xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSink.cpp (revision 5ffd83dbcc34f10e07f6d3e968ae6365869615f4)
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 //   loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 //   InsertBBs = BBs that uses I
24 //   For BB in sorted(LoopBBs):
25 //     DomBBs = BBs in InsertBBs that are dominated by BB
26 //     if freq(DomBBs) > freq(BB)
27 //       InsertBBs = UseBBs - DomBBs + BB
28 //   For BB in InsertBBs:
29 //     Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/BlockFrequencyInfo.h"
39 #include "llvm/Analysis/Loads.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Scalar.h"
51 #include "llvm/Transforms/Scalar/LoopPassManager.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "loopsink"
57 
58 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
59 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
60 
61 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
62     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
63     cl::desc("Do not sink instructions that require cloning unless they "
64              "execute less than this percent of the time."));
65 
66 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
67     "max-uses-for-sinking", cl::Hidden, cl::init(30),
68     cl::desc("Do not sink instructions that have too many uses."));
69 
70 /// Return adjusted total frequency of \p BBs.
71 ///
72 /// * If there is only one BB, sinking instruction will not introduce code
73 ///   size increase. Thus there is no need to adjust the frequency.
74 /// * If there are more than one BB, sinking would lead to code size increase.
75 ///   In this case, we add some "tax" to the total frequency to make it harder
76 ///   to sink. E.g.
77 ///     Freq(Preheader) = 100
78 ///     Freq(BBs) = sum(50, 49) = 99
79 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
80 ///   BBs as the difference is too small to justify the code size increase.
81 ///   To model this, The adjusted Freq(BBs) will be:
82 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
83 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
84                                       BlockFrequencyInfo &BFI) {
85   BlockFrequency T = 0;
86   for (BasicBlock *B : BBs)
87     T += BFI.getBlockFreq(B);
88   if (BBs.size() > 1)
89     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
90   return T;
91 }
92 
93 /// Return a set of basic blocks to insert sinked instructions.
94 ///
95 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
96 ///
97 /// * Inside the loop \p L
98 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
99 ///   that domintates the UseBB
100 /// * Has minimum total frequency that is no greater than preheader frequency
101 ///
102 /// The purpose of the function is to find the optimal sinking points to
103 /// minimize execution cost, which is defined as "sum of frequency of
104 /// BBsToSinkInto".
105 /// As a result, the returned BBsToSinkInto needs to have minimum total
106 /// frequency.
107 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
108 /// frequency, the optimal solution is not sinking (return empty set).
109 ///
110 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
111 /// It stores a list of BBs that is:
112 ///
113 /// * Inside the loop \p L
114 /// * Has a frequency no larger than the loop's preheader
115 /// * Sorted by BB frequency
116 ///
117 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
118 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
119 /// caller.
120 static SmallPtrSet<BasicBlock *, 2>
121 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
122                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
123                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
124   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
125   if (UseBBs.size() == 0)
126     return BBsToSinkInto;
127 
128   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
129   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
130 
131   // For every iteration:
132   //   * Pick the ColdestBB from ColdLoopBBs
133   //   * Find the set BBsDominatedByColdestBB that satisfy:
134   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
135   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
136   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
137   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
138   //     BBsToSinkInto
139   for (BasicBlock *ColdestBB : ColdLoopBBs) {
140     BBsDominatedByColdestBB.clear();
141     for (BasicBlock *SinkedBB : BBsToSinkInto)
142       if (DT.dominates(ColdestBB, SinkedBB))
143         BBsDominatedByColdestBB.insert(SinkedBB);
144     if (BBsDominatedByColdestBB.size() == 0)
145       continue;
146     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
147         BFI.getBlockFreq(ColdestBB)) {
148       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
149         BBsToSinkInto.erase(DominatedBB);
150       }
151       BBsToSinkInto.insert(ColdestBB);
152     }
153   }
154 
155   // Can't sink into blocks that have no valid insertion point.
156   for (BasicBlock *BB : BBsToSinkInto) {
157     if (BB->getFirstInsertionPt() == BB->end()) {
158       BBsToSinkInto.clear();
159       break;
160     }
161   }
162 
163   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
164   // do not sink.
165   if (adjustedSumFreq(BBsToSinkInto, BFI) >
166       BFI.getBlockFreq(L.getLoopPreheader()))
167     BBsToSinkInto.clear();
168   return BBsToSinkInto;
169 }
170 
171 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
172 // sinking is successful.
173 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
174 // determinism.
175 static bool sinkInstruction(Loop &L, Instruction &I,
176                             const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
177                             const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
178                             LoopInfo &LI, DominatorTree &DT,
179                             BlockFrequencyInfo &BFI) {
180   // Compute the set of blocks in loop L which contain a use of I.
181   SmallPtrSet<BasicBlock *, 2> BBs;
182   for (auto &U : I.uses()) {
183     Instruction *UI = cast<Instruction>(U.getUser());
184     // We cannot sink I to PHI-uses.
185     if (dyn_cast<PHINode>(UI))
186       return false;
187     // We cannot sink I if it has uses outside of the loop.
188     if (!L.contains(LI.getLoopFor(UI->getParent())))
189       return false;
190     BBs.insert(UI->getParent());
191   }
192 
193   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
194   // BBs.size() to avoid expensive computation.
195   // FIXME: Handle code size growth for min_size and opt_size.
196   if (BBs.size() > MaxNumberOfUseBBsForSinking)
197     return false;
198 
199   // Find the set of BBs that we should insert a copy of I.
200   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
201       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
202   if (BBsToSinkInto.empty())
203     return false;
204 
205   // Return if any of the candidate blocks to sink into is non-cold.
206   if (BBsToSinkInto.size() > 1) {
207     for (auto *BB : BBsToSinkInto)
208       if (!LoopBlockNumber.count(BB))
209         return false;
210   }
211 
212   // Copy the final BBs into a vector and sort them using the total ordering
213   // of the loop block numbers as iterating the set doesn't give a useful
214   // order. No need to stable sort as the block numbers are a total ordering.
215   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
216   SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
217                              BBsToSinkInto.end());
218   llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
219     return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
220   });
221 
222   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
223   // FIXME: Optimize the efficiency for cloned value replacement. The current
224   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
225   for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
226     assert(LoopBlockNumber.find(N)->second >
227                LoopBlockNumber.find(MoveBB)->second &&
228            "BBs not sorted!");
229     // Clone I and replace its uses.
230     Instruction *IC = I.clone();
231     IC->setName(I.getName());
232     IC->insertBefore(&*N->getFirstInsertionPt());
233     // Replaces uses of I with IC in N
234     I.replaceUsesWithIf(IC, [N](Use &U) {
235       return cast<Instruction>(U.getUser())->getParent() == N;
236     });
237     // Replaces uses of I with IC in blocks dominated by N
238     replaceDominatedUsesWith(&I, IC, DT, N);
239     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
240                       << '\n');
241     NumLoopSunkCloned++;
242   }
243   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
244   NumLoopSunk++;
245   I.moveBefore(&*MoveBB->getFirstInsertionPt());
246 
247   return true;
248 }
249 
250 /// Sinks instructions from loop's preheader to the loop body if the
251 /// sum frequency of inserted copy is smaller than preheader's frequency.
252 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
253                                           DominatorTree &DT,
254                                           BlockFrequencyInfo &BFI,
255                                           ScalarEvolution *SE) {
256   BasicBlock *Preheader = L.getLoopPreheader();
257   if (!Preheader)
258     return false;
259 
260   // Enable LoopSink only when runtime profile is available.
261   // With static profile, the sinking decision may be sub-optimal.
262   if (!Preheader->getParent()->hasProfileData())
263     return false;
264 
265   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
266   // If there are no basic blocks with lower frequency than the preheader then
267   // we can avoid the detailed analysis as we will never find profitable sinking
268   // opportunities.
269   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
270         return BFI.getBlockFreq(BB) > PreheaderFreq;
271       }))
272     return false;
273 
274   bool Changed = false;
275   AliasSetTracker CurAST(AA);
276 
277   // Compute alias set.
278   for (BasicBlock *BB : L.blocks())
279     CurAST.add(*BB);
280   CurAST.add(*Preheader);
281 
282   // Sort loop's basic blocks by frequency
283   SmallVector<BasicBlock *, 10> ColdLoopBBs;
284   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
285   int i = 0;
286   for (BasicBlock *B : L.blocks())
287     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
288       ColdLoopBBs.push_back(B);
289       LoopBlockNumber[B] = ++i;
290     }
291   llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
292     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
293   });
294 
295   // Traverse preheader's instructions in reverse order becaue if A depends
296   // on B (A appears after B), A needs to be sinked first before B can be
297   // sinked.
298   for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
299     Instruction *I = &*II++;
300     // No need to check for instruction's operands are loop invariant.
301     assert(L.hasLoopInvariantOperands(I) &&
302            "Insts in a loop's preheader should have loop invariant operands!");
303     if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr, false))
304       continue;
305     if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
306       Changed = true;
307   }
308 
309   if (Changed && SE)
310     SE->forgetLoopDispositions(&L);
311   return Changed;
312 }
313 
314 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
315   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
316   // Nothing to do if there are no loops.
317   if (LI.empty())
318     return PreservedAnalyses::all();
319 
320   AAResults &AA = FAM.getResult<AAManager>(F);
321   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
322   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
323 
324   // We want to do a postorder walk over the loops. Since loops are a tree this
325   // is equivalent to a reversed preorder walk and preorder is easy to compute
326   // without recursion. Since we reverse the preorder, we will visit siblings
327   // in reverse program order. This isn't expected to matter at all but is more
328   // consistent with sinking algorithms which generally work bottom-up.
329   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
330 
331   bool Changed = false;
332   do {
333     Loop &L = *PreorderLoops.pop_back_val();
334 
335     // Note that we don't pass SCEV here because it is only used to invalidate
336     // loops in SCEV and we don't preserve (or request) SCEV at all making that
337     // unnecessary.
338     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
339                                              /*ScalarEvolution*/ nullptr);
340   } while (!PreorderLoops.empty());
341 
342   if (!Changed)
343     return PreservedAnalyses::all();
344 
345   PreservedAnalyses PA;
346   PA.preserveSet<CFGAnalyses>();
347   return PA;
348 }
349 
350 namespace {
351 struct LegacyLoopSinkPass : public LoopPass {
352   static char ID;
353   LegacyLoopSinkPass() : LoopPass(ID) {
354     initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
355   }
356 
357   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
358     if (skipLoop(L))
359       return false;
360 
361     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
362     return sinkLoopInvariantInstructions(
363         *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
364         getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
365         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
366         getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
367         SE ? &SE->getSE() : nullptr);
368   }
369 
370   void getAnalysisUsage(AnalysisUsage &AU) const override {
371     AU.setPreservesCFG();
372     AU.addRequired<BlockFrequencyInfoWrapperPass>();
373     getLoopAnalysisUsage(AU);
374   }
375 };
376 }
377 
378 char LegacyLoopSinkPass::ID = 0;
379 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
380                       false)
381 INITIALIZE_PASS_DEPENDENCY(LoopPass)
382 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
383 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
384 
385 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
386