1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass does the inverse transformation of what LICM does. 10 // It traverses all of the instructions in the loop's preheader and sinks 11 // them to the loop body where frequency is lower than the loop's preheader. 12 // This pass is a reverse-transformation of LICM. It differs from the Sink 13 // pass in the following ways: 14 // 15 // * It only handles sinking of instructions from the loop's preheader to the 16 // loop's body 17 // * It uses alias set tracker to get more accurate alias info 18 // * It uses block frequency info to find the optimal sinking locations 19 // 20 // Overall algorithm: 21 // 22 // For I in Preheader: 23 // InsertBBs = BBs that uses I 24 // For BB in sorted(LoopBBs): 25 // DomBBs = BBs in InsertBBs that are dominated by BB 26 // if freq(DomBBs) > freq(BB) 27 // InsertBBs = UseBBs - DomBBs + BB 28 // For BB in InsertBBs: 29 // Insert I at BB's beginning 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "llvm/Transforms/Scalar/LoopSink.h" 34 #include "llvm/ADT/SetOperations.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/BlockFrequencyInfo.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/Support/BranchProbability.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "loopsink" 52 53 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); 54 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); 55 56 static cl::opt<unsigned> SinkFrequencyPercentThreshold( 57 "sink-freq-percent-threshold", cl::Hidden, cl::init(90), 58 cl::desc("Do not sink instructions that require cloning unless they " 59 "execute less than this percent of the time.")); 60 61 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( 62 "max-uses-for-sinking", cl::Hidden, cl::init(30), 63 cl::desc("Do not sink instructions that have too many uses.")); 64 65 /// Return adjusted total frequency of \p BBs. 66 /// 67 /// * If there is only one BB, sinking instruction will not introduce code 68 /// size increase. Thus there is no need to adjust the frequency. 69 /// * If there are more than one BB, sinking would lead to code size increase. 70 /// In this case, we add some "tax" to the total frequency to make it harder 71 /// to sink. E.g. 72 /// Freq(Preheader) = 100 73 /// Freq(BBs) = sum(50, 49) = 99 74 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to 75 /// BBs as the difference is too small to justify the code size increase. 76 /// To model this, The adjusted Freq(BBs) will be: 77 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% 78 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, 79 BlockFrequencyInfo &BFI) { 80 BlockFrequency T(0); 81 for (BasicBlock *B : BBs) 82 T += BFI.getBlockFreq(B); 83 if (BBs.size() > 1) 84 T /= BranchProbability(SinkFrequencyPercentThreshold, 100); 85 return T; 86 } 87 88 /// Return a set of basic blocks to insert sinked instructions. 89 /// 90 /// The returned set of basic blocks (BBsToSinkInto) should satisfy: 91 /// 92 /// * Inside the loop \p L 93 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto 94 /// that domintates the UseBB 95 /// * Has minimum total frequency that is no greater than preheader frequency 96 /// 97 /// The purpose of the function is to find the optimal sinking points to 98 /// minimize execution cost, which is defined as "sum of frequency of 99 /// BBsToSinkInto". 100 /// As a result, the returned BBsToSinkInto needs to have minimum total 101 /// frequency. 102 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader 103 /// frequency, the optimal solution is not sinking (return empty set). 104 /// 105 /// \p ColdLoopBBs is used to help find the optimal sinking locations. 106 /// It stores a list of BBs that is: 107 /// 108 /// * Inside the loop \p L 109 /// * Has a frequency no larger than the loop's preheader 110 /// * Sorted by BB frequency 111 /// 112 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). 113 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its 114 /// caller. 115 static SmallPtrSet<BasicBlock *, 2> 116 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, 117 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, 118 DominatorTree &DT, BlockFrequencyInfo &BFI) { 119 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; 120 if (UseBBs.size() == 0) 121 return BBsToSinkInto; 122 123 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); 124 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; 125 126 // For every iteration: 127 // * Pick the ColdestBB from ColdLoopBBs 128 // * Find the set BBsDominatedByColdestBB that satisfy: 129 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto 130 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB 131 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove 132 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to 133 // BBsToSinkInto 134 for (BasicBlock *ColdestBB : ColdLoopBBs) { 135 BBsDominatedByColdestBB.clear(); 136 for (BasicBlock *SinkedBB : BBsToSinkInto) 137 if (DT.dominates(ColdestBB, SinkedBB)) 138 BBsDominatedByColdestBB.insert(SinkedBB); 139 if (BBsDominatedByColdestBB.size() == 0) 140 continue; 141 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > 142 BFI.getBlockFreq(ColdestBB)) { 143 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { 144 BBsToSinkInto.erase(DominatedBB); 145 } 146 BBsToSinkInto.insert(ColdestBB); 147 } 148 } 149 150 // Can't sink into blocks that have no valid insertion point. 151 for (BasicBlock *BB : BBsToSinkInto) { 152 if (BB->getFirstInsertionPt() == BB->end()) { 153 BBsToSinkInto.clear(); 154 break; 155 } 156 } 157 158 // If the total frequency of BBsToSinkInto is larger than preheader frequency, 159 // do not sink. 160 if (adjustedSumFreq(BBsToSinkInto, BFI) > 161 BFI.getBlockFreq(L.getLoopPreheader())) 162 BBsToSinkInto.clear(); 163 return BBsToSinkInto; 164 } 165 166 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if 167 // sinking is successful. 168 // \p LoopBlockNumber is used to sort the insertion blocks to ensure 169 // determinism. 170 static bool sinkInstruction( 171 Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, 172 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI, 173 DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) { 174 // Compute the set of blocks in loop L which contain a use of I. 175 SmallPtrSet<BasicBlock *, 2> BBs; 176 for (auto &U : I.uses()) { 177 Instruction *UI = cast<Instruction>(U.getUser()); 178 179 // We cannot sink I if it has uses outside of the loop. 180 if (!L.contains(LI.getLoopFor(UI->getParent()))) 181 return false; 182 183 if (!isa<PHINode>(UI)) { 184 BBs.insert(UI->getParent()); 185 continue; 186 } 187 188 // We cannot sink I to PHI-uses, try to look through PHI to find the incoming 189 // block of the value being used. 190 PHINode *PN = dyn_cast<PHINode>(UI); 191 BasicBlock *PhiBB = PN->getIncomingBlock(U); 192 193 // If value's incoming block is from loop preheader directly, there's no 194 // place to sink to, bailout. 195 if (L.getLoopPreheader() == PhiBB) 196 return false; 197 198 BBs.insert(PhiBB); 199 } 200 201 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max 202 // BBs.size() to avoid expensive computation. 203 // FIXME: Handle code size growth for min_size and opt_size. 204 if (BBs.size() > MaxNumberOfUseBBsForSinking) 205 return false; 206 207 // Find the set of BBs that we should insert a copy of I. 208 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = 209 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); 210 if (BBsToSinkInto.empty()) 211 return false; 212 213 // Return if any of the candidate blocks to sink into is non-cold. 214 if (BBsToSinkInto.size() > 1 && 215 !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber)) 216 return false; 217 218 // Copy the final BBs into a vector and sort them using the total ordering 219 // of the loop block numbers as iterating the set doesn't give a useful 220 // order. No need to stable sort as the block numbers are a total ordering. 221 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; 222 llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto); 223 if (SortedBBsToSinkInto.size() > 1) { 224 llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) { 225 return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second; 226 }); 227 } 228 229 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); 230 // FIXME: Optimize the efficiency for cloned value replacement. The current 231 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). 232 for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) { 233 assert(LoopBlockNumber.find(N)->second > 234 LoopBlockNumber.find(MoveBB)->second && 235 "BBs not sorted!"); 236 // Clone I and replace its uses. 237 Instruction *IC = I.clone(); 238 IC->setName(I.getName()); 239 IC->insertBefore(&*N->getFirstInsertionPt()); 240 241 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 242 // Create a new MemoryAccess and let MemorySSA set its defining access. 243 MemoryAccess *NewMemAcc = 244 MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning); 245 if (NewMemAcc) { 246 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 247 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 248 else { 249 auto *MemUse = cast<MemoryUse>(NewMemAcc); 250 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 251 } 252 } 253 } 254 255 // Replaces uses of I with IC in N, except PHI-use which is being taken 256 // care of by defs in PHI's incoming blocks. 257 I.replaceUsesWithIf(IC, [N](Use &U) { 258 Instruction *UIToReplace = cast<Instruction>(U.getUser()); 259 return UIToReplace->getParent() == N && !isa<PHINode>(UIToReplace); 260 }); 261 // Replaces uses of I with IC in blocks dominated by N 262 replaceDominatedUsesWith(&I, IC, DT, N); 263 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() 264 << '\n'); 265 NumLoopSunkCloned++; 266 } 267 LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); 268 NumLoopSunk++; 269 I.moveBefore(&*MoveBB->getFirstInsertionPt()); 270 271 if (MSSAU) 272 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 273 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 274 MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning); 275 276 return true; 277 } 278 279 /// Sinks instructions from loop's preheader to the loop body if the 280 /// sum frequency of inserted copy is smaller than preheader's frequency. 281 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, 282 DominatorTree &DT, 283 BlockFrequencyInfo &BFI, 284 MemorySSA &MSSA, 285 ScalarEvolution *SE) { 286 BasicBlock *Preheader = L.getLoopPreheader(); 287 assert(Preheader && "Expected loop to have preheader"); 288 289 assert(Preheader->getParent()->hasProfileData() && 290 "Unexpected call when profile data unavailable."); 291 292 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); 293 // If there are no basic blocks with lower frequency than the preheader then 294 // we can avoid the detailed analysis as we will never find profitable sinking 295 // opportunities. 296 if (all_of(L.blocks(), [&](const BasicBlock *BB) { 297 return BFI.getBlockFreq(BB) > PreheaderFreq; 298 })) 299 return false; 300 301 MemorySSAUpdater MSSAU(&MSSA); 302 SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, L, MSSA); 303 304 bool Changed = false; 305 306 // Sort loop's basic blocks by frequency 307 SmallVector<BasicBlock *, 10> ColdLoopBBs; 308 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; 309 int i = 0; 310 for (BasicBlock *B : L.blocks()) 311 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { 312 ColdLoopBBs.push_back(B); 313 LoopBlockNumber[B] = ++i; 314 } 315 llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) { 316 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); 317 }); 318 319 // Traverse preheader's instructions in reverse order because if A depends 320 // on B (A appears after B), A needs to be sunk first before B can be 321 // sinked. 322 for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) { 323 if (isa<PHINode>(&I)) 324 continue; 325 // No need to check for instruction's operands are loop invariant. 326 assert(L.hasLoopInvariantOperands(&I) && 327 "Insts in a loop's preheader should have loop invariant operands!"); 328 if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags)) 329 continue; 330 if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI, 331 &MSSAU)) { 332 Changed = true; 333 if (SE) 334 SE->forgetBlockAndLoopDispositions(&I); 335 } 336 } 337 338 return Changed; 339 } 340 341 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { 342 // Enable LoopSink only when runtime profile is available. 343 // With static profile, the sinking decision may be sub-optimal. 344 if (!F.hasProfileData()) 345 return PreservedAnalyses::all(); 346 347 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); 348 // Nothing to do if there are no loops. 349 if (LI.empty()) 350 return PreservedAnalyses::all(); 351 352 AAResults &AA = FAM.getResult<AAManager>(F); 353 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 354 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); 355 MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA(); 356 357 // We want to do a postorder walk over the loops. Since loops are a tree this 358 // is equivalent to a reversed preorder walk and preorder is easy to compute 359 // without recursion. Since we reverse the preorder, we will visit siblings 360 // in reverse program order. This isn't expected to matter at all but is more 361 // consistent with sinking algorithms which generally work bottom-up. 362 SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder(); 363 364 bool Changed = false; 365 do { 366 Loop &L = *PreorderLoops.pop_back_val(); 367 368 BasicBlock *Preheader = L.getLoopPreheader(); 369 if (!Preheader) 370 continue; 371 372 // Note that we don't pass SCEV here because it is only used to invalidate 373 // loops in SCEV and we don't preserve (or request) SCEV at all making that 374 // unnecessary. 375 Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA, 376 /*ScalarEvolution*/ nullptr); 377 } while (!PreorderLoops.empty()); 378 379 if (!Changed) 380 return PreservedAnalyses::all(); 381 382 PreservedAnalyses PA; 383 PA.preserveSet<CFGAnalyses>(); 384 PA.preserve<MemorySSAAnalysis>(); 385 386 if (VerifyMemorySSA) 387 MSSA.verifyMemorySSA(); 388 389 return PA; 390 } 391