xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSink.cpp (revision 77013d11e6483b970af25e13c9b892075742f7e5)
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 //   loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 //   InsertBBs = BBs that uses I
24 //   For BB in sorted(LoopBBs):
25 //     DomBBs = BBs in InsertBBs that are dominated by BB
26 //     if freq(DomBBs) > freq(BB)
27 //       InsertBBs = UseBBs - DomBBs + BB
28 //   For BB in InsertBBs:
29 //     Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/BlockFrequencyInfo.h"
39 #include "llvm/Analysis/Loads.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/MemorySSA.h"
43 #include "llvm/Analysis/MemorySSAUpdater.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Scalar/LoopPassManager.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Transforms/Utils/LoopUtils.h"
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "loopsink"
59 
60 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
61 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
62 
63 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
64     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
65     cl::desc("Do not sink instructions that require cloning unless they "
66              "execute less than this percent of the time."));
67 
68 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
69     "max-uses-for-sinking", cl::Hidden, cl::init(30),
70     cl::desc("Do not sink instructions that have too many uses."));
71 
72 static cl::opt<bool> EnableMSSAInLoopSink(
73     "enable-mssa-in-loop-sink", cl::Hidden, cl::init(true),
74     cl::desc("Enable MemorySSA for LoopSink in new pass manager"));
75 
76 static cl::opt<bool> EnableMSSAInLegacyLoopSink(
77     "enable-mssa-in-legacy-loop-sink", cl::Hidden, cl::init(false),
78     cl::desc("Enable MemorySSA for LoopSink in legacy pass manager"));
79 
80 /// Return adjusted total frequency of \p BBs.
81 ///
82 /// * If there is only one BB, sinking instruction will not introduce code
83 ///   size increase. Thus there is no need to adjust the frequency.
84 /// * If there are more than one BB, sinking would lead to code size increase.
85 ///   In this case, we add some "tax" to the total frequency to make it harder
86 ///   to sink. E.g.
87 ///     Freq(Preheader) = 100
88 ///     Freq(BBs) = sum(50, 49) = 99
89 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
90 ///   BBs as the difference is too small to justify the code size increase.
91 ///   To model this, The adjusted Freq(BBs) will be:
92 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
93 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
94                                       BlockFrequencyInfo &BFI) {
95   BlockFrequency T = 0;
96   for (BasicBlock *B : BBs)
97     T += BFI.getBlockFreq(B);
98   if (BBs.size() > 1)
99     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
100   return T;
101 }
102 
103 /// Return a set of basic blocks to insert sinked instructions.
104 ///
105 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
106 ///
107 /// * Inside the loop \p L
108 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
109 ///   that domintates the UseBB
110 /// * Has minimum total frequency that is no greater than preheader frequency
111 ///
112 /// The purpose of the function is to find the optimal sinking points to
113 /// minimize execution cost, which is defined as "sum of frequency of
114 /// BBsToSinkInto".
115 /// As a result, the returned BBsToSinkInto needs to have minimum total
116 /// frequency.
117 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
118 /// frequency, the optimal solution is not sinking (return empty set).
119 ///
120 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
121 /// It stores a list of BBs that is:
122 ///
123 /// * Inside the loop \p L
124 /// * Has a frequency no larger than the loop's preheader
125 /// * Sorted by BB frequency
126 ///
127 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
128 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
129 /// caller.
130 static SmallPtrSet<BasicBlock *, 2>
131 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
132                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
133                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
134   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
135   if (UseBBs.size() == 0)
136     return BBsToSinkInto;
137 
138   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
139   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
140 
141   // For every iteration:
142   //   * Pick the ColdestBB from ColdLoopBBs
143   //   * Find the set BBsDominatedByColdestBB that satisfy:
144   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
145   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
146   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
147   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
148   //     BBsToSinkInto
149   for (BasicBlock *ColdestBB : ColdLoopBBs) {
150     BBsDominatedByColdestBB.clear();
151     for (BasicBlock *SinkedBB : BBsToSinkInto)
152       if (DT.dominates(ColdestBB, SinkedBB))
153         BBsDominatedByColdestBB.insert(SinkedBB);
154     if (BBsDominatedByColdestBB.size() == 0)
155       continue;
156     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
157         BFI.getBlockFreq(ColdestBB)) {
158       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
159         BBsToSinkInto.erase(DominatedBB);
160       }
161       BBsToSinkInto.insert(ColdestBB);
162     }
163   }
164 
165   // Can't sink into blocks that have no valid insertion point.
166   for (BasicBlock *BB : BBsToSinkInto) {
167     if (BB->getFirstInsertionPt() == BB->end()) {
168       BBsToSinkInto.clear();
169       break;
170     }
171   }
172 
173   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
174   // do not sink.
175   if (adjustedSumFreq(BBsToSinkInto, BFI) >
176       BFI.getBlockFreq(L.getLoopPreheader()))
177     BBsToSinkInto.clear();
178   return BBsToSinkInto;
179 }
180 
181 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
182 // sinking is successful.
183 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
184 // determinism.
185 static bool sinkInstruction(
186     Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
187     const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
188     DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
189   // Compute the set of blocks in loop L which contain a use of I.
190   SmallPtrSet<BasicBlock *, 2> BBs;
191   for (auto &U : I.uses()) {
192     Instruction *UI = cast<Instruction>(U.getUser());
193     // We cannot sink I to PHI-uses.
194     if (dyn_cast<PHINode>(UI))
195       return false;
196     // We cannot sink I if it has uses outside of the loop.
197     if (!L.contains(LI.getLoopFor(UI->getParent())))
198       return false;
199     BBs.insert(UI->getParent());
200   }
201 
202   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
203   // BBs.size() to avoid expensive computation.
204   // FIXME: Handle code size growth for min_size and opt_size.
205   if (BBs.size() > MaxNumberOfUseBBsForSinking)
206     return false;
207 
208   // Find the set of BBs that we should insert a copy of I.
209   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
210       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
211   if (BBsToSinkInto.empty())
212     return false;
213 
214   // Return if any of the candidate blocks to sink into is non-cold.
215   if (BBsToSinkInto.size() > 1) {
216     for (auto *BB : BBsToSinkInto)
217       if (!LoopBlockNumber.count(BB))
218         return false;
219   }
220 
221   // Copy the final BBs into a vector and sort them using the total ordering
222   // of the loop block numbers as iterating the set doesn't give a useful
223   // order. No need to stable sort as the block numbers are a total ordering.
224   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
225   llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
226   llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
227     return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
228   });
229 
230   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
231   // FIXME: Optimize the efficiency for cloned value replacement. The current
232   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
233   for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
234     assert(LoopBlockNumber.find(N)->second >
235                LoopBlockNumber.find(MoveBB)->second &&
236            "BBs not sorted!");
237     // Clone I and replace its uses.
238     Instruction *IC = I.clone();
239     IC->setName(I.getName());
240     IC->insertBefore(&*N->getFirstInsertionPt());
241 
242     if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
243       // Create a new MemoryAccess and let MemorySSA set its defining access.
244       MemoryAccess *NewMemAcc =
245           MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
246       if (NewMemAcc) {
247         if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
248           MSSAU->insertDef(MemDef, /*RenameUses=*/true);
249         else {
250           auto *MemUse = cast<MemoryUse>(NewMemAcc);
251           MSSAU->insertUse(MemUse, /*RenameUses=*/true);
252         }
253       }
254     }
255 
256     // Replaces uses of I with IC in N
257     I.replaceUsesWithIf(IC, [N](Use &U) {
258       return cast<Instruction>(U.getUser())->getParent() == N;
259     });
260     // Replaces uses of I with IC in blocks dominated by N
261     replaceDominatedUsesWith(&I, IC, DT, N);
262     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
263                       << '\n');
264     NumLoopSunkCloned++;
265   }
266   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
267   NumLoopSunk++;
268   I.moveBefore(&*MoveBB->getFirstInsertionPt());
269 
270   if (MSSAU)
271     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
272             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
273       MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
274 
275   return true;
276 }
277 
278 /// Sinks instructions from loop's preheader to the loop body if the
279 /// sum frequency of inserted copy is smaller than preheader's frequency.
280 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
281                                           DominatorTree &DT,
282                                           BlockFrequencyInfo &BFI,
283                                           ScalarEvolution *SE,
284                                           AliasSetTracker *CurAST,
285                                           MemorySSA *MSSA) {
286   BasicBlock *Preheader = L.getLoopPreheader();
287   assert(Preheader && "Expected loop to have preheader");
288 
289   assert(Preheader->getParent()->hasProfileData() &&
290          "Unexpected call when profile data unavailable.");
291 
292   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
293   // If there are no basic blocks with lower frequency than the preheader then
294   // we can avoid the detailed analysis as we will never find profitable sinking
295   // opportunities.
296   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
297         return BFI.getBlockFreq(BB) > PreheaderFreq;
298       }))
299     return false;
300 
301   std::unique_ptr<MemorySSAUpdater> MSSAU;
302   std::unique_ptr<SinkAndHoistLICMFlags> LICMFlags;
303   if (MSSA) {
304     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
305     LICMFlags =
306         std::make_unique<SinkAndHoistLICMFlags>(/*IsSink=*/true, &L, MSSA);
307   }
308 
309   bool Changed = false;
310 
311   // Sort loop's basic blocks by frequency
312   SmallVector<BasicBlock *, 10> ColdLoopBBs;
313   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
314   int i = 0;
315   for (BasicBlock *B : L.blocks())
316     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
317       ColdLoopBBs.push_back(B);
318       LoopBlockNumber[B] = ++i;
319     }
320   llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
321     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
322   });
323 
324   // Traverse preheader's instructions in reverse order becaue if A depends
325   // on B (A appears after B), A needs to be sinked first before B can be
326   // sinked.
327   for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
328     Instruction *I = &*II++;
329     // No need to check for instruction's operands are loop invariant.
330     assert(L.hasLoopInvariantOperands(I) &&
331            "Insts in a loop's preheader should have loop invariant operands!");
332     if (!canSinkOrHoistInst(*I, &AA, &DT, &L, CurAST, MSSAU.get(), false,
333                             LICMFlags.get()))
334       continue;
335     if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
336                         MSSAU.get()))
337       Changed = true;
338   }
339 
340   if (Changed && SE)
341     SE->forgetLoopDispositions(&L);
342   return Changed;
343 }
344 
345 static void computeAliasSet(Loop &L, BasicBlock &Preheader,
346                             AliasSetTracker &CurAST) {
347   for (BasicBlock *BB : L.blocks())
348     CurAST.add(*BB);
349   CurAST.add(Preheader);
350 }
351 
352 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
353   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
354   // Nothing to do if there are no loops.
355   if (LI.empty())
356     return PreservedAnalyses::all();
357 
358   AAResults &AA = FAM.getResult<AAManager>(F);
359   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
360   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
361 
362   MemorySSA *MSSA = EnableMSSAInLoopSink
363                         ? &FAM.getResult<MemorySSAAnalysis>(F).getMSSA()
364                         : nullptr;
365 
366   // We want to do a postorder walk over the loops. Since loops are a tree this
367   // is equivalent to a reversed preorder walk and preorder is easy to compute
368   // without recursion. Since we reverse the preorder, we will visit siblings
369   // in reverse program order. This isn't expected to matter at all but is more
370   // consistent with sinking algorithms which generally work bottom-up.
371   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
372 
373   bool Changed = false;
374   do {
375     Loop &L = *PreorderLoops.pop_back_val();
376 
377     BasicBlock *Preheader = L.getLoopPreheader();
378     if (!Preheader)
379       continue;
380 
381     // Enable LoopSink only when runtime profile is available.
382     // With static profile, the sinking decision may be sub-optimal.
383     if (!Preheader->getParent()->hasProfileData())
384       continue;
385 
386     std::unique_ptr<AliasSetTracker> CurAST;
387     if (!EnableMSSAInLoopSink) {
388       CurAST = std::make_unique<AliasSetTracker>(AA);
389       computeAliasSet(L, *Preheader, *CurAST.get());
390     }
391 
392     // Note that we don't pass SCEV here because it is only used to invalidate
393     // loops in SCEV and we don't preserve (or request) SCEV at all making that
394     // unnecessary.
395     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
396                                              /*ScalarEvolution*/ nullptr,
397                                              CurAST.get(), MSSA);
398   } while (!PreorderLoops.empty());
399 
400   if (!Changed)
401     return PreservedAnalyses::all();
402 
403   PreservedAnalyses PA;
404   PA.preserveSet<CFGAnalyses>();
405 
406   if (MSSA) {
407     PA.preserve<MemorySSAAnalysis>();
408 
409     if (VerifyMemorySSA)
410       MSSA->verifyMemorySSA();
411   }
412 
413   return PA;
414 }
415 
416 namespace {
417 struct LegacyLoopSinkPass : public LoopPass {
418   static char ID;
419   LegacyLoopSinkPass() : LoopPass(ID) {
420     initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
421   }
422 
423   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
424     if (skipLoop(L))
425       return false;
426 
427     BasicBlock *Preheader = L->getLoopPreheader();
428     if (!Preheader)
429       return false;
430 
431     // Enable LoopSink only when runtime profile is available.
432     // With static profile, the sinking decision may be sub-optimal.
433     if (!Preheader->getParent()->hasProfileData())
434       return false;
435 
436     AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
437     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
438     std::unique_ptr<AliasSetTracker> CurAST;
439     MemorySSA *MSSA = nullptr;
440     if (EnableMSSAInLegacyLoopSink)
441       MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
442     else {
443       CurAST = std::make_unique<AliasSetTracker>(AA);
444       computeAliasSet(*L, *Preheader, *CurAST.get());
445     }
446 
447     bool Changed = sinkLoopInvariantInstructions(
448         *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
449         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
450         getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
451         SE ? &SE->getSE() : nullptr, CurAST.get(), MSSA);
452 
453     if (MSSA && VerifyMemorySSA)
454       MSSA->verifyMemorySSA();
455 
456     return Changed;
457   }
458 
459   void getAnalysisUsage(AnalysisUsage &AU) const override {
460     AU.setPreservesCFG();
461     AU.addRequired<BlockFrequencyInfoWrapperPass>();
462     getLoopAnalysisUsage(AU);
463     if (EnableMSSAInLegacyLoopSink) {
464       AU.addRequired<MemorySSAWrapperPass>();
465       AU.addPreserved<MemorySSAWrapperPass>();
466     }
467   }
468 };
469 }
470 
471 char LegacyLoopSinkPass::ID = 0;
472 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
473                       false)
474 INITIALIZE_PASS_DEPENDENCY(LoopPass)
475 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
476 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
477 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
478 
479 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
480