1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 10 // basic loop CFG cleanup, primarily to assist other loop passes. If you 11 // encounter a noncanonical CFG construct that causes another loop pass to 12 // perform suboptimally, this is the place to fix it up. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/DependenceAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Scalar/LoopPassManager.h" 39 #include "llvm/Transforms/Utils.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Transforms/Utils/LoopUtils.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-simplifycfg" 46 47 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 48 cl::init(true)); 49 50 STATISTIC(NumTerminatorsFolded, 51 "Number of terminators folded to unconditional branches"); 52 STATISTIC(NumLoopBlocksDeleted, 53 "Number of loop blocks deleted"); 54 STATISTIC(NumLoopExitsDeleted, 55 "Number of loop exiting edges deleted"); 56 57 /// If \p BB is a switch or a conditional branch, but only one of its successors 58 /// can be reached from this block in runtime, return this successor. Otherwise, 59 /// return nullptr. 60 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 61 Instruction *TI = BB->getTerminator(); 62 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 63 if (BI->isUnconditional()) 64 return nullptr; 65 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 66 return BI->getSuccessor(0); 67 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 68 if (!Cond) 69 return nullptr; 70 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 71 } 72 73 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 74 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 75 if (!CI) 76 return nullptr; 77 for (auto Case : SI->cases()) 78 if (Case.getCaseValue() == CI) 79 return Case.getCaseSuccessor(); 80 return SI->getDefaultDest(); 81 } 82 83 return nullptr; 84 } 85 86 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. 87 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, 88 Loop *LastLoop = nullptr) { 89 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && 90 "First loop is supposed to be inside of last loop!"); 91 assert(FirstLoop->contains(BB) && "Must be a loop block!"); 92 for (Loop *Current = FirstLoop; Current != LastLoop; 93 Current = Current->getParentLoop()) 94 Current->removeBlockFromLoop(BB); 95 } 96 97 /// Find innermost loop that contains at least one block from \p BBs and 98 /// contains the header of loop \p L. 99 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, 100 Loop &L, LoopInfo &LI) { 101 Loop *Innermost = nullptr; 102 for (BasicBlock *BB : BBs) { 103 Loop *BBL = LI.getLoopFor(BB); 104 while (BBL && !BBL->contains(L.getHeader())) 105 BBL = BBL->getParentLoop(); 106 if (BBL == &L) 107 BBL = BBL->getParentLoop(); 108 if (!BBL) 109 continue; 110 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) 111 Innermost = BBL; 112 } 113 return Innermost; 114 } 115 116 namespace { 117 /// Helper class that can turn branches and switches with constant conditions 118 /// into unconditional branches. 119 class ConstantTerminatorFoldingImpl { 120 private: 121 Loop &L; 122 LoopInfo &LI; 123 DominatorTree &DT; 124 ScalarEvolution &SE; 125 MemorySSAUpdater *MSSAU; 126 LoopBlocksDFS DFS; 127 DomTreeUpdater DTU; 128 SmallVector<DominatorTree::UpdateType, 16> DTUpdates; 129 130 // Whether or not the current loop has irreducible CFG. 131 bool HasIrreducibleCFG = false; 132 // Whether or not the current loop will still exist after terminator constant 133 // folding will be done. In theory, there are two ways how it can happen: 134 // 1. Loop's latch(es) become unreachable from loop header; 135 // 2. Loop's header becomes unreachable from method entry. 136 // In practice, the second situation is impossible because we only modify the 137 // current loop and its preheader and do not affect preheader's reachibility 138 // from any other block. So this variable set to true means that loop's latch 139 // has become unreachable from loop header. 140 bool DeleteCurrentLoop = false; 141 142 // The blocks of the original loop that will still be reachable from entry 143 // after the constant folding. 144 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 145 // The blocks of the original loop that will become unreachable from entry 146 // after the constant folding. 147 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 148 // The exits of the original loop that will still be reachable from entry 149 // after the constant folding. 150 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 151 // The exits of the original loop that will become unreachable from entry 152 // after the constant folding. 153 SmallVector<BasicBlock *, 8> DeadExitBlocks; 154 // The blocks that will still be a part of the current loop after folding. 155 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 156 // The blocks that have terminators with constant condition that can be 157 // folded. Note: fold candidates should be in L but not in any of its 158 // subloops to avoid complex LI updates. 159 SmallVector<BasicBlock *, 8> FoldCandidates; 160 161 void dump() const { 162 dbgs() << "Constant terminator folding for loop " << L << "\n"; 163 dbgs() << "After terminator constant-folding, the loop will"; 164 if (!DeleteCurrentLoop) 165 dbgs() << " not"; 166 dbgs() << " be destroyed\n"; 167 auto PrintOutVector = [&](const char *Message, 168 const SmallVectorImpl<BasicBlock *> &S) { 169 dbgs() << Message << "\n"; 170 for (const BasicBlock *BB : S) 171 dbgs() << "\t" << BB->getName() << "\n"; 172 }; 173 auto PrintOutSet = [&](const char *Message, 174 const SmallPtrSetImpl<BasicBlock *> &S) { 175 dbgs() << Message << "\n"; 176 for (const BasicBlock *BB : S) 177 dbgs() << "\t" << BB->getName() << "\n"; 178 }; 179 PrintOutVector("Blocks in which we can constant-fold terminator:", 180 FoldCandidates); 181 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 182 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 183 PrintOutSet("Live exit blocks:", LiveExitBlocks); 184 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 185 if (!DeleteCurrentLoop) 186 PrintOutSet("The following blocks will still be part of the loop:", 187 BlocksInLoopAfterFolding); 188 } 189 190 /// Whether or not the current loop has irreducible CFG. 191 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 192 assert(DFS.isComplete() && "DFS is expected to be finished"); 193 // Index of a basic block in RPO traversal. 194 DenseMap<const BasicBlock *, unsigned> RPO; 195 unsigned Current = 0; 196 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 197 RPO[*I] = Current++; 198 199 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 200 BasicBlock *BB = *I; 201 for (auto *Succ : successors(BB)) 202 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 203 // If an edge goes from a block with greater order number into a block 204 // with lesses number, and it is not a loop backedge, then it can only 205 // be a part of irreducible non-loop cycle. 206 return true; 207 } 208 return false; 209 } 210 211 /// Fill all information about status of blocks and exits of the current loop 212 /// if constant folding of all branches will be done. 213 void analyze() { 214 DFS.perform(&LI); 215 assert(DFS.isComplete() && "DFS is expected to be finished"); 216 217 // TODO: The algorithm below relies on both RPO and Postorder traversals. 218 // When the loop has only reducible CFG inside, then the invariant "all 219 // predecessors of X are processed before X in RPO" is preserved. However 220 // an irreducible loop can break this invariant (e.g. latch does not have to 221 // be the last block in the traversal in this case, and the algorithm relies 222 // on this). We can later decide to support such cases by altering the 223 // algorithms, but so far we just give up analyzing them. 224 if (hasIrreducibleCFG(DFS)) { 225 HasIrreducibleCFG = true; 226 return; 227 } 228 229 // Collect live and dead loop blocks and exits. 230 LiveLoopBlocks.insert(L.getHeader()); 231 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 232 BasicBlock *BB = *I; 233 234 // If a loop block wasn't marked as live so far, then it's dead. 235 if (!LiveLoopBlocks.count(BB)) { 236 DeadLoopBlocks.push_back(BB); 237 continue; 238 } 239 240 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 241 242 // If a block has only one live successor, it's a candidate on constant 243 // folding. Only handle blocks from current loop: branches in child loops 244 // are skipped because if they can be folded, they should be folded during 245 // the processing of child loops. 246 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; 247 if (TakeFoldCandidate) 248 FoldCandidates.push_back(BB); 249 250 // Handle successors. 251 for (BasicBlock *Succ : successors(BB)) 252 if (!TakeFoldCandidate || TheOnlySucc == Succ) { 253 if (L.contains(Succ)) 254 LiveLoopBlocks.insert(Succ); 255 else 256 LiveExitBlocks.insert(Succ); 257 } 258 } 259 260 // Sanity check: amount of dead and live loop blocks should match the total 261 // number of blocks in loop. 262 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 263 "Malformed block sets?"); 264 265 // Now, all exit blocks that are not marked as live are dead. 266 SmallVector<BasicBlock *, 8> ExitBlocks; 267 L.getExitBlocks(ExitBlocks); 268 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; 269 for (auto *ExitBlock : ExitBlocks) 270 if (!LiveExitBlocks.count(ExitBlock) && 271 UniqueDeadExits.insert(ExitBlock).second) 272 DeadExitBlocks.push_back(ExitBlock); 273 274 // Whether or not the edge From->To will still be present in graph after the 275 // folding. 276 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 277 if (!LiveLoopBlocks.count(From)) 278 return false; 279 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 280 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; 281 }; 282 283 // The loop will not be destroyed if its latch is live. 284 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 285 286 // If we are going to delete the current loop completely, no extra analysis 287 // is needed. 288 if (DeleteCurrentLoop) 289 return; 290 291 // Otherwise, we should check which blocks will still be a part of the 292 // current loop after the transform. 293 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 294 // If the loop is live, then we should compute what blocks are still in 295 // loop after all branch folding has been done. A block is in loop if 296 // it has a live edge to another block that is in the loop; by definition, 297 // latch is in the loop. 298 auto BlockIsInLoop = [&](BasicBlock *BB) { 299 return any_of(successors(BB), [&](BasicBlock *Succ) { 300 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 301 }); 302 }; 303 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 304 BasicBlock *BB = *I; 305 if (BlockIsInLoop(BB)) 306 BlocksInLoopAfterFolding.insert(BB); 307 } 308 309 // Sanity check: header must be in loop. 310 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 311 "Header not in loop?"); 312 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 313 "All blocks that stay in loop should be live!"); 314 } 315 316 /// We need to preserve static reachibility of all loop exit blocks (this is) 317 /// required by loop pass manager. In order to do it, we make the following 318 /// trick: 319 /// 320 /// preheader: 321 /// <preheader code> 322 /// br label %loop_header 323 /// 324 /// loop_header: 325 /// ... 326 /// br i1 false, label %dead_exit, label %loop_block 327 /// ... 328 /// 329 /// We cannot simply remove edge from the loop to dead exit because in this 330 /// case dead_exit (and its successors) may become unreachable. To avoid that, 331 /// we insert the following fictive preheader: 332 /// 333 /// preheader: 334 /// <preheader code> 335 /// switch i32 0, label %preheader-split, 336 /// [i32 1, label %dead_exit_1], 337 /// [i32 2, label %dead_exit_2], 338 /// ... 339 /// [i32 N, label %dead_exit_N], 340 /// 341 /// preheader-split: 342 /// br label %loop_header 343 /// 344 /// loop_header: 345 /// ... 346 /// br i1 false, label %dead_exit_N, label %loop_block 347 /// ... 348 /// 349 /// Doing so, we preserve static reachibility of all dead exits and can later 350 /// remove edges from the loop to these blocks. 351 void handleDeadExits() { 352 // If no dead exits, nothing to do. 353 if (DeadExitBlocks.empty()) 354 return; 355 356 // Construct split preheader and the dummy switch to thread edges from it to 357 // dead exits. 358 BasicBlock *Preheader = L.getLoopPreheader(); 359 BasicBlock *NewPreheader = llvm::SplitBlock( 360 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); 361 362 IRBuilder<> Builder(Preheader->getTerminator()); 363 SwitchInst *DummySwitch = 364 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 365 Preheader->getTerminator()->eraseFromParent(); 366 367 unsigned DummyIdx = 1; 368 for (BasicBlock *BB : DeadExitBlocks) { 369 SmallVector<Instruction *, 4> DeadPhis; 370 for (auto &PN : BB->phis()) 371 DeadPhis.push_back(&PN); 372 373 // Eliminate all Phis from dead exits. 374 for (Instruction *PN : DeadPhis) { 375 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 376 PN->eraseFromParent(); 377 } 378 assert(DummyIdx != 0 && "Too many dead exits!"); 379 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 380 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); 381 ++NumLoopExitsDeleted; 382 } 383 384 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 385 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 386 // When we break dead edges, the outer loop may become unreachable from 387 // the current loop. We need to fix loop info accordingly. For this, we 388 // find the most nested loop that still contains L and remove L from all 389 // loops that are inside of it. 390 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); 391 392 // Okay, our loop is no longer in the outer loop (and maybe not in some of 393 // its parents as well). Make the fixup. 394 if (StillReachable != OuterLoop) { 395 LI.changeLoopFor(NewPreheader, StillReachable); 396 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); 397 for (auto *BB : L.blocks()) 398 removeBlockFromLoops(BB, OuterLoop, StillReachable); 399 OuterLoop->removeChildLoop(&L); 400 if (StillReachable) 401 StillReachable->addChildLoop(&L); 402 else 403 LI.addTopLevelLoop(&L); 404 405 // Some values from loops in [OuterLoop, StillReachable) could be used 406 // in the current loop. Now it is not their child anymore, so such uses 407 // require LCSSA Phis. 408 Loop *FixLCSSALoop = OuterLoop; 409 while (FixLCSSALoop->getParentLoop() != StillReachable) 410 FixLCSSALoop = FixLCSSALoop->getParentLoop(); 411 assert(FixLCSSALoop && "Should be a loop!"); 412 // We need all DT updates to be done before forming LCSSA. 413 DTU.applyUpdates(DTUpdates); 414 if (MSSAU) 415 MSSAU->applyUpdates(DTUpdates, DT); 416 DTUpdates.clear(); 417 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); 418 } 419 } 420 421 if (MSSAU) { 422 // Clear all updates now. Facilitates deletes that follow. 423 DTU.applyUpdates(DTUpdates); 424 MSSAU->applyUpdates(DTUpdates, DT); 425 DTUpdates.clear(); 426 if (VerifyMemorySSA) 427 MSSAU->getMemorySSA()->verifyMemorySSA(); 428 } 429 } 430 431 /// Delete loop blocks that have become unreachable after folding. Make all 432 /// relevant updates to DT and LI. 433 void deleteDeadLoopBlocks() { 434 if (MSSAU) { 435 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 436 DeadLoopBlocks.end()); 437 MSSAU->removeBlocks(DeadLoopBlocksSet); 438 } 439 440 // The function LI.erase has some invariants that need to be preserved when 441 // it tries to remove a loop which is not the top-level loop. In particular, 442 // it requires loop's preheader to be strictly in loop's parent. We cannot 443 // just remove blocks one by one, because after removal of preheader we may 444 // break this invariant for the dead loop. So we detatch and erase all dead 445 // loops beforehand. 446 for (auto *BB : DeadLoopBlocks) 447 if (LI.isLoopHeader(BB)) { 448 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 449 Loop *DL = LI.getLoopFor(BB); 450 if (DL->getParentLoop()) { 451 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) 452 for (auto *BB : DL->getBlocks()) 453 PL->removeBlockFromLoop(BB); 454 DL->getParentLoop()->removeChildLoop(DL); 455 LI.addTopLevelLoop(DL); 456 } 457 LI.erase(DL); 458 } 459 460 for (auto *BB : DeadLoopBlocks) { 461 assert(BB != L.getHeader() && 462 "Header of the current loop cannot be dead!"); 463 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 464 << "\n"); 465 LI.removeBlock(BB); 466 } 467 468 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); 469 DTU.applyUpdates(DTUpdates); 470 DTUpdates.clear(); 471 for (auto *BB : DeadLoopBlocks) 472 DTU.deleteBB(BB); 473 474 NumLoopBlocksDeleted += DeadLoopBlocks.size(); 475 } 476 477 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 478 /// unconditional branches. 479 void foldTerminators() { 480 for (BasicBlock *BB : FoldCandidates) { 481 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 482 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 483 assert(TheOnlySucc && "Should have one live successor!"); 484 485 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 486 << " with an unconditional branch to the block " 487 << TheOnlySucc->getName() << "\n"); 488 489 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 490 // Remove all BB's successors except for the live one. 491 unsigned TheOnlySuccDuplicates = 0; 492 for (auto *Succ : successors(BB)) 493 if (Succ != TheOnlySucc) { 494 DeadSuccessors.insert(Succ); 495 // If our successor lies in a different loop, we don't want to remove 496 // the one-input Phi because it is a LCSSA Phi. 497 bool PreserveLCSSAPhi = !L.contains(Succ); 498 Succ->removePredecessor(BB, PreserveLCSSAPhi); 499 if (MSSAU) 500 MSSAU->removeEdge(BB, Succ); 501 } else 502 ++TheOnlySuccDuplicates; 503 504 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 505 // If TheOnlySucc was BB's successor more than once, after transform it 506 // will be its successor only once. Remove redundant inputs from 507 // TheOnlySucc's Phis. 508 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 509 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 510 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 511 if (MSSAU && TheOnlySuccDuplicates > 1) 512 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 513 514 IRBuilder<> Builder(BB->getContext()); 515 Instruction *Term = BB->getTerminator(); 516 Builder.SetInsertPoint(Term); 517 Builder.CreateBr(TheOnlySucc); 518 Term->eraseFromParent(); 519 520 for (auto *DeadSucc : DeadSuccessors) 521 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); 522 523 ++NumTerminatorsFolded; 524 } 525 } 526 527 public: 528 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 529 ScalarEvolution &SE, 530 MemorySSAUpdater *MSSAU) 531 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), 532 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} 533 bool run() { 534 assert(L.getLoopLatch() && "Should be single latch!"); 535 536 // Collect all available information about status of blocks after constant 537 // folding. 538 analyze(); 539 BasicBlock *Header = L.getHeader(); 540 (void)Header; 541 542 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() 543 << ": "); 544 545 if (HasIrreducibleCFG) { 546 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 547 return false; 548 } 549 550 // Nothing to constant-fold. 551 if (FoldCandidates.empty()) { 552 LLVM_DEBUG( 553 dbgs() << "No constant terminator folding candidates found in loop " 554 << Header->getName() << "\n"); 555 return false; 556 } 557 558 // TODO: Support deletion of the current loop. 559 if (DeleteCurrentLoop) { 560 LLVM_DEBUG( 561 dbgs() 562 << "Give up constant terminator folding in loop " << Header->getName() 563 << ": we don't currently support deletion of the current loop.\n"); 564 return false; 565 } 566 567 // TODO: Support blocks that are not dead, but also not in loop after the 568 // folding. 569 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 570 L.getNumBlocks()) { 571 LLVM_DEBUG( 572 dbgs() << "Give up constant terminator folding in loop " 573 << Header->getName() << ": we don't currently" 574 " support blocks that are not dead, but will stop " 575 "being a part of the loop after constant-folding.\n"); 576 return false; 577 } 578 579 SE.forgetTopmostLoop(&L); 580 // Dump analysis results. 581 LLVM_DEBUG(dump()); 582 583 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 584 << " terminators in loop " << Header->getName() << "\n"); 585 586 // Make the actual transforms. 587 handleDeadExits(); 588 foldTerminators(); 589 590 if (!DeadLoopBlocks.empty()) { 591 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 592 << " dead blocks in loop " << Header->getName() << "\n"); 593 deleteDeadLoopBlocks(); 594 } else { 595 // If we didn't do updates inside deleteDeadLoopBlocks, do them here. 596 DTU.applyUpdates(DTUpdates); 597 DTUpdates.clear(); 598 } 599 600 if (MSSAU && VerifyMemorySSA) 601 MSSAU->getMemorySSA()->verifyMemorySSA(); 602 603 #ifndef NDEBUG 604 // Make sure that we have preserved all data structures after the transform. 605 #if defined(EXPENSIVE_CHECKS) 606 assert(DT.verify(DominatorTree::VerificationLevel::Full) && 607 "DT broken after transform!"); 608 #else 609 assert(DT.verify(DominatorTree::VerificationLevel::Fast) && 610 "DT broken after transform!"); 611 #endif 612 assert(DT.isReachableFromEntry(Header)); 613 LI.verify(DT); 614 #endif 615 616 return true; 617 } 618 619 bool foldingBreaksCurrentLoop() const { 620 return DeleteCurrentLoop; 621 } 622 }; 623 } // namespace 624 625 /// Turn branches and switches with known constant conditions into unconditional 626 /// branches. 627 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 628 ScalarEvolution &SE, 629 MemorySSAUpdater *MSSAU, 630 bool &IsLoopDeleted) { 631 if (!EnableTermFolding) 632 return false; 633 634 // To keep things simple, only process loops with single latch. We 635 // canonicalize most loops to this form. We can support multi-latch if needed. 636 if (!L.getLoopLatch()) 637 return false; 638 639 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 640 bool Changed = BranchFolder.run(); 641 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); 642 return Changed; 643 } 644 645 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 646 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 647 bool Changed = false; 648 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 649 // Copy blocks into a temporary array to avoid iterator invalidation issues 650 // as we remove them. 651 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 652 653 for (auto &Block : Blocks) { 654 // Attempt to merge blocks in the trivial case. Don't modify blocks which 655 // belong to other loops. 656 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 657 if (!Succ) 658 continue; 659 660 BasicBlock *Pred = Succ->getSinglePredecessor(); 661 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 662 continue; 663 664 // Merge Succ into Pred and delete it. 665 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 666 667 if (MSSAU && VerifyMemorySSA) 668 MSSAU->getMemorySSA()->verifyMemorySSA(); 669 670 Changed = true; 671 } 672 673 return Changed; 674 } 675 676 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 677 ScalarEvolution &SE, MemorySSAUpdater *MSSAU, 678 bool &IsLoopDeleted) { 679 bool Changed = false; 680 681 // Constant-fold terminators with known constant conditions. 682 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); 683 684 if (IsLoopDeleted) 685 return true; 686 687 // Eliminate unconditional branches by merging blocks into their predecessors. 688 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 689 690 if (Changed) 691 SE.forgetTopmostLoop(&L); 692 693 return Changed; 694 } 695 696 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 697 LoopStandardAnalysisResults &AR, 698 LPMUpdater &LPMU) { 699 Optional<MemorySSAUpdater> MSSAU; 700 if (AR.MSSA) 701 MSSAU = MemorySSAUpdater(AR.MSSA); 702 bool DeleteCurrentLoop = false; 703 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 704 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 705 DeleteCurrentLoop)) 706 return PreservedAnalyses::all(); 707 708 if (DeleteCurrentLoop) 709 LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); 710 711 auto PA = getLoopPassPreservedAnalyses(); 712 if (AR.MSSA) 713 PA.preserve<MemorySSAAnalysis>(); 714 return PA; 715 } 716 717 namespace { 718 class LoopSimplifyCFGLegacyPass : public LoopPass { 719 public: 720 static char ID; // Pass ID, replacement for typeid 721 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 722 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 723 } 724 725 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 726 if (skipLoop(L)) 727 return false; 728 729 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 730 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 731 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 732 Optional<MemorySSAUpdater> MSSAU; 733 if (EnableMSSALoopDependency) { 734 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 735 MSSAU = MemorySSAUpdater(MSSA); 736 if (VerifyMemorySSA) 737 MSSA->verifyMemorySSA(); 738 } 739 bool DeleteCurrentLoop = false; 740 bool Changed = simplifyLoopCFG( 741 *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 742 DeleteCurrentLoop); 743 if (DeleteCurrentLoop) 744 LPM.markLoopAsDeleted(*L); 745 return Changed; 746 } 747 748 void getAnalysisUsage(AnalysisUsage &AU) const override { 749 if (EnableMSSALoopDependency) { 750 AU.addRequired<MemorySSAWrapperPass>(); 751 AU.addPreserved<MemorySSAWrapperPass>(); 752 } 753 AU.addPreserved<DependenceAnalysisWrapperPass>(); 754 getLoopAnalysisUsage(AU); 755 } 756 }; 757 } // end namespace 758 759 char LoopSimplifyCFGLegacyPass::ID = 0; 760 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 761 "Simplify loop CFG", false, false) 762 INITIALIZE_PASS_DEPENDENCY(LoopPass) 763 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 764 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 765 "Simplify loop CFG", false, false) 766 767 Pass *llvm::createLoopSimplifyCFGPass() { 768 return new LoopSimplifyCFGLegacyPass(); 769 } 770