // negated immediate. 5236 if (!ICmpScaledV) 5237 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5238 else { 5239 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5240 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5241 } 5242 } else { 5243 // Just add the immediate values. These again are expected to be matched 5244 // as part of the address. 5245 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5246 } 5247 } 5248 5249 // Expand the unfolded offset portion. 5250 int64_t UnfoldedOffset = F.UnfoldedOffset; 5251 if (UnfoldedOffset != 0) { 5252 // Just add the immediate values. 5253 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5254 UnfoldedOffset))); 5255 } 5256 5257 // Emit instructions summing all the operands. 5258 const SCEV *FullS = Ops.empty() ? 5259 SE.getConstant(IntTy, 0) : 5260 SE.getAddExpr(Ops); 5261 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5262 5263 // We're done expanding now, so reset the rewriter. 5264 Rewriter.clearPostInc(); 5265 5266 // An ICmpZero Formula represents an ICmp which we're handling as a 5267 // comparison against zero. Now that we've expanded an expression for that 5268 // form, update the ICmp's other operand. 5269 if (LU.Kind == LSRUse::ICmpZero) { 5270 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5271 DeadInsts.emplace_back(CI->getOperand(1)); 5272 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5273 "a scale at the same time!"); 5274 if (F.Scale == -1) { 5275 if (ICmpScaledV->getType() != OpTy) { 5276 Instruction *Cast = 5277 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5278 OpTy, false), 5279 ICmpScaledV, OpTy, "tmp", CI); 5280 ICmpScaledV = Cast; 5281 } 5282 CI->setOperand(1, ICmpScaledV); 5283 } else { 5284 // A scale of 1 means that the scale has been expanded as part of the 5285 // base regs. 5286 assert((F.Scale == 0 || F.Scale == 1) && 5287 "ICmp does not support folding a global value and " 5288 "a scale at the same time!"); 5289 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5290 -(uint64_t)Offset); 5291 if (C->getType() != OpTy) 5292 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5293 OpTy, false), 5294 C, OpTy); 5295 5296 CI->setOperand(1, C); 5297 } 5298 } 5299 5300 return FullV; 5301 } 5302 5303 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5304 /// effectively happens in their predecessor blocks, so the expression may need 5305 /// to be expanded in multiple places. 5306 void LSRInstance::RewriteForPHI( 5307 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5308 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5309 DenseMap<BasicBlock *, Value *> Inserted; 5310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5311 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5312 bool needUpdateFixups = false; 5313 BasicBlock *BB = PN->getIncomingBlock(i); 5314 5315 // If this is a critical edge, split the edge so that we do not insert 5316 // the code on all predecessor/successor paths. We do this unless this 5317 // is the canonical backedge for this loop, which complicates post-inc 5318 // users. 5319 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5320 !isa<IndirectBrInst>(BB->getTerminator()) && 5321 !isa<CatchSwitchInst>(BB->getTerminator())) { 5322 BasicBlock *Parent = PN->getParent(); 5323 Loop *PNLoop = LI.getLoopFor(Parent); 5324 if (!PNLoop || Parent != PNLoop->getHeader()) { 5325 // Split the critical edge. 5326 BasicBlock *NewBB = nullptr; 5327 if (!Parent->isLandingPad()) { 5328 NewBB = SplitCriticalEdge(BB, Parent, 5329 CriticalEdgeSplittingOptions(&DT, &LI) 5330 .setMergeIdenticalEdges() 5331 .setKeepOneInputPHIs()); 5332 } else { 5333 SmallVector<BasicBlock*, 2> NewBBs; 5334 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5335 NewBB = NewBBs[0]; 5336 } 5337 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5338 // phi predecessors are identical. The simple thing to do is skip 5339 // splitting in this case rather than complicate the API. 5340 if (NewBB) { 5341 // If PN is outside of the loop and BB is in the loop, we want to 5342 // move the block to be immediately before the PHI block, not 5343 // immediately after BB. 5344 if (L->contains(BB) && !L->contains(PN)) 5345 NewBB->moveBefore(PN->getParent()); 5346 5347 // Splitting the edge can reduce the number of PHI entries we have. 5348 e = PN->getNumIncomingValues(); 5349 BB = NewBB; 5350 i = PN->getBasicBlockIndex(BB); 5351 5352 needUpdateFixups = true; 5353 } 5354 } 5355 } 5356 5357 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5358 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5359 if (!Pair.second) 5360 PN->setIncomingValue(i, Pair.first->second); 5361 else { 5362 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5363 Rewriter, DeadInsts); 5364 5365 // If this is reuse-by-noop-cast, insert the noop cast. 5366 Type *OpTy = LF.OperandValToReplace->getType(); 5367 if (FullV->getType() != OpTy) 5368 FullV = 5369 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5370 OpTy, false), 5371 FullV, LF.OperandValToReplace->getType(), 5372 "tmp", BB->getTerminator()); 5373 5374 PN->setIncomingValue(i, FullV); 5375 Pair.first->second = FullV; 5376 } 5377 5378 // If LSR splits critical edge and phi node has other pending 5379 // fixup operands, we need to update those pending fixups. Otherwise 5380 // formulae will not be implemented completely and some instructions 5381 // will not be eliminated. 5382 if (needUpdateFixups) { 5383 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5384 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5385 // If fixup is supposed to rewrite some operand in the phi 5386 // that was just updated, it may be already moved to 5387 // another phi node. Such fixup requires update. 5388 if (Fixup.UserInst == PN) { 5389 // Check if the operand we try to replace still exists in the 5390 // original phi. 5391 bool foundInOriginalPHI = false; 5392 for (const auto &val : PN->incoming_values()) 5393 if (val == Fixup.OperandValToReplace) { 5394 foundInOriginalPHI = true; 5395 break; 5396 } 5397 5398 // If fixup operand found in original PHI - nothing to do. 5399 if (foundInOriginalPHI) 5400 continue; 5401 5402 // Otherwise it might be moved to another PHI and requires update. 5403 // If fixup operand not found in any of the incoming blocks that 5404 // means we have already rewritten it - nothing to do. 5405 for (const auto &Block : PN->blocks()) 5406 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5407 ++I) { 5408 PHINode *NewPN = cast<PHINode>(I); 5409 for (const auto &val : NewPN->incoming_values()) 5410 if (val == Fixup.OperandValToReplace) 5411 Fixup.UserInst = NewPN; 5412 } 5413 } 5414 } 5415 } 5416 } 5417 5418 /// Emit instructions for the leading candidate expression for this LSRUse (this 5419 /// is called "expanding"), and update the UserInst to reference the newly 5420 /// expanded value. 5421 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5422 const Formula &F, SCEVExpander &Rewriter, 5423 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5424 // First, find an insertion point that dominates UserInst. For PHI nodes, 5425 // find the nearest block which dominates all the relevant uses. 5426 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5427 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5428 } else { 5429 Value *FullV = 5430 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5431 5432 // If this is reuse-by-noop-cast, insert the noop cast. 5433 Type *OpTy = LF.OperandValToReplace->getType(); 5434 if (FullV->getType() != OpTy) { 5435 Instruction *Cast = 5436 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5437 FullV, OpTy, "tmp", LF.UserInst); 5438 FullV = Cast; 5439 } 5440 5441 // Update the user. ICmpZero is handled specially here (for now) because 5442 // Expand may have updated one of the operands of the icmp already, and 5443 // its new value may happen to be equal to LF.OperandValToReplace, in 5444 // which case doing replaceUsesOfWith leads to replacing both operands 5445 // with the same value. TODO: Reorganize this. 5446 if (LU.Kind == LSRUse::ICmpZero) 5447 LF.UserInst->setOperand(0, FullV); 5448 else 5449 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5450 } 5451 5452 DeadInsts.emplace_back(LF.OperandValToReplace); 5453 } 5454 5455 /// Rewrite all the fixup locations with new values, following the chosen 5456 /// solution. 5457 void LSRInstance::ImplementSolution( 5458 const SmallVectorImpl<const Formula *> &Solution) { 5459 // Keep track of instructions we may have made dead, so that 5460 // we can remove them after we are done working. 5461 SmallVector<WeakTrackingVH, 16> DeadInsts; 5462 5463 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5464 "lsr"); 5465 #ifndef NDEBUG 5466 Rewriter.setDebugType(DEBUG_TYPE); 5467 #endif 5468 Rewriter.disableCanonicalMode(); 5469 Rewriter.enableLSRMode(); 5470 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5471 5472 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5473 for (const IVChain &Chain : IVChainVec) { 5474 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5475 Rewriter.setChainedPhi(PN); 5476 } 5477 5478 // Expand the new value definitions and update the users. 5479 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5480 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5481 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5482 Changed = true; 5483 } 5484 5485 for (const IVChain &Chain : IVChainVec) { 5486 GenerateIVChain(Chain, Rewriter, DeadInsts); 5487 Changed = true; 5488 } 5489 // Clean up after ourselves. This must be done before deleting any 5490 // instructions. 5491 Rewriter.clear(); 5492 5493 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5494 } 5495 5496 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5497 DominatorTree &DT, LoopInfo &LI, 5498 const TargetTransformInfo &TTI, AssumptionCache &AC, 5499 TargetLibraryInfo &LibInfo) 5500 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L), 5501 FavorBackedgeIndex(EnableBackedgeIndexing && 5502 TTI.shouldFavorBackedgeIndex(L)) { 5503 // If LoopSimplify form is not available, stay out of trouble. 5504 if (!L->isLoopSimplifyForm()) 5505 return; 5506 5507 // If there's no interesting work to be done, bail early. 5508 if (IU.empty()) return; 5509 5510 // If there's too much analysis to be done, bail early. We won't be able to 5511 // model the problem anyway. 5512 unsigned NumUsers = 0; 5513 for (const IVStrideUse &U : IU) { 5514 if (++NumUsers > MaxIVUsers) { 5515 (void)U; 5516 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5517 << "\n"); 5518 return; 5519 } 5520 // Bail out if we have a PHI on an EHPad that gets a value from a 5521 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5522 // no good place to stick any instructions. 5523 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5524 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5525 if (isa<FuncletPadInst>(FirstNonPHI) || 5526 isa<CatchSwitchInst>(FirstNonPHI)) 5527 for (BasicBlock *PredBB : PN->blocks()) 5528 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5529 return; 5530 } 5531 } 5532 5533 #ifndef NDEBUG 5534 // All dominating loops must have preheaders, or SCEVExpander may not be able 5535 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5536 // 5537 // IVUsers analysis should only create users that are dominated by simple loop 5538 // headers. Since this loop should dominate all of its users, its user list 5539 // should be empty if this loop itself is not within a simple loop nest. 5540 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5541 Rung; Rung = Rung->getIDom()) { 5542 BasicBlock *BB = Rung->getBlock(); 5543 const Loop *DomLoop = LI.getLoopFor(BB); 5544 if (DomLoop && DomLoop->getHeader() == BB) { 5545 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5546 } 5547 } 5548 #endif // DEBUG 5549 5550 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5551 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5552 dbgs() << ":\n"); 5553 5554 // First, perform some low-level loop optimizations. 5555 OptimizeShadowIV(); 5556 OptimizeLoopTermCond(); 5557 5558 // If loop preparation eliminates all interesting IV users, bail. 5559 if (IU.empty()) return; 5560 5561 // Skip nested loops until we can model them better with formulae. 5562 if (!L->empty()) { 5563 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5564 return; 5565 } 5566 5567 // Start collecting data and preparing for the solver. 5568 CollectChains(); 5569 CollectInterestingTypesAndFactors(); 5570 CollectFixupsAndInitialFormulae(); 5571 CollectLoopInvariantFixupsAndFormulae(); 5572 5573 if (Uses.empty()) 5574 return; 5575 5576 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5577 print_uses(dbgs())); 5578 5579 // Now use the reuse data to generate a bunch of interesting ways 5580 // to formulate the values needed for the uses. 5581 GenerateAllReuseFormulae(); 5582 5583 FilterOutUndesirableDedicatedRegisters(); 5584 NarrowSearchSpaceUsingHeuristics(); 5585 5586 SmallVector<const Formula *, 8> Solution; 5587 Solve(Solution); 5588 5589 // Release memory that is no longer needed. 5590 Factors.clear(); 5591 Types.clear(); 5592 RegUses.clear(); 5593 5594 if (Solution.empty()) 5595 return; 5596 5597 #ifndef NDEBUG 5598 // Formulae should be legal. 5599 for (const LSRUse &LU : Uses) { 5600 for (const Formula &F : LU.Formulae) 5601 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5602 F) && "Illegal formula generated!"); 5603 }; 5604 #endif 5605 5606 // Now that we've decided what we want, make it so. 5607 ImplementSolution(Solution); 5608 } 5609 5610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5611 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5612 if (Factors.empty() && Types.empty()) return; 5613 5614 OS << "LSR has identified the following interesting factors and types: "; 5615 bool First = true; 5616 5617 for (int64_t Factor : Factors) { 5618 if (!First) OS << ", "; 5619 First = false; 5620 OS << '*' << Factor; 5621 } 5622 5623 for (Type *Ty : Types) { 5624 if (!First) OS << ", "; 5625 First = false; 5626 OS << '(' << *Ty << ')'; 5627 } 5628 OS << '\n'; 5629 } 5630 5631 void LSRInstance::print_fixups(raw_ostream &OS) const { 5632 OS << "LSR is examining the following fixup sites:\n"; 5633 for (const LSRUse &LU : Uses) 5634 for (const LSRFixup &LF : LU.Fixups) { 5635 dbgs() << " "; 5636 LF.print(OS); 5637 OS << '\n'; 5638 } 5639 } 5640 5641 void LSRInstance::print_uses(raw_ostream &OS) const { 5642 OS << "LSR is examining the following uses:\n"; 5643 for (const LSRUse &LU : Uses) { 5644 dbgs() << " "; 5645 LU.print(OS); 5646 OS << '\n'; 5647 for (const Formula &F : LU.Formulae) { 5648 OS << " "; 5649 F.print(OS); 5650 OS << '\n'; 5651 } 5652 } 5653 } 5654 5655 void LSRInstance::print(raw_ostream &OS) const { 5656 print_factors_and_types(OS); 5657 print_fixups(OS); 5658 print_uses(OS); 5659 } 5660 5661 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5662 print(errs()); errs() << '\n'; 5663 } 5664 #endif 5665 5666 namespace { 5667 5668 class LoopStrengthReduce : public LoopPass { 5669 public: 5670 static char ID; // Pass ID, replacement for typeid 5671 5672 LoopStrengthReduce(); 5673 5674 private: 5675 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5676 void getAnalysisUsage(AnalysisUsage &AU) const override; 5677 }; 5678 5679 } // end anonymous namespace 5680 5681 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5682 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5683 } 5684 5685 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5686 // We split critical edges, so we change the CFG. However, we do update 5687 // many analyses if they are around. 5688 AU.addPreservedID(LoopSimplifyID); 5689 5690 AU.addRequired<LoopInfoWrapperPass>(); 5691 AU.addPreserved<LoopInfoWrapperPass>(); 5692 AU.addRequiredID(LoopSimplifyID); 5693 AU.addRequired<DominatorTreeWrapperPass>(); 5694 AU.addPreserved<DominatorTreeWrapperPass>(); 5695 AU.addRequired<ScalarEvolutionWrapperPass>(); 5696 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5697 AU.addRequired<AssumptionCacheTracker>(); 5698 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5699 // Requiring LoopSimplify a second time here prevents IVUsers from running 5700 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5701 AU.addRequiredID(LoopSimplifyID); 5702 AU.addRequired<IVUsersWrapperPass>(); 5703 AU.addPreserved<IVUsersWrapperPass>(); 5704 AU.addRequired<TargetTransformInfoWrapperPass>(); 5705 } 5706 5707 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5708 DominatorTree &DT, LoopInfo &LI, 5709 const TargetTransformInfo &TTI, 5710 AssumptionCache &AC, 5711 TargetLibraryInfo &LibInfo) { 5712 5713 bool Changed = false; 5714 5715 // Run the main LSR transformation. 5716 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged(); 5717 5718 // Remove any extra phis created by processing inner loops. 5719 Changed |= DeleteDeadPHIs(L->getHeader()); 5720 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5721 SmallVector<WeakTrackingVH, 16> DeadInsts; 5722 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5723 SCEVExpander Rewriter(SE, DL, "lsr"); 5724 #ifndef NDEBUG 5725 Rewriter.setDebugType(DEBUG_TYPE); 5726 #endif 5727 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5728 if (numFolded) { 5729 Changed = true; 5730 DeleteTriviallyDeadInstructions(DeadInsts); 5731 DeleteDeadPHIs(L->getHeader()); 5732 } 5733 } 5734 return Changed; 5735 } 5736 5737 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5738 if (skipLoop(L)) 5739 return false; 5740 5741 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5742 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5743 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5744 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5745 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5746 *L->getHeader()->getParent()); 5747 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5748 *L->getHeader()->getParent()); 5749 auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5750 *L->getHeader()->getParent()); 5751 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo); 5752 } 5753 5754 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5755 LoopStandardAnalysisResults &AR, 5756 LPMUpdater &) { 5757 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5758 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI)) 5759 return PreservedAnalyses::all(); 5760 5761 return getLoopPassPreservedAnalyses(); 5762 } 5763 5764 char LoopStrengthReduce::ID = 0; 5765 5766 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5767 "Loop Strength Reduction", false, false) 5768 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5770 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5771 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5772 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5773 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5774 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5775 "Loop Strength Reduction", false, false) 5776 5777 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5778