xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp (revision d8096b2df282d7a50e56eddba523bcdda1676106)
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/LoopPassManager.h"
38 #include "llvm/Transforms/Utils.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "loop-simplifycfg"
45 
46 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
47                                        cl::init(true));
48 
49 STATISTIC(NumTerminatorsFolded,
50           "Number of terminators folded to unconditional branches");
51 STATISTIC(NumLoopBlocksDeleted,
52           "Number of loop blocks deleted");
53 STATISTIC(NumLoopExitsDeleted,
54           "Number of loop exiting edges deleted");
55 
56 /// If \p BB is a switch or a conditional branch, but only one of its successors
57 /// can be reached from this block in runtime, return this successor. Otherwise,
58 /// return nullptr.
59 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
60   Instruction *TI = BB->getTerminator();
61   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
62     if (BI->isUnconditional())
63       return nullptr;
64     if (BI->getSuccessor(0) == BI->getSuccessor(1))
65       return BI->getSuccessor(0);
66     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
67     if (!Cond)
68       return nullptr;
69     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
70   }
71 
72   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
73     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
74     if (!CI)
75       return nullptr;
76     for (auto Case : SI->cases())
77       if (Case.getCaseValue() == CI)
78         return Case.getCaseSuccessor();
79     return SI->getDefaultDest();
80   }
81 
82   return nullptr;
83 }
84 
85 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
86 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
87                                  Loop *LastLoop = nullptr) {
88   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
89          "First loop is supposed to be inside of last loop!");
90   assert(FirstLoop->contains(BB) && "Must be a loop block!");
91   for (Loop *Current = FirstLoop; Current != LastLoop;
92        Current = Current->getParentLoop())
93     Current->removeBlockFromLoop(BB);
94 }
95 
96 /// Find innermost loop that contains at least one block from \p BBs and
97 /// contains the header of loop \p L.
98 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
99                                  Loop &L, LoopInfo &LI) {
100   Loop *Innermost = nullptr;
101   for (BasicBlock *BB : BBs) {
102     Loop *BBL = LI.getLoopFor(BB);
103     while (BBL && !BBL->contains(L.getHeader()))
104       BBL = BBL->getParentLoop();
105     if (BBL == &L)
106       BBL = BBL->getParentLoop();
107     if (!BBL)
108       continue;
109     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
110       Innermost = BBL;
111   }
112   return Innermost;
113 }
114 
115 namespace {
116 /// Helper class that can turn branches and switches with constant conditions
117 /// into unconditional branches.
118 class ConstantTerminatorFoldingImpl {
119 private:
120   Loop &L;
121   LoopInfo &LI;
122   DominatorTree &DT;
123   ScalarEvolution &SE;
124   MemorySSAUpdater *MSSAU;
125   LoopBlocksDFS DFS;
126   DomTreeUpdater DTU;
127   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
128 
129   // Whether or not the current loop has irreducible CFG.
130   bool HasIrreducibleCFG = false;
131   // Whether or not the current loop will still exist after terminator constant
132   // folding will be done. In theory, there are two ways how it can happen:
133   // 1. Loop's latch(es) become unreachable from loop header;
134   // 2. Loop's header becomes unreachable from method entry.
135   // In practice, the second situation is impossible because we only modify the
136   // current loop and its preheader and do not affect preheader's reachibility
137   // from any other block. So this variable set to true means that loop's latch
138   // has become unreachable from loop header.
139   bool DeleteCurrentLoop = false;
140 
141   // The blocks of the original loop that will still be reachable from entry
142   // after the constant folding.
143   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
144   // The blocks of the original loop that will become unreachable from entry
145   // after the constant folding.
146   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
147   // The exits of the original loop that will still be reachable from entry
148   // after the constant folding.
149   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
150   // The exits of the original loop that will become unreachable from entry
151   // after the constant folding.
152   SmallVector<BasicBlock *, 8> DeadExitBlocks;
153   // The blocks that will still be a part of the current loop after folding.
154   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
155   // The blocks that have terminators with constant condition that can be
156   // folded. Note: fold candidates should be in L but not in any of its
157   // subloops to avoid complex LI updates.
158   SmallVector<BasicBlock *, 8> FoldCandidates;
159 
160   void dump() const {
161     dbgs() << "Constant terminator folding for loop " << L << "\n";
162     dbgs() << "After terminator constant-folding, the loop will";
163     if (!DeleteCurrentLoop)
164       dbgs() << " not";
165     dbgs() << " be destroyed\n";
166     auto PrintOutVector = [&](const char *Message,
167                            const SmallVectorImpl<BasicBlock *> &S) {
168       dbgs() << Message << "\n";
169       for (const BasicBlock *BB : S)
170         dbgs() << "\t" << BB->getName() << "\n";
171     };
172     auto PrintOutSet = [&](const char *Message,
173                            const SmallPtrSetImpl<BasicBlock *> &S) {
174       dbgs() << Message << "\n";
175       for (const BasicBlock *BB : S)
176         dbgs() << "\t" << BB->getName() << "\n";
177     };
178     PrintOutVector("Blocks in which we can constant-fold terminator:",
179                    FoldCandidates);
180     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
181     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
182     PrintOutSet("Live exit blocks:", LiveExitBlocks);
183     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
184     if (!DeleteCurrentLoop)
185       PrintOutSet("The following blocks will still be part of the loop:",
186                   BlocksInLoopAfterFolding);
187   }
188 
189   /// Whether or not the current loop has irreducible CFG.
190   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
191     assert(DFS.isComplete() && "DFS is expected to be finished");
192     // Index of a basic block in RPO traversal.
193     DenseMap<const BasicBlock *, unsigned> RPO;
194     unsigned Current = 0;
195     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
196       RPO[*I] = Current++;
197 
198     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
199       BasicBlock *BB = *I;
200       for (auto *Succ : successors(BB))
201         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
202           // If an edge goes from a block with greater order number into a block
203           // with lesses number, and it is not a loop backedge, then it can only
204           // be a part of irreducible non-loop cycle.
205           return true;
206     }
207     return false;
208   }
209 
210   /// Fill all information about status of blocks and exits of the current loop
211   /// if constant folding of all branches will be done.
212   void analyze() {
213     DFS.perform(&LI);
214     assert(DFS.isComplete() && "DFS is expected to be finished");
215 
216     // TODO: The algorithm below relies on both RPO and Postorder traversals.
217     // When the loop has only reducible CFG inside, then the invariant "all
218     // predecessors of X are processed before X in RPO" is preserved. However
219     // an irreducible loop can break this invariant (e.g. latch does not have to
220     // be the last block in the traversal in this case, and the algorithm relies
221     // on this). We can later decide to support such cases by altering the
222     // algorithms, but so far we just give up analyzing them.
223     if (hasIrreducibleCFG(DFS)) {
224       HasIrreducibleCFG = true;
225       return;
226     }
227 
228     // Collect live and dead loop blocks and exits.
229     LiveLoopBlocks.insert(L.getHeader());
230     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
231       BasicBlock *BB = *I;
232 
233       // If a loop block wasn't marked as live so far, then it's dead.
234       if (!LiveLoopBlocks.count(BB)) {
235         DeadLoopBlocks.push_back(BB);
236         continue;
237       }
238 
239       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
240 
241       // If a block has only one live successor, it's a candidate on constant
242       // folding. Only handle blocks from current loop: branches in child loops
243       // are skipped because if they can be folded, they should be folded during
244       // the processing of child loops.
245       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
246       if (TakeFoldCandidate)
247         FoldCandidates.push_back(BB);
248 
249       // Handle successors.
250       for (BasicBlock *Succ : successors(BB))
251         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
252           if (L.contains(Succ))
253             LiveLoopBlocks.insert(Succ);
254           else
255             LiveExitBlocks.insert(Succ);
256         }
257     }
258 
259     // Amount of dead and live loop blocks should match the total number of
260     // blocks in loop.
261     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
262            "Malformed block sets?");
263 
264     // Now, all exit blocks that are not marked as live are dead.
265     SmallVector<BasicBlock *, 8> ExitBlocks;
266     L.getExitBlocks(ExitBlocks);
267     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
268     for (auto *ExitBlock : ExitBlocks)
269       if (!LiveExitBlocks.count(ExitBlock) &&
270           UniqueDeadExits.insert(ExitBlock).second)
271         DeadExitBlocks.push_back(ExitBlock);
272 
273     // Whether or not the edge From->To will still be present in graph after the
274     // folding.
275     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
276       if (!LiveLoopBlocks.count(From))
277         return false;
278       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
279       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
280     };
281 
282     // The loop will not be destroyed if its latch is live.
283     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
284 
285     // If we are going to delete the current loop completely, no extra analysis
286     // is needed.
287     if (DeleteCurrentLoop)
288       return;
289 
290     // Otherwise, we should check which blocks will still be a part of the
291     // current loop after the transform.
292     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
293     // If the loop is live, then we should compute what blocks are still in
294     // loop after all branch folding has been done. A block is in loop if
295     // it has a live edge to another block that is in the loop; by definition,
296     // latch is in the loop.
297     auto BlockIsInLoop = [&](BasicBlock *BB) {
298       return any_of(successors(BB), [&](BasicBlock *Succ) {
299         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
300       });
301     };
302     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
303       BasicBlock *BB = *I;
304       if (BlockIsInLoop(BB))
305         BlocksInLoopAfterFolding.insert(BB);
306     }
307 
308     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
309            "Header not in loop?");
310     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
311            "All blocks that stay in loop should be live!");
312   }
313 
314   /// We need to preserve static reachibility of all loop exit blocks (this is)
315   /// required by loop pass manager. In order to do it, we make the following
316   /// trick:
317   ///
318   ///  preheader:
319   ///    <preheader code>
320   ///    br label %loop_header
321   ///
322   ///  loop_header:
323   ///    ...
324   ///    br i1 false, label %dead_exit, label %loop_block
325   ///    ...
326   ///
327   /// We cannot simply remove edge from the loop to dead exit because in this
328   /// case dead_exit (and its successors) may become unreachable. To avoid that,
329   /// we insert the following fictive preheader:
330   ///
331   ///  preheader:
332   ///    <preheader code>
333   ///    switch i32 0, label %preheader-split,
334   ///                  [i32 1, label %dead_exit_1],
335   ///                  [i32 2, label %dead_exit_2],
336   ///                  ...
337   ///                  [i32 N, label %dead_exit_N],
338   ///
339   ///  preheader-split:
340   ///    br label %loop_header
341   ///
342   ///  loop_header:
343   ///    ...
344   ///    br i1 false, label %dead_exit_N, label %loop_block
345   ///    ...
346   ///
347   /// Doing so, we preserve static reachibility of all dead exits and can later
348   /// remove edges from the loop to these blocks.
349   void handleDeadExits() {
350     // If no dead exits, nothing to do.
351     if (DeadExitBlocks.empty())
352       return;
353 
354     // Construct split preheader and the dummy switch to thread edges from it to
355     // dead exits.
356     BasicBlock *Preheader = L.getLoopPreheader();
357     BasicBlock *NewPreheader = llvm::SplitBlock(
358         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
359 
360     IRBuilder<> Builder(Preheader->getTerminator());
361     SwitchInst *DummySwitch =
362         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
363     Preheader->getTerminator()->eraseFromParent();
364 
365     unsigned DummyIdx = 1;
366     for (BasicBlock *BB : DeadExitBlocks) {
367       // Eliminate all Phis and LandingPads from dead exits.
368       // TODO: Consider removing all instructions in this dead block.
369       SmallVector<Instruction *, 4> DeadInstructions;
370       for (auto &PN : BB->phis())
371         DeadInstructions.push_back(&PN);
372 
373       if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
374         DeadInstructions.emplace_back(LandingPad);
375 
376       for (Instruction *I : DeadInstructions) {
377         I->replaceAllUsesWith(UndefValue::get(I->getType()));
378         I->eraseFromParent();
379       }
380 
381       assert(DummyIdx != 0 && "Too many dead exits!");
382       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
383       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
384       ++NumLoopExitsDeleted;
385     }
386 
387     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
388     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
389       // When we break dead edges, the outer loop may become unreachable from
390       // the current loop. We need to fix loop info accordingly. For this, we
391       // find the most nested loop that still contains L and remove L from all
392       // loops that are inside of it.
393       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
394 
395       // Okay, our loop is no longer in the outer loop (and maybe not in some of
396       // its parents as well). Make the fixup.
397       if (StillReachable != OuterLoop) {
398         LI.changeLoopFor(NewPreheader, StillReachable);
399         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
400         for (auto *BB : L.blocks())
401           removeBlockFromLoops(BB, OuterLoop, StillReachable);
402         OuterLoop->removeChildLoop(&L);
403         if (StillReachable)
404           StillReachable->addChildLoop(&L);
405         else
406           LI.addTopLevelLoop(&L);
407 
408         // Some values from loops in [OuterLoop, StillReachable) could be used
409         // in the current loop. Now it is not their child anymore, so such uses
410         // require LCSSA Phis.
411         Loop *FixLCSSALoop = OuterLoop;
412         while (FixLCSSALoop->getParentLoop() != StillReachable)
413           FixLCSSALoop = FixLCSSALoop->getParentLoop();
414         assert(FixLCSSALoop && "Should be a loop!");
415         // We need all DT updates to be done before forming LCSSA.
416         if (MSSAU)
417           MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
418         else
419           DTU.applyUpdates(DTUpdates);
420         DTUpdates.clear();
421         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
422       }
423     }
424 
425     if (MSSAU) {
426       // Clear all updates now. Facilitates deletes that follow.
427       MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
428       DTUpdates.clear();
429       if (VerifyMemorySSA)
430         MSSAU->getMemorySSA()->verifyMemorySSA();
431     }
432   }
433 
434   /// Delete loop blocks that have become unreachable after folding. Make all
435   /// relevant updates to DT and LI.
436   void deleteDeadLoopBlocks() {
437     if (MSSAU) {
438       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
439                                                         DeadLoopBlocks.end());
440       MSSAU->removeBlocks(DeadLoopBlocksSet);
441     }
442 
443     // The function LI.erase has some invariants that need to be preserved when
444     // it tries to remove a loop which is not the top-level loop. In particular,
445     // it requires loop's preheader to be strictly in loop's parent. We cannot
446     // just remove blocks one by one, because after removal of preheader we may
447     // break this invariant for the dead loop. So we detatch and erase all dead
448     // loops beforehand.
449     for (auto *BB : DeadLoopBlocks)
450       if (LI.isLoopHeader(BB)) {
451         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
452         Loop *DL = LI.getLoopFor(BB);
453         if (!DL->isOutermost()) {
454           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
455             for (auto *BB : DL->getBlocks())
456               PL->removeBlockFromLoop(BB);
457           DL->getParentLoop()->removeChildLoop(DL);
458           LI.addTopLevelLoop(DL);
459         }
460         LI.erase(DL);
461       }
462 
463     for (auto *BB : DeadLoopBlocks) {
464       assert(BB != L.getHeader() &&
465              "Header of the current loop cannot be dead!");
466       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
467                         << "\n");
468       LI.removeBlock(BB);
469     }
470 
471     detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
472     DTU.applyUpdates(DTUpdates);
473     DTUpdates.clear();
474     for (auto *BB : DeadLoopBlocks)
475       DTU.deleteBB(BB);
476 
477     NumLoopBlocksDeleted += DeadLoopBlocks.size();
478   }
479 
480   /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
481   /// unconditional branches.
482   void foldTerminators() {
483     for (BasicBlock *BB : FoldCandidates) {
484       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
485       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
486       assert(TheOnlySucc && "Should have one live successor!");
487 
488       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
489                         << " with an unconditional branch to the block "
490                         << TheOnlySucc->getName() << "\n");
491 
492       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
493       // Remove all BB's successors except for the live one.
494       unsigned TheOnlySuccDuplicates = 0;
495       for (auto *Succ : successors(BB))
496         if (Succ != TheOnlySucc) {
497           DeadSuccessors.insert(Succ);
498           // If our successor lies in a different loop, we don't want to remove
499           // the one-input Phi because it is a LCSSA Phi.
500           bool PreserveLCSSAPhi = !L.contains(Succ);
501           Succ->removePredecessor(BB, PreserveLCSSAPhi);
502           if (MSSAU)
503             MSSAU->removeEdge(BB, Succ);
504         } else
505           ++TheOnlySuccDuplicates;
506 
507       assert(TheOnlySuccDuplicates > 0 && "Should be!");
508       // If TheOnlySucc was BB's successor more than once, after transform it
509       // will be its successor only once. Remove redundant inputs from
510       // TheOnlySucc's Phis.
511       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
512       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
513         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
514       if (MSSAU && TheOnlySuccDuplicates > 1)
515         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
516 
517       IRBuilder<> Builder(BB->getContext());
518       Instruction *Term = BB->getTerminator();
519       Builder.SetInsertPoint(Term);
520       Builder.CreateBr(TheOnlySucc);
521       Term->eraseFromParent();
522 
523       for (auto *DeadSucc : DeadSuccessors)
524         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
525 
526       ++NumTerminatorsFolded;
527     }
528   }
529 
530 public:
531   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
532                                 ScalarEvolution &SE,
533                                 MemorySSAUpdater *MSSAU)
534       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
535         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
536   bool run() {
537     assert(L.getLoopLatch() && "Should be single latch!");
538 
539     // Collect all available information about status of blocks after constant
540     // folding.
541     analyze();
542     BasicBlock *Header = L.getHeader();
543     (void)Header;
544 
545     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
546                       << ": ");
547 
548     if (HasIrreducibleCFG) {
549       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
550       return false;
551     }
552 
553     // Nothing to constant-fold.
554     if (FoldCandidates.empty()) {
555       LLVM_DEBUG(
556           dbgs() << "No constant terminator folding candidates found in loop "
557                  << Header->getName() << "\n");
558       return false;
559     }
560 
561     // TODO: Support deletion of the current loop.
562     if (DeleteCurrentLoop) {
563       LLVM_DEBUG(
564           dbgs()
565           << "Give up constant terminator folding in loop " << Header->getName()
566           << ": we don't currently support deletion of the current loop.\n");
567       return false;
568     }
569 
570     // TODO: Support blocks that are not dead, but also not in loop after the
571     // folding.
572     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
573         L.getNumBlocks()) {
574       LLVM_DEBUG(
575           dbgs() << "Give up constant terminator folding in loop "
576                  << Header->getName() << ": we don't currently"
577                     " support blocks that are not dead, but will stop "
578                     "being a part of the loop after constant-folding.\n");
579       return false;
580     }
581 
582     SE.forgetTopmostLoop(&L);
583     // Dump analysis results.
584     LLVM_DEBUG(dump());
585 
586     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
587                       << " terminators in loop " << Header->getName() << "\n");
588 
589     // Make the actual transforms.
590     handleDeadExits();
591     foldTerminators();
592 
593     if (!DeadLoopBlocks.empty()) {
594       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
595                     << " dead blocks in loop " << Header->getName() << "\n");
596       deleteDeadLoopBlocks();
597     } else {
598       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
599       DTU.applyUpdates(DTUpdates);
600       DTUpdates.clear();
601     }
602 
603     if (MSSAU && VerifyMemorySSA)
604       MSSAU->getMemorySSA()->verifyMemorySSA();
605 
606 #ifndef NDEBUG
607     // Make sure that we have preserved all data structures after the transform.
608 #if defined(EXPENSIVE_CHECKS)
609     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
610            "DT broken after transform!");
611 #else
612     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
613            "DT broken after transform!");
614 #endif
615     assert(DT.isReachableFromEntry(Header));
616     LI.verify(DT);
617 #endif
618 
619     return true;
620   }
621 
622   bool foldingBreaksCurrentLoop() const {
623     return DeleteCurrentLoop;
624   }
625 };
626 } // namespace
627 
628 /// Turn branches and switches with known constant conditions into unconditional
629 /// branches.
630 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
631                                     ScalarEvolution &SE,
632                                     MemorySSAUpdater *MSSAU,
633                                     bool &IsLoopDeleted) {
634   if (!EnableTermFolding)
635     return false;
636 
637   // To keep things simple, only process loops with single latch. We
638   // canonicalize most loops to this form. We can support multi-latch if needed.
639   if (!L.getLoopLatch())
640     return false;
641 
642   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
643   bool Changed = BranchFolder.run();
644   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
645   return Changed;
646 }
647 
648 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
649                                         LoopInfo &LI, MemorySSAUpdater *MSSAU) {
650   bool Changed = false;
651   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
652   // Copy blocks into a temporary array to avoid iterator invalidation issues
653   // as we remove them.
654   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
655 
656   for (auto &Block : Blocks) {
657     // Attempt to merge blocks in the trivial case. Don't modify blocks which
658     // belong to other loops.
659     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
660     if (!Succ)
661       continue;
662 
663     BasicBlock *Pred = Succ->getSinglePredecessor();
664     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
665       continue;
666 
667     // Merge Succ into Pred and delete it.
668     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
669 
670     if (MSSAU && VerifyMemorySSA)
671       MSSAU->getMemorySSA()->verifyMemorySSA();
672 
673     Changed = true;
674   }
675 
676   return Changed;
677 }
678 
679 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
680                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
681                             bool &IsLoopDeleted) {
682   bool Changed = false;
683 
684   // Constant-fold terminators with known constant conditions.
685   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
686 
687   if (IsLoopDeleted)
688     return true;
689 
690   // Eliminate unconditional branches by merging blocks into their predecessors.
691   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
692 
693   if (Changed)
694     SE.forgetTopmostLoop(&L);
695 
696   return Changed;
697 }
698 
699 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
700                                            LoopStandardAnalysisResults &AR,
701                                            LPMUpdater &LPMU) {
702   Optional<MemorySSAUpdater> MSSAU;
703   if (AR.MSSA)
704     MSSAU = MemorySSAUpdater(AR.MSSA);
705   bool DeleteCurrentLoop = false;
706   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
707                        MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
708                        DeleteCurrentLoop))
709     return PreservedAnalyses::all();
710 
711   if (DeleteCurrentLoop)
712     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
713 
714   auto PA = getLoopPassPreservedAnalyses();
715   if (AR.MSSA)
716     PA.preserve<MemorySSAAnalysis>();
717   return PA;
718 }
719 
720 namespace {
721 class LoopSimplifyCFGLegacyPass : public LoopPass {
722 public:
723   static char ID; // Pass ID, replacement for typeid
724   LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
725     initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
726   }
727 
728   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
729     if (skipLoop(L))
730       return false;
731 
732     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
733     LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
734     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
735     auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
736     Optional<MemorySSAUpdater> MSSAU;
737     if (MSSAA)
738       MSSAU = MemorySSAUpdater(&MSSAA->getMSSA());
739     if (MSSAA && VerifyMemorySSA)
740       MSSAU->getMemorySSA()->verifyMemorySSA();
741     bool DeleteCurrentLoop = false;
742     bool Changed = simplifyLoopCFG(
743         *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
744         DeleteCurrentLoop);
745     if (DeleteCurrentLoop)
746       LPM.markLoopAsDeleted(*L);
747     return Changed;
748   }
749 
750   void getAnalysisUsage(AnalysisUsage &AU) const override {
751     AU.addPreserved<MemorySSAWrapperPass>();
752     AU.addPreserved<DependenceAnalysisWrapperPass>();
753     getLoopAnalysisUsage(AU);
754   }
755 };
756 } // end namespace
757 
758 char LoopSimplifyCFGLegacyPass::ID = 0;
759 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
760                       "Simplify loop CFG", false, false)
761 INITIALIZE_PASS_DEPENDENCY(LoopPass)
762 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
763 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
764                     "Simplify loop CFG", false, false)
765 
766 Pass *llvm::createLoopSimplifyCFGPass() {
767   return new LoopSimplifyCFGLegacyPass();
768 }
769