1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/DomTreeUpdater.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/Transforms/Scalar/LoopPassManager.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 #include "llvm/Transforms/Utils/LoopUtils.h" 32 #include <optional> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "loop-simplifycfg" 36 37 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 38 cl::init(true)); 39 40 STATISTIC(NumTerminatorsFolded, 41 "Number of terminators folded to unconditional branches"); 42 STATISTIC(NumLoopBlocksDeleted, 43 "Number of loop blocks deleted"); 44 STATISTIC(NumLoopExitsDeleted, 45 "Number of loop exiting edges deleted"); 46 47 /// If \p BB is a switch or a conditional branch, but only one of its successors 48 /// can be reached from this block in runtime, return this successor. Otherwise, 49 /// return nullptr. 50 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 51 Instruction *TI = BB->getTerminator(); 52 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 53 if (BI->isUnconditional()) 54 return nullptr; 55 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 56 return BI->getSuccessor(0); 57 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 58 if (!Cond) 59 return nullptr; 60 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 61 } 62 63 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 64 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 65 if (!CI) 66 return nullptr; 67 for (auto Case : SI->cases()) 68 if (Case.getCaseValue() == CI) 69 return Case.getCaseSuccessor(); 70 return SI->getDefaultDest(); 71 } 72 73 return nullptr; 74 } 75 76 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 77 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 78 Loop *LastLoop = nullptr) { 79 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 80 "First loop is supposed to be inside of last loop!"); 81 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 82 for (Loop *Current = FirstLoop; Current != LastLoop; 83 Current = Current->getParentLoop()) 84 Current->removeBlockFromLoop(BB); 85 } 86 87 /// Find innermost loop that contains at least one block from \p BBs and 88 /// contains the header of loop \p L. 89 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 90 Loop &L, LoopInfo &LI) { 91 Loop *Innermost = nullptr; 92 for (BasicBlock *BB : BBs) { 93 Loop *BBL = LI.getLoopFor(BB); 94 while (BBL && !BBL->contains(L.getHeader())) 95 BBL = BBL->getParentLoop(); 96 if (BBL == &L) 97 BBL = BBL->getParentLoop(); 98 if (!BBL) 99 continue; 100 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 101 Innermost = BBL; 102 } 103 return Innermost; 104 } 105 106 namespace { 107 /// Helper class that can turn branches and switches with constant conditions 108 /// into unconditional branches. 109 class ConstantTerminatorFoldingImpl { 110 private: 111 Loop &L; 112 LoopInfo &LI; 113 DominatorTree &DT; 114 ScalarEvolution &SE; 115 MemorySSAUpdater *MSSAU; 116 LoopBlocksDFS DFS; 117 DomTreeUpdater DTU; 118 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 119 120 // Whether or not the current loop has irreducible CFG. 121 bool HasIrreducibleCFG = false; 122 // Whether or not the current loop will still exist after terminator constant 123 // folding will be done. In theory, there are two ways how it can happen: 124 // 1. Loop's latch(es) become unreachable from loop header; 125 // 2. Loop's header becomes unreachable from method entry. 126 // In practice, the second situation is impossible because we only modify the 127 // current loop and its preheader and do not affect preheader's reachibility 128 // from any other block. So this variable set to true means that loop's latch 129 // has become unreachable from loop header. 130 bool DeleteCurrentLoop = false; 131 132 // The blocks of the original loop that will still be reachable from entry 133 // after the constant folding. 134 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 135 // The blocks of the original loop that will become unreachable from entry 136 // after the constant folding. 137 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 138 // The exits of the original loop that will still be reachable from entry 139 // after the constant folding. 140 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 141 // The exits of the original loop that will become unreachable from entry 142 // after the constant folding. 143 SmallVector<BasicBlock *, 8> DeadExitBlocks; 144 // The blocks that will still be a part of the current loop after folding. 145 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 146 // The blocks that have terminators with constant condition that can be 147 // folded. Note: fold candidates should be in L but not in any of its 148 // subloops to avoid complex LI updates. 149 SmallVector<BasicBlock *, 8> FoldCandidates; 150 151 void dump() const { 152 dbgs() << "Constant terminator folding for loop " << L << "\n"; 153 dbgs() << "After terminator constant-folding, the loop will"; 154 if (!DeleteCurrentLoop) 155 dbgs() << " not"; 156 dbgs() << " be destroyed\n"; 157 auto PrintOutVector = [&](const char *Message, 158 const SmallVectorImpl<BasicBlock *> &S) { 159 dbgs() << Message << "\n"; 160 for (const BasicBlock *BB : S) 161 dbgs() << "\t" << BB->getName() << "\n"; 162 }; 163 auto PrintOutSet = [&](const char *Message, 164 const SmallPtrSetImpl<BasicBlock *> &S) { 165 dbgs() << Message << "\n"; 166 for (const BasicBlock *BB : S) 167 dbgs() << "\t" << BB->getName() << "\n"; 168 }; 169 PrintOutVector("Blocks in which we can constant-fold terminator:", 170 FoldCandidates); 171 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 172 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 173 PrintOutSet("Live exit blocks:", LiveExitBlocks); 174 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 175 if (!DeleteCurrentLoop) 176 PrintOutSet("The following blocks will still be part of the loop:", 177 BlocksInLoopAfterFolding); 178 } 179 180 /// Whether or not the current loop has irreducible CFG. 181 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 182 assert(DFS.isComplete() && "DFS is expected to be finished"); 183 // Index of a basic block in RPO traversal. 184 DenseMap<const BasicBlock *, unsigned> RPO; 185 unsigned Current = 0; 186 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 187 RPO[*I] = Current++; 188 189 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 190 BasicBlock *BB = *I; 191 for (auto *Succ : successors(BB)) 192 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 193 // If an edge goes from a block with greater order number into a block 194 // with lesses number, and it is not a loop backedge, then it can only 195 // be a part of irreducible non-loop cycle. 196 return true; 197 } 198 return false; 199 } 200 201 /// Fill all information about status of blocks and exits of the current loop 202 /// if constant folding of all branches will be done. 203 void analyze() { 204 DFS.perform(&LI); 205 assert(DFS.isComplete() && "DFS is expected to be finished"); 206 207 // TODO: The algorithm below relies on both RPO and Postorder traversals. 208 // When the loop has only reducible CFG inside, then the invariant "all 209 // predecessors of X are processed before X in RPO" is preserved. However 210 // an irreducible loop can break this invariant (e.g. latch does not have to 211 // be the last block in the traversal in this case, and the algorithm relies 212 // on this). We can later decide to support such cases by altering the 213 // algorithms, but so far we just give up analyzing them. 214 if (hasIrreducibleCFG(DFS)) { 215 HasIrreducibleCFG = true; 216 return; 217 } 218 219 // Collect live and dead loop blocks and exits. 220 LiveLoopBlocks.insert(L.getHeader()); 221 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 222 BasicBlock *BB = *I; 223 224 // If a loop block wasn't marked as live so far, then it's dead. 225 if (!LiveLoopBlocks.count(BB)) { 226 DeadLoopBlocks.push_back(BB); 227 continue; 228 } 229 230 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 231 232 // If a block has only one live successor, it's a candidate on constant 233 // folding. Only handle blocks from current loop: branches in child loops 234 // are skipped because if they can be folded, they should be folded during 235 // the processing of child loops. 236 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 237 if (TakeFoldCandidate) 238 FoldCandidates.push_back(BB); 239 240 // Handle successors. 241 for (BasicBlock *Succ : successors(BB)) 242 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 243 if (L.contains(Succ)) 244 LiveLoopBlocks.insert(Succ); 245 else 246 LiveExitBlocks.insert(Succ); 247 } 248 } 249 250 // Amount of dead and live loop blocks should match the total number of 251 // blocks in loop. 252 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 253 "Malformed block sets?"); 254 255 // Now, all exit blocks that are not marked as live are dead, if all their 256 // predecessors are in the loop. This may not be the case, as the input loop 257 // may not by in loop-simplify/canonical form. 258 SmallVector<BasicBlock *, 8> ExitBlocks; 259 L.getExitBlocks(ExitBlocks); 260 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 261 for (auto *ExitBlock : ExitBlocks) 262 if (!LiveExitBlocks.count(ExitBlock) && 263 UniqueDeadExits.insert(ExitBlock).second && 264 all_of(predecessors(ExitBlock), 265 [this](BasicBlock *Pred) { return L.contains(Pred); })) 266 DeadExitBlocks.push_back(ExitBlock); 267 268 // Whether or not the edge From->To will still be present in graph after the 269 // folding. 270 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 271 if (!LiveLoopBlocks.count(From)) 272 return false; 273 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 274 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 275 }; 276 277 // The loop will not be destroyed if its latch is live. 278 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 279 280 // If we are going to delete the current loop completely, no extra analysis 281 // is needed. 282 if (DeleteCurrentLoop) 283 return; 284 285 // Otherwise, we should check which blocks will still be a part of the 286 // current loop after the transform. 287 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 288 // If the loop is live, then we should compute what blocks are still in 289 // loop after all branch folding has been done. A block is in loop if 290 // it has a live edge to another block that is in the loop; by definition, 291 // latch is in the loop. 292 auto BlockIsInLoop = [&](BasicBlock *BB) { 293 return any_of(successors(BB), [&](BasicBlock *Succ) { 294 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 295 }); 296 }; 297 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 298 BasicBlock *BB = *I; 299 if (BlockIsInLoop(BB)) 300 BlocksInLoopAfterFolding.insert(BB); 301 } 302 303 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 304 "Header not in loop?"); 305 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 306 "All blocks that stay in loop should be live!"); 307 } 308 309 /// We need to preserve static reachibility of all loop exit blocks (this is) 310 /// required by loop pass manager. In order to do it, we make the following 311 /// trick: 312 /// 313 /// preheader: 314 /// <preheader code> 315 /// br label %loop_header 316 /// 317 /// loop_header: 318 /// ... 319 /// br i1 false, label %dead_exit, label %loop_block 320 /// ... 321 /// 322 /// We cannot simply remove edge from the loop to dead exit because in this 323 /// case dead_exit (and its successors) may become unreachable. To avoid that, 324 /// we insert the following fictive preheader: 325 /// 326 /// preheader: 327 /// <preheader code> 328 /// switch i32 0, label %preheader-split, 329 /// [i32 1, label %dead_exit_1], 330 /// [i32 2, label %dead_exit_2], 331 /// ... 332 /// [i32 N, label %dead_exit_N], 333 /// 334 /// preheader-split: 335 /// br label %loop_header 336 /// 337 /// loop_header: 338 /// ... 339 /// br i1 false, label %dead_exit_N, label %loop_block 340 /// ... 341 /// 342 /// Doing so, we preserve static reachibility of all dead exits and can later 343 /// remove edges from the loop to these blocks. 344 void handleDeadExits() { 345 // If no dead exits, nothing to do. 346 if (DeadExitBlocks.empty()) 347 return; 348 349 // Construct split preheader and the dummy switch to thread edges from it to 350 // dead exits. 351 BasicBlock *Preheader = L.getLoopPreheader(); 352 BasicBlock *NewPreheader = llvm::SplitBlock( 353 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 354 355 IRBuilder<> Builder(Preheader->getTerminator()); 356 SwitchInst *DummySwitch = 357 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 358 Preheader->getTerminator()->eraseFromParent(); 359 360 unsigned DummyIdx = 1; 361 for (BasicBlock *BB : DeadExitBlocks) { 362 // Eliminate all Phis and LandingPads from dead exits. 363 // TODO: Consider removing all instructions in this dead block. 364 SmallVector<Instruction *, 4> DeadInstructions; 365 for (auto &PN : BB->phis()) 366 DeadInstructions.push_back(&PN); 367 368 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 369 DeadInstructions.emplace_back(LandingPad); 370 371 for (Instruction *I : DeadInstructions) { 372 SE.forgetBlockAndLoopDispositions(I); 373 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 374 I->eraseFromParent(); 375 } 376 377 assert(DummyIdx != 0 && "Too many dead exits!"); 378 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 379 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 380 ++NumLoopExitsDeleted; 381 } 382 383 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 384 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 385 // When we break dead edges, the outer loop may become unreachable from 386 // the current loop. We need to fix loop info accordingly. For this, we 387 // find the most nested loop that still contains L and remove L from all 388 // loops that are inside of it. 389 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 390 391 // Okay, our loop is no longer in the outer loop (and maybe not in some of 392 // its parents as well). Make the fixup. 393 if (StillReachable != OuterLoop) { 394 LI.changeLoopFor(NewPreheader, StillReachable); 395 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 396 for (auto *BB : L.blocks()) 397 removeBlockFromLoops(BB, OuterLoop, StillReachable); 398 OuterLoop->removeChildLoop(&L); 399 if (StillReachable) 400 StillReachable->addChildLoop(&L); 401 else 402 LI.addTopLevelLoop(&L); 403 404 // Some values from loops in [OuterLoop, StillReachable) could be used 405 // in the current loop. Now it is not their child anymore, so such uses 406 // require LCSSA Phis. 407 Loop *FixLCSSALoop = OuterLoop; 408 while (FixLCSSALoop->getParentLoop() != StillReachable) 409 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 410 assert(FixLCSSALoop && "Should be a loop!"); 411 // We need all DT updates to be done before forming LCSSA. 412 if (MSSAU) 413 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 414 else 415 DTU.applyUpdates(DTUpdates); 416 DTUpdates.clear(); 417 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 418 SE.forgetBlockAndLoopDispositions(); 419 } 420 } 421 422 if (MSSAU) { 423 // Clear all updates now. Facilitates deletes that follow. 424 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 425 DTUpdates.clear(); 426 if (VerifyMemorySSA) 427 MSSAU->getMemorySSA()->verifyMemorySSA(); 428 } 429 } 430 431 /// Delete loop blocks that have become unreachable after folding. Make all 432 /// relevant updates to DT and LI. 433 void deleteDeadLoopBlocks() { 434 if (MSSAU) { 435 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 436 DeadLoopBlocks.end()); 437 MSSAU->removeBlocks(DeadLoopBlocksSet); 438 } 439 440 // The function LI.erase has some invariants that need to be preserved when 441 // it tries to remove a loop which is not the top-level loop. In particular, 442 // it requires loop's preheader to be strictly in loop's parent. We cannot 443 // just remove blocks one by one, because after removal of preheader we may 444 // break this invariant for the dead loop. So we detatch and erase all dead 445 // loops beforehand. 446 for (auto *BB : DeadLoopBlocks) 447 if (LI.isLoopHeader(BB)) { 448 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 449 Loop *DL = LI.getLoopFor(BB); 450 if (!DL->isOutermost()) { 451 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 452 for (auto *BB : DL->getBlocks()) 453 PL->removeBlockFromLoop(BB); 454 DL->getParentLoop()->removeChildLoop(DL); 455 LI.addTopLevelLoop(DL); 456 } 457 LI.erase(DL); 458 } 459 460 for (auto *BB : DeadLoopBlocks) { 461 assert(BB != L.getHeader() && 462 "Header of the current loop cannot be dead!"); 463 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 464 << "\n"); 465 LI.removeBlock(BB); 466 } 467 468 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 469 DTU.applyUpdates(DTUpdates); 470 DTUpdates.clear(); 471 for (auto *BB : DeadLoopBlocks) 472 DTU.deleteBB(BB); 473 474 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 475 } 476 477 /// Constant-fold terminators of blocks accumulated in FoldCandidates into the 478 /// unconditional branches. 479 void foldTerminators() { 480 for (BasicBlock *BB : FoldCandidates) { 481 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 482 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 483 assert(TheOnlySucc && "Should have one live successor!"); 484 485 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 486 << " with an unconditional branch to the block " 487 << TheOnlySucc->getName() << "\n"); 488 489 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 490 // Remove all BB's successors except for the live one. 491 unsigned TheOnlySuccDuplicates = 0; 492 for (auto *Succ : successors(BB)) 493 if (Succ != TheOnlySucc) { 494 DeadSuccessors.insert(Succ); 495 // If our successor lies in a different loop, we don't want to remove 496 // the one-input Phi because it is a LCSSA Phi. 497 bool PreserveLCSSAPhi = !L.contains(Succ); 498 Succ->removePredecessor(BB, PreserveLCSSAPhi); 499 if (MSSAU) 500 MSSAU->removeEdge(BB, Succ); 501 } else 502 ++TheOnlySuccDuplicates; 503 504 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 505 // If TheOnlySucc was BB's successor more than once, after transform it 506 // will be its successor only once. Remove redundant inputs from 507 // TheOnlySucc's Phis. 508 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 509 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 510 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 511 if (MSSAU && TheOnlySuccDuplicates > 1) 512 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 513 514 IRBuilder<> Builder(BB->getContext()); 515 Instruction *Term = BB->getTerminator(); 516 Builder.SetInsertPoint(Term); 517 Builder.CreateBr(TheOnlySucc); 518 Term->eraseFromParent(); 519 520 for (auto *DeadSucc : DeadSuccessors) 521 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 522 523 ++NumTerminatorsFolded; 524 } 525 } 526 527 public: 528 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 529 ScalarEvolution &SE, 530 MemorySSAUpdater *MSSAU) 531 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 532 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 533 bool run() { 534 assert(L.getLoopLatch() && "Should be single latch!"); 535 536 // Collect all available information about status of blocks after constant 537 // folding. 538 analyze(); 539 BasicBlock *Header = L.getHeader(); 540 (void)Header; 541 542 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 543 << ": "); 544 545 if (HasIrreducibleCFG) { 546 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 547 return false; 548 } 549 550 // Nothing to constant-fold. 551 if (FoldCandidates.empty()) { 552 LLVM_DEBUG( 553 dbgs() << "No constant terminator folding candidates found in loop " 554 << Header->getName() << "\n"); 555 return false; 556 } 557 558 // TODO: Support deletion of the current loop. 559 if (DeleteCurrentLoop) { 560 LLVM_DEBUG( 561 dbgs() 562 << "Give up constant terminator folding in loop " << Header->getName() 563 << ": we don't currently support deletion of the current loop.\n"); 564 return false; 565 } 566 567 // TODO: Support blocks that are not dead, but also not in loop after the 568 // folding. 569 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 570 L.getNumBlocks()) { 571 LLVM_DEBUG( 572 dbgs() << "Give up constant terminator folding in loop " 573 << Header->getName() << ": we don't currently" 574 " support blocks that are not dead, but will stop " 575 "being a part of the loop after constant-folding.\n"); 576 return false; 577 } 578 579 // TODO: Tokens may breach LCSSA form by default. However, the transform for 580 // dead exit blocks requires LCSSA form to be maintained for all values, 581 // tokens included, otherwise it may break use-def dominance (see PR56243). 582 if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { 583 assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && 584 "LCSSA broken not by tokens?"); 585 LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " 586 << Header->getName() 587 << ": tokens uses potentially break LCSSA form.\n"); 588 return false; 589 } 590 591 SE.forgetTopmostLoop(&L); 592 // Dump analysis results. 593 LLVM_DEBUG(dump()); 594 595 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 596 << " terminators in loop " << Header->getName() << "\n"); 597 598 if (!DeadLoopBlocks.empty()) 599 SE.forgetBlockAndLoopDispositions(); 600 601 // Make the actual transforms. 602 handleDeadExits(); 603 foldTerminators(); 604 605 if (!DeadLoopBlocks.empty()) { 606 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 607 << " dead blocks in loop " << Header->getName() << "\n"); 608 deleteDeadLoopBlocks(); 609 } else { 610 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 611 DTU.applyUpdates(DTUpdates); 612 DTUpdates.clear(); 613 } 614 615 if (MSSAU && VerifyMemorySSA) 616 MSSAU->getMemorySSA()->verifyMemorySSA(); 617 618 #ifndef NDEBUG 619 // Make sure that we have preserved all data structures after the transform. 620 #if defined(EXPENSIVE_CHECKS) 621 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 622 "DT broken after transform!"); 623 #else 624 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 625 "DT broken after transform!"); 626 #endif 627 assert(DT.isReachableFromEntry(Header)); 628 LI.verify(DT); 629 #endif 630 631 return true; 632 } 633 634 bool foldingBreaksCurrentLoop() const { 635 return DeleteCurrentLoop; 636 } 637 }; 638 } // namespace 639 640 /// Turn branches and switches with known constant conditions into unconditional 641 /// branches. 642 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 643 ScalarEvolution &SE, 644 MemorySSAUpdater *MSSAU, 645 bool &IsLoopDeleted) { 646 if (!EnableTermFolding) 647 return false; 648 649 // To keep things simple, only process loops with single latch. We 650 // canonicalize most loops to this form. We can support multi-latch if needed. 651 if (!L.getLoopLatch()) 652 return false; 653 654 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 655 bool Changed = BranchFolder.run(); 656 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 657 return Changed; 658 } 659 660 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 661 LoopInfo &LI, MemorySSAUpdater *MSSAU, 662 ScalarEvolution &SE) { 663 bool Changed = false; 664 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 665 // Copy blocks into a temporary array to avoid iterator invalidation issues 666 // as we remove them. 667 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 668 669 for (auto &Block : Blocks) { 670 // Attempt to merge blocks in the trivial case. Don't modify blocks which 671 // belong to other loops. 672 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 673 if (!Succ) 674 continue; 675 676 BasicBlock *Pred = Succ->getSinglePredecessor(); 677 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 678 continue; 679 680 // Merge Succ into Pred and delete it. 681 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 682 683 if (MSSAU && VerifyMemorySSA) 684 MSSAU->getMemorySSA()->verifyMemorySSA(); 685 686 Changed = true; 687 } 688 689 if (Changed) 690 SE.forgetBlockAndLoopDispositions(); 691 692 return Changed; 693 } 694 695 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 696 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 697 bool &IsLoopDeleted) { 698 bool Changed = false; 699 700 // Constant-fold terminators with known constant conditions. 701 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); 702 703 if (IsLoopDeleted) 704 return true; 705 706 // Eliminate unconditional branches by merging blocks into their predecessors. 707 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE); 708 709 if (Changed) 710 SE.forgetTopmostLoop(&L); 711 712 return Changed; 713 } 714 715 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 716 LoopStandardAnalysisResults &AR, 717 LPMUpdater &LPMU) { 718 std::optional<MemorySSAUpdater> MSSAU; 719 if (AR.MSSA) 720 MSSAU = MemorySSAUpdater(AR.MSSA); 721 bool DeleteCurrentLoop = false; 722 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr, 723 DeleteCurrentLoop)) 724 return PreservedAnalyses::all(); 725 726 if (DeleteCurrentLoop) 727 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 728 729 auto PA = getLoopPassPreservedAnalyses(); 730 if (AR.MSSA) 731 PA.preserve<MemorySSAAnalysis>(); 732 return PA; 733 } 734