1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BasicAliasAnalysis.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Scalar/LoopPassManager.h" 38 #include "llvm/Transforms/Utils.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/LoopUtils.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-simplifycfg" 45 46 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 47 cl::init(true)); 48 49 STATISTIC(NumTerminatorsFolded, 50 "Number of terminators folded to unconditional branches"); 51 STATISTIC(NumLoopBlocksDeleted, 52 "Number of loop blocks deleted"); 53 STATISTIC(NumLoopExitsDeleted, 54 "Number of loop exiting edges deleted"); 55 56 /// If \p BB is a switch or a conditional branch, but only one of its successors 57 /// can be reached from this block in runtime, return this successor. Otherwise, 58 /// return nullptr. 59 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 60 Instruction *TI = BB->getTerminator(); 61 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 62 if (BI->isUnconditional()) 63 return nullptr; 64 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 65 return BI->getSuccessor(0); 66 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 67 if (!Cond) 68 return nullptr; 69 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 70 } 71 72 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 73 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 74 if (!CI) 75 return nullptr; 76 for (auto Case : SI->cases()) 77 if (Case.getCaseValue() == CI) 78 return Case.getCaseSuccessor(); 79 return SI->getDefaultDest(); 80 } 81 82 return nullptr; 83 } 84 85 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 86 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 87 Loop *LastLoop = nullptr) { 88 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 89 "First loop is supposed to be inside of last loop!"); 90 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 91 for (Loop *Current = FirstLoop; Current != LastLoop; 92 Current = Current->getParentLoop()) 93 Current->removeBlockFromLoop(BB); 94 } 95 96 /// Find innermost loop that contains at least one block from \p BBs and 97 /// contains the header of loop \p L. 98 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 99 Loop &L, LoopInfo &LI) { 100 Loop *Innermost = nullptr; 101 for (BasicBlock *BB : BBs) { 102 Loop *BBL = LI.getLoopFor(BB); 103 while (BBL && !BBL->contains(L.getHeader())) 104 BBL = BBL->getParentLoop(); 105 if (BBL == &L) 106 BBL = BBL->getParentLoop(); 107 if (!BBL) 108 continue; 109 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 110 Innermost = BBL; 111 } 112 return Innermost; 113 } 114 115 namespace { 116 /// Helper class that can turn branches and switches with constant conditions 117 /// into unconditional branches. 118 class ConstantTerminatorFoldingImpl { 119 private: 120 Loop &L; 121 LoopInfo &LI; 122 DominatorTree &DT; 123 ScalarEvolution &SE; 124 MemorySSAUpdater *MSSAU; 125 LoopBlocksDFS DFS; 126 DomTreeUpdater DTU; 127 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 128 129 // Whether or not the current loop has irreducible CFG. 130 bool HasIrreducibleCFG = false; 131 // Whether or not the current loop will still exist after terminator constant 132 // folding will be done. In theory, there are two ways how it can happen: 133 // 1. Loop's latch(es) become unreachable from loop header; 134 // 2. Loop's header becomes unreachable from method entry. 135 // In practice, the second situation is impossible because we only modify the 136 // current loop and its preheader and do not affect preheader's reachibility 137 // from any other block. So this variable set to true means that loop's latch 138 // has become unreachable from loop header. 139 bool DeleteCurrentLoop = false; 140 141 // The blocks of the original loop that will still be reachable from entry 142 // after the constant folding. 143 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 144 // The blocks of the original loop that will become unreachable from entry 145 // after the constant folding. 146 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 147 // The exits of the original loop that will still be reachable from entry 148 // after the constant folding. 149 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 150 // The exits of the original loop that will become unreachable from entry 151 // after the constant folding. 152 SmallVector<BasicBlock *, 8> DeadExitBlocks; 153 // The blocks that will still be a part of the current loop after folding. 154 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 155 // The blocks that have terminators with constant condition that can be 156 // folded. Note: fold candidates should be in L but not in any of its 157 // subloops to avoid complex LI updates. 158 SmallVector<BasicBlock *, 8> FoldCandidates; 159 160 void dump() const { 161 dbgs() << "Constant terminator folding for loop " << L << "\n"; 162 dbgs() << "After terminator constant-folding, the loop will"; 163 if (!DeleteCurrentLoop) 164 dbgs() << " not"; 165 dbgs() << " be destroyed\n"; 166 auto PrintOutVector = [&](const char *Message, 167 const SmallVectorImpl<BasicBlock *> &S) { 168 dbgs() << Message << "\n"; 169 for (const BasicBlock *BB : S) 170 dbgs() << "\t" << BB->getName() << "\n"; 171 }; 172 auto PrintOutSet = [&](const char *Message, 173 const SmallPtrSetImpl<BasicBlock *> &S) { 174 dbgs() << Message << "\n"; 175 for (const BasicBlock *BB : S) 176 dbgs() << "\t" << BB->getName() << "\n"; 177 }; 178 PrintOutVector("Blocks in which we can constant-fold terminator:", 179 FoldCandidates); 180 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 181 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 182 PrintOutSet("Live exit blocks:", LiveExitBlocks); 183 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 184 if (!DeleteCurrentLoop) 185 PrintOutSet("The following blocks will still be part of the loop:", 186 BlocksInLoopAfterFolding); 187 } 188 189 /// Whether or not the current loop has irreducible CFG. 190 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 191 assert(DFS.isComplete() && "DFS is expected to be finished"); 192 // Index of a basic block in RPO traversal. 193 DenseMap<const BasicBlock *, unsigned> RPO; 194 unsigned Current = 0; 195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 196 RPO[*I] = Current++; 197 198 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 199 BasicBlock *BB = *I; 200 for (auto *Succ : successors(BB)) 201 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 202 // If an edge goes from a block with greater order number into a block 203 // with lesses number, and it is not a loop backedge, then it can only 204 // be a part of irreducible non-loop cycle. 205 return true; 206 } 207 return false; 208 } 209 210 /// Fill all information about status of blocks and exits of the current loop 211 /// if constant folding of all branches will be done. 212 void analyze() { 213 DFS.perform(&LI); 214 assert(DFS.isComplete() && "DFS is expected to be finished"); 215 216 // TODO: The algorithm below relies on both RPO and Postorder traversals. 217 // When the loop has only reducible CFG inside, then the invariant "all 218 // predecessors of X are processed before X in RPO" is preserved. However 219 // an irreducible loop can break this invariant (e.g. latch does not have to 220 // be the last block in the traversal in this case, and the algorithm relies 221 // on this). We can later decide to support such cases by altering the 222 // algorithms, but so far we just give up analyzing them. 223 if (hasIrreducibleCFG(DFS)) { 224 HasIrreducibleCFG = true; 225 return; 226 } 227 228 // Collect live and dead loop blocks and exits. 229 LiveLoopBlocks.insert(L.getHeader()); 230 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 231 BasicBlock *BB = *I; 232 233 // If a loop block wasn't marked as live so far, then it's dead. 234 if (!LiveLoopBlocks.count(BB)) { 235 DeadLoopBlocks.push_back(BB); 236 continue; 237 } 238 239 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 240 241 // If a block has only one live successor, it's a candidate on constant 242 // folding. Only handle blocks from current loop: branches in child loops 243 // are skipped because if they can be folded, they should be folded during 244 // the processing of child loops. 245 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 246 if (TakeFoldCandidate) 247 FoldCandidates.push_back(BB); 248 249 // Handle successors. 250 for (BasicBlock *Succ : successors(BB)) 251 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 252 if (L.contains(Succ)) 253 LiveLoopBlocks.insert(Succ); 254 else 255 LiveExitBlocks.insert(Succ); 256 } 257 } 258 259 // Amount of dead and live loop blocks should match the total number of 260 // blocks in loop. 261 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 262 "Malformed block sets?"); 263 264 // Now, all exit blocks that are not marked as live are dead. 265 SmallVector<BasicBlock *, 8> ExitBlocks; 266 L.getExitBlocks(ExitBlocks); 267 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 268 for (auto *ExitBlock : ExitBlocks) 269 if (!LiveExitBlocks.count(ExitBlock) && 270 UniqueDeadExits.insert(ExitBlock).second) 271 DeadExitBlocks.push_back(ExitBlock); 272 273 // Whether or not the edge From->To will still be present in graph after the 274 // folding. 275 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 276 if (!LiveLoopBlocks.count(From)) 277 return false; 278 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 279 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 280 }; 281 282 // The loop will not be destroyed if its latch is live. 283 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 284 285 // If we are going to delete the current loop completely, no extra analysis 286 // is needed. 287 if (DeleteCurrentLoop) 288 return; 289 290 // Otherwise, we should check which blocks will still be a part of the 291 // current loop after the transform. 292 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 293 // If the loop is live, then we should compute what blocks are still in 294 // loop after all branch folding has been done. A block is in loop if 295 // it has a live edge to another block that is in the loop; by definition, 296 // latch is in the loop. 297 auto BlockIsInLoop = [&](BasicBlock *BB) { 298 return any_of(successors(BB), [&](BasicBlock *Succ) { 299 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 300 }); 301 }; 302 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 303 BasicBlock *BB = *I; 304 if (BlockIsInLoop(BB)) 305 BlocksInLoopAfterFolding.insert(BB); 306 } 307 308 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 309 "Header not in loop?"); 310 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 311 "All blocks that stay in loop should be live!"); 312 } 313 314 /// We need to preserve static reachibility of all loop exit blocks (this is) 315 /// required by loop pass manager. In order to do it, we make the following 316 /// trick: 317 /// 318 /// preheader: 319 /// <preheader code> 320 /// br label %loop_header 321 /// 322 /// loop_header: 323 /// ... 324 /// br i1 false, label %dead_exit, label %loop_block 325 /// ... 326 /// 327 /// We cannot simply remove edge from the loop to dead exit because in this 328 /// case dead_exit (and its successors) may become unreachable. To avoid that, 329 /// we insert the following fictive preheader: 330 /// 331 /// preheader: 332 /// <preheader code> 333 /// switch i32 0, label %preheader-split, 334 /// [i32 1, label %dead_exit_1], 335 /// [i32 2, label %dead_exit_2], 336 /// ... 337 /// [i32 N, label %dead_exit_N], 338 /// 339 /// preheader-split: 340 /// br label %loop_header 341 /// 342 /// loop_header: 343 /// ... 344 /// br i1 false, label %dead_exit_N, label %loop_block 345 /// ... 346 /// 347 /// Doing so, we preserve static reachibility of all dead exits and can later 348 /// remove edges from the loop to these blocks. 349 void handleDeadExits() { 350 // If no dead exits, nothing to do. 351 if (DeadExitBlocks.empty()) 352 return; 353 354 // Construct split preheader and the dummy switch to thread edges from it to 355 // dead exits. 356 BasicBlock *Preheader = L.getLoopPreheader(); 357 BasicBlock *NewPreheader = llvm::SplitBlock( 358 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 359 360 IRBuilder<> Builder(Preheader->getTerminator()); 361 SwitchInst *DummySwitch = 362 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 363 Preheader->getTerminator()->eraseFromParent(); 364 365 unsigned DummyIdx = 1; 366 for (BasicBlock *BB : DeadExitBlocks) { 367 // Eliminate all Phis and LandingPads from dead exits. 368 // TODO: Consider removing all instructions in this dead block. 369 SmallVector<Instruction *, 4> DeadInstructions; 370 for (auto &PN : BB->phis()) 371 DeadInstructions.push_back(&PN); 372 373 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 374 DeadInstructions.emplace_back(LandingPad); 375 376 for (Instruction *I : DeadInstructions) { 377 I->replaceAllUsesWith(UndefValue::get(I->getType())); 378 I->eraseFromParent(); 379 } 380 381 assert(DummyIdx != 0 && "Too many dead exits!"); 382 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 383 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 384 ++NumLoopExitsDeleted; 385 } 386 387 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 388 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 389 // When we break dead edges, the outer loop may become unreachable from 390 // the current loop. We need to fix loop info accordingly. For this, we 391 // find the most nested loop that still contains L and remove L from all 392 // loops that are inside of it. 393 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 394 395 // Okay, our loop is no longer in the outer loop (and maybe not in some of 396 // its parents as well). Make the fixup. 397 if (StillReachable != OuterLoop) { 398 LI.changeLoopFor(NewPreheader, StillReachable); 399 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 400 for (auto *BB : L.blocks()) 401 removeBlockFromLoops(BB, OuterLoop, StillReachable); 402 OuterLoop->removeChildLoop(&L); 403 if (StillReachable) 404 StillReachable->addChildLoop(&L); 405 else 406 LI.addTopLevelLoop(&L); 407 408 // Some values from loops in [OuterLoop, StillReachable) could be used 409 // in the current loop. Now it is not their child anymore, so such uses 410 // require LCSSA Phis. 411 Loop *FixLCSSALoop = OuterLoop; 412 while (FixLCSSALoop->getParentLoop() != StillReachable) 413 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 414 assert(FixLCSSALoop && "Should be a loop!"); 415 // We need all DT updates to be done before forming LCSSA. 416 if (MSSAU) 417 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 418 else 419 DTU.applyUpdates(DTUpdates); 420 DTUpdates.clear(); 421 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 422 } 423 } 424 425 if (MSSAU) { 426 // Clear all updates now. Facilitates deletes that follow. 427 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 428 DTUpdates.clear(); 429 if (VerifyMemorySSA) 430 MSSAU->getMemorySSA()->verifyMemorySSA(); 431 } 432 } 433 434 /// Delete loop blocks that have become unreachable after folding. Make all 435 /// relevant updates to DT and LI. 436 void deleteDeadLoopBlocks() { 437 if (MSSAU) { 438 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 439 DeadLoopBlocks.end()); 440 MSSAU->removeBlocks(DeadLoopBlocksSet); 441 } 442 443 // The function LI.erase has some invariants that need to be preserved when 444 // it tries to remove a loop which is not the top-level loop. In particular, 445 // it requires loop's preheader to be strictly in loop's parent. We cannot 446 // just remove blocks one by one, because after removal of preheader we may 447 // break this invariant for the dead loop. So we detatch and erase all dead 448 // loops beforehand. 449 for (auto *BB : DeadLoopBlocks) 450 if (LI.isLoopHeader(BB)) { 451 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 452 Loop *DL = LI.getLoopFor(BB); 453 if (!DL->isOutermost()) { 454 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 455 for (auto *BB : DL->getBlocks()) 456 PL->removeBlockFromLoop(BB); 457 DL->getParentLoop()->removeChildLoop(DL); 458 LI.addTopLevelLoop(DL); 459 } 460 LI.erase(DL); 461 } 462 463 for (auto *BB : DeadLoopBlocks) { 464 assert(BB != L.getHeader() && 465 "Header of the current loop cannot be dead!"); 466 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 467 << "\n"); 468 LI.removeBlock(BB); 469 } 470 471 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 472 DTU.applyUpdates(DTUpdates); 473 DTUpdates.clear(); 474 for (auto *BB : DeadLoopBlocks) 475 DTU.deleteBB(BB); 476 477 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 478 } 479 480 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 481 /// unconditional branches. 482 void foldTerminators() { 483 for (BasicBlock *BB : FoldCandidates) { 484 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 485 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 486 assert(TheOnlySucc && "Should have one live successor!"); 487 488 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 489 << " with an unconditional branch to the block " 490 << TheOnlySucc->getName() << "\n"); 491 492 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 493 // Remove all BB's successors except for the live one. 494 unsigned TheOnlySuccDuplicates = 0; 495 for (auto *Succ : successors(BB)) 496 if (Succ != TheOnlySucc) { 497 DeadSuccessors.insert(Succ); 498 // If our successor lies in a different loop, we don't want to remove 499 // the one-input Phi because it is a LCSSA Phi. 500 bool PreserveLCSSAPhi = !L.contains(Succ); 501 Succ->removePredecessor(BB, PreserveLCSSAPhi); 502 if (MSSAU) 503 MSSAU->removeEdge(BB, Succ); 504 } else 505 ++TheOnlySuccDuplicates; 506 507 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 508 // If TheOnlySucc was BB's successor more than once, after transform it 509 // will be its successor only once. Remove redundant inputs from 510 // TheOnlySucc's Phis. 511 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 512 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 513 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 514 if (MSSAU && TheOnlySuccDuplicates > 1) 515 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 516 517 IRBuilder<> Builder(BB->getContext()); 518 Instruction *Term = BB->getTerminator(); 519 Builder.SetInsertPoint(Term); 520 Builder.CreateBr(TheOnlySucc); 521 Term->eraseFromParent(); 522 523 for (auto *DeadSucc : DeadSuccessors) 524 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 525 526 ++NumTerminatorsFolded; 527 } 528 } 529 530 public: 531 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 532 ScalarEvolution &SE, 533 MemorySSAUpdater *MSSAU) 534 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 535 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 536 bool run() { 537 assert(L.getLoopLatch() && "Should be single latch!"); 538 539 // Collect all available information about status of blocks after constant 540 // folding. 541 analyze(); 542 BasicBlock *Header = L.getHeader(); 543 (void)Header; 544 545 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 546 << ": "); 547 548 if (HasIrreducibleCFG) { 549 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 550 return false; 551 } 552 553 // Nothing to constant-fold. 554 if (FoldCandidates.empty()) { 555 LLVM_DEBUG( 556 dbgs() << "No constant terminator folding candidates found in loop " 557 << Header->getName() << "\n"); 558 return false; 559 } 560 561 // TODO: Support deletion of the current loop. 562 if (DeleteCurrentLoop) { 563 LLVM_DEBUG( 564 dbgs() 565 << "Give up constant terminator folding in loop " << Header->getName() 566 << ": we don't currently support deletion of the current loop.\n"); 567 return false; 568 } 569 570 // TODO: Support blocks that are not dead, but also not in loop after the 571 // folding. 572 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 573 L.getNumBlocks()) { 574 LLVM_DEBUG( 575 dbgs() << "Give up constant terminator folding in loop " 576 << Header->getName() << ": we don't currently" 577 " support blocks that are not dead, but will stop " 578 "being a part of the loop after constant-folding.\n"); 579 return false; 580 } 581 582 SE.forgetTopmostLoop(&L); 583 // Dump analysis results. 584 LLVM_DEBUG(dump()); 585 586 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 587 << " terminators in loop " << Header->getName() << "\n"); 588 589 // Make the actual transforms. 590 handleDeadExits(); 591 foldTerminators(); 592 593 if (!DeadLoopBlocks.empty()) { 594 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 595 << " dead blocks in loop " << Header->getName() << "\n"); 596 deleteDeadLoopBlocks(); 597 } else { 598 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 599 DTU.applyUpdates(DTUpdates); 600 DTUpdates.clear(); 601 } 602 603 if (MSSAU && VerifyMemorySSA) 604 MSSAU->getMemorySSA()->verifyMemorySSA(); 605 606 #ifndef NDEBUG 607 // Make sure that we have preserved all data structures after the transform. 608 #if defined(EXPENSIVE_CHECKS) 609 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 610 "DT broken after transform!"); 611 #else 612 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 613 "DT broken after transform!"); 614 #endif 615 assert(DT.isReachableFromEntry(Header)); 616 LI.verify(DT); 617 #endif 618 619 return true; 620 } 621 622 bool foldingBreaksCurrentLoop() const { 623 return DeleteCurrentLoop; 624 } 625 }; 626 } // namespace 627 628 /// Turn branches and switches with known constant conditions into unconditional 629 /// branches. 630 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 631 ScalarEvolution &SE, 632 MemorySSAUpdater *MSSAU, 633 bool &IsLoopDeleted) { 634 if (!EnableTermFolding) 635 return false; 636 637 // To keep things simple, only process loops with single latch. We 638 // canonicalize most loops to this form. We can support multi-latch if needed. 639 if (!L.getLoopLatch()) 640 return false; 641 642 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 643 bool Changed = BranchFolder.run(); 644 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 645 return Changed; 646 } 647 648 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 649 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 650 bool Changed = false; 651 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 652 // Copy blocks into a temporary array to avoid iterator invalidation issues 653 // as we remove them. 654 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 655 656 for (auto &Block : Blocks) { 657 // Attempt to merge blocks in the trivial case. Don't modify blocks which 658 // belong to other loops. 659 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 660 if (!Succ) 661 continue; 662 663 BasicBlock *Pred = Succ->getSinglePredecessor(); 664 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 665 continue; 666 667 // Merge Succ into Pred and delete it. 668 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 669 670 if (MSSAU && VerifyMemorySSA) 671 MSSAU->getMemorySSA()->verifyMemorySSA(); 672 673 Changed = true; 674 } 675 676 return Changed; 677 } 678 679 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 680 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 681 bool &IsLoopDeleted) { 682 bool Changed = false; 683 684 // Constant-fold terminators with known constant conditions. 685 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); 686 687 if (IsLoopDeleted) 688 return true; 689 690 // Eliminate unconditional branches by merging blocks into their predecessors. 691 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 692 693 if (Changed) 694 SE.forgetTopmostLoop(&L); 695 696 return Changed; 697 } 698 699 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 700 LoopStandardAnalysisResults &AR, 701 LPMUpdater &LPMU) { 702 Optional<MemorySSAUpdater> MSSAU; 703 if (AR.MSSA) 704 MSSAU = MemorySSAUpdater(AR.MSSA); 705 bool DeleteCurrentLoop = false; 706 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 707 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 708 DeleteCurrentLoop)) 709 return PreservedAnalyses::all(); 710 711 if (DeleteCurrentLoop) 712 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 713 714 auto PA = getLoopPassPreservedAnalyses(); 715 if (AR.MSSA) 716 PA.preserve<MemorySSAAnalysis>(); 717 return PA; 718 } 719 720 namespace { 721 class LoopSimplifyCFGLegacyPass : public LoopPass { 722 public: 723 static char ID; // Pass ID, replacement for typeid 724 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 725 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 726 } 727 728 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 729 if (skipLoop(L)) 730 return false; 731 732 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 733 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 734 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 735 auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 736 Optional<MemorySSAUpdater> MSSAU; 737 if (MSSAA) 738 MSSAU = MemorySSAUpdater(&MSSAA->getMSSA()); 739 if (MSSAA && VerifyMemorySSA) 740 MSSAU->getMemorySSA()->verifyMemorySSA(); 741 bool DeleteCurrentLoop = false; 742 bool Changed = simplifyLoopCFG( 743 *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 744 DeleteCurrentLoop); 745 if (DeleteCurrentLoop) 746 LPM.markLoopAsDeleted(*L); 747 return Changed; 748 } 749 750 void getAnalysisUsage(AnalysisUsage &AU) const override { 751 AU.addPreserved<MemorySSAWrapperPass>(); 752 AU.addPreserved<DependenceAnalysisWrapperPass>(); 753 getLoopAnalysisUsage(AU); 754 } 755 }; 756 } // end namespace 757 758 char LoopSimplifyCFGLegacyPass::ID = 0; 759 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 760 "Simplify loop CFG", false, false) 761 INITIALIZE_PASS_DEPENDENCY(LoopPass) 762 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 763 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 764 "Simplify loop CFG", false, false) 765 766 Pass *llvm::createLoopSimplifyCFGPass() { 767 return new LoopSimplifyCFGLegacyPass(); 768 } 769