1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/DependenceAnalysis.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/MemorySSA.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Scalar/LoopPassManager.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/LoopUtils.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "loop-simplifycfg" 38 39 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 40 cl::init(true)); 41 42 STATISTIC(NumTerminatorsFolded, 43 "Number of terminators folded to unconditional branches"); 44 STATISTIC(NumLoopBlocksDeleted, 45 "Number of loop blocks deleted"); 46 STATISTIC(NumLoopExitsDeleted, 47 "Number of loop exiting edges deleted"); 48 49 /// If \p BB is a switch or a conditional branch, but only one of its successors 50 /// can be reached from this block in runtime, return this successor. Otherwise, 51 /// return nullptr. 52 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 53 Instruction *TI = BB->getTerminator(); 54 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 55 if (BI->isUnconditional()) 56 return nullptr; 57 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 58 return BI->getSuccessor(0); 59 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 60 if (!Cond) 61 return nullptr; 62 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 63 } 64 65 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 66 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 67 if (!CI) 68 return nullptr; 69 for (auto Case : SI->cases()) 70 if (Case.getCaseValue() == CI) 71 return Case.getCaseSuccessor(); 72 return SI->getDefaultDest(); 73 } 74 75 return nullptr; 76 } 77 78 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 79 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 80 Loop *LastLoop = nullptr) { 81 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 82 "First loop is supposed to be inside of last loop!"); 83 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 84 for (Loop *Current = FirstLoop; Current != LastLoop; 85 Current = Current->getParentLoop()) 86 Current->removeBlockFromLoop(BB); 87 } 88 89 /// Find innermost loop that contains at least one block from \p BBs and 90 /// contains the header of loop \p L. 91 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 92 Loop &L, LoopInfo &LI) { 93 Loop *Innermost = nullptr; 94 for (BasicBlock *BB : BBs) { 95 Loop *BBL = LI.getLoopFor(BB); 96 while (BBL && !BBL->contains(L.getHeader())) 97 BBL = BBL->getParentLoop(); 98 if (BBL == &L) 99 BBL = BBL->getParentLoop(); 100 if (!BBL) 101 continue; 102 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 103 Innermost = BBL; 104 } 105 return Innermost; 106 } 107 108 namespace { 109 /// Helper class that can turn branches and switches with constant conditions 110 /// into unconditional branches. 111 class ConstantTerminatorFoldingImpl { 112 private: 113 Loop &L; 114 LoopInfo &LI; 115 DominatorTree &DT; 116 ScalarEvolution &SE; 117 MemorySSAUpdater *MSSAU; 118 LoopBlocksDFS DFS; 119 DomTreeUpdater DTU; 120 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 121 122 // Whether or not the current loop has irreducible CFG. 123 bool HasIrreducibleCFG = false; 124 // Whether or not the current loop will still exist after terminator constant 125 // folding will be done. In theory, there are two ways how it can happen: 126 // 1. Loop's latch(es) become unreachable from loop header; 127 // 2. Loop's header becomes unreachable from method entry. 128 // In practice, the second situation is impossible because we only modify the 129 // current loop and its preheader and do not affect preheader's reachibility 130 // from any other block. So this variable set to true means that loop's latch 131 // has become unreachable from loop header. 132 bool DeleteCurrentLoop = false; 133 134 // The blocks of the original loop that will still be reachable from entry 135 // after the constant folding. 136 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 137 // The blocks of the original loop that will become unreachable from entry 138 // after the constant folding. 139 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 140 // The exits of the original loop that will still be reachable from entry 141 // after the constant folding. 142 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 143 // The exits of the original loop that will become unreachable from entry 144 // after the constant folding. 145 SmallVector<BasicBlock *, 8> DeadExitBlocks; 146 // The blocks that will still be a part of the current loop after folding. 147 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 148 // The blocks that have terminators with constant condition that can be 149 // folded. Note: fold candidates should be in L but not in any of its 150 // subloops to avoid complex LI updates. 151 SmallVector<BasicBlock *, 8> FoldCandidates; 152 153 void dump() const { 154 dbgs() << "Constant terminator folding for loop " << L << "\n"; 155 dbgs() << "After terminator constant-folding, the loop will"; 156 if (!DeleteCurrentLoop) 157 dbgs() << " not"; 158 dbgs() << " be destroyed\n"; 159 auto PrintOutVector = [&](const char *Message, 160 const SmallVectorImpl<BasicBlock *> &S) { 161 dbgs() << Message << "\n"; 162 for (const BasicBlock *BB : S) 163 dbgs() << "\t" << BB->getName() << "\n"; 164 }; 165 auto PrintOutSet = [&](const char *Message, 166 const SmallPtrSetImpl<BasicBlock *> &S) { 167 dbgs() << Message << "\n"; 168 for (const BasicBlock *BB : S) 169 dbgs() << "\t" << BB->getName() << "\n"; 170 }; 171 PrintOutVector("Blocks in which we can constant-fold terminator:", 172 FoldCandidates); 173 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 174 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 175 PrintOutSet("Live exit blocks:", LiveExitBlocks); 176 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 177 if (!DeleteCurrentLoop) 178 PrintOutSet("The following blocks will still be part of the loop:", 179 BlocksInLoopAfterFolding); 180 } 181 182 /// Whether or not the current loop has irreducible CFG. 183 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 184 assert(DFS.isComplete() && "DFS is expected to be finished"); 185 // Index of a basic block in RPO traversal. 186 DenseMap<const BasicBlock *, unsigned> RPO; 187 unsigned Current = 0; 188 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 189 RPO[*I] = Current++; 190 191 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 192 BasicBlock *BB = *I; 193 for (auto *Succ : successors(BB)) 194 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 195 // If an edge goes from a block with greater order number into a block 196 // with lesses number, and it is not a loop backedge, then it can only 197 // be a part of irreducible non-loop cycle. 198 return true; 199 } 200 return false; 201 } 202 203 /// Fill all information about status of blocks and exits of the current loop 204 /// if constant folding of all branches will be done. 205 void analyze() { 206 DFS.perform(&LI); 207 assert(DFS.isComplete() && "DFS is expected to be finished"); 208 209 // TODO: The algorithm below relies on both RPO and Postorder traversals. 210 // When the loop has only reducible CFG inside, then the invariant "all 211 // predecessors of X are processed before X in RPO" is preserved. However 212 // an irreducible loop can break this invariant (e.g. latch does not have to 213 // be the last block in the traversal in this case, and the algorithm relies 214 // on this). We can later decide to support such cases by altering the 215 // algorithms, but so far we just give up analyzing them. 216 if (hasIrreducibleCFG(DFS)) { 217 HasIrreducibleCFG = true; 218 return; 219 } 220 221 // Collect live and dead loop blocks and exits. 222 LiveLoopBlocks.insert(L.getHeader()); 223 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 224 BasicBlock *BB = *I; 225 226 // If a loop block wasn't marked as live so far, then it's dead. 227 if (!LiveLoopBlocks.count(BB)) { 228 DeadLoopBlocks.push_back(BB); 229 continue; 230 } 231 232 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 233 234 // If a block has only one live successor, it's a candidate on constant 235 // folding. Only handle blocks from current loop: branches in child loops 236 // are skipped because if they can be folded, they should be folded during 237 // the processing of child loops. 238 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 239 if (TakeFoldCandidate) 240 FoldCandidates.push_back(BB); 241 242 // Handle successors. 243 for (BasicBlock *Succ : successors(BB)) 244 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 245 if (L.contains(Succ)) 246 LiveLoopBlocks.insert(Succ); 247 else 248 LiveExitBlocks.insert(Succ); 249 } 250 } 251 252 // Amount of dead and live loop blocks should match the total number of 253 // blocks in loop. 254 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 255 "Malformed block sets?"); 256 257 // Now, all exit blocks that are not marked as live are dead, if all their 258 // predecessors are in the loop. This may not be the case, as the input loop 259 // may not by in loop-simplify/canonical form. 260 SmallVector<BasicBlock *, 8> ExitBlocks; 261 L.getExitBlocks(ExitBlocks); 262 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 263 for (auto *ExitBlock : ExitBlocks) 264 if (!LiveExitBlocks.count(ExitBlock) && 265 UniqueDeadExits.insert(ExitBlock).second && 266 all_of(predecessors(ExitBlock), 267 [this](BasicBlock *Pred) { return L.contains(Pred); })) 268 DeadExitBlocks.push_back(ExitBlock); 269 270 // Whether or not the edge From->To will still be present in graph after the 271 // folding. 272 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 273 if (!LiveLoopBlocks.count(From)) 274 return false; 275 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 276 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 277 }; 278 279 // The loop will not be destroyed if its latch is live. 280 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 281 282 // If we are going to delete the current loop completely, no extra analysis 283 // is needed. 284 if (DeleteCurrentLoop) 285 return; 286 287 // Otherwise, we should check which blocks will still be a part of the 288 // current loop after the transform. 289 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 290 // If the loop is live, then we should compute what blocks are still in 291 // loop after all branch folding has been done. A block is in loop if 292 // it has a live edge to another block that is in the loop; by definition, 293 // latch is in the loop. 294 auto BlockIsInLoop = [&](BasicBlock *BB) { 295 return any_of(successors(BB), [&](BasicBlock *Succ) { 296 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 297 }); 298 }; 299 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 300 BasicBlock *BB = *I; 301 if (BlockIsInLoop(BB)) 302 BlocksInLoopAfterFolding.insert(BB); 303 } 304 305 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 306 "Header not in loop?"); 307 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 308 "All blocks that stay in loop should be live!"); 309 } 310 311 /// We need to preserve static reachibility of all loop exit blocks (this is) 312 /// required by loop pass manager. In order to do it, we make the following 313 /// trick: 314 /// 315 /// preheader: 316 /// <preheader code> 317 /// br label %loop_header 318 /// 319 /// loop_header: 320 /// ... 321 /// br i1 false, label %dead_exit, label %loop_block 322 /// ... 323 /// 324 /// We cannot simply remove edge from the loop to dead exit because in this 325 /// case dead_exit (and its successors) may become unreachable. To avoid that, 326 /// we insert the following fictive preheader: 327 /// 328 /// preheader: 329 /// <preheader code> 330 /// switch i32 0, label %preheader-split, 331 /// [i32 1, label %dead_exit_1], 332 /// [i32 2, label %dead_exit_2], 333 /// ... 334 /// [i32 N, label %dead_exit_N], 335 /// 336 /// preheader-split: 337 /// br label %loop_header 338 /// 339 /// loop_header: 340 /// ... 341 /// br i1 false, label %dead_exit_N, label %loop_block 342 /// ... 343 /// 344 /// Doing so, we preserve static reachibility of all dead exits and can later 345 /// remove edges from the loop to these blocks. 346 void handleDeadExits() { 347 // If no dead exits, nothing to do. 348 if (DeadExitBlocks.empty()) 349 return; 350 351 // Construct split preheader and the dummy switch to thread edges from it to 352 // dead exits. 353 BasicBlock *Preheader = L.getLoopPreheader(); 354 BasicBlock *NewPreheader = llvm::SplitBlock( 355 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 356 357 IRBuilder<> Builder(Preheader->getTerminator()); 358 SwitchInst *DummySwitch = 359 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 360 Preheader->getTerminator()->eraseFromParent(); 361 362 unsigned DummyIdx = 1; 363 for (BasicBlock *BB : DeadExitBlocks) { 364 // Eliminate all Phis and LandingPads from dead exits. 365 // TODO: Consider removing all instructions in this dead block. 366 SmallVector<Instruction *, 4> DeadInstructions; 367 for (auto &PN : BB->phis()) 368 DeadInstructions.push_back(&PN); 369 370 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 371 DeadInstructions.emplace_back(LandingPad); 372 373 for (Instruction *I : DeadInstructions) { 374 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 375 I->eraseFromParent(); 376 } 377 378 assert(DummyIdx != 0 && "Too many dead exits!"); 379 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 380 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 381 ++NumLoopExitsDeleted; 382 } 383 384 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 385 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 386 // When we break dead edges, the outer loop may become unreachable from 387 // the current loop. We need to fix loop info accordingly. For this, we 388 // find the most nested loop that still contains L and remove L from all 389 // loops that are inside of it. 390 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 391 392 // Okay, our loop is no longer in the outer loop (and maybe not in some of 393 // its parents as well). Make the fixup. 394 if (StillReachable != OuterLoop) { 395 LI.changeLoopFor(NewPreheader, StillReachable); 396 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 397 for (auto *BB : L.blocks()) 398 removeBlockFromLoops(BB, OuterLoop, StillReachable); 399 OuterLoop->removeChildLoop(&L); 400 if (StillReachable) 401 StillReachable->addChildLoop(&L); 402 else 403 LI.addTopLevelLoop(&L); 404 405 // Some values from loops in [OuterLoop, StillReachable) could be used 406 // in the current loop. Now it is not their child anymore, so such uses 407 // require LCSSA Phis. 408 Loop *FixLCSSALoop = OuterLoop; 409 while (FixLCSSALoop->getParentLoop() != StillReachable) 410 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 411 assert(FixLCSSALoop && "Should be a loop!"); 412 // We need all DT updates to be done before forming LCSSA. 413 if (MSSAU) 414 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 415 else 416 DTU.applyUpdates(DTUpdates); 417 DTUpdates.clear(); 418 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 419 } 420 } 421 422 if (MSSAU) { 423 // Clear all updates now. Facilitates deletes that follow. 424 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 425 DTUpdates.clear(); 426 if (VerifyMemorySSA) 427 MSSAU->getMemorySSA()->verifyMemorySSA(); 428 } 429 } 430 431 /// Delete loop blocks that have become unreachable after folding. Make all 432 /// relevant updates to DT and LI. 433 void deleteDeadLoopBlocks() { 434 if (MSSAU) { 435 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 436 DeadLoopBlocks.end()); 437 MSSAU->removeBlocks(DeadLoopBlocksSet); 438 } 439 440 // The function LI.erase has some invariants that need to be preserved when 441 // it tries to remove a loop which is not the top-level loop. In particular, 442 // it requires loop's preheader to be strictly in loop's parent. We cannot 443 // just remove blocks one by one, because after removal of preheader we may 444 // break this invariant for the dead loop. So we detatch and erase all dead 445 // loops beforehand. 446 for (auto *BB : DeadLoopBlocks) 447 if (LI.isLoopHeader(BB)) { 448 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 449 Loop *DL = LI.getLoopFor(BB); 450 if (!DL->isOutermost()) { 451 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 452 for (auto *BB : DL->getBlocks()) 453 PL->removeBlockFromLoop(BB); 454 DL->getParentLoop()->removeChildLoop(DL); 455 LI.addTopLevelLoop(DL); 456 } 457 LI.erase(DL); 458 } 459 460 for (auto *BB : DeadLoopBlocks) { 461 assert(BB != L.getHeader() && 462 "Header of the current loop cannot be dead!"); 463 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 464 << "\n"); 465 LI.removeBlock(BB); 466 } 467 468 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 469 DTU.applyUpdates(DTUpdates); 470 DTUpdates.clear(); 471 for (auto *BB : DeadLoopBlocks) 472 DTU.deleteBB(BB); 473 474 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 475 } 476 477 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 478 /// unconditional branches. 479 void foldTerminators() { 480 for (BasicBlock *BB : FoldCandidates) { 481 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 482 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 483 assert(TheOnlySucc && "Should have one live successor!"); 484 485 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 486 << " with an unconditional branch to the block " 487 << TheOnlySucc->getName() << "\n"); 488 489 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 490 // Remove all BB's successors except for the live one. 491 unsigned TheOnlySuccDuplicates = 0; 492 for (auto *Succ : successors(BB)) 493 if (Succ != TheOnlySucc) { 494 DeadSuccessors.insert(Succ); 495 // If our successor lies in a different loop, we don't want to remove 496 // the one-input Phi because it is a LCSSA Phi. 497 bool PreserveLCSSAPhi = !L.contains(Succ); 498 Succ->removePredecessor(BB, PreserveLCSSAPhi); 499 if (MSSAU) 500 MSSAU->removeEdge(BB, Succ); 501 } else 502 ++TheOnlySuccDuplicates; 503 504 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 505 // If TheOnlySucc was BB's successor more than once, after transform it 506 // will be its successor only once. Remove redundant inputs from 507 // TheOnlySucc's Phis. 508 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 509 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 510 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 511 if (MSSAU && TheOnlySuccDuplicates > 1) 512 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 513 514 IRBuilder<> Builder(BB->getContext()); 515 Instruction *Term = BB->getTerminator(); 516 Builder.SetInsertPoint(Term); 517 Builder.CreateBr(TheOnlySucc); 518 Term->eraseFromParent(); 519 520 for (auto *DeadSucc : DeadSuccessors) 521 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 522 523 ++NumTerminatorsFolded; 524 } 525 } 526 527 public: 528 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 529 ScalarEvolution &SE, 530 MemorySSAUpdater *MSSAU) 531 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 532 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 533 bool run() { 534 assert(L.getLoopLatch() && "Should be single latch!"); 535 536 // Collect all available information about status of blocks after constant 537 // folding. 538 analyze(); 539 BasicBlock *Header = L.getHeader(); 540 (void)Header; 541 542 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 543 << ": "); 544 545 if (HasIrreducibleCFG) { 546 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 547 return false; 548 } 549 550 // Nothing to constant-fold. 551 if (FoldCandidates.empty()) { 552 LLVM_DEBUG( 553 dbgs() << "No constant terminator folding candidates found in loop " 554 << Header->getName() << "\n"); 555 return false; 556 } 557 558 // TODO: Support deletion of the current loop. 559 if (DeleteCurrentLoop) { 560 LLVM_DEBUG( 561 dbgs() 562 << "Give up constant terminator folding in loop " << Header->getName() 563 << ": we don't currently support deletion of the current loop.\n"); 564 return false; 565 } 566 567 // TODO: Support blocks that are not dead, but also not in loop after the 568 // folding. 569 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 570 L.getNumBlocks()) { 571 LLVM_DEBUG( 572 dbgs() << "Give up constant terminator folding in loop " 573 << Header->getName() << ": we don't currently" 574 " support blocks that are not dead, but will stop " 575 "being a part of the loop after constant-folding.\n"); 576 return false; 577 } 578 579 // TODO: Tokens may breach LCSSA form by default. However, the transform for 580 // dead exit blocks requires LCSSA form to be maintained for all values, 581 // tokens included, otherwise it may break use-def dominance (see PR56243). 582 if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { 583 assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && 584 "LCSSA broken not by tokens?"); 585 LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " 586 << Header->getName() 587 << ": tokens uses potentially break LCSSA form.\n"); 588 return false; 589 } 590 591 SE.forgetTopmostLoop(&L); 592 // Dump analysis results. 593 LLVM_DEBUG(dump()); 594 595 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 596 << " terminators in loop " << Header->getName() << "\n"); 597 598 // Make the actual transforms. 599 handleDeadExits(); 600 foldTerminators(); 601 602 if (!DeadLoopBlocks.empty()) { 603 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 604 << " dead blocks in loop " << Header->getName() << "\n"); 605 deleteDeadLoopBlocks(); 606 } else { 607 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 608 DTU.applyUpdates(DTUpdates); 609 DTUpdates.clear(); 610 } 611 612 if (MSSAU && VerifyMemorySSA) 613 MSSAU->getMemorySSA()->verifyMemorySSA(); 614 615 #ifndef NDEBUG 616 // Make sure that we have preserved all data structures after the transform. 617 #if defined(EXPENSIVE_CHECKS) 618 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 619 "DT broken after transform!"); 620 #else 621 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 622 "DT broken after transform!"); 623 #endif 624 assert(DT.isReachableFromEntry(Header)); 625 LI.verify(DT); 626 #endif 627 628 return true; 629 } 630 631 bool foldingBreaksCurrentLoop() const { 632 return DeleteCurrentLoop; 633 } 634 }; 635 } // namespace 636 637 /// Turn branches and switches with known constant conditions into unconditional 638 /// branches. 639 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 640 ScalarEvolution &SE, 641 MemorySSAUpdater *MSSAU, 642 bool &IsLoopDeleted) { 643 if (!EnableTermFolding) 644 return false; 645 646 // To keep things simple, only process loops with single latch. We 647 // canonicalize most loops to this form. We can support multi-latch if needed. 648 if (!L.getLoopLatch()) 649 return false; 650 651 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 652 bool Changed = BranchFolder.run(); 653 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 654 return Changed; 655 } 656 657 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 658 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 659 bool Changed = false; 660 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 661 // Copy blocks into a temporary array to avoid iterator invalidation issues 662 // as we remove them. 663 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 664 665 for (auto &Block : Blocks) { 666 // Attempt to merge blocks in the trivial case. Don't modify blocks which 667 // belong to other loops. 668 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 669 if (!Succ) 670 continue; 671 672 BasicBlock *Pred = Succ->getSinglePredecessor(); 673 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 674 continue; 675 676 // Merge Succ into Pred and delete it. 677 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 678 679 if (MSSAU && VerifyMemorySSA) 680 MSSAU->getMemorySSA()->verifyMemorySSA(); 681 682 Changed = true; 683 } 684 685 return Changed; 686 } 687 688 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 689 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 690 bool &IsLoopDeleted) { 691 bool Changed = false; 692 693 // Constant-fold terminators with known constant conditions. 694 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); 695 696 if (IsLoopDeleted) 697 return true; 698 699 // Eliminate unconditional branches by merging blocks into their predecessors. 700 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 701 702 if (Changed) 703 SE.forgetTopmostLoop(&L); 704 705 return Changed; 706 } 707 708 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 709 LoopStandardAnalysisResults &AR, 710 LPMUpdater &LPMU) { 711 Optional<MemorySSAUpdater> MSSAU; 712 if (AR.MSSA) 713 MSSAU = MemorySSAUpdater(AR.MSSA); 714 bool DeleteCurrentLoop = false; 715 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 716 MSSAU ? MSSAU.getPointer() : nullptr, DeleteCurrentLoop)) 717 return PreservedAnalyses::all(); 718 719 if (DeleteCurrentLoop) 720 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 721 722 auto PA = getLoopPassPreservedAnalyses(); 723 if (AR.MSSA) 724 PA.preserve<MemorySSAAnalysis>(); 725 return PA; 726 } 727 728 namespace { 729 class LoopSimplifyCFGLegacyPass : public LoopPass { 730 public: 731 static char ID; // Pass ID, replacement for typeid 732 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 733 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 734 } 735 736 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 737 if (skipLoop(L)) 738 return false; 739 740 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 741 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 742 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 743 auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 744 Optional<MemorySSAUpdater> MSSAU; 745 if (MSSAA) 746 MSSAU = MemorySSAUpdater(&MSSAA->getMSSA()); 747 if (MSSAA && VerifyMemorySSA) 748 MSSAU->getMemorySSA()->verifyMemorySSA(); 749 bool DeleteCurrentLoop = false; 750 bool Changed = 751 simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? MSSAU.getPointer() : nullptr, 752 DeleteCurrentLoop); 753 if (DeleteCurrentLoop) 754 LPM.markLoopAsDeleted(*L); 755 return Changed; 756 } 757 758 void getAnalysisUsage(AnalysisUsage &AU) const override { 759 AU.addPreserved<MemorySSAWrapperPass>(); 760 AU.addPreserved<DependenceAnalysisWrapperPass>(); 761 getLoopAnalysisUsage(AU); 762 } 763 }; 764 } // end namespace 765 766 char LoopSimplifyCFGLegacyPass::ID = 0; 767 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 768 "Simplify loop CFG", false, false) 769 INITIALIZE_PASS_DEPENDENCY(LoopPass) 770 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 771 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 772 "Simplify loop CFG", false, false) 773 774 Pass *llvm::createLoopSimplifyCFGPass() { 775 return new LoopSimplifyCFGLegacyPass(); 776 } 777