xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Scalar/LoopPassManager.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/LoopUtils.h"
33 #include <optional>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "loop-simplifycfg"
37 
38 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
39                                        cl::init(true));
40 
41 STATISTIC(NumTerminatorsFolded,
42           "Number of terminators folded to unconditional branches");
43 STATISTIC(NumLoopBlocksDeleted,
44           "Number of loop blocks deleted");
45 STATISTIC(NumLoopExitsDeleted,
46           "Number of loop exiting edges deleted");
47 
48 /// If \p BB is a switch or a conditional branch, but only one of its successors
49 /// can be reached from this block in runtime, return this successor. Otherwise,
50 /// return nullptr.
51 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
52   Instruction *TI = BB->getTerminator();
53   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
54     if (BI->isUnconditional())
55       return nullptr;
56     if (BI->getSuccessor(0) == BI->getSuccessor(1))
57       return BI->getSuccessor(0);
58     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
59     if (!Cond)
60       return nullptr;
61     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
62   }
63 
64   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
65     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
66     if (!CI)
67       return nullptr;
68     for (auto Case : SI->cases())
69       if (Case.getCaseValue() == CI)
70         return Case.getCaseSuccessor();
71     return SI->getDefaultDest();
72   }
73 
74   return nullptr;
75 }
76 
77 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
78 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
79                                  Loop *LastLoop = nullptr) {
80   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
81          "First loop is supposed to be inside of last loop!");
82   assert(FirstLoop->contains(BB) && "Must be a loop block!");
83   for (Loop *Current = FirstLoop; Current != LastLoop;
84        Current = Current->getParentLoop())
85     Current->removeBlockFromLoop(BB);
86 }
87 
88 /// Find innermost loop that contains at least one block from \p BBs and
89 /// contains the header of loop \p L.
90 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
91                                  Loop &L, LoopInfo &LI) {
92   Loop *Innermost = nullptr;
93   for (BasicBlock *BB : BBs) {
94     Loop *BBL = LI.getLoopFor(BB);
95     while (BBL && !BBL->contains(L.getHeader()))
96       BBL = BBL->getParentLoop();
97     if (BBL == &L)
98       BBL = BBL->getParentLoop();
99     if (!BBL)
100       continue;
101     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
102       Innermost = BBL;
103   }
104   return Innermost;
105 }
106 
107 namespace {
108 /// Helper class that can turn branches and switches with constant conditions
109 /// into unconditional branches.
110 class ConstantTerminatorFoldingImpl {
111 private:
112   Loop &L;
113   LoopInfo &LI;
114   DominatorTree &DT;
115   ScalarEvolution &SE;
116   MemorySSAUpdater *MSSAU;
117   LoopBlocksDFS DFS;
118   DomTreeUpdater DTU;
119   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
120 
121   // Whether or not the current loop has irreducible CFG.
122   bool HasIrreducibleCFG = false;
123   // Whether or not the current loop will still exist after terminator constant
124   // folding will be done. In theory, there are two ways how it can happen:
125   // 1. Loop's latch(es) become unreachable from loop header;
126   // 2. Loop's header becomes unreachable from method entry.
127   // In practice, the second situation is impossible because we only modify the
128   // current loop and its preheader and do not affect preheader's reachibility
129   // from any other block. So this variable set to true means that loop's latch
130   // has become unreachable from loop header.
131   bool DeleteCurrentLoop = false;
132 
133   // The blocks of the original loop that will still be reachable from entry
134   // after the constant folding.
135   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
136   // The blocks of the original loop that will become unreachable from entry
137   // after the constant folding.
138   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
139   // The exits of the original loop that will still be reachable from entry
140   // after the constant folding.
141   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
142   // The exits of the original loop that will become unreachable from entry
143   // after the constant folding.
144   SmallVector<BasicBlock *, 8> DeadExitBlocks;
145   // The blocks that will still be a part of the current loop after folding.
146   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
147   // The blocks that have terminators with constant condition that can be
148   // folded. Note: fold candidates should be in L but not in any of its
149   // subloops to avoid complex LI updates.
150   SmallVector<BasicBlock *, 8> FoldCandidates;
151 
152   void dump() const {
153     dbgs() << "Constant terminator folding for loop " << L << "\n";
154     dbgs() << "After terminator constant-folding, the loop will";
155     if (!DeleteCurrentLoop)
156       dbgs() << " not";
157     dbgs() << " be destroyed\n";
158     auto PrintOutVector = [&](const char *Message,
159                            const SmallVectorImpl<BasicBlock *> &S) {
160       dbgs() << Message << "\n";
161       for (const BasicBlock *BB : S)
162         dbgs() << "\t" << BB->getName() << "\n";
163     };
164     auto PrintOutSet = [&](const char *Message,
165                            const SmallPtrSetImpl<BasicBlock *> &S) {
166       dbgs() << Message << "\n";
167       for (const BasicBlock *BB : S)
168         dbgs() << "\t" << BB->getName() << "\n";
169     };
170     PrintOutVector("Blocks in which we can constant-fold terminator:",
171                    FoldCandidates);
172     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
173     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
174     PrintOutSet("Live exit blocks:", LiveExitBlocks);
175     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
176     if (!DeleteCurrentLoop)
177       PrintOutSet("The following blocks will still be part of the loop:",
178                   BlocksInLoopAfterFolding);
179   }
180 
181   /// Whether or not the current loop has irreducible CFG.
182   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
183     assert(DFS.isComplete() && "DFS is expected to be finished");
184     // Index of a basic block in RPO traversal.
185     DenseMap<const BasicBlock *, unsigned> RPO;
186     unsigned Current = 0;
187     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
188       RPO[*I] = Current++;
189 
190     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
191       BasicBlock *BB = *I;
192       for (auto *Succ : successors(BB))
193         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
194           // If an edge goes from a block with greater order number into a block
195           // with lesses number, and it is not a loop backedge, then it can only
196           // be a part of irreducible non-loop cycle.
197           return true;
198     }
199     return false;
200   }
201 
202   /// Fill all information about status of blocks and exits of the current loop
203   /// if constant folding of all branches will be done.
204   void analyze() {
205     DFS.perform(&LI);
206     assert(DFS.isComplete() && "DFS is expected to be finished");
207 
208     // TODO: The algorithm below relies on both RPO and Postorder traversals.
209     // When the loop has only reducible CFG inside, then the invariant "all
210     // predecessors of X are processed before X in RPO" is preserved. However
211     // an irreducible loop can break this invariant (e.g. latch does not have to
212     // be the last block in the traversal in this case, and the algorithm relies
213     // on this). We can later decide to support such cases by altering the
214     // algorithms, but so far we just give up analyzing them.
215     if (hasIrreducibleCFG(DFS)) {
216       HasIrreducibleCFG = true;
217       return;
218     }
219 
220     // Collect live and dead loop blocks and exits.
221     LiveLoopBlocks.insert(L.getHeader());
222     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
223       BasicBlock *BB = *I;
224 
225       // If a loop block wasn't marked as live so far, then it's dead.
226       if (!LiveLoopBlocks.count(BB)) {
227         DeadLoopBlocks.push_back(BB);
228         continue;
229       }
230 
231       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
232 
233       // If a block has only one live successor, it's a candidate on constant
234       // folding. Only handle blocks from current loop: branches in child loops
235       // are skipped because if they can be folded, they should be folded during
236       // the processing of child loops.
237       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
238       if (TakeFoldCandidate)
239         FoldCandidates.push_back(BB);
240 
241       // Handle successors.
242       for (BasicBlock *Succ : successors(BB))
243         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
244           if (L.contains(Succ))
245             LiveLoopBlocks.insert(Succ);
246           else
247             LiveExitBlocks.insert(Succ);
248         }
249     }
250 
251     // Amount of dead and live loop blocks should match the total number of
252     // blocks in loop.
253     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
254            "Malformed block sets?");
255 
256     // Now, all exit blocks that are not marked as live are dead, if all their
257     // predecessors are in the loop. This may not be the case, as the input loop
258     // may not by in loop-simplify/canonical form.
259     SmallVector<BasicBlock *, 8> ExitBlocks;
260     L.getExitBlocks(ExitBlocks);
261     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
262     for (auto *ExitBlock : ExitBlocks)
263       if (!LiveExitBlocks.count(ExitBlock) &&
264           UniqueDeadExits.insert(ExitBlock).second &&
265           all_of(predecessors(ExitBlock),
266                  [this](BasicBlock *Pred) { return L.contains(Pred); }))
267         DeadExitBlocks.push_back(ExitBlock);
268 
269     // Whether or not the edge From->To will still be present in graph after the
270     // folding.
271     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
272       if (!LiveLoopBlocks.count(From))
273         return false;
274       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
275       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
276     };
277 
278     // The loop will not be destroyed if its latch is live.
279     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
280 
281     // If we are going to delete the current loop completely, no extra analysis
282     // is needed.
283     if (DeleteCurrentLoop)
284       return;
285 
286     // Otherwise, we should check which blocks will still be a part of the
287     // current loop after the transform.
288     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
289     // If the loop is live, then we should compute what blocks are still in
290     // loop after all branch folding has been done. A block is in loop if
291     // it has a live edge to another block that is in the loop; by definition,
292     // latch is in the loop.
293     auto BlockIsInLoop = [&](BasicBlock *BB) {
294       return any_of(successors(BB), [&](BasicBlock *Succ) {
295         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
296       });
297     };
298     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
299       BasicBlock *BB = *I;
300       if (BlockIsInLoop(BB))
301         BlocksInLoopAfterFolding.insert(BB);
302     }
303 
304     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
305            "Header not in loop?");
306     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
307            "All blocks that stay in loop should be live!");
308   }
309 
310   /// We need to preserve static reachibility of all loop exit blocks (this is)
311   /// required by loop pass manager. In order to do it, we make the following
312   /// trick:
313   ///
314   ///  preheader:
315   ///    <preheader code>
316   ///    br label %loop_header
317   ///
318   ///  loop_header:
319   ///    ...
320   ///    br i1 false, label %dead_exit, label %loop_block
321   ///    ...
322   ///
323   /// We cannot simply remove edge from the loop to dead exit because in this
324   /// case dead_exit (and its successors) may become unreachable. To avoid that,
325   /// we insert the following fictive preheader:
326   ///
327   ///  preheader:
328   ///    <preheader code>
329   ///    switch i32 0, label %preheader-split,
330   ///                  [i32 1, label %dead_exit_1],
331   ///                  [i32 2, label %dead_exit_2],
332   ///                  ...
333   ///                  [i32 N, label %dead_exit_N],
334   ///
335   ///  preheader-split:
336   ///    br label %loop_header
337   ///
338   ///  loop_header:
339   ///    ...
340   ///    br i1 false, label %dead_exit_N, label %loop_block
341   ///    ...
342   ///
343   /// Doing so, we preserve static reachibility of all dead exits and can later
344   /// remove edges from the loop to these blocks.
345   void handleDeadExits() {
346     // If no dead exits, nothing to do.
347     if (DeadExitBlocks.empty())
348       return;
349 
350     // Construct split preheader and the dummy switch to thread edges from it to
351     // dead exits.
352     BasicBlock *Preheader = L.getLoopPreheader();
353     BasicBlock *NewPreheader = llvm::SplitBlock(
354         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
355 
356     IRBuilder<> Builder(Preheader->getTerminator());
357     SwitchInst *DummySwitch =
358         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
359     Preheader->getTerminator()->eraseFromParent();
360 
361     unsigned DummyIdx = 1;
362     for (BasicBlock *BB : DeadExitBlocks) {
363       // Eliminate all Phis and LandingPads from dead exits.
364       // TODO: Consider removing all instructions in this dead block.
365       SmallVector<Instruction *, 4> DeadInstructions;
366       for (auto &PN : BB->phis())
367         DeadInstructions.push_back(&PN);
368 
369       if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
370         DeadInstructions.emplace_back(LandingPad);
371 
372       for (Instruction *I : DeadInstructions) {
373         SE.forgetBlockAndLoopDispositions(I);
374         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
375         I->eraseFromParent();
376       }
377 
378       assert(DummyIdx != 0 && "Too many dead exits!");
379       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
380       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
381       ++NumLoopExitsDeleted;
382     }
383 
384     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
385     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
386       // When we break dead edges, the outer loop may become unreachable from
387       // the current loop. We need to fix loop info accordingly. For this, we
388       // find the most nested loop that still contains L and remove L from all
389       // loops that are inside of it.
390       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
391 
392       // Okay, our loop is no longer in the outer loop (and maybe not in some of
393       // its parents as well). Make the fixup.
394       if (StillReachable != OuterLoop) {
395         LI.changeLoopFor(NewPreheader, StillReachable);
396         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
397         for (auto *BB : L.blocks())
398           removeBlockFromLoops(BB, OuterLoop, StillReachable);
399         OuterLoop->removeChildLoop(&L);
400         if (StillReachable)
401           StillReachable->addChildLoop(&L);
402         else
403           LI.addTopLevelLoop(&L);
404 
405         // Some values from loops in [OuterLoop, StillReachable) could be used
406         // in the current loop. Now it is not their child anymore, so such uses
407         // require LCSSA Phis.
408         Loop *FixLCSSALoop = OuterLoop;
409         while (FixLCSSALoop->getParentLoop() != StillReachable)
410           FixLCSSALoop = FixLCSSALoop->getParentLoop();
411         assert(FixLCSSALoop && "Should be a loop!");
412         // We need all DT updates to be done before forming LCSSA.
413         if (MSSAU)
414           MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
415         else
416           DTU.applyUpdates(DTUpdates);
417         DTUpdates.clear();
418         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
419         SE.forgetBlockAndLoopDispositions();
420       }
421     }
422 
423     if (MSSAU) {
424       // Clear all updates now. Facilitates deletes that follow.
425       MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
426       DTUpdates.clear();
427       if (VerifyMemorySSA)
428         MSSAU->getMemorySSA()->verifyMemorySSA();
429     }
430   }
431 
432   /// Delete loop blocks that have become unreachable after folding. Make all
433   /// relevant updates to DT and LI.
434   void deleteDeadLoopBlocks() {
435     if (MSSAU) {
436       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
437                                                         DeadLoopBlocks.end());
438       MSSAU->removeBlocks(DeadLoopBlocksSet);
439     }
440 
441     // The function LI.erase has some invariants that need to be preserved when
442     // it tries to remove a loop which is not the top-level loop. In particular,
443     // it requires loop's preheader to be strictly in loop's parent. We cannot
444     // just remove blocks one by one, because after removal of preheader we may
445     // break this invariant for the dead loop. So we detatch and erase all dead
446     // loops beforehand.
447     for (auto *BB : DeadLoopBlocks)
448       if (LI.isLoopHeader(BB)) {
449         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
450         Loop *DL = LI.getLoopFor(BB);
451         if (!DL->isOutermost()) {
452           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
453             for (auto *BB : DL->getBlocks())
454               PL->removeBlockFromLoop(BB);
455           DL->getParentLoop()->removeChildLoop(DL);
456           LI.addTopLevelLoop(DL);
457         }
458         LI.erase(DL);
459       }
460 
461     for (auto *BB : DeadLoopBlocks) {
462       assert(BB != L.getHeader() &&
463              "Header of the current loop cannot be dead!");
464       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
465                         << "\n");
466       LI.removeBlock(BB);
467     }
468 
469     detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
470     DTU.applyUpdates(DTUpdates);
471     DTUpdates.clear();
472     for (auto *BB : DeadLoopBlocks)
473       DTU.deleteBB(BB);
474 
475     NumLoopBlocksDeleted += DeadLoopBlocks.size();
476   }
477 
478   /// Constant-fold terminators of blocks accumulated in FoldCandidates into the
479   /// unconditional branches.
480   void foldTerminators() {
481     for (BasicBlock *BB : FoldCandidates) {
482       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
483       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
484       assert(TheOnlySucc && "Should have one live successor!");
485 
486       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
487                         << " with an unconditional branch to the block "
488                         << TheOnlySucc->getName() << "\n");
489 
490       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
491       // Remove all BB's successors except for the live one.
492       unsigned TheOnlySuccDuplicates = 0;
493       for (auto *Succ : successors(BB))
494         if (Succ != TheOnlySucc) {
495           DeadSuccessors.insert(Succ);
496           // If our successor lies in a different loop, we don't want to remove
497           // the one-input Phi because it is a LCSSA Phi.
498           bool PreserveLCSSAPhi = !L.contains(Succ);
499           Succ->removePredecessor(BB, PreserveLCSSAPhi);
500           if (MSSAU)
501             MSSAU->removeEdge(BB, Succ);
502         } else
503           ++TheOnlySuccDuplicates;
504 
505       assert(TheOnlySuccDuplicates > 0 && "Should be!");
506       // If TheOnlySucc was BB's successor more than once, after transform it
507       // will be its successor only once. Remove redundant inputs from
508       // TheOnlySucc's Phis.
509       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
510       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
511         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
512       if (MSSAU && TheOnlySuccDuplicates > 1)
513         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
514 
515       IRBuilder<> Builder(BB->getContext());
516       Instruction *Term = BB->getTerminator();
517       Builder.SetInsertPoint(Term);
518       Builder.CreateBr(TheOnlySucc);
519       Term->eraseFromParent();
520 
521       for (auto *DeadSucc : DeadSuccessors)
522         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
523 
524       ++NumTerminatorsFolded;
525     }
526   }
527 
528 public:
529   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
530                                 ScalarEvolution &SE,
531                                 MemorySSAUpdater *MSSAU)
532       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
533         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
534   bool run() {
535     assert(L.getLoopLatch() && "Should be single latch!");
536 
537     // Collect all available information about status of blocks after constant
538     // folding.
539     analyze();
540     BasicBlock *Header = L.getHeader();
541     (void)Header;
542 
543     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
544                       << ": ");
545 
546     if (HasIrreducibleCFG) {
547       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
548       return false;
549     }
550 
551     // Nothing to constant-fold.
552     if (FoldCandidates.empty()) {
553       LLVM_DEBUG(
554           dbgs() << "No constant terminator folding candidates found in loop "
555                  << Header->getName() << "\n");
556       return false;
557     }
558 
559     // TODO: Support deletion of the current loop.
560     if (DeleteCurrentLoop) {
561       LLVM_DEBUG(
562           dbgs()
563           << "Give up constant terminator folding in loop " << Header->getName()
564           << ": we don't currently support deletion of the current loop.\n");
565       return false;
566     }
567 
568     // TODO: Support blocks that are not dead, but also not in loop after the
569     // folding.
570     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
571         L.getNumBlocks()) {
572       LLVM_DEBUG(
573           dbgs() << "Give up constant terminator folding in loop "
574                  << Header->getName() << ": we don't currently"
575                     " support blocks that are not dead, but will stop "
576                     "being a part of the loop after constant-folding.\n");
577       return false;
578     }
579 
580     // TODO: Tokens may breach LCSSA form by default. However, the transform for
581     // dead exit blocks requires LCSSA form to be maintained for all values,
582     // tokens included, otherwise it may break use-def dominance (see PR56243).
583     if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
584       assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
585              "LCSSA broken not by tokens?");
586       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
587                         << Header->getName()
588                         << ": tokens uses potentially break LCSSA form.\n");
589       return false;
590     }
591 
592     SE.forgetTopmostLoop(&L);
593     // Dump analysis results.
594     LLVM_DEBUG(dump());
595 
596     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
597                       << " terminators in loop " << Header->getName() << "\n");
598 
599     if (!DeadLoopBlocks.empty())
600       SE.forgetBlockAndLoopDispositions();
601 
602     // Make the actual transforms.
603     handleDeadExits();
604     foldTerminators();
605 
606     if (!DeadLoopBlocks.empty()) {
607       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
608                     << " dead blocks in loop " << Header->getName() << "\n");
609       deleteDeadLoopBlocks();
610     } else {
611       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
612       DTU.applyUpdates(DTUpdates);
613       DTUpdates.clear();
614     }
615 
616     if (MSSAU && VerifyMemorySSA)
617       MSSAU->getMemorySSA()->verifyMemorySSA();
618 
619 #ifndef NDEBUG
620     // Make sure that we have preserved all data structures after the transform.
621 #if defined(EXPENSIVE_CHECKS)
622     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
623            "DT broken after transform!");
624 #else
625     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
626            "DT broken after transform!");
627 #endif
628     assert(DT.isReachableFromEntry(Header));
629     LI.verify(DT);
630 #endif
631 
632     return true;
633   }
634 
635   bool foldingBreaksCurrentLoop() const {
636     return DeleteCurrentLoop;
637   }
638 };
639 } // namespace
640 
641 /// Turn branches and switches with known constant conditions into unconditional
642 /// branches.
643 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
644                                     ScalarEvolution &SE,
645                                     MemorySSAUpdater *MSSAU,
646                                     bool &IsLoopDeleted) {
647   if (!EnableTermFolding)
648     return false;
649 
650   // To keep things simple, only process loops with single latch. We
651   // canonicalize most loops to this form. We can support multi-latch if needed.
652   if (!L.getLoopLatch())
653     return false;
654 
655   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
656   bool Changed = BranchFolder.run();
657   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
658   return Changed;
659 }
660 
661 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
662                                         LoopInfo &LI, MemorySSAUpdater *MSSAU,
663                                         ScalarEvolution &SE) {
664   bool Changed = false;
665   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
666   // Copy blocks into a temporary array to avoid iterator invalidation issues
667   // as we remove them.
668   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
669 
670   for (auto &Block : Blocks) {
671     // Attempt to merge blocks in the trivial case. Don't modify blocks which
672     // belong to other loops.
673     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
674     if (!Succ)
675       continue;
676 
677     BasicBlock *Pred = Succ->getSinglePredecessor();
678     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
679       continue;
680 
681     // Merge Succ into Pred and delete it.
682     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
683 
684     if (MSSAU && VerifyMemorySSA)
685       MSSAU->getMemorySSA()->verifyMemorySSA();
686 
687     Changed = true;
688   }
689 
690   if (Changed)
691     SE.forgetBlockAndLoopDispositions();
692 
693   return Changed;
694 }
695 
696 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
697                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
698                             bool &IsLoopDeleted) {
699   bool Changed = false;
700 
701   // Constant-fold terminators with known constant conditions.
702   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
703 
704   if (IsLoopDeleted)
705     return true;
706 
707   // Eliminate unconditional branches by merging blocks into their predecessors.
708   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
709 
710   if (Changed)
711     SE.forgetTopmostLoop(&L);
712 
713   return Changed;
714 }
715 
716 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
717                                            LoopStandardAnalysisResults &AR,
718                                            LPMUpdater &LPMU) {
719   std::optional<MemorySSAUpdater> MSSAU;
720   if (AR.MSSA)
721     MSSAU = MemorySSAUpdater(AR.MSSA);
722   bool DeleteCurrentLoop = false;
723   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
724                        DeleteCurrentLoop))
725     return PreservedAnalyses::all();
726 
727   if (DeleteCurrentLoop)
728     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
729 
730   auto PA = getLoopPassPreservedAnalyses();
731   if (AR.MSSA)
732     PA.preserve<MemorySSAAnalysis>();
733   return PA;
734 }
735