1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass does the inverse transformation of what LICM does. 10 // It traverses all of the instructions in the loop's preheader and sinks 11 // them to the loop body where frequency is lower than the loop's preheader. 12 // This pass is a reverse-transformation of LICM. It differs from the Sink 13 // pass in the following ways: 14 // 15 // * It only handles sinking of instructions from the loop's preheader to the 16 // loop's body 17 // * It uses alias set tracker to get more accurate alias info 18 // * It uses block frequency info to find the optimal sinking locations 19 // 20 // Overall algorithm: 21 // 22 // For I in Preheader: 23 // InsertBBs = BBs that uses I 24 // For BB in sorted(LoopBBs): 25 // DomBBs = BBs in InsertBBs that are dominated by BB 26 // if freq(DomBBs) > freq(BB) 27 // InsertBBs = UseBBs - DomBBs + BB 28 // For BB in InsertBBs: 29 // Insert I at BB's beginning 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "llvm/Transforms/Scalar/LoopSink.h" 34 #include "llvm/ADT/SetOperations.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/BlockFrequencyInfo.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/MemorySSA.h" 41 #include "llvm/Analysis/MemorySSAUpdater.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Transforms/Scalar.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "loopsink" 54 55 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); 56 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); 57 58 static cl::opt<unsigned> SinkFrequencyPercentThreshold( 59 "sink-freq-percent-threshold", cl::Hidden, cl::init(90), 60 cl::desc("Do not sink instructions that require cloning unless they " 61 "execute less than this percent of the time.")); 62 63 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( 64 "max-uses-for-sinking", cl::Hidden, cl::init(30), 65 cl::desc("Do not sink instructions that have too many uses.")); 66 67 /// Return adjusted total frequency of \p BBs. 68 /// 69 /// * If there is only one BB, sinking instruction will not introduce code 70 /// size increase. Thus there is no need to adjust the frequency. 71 /// * If there are more than one BB, sinking would lead to code size increase. 72 /// In this case, we add some "tax" to the total frequency to make it harder 73 /// to sink. E.g. 74 /// Freq(Preheader) = 100 75 /// Freq(BBs) = sum(50, 49) = 99 76 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to 77 /// BBs as the difference is too small to justify the code size increase. 78 /// To model this, The adjusted Freq(BBs) will be: 79 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% 80 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, 81 BlockFrequencyInfo &BFI) { 82 BlockFrequency T = 0; 83 for (BasicBlock *B : BBs) 84 T += BFI.getBlockFreq(B); 85 if (BBs.size() > 1) 86 T /= BranchProbability(SinkFrequencyPercentThreshold, 100); 87 return T; 88 } 89 90 /// Return a set of basic blocks to insert sinked instructions. 91 /// 92 /// The returned set of basic blocks (BBsToSinkInto) should satisfy: 93 /// 94 /// * Inside the loop \p L 95 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto 96 /// that domintates the UseBB 97 /// * Has minimum total frequency that is no greater than preheader frequency 98 /// 99 /// The purpose of the function is to find the optimal sinking points to 100 /// minimize execution cost, which is defined as "sum of frequency of 101 /// BBsToSinkInto". 102 /// As a result, the returned BBsToSinkInto needs to have minimum total 103 /// frequency. 104 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader 105 /// frequency, the optimal solution is not sinking (return empty set). 106 /// 107 /// \p ColdLoopBBs is used to help find the optimal sinking locations. 108 /// It stores a list of BBs that is: 109 /// 110 /// * Inside the loop \p L 111 /// * Has a frequency no larger than the loop's preheader 112 /// * Sorted by BB frequency 113 /// 114 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). 115 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its 116 /// caller. 117 static SmallPtrSet<BasicBlock *, 2> 118 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, 119 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, 120 DominatorTree &DT, BlockFrequencyInfo &BFI) { 121 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; 122 if (UseBBs.size() == 0) 123 return BBsToSinkInto; 124 125 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); 126 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; 127 128 // For every iteration: 129 // * Pick the ColdestBB from ColdLoopBBs 130 // * Find the set BBsDominatedByColdestBB that satisfy: 131 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto 132 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB 133 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove 134 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to 135 // BBsToSinkInto 136 for (BasicBlock *ColdestBB : ColdLoopBBs) { 137 BBsDominatedByColdestBB.clear(); 138 for (BasicBlock *SinkedBB : BBsToSinkInto) 139 if (DT.dominates(ColdestBB, SinkedBB)) 140 BBsDominatedByColdestBB.insert(SinkedBB); 141 if (BBsDominatedByColdestBB.size() == 0) 142 continue; 143 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > 144 BFI.getBlockFreq(ColdestBB)) { 145 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { 146 BBsToSinkInto.erase(DominatedBB); 147 } 148 BBsToSinkInto.insert(ColdestBB); 149 } 150 } 151 152 // Can't sink into blocks that have no valid insertion point. 153 for (BasicBlock *BB : BBsToSinkInto) { 154 if (BB->getFirstInsertionPt() == BB->end()) { 155 BBsToSinkInto.clear(); 156 break; 157 } 158 } 159 160 // If the total frequency of BBsToSinkInto is larger than preheader frequency, 161 // do not sink. 162 if (adjustedSumFreq(BBsToSinkInto, BFI) > 163 BFI.getBlockFreq(L.getLoopPreheader())) 164 BBsToSinkInto.clear(); 165 return BBsToSinkInto; 166 } 167 168 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if 169 // sinking is successful. 170 // \p LoopBlockNumber is used to sort the insertion blocks to ensure 171 // determinism. 172 static bool sinkInstruction( 173 Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, 174 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI, 175 DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) { 176 // Compute the set of blocks in loop L which contain a use of I. 177 SmallPtrSet<BasicBlock *, 2> BBs; 178 for (auto &U : I.uses()) { 179 Instruction *UI = cast<Instruction>(U.getUser()); 180 // We cannot sink I to PHI-uses. 181 if (isa<PHINode>(UI)) 182 return false; 183 // We cannot sink I if it has uses outside of the loop. 184 if (!L.contains(LI.getLoopFor(UI->getParent()))) 185 return false; 186 BBs.insert(UI->getParent()); 187 } 188 189 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max 190 // BBs.size() to avoid expensive computation. 191 // FIXME: Handle code size growth for min_size and opt_size. 192 if (BBs.size() > MaxNumberOfUseBBsForSinking) 193 return false; 194 195 // Find the set of BBs that we should insert a copy of I. 196 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = 197 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); 198 if (BBsToSinkInto.empty()) 199 return false; 200 201 // Return if any of the candidate blocks to sink into is non-cold. 202 if (BBsToSinkInto.size() > 1 && 203 !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber)) 204 return false; 205 206 // Copy the final BBs into a vector and sort them using the total ordering 207 // of the loop block numbers as iterating the set doesn't give a useful 208 // order. No need to stable sort as the block numbers are a total ordering. 209 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; 210 llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto); 211 llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) { 212 return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second; 213 }); 214 215 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); 216 // FIXME: Optimize the efficiency for cloned value replacement. The current 217 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). 218 for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) { 219 assert(LoopBlockNumber.find(N)->second > 220 LoopBlockNumber.find(MoveBB)->second && 221 "BBs not sorted!"); 222 // Clone I and replace its uses. 223 Instruction *IC = I.clone(); 224 IC->setName(I.getName()); 225 IC->insertBefore(&*N->getFirstInsertionPt()); 226 227 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 228 // Create a new MemoryAccess and let MemorySSA set its defining access. 229 MemoryAccess *NewMemAcc = 230 MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning); 231 if (NewMemAcc) { 232 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 233 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 234 else { 235 auto *MemUse = cast<MemoryUse>(NewMemAcc); 236 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 237 } 238 } 239 } 240 241 // Replaces uses of I with IC in N 242 I.replaceUsesWithIf(IC, [N](Use &U) { 243 return cast<Instruction>(U.getUser())->getParent() == N; 244 }); 245 // Replaces uses of I with IC in blocks dominated by N 246 replaceDominatedUsesWith(&I, IC, DT, N); 247 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() 248 << '\n'); 249 NumLoopSunkCloned++; 250 } 251 LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); 252 NumLoopSunk++; 253 I.moveBefore(&*MoveBB->getFirstInsertionPt()); 254 255 if (MSSAU) 256 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 257 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 258 MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning); 259 260 return true; 261 } 262 263 /// Sinks instructions from loop's preheader to the loop body if the 264 /// sum frequency of inserted copy is smaller than preheader's frequency. 265 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, 266 DominatorTree &DT, 267 BlockFrequencyInfo &BFI, 268 MemorySSA &MSSA, 269 ScalarEvolution *SE) { 270 BasicBlock *Preheader = L.getLoopPreheader(); 271 assert(Preheader && "Expected loop to have preheader"); 272 273 assert(Preheader->getParent()->hasProfileData() && 274 "Unexpected call when profile data unavailable."); 275 276 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); 277 // If there are no basic blocks with lower frequency than the preheader then 278 // we can avoid the detailed analysis as we will never find profitable sinking 279 // opportunities. 280 if (all_of(L.blocks(), [&](const BasicBlock *BB) { 281 return BFI.getBlockFreq(BB) > PreheaderFreq; 282 })) 283 return false; 284 285 MemorySSAUpdater MSSAU(&MSSA); 286 SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA); 287 288 bool Changed = false; 289 290 // Sort loop's basic blocks by frequency 291 SmallVector<BasicBlock *, 10> ColdLoopBBs; 292 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; 293 int i = 0; 294 for (BasicBlock *B : L.blocks()) 295 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { 296 ColdLoopBBs.push_back(B); 297 LoopBlockNumber[B] = ++i; 298 } 299 llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) { 300 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); 301 }); 302 303 // Traverse preheader's instructions in reverse order becaue if A depends 304 // on B (A appears after B), A needs to be sinked first before B can be 305 // sinked. 306 for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) { 307 if (isa<PHINode>(&I)) 308 continue; 309 // No need to check for instruction's operands are loop invariant. 310 assert(L.hasLoopInvariantOperands(&I) && 311 "Insts in a loop's preheader should have loop invariant operands!"); 312 if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags)) 313 continue; 314 if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI, 315 &MSSAU)) 316 Changed = true; 317 } 318 319 if (Changed && SE) 320 SE->forgetLoopDispositions(&L); 321 return Changed; 322 } 323 324 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { 325 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); 326 // Nothing to do if there are no loops. 327 if (LI.empty()) 328 return PreservedAnalyses::all(); 329 330 AAResults &AA = FAM.getResult<AAManager>(F); 331 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 332 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 333 MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA(); 334 335 // We want to do a postorder walk over the loops. Since loops are a tree this 336 // is equivalent to a reversed preorder walk and preorder is easy to compute 337 // without recursion. Since we reverse the preorder, we will visit siblings 338 // in reverse program order. This isn't expected to matter at all but is more 339 // consistent with sinking algorithms which generally work bottom-up. 340 SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder(); 341 342 bool Changed = false; 343 do { 344 Loop &L = *PreorderLoops.pop_back_val(); 345 346 BasicBlock *Preheader = L.getLoopPreheader(); 347 if (!Preheader) 348 continue; 349 350 // Enable LoopSink only when runtime profile is available. 351 // With static profile, the sinking decision may be sub-optimal. 352 if (!Preheader->getParent()->hasProfileData()) 353 continue; 354 355 // Note that we don't pass SCEV here because it is only used to invalidate 356 // loops in SCEV and we don't preserve (or request) SCEV at all making that 357 // unnecessary. 358 Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA, 359 /*ScalarEvolution*/ nullptr); 360 } while (!PreorderLoops.empty()); 361 362 if (!Changed) 363 return PreservedAnalyses::all(); 364 365 PreservedAnalyses PA; 366 PA.preserveSet<CFGAnalyses>(); 367 PA.preserve<MemorySSAAnalysis>(); 368 369 if (VerifyMemorySSA) 370 MSSA.verifyMemorySSA(); 371 372 return PA; 373 } 374 375 namespace { 376 struct LegacyLoopSinkPass : public LoopPass { 377 static char ID; 378 LegacyLoopSinkPass() : LoopPass(ID) { 379 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry()); 380 } 381 382 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 383 if (skipLoop(L)) 384 return false; 385 386 BasicBlock *Preheader = L->getLoopPreheader(); 387 if (!Preheader) 388 return false; 389 390 // Enable LoopSink only when runtime profile is available. 391 // With static profile, the sinking decision may be sub-optimal. 392 if (!Preheader->getParent()->hasProfileData()) 393 return false; 394 395 AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 396 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 397 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 398 bool Changed = sinkLoopInvariantInstructions( 399 *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 400 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 401 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(), 402 MSSA, SE ? &SE->getSE() : nullptr); 403 404 if (VerifyMemorySSA) 405 MSSA.verifyMemorySSA(); 406 407 return Changed; 408 } 409 410 void getAnalysisUsage(AnalysisUsage &AU) const override { 411 AU.setPreservesCFG(); 412 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 413 getLoopAnalysisUsage(AU); 414 AU.addRequired<MemorySSAWrapperPass>(); 415 AU.addPreserved<MemorySSAWrapperPass>(); 416 } 417 }; 418 } 419 420 char LegacyLoopSinkPass::ID = 0; 421 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, 422 false) 423 INITIALIZE_PASS_DEPENDENCY(LoopPass) 424 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 425 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 426 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) 427 428 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); } 429