1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/DependenceAnalysis.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/MemorySSA.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Scalar/LoopPassManager.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/LoopUtils.h" 35 #include <optional> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-simplifycfg" 39 40 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 41 cl::init(true)); 42 43 STATISTIC(NumTerminatorsFolded, 44 "Number of terminators folded to unconditional branches"); 45 STATISTIC(NumLoopBlocksDeleted, 46 "Number of loop blocks deleted"); 47 STATISTIC(NumLoopExitsDeleted, 48 "Number of loop exiting edges deleted"); 49 50 /// If \p BB is a switch or a conditional branch, but only one of its successors 51 /// can be reached from this block in runtime, return this successor. Otherwise, 52 /// return nullptr. 53 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 54 Instruction *TI = BB->getTerminator(); 55 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 56 if (BI->isUnconditional()) 57 return nullptr; 58 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 59 return BI->getSuccessor(0); 60 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 61 if (!Cond) 62 return nullptr; 63 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 64 } 65 66 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 67 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 68 if (!CI) 69 return nullptr; 70 for (auto Case : SI->cases()) 71 if (Case.getCaseValue() == CI) 72 return Case.getCaseSuccessor(); 73 return SI->getDefaultDest(); 74 } 75 76 return nullptr; 77 } 78 79 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 80 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 81 Loop *LastLoop = nullptr) { 82 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 83 "First loop is supposed to be inside of last loop!"); 84 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 85 for (Loop *Current = FirstLoop; Current != LastLoop; 86 Current = Current->getParentLoop()) 87 Current->removeBlockFromLoop(BB); 88 } 89 90 /// Find innermost loop that contains at least one block from \p BBs and 91 /// contains the header of loop \p L. 92 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 93 Loop &L, LoopInfo &LI) { 94 Loop *Innermost = nullptr; 95 for (BasicBlock *BB : BBs) { 96 Loop *BBL = LI.getLoopFor(BB); 97 while (BBL && !BBL->contains(L.getHeader())) 98 BBL = BBL->getParentLoop(); 99 if (BBL == &L) 100 BBL = BBL->getParentLoop(); 101 if (!BBL) 102 continue; 103 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 104 Innermost = BBL; 105 } 106 return Innermost; 107 } 108 109 namespace { 110 /// Helper class that can turn branches and switches with constant conditions 111 /// into unconditional branches. 112 class ConstantTerminatorFoldingImpl { 113 private: 114 Loop &L; 115 LoopInfo &LI; 116 DominatorTree &DT; 117 ScalarEvolution &SE; 118 MemorySSAUpdater *MSSAU; 119 LoopBlocksDFS DFS; 120 DomTreeUpdater DTU; 121 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 122 123 // Whether or not the current loop has irreducible CFG. 124 bool HasIrreducibleCFG = false; 125 // Whether or not the current loop will still exist after terminator constant 126 // folding will be done. In theory, there are two ways how it can happen: 127 // 1. Loop's latch(es) become unreachable from loop header; 128 // 2. Loop's header becomes unreachable from method entry. 129 // In practice, the second situation is impossible because we only modify the 130 // current loop and its preheader and do not affect preheader's reachibility 131 // from any other block. So this variable set to true means that loop's latch 132 // has become unreachable from loop header. 133 bool DeleteCurrentLoop = false; 134 135 // The blocks of the original loop that will still be reachable from entry 136 // after the constant folding. 137 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 138 // The blocks of the original loop that will become unreachable from entry 139 // after the constant folding. 140 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 141 // The exits of the original loop that will still be reachable from entry 142 // after the constant folding. 143 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 144 // The exits of the original loop that will become unreachable from entry 145 // after the constant folding. 146 SmallVector<BasicBlock *, 8> DeadExitBlocks; 147 // The blocks that will still be a part of the current loop after folding. 148 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 149 // The blocks that have terminators with constant condition that can be 150 // folded. Note: fold candidates should be in L but not in any of its 151 // subloops to avoid complex LI updates. 152 SmallVector<BasicBlock *, 8> FoldCandidates; 153 154 void dump() const { 155 dbgs() << "Constant terminator folding for loop " << L << "\n"; 156 dbgs() << "After terminator constant-folding, the loop will"; 157 if (!DeleteCurrentLoop) 158 dbgs() << " not"; 159 dbgs() << " be destroyed\n"; 160 auto PrintOutVector = [&](const char *Message, 161 const SmallVectorImpl<BasicBlock *> &S) { 162 dbgs() << Message << "\n"; 163 for (const BasicBlock *BB : S) 164 dbgs() << "\t" << BB->getName() << "\n"; 165 }; 166 auto PrintOutSet = [&](const char *Message, 167 const SmallPtrSetImpl<BasicBlock *> &S) { 168 dbgs() << Message << "\n"; 169 for (const BasicBlock *BB : S) 170 dbgs() << "\t" << BB->getName() << "\n"; 171 }; 172 PrintOutVector("Blocks in which we can constant-fold terminator:", 173 FoldCandidates); 174 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 175 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 176 PrintOutSet("Live exit blocks:", LiveExitBlocks); 177 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 178 if (!DeleteCurrentLoop) 179 PrintOutSet("The following blocks will still be part of the loop:", 180 BlocksInLoopAfterFolding); 181 } 182 183 /// Whether or not the current loop has irreducible CFG. 184 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 185 assert(DFS.isComplete() && "DFS is expected to be finished"); 186 // Index of a basic block in RPO traversal. 187 DenseMap<const BasicBlock *, unsigned> RPO; 188 unsigned Current = 0; 189 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 190 RPO[*I] = Current++; 191 192 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 193 BasicBlock *BB = *I; 194 for (auto *Succ : successors(BB)) 195 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 196 // If an edge goes from a block with greater order number into a block 197 // with lesses number, and it is not a loop backedge, then it can only 198 // be a part of irreducible non-loop cycle. 199 return true; 200 } 201 return false; 202 } 203 204 /// Fill all information about status of blocks and exits of the current loop 205 /// if constant folding of all branches will be done. 206 void analyze() { 207 DFS.perform(&LI); 208 assert(DFS.isComplete() && "DFS is expected to be finished"); 209 210 // TODO: The algorithm below relies on both RPO and Postorder traversals. 211 // When the loop has only reducible CFG inside, then the invariant "all 212 // predecessors of X are processed before X in RPO" is preserved. However 213 // an irreducible loop can break this invariant (e.g. latch does not have to 214 // be the last block in the traversal in this case, and the algorithm relies 215 // on this). We can later decide to support such cases by altering the 216 // algorithms, but so far we just give up analyzing them. 217 if (hasIrreducibleCFG(DFS)) { 218 HasIrreducibleCFG = true; 219 return; 220 } 221 222 // Collect live and dead loop blocks and exits. 223 LiveLoopBlocks.insert(L.getHeader()); 224 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 225 BasicBlock *BB = *I; 226 227 // If a loop block wasn't marked as live so far, then it's dead. 228 if (!LiveLoopBlocks.count(BB)) { 229 DeadLoopBlocks.push_back(BB); 230 continue; 231 } 232 233 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 234 235 // If a block has only one live successor, it's a candidate on constant 236 // folding. Only handle blocks from current loop: branches in child loops 237 // are skipped because if they can be folded, they should be folded during 238 // the processing of child loops. 239 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 240 if (TakeFoldCandidate) 241 FoldCandidates.push_back(BB); 242 243 // Handle successors. 244 for (BasicBlock *Succ : successors(BB)) 245 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 246 if (L.contains(Succ)) 247 LiveLoopBlocks.insert(Succ); 248 else 249 LiveExitBlocks.insert(Succ); 250 } 251 } 252 253 // Amount of dead and live loop blocks should match the total number of 254 // blocks in loop. 255 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 256 "Malformed block sets?"); 257 258 // Now, all exit blocks that are not marked as live are dead, if all their 259 // predecessors are in the loop. This may not be the case, as the input loop 260 // may not by in loop-simplify/canonical form. 261 SmallVector<BasicBlock *, 8> ExitBlocks; 262 L.getExitBlocks(ExitBlocks); 263 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 264 for (auto *ExitBlock : ExitBlocks) 265 if (!LiveExitBlocks.count(ExitBlock) && 266 UniqueDeadExits.insert(ExitBlock).second && 267 all_of(predecessors(ExitBlock), 268 [this](BasicBlock *Pred) { return L.contains(Pred); })) 269 DeadExitBlocks.push_back(ExitBlock); 270 271 // Whether or not the edge From->To will still be present in graph after the 272 // folding. 273 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 274 if (!LiveLoopBlocks.count(From)) 275 return false; 276 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 277 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 278 }; 279 280 // The loop will not be destroyed if its latch is live. 281 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 282 283 // If we are going to delete the current loop completely, no extra analysis 284 // is needed. 285 if (DeleteCurrentLoop) 286 return; 287 288 // Otherwise, we should check which blocks will still be a part of the 289 // current loop after the transform. 290 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 291 // If the loop is live, then we should compute what blocks are still in 292 // loop after all branch folding has been done. A block is in loop if 293 // it has a live edge to another block that is in the loop; by definition, 294 // latch is in the loop. 295 auto BlockIsInLoop = [&](BasicBlock *BB) { 296 return any_of(successors(BB), [&](BasicBlock *Succ) { 297 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 298 }); 299 }; 300 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 301 BasicBlock *BB = *I; 302 if (BlockIsInLoop(BB)) 303 BlocksInLoopAfterFolding.insert(BB); 304 } 305 306 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 307 "Header not in loop?"); 308 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 309 "All blocks that stay in loop should be live!"); 310 } 311 312 /// We need to preserve static reachibility of all loop exit blocks (this is) 313 /// required by loop pass manager. In order to do it, we make the following 314 /// trick: 315 /// 316 /// preheader: 317 /// <preheader code> 318 /// br label %loop_header 319 /// 320 /// loop_header: 321 /// ... 322 /// br i1 false, label %dead_exit, label %loop_block 323 /// ... 324 /// 325 /// We cannot simply remove edge from the loop to dead exit because in this 326 /// case dead_exit (and its successors) may become unreachable. To avoid that, 327 /// we insert the following fictive preheader: 328 /// 329 /// preheader: 330 /// <preheader code> 331 /// switch i32 0, label %preheader-split, 332 /// [i32 1, label %dead_exit_1], 333 /// [i32 2, label %dead_exit_2], 334 /// ... 335 /// [i32 N, label %dead_exit_N], 336 /// 337 /// preheader-split: 338 /// br label %loop_header 339 /// 340 /// loop_header: 341 /// ... 342 /// br i1 false, label %dead_exit_N, label %loop_block 343 /// ... 344 /// 345 /// Doing so, we preserve static reachibility of all dead exits and can later 346 /// remove edges from the loop to these blocks. 347 void handleDeadExits() { 348 // If no dead exits, nothing to do. 349 if (DeadExitBlocks.empty()) 350 return; 351 352 // Construct split preheader and the dummy switch to thread edges from it to 353 // dead exits. 354 BasicBlock *Preheader = L.getLoopPreheader(); 355 BasicBlock *NewPreheader = llvm::SplitBlock( 356 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 357 358 IRBuilder<> Builder(Preheader->getTerminator()); 359 SwitchInst *DummySwitch = 360 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 361 Preheader->getTerminator()->eraseFromParent(); 362 363 unsigned DummyIdx = 1; 364 for (BasicBlock *BB : DeadExitBlocks) { 365 // Eliminate all Phis and LandingPads from dead exits. 366 // TODO: Consider removing all instructions in this dead block. 367 SmallVector<Instruction *, 4> DeadInstructions; 368 for (auto &PN : BB->phis()) 369 DeadInstructions.push_back(&PN); 370 371 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 372 DeadInstructions.emplace_back(LandingPad); 373 374 for (Instruction *I : DeadInstructions) { 375 SE.forgetBlockAndLoopDispositions(I); 376 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 377 I->eraseFromParent(); 378 } 379 380 assert(DummyIdx != 0 && "Too many dead exits!"); 381 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 382 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 383 ++NumLoopExitsDeleted; 384 } 385 386 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 387 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 388 // When we break dead edges, the outer loop may become unreachable from 389 // the current loop. We need to fix loop info accordingly. For this, we 390 // find the most nested loop that still contains L and remove L from all 391 // loops that are inside of it. 392 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 393 394 // Okay, our loop is no longer in the outer loop (and maybe not in some of 395 // its parents as well). Make the fixup. 396 if (StillReachable != OuterLoop) { 397 LI.changeLoopFor(NewPreheader, StillReachable); 398 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 399 for (auto *BB : L.blocks()) 400 removeBlockFromLoops(BB, OuterLoop, StillReachable); 401 OuterLoop->removeChildLoop(&L); 402 if (StillReachable) 403 StillReachable->addChildLoop(&L); 404 else 405 LI.addTopLevelLoop(&L); 406 407 // Some values from loops in [OuterLoop, StillReachable) could be used 408 // in the current loop. Now it is not their child anymore, so such uses 409 // require LCSSA Phis. 410 Loop *FixLCSSALoop = OuterLoop; 411 while (FixLCSSALoop->getParentLoop() != StillReachable) 412 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 413 assert(FixLCSSALoop && "Should be a loop!"); 414 // We need all DT updates to be done before forming LCSSA. 415 if (MSSAU) 416 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 417 else 418 DTU.applyUpdates(DTUpdates); 419 DTUpdates.clear(); 420 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 421 SE.forgetBlockAndLoopDispositions(); 422 } 423 } 424 425 if (MSSAU) { 426 // Clear all updates now. Facilitates deletes that follow. 427 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 428 DTUpdates.clear(); 429 if (VerifyMemorySSA) 430 MSSAU->getMemorySSA()->verifyMemorySSA(); 431 } 432 } 433 434 /// Delete loop blocks that have become unreachable after folding. Make all 435 /// relevant updates to DT and LI. 436 void deleteDeadLoopBlocks() { 437 if (MSSAU) { 438 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 439 DeadLoopBlocks.end()); 440 MSSAU->removeBlocks(DeadLoopBlocksSet); 441 } 442 443 // The function LI.erase has some invariants that need to be preserved when 444 // it tries to remove a loop which is not the top-level loop. In particular, 445 // it requires loop's preheader to be strictly in loop's parent. We cannot 446 // just remove blocks one by one, because after removal of preheader we may 447 // break this invariant for the dead loop. So we detatch and erase all dead 448 // loops beforehand. 449 for (auto *BB : DeadLoopBlocks) 450 if (LI.isLoopHeader(BB)) { 451 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 452 Loop *DL = LI.getLoopFor(BB); 453 if (!DL->isOutermost()) { 454 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 455 for (auto *BB : DL->getBlocks()) 456 PL->removeBlockFromLoop(BB); 457 DL->getParentLoop()->removeChildLoop(DL); 458 LI.addTopLevelLoop(DL); 459 } 460 LI.erase(DL); 461 } 462 463 for (auto *BB : DeadLoopBlocks) { 464 assert(BB != L.getHeader() && 465 "Header of the current loop cannot be dead!"); 466 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 467 << "\n"); 468 LI.removeBlock(BB); 469 } 470 471 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 472 DTU.applyUpdates(DTUpdates); 473 DTUpdates.clear(); 474 for (auto *BB : DeadLoopBlocks) 475 DTU.deleteBB(BB); 476 477 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 478 } 479 480 /// Constant-fold terminators of blocks accumulated in FoldCandidates into the 481 /// unconditional branches. 482 void foldTerminators() { 483 for (BasicBlock *BB : FoldCandidates) { 484 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 485 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 486 assert(TheOnlySucc && "Should have one live successor!"); 487 488 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 489 << " with an unconditional branch to the block " 490 << TheOnlySucc->getName() << "\n"); 491 492 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 493 // Remove all BB's successors except for the live one. 494 unsigned TheOnlySuccDuplicates = 0; 495 for (auto *Succ : successors(BB)) 496 if (Succ != TheOnlySucc) { 497 DeadSuccessors.insert(Succ); 498 // If our successor lies in a different loop, we don't want to remove 499 // the one-input Phi because it is a LCSSA Phi. 500 bool PreserveLCSSAPhi = !L.contains(Succ); 501 Succ->removePredecessor(BB, PreserveLCSSAPhi); 502 if (MSSAU) 503 MSSAU->removeEdge(BB, Succ); 504 } else 505 ++TheOnlySuccDuplicates; 506 507 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 508 // If TheOnlySucc was BB's successor more than once, after transform it 509 // will be its successor only once. Remove redundant inputs from 510 // TheOnlySucc's Phis. 511 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 512 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 513 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 514 if (MSSAU && TheOnlySuccDuplicates > 1) 515 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 516 517 IRBuilder<> Builder(BB->getContext()); 518 Instruction *Term = BB->getTerminator(); 519 Builder.SetInsertPoint(Term); 520 Builder.CreateBr(TheOnlySucc); 521 Term->eraseFromParent(); 522 523 for (auto *DeadSucc : DeadSuccessors) 524 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 525 526 ++NumTerminatorsFolded; 527 } 528 } 529 530 public: 531 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 532 ScalarEvolution &SE, 533 MemorySSAUpdater *MSSAU) 534 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 535 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 536 bool run() { 537 assert(L.getLoopLatch() && "Should be single latch!"); 538 539 // Collect all available information about status of blocks after constant 540 // folding. 541 analyze(); 542 BasicBlock *Header = L.getHeader(); 543 (void)Header; 544 545 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 546 << ": "); 547 548 if (HasIrreducibleCFG) { 549 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 550 return false; 551 } 552 553 // Nothing to constant-fold. 554 if (FoldCandidates.empty()) { 555 LLVM_DEBUG( 556 dbgs() << "No constant terminator folding candidates found in loop " 557 << Header->getName() << "\n"); 558 return false; 559 } 560 561 // TODO: Support deletion of the current loop. 562 if (DeleteCurrentLoop) { 563 LLVM_DEBUG( 564 dbgs() 565 << "Give up constant terminator folding in loop " << Header->getName() 566 << ": we don't currently support deletion of the current loop.\n"); 567 return false; 568 } 569 570 // TODO: Support blocks that are not dead, but also not in loop after the 571 // folding. 572 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 573 L.getNumBlocks()) { 574 LLVM_DEBUG( 575 dbgs() << "Give up constant terminator folding in loop " 576 << Header->getName() << ": we don't currently" 577 " support blocks that are not dead, but will stop " 578 "being a part of the loop after constant-folding.\n"); 579 return false; 580 } 581 582 // TODO: Tokens may breach LCSSA form by default. However, the transform for 583 // dead exit blocks requires LCSSA form to be maintained for all values, 584 // tokens included, otherwise it may break use-def dominance (see PR56243). 585 if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { 586 assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && 587 "LCSSA broken not by tokens?"); 588 LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " 589 << Header->getName() 590 << ": tokens uses potentially break LCSSA form.\n"); 591 return false; 592 } 593 594 SE.forgetTopmostLoop(&L); 595 // Dump analysis results. 596 LLVM_DEBUG(dump()); 597 598 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 599 << " terminators in loop " << Header->getName() << "\n"); 600 601 if (!DeadLoopBlocks.empty()) 602 SE.forgetBlockAndLoopDispositions(); 603 604 // Make the actual transforms. 605 handleDeadExits(); 606 foldTerminators(); 607 608 if (!DeadLoopBlocks.empty()) { 609 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 610 << " dead blocks in loop " << Header->getName() << "\n"); 611 deleteDeadLoopBlocks(); 612 } else { 613 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 614 DTU.applyUpdates(DTUpdates); 615 DTUpdates.clear(); 616 } 617 618 if (MSSAU && VerifyMemorySSA) 619 MSSAU->getMemorySSA()->verifyMemorySSA(); 620 621 #ifndef NDEBUG 622 // Make sure that we have preserved all data structures after the transform. 623 #if defined(EXPENSIVE_CHECKS) 624 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 625 "DT broken after transform!"); 626 #else 627 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 628 "DT broken after transform!"); 629 #endif 630 assert(DT.isReachableFromEntry(Header)); 631 LI.verify(DT); 632 #endif 633 634 return true; 635 } 636 637 bool foldingBreaksCurrentLoop() const { 638 return DeleteCurrentLoop; 639 } 640 }; 641 } // namespace 642 643 /// Turn branches and switches with known constant conditions into unconditional 644 /// branches. 645 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 646 ScalarEvolution &SE, 647 MemorySSAUpdater *MSSAU, 648 bool &IsLoopDeleted) { 649 if (!EnableTermFolding) 650 return false; 651 652 // To keep things simple, only process loops with single latch. We 653 // canonicalize most loops to this form. We can support multi-latch if needed. 654 if (!L.getLoopLatch()) 655 return false; 656 657 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 658 bool Changed = BranchFolder.run(); 659 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 660 return Changed; 661 } 662 663 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 664 LoopInfo &LI, MemorySSAUpdater *MSSAU, 665 ScalarEvolution &SE) { 666 bool Changed = false; 667 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 668 // Copy blocks into a temporary array to avoid iterator invalidation issues 669 // as we remove them. 670 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 671 672 for (auto &Block : Blocks) { 673 // Attempt to merge blocks in the trivial case. Don't modify blocks which 674 // belong to other loops. 675 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 676 if (!Succ) 677 continue; 678 679 BasicBlock *Pred = Succ->getSinglePredecessor(); 680 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 681 continue; 682 683 // Merge Succ into Pred and delete it. 684 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 685 686 if (MSSAU && VerifyMemorySSA) 687 MSSAU->getMemorySSA()->verifyMemorySSA(); 688 689 Changed = true; 690 } 691 692 if (Changed) 693 SE.forgetBlockAndLoopDispositions(); 694 695 return Changed; 696 } 697 698 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 699 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 700 bool &IsLoopDeleted) { 701 bool Changed = false; 702 703 // Constant-fold terminators with known constant conditions. 704 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); 705 706 if (IsLoopDeleted) 707 return true; 708 709 // Eliminate unconditional branches by merging blocks into their predecessors. 710 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE); 711 712 if (Changed) 713 SE.forgetTopmostLoop(&L); 714 715 return Changed; 716 } 717 718 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 719 LoopStandardAnalysisResults &AR, 720 LPMUpdater &LPMU) { 721 std::optional<MemorySSAUpdater> MSSAU; 722 if (AR.MSSA) 723 MSSAU = MemorySSAUpdater(AR.MSSA); 724 bool DeleteCurrentLoop = false; 725 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr, 726 DeleteCurrentLoop)) 727 return PreservedAnalyses::all(); 728 729 if (DeleteCurrentLoop) 730 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 731 732 auto PA = getLoopPassPreservedAnalyses(); 733 if (AR.MSSA) 734 PA.preserve<MemorySSAAnalysis>(); 735 return PA; 736 } 737 738 namespace { 739 class LoopSimplifyCFGLegacyPass : public LoopPass { 740 public: 741 static char ID; // Pass ID, replacement for typeid 742 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 743 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 744 } 745 746 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 747 if (skipLoop(L)) 748 return false; 749 750 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 751 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 752 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 753 auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 754 std::optional<MemorySSAUpdater> MSSAU; 755 if (MSSAA) 756 MSSAU = MemorySSAUpdater(&MSSAA->getMSSA()); 757 if (MSSAA && VerifyMemorySSA) 758 MSSAU->getMemorySSA()->verifyMemorySSA(); 759 bool DeleteCurrentLoop = false; 760 bool Changed = simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? &*MSSAU : nullptr, 761 DeleteCurrentLoop); 762 if (DeleteCurrentLoop) 763 LPM.markLoopAsDeleted(*L); 764 return Changed; 765 } 766 767 void getAnalysisUsage(AnalysisUsage &AU) const override { 768 AU.addPreserved<MemorySSAWrapperPass>(); 769 AU.addPreserved<DependenceAnalysisWrapperPass>(); 770 getLoopAnalysisUsage(AU); 771 } 772 }; 773 } // end namespace 774 775 char LoopSimplifyCFGLegacyPass::ID = 0; 776 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 777 "Simplify loop CFG", false, false) 778 INITIALIZE_PASS_DEPENDENCY(LoopPass) 779 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 780 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 781 "Simplify loop CFG", false, false) 782 783 Pass *llvm::createLoopSimplifyCFGPass() { 784 return new LoopSimplifyCFGLegacyPass(); 785 } 786